or reuse of any copyrighted component of this work in other works.

(©IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

hvbench: An open and scalable SDN Network
Hypervisor Benchmark

Christian Sieber, Andreas Blenk, Arsany Basta, Wolfgang Kellerer
Chair of Communication Networks
Department of Electrical and Computer Engineering
Technical University of Munich, Germany
Email: {c.sieber,andreas.blenk,arsany.basta,wolfgang.kellerer} @tum.de

Abstract—Software-defined networking (SDN) introduces a
split between the forwarding plane and the control plane of
modern network equipment. Furthermore, OpenFlow, as an open
interface for SDN, fosters the development of logically centralized
network operation systems (NOS). To allow multiple network
operation systems accessing the same network, there is the con-
cept of SDN hypervisors. Little is known about the performance
characteristics of SDN hypervisors. Furthermore, there is a lack
of scalable and realistic hypervisor benchmark tools capable of
emulating dynamic load scenarios. In this paper, we present
an extensible and distributed SDN hypervisor benchmarking
framework based on flexible statistical request generators. The
framework can be scaled out horizontally to multiple compute
nodes that are centrally controlled and reconfigured at run-
time. We present preliminary measurements of the CPU resource
consumption of a hypervisor in a virtual environment. The results
show that the performance characteristics of the hypervisor are
different for dynamic load scenarios compared to static bench-
marks. Furthermore, the results show that for the same overall
request rate, multiple NOS increase the CPU load considerable
compared to a single NOS.

I. INTRODUCTION

Software-defined networking (SDN) is replacing classical
networking concepts of integrated network devices by splitting
the forwarding decision making and the actual data forward-
ing. Decisions are made by a logically centralized network
operation system (NOS) (or SDN controller). The decisions
are pushed in the shape of forwarding rules to the networking
devices. The recent success of SDN can be attributed to the
OpenFlow protocol, which is an open interface for manipulat-
ing the forwarding tables of OpenFlow-enabled networking
devices. Additionally, OpenFlow provides the capability to
request the features of a device, e.g., number of Ethernet
ports, to receive statistics, e.g., number of Bytes received and
forwarded, and to update the rules in the forwarding table.

Analogous to server virtualization where hypervisors allow
multiple operation systems to share the same physical hard-
ware, SDN hypervisors virtualize the network. For example
FlowVisor [1] and OpenVirteX [2] enable multiple networking
operating systems to coexist and share the control for the same
physical infrastructure. SDN hypervisors use the flow space of
OpenFlow forwarding rules, e.g., VLANSs, IP address ranges
and Ethernet ports, to split a network into different slices
and each slice can be associated with a different networking

978-1-4673-9486-4/16/$31.00 (© 2016 IEEE

operation system. Hence, an SDN hypervisor is translating
rules from the NOS to allow shared access, provide statistics,
topology abstraction and isolation. Use cases range from
testing a new NOS on a fraction of the traffic to offering
different customers the control over their forwarding decisions
in a shared infrastructure [3].

While the performance of SDN controllers and networking
devices receives much attention, less is known about the
performance characteristics of SDN hypervisors. All requests
from the NOS and all replies or notifications from the de-
vices have to pass through the hypervisor, which makes it
a crucial part of the infrastructure. In order to know the
overall performance of the system, we have to understand how
SDN hypervisors handle different requests types and how the
request types relate to each other in terms of computational
complexity. Furthermore, it is important to understand if and
how the request arrival process and request type distribution
has an influence on the performance. In this work, we present
an open and scalable hypervisor benchmarking tool which is
able to generate dynamic workloads. This is a step towards
understanding the performance characteristics of SDN hyper-
visors in dynamic environments.

A. Challenges

A hypervisor benchmark has to be flexible to cover the wide
range of scenarios where SDN hypervisors are deployed. De-
ployment scenarios can range from single instance deployment
to horizontally scaled out hypervisor instances and from heavy
use of a single request type to different distributions of request
types. Furthermore, in deployment, SDN hypervisors will face
varying amount of load and changing demands. According to
those requirements, we identified the following shortcomings
in current OpenFlow-based SDN benchmarks: 1) They are
designed as a single instance application, which limits the
scalability; 2) only generate messages with a fixed inter-arrival
time, hence do not represent realistic request arrival processes;
3) only generate messages of a fixed type, e.g., flow mods or
echo requests, which neglects possible cross-effects between
request types; 4) are not configurable at run-time and hence
do not allow dynamic scenarios; and/or 5) depend on a real
or emulated data plane, hence are restricted to round-trip
measurements or have to intercept the connection between
hypervisor and data plane.

In this work, we present a hypervisor benchmark tool that
tackles the aforementioned shortcomings by 1) designing it
as a distributed application with dummy data plane nodes;
2) using statistical probability distribution for message gener-
ation; and 3) allowing updates to the configuration on run-time.
Subsequently we discuss the design goals of hvbench in detail.

B. Design Goals & Features

To aid the evaluation of the aforementioned performance
characteristics of SDN hypervisors, hvbench offers the fol-
lowing notable features:

« Distributed operation of NOS controllers and data plane
nodes on multiple physical machines.

o Using kafka [4] to forward packet in and packet out
between the dummy data plane nodes.

o Centrally configured & controlled by using etcd [5] as
directory and discovery service.

« Configurable at run-time (adding a NOS, adding nodes,
changing generator configuration)

« Extensible message generators based on Poisson process
and individual weight of each request type.

The source code and documentation is available on
github.com under the MIT licensing terms [6].

The remainder of this paper is structured as follows. In
Section II we introduce the background and related work
in this field. In Section III we show the architecture of
hvbench including the components. In Section IV we present
preliminary measurement results for one SDN hypervisor. In
Section V we conclude this work and outline future work.

II. BACKGROUND & RELATED WORK

Understanding the performance characteristics of SDN hy-
pervisors is a first step towards SDN control plane resource
allocation. In order to allocate hypervisor processing re-
sources to NOS demands, a mapping between the hypervisor
processing resources and the control plane request rate is
required. Such mapping guarantees that, e.g., enough CPU
resources are assigned to each NOS in order to provide the
requested performance. The importance of such a mapping
and performance evaluation benchmarks have already been
shown in [7], [8]. However, the introduced benchmark focuses
mostly on the maximum performance of a particular type of
request, e.g., flow modifications, and does not consider request
mixes or statistical arrival processes. Other existing work on
hypervisors has also only provided benchmarks proofing their
implementation [1], [2] based on only a few metrics, e.g., flow
set-up time.

From the perspective of a controller, SDN hypervisors
appear as data plane nodes. From the perspective of a data
plane node, SDN hypervisors appear as an SDN controller.
Hence, benchmark tools for controllers and data plane nodes
are applicable for benchmarking SDN hypervisors. cbench [9],
ofcbenchmark [10], SDLoad [11], PktBlaster [12] and the
framework presented in [13] emulate different data plane
topologies and measure performance metrics such as flow
set-up times. Switch benchmark tools such as OFLOPS and

OFLOPS-Turbo [14] emulate an SDN controller and measure
switch specific performance metrics such as flow table capacity
and the latency for rule insertion into the flow table. A
comprehensive overview of further controller and data plane
benchmarks can be found in [15]. In [16], the authors take
a different approach and use parametrized abstract models
to describe the performance of SDN controllers. However,
the authors do not evaluate the abstract models for SDN
hypervisors.

III. ARCHITECTURE

Figure 1 depicts the architecture of hvbench, The archi-
tecture consists of four main modules. A configuration and
directory service (1), distributed hvbench instances (2), a
high-throughput messaging bus (3) and host monitors (4).
A command-line front-end and Python bindings simplify the
usage of the distributed architecture. Each (outer) box in
the figure represents a software component which can be
distributed to different virtual or physical machines.

etcd

@ Configuration & Discovery |, _ APIs
@) I
Service ~, REST
o . . Client

Python
API

Control Plane
Emulation

(2) hvbench

Generator

OF Driver

Virtualization
Layer

Resource
“|_Monitor

lavep] ReESOUrCE |y
Monitor |

4-{ Hypervisor ‘ ‘ Hypervisor

Data Plane /'/ Q@ ,", p \"\ @ -

Emulation ‘3;‘
OF OF — | Kk - OF OF
Agent Agent afka Agent Agent

Packet In /
Packet Out

youagay

hvbench

Figure 1. Architectural overview of hvbench. Distributed hvbench instances
(2) are coordinated by a central configuration and discovery service eted (1).
kafka distributes in/out packets between the data plane nodes (3). Resource
monitors collect process performance metrics (4).

hvbench instances are containers for multiple, independent,
NOS and/or data plane nodes. When the distributed hvbench
instances are started, the instances register at the configuration
and directory service. We use efcd as configuration directory
service for its simplicity and support of change notifications.
From this service, they receive the run-time configuration, e.g.,
number of NOS per instance, and report their host configura-
tion, e.g., the host’s IP address. The configuration for a specific
instance is identified by an ID given to each instances on start-
up. Additionally, efcd pushes run-time configuration changes,
e.g., an update to the average message rate, to the hvbench
instances and the instances in return report their utilization to
the directory service.

A message bus distributes injected data plane packets re-
ceived from the hypervisor between the data plane nodes
(packet out). This allows topology discovery via Link Layer

Discovery Protocol (LLDP) packets as used for example by
FlowVisor and OpenVirtex. We use Apache kafka as message
bus because of its low latency properties and scalable archi-
tecture. For handling the OpenFlow connections and message
parsing, denoted as OF driver for the NOS and OF agent for
the data plane node in the figure, we use a customized version
of libfluid [17].

The host monitor uses a database of known SDN hypervisor
names to identify and monitor hypervisor processes. From the
process it collects performance metrics such as CPU utilization
as reported by the underlying Linux kernel.

Control Plane
Emulation

Message Generator hvbench

Sending Process Configuration Receiving Process
Poisson Average
a——
Process rate A
Network
Operation Category Request Calculate
System Discrete | +==\ ohts Latency
Distribution g
=, OpenFlow
Q@
“= (libfluid)
Virtualization
Layer
: Flow
SDN h . = Space P Resource
Hypervisor Cache = P . Monitor
.................. Translation
@
Data Plane v‘ hvbench

Emulation

Dummy OF Agent

Figure 2. Detailed view of two hvbench instance with a single NOS including
the message generator, one data plane node and the hypervisor.

Figure 2 gives a detailed overview of a set-up consisting of
two hvbench instances and the hypervisor. A NOS is described
by its OpenFlow listening port and request generator. As of
now, two types of request generators are implemented for a
NOS. A constant message generator generates requests of one
specific type with a specific rate, e.g., 1,000 feature requests
per second. A probabilistic generator generates different re-
quests based on a set of weights and an average rate \. At first,
the sending process in the probabilistic generator chooses the
point in time of the next message to send based on a Poisson
process with exponential distributed inter-arrival times and an
average rate of \. Next, the type of the requests to be generated
is determined by a categorical (discrete) distribution based on
a set of weights. The average rate and the weight of each
request type can be adjusted on run-time.

In the receiving process of the NOS, we measure the latency
of requests. We use requests with replies such as echo requests
to calculate the round-trip time. Measured one-way latency
depends on the quality of clock synchronization when the
data plane node and the NOS are not on the same physical
machine. The data plane nodes emulate the OF agents and
answer requests either with random values (e.g. port statistics)
or with pre-configured values, e.g., feature requests.

Next we motivate hvbench by comparing measurements of
static benchmark scenarios with dynamic workload scenarios.

IV. MEASUREMENTS

Our preliminary measurements focus on three questions.
First, is there a difference in computational complexity be-
tween different request types? Second, how does the statistical
arrival process compare to the static arrival process with only
one request type? And third, does the number of connected
NOS influence the CPU load for the same request rate?

In the evaluation of the questions we use the OpenFlow
hypervisor FlowVisor [1]. The hypervisor is executed inside
an Ubuntu 14.04 environment virtualized by VirtualBox. One
17-4770 CPU core with 3.40 GHz and 2 GB of memory were
assigned to the virtual environment. The data plane consists
of one data plane node. As CPU load/utilization metric, we
use the fraction of time in which the process uses the CPU in
system and user mode within a time interval of one second.

For the statistical arrival process we set the following
weights for the request type distribution. A probability of
0.2 for each of flow modifications, both types of statistics
requests, and packet out messages. A probability of 0.1 for
each of feature requests and echo requests. The request inter-
arrival times are distributed exponentially. For the constant
arrival process, the inter-arrival times are constant based on
the specified average rate.

10 I T I I 1
Port Stats J p ~

08 L) | Feature|

| EMod
g 06| . i
_§ Flow Stats
= 04 |- : -

02 Lm0 T g

- Dynamic workload Echo
0.0 | | | | |
0 5000 10000 15000 20000 25000 30000

Requests (1/s)

Figure 3. CPU utilization for FlowVisor for increasing request rates for differ-
ent request types for one NOS. The figure illustrates the varying computational
complexity of request types. Each line represents one experiment run.

In the first experiment we measure the CPU load of Flow Vi-
sor for increasing request rates up to 30,000 requests per
second for different request types generated by one NOS. The
average request rate is increased by 250 requests/s every five
seconds. For flow modifications and dynamic workload, the
current limits of hAvbench for one NOS are 10,000 and 20,000
requests per second, respectively. The results are shown with
a rolling mean with a window size of 5. Figure 3 illustrates
one experiment run for each request type. Four observations
can be made from the figure. First, there is a sudden rise to
20% CPU load for all request types at around 1,000 requests
per second. For lower request rates, the CPU statistics of the
Linux kernel report a utilization of close to 0 %. Second, the
slope of the increase in CPU load for higher request rates is
different for each request type. For example echo requests are
not computational expensive for that hypervisor and therefor

the increase for higher message rates is low. Flow modification
requests on the other hand are computational expensive and
therefor the CPU load increases fast for higher rates. Third,
the behavior for some request type shows irregularities. Most
notable here is the trend of the flow statistic requests. While
port statistic requests exhibit a sub-linear behavior with no
irregularities, flow statistics exhibit a drop of CPU load for
about 16,000 requests per second. The drop indicates that the
hypervisor handles high flow statistics request rates differently
than lower ones. Forth, the requests generated by the Poisson-
based generator are computational expensive compared to echo
and port statistic requests. Furthermore, the trend for higher
request rates is about linear up to 10,000 requests per second.

0.6 T T T T T

e
05| v . ; ﬁ*ﬁ i
_ 04l 10 NOS P *+ +*:H§
2 A B +
g 03l "E} Eru
= -»"'"'*
= 02 f ..,'H"’F# R
* \
0.1 | ﬁzﬁ- INOS |
0.0 M | | | |
0 1000 2000 3000 4000 5000 6000

Requests (1/s)

Figure 4. CPU utilization for up to 6,000 requests per second for one NOS
and for ten NOS. The increase for one NOS is approximately linear, while
the increase for ten NOS is super linear.

Next, we investigate the question whether there is a differ-
ence in CPU load between one and multiple NOS for the same
request rate. Figure 4 shows the CPU utilization for up to 6,000
requests for one NOS and for ten NOS. The request rate for
each of the ten NOS is set to 10 of the request rate of the one
NOS in the single NOS configuration. The figure shows the
result of two experiment runs, one for one NOS and one for
ten NOS, where the request rate was increased by 25 requests
per second every five seconds. Repeated measurements show
the same behavior. From the figure we conclude that there is
a difference between the two configurations in terms of CPU
load for a specific request rate. While the CPU utilization
for one NOS behaves approximately linear for increasing
request rates, the utilization for ten NOS increases super
linear. However, starting from a message rate of 2,500, both
configurations increase linear. For 6,000 requests per second,
there is a difference of about 20 % CPU utilization. As also
observed in Figure 3, for up to 1,000 requests per second the
CPU utilization stays close to 0 % for both configurations.

To summarize, the results show that there is a difference in
computational complexity of the different request types and
request type distribution. Furthermore, the processing of the
requests becomes less efficient, i.e. results in higher CPU load,
if the messages are generated by more than one NOS. hvbench
is a first step in gaining better insight in the performance
characteristics of SDN hypervisors for dynamic workloads.

V. CONCLUSION & FUTURE WORK

SDN hypervisor allow multiple network operation systems
(NOS) to operate slices of a network simultaneously. They
slice the network using the flow space of OpenFlow and
translate all requests from and to the NOS. This makes them
a critical part of infrastructure. Therefore, it is critical to
understand the performance characteristics of SDN hypervi-
sor for varying workloads. In this work we first highlight
the shortcomings of traditional SDN benchmarking tools to
adequately mimic realistic deployment scenarios. We present
hvbench, a flexible and horizontally scalable benchmarking
framework for SDN hypervisors. hvbench generates request
arrivals based on statistical arrival processes and run-time
configurable to emulate different deployment scenarios. Pre-
liminary measurements with hvbench motivate the need for
sophisticated benchmarking tools as the results show that there
is a significant differences between static and dynamic bench-
marking scenarios. In the future, we extend the performance
evaluation with a larger parameter space, e.g. more hypervisors
and different hardware configurations. The source code and
documentation of hvbench is available to the community under

the MIT license.
REFERENCES

[1] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. Mck-
eown, and G. Parulkar, “FlowVisor: A network virtualization layer,”
OpenFlow Consortium, Tech. Rep., 2009.

[2] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, W. Snow,
and G. Parulkar, “OpenVirteX: a network hypervisor,” in Proc. Open
Networking Summit (ONS), Santa Clara, CA, Mar. 2014.

[3] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on Network
Virtualization Hypervisors for Software Defined Networking,” IEEE
Communications Surveys & Tutorials, pp. 1-32, 2015.

[4] “Apache Kafka,” http://kafka.apache.org/.

[5] “etcd,” https://coreos.com/etcd/.

[6] “hvbench,” https://github.com/csieber/hvbench.

[7]1 A. Blenk, A. Basta, and W. Kellerer, “HyperFlex: An SDN virtualization
architecture with flexible hypervisor function allocation,” in IFIP/IEEE
Int. Symp. on Integrated Network Management (IM), 2015.

[8] A. Basta, A. Blenk, Y.-T. Lai, and W. Kellerer, “Hyperflex: Demon-
strating control-plane isolation for virtual software-defined networks,” in
IFIP/IEEE Int. Symp. on Integrated Network Management (IM), 2015.

[9] “cbench,” https://github.com/andi-bigswitch/oflops/tree/master/cbench.

[10] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A flexible openflow-
controller benchmark,” in 2012 European Workshop on Software Defined
Networking (EWSDN), Oct 2012, pp. 48-53.

[11] N. Laurent, S. Vissicchio, and M. Canini, “SDLoad: An extensible
framework for sdn workload generation,” in Proceedings of the third
workshop on Hot topics in software defined networking. ACM, 2014.

[12] “PktBlaster,” http://www.veryxtech.com/products/product-families/
pktblaster-sdn-software-defined-network-test.

[13] J. Teixeira, G. Antichi, D. Adami, A. Del Chiaro, S. Giordano, and
A. Santos, “Datacenter in a box: Test your sdn cloud-datacenter con-
troller at home,” in 2013 Second European Workshop on Software
Defined Networks (EWSDN), Oct 2013, pp. 99-104.

[14] C. Rotsos, G. Antichi et al., “Oflops-turbo: Testing the next-generation
openflow switch,” in 2015 IEEE International Conference on Commu-
nications (ICC), June 2015, pp. 5571-5576.

[15] D. Kreutz, F. M. Ramos et al., “Software-defined networking: A
comprehensive survey,” proceedings of the IEEE, vol. 103, no. 1, pp.
14-76, 2015.

[16] T. Sato, S. Ata, I. Oka, and Y. Sato, “Abstract model of sdn architectures
enabling comprehensive performance comparisons,” in Network and
Service Management (CNSM), 2015 11th International Conference on,
Nov 2015, pp. 99-107.

[17] C. R. A. Vidal, E. Fernandes and M. Salvador, “libfluid,” http://
opennetworkingfoundation.github.io/libfluid/, 2015.

