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Motivation
• The nonlinearity of the fiber optic channel imposes a capacity peak on linear

transmission systems
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• The Nonlinear Fourier Transform (NFT) provides a domain in which the noise-free
channel is multiplicative

• Instability of NFT algorithms and low spectral efficiency still make current
NFT-based systems uncompetitive

• This talk: some mathematical and numerical insight to aid in the design of more
efficient NFT-based systems
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The Nonlinear Schrödinger Equation (NLSE)

∂Q(Z,T)
∂Z

= −j
β2

2
∂ 2Q(Z,T)

∂T2 + jγ |Q(Z,T)|2 Q(Z,T) + N(Z,T)

Dispersion
• Linear term
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Normalization of the NLSE (focusing case, β2 < 0)

T = T0 · t

Z = 2
T0

2

|β2|
· z

Q(Z,T) =
1
T0

√
|β2|

γ
·q(z, t)

E
[
N(Z,T)N∗(Z′,T ′)

]
=

β 2
2

2γT0
4 ·E

[
n(z, t)n∗(z′, t′)

]

∂

∂ z
q(z, t) = j

∂ 2

∂ t2q(z, t)+2j|q(z, t)|2q(z, t)+n(z, t)

T0 is a free parameter. Can be used to jointly set power, duration and bandwidth in
pure soliton systems.
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The Nonlinear Fourier Transform (NFT)
• Motivation: find a domain in which the noise-free NLSE channel is multiplicative

(similar to FT in LTIs):

q(0, t) NLSE q(L , t)

·e−j4λ 2L
Qc (0,λ )
Qd (0,λk)

Qc (L ,λ )
Qd (L ,λk)

NFT INFT
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The Nonlinear Fourier Transform (NFT)
• Lax pair: two operators L and M

L = j
(

∂

∂ t q(z, t)
−q∗(z, t) ∂

∂ t

)
, M =

(
2jλ 2− j|q(z, t)|2 −2λq(z, t)− jqt(z, t)

2λq∗(z, t)− jq∗t (z, t) −2jλ 2+ j|q(z, t)|2
)

such that the condition:
Lz = ML−LM

implies the NLSE.

• Main idea: the eigenvalues λ of L are invariant under propagation along z
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The Nonlinear Fourier Transform (NFT)
• Step 1: solve the (linear, differential) eigenvalue equation:

Lv(t,λ ) = λv(t,λ ); v(t,λ ) →
t→−∞

(
1
0

)
e−jλ t

• Step 2: obtain the spectral amplitudes:

a(λ ) = lim
t→∞

v1ejλ t

b(λ ) = lim
t→∞

v2e−jλ t

• Step 3: obtain the NFT as:
− Continuous spectrum: Qc(λ ) =

b(λ )
a(λ ), λ ∈ R

− Discrete spectrum: Qd(λk) =
b(λk)

aλ (λk)
, λk ∈ C+,a(λk) = 0

• Equivalent of Parseval’s identity:
∞∫
−∞

|q(t)|2 dt =
1
π

∞∫
−∞

log
(

1+ |Qc(λ )|2
)

dλ + 4
K

∑
k=1

ℑ{λk}
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Information transmission using the NFT

data

Modulator

INFT NFT

Equalizer
·e4jλ 2L

Demodulator

received
data

Qc(0,λ ) Qd(0,λk)

Qd(L ,λk)Qc(L ,λ )

Q̂d(0,λk)Q̂c(0,λ )

q(0, t) q(L , t)NLSE
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Modulation of the discrete spectrum: solitons
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Parameters of a 1-soliton
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q(z, t) =−je−jφ e−4j(ξ 2−η2)ze−2jξ t2ηsech
(

2η t+8ξ ηz− ln
Q
2η

)

• Energy: E = 4η

• Duration: T = 2.6467/η

• Bandwidth: B = 1.0726η

• Center frequency: f0 =−ξ/π

• Group velocity: vg = 4ξ

• Constant phase shift: −π

2 −φ

• Pulse delay: t0 = 1
2η

ln Q
2η
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Perturbation analysis of a 1-soliton

∂

∂ z
q(z, t) = j

∂ 2

∂ t2q(z, t)+2j |q(z, t)|2 q(z, t)+ εn(z, t)

where ε � 1.

Multi-scale perturbation analysis:

q(z, t) = q0(z, t)+ εq1(z, t)+ ε
2q2(z, t)+ · · ·

• Solution of O(1) equation:

q0(z, t) =−je−jφ e−4j(ξ 2−η2)ze−2jξ t2ηsech(2η (t− t0)+8ξ ηz)

where the four parameters depend on the slow distance Z = εz:

η = η(Z) ξ = ξ (Z) φ = φ(Z) t0 = t0(Z)

J. Yang, “Soliton Perturbation Theories and Applications,” Nonlinear Waves in Integrable and Nonintegrable Systems, ch. 4, pp.

119–162, 2010
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Perturbation analysis of a 1-soliton
Substituting q0(z, t) into the O(ε) equation yields:

dη

dZ
∼NR (0,η/2)

dξ

dZ
∼NR (0,η/6)

dt0
dZ
∼NR

(
0,

π2

96η3

)
dφ

dZ
∼NR

(
0,

1
72η

(
12+π

2)+ π2ξ 2

24η3

)

Assuming η and ξ do not change much along propagation:

η(L )∼NR

(
η(0),

η(0)
2

NASEL

)
ξ (L )∼NR

(
ξ (0),

η(0)
6

NASEL

)
t0(L )∼NR

(
t0(0),

π2

96η(0)3NASEL

)
φ(L )∼NR

(
φ(0),

[
1

72η(0)
(
12+π

2)+ π2ξ (0)2

24η(0)3

]
NASEL

)
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Perturbation analysis of a 1-soliton (z = 0.9578)
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Modulation of the continuous spectrum

FDM

u1(τ)
u2(τ)

uN(τ)

FFT
√

e|U(λ )|2−1ejargU(λ ) INFT
u(τ) U(λ ) Qc(λ ) q(t)

• From Parseval, the signal

U(λ ) = log
(

1+ |Qc(λ )|2
)

ejargQc(λ )

has energy E/2, where E is the energy of q(z, t)

• User channels are multiplexed in U(λ )

−40 −20 0 20 40
0

1

2

3

4 ·10−2

λ

U
(λ

)

Javier García (TUM) 14

Institute for Communications Engineering

Department of Electrical and Computer Engineering

Technical University of Munich



Modulation of the continuous spectrum

FDM

u1(τ)
u2(τ)

uN(τ)

FFT
√

e|U(λ )|2−1ejargU(λ ) INFT
u(τ) U(λ ) Qc(λ ) q(t)

• From Parseval, the signal

U(λ ) = log
(

1+ |Qc(λ )|2
)

ejargQc(λ )

has energy E/2, where E is the energy of q(z, t)
• User channels are multiplexed in U(λ )

−40 −20 0 20 40
0

1

2

3

4 ·10−2

λ

U
(λ

)

Javier García (TUM) 14

Institute for Communications Engineering

Department of Electrical and Computer Engineering

Technical University of Munich



Continuous spectrum: simulation parameters
• 5 FDM channels, Root Raised Cosine pulses with roll-off β = 0.25

• 1 symbol per block
• Multi-ring modulation, 8 rings with 32 phases.

Parameter Symbol Value
Dispersion coefficient β2 −21.667 ps2/km

Nonlinearity parameter γ 1.2578 W−1km−1

Fiber length L 250 km
Channel bandwidth B 10 GHz

Guard band Bguard 2.5 GHz
Noise spectral density NASE 6.4893 ·10−19 W · s
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Continuous spectrum: simulation results
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Conclusions
• The Nonlinear Fourier Transform (NFT) provides a domain in which the NLSE

channel is multiplicative

• Higher energy solitons in the presence of distributed noise have
− less robust eigenvalue position λ1
− but more robust spectral amplitude Qd(λ1)

as compared to lower energy solitons.
• With several eigenvalues, those with higher energy seem less robust at high

power
• Discrete spectrum modulation has too low spectral efficiency, but the addition of

eigenvalues to a continuous spectrum signal could bring improvements
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Perturbation analysis of a 1-soliton

j
∂

∂ z
q(z, t)+

∂ 2

∂ z2q(z, t)+2|q(z, t)|2q(z, t) = εF (q(z, t))

F0(z, t) = jejφ e4j(ξ 2−η2z)e2jξ tF (q0(z, t))

dη

dZ
=

1
2

∫
∞

−∞

ℑ{F0(z, t)} ·2ηsech(2η t)dt

dξ

dZ
=−1

2

∫
∞

−∞

ℜ{F0(z, t)} ·2ηsech(2η t)tanh(2η t)dt

dt0
dZ

=
∫

∞

−∞

ℑ{F0(z, t)} · tsech(2η t)dt

dφ0

dZ
= 2ξ

dt0
dZ
−
∫

∞

−∞

ℜ{F0(z, t)} · sech(2η t) [1−2η ttanh(2η t)] dt
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