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Abstract— YouTube, as one of the major HTTP Adaptive
Streaming video services, accounts for a large fraction of today’s
Internet traffic. Therefore, it is important to understand how
efficiently YouTube uses available network resources. Previous
work observed that the YouTube player replaces previously
buffered segments with higher quality segments. This is good
for the user as it increases the average quality level. However,
the lower quality level segments are discarded and their traffic
is redundant and therefore wasted. In this paper, we use two
independent approaches to evaluate the efficiency of YouTube’s
quality adaptation algorithm. The first approach performs re-
gression based on previously collected video views from a large
experimental data set. In the second approach we formulate a
mixed integer linear program and calculate the optimal video
quality adaptation. The results show that the simplistic regression
approach gives an accurate estimation of the optimal adaptation.
Furthermore, the optimization shows that the Quality of Experi-
ence (QoE) can be significantly improved compared to the actual
average quality level observed in the real-world experiments,
demanding for better video quality adaptation mechanisms by
YouTube.

I. INTRODUCTION

Today, HTTP Adaptive Streaming (HAS) is the dominant
way of video delivery in the Internet. HAS is based on the
wide-spread HTTP protocol and takes over its properties such
as easy traversal of NAT-devices, firewall-friendliness, encryp-
tion in the shape of HTTPS and close-to-customer caching
through content-delivery networks (CDNs). In HAS the video
content is split into short chunks (e.g. 2 seconds) and each
chunk is encoded into different quality levels. The individual
chunks are then made available on standard HTTP servers.
The location of the chunks and their encoding are given to the
client through a manifest file. At the beginning of the playback,
the streaming client first requests the manifest file. Afterward,
it chooses the chunks according to its internal adaptation logic,
for example based on the current throughput or buffer level.
Dynamic Adaptive Streaming of HTTP (DASH) is an ISO
standard which defines the structure and content of such a
manifest file and is deployed by major video service providers
such as YouTube or Netflix.

As users are shifting away from traditional video broadcast
consumption to individual content selection through streaming
services, user expectations are growing. Users expects the
content to be available on all their devices and wherever they
go. It is well known that stalling events and the video encoding
bit-rate, i.e. the video resolution, have a significant impact
on the acceptance rate and the Quality of Experience [1].
Therefore, it is important for the service provider to develop
a sophisticated adaptation logic which can prevent stalling
events even when faced with bottle-necked or unstable Internet
connections, such as cellular access or congested links during
after-work hours.

In this paper we take a closer look at the behavior of the
adaptation logic of YouTube. In previous work [2] we showed
that YouTube’s adaptation logic focuses strictly on the user, at
the expense of network efficiency. In particular, we observed
that the YouTube player sometimes discards its currently
buffered content to re-download it in a higher quality level.
In this way, the player can increase the average quality level
shown to the user. However, the overall efficiency decreases
as the previously downloaded segments are discarded.

Figure 1 shows a request schedule for one of the experiment
runs. The x-axis shows the request video interval in playback
time, e.g. the first 16s of the video. The y-axis shows the
time of request based on the experiment time, with 0 being
the time the first HTTP GET request was sent to the server.
At first, the player requests one minute of the lowest quality
level. Then, 20 seconds into the experiment, the player revises
its previously made decision, discards two of the low quality
segments (i.e. 30s of playback time) and starts to download
a higher quality level instead. The shaded areas in the figure
illustrate where lower quality segments were discarded. The
figure illustrates that in this video view out of 105 s of video,
approximately 60s were available in more than one quality
level at the player. As we show in our previous study [2],
this is not an isolated incident, but happens on a regular
basis. Therefore, in this work we take a closer look at the
effectiveness of this approach.
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Figure 1. Example request schedule from one of the experiment runs [2].
From 30s to 90s overlaps can be observed where low quality (144p) is
replaced by higher quality levels (240p, 360p and 480p).

The evaluation in this work is based on an experimental data
set with over 10.000 video views of about 30 different videos.
The videos were played in a testbed where the connection
was throttled to {0.4,0.5,...3.0Mbps}. A proxy was used
to decrypt the HTTPS connection. The dataset and testbed is
described in detail in [2], [3] and the experimental dataset is
freely available online at [4]. Over 70 QoE-relevant metrics
such as average quality level, cumulative stalling times and
number of quality switches were collected.

Our main contribution lies in analyzing how much the used
adaptation algorithm can be optimized. Even if we completely
avoid stalling events, a higher mean video quality is achievable
in most cases. Further, it is possible to reduce the number of
resolution switches and start the video after a shorter initial
delay.

The paper is structured as follows. The next section dis-
cusses the related work in this area of research. In Section III
we discuss the methodology and the two approaches used in
this work. In Section IV we present the results and in Section
V we conclude this work and outline future work.

II. RELATED WORK

First, we describe the related work in the area of user
perception of HAS video streaming services. In [5], [6],
Hof}feld et al. conclude that avoiding stallings is the first
priority when optimizing a HAS service for user experience.
The second and third priority are the average video quality
shown to the user and minimizing the number of switches
and the amplitude of the switches. In [7], Nam et al. conduct
a large scale study on YouTube and confirm the high (harmful)
impact of re-bufferings and quality switches on the user’s QoE.
Further related work in the area of HAS QoE and on HAS in
general can be found in [8].

Next we describe the related work specific to YouTube’s
adaptation strategy and in particular regarding observed redun-
dant traffic. In [1], Casas et al. conclude that the ratio between
video bit-rate and downlink bandwidth significantly influences
YouTube’s adaptation. They show that YouTube’s adaptation
is not robust in bottle-necked scenarios. Yao et al. show in

[9] that the iOS YouTube player uses overlapping segments
to smoothen the playback. Rao et al. [10] and Ito et al. [11]
evaluate YouTube’s traffic pattern during video playback. They
show a dependency of the behavior on the viewing device. In
[12], Afiorga et al. show that YouTube uses a large playout
buffer of 13s to 40s and therefore can only adapt slowly to
changing bandwidth conditions. In [13], Alcock et al. describe
YouTube’s initial burst phase in detail. They show that 32s
of playback time in a low quality level is transferred to the
client as fast as possible before the transfer is throttled. We
account this for a major source of redundant traffic as the low
quality level is replaced later by higher quality segments. In
[14], Mansy et al. evaluate YouTube’s adaptation behavior in
terms of redundant traffic, playback behavior and bandwidth
utilization. In a wireless scenario with one video and one
bandwidth pattern they quantify the redundant traffic to 16%.
They also show that the adaptation strategies of other content
providers behave in a similar way. Lui et al. [15] conclude
that YouTube’s buffer level on mobile devices is based on
the amount of data buffered, not on the amount of playback
seconds. They observe redundant traffic when segments at the
beginning of the video are re-downloaded and quantify the
redundancy to 15%. In [16], the authors identify additional
redundant traffic on the transport layer of YouTube in a mobile
scenario. They quantify the redundant traffic to 35% due to
frequent termination of TCP connections and in-flight packets.

III. METHODOLOGY

In this section we discuss the two approaches we use
to evaluate the observed adaptation from the experimental
data set. This first approach is based on regression and uses
previously observed video sessions to create an estimation on
how much non-redundant traffic relates to a specific average
playback quality. This has the advantage of being fast, scalable
and not computationally expensive. Furthermore, as it is based
on actual observed data, it captures the dynamics of the
deployed system. We use this estimation then to calculate
the maximum achievable average quality level based on the
total amount of downloaded Bytes in a playback session. The
second approach is based on a mixed integer linear program
(MILP) formulation. For this optimization problem we take
the actual video segment sizes, the observed bandwidth and
cumulative stalling times from the experimental data set as
an input. This gives us the optimal adaptation considering the
stalling times. In a second step, we remove the cumulative
stalling times and force the optimization problem to instantly
play the video.

A. Heuristic Approach

To describe the heuristic, we first have to define redun-
dant traffic. The redundant traffic ratio is defined as in the
subsequent equation, where Br is the total amount of data
downloaded during the playback session and B is the sum of
the segments’ sizes shown to the user.

_ Br-B
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Figure 2. Isotonic regression result showing the relationship between Bytes
shown to the user B and resulting average playback quality for video
vbLLqgaa%ksw. 336 video views are used in this regression.

The heuristic approach uses isotonic regression [17] to
deduce a video-dependent relationship between the data shown
to the user and the resulting average quality level based on
previously recorded playback sessions. This gives an estimate
of how much non-redundant data is necessary to reach a
certain quality level. Furthermore, it allows us to estimate the
difference in terms of average quality between two different
amounts of data. The advantage of the approach is, as previ-
ously described, that it captures the dynamics of the overall
system as it is based on actual observations.

Let ¢(B) be the functional relationship between the quality
level ¢ and the Bytes B. Figure 2 illustrates the function ¢
for one of the videos in the data-set. The x-axis gives the
amount of Bytes B played back by the player. The y-axis
gives the resulting average playback quality. Each (brown) dot
represents one playback session. The connected (black) dots
are the isotonic regression result. Multiple observations can
be made from the figure. First, a specific amount of played
bytes can result in different average quality levels at the end.
This is due to the combinatorial problem which arises due
to the different quality levels and bit-rate variations inside a
quality level. Second, there is a jump at 20 MB from 0.7 to
1.1 average quality level of unknown origin. Third, there are
outliers, e.g. at 27 MB, where significant more data does not
increase the average quality level.

Based on ¢ we determine the loss in average quality level,
or possible gain, due to the redundant traffic as:

¢(Br) — ¢(B) )

This is the difference between the average quality level we
could have reached with the total Bytes downloaded in the
session (¢(Br)) and the average quality level based on the
Bytes shown to the user ¢(B).

B. Optimal Adaptation

In order to determine how much potential there is for opti-
mization, we formulate a MILP for this problem. The solution
to the MILP will return an optimal adaptation with respect

to available bandwidth, video segment sizes, and cumulative
stalling times.

A given video is available in 7 resolutions and consists
of n segments, i.e. each segment can be played in exactly
one resolution. Furthermore, each segment ¢ that is played in
resolution j has a size S;;. We assume that all segments have
the same duration 7 and are downloaded in order. The total
data that has been downloaded at the point in time ¢ is V' (¢).
Before a segment can be played, it has to be downloaded. This
means there is a deadline D; until which the segment must
be downloaded to avoid stalling. Since there is an initial delay
T, before the first segment can be played, according to [5] the
deadline is

Di=Ty+i-T. 3)

The goal is to optimize the downloading process so that the
video may be played with the highest average resolution. This
leads us to a MILP which is a special case of Optimization
Problem 2 from [5].
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This is a Multiple-Choice Nested Knapsack Problem which
is NP-hard. However, there exist polynomial time algorithms
that return an approximation for the optimal solution that is
sufficiently good for most practical purposes. The MILP was
implemented in Gurobi ! with MATLAB.

C. Data Sets

In total, there are four data sets used in this evaluation as
listed in Table I. The three data-sets starting from the second
are calculated based on the first (experimental) data set.

First, we have the initial observations which shall serve
as the baseline in the following analysis. These measure-
ments were originally recorded in [2] where the measure-
ment methodology and measurement set-up is described in
more detail: 35 videos x27 bandwidth values x15 repli-
cations. Four quality level representations were observed:
144p, 240p, 360p, 480p. In the following, we refer to these
video quality levels as 0, 1, 2, 3. Please note that stalling events
did occur in 56% of these runs.

Based on this data set, we used the heuristic approach
described in III-A to estimate the average resolution that is

Uhttp://www.gurobi.com/



Table I
OVERVIEW OF THE DATA SETS USED IN THIS WORK.

Data Set Identifier Description

Measurements measurement The experimental data set

from [2] recorded in a testbed.

Heuristic estima-  heuristic The heuristic estimation

tion which gives us the possible
gain  without redundant
traffic.

Optimization opt (prebuffering) The MILP solition with

with stalling stalling times.

Opimtization opt (instant play) The MILP solution without

without stalling stalling times.

reachable if there was no redundant traffic, i.e. when no video
segment is downloaded multiple times. Please note that it was
assumed that the same amount of stalling would occur.

As a new contribution, we use the optimization problem,
described in Section III-B to exactly calculate the highest mean
resolution that was optimally obtainable. As a second step,
the number of switches is minimized as first proposed in [18].
For both steps, we limit the execution time of the Gurobi
Optimizer to 1s in order to process the complete data in a
timely manner. Increasing the execution will most likely lead
to slightly better values than presented in the following. For
this two-step approach, we consider the same video files, the
same duration of the viewing session and the same average
network throughput as was used in the baseline scenario to
make it comparable. However, instead of having stalling events
interrupt the replaying process, we add an initial delay to the
replaying process. The duration of this delay is equal to the
sum of the observed stalling events. This leads to the same
duration of the viewing session and the same replay time and
the same amount of data that was totally downloaded. In the
following, we refer to this scenario as opt (prebuffering).

Lastly, we present a data set that is obtained in the same
fashion as opt (prebuffering) with one major difference: the
video starts to play immediately after the first segment has
been downloaded. To achieve this, we consider the exact same
network throughput as in the baseline scenario, while having
a shorter session duration since the stalling times are omitted.
This means that the amount of data that is downloaded in this
case is lower than in the baseline scenario. In the following,
we refer to this scenario as opt (instant play).

IV. RESULTS

In this section, we present our results on how much
YouTube’s current adaptation algorithm could be improved.
As key metrics, we analyze the average quality, the frequency
of stalling events, the frequency of quality switches and the
initial delay of the video playback. As a first step, we discuss
how the video quality and stalling events are related to each
other in the experimental data set.
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Figure 3. Average playback quality compared to stalling events per minute as
observed in the experimental data set. Average playback quality is clustered
using k-means with 40 bins. On average, every 0.6 minutes a stalling event
can be observed. Average playback quality and stalling events are highly
correlated and show osculating behavior.

A. Relationshop Between Quality and Stalling

Figure 3 illustrates the relationship between the average
quality level and the stalling events in the experiment result
set. For the average quality level, 0 is defined as 100% of the
segments are shown to the user in 144p. Quality 3 is defined
as 100% of the segments are shown to the user in 480p. The
average quality levels are clustered using k-means (40 bins)
and the error bars indicate the 95 % confidence interval of each
cluster. Two observations can be made from the figure. First,
the lowest average quality level is 0.3 with about 0.5 quality
switches per minute. From this it follows that the player risks
one stalling per two minutes in order to avoid showing only the
lowest quality level in low bandwidth scenarios. Second, the
buffering events exhibit an oscillating behavior. The oscillating
behavior is consistent with observations made in [1], [2]. The
studies show that the performance of YouTube’s adaptation
algorithm depends on the ratio between video bit-rate and
available bandwidth. For certain ratios, the algorithm is able
to efficiently use the available bandwidth, i.e. there is only a
low amount of redundant traffic and buffering. Other ratios
exhibit a high amount of redundant traffic and buffering ratio.
In total, the pearson correlation shows a high correlation
(—0.774) between average quality level and buffering events.
To summarize, in the experimental data, YouTube’s adaptation
exhibits 0.4 to 1 stalling events per minute.

B. Optimal Adaptation

Next, we discuss the potential gain in average quality as
estimated by the heuristic and the two optimization problem
formulations.

Figure 4 displays the distribution of the difference between
the observed mean video quality and the optimally achievable
mean video quality. We observe that about 30 percent of runs
are already at maximum quality and can therefore not be
improved. The data set opt (prebuffering) leads to the highest
mean quality. However, the results for the three data sets are
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Figure 5. Initial delay for the two optimization data sets

very close to each other, e.g. the median of all three data sets
is within 0.15 of a quality of each other.

If we take Figure 5 into consideration, it becomes clear
that this minor difference in quality comes at a price: opt
(instant play) demonstrates that it would have been possible
to avoid stalling and a high initial delay in 93 percent of cases
while increasing the quality in 30 percent of cases. While opt
(prebuffering) shows that the mean quality could have been
increased by adding an initial delay, the improvement is not
particularly high. Lastly, while the heuristic leads to a worse
result than opt (prebuffering), it has the advantage of being a
less complex problem. This might outweigh the slightly better
performance for practical purposes.

Finally, Figure 6 shows the number of quality switches per
minute. Here, both data sets that were created with the opti-
mization approach lead to very similar results, which is why
we only present the results for opt (instant play). Whereas the
number of switches is not of significant importance to the QoE
in video streaming according to [8], continuous video quality
switches lead to a low QoE [19]. The heuristic approach and
the optimization both lead to less than 2 switches per minute
in more than 80 percent of cases which are acceptable values.
However, the two-step approach for the optimization leads to
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Figure 6. Distribution of the number of switches per minute for the heuristic
and the optimization. Very similar results for both data sets that were created
by the optimization approach.

some very high switching frequencies that might be problem-
atic. This is because the two-step approach puts very high
value on the optimization of the quality level and very little
emphasis on the number of switches. Luckily, this problem
can easily be averted by using a slightly different approach:
In [20], a method is proposed that combines both steps into
one, allowing the number of switches to be emphasized higher
at a negligibly low cost of quality.

V. CONCLUSION

YouTube is a major source of Internet traffic world-wide
and it is important to understand how it uses the available
resources in a network. Previous studies revealed that YouTube
deploys a user-centric adaptation strategy which allows the
player to discard previously downloaded segments and re-
download them at a higher quality level. This increases the
average playback quality for the user, but at the same time
decreases the overall efficiency.

In this paper we use two methods to quantify this decrease
in efficiency. The first method is a fast heuristic approach
based on historical data. The second method is based on an
optimization problem formulation.

Our results show there is still a lot of improvement possi-
ble for YouTube. Instead of downloading the same segment
multiple times, the wasted traffic could be used to download
segments in a higher quality. On average 20% of the videos
could have been downloaded in a higher quality. In spite
of adaptive mechanisms, stalling usually occurred once per
1 to 2min. Assuming the future network bandwidth can be
predicted, our optimization problem shows that stalling can
be prevented in 94% of these cases. At the same time the
initial delay can be kept below 10s in 95% of cases. In future
work, other streaming services such as Amazon Instant Video
or Netflix may be investigated with the optimization approach
described in this paper.
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