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- The nonlinearity of the fiber optic channel imposes a capacity peak on linear
transmission systems
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- The Nonlinear Fourier Transform (NFT) provides a domain in which the noise-free
channel is multiplicative

- Instability of NFT algorithms and low spectral efficiency still make current
NFT-based systems uncompetitive
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- The nonlinearity of the fiber optic channel imposes a capacity peak on linear
transmission systems
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- The Nonlinear Fourier Transform (NFT) provides a domain in which the noise-free
channel is multiplicative

- Instability of NFT algorithms and low spectral efficiency still make current
NFT-based systems uncompetitive

- This talk: some mathematical and numerical insight to aid in the design of more
efficient NFT-based systems
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The Nonlinear Schrodinger Equation (NLSE)
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The Nonlinear Schrodinger Equation (NLSE)
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The Nonlinear Schrodinger Equation (NLSE)
e RPN yownron - wem
- et

Dispersion Nonlinearity
. Linear term - Causes frequency
- Causes temporal mixing (spectral
broadening broadening, SPM,
XPM, FWM)
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The Nonlinear Schrodinger Equation (NLSE)
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- Linear term - Causes frequency - Distributed along the
. Causes temporal mixing (spectral fiber
broadening broadening, SPM, - Mixes nonlinearly with
XPM, FWM) signal!

0(z.7)

T (ns)

T (ns) Z (km)
Javier Garcia (TUM) 3



Institute for Communications Engineering
Department of Electrical and Computer Engineering

Technical University of Munich

TUTI

Normalization of the NLSE (focusing case, 3, < 0)
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Normalization of the NLSE (focusing case, 3, < 0)

T=Ty-t
To?
/=2—"7
B2
1 []B]
Q(Z,T)_T() y 'Q(Z,t)

E |[N(Z,T)N*(Z',T')] = By -E [n(z,0)n"(Z,1)]

- 29To?

Ty is a free parameter. Can be used to jointly set power, duration and bandwidth in
pure soliton systems.
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The Nonlinear Fourier Transform (NFT)

TUTI

« Motivation: find a domain in which the noise-free NLSE channel is multiplicative

(similar to FT in LTIs):

q(0,1)
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The Nonlinear Fourier Transform (NFT)

. Lax pair: two operators L and M
L=i 5 azn ). = 222~ jla(@ )P ~2Ad(z1) ~jauz. 1 )
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such that the condition:
L,=ML—IM

implies the NLSE.
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The Nonlinear Fourier Transform (NFT)

. Lax pair: two operators L and M
L=i 5 azn ). = 222~ jla(@ )P ~2Ad(z1) ~jauz. 1 )
—q*(z,t) & ) 20.q*(z,1t) —jq; (z,1)  —2jA*+jlq(z,0)|?
such that the condition:
L, =ML—LM
implies the NLSE.
- Main idea: the eigenvalues A of L are invariant under propagation along z
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The Nonlinear Fourier Transform (NFT)

- Step 1: solve the (linear, differential) eigenvalue equation:

t——oo

Lo(t,A) = vt A); v(tA) — (1)e—jm

Javier Garcia (TUM)



Institute for Communications Engineering
Department of Electrical and Computer Engineering

Technical University of Munich

The Nonlinear Fourier Transform (NFT)
- Step 1: solve the (linear, differential) eigenvalue equation:

Lv(t,A) = Av(t,A); v(t,A) = ( ! ) e M

- Step 2: obtain the spectral amplitudes:
a(A) = limv e

[—>o0

b(A) = lim vae M
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The Nonlinear Fourier Transform (NFT)

- Step 1: solve the (linear, differential) eigenvalue equation:

t——oo

Lv(t,A) = Av(t,A); v(t,A) — (1)e—jm

- Step 2: obtain the spectral amplitudes:
a(A) = limv e

[—>o0

b(A) = lim vae M

- Step 3: obtain the NFT as:
— Continuous spectrum: Q.(1) = b(i),-

— Discrete spectrum: Q;(A;) = Cl/l(lky_
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The Nonlinear Fourier Transform (NFT)

- Step 1: solve the (linear, differential) eigenvalue equation:

Lv(t,A) = Av(t,A); v(t,A) — < (l))e—ﬂ“

t——oo

- Step 2: obtain the spectral amplitudes:
a(A) = limv e

[—>o0

b(A) = lim vae M

. Step 3: obtain the NFT as:
— Continuous spectrum: Q (1) =

— Discrete spectrum: Q,(A;) = 2y )
« Equivalent of Parseval’s identity:
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Information transmission using the NFT
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Modulation of the discrete spectrum: solitons
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Modulation of the discrete spectrum: solitons
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Parameters of a 1-soliton
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Parameters of a 1-soliton
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- Energy: E=4n
« Duration: T =2.6467/1)
« Bandwidih: B=1.07261
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Parameters of a 1-soliton
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- Energy: E=4n - Center frequency: fo = - /n
« Duration: T =2.6467/1) - Group velocity: v, = 4&

- Bandwidth: B =1.0726m
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Parameters of a 1-soliton
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- Energy: E=4n - Center frequency: fo = - /n
« Duration: T =2.6467/1) - Group velocity: v, =48
.« Bandwidth: B=1.07261 - Constant phase shift: =% — ¢
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Parameters of a 1-soliton
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- Energy: E=4n
« Duration: T =2.6467/1)
- Bandwidth: B =1.07261)
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- Center frequency: fo = —§/n
- Group velocity: v, =48
« Constant phase shift: —% — ¢

. Pulse delay: fy = %ln%
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Perturbation analysis of a 1-soliton

d 0 . 2
3,421 =i534(20) + a0 q(z,1) +en(z,1)

where € < 1.

J. Yang, “Soliton Perturbation Theories and Applications,” Nonlinear Waves in Integrable and Nonintegrable Systems, ch. 4, pp.

119-162, 2010
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Perturbation analysis of a 1-soliton

d d?

- — / 2
aZq(z,t) J5249(21) +2jla(z )" q(z,1) +en(z,1)

where € < 1.

Multi-scale perturbation analysis:
q(z,1) = qo(z, 1) + £q1(z,1) + €2 qa(z,1) + - --

J. Yang, “Soliton Perturbation Theories and Applications,” Nonlinear Waves in Integrable and Nonintegrable Systems, ch. 4, pp.

119-162, 2010
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d d?

v _ Y . 2
azq(z, ) =J574(2 1) +2l4(z,0)|"q(z,1) + en(z,1)

where € < 1.

Multi-scale perturbation analysis:
q(z,t) = qo(z,1) + €q1(z, 1) + €°qo(z, 1) + - --

- Solution of (1) equation:
qo(z,1) = —je e (& )2 =281 nsech (21 (1 — to) + 8EN2)
where the four parameters depend on the slow distance Z = ¢z:

n=nZ) ¢=¢(Z) ¢=0(2) to=10(2)

J. Yang, “Soliton Perturbation Theories and Applications,” Nonlinear Waves in Integrable and Nonintegrable Systems, ch. 4, pp.

119-162, 2010
Javier Garcia (TUM)
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Perturbation analysis of a 1-soliton
Substituting go(z,¢) into the &'(€) equation yields:

dn dg
dro s do 1
az "~ (0’ 96173) iz~ (Ovm
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Substituting go(z,t) into the &(¢) equation yields:

dn dé
diy 7 do U gy ) 8
iz~ (0’ 96173) iz~ (O’ 7o (124 7) 000
Assuming 11 and £ do not change much along propagation:
0
1(2) ~ 2 (10,1 Wase 2
0
62~ A2 (£0. P Npsu 2
L)~ N i
t0(ZL) ~ M (fo(()), 96n(0)3NASE$)
(L)~ A ¢(0) : (124 7%) + 50 NasgZ
K *1721(0) 247 (0)3 | " AF
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Perturbation analysis of a 1-soliton (z = 0.9578)
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Modulation of the continuous spectrum

ul(’c) —>
ur(T) ——

MN(’L') —>

FDM

u()

FFT

Ua)

- From Parseval, the signal

VelUM? _ 1 giargU(R)

Qc(4)

U(A) =Tog (1+]Qc(A)[) e (™)

has energy E/2, where E is the energy of ¢(z,1)

Javier Garcia (TUM)
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Modulation of the continuous spectrum

ul(’L') —>

uy(T) —— u(t U(A (A t
FDM ) FFT 4 VelUR)? _ [ giargUR) C-(4) INFT )

MN(’L') —>

- From Parseval, the signal
U(A) =log (1+]0c(1)]) e

has energy E/2, where E is the energy of ¢(z,1)

- User channels are multiplexed in U(A)
1072

40 =20 0 20 40
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Continuous spectrum: simulation parameters

- 5 FDM channels, Root Raised Cosine pulses with roll-off B = 0.25
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Continuous spectrum: simulation parameters

- 5 FDM channels, Root Raised Cosine pulses with roll-off B = 0.25
- 1 symbol per block
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Continuous spectrum: simulation parameters

- 5 FDM channels, Root Raised Cosine pulses with roll-off B = 0.25
- 1 symbol per block
« Multi-ring modulation, 8 rings with 32 phases.
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- 5 FDM channels, Root Raised Cosine pulses with roll-off B = 0.25
- 1 symbol per block
« Multi-ring modulation, 8 rings with 32 phases.

Parameter Symbol Value
Dispersion coefficient B> —21.667 ps®/km
Nonlinearity parameter |  y 1.2578 W~ 'km™!
Fiber length £ 250 km
Channel bandwidth B 10 GHz
Guard band Bgouard 2.5 GHz
Noise spectral density | Nisg | 6.4893-10717 W -5

Javier Garcia (TUM)
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Continuous spectrum: simulation results

Rate (bits/symbol)
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—32 30 —28 —26 —24 —22 —20 —18 —16 —14 —12 —10 —8 —6 —4 —2
P(dBm)
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Conclusions

- The Nonlinear Fourier Transform (NFT) provides a domain in which the NLSE
channel is multiplicative
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- The Nonlinear Fourier Transform (NFT) provides a domain in which the NLSE
channel is multiplicative

- Higher energy solitons in the presence of distributed noise have

— less robust eigenvalue position A,
— but more robust spectral amplitude Q;(4,)
as compared to lower energy solitons.
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- The Nonlinear Fourier Transform (NFT) provides a domain in which the NLSE
channel is multiplicative

- Higher energy solitons in the presence of distributed noise have
— less robust eigenvalue position 1,
— but more robust spectral amplitude Q;(4,)
as compared to lower energy solitons.

- With several eigenvalues, those with higher energy seem less robust at high
power
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- The Nonlinear Fourier Transform (NFT) provides a domain in which the NLSE
channel is multiplicative
- Higher energy solitons in the presence of distributed noise have
— less robust eigenvalue position A,
— but more robust spectral amplitude Q;(4,)
as compared to lower energy solitons.

- With several eigenvalues, those with higher energy seem less robust at high
power

- Discrete spectrum modulation has too low spectral efficiency, but the addition of
eigenvalues to a continuous spectrum signal could bring improvements

Javier Garcia (TUM) 17
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Perturbation analysis of a 1-soliton

2
aa(et) + 3-5a(et) + (e ) Paler) = €F (a(e,0)

Fo(z,1) = je® Y&~ X5 F (g0 (2, 1))

dn 1 =

% = /_ S {Folz)} - 2nsech(2n1) dr

& 1

d_é = ——/ R{Fo(z,t)}-2nsech(2n¢)tanh(2n1) dr
2= [ S {Fu(e)} ssechnar

d¢o

L do /_ R {Fo(z,1)} - sech(2n1) [1 - 2nstanh (211)] dr

J. Yang, “Soliton Perturbation Theories and Applications,” Nonlinear Waves in Integrable and Nonintegrable Systems, ch. 4, pp.
119-162, 2010
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