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Abstract

The topic of this thesis is the calculation and the analysis of electroweak precision observ-
ables including quantum corrections up to the two-loop order in extensions of the Standard
Model (SM) by an additional scalar doublet in the Higgs sector. These Two-Higgs-Doublet
Models (THDM) contain in general a large number of additional parameters. The loop correc-
tions to precision observables incorporate also non-standard contributions from the extended
Higgs-sector, in addition to the already known contributions of the SM. The comparison of the
theoretical prediction with the experimental values of the precision observables leads therefore
to indirect constraints on the free parameters of the THDM. These parameters are the masses
of the Higgs bosons and additional independent couplings of the scalar self-interaction.

After the discovery of a scalar particle at the Large-Hadron-Collider with the properties of
the Higgs boson in the SM, one of the neutral scalars in the THDM can be identified with the
observed particle. This allows a separation of standard and non-standard contributions in the
loop corrections. The dominant one-loop contributions are related to the corrections to the ρ
parameter from the top-Yukawa interaction and the self-interaction of the non-standard scalars.
These contributions constitute the leading process-independent corrections to many precision
observables and the first step for the improvement of the theoretical prediction requires the
calculation of the corresponding corrections at the two-loop order. In this thesis, the non-
standard two-loop corrections to the ρ parameter from the top-Yukawa interaction and the
scalar self-interaction are calculated and their influence on various precision observables is
analysed. The results of the corrections are implemented in Fortran routines, which allow a
numerical evaluation of the precision observables.

The first part of the thesis describes the details of the calculation. The masses of the light fer-
mions are negligible. In order to obtain the leading two-loop contributions, the gauge-couplings
can also be neglected, which leads to the two-loop contributions from the top-Yukawa interac-
tion and the scalar self-interaction. A numerical investigation shows regions of the parameter
space in which the two-loop corrections are important and the calculation at the one-loop order
is insufficient. Specific parameter configurations exist, for which the non-standard top-quark
contribution can become comparable to the corresponding contribution in the SM. The scalar
two-loop corrections increase with the mass-splitting between the non-standard scalars, a fea-
ture that is already present in the non-standard one-loop corrections. In addition, the two-loop
contributions can be enhanced by free parameters from the Higgs potential, which enter for the
first time at the two-loop level.

The second part of the thesis investigates the influence of the two-loop corrections on the
W–Z mass interdependence, the effective leptonic mixing angle and the width of the Z bo-
son, as important examples for precision observables. The non-standard two-loop corrections
are combined with the complete one-loop contribution and the known higher-order corrections
from the SM. The new sensitivity on parameters of the Higgs potential gives additional indi-
rect constraints on the Higgs-self couplings of the THDM. Numerical studies of representative
parameter configurations demonstrate the dependence on the mass difference between the non-
standard scalars and the additional modification from the Higgs-potential parameters. Different
phenomenological scenarios are presented in which the two-loop contributions can become sig-
nificant.
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Zusammenfassung

Diese Doktorarbeit befasst sich mit der Berechnung und Auswertung von elektroschwachen
Präzisionsobservablen mit Quantenkorrekturen bis zur Zweischleifenordnung in Erweiterungen
des Standardmodells (SM) mit einem zusätzlichen skalaren Dublett im Higgs-Sektor. Solche Er-
weiterungen, bezeichnet als Two-Higgs-Doublet Models (THDM), enthalten im Allgemeinen eine
große Anzahl an zusätzlichen Parametern. Die Schleifenbeiträge zu den Präzisionsobservablen
enthalten zusätzlich zu den bekannten Beiträgen aus dem SM auch die nicht-standard Beiträge
vom erweiterten Higgs-Sektor. Der Vergleich der theoretischen Vorhersage mit den experimen-
tell bestimmten Werten der Präzisionsobservablen liefert somit indirekte Einschränkungen der
freien Parameter des THDM. Zu diesen Parametern gehören die Massen der Higgsbosonen und
weitere unabhängige Kopplungen in der Higgs-Selbstwechselwirkung.

Nach der Entdeckung eines skalaren Teilchens am Large-Hadron-Collider mit den Eigen-
schaften des Higgsbosons im SM lässt sich eines der neutralen Skalare im THDM mit dem
beobachteten Teilchen identifizieren. Dadurch können die standard und nicht-standard Bei-
träge in den Schleifenkorrekturen separiert werden. Die dominanten Einschleifenbeiträge sind
gegeben durch die Korrekturen zum ρ Parameter von der top-Yukawa Wechselwirkung und
der Selbstwechselwirkung der nicht-standard Skalare. Da diese Beiträge die führenden prozess-
unabhängigen Korrekturen zu vielen Präzisionsobservablen liefern, besteht der erste Schritt
zur Verbesserung der theoretischen Vorhersage in der Berechnung der entprechenden Beiträge
auf der Zweischleifenordnung. In dieser Arbeit werden die nicht-standard Zweischleifenbeiträge
zum ρ Parameter von der top-Yukawa Wechselwirkung und der skalaren Selbstwechselwir-
kung im CP -erhaltenden THDM berechnet und ihr Einfluss auf verschiedene elektroschwache
Präzisionsobservablen untersucht. Die Ergebnisse der Korrekturen sind in Fortran Routinen
implementiert, welche eine numerische Auswertung der Präzisionsobservablen ermöglichen.

Der erste Teil der Doktorarbeit beschreibt die Details der Berechnung. Die Massen der
leichten Fermionen sind vernachlässigbar. Um die führenden Zweischleifenbeiträge zu erhal-
ten, können die Eichkopplungen ebenfalls vernachlässigt werden, sodass nur noch die Beiträge
von der top-Yukawa Kopplung und den skalaren Selbstkopplungen verbleiben. Eine numerische
Auswertung der Ergebnisse zeigt Regionen des Parameterraumes, in denen die Zweischleifen-
korrekturen signifikant sind und eine Berechnung auf der Einschleifenordnung nicht ausreicht.
Der nicht-standard top-Yukawa Beitrag ist für bestimmte Parameterwerte vergleichbar mit dem
entsprechenden Beitrag im SM. Der skalare Zweischleifenbeitrag wächst mit dem Massenunter-
schied zwischen den nicht-standard Skalaren, eine Eigenschaft, die bereits von der entsprechen-
den Einschleifenkorrektur bekannt ist. Durch die freien Parameter der Higgs-Selbstkopplungen,
welche zum ersten Mal auf der Zweischleifenordnung auftreten, können die skalaren Beiträge
zusätzlich verstärkt werden.

Der zweite Teil der Doktorarbeit beschäftigt sich mit dem Einfluss der Zweischleifenkor-
rekturen auf die W–Z Massenkorrelation, den effektiven leptonischen Mischungswinkel und die
Zerfallsbreite des Z Bosons als wichtige Beispiele für Präzisionsobservablen. Die nicht-standard
Zweischleifenkorrekturen werden mit den kompletten Einschleifenbeiträgen und den bekann-
ten Korrekturen höherer Ordnung aus dem SM kombiniert. Die zusätzliche Abhängigkeit von
den Parametern des Higgspotentials kann genutzt werden, um die Higgs-Selbstkopplungen im
THDM indirekt einzuschränken. Numerische Untersuchungen von einer repräsentativen Aus-
wahl an Parametern zeigen den Einfluss der Massendifferenzen der nicht-standard Skalare und
eine Modifikation der Korrekturen durch die Parameter der Higgs-Selbstkopplungen. Verschie-
dene phänomenologische Szenarien werden präsentiert, in denen die Zweischleifenkorrekturen
signifikante Beiträge liefern.
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Chapter 1

Introduction

A long history of accurate theoretical predictions and successful validation by various experi-
ments has established the Standard Model (SM) [3–5] as the fundamental theory of strong and
electroweak interactions. The most recent example for these exceptional achievements is the
discovery of a scalar particle at the Large Hadron Collider (LHC) by ATLAS [6] and CMS [7]
with properties resembling those of the Higgs boson as predicted in the SM for electroweak
symmetry breaking [8–12]. The precisely measured mass of MH = 125.09 ± 0.24 GeV [13]
completes the input parameters of the SM. Before the discovery of the scalar particle, the mass
of the SM Higgs boson was constrained by comparing accurate theoretical predictions with
precise measurements of electroweak observables. These electroweak precision observables are,
among others, the masses of the gauge bosons, MW and MZ , the width of the Z boson and
the various asymmetries measured in electron-positron collisions, which determine the effective
electroweak mixing angle of the leptons, sin2 θleff. The theoretical predictions of the electroweak
precision observables depend also on the parameters of the virtual particles, which enter the
loop corrections in higher-order calculations. This dependence can be used to obtain indirect
constraints on the parameters by performing global fits to the precision observables [14], as it
was done for the mass of the SM Higgs boson or the mass of the top quark before its discovery
at the Tevatron. With the meanwhile complete input, the electroweak precision observables
provide stringent tests of the SM. Only few deviations between predictions and data are found.
For example the anomalous magnetic moment of the muon is measured to differ from the SM
prediction by 3.6σ [15]. Nevertheless, the global fit leads to a remarkably good agreement
between theory and experiments [16, 17].

The unique SM prediction of the precision observables can be used for getting constraints
on extended models, provided that the accuracy of the theoretical calculation is comparable to
the precision of the measurements. Such extensions are motivated by several unsolved issues for
which the SM provides no explanations, like the nature of dark matter, the origin of neutrino
masses or the matter-antimatter asymmetry in the universe. Since the scalar sector is the least
investigated part of the SM, possible extensions with extended Higgs sectors are very appealing.
In the SM, the minimal version of the Higgs sector incorporates all scalar degrees of freedom in
one doublet of the gauge group SU(2)L×U(1)Y . Although the properties of the Higgs boson in
the SM are consistent with the current measurements at the LHC, the possibility of additional
scalar particles is not ruled out.

A very important constraint that has to be fulfilled by possible extensions arises from the
electroweak ρ parameter, which is is defined as the ratio between the effective coupling strengths
of the neutral and charged currents in four-fermion interactions at low momentum. Experimen-
tally ρ is determined to be close to unity. The minimal version of the scalar sector in the
SM leads to ρ = 1 at tree-level, and deviations from unity arise only through higher-order
corrections. These corrections ∆ρ play a very prominent role in the calculation of precision
observables, since they constitute the leading process-independent loop corrections. In the SM,
the dominant non-QED contributions to ∆ρ originate from the top-Yukawa interaction. The
large top mass enters quadratically in the one-loop contribution. The high sensitivity to this
parameter was essential for its indirect constraints by electroweak precision observables. On the
other hand, one-loop corrections quadratic in the Higgs mass are absent, since the ρ parameter
is protected from corrections of the scalar sector in the SM by a global custodial symmetry
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1. Introduction

of the Higgs potential [18–20]. Over the years corrections in the SM were calculated at the
one-loop [21–23], two-loop [24–31], three-loop [32–35] and even at the four-loop order [36–38].

The tree-level relation ρ = 1 is preserved if the Higgs sector is extended by additional
doublets [39]. An even simpler extension with ρ equal to unity adds just a scalar singlet [40–42]
and provides a natural dark matter candidate or a portal to an additional hidden sector. In
contrast to the afore mentioned models, extensions with scalar triplets will in general lead to
ρ 6= 1 at the tree-level. Historically these models gained interest as the source of neutrino
masses [43, 44]. In order to achieve ρ = 1 for triplet extensions additional assumptions are
necessary, like for example additional global symmetries [45, 46]. For a recent review of these
different scalar extensions see [47].

In this thesis we consider the extension of the SM by a second Higgs doublet, labelled as the
Two-Higgs-Doublet Model (THDM). This simple extension already exhibits very interesting
phenomena, for example charged scalars. The most popular motivation for a second doublet
is probably supersymmetry. In supersymmetric theories one Higgs doublet is insufficient to
provide the masses for the up- and the down-type quarks simultaneously. Moreover an addi-
tional doublet is required for the cancellation of anomalies. For these reasons two doublets
are contained in the Minimal Supersymmetric Standard Model (MSSM). If all the masses of
the supersymmetric partners are very heavy, the effective theory below the supersymmetric
mass scale is described by a THDM [48–52]. In contrast to the MSSM, where supersymmetry
relates the parameters of the Higgs potential with the gauge couplings, the Higgs potential of a
general THDM contains a large number of free parameters. Originally proposed as a source of
CP -violation [53, 54], the THDM could also explain the matter-antimatter asymmetry in the
universe since it can lead to a strong first-order electroweak phase transition [55–57], as it is
required in electroweak baryogenesis. Usually discrete symmetries are imposed in the THDM,
in order to avoid tree-level flavour-changing neutral currents from the Yukawa-couplings. The
resulting different versions of the THDM are labelled as type-I, type-II, type-Z and type-Y. A
survey about the THDM with additional details and references is given in [58].

An especially interesting version of a THDM, the Inert-Higgs-Doublet Model (IHDM), is
obtained by imposing a discrete Z2 symmetry under which one of the doublets transforms odd
and all the other fields transform even [59]. The IHDM has received attention in the context
of radiative neutrino masses [60] or as a solution to the naturalness problem [61]. Moreover,
since the Z2 symmetry stays unbroken, the lightest particle in the inert doublet can provide a
dark matter candidate [62]. The phenomenology of the IHDM has been studied in large detail
during the last years, see for example [63–66].

The simple scalar sector in the SM is parameterized by a single free parameter, the scalar
self-coupling or equivalently the mass of the SM Higgs boson. Adding the second doublet in
the THDM increases the numbers of free parameters substantially. The additional degrees of
freedom result in multiple massive scalars. Especially striking is a pair of charged scalars H±, a
novel feature which is completely absent in the SM. Furthermore, three massive neutral scalars
are present. In a CP -conserving THDM the neutral scalars are two CP -even states h0 and
H0 and a CP -odd scalar A0. One of the neutral scalars can be identified with the resonance
found at the LHC. The mass of this scalar is therefore fixed at 125 GeV. The couplings are
constrained by the overall agreement of the measured properties with the SM expectations. SM-
like couplings of the chosen scalar to the gauge bosons or fermions are obtained for example in
the decoupling limit, in which the masses of the remaining scalars are very heavy [67]. A more
general way to arrange SM-like couplings is the alignment limit, which adjusts the mixing angle
of the CP -even scalars [68, 69].

There are several possibilities to restrict the scalar masses and additional free parameters
of the THDM. The most obvious way are direct collider constraints from LEP and LHC. A
combined analysis of the LEP searches gives a lower bound on the mass of the charged scalar
[70]. The implications of the Higgs discovery and direct searches for heavy Higgs states on
the THDM parameters are investigated in many publications, for example in [71–74]. Detailed
analyses in scenarios with an alignment limit of a CP -even Higgs state are given in [75, 76]. The
possibility of a light scalar with a mass below 60 GeV is investigated in [77]. In the absence of a
direct signal of new physics, loop corrections to precisely measured observables provide indirect
information on the free parameters of the THDM. One example are flavour observables which
are very sensitive to corrections from the charged Higgs [78–82]. Recent limits on the charged
Higgs boson mass from a combination of direct searches and flavour observables can be found
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in [83]. Another example are the aforementioned electroweak precision observables, which have
been exploited so successfully in the past for the indirect determination of the masses of the
SM Higgs boson and the top quark.

The calculation of electroweak precision observables in the general THDM has a long history
[84–95]. The non-standard corrections are obtained in most cases at the one-loop order. Only
[93] contains some higher-order terms by means of effective couplings. The dominant non-
standard contribution at the one-loop order can be identified with the scalar corrections to
the ρ parameter. In difference to the SM, these scalar corrections arise since ρ = 1 is not
protected by an custodial symmetry of the Higgs potential. The parameters of the potential
enter through the loop corrections and lead to scalar contributions to ∆ρ. A custodial symmetry
can be restored for equal masses of charged and neutral scalars. The non-standard one-loop
corrections to ∆ρ are therefore very sensitive to the mass splitting between charged and neutral
scalars, which leads to potentially important contributions to electroweak precision observables.

The status of the non-standard corrections in the THDM is not comparable in accuracy to
the SM, where most of the precision observables are calculated at the full two-loop order [29–31,
96–112] with additional leading three- and four-loop corrections from ∆ρ [32–38, 113–115]. The
prediction in the MSSM is also more advanced, since the non-standard one-loop corrections to
precision observables have been supplemented with the leading two-loop corrections to ∆ρ from
the strong and Yukawa interactions [116–119].

As an improvement of the theoretical predictions in the CP -conserving THDM, this thesis
presents the two-loop corrections to the ρ parameter and to precision observables which result
from the top-Yukawa interaction and the self-interaction of the Higgs bosons. Since these
sectors lead to sizable contributions already at the one-loop level, the corresponding two-loop
corrections can be expected to be dominant. Moreover, the two-loop contribution originating
from the scalar self-couplings are sensitive to additional parameters of the Higgs potential,
which are completely absent in the one-loop corrections. Technically, this class of two-loop
corrections is obtained in the gauge-less limit, in which the effect of the gauge-couplings are
neglected. Furthermore, the lighter CP -even Higgs is identified with the scalar discovered at
the LHC and the alignment limit is applied. In this way, a clear separation between non-
standard and SM contributions is possible. In a similar manner, the scalar corrections to ∆ρ in
the IHDM are calculated, where no further assumptions are required for a separation between
non-standard and SM contributions.

The first part of this thesis describes the calculation of the two-loop contributions to the
ρ parameter. The second part discusses the impact of these corrections on several precision
observables, namely the MW –MZ correlation, the effective leptonic mixing angle and the width
of the Z boson. The non-standard two-loop corrections from the top-Yukawa interaction and
the scalar self-interaction are combined with the complete one-loop corrections and the known
higher-order corrections from the SM.

The structure of this thesis is as follows. Chapter 2 introduces the THDM. In order to give
an overview over the notation and the particle content, the gauge-boson self-interaction and
the gauge-fermion interaction is reviewed in the beginning. Afterwards the scalar potential, the
resulting Higgs boson spectrum and the interaction of the scalars with the gauge bosons are
discussed. The Yukawa-interaction is presented for the different versions of the THDM (type-
I, type-II, type-X and type-Y). The special characteristics of the IHDM are also described.
Theoretical constraints on the parameters of the THDM and the IHDM are discussed at the
end of Chapter 2.

Chapter 3 outlines technical aspects for the evaluation of self-energy corrections, introduces
the required loop integrals and describes the method of the calculation with the help of various
computer programs. Chapter 4 discusses the renormalization of the THDM, with an particular
focus on the renormalization of the scalar sector.

Chapter 5 presents the calculation of the two-loop corrections to the ρ parameter in the
THDM and the IHDM. In the beginning the possible realizations of the custodial symmetry
in the THDM are described, which provide a deeper understanding of the various higher-order
contributions to ∆ρ. The approximations for the two-loop corrections are explained. The
conceptual description of the calculation together with a classification in terms of distinct, UV-
finite two-loop corrections is given. At the end of Chapter 5 the dependence of the various
classes of contributions on the THDM parameters is analyzed.

The subsequent chapters describe the calculation of the precision observables in the THDM.
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1. Introduction

The one-loop corrections and the higher-order SM predictions are reviewed for completeness
before explaining the incorporation of the two-loop contributions. Chapter 6 focuses on the
prediction of the W boson mass from MZ , the Fermi-constant GF and the electromagnetic fine
structure constant αem via the decay width of the muon. Chapter 7 describes the calculation
of Z observables in terms of the width of the Z boson and the effective leptonic mixing angle.

Chapter 8 presents the numerical results for the precision observables. For the general
THDM in the alignment limit, different parameter configurations are investigated as represen-
tative examples for the influence of the various two-loop contributions. Afterwards scenarios
which are motivated by different phenomenological aspects are considered. It is shown that
in these scenarios the two-loop corrections can give large modification for the prediction of
precision observables. At the end of Chapter 8, results in the IHDM are presented.

Conclusions are given in Chapter 9. The Appendix contains the Feynman rules of the THDM
with counter-terms, the expressions for the scalar loop integrals and the analytic results for the
non-standard two-loop corrections to the ρ parameter from the top-Yukawa interaction and the
scalar self-interaction.
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Chapter 2

The Two-Higgs-Doublet Model

The electroweak Standard Model (SM) [3–5] is a non-Abelian gauge theory based on the product
SU(2)L × U(1)Y of the unitary hypercharge gauge group U(1)Y and the special unitary weak-
isospin group SU(2)L.

Fermion masses are forbidden in the symmetric theory, since the SM is chiral, meaning
that left- and right-handed fermion transform according to different representations of the
gauge group. The masses of the gauge bosons and fermions are introduced via spontaneous
symmetry breaking of the electroweak gauge group down to the electromagnetic gauge group
U(1)EM as proposed by [8–12]. In the SM, electroweak symmetry breaking is realized by
introducing a complex scalar doublet with a non-vanishing vacuum expectation value. Three
degrees of freedom are absorbed by the longitudinal components of the massive gauge bosons.
The remaining degree of freedom corresponds to a massive scalar particle HSM, the Higgs boson
in the SM. Yukawa interaction terms between the scalar doublet and the fermions together with
the spontaneous symmetry breaking lead to the masses of the fermions.

The Two-Higgs-Doublet Model (THDM) [53, 54, 59, 120–124] is one of the simplest possible
extensions of the SM which preserves its fundamental properties. The electroweak interaction
is also described by the gauge group SU(2)L × U(1)Y , which is spontaneously broken to the
U(1)EM. However the scalar sector, which is responsible for the electroweak symmetry breaking
is extended to two scalar doublets under the SU(2)L. This results into a larger spectrum of
massive scalar eigenstates and a more complicated Yukawa interaction between scalars and
fermions.

2.1 Yang-Mills part and gauge–fermion interaction

In the THDM no additional degrees of freedom are added the gauge boson or the fermionic
sector of the SM. For simplicity we also discard the possibility of right-handed neutrino states,
which could explain the observed oscillations of solar and atmospheric neutrinos [125–127]. The
kinetic parts and the interaction terms in the Lagrangian, which contain solely the gauge bosons
and the fermions, are therefore identical to the minimal version of the SM. The corresponding
parts of the classical Lagrangian are reviewed here, in order to introduce the particle content
and to provide an overview over the notation.

The Abelian group U(1)Y is generated by the hypercharge Y . The associated gauge field Bµ
transforms in the adjoint representation with the hypercharge coupling g1. The gauge group
of the SU(2)L is generated by the weak isospin generators Ia = σa/2, with the usual Pauli-
matrices σa. The associated vector fields are grouped in the isotriplet W a

µ (a = 1, 2, 3) and
transform in the adjoint representation of the SU(2)L with the gauge coupling g2. The pure
gauge field Lagrangian

LYM = −1

4
W a
µνW

µν,a − 1

4
BµνB

µν (2.1)

with the field strength tensors

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2εabcW
b
µW

c
ν , (2.2)

Bµν = ∂µBν − ∂νBµ, (2.3)

5



2. The Two-Higgs-Doublet Model

is invariant under the gauge transformations. The structure constant εabc is the totally anti-
symmetric Levi-Civita tensor with ε123 = 1.

Fermion field Isospin I3 Hypercharge Y

ν′l (l = e, µ, τ) + 1
2 −1

l′L (l = e, µ, τ) − 1
2 −1

l′R (l = e, µ, τ) 0 −2

u′j,L (uj = u, c, t) + 1
2

2
6

d′j,L (dj = d, s, b) − 1
2

2
6

u′j,R (uj = u, c, t) 0 4
3

d′j,R (dj = d, s, b) 0 − 2
3

Table 2.1: Quantum numbers of the fermion fields

In the SM (and in the THDM) the fundamental fermions of the different lepton and quark
generations are arranged in SU(2)L doublets for the left-handed states

L′Lj =

ν′e
e′L

 ,

ν′µ
µ′L

 ,

ν′τ
τ ′L

 , (2.4)

Q′Lj =

u′L
d′L

 ,

c′L
s′L

 ,

t′L
b′L

 , (2.5)

and into singlet representations (with Ia = 0) for the right-handed states

l′Rj = e′R, µ′R, τ ′R, (2.6)

u′Rj = u′R, c′R, t′R, (2.7)

d′Rj = d′R, s′R, b′R. (2.8)

The index j represents the different generations. The states of left- and right-handed chirality
are obtained by applying the projectors

ω± =
1± γ5

2
, (2.9)

on a full fermion spinor ψf , such that

fL = ω−ψf , (2.10)

fR = ω+ψf . (2.11)

An explicit colour index for the left- and right-handed quark states is omitted for the sake of
clarity.

The hypercharges of the left- and right-handed fermions have to fulfill the Gell-Mann–
Nishijima relation

Q = I3 +
Y

2
(2.12)

in order to produce the right quantum number of the electric charge operator Q. The resulting
quantum numbers of the fermion fields are given in Table 2.1.

Gauge-invariant kinetic terms of the fermions are obtained by replacing the ordinary deriva-
tives with the covariant derivative

Dµ = ∂µ + ig2IaW
a
µ + ig1

Y

2
Bµ. (2.13)
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2.2. Higgs potential

With the fermion multiplets in (2.4), (2.5), (2.6), (2.7) and (2.8) the fermionic part of the
Lagrangian reads

LF =
∑
j

[
L
′L
j iγ

µDµL
′L
j + l

′R
j iγ

µDµl
′R
j

]
+
∑
j

[
Q
′L
j iγ

µDµQ
′L
j + u′Rj iγ

µDµu
′R
j + d

′R
j iγ

µDµd
′R
j

]
.

(2.14)

The index j runs over the different generations for the quark and leptons. The summation of
the quark states runs also over the additional colour index, which has been omitted for brevity.

In this notation the primed fermion states are defined to be eigenstates of the electroweak in-
teraction. These states are not necessarily identical to the mass eigenstates, which are obtained
by the Yukawa interaction in Section 2.4.

2.2 Higgs potential

The THDM Higgs sector consists of two complex SU(2)L doublet scalar fields with hypercharge
Y = 1:

Φ1 =

 φ+
1

φ0
1

 , Φ2 =

 φ+
2

φ0
2

 . (2.15)

The most general gauge-invariant and renormalizable potential can be written as follows [58,
67],

V (Φ1,Φ2) =m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
(
m2

12Φ†1Φ2 + h.c.
)

+
1

2
Λ1

(
Φ†1Φ1

)
2 +

1

2
Λ2

(
Φ†2Φ2

)
2 + Λ3

(
Φ†2Φ2

)(
Φ†1Φ1

)
+ Λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[
1

2
Λ5

(
Φ†1Φ2

)
2 +

(
Λ6Φ†1Φ1 + Λ7Φ†2Φ2

)
Φ†1Φ2 + h.c.

]
.

(2.16)
The parameters m2

11, m2
22 and Λ1,2,3,4 are real due to the hermicity of the potential. In general

the parameters m2
12, Λ5,6,7 can be complex. Since the two doublets carry the same quantum

numbers, one can rewrite the potential in terms of new doublets Φ′a, which are obtained from
the original ones by

Φ′a =

2∑
b=1

UabΦb (2.17)

where U is a unitary 2 × 2 matrix (see for example [58, 128, 129]). This basis transformation
can be used to eliminate some of the degrees of freedom of the potential.

Usually a specific basis is defined by the discrete Z2 symmetry

Φ1 → Φ1; Φ2 → −Φ2. (2.18)

As discussed in Section 2.4 this discrete symmetry prevents flavour-changing neutral currents
in the Yukawa-sector. In the scalar potential, the symmetry forbids the Z2-breaking terms of
mass-dimension four, resulting in

Λ6 = Λ7 = 0. (2.19)

Conventionally, one allows a soft-violation by dimension-two terms and keeps m2
12 6= 0, since

this results in a richer phenomenology of the model.
In this thesis we are assuming a CP -conserving potential in which all of the parameters are

real. In the discussions about the alignment limit in Section 2.5 and the custodial symmetry
in Section 5.1 we keep Λ6,7 6= 0. In this way, we can highlight differences that arise from the
corresponding terms in the potential. However, in our phenomenological study of the results
will be done for Λ6,7 = 0, since the model with soft Z2-violation already covers the main
characteristics of the two-loop corrections.
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2. The Two-Higgs-Doublet Model

Under the requirement that the minimum of the potential respects the U(1)EM symmetry,
the vacuum expectation values of the scalar fields are

〈Φi〉 =

 0

vi√
2

 , i = 1, 2. (2.20)

Expanding the scalar fields around the vacuum expectation values,

Φ1 =

 φ+
1

1√
2

(v1 + η1 + iχ1)

 , Φ2 =

 φ+
2

1√
2

(v2 + η2 + iχ2)

 , (2.21)

and inserting this decomposition in the potential leads to the following terms, which are linear
and quadratic in the field components

V =− T1η1 − T2η2 +
(
φ−1 φ−2

)
M̃φ

φ+
1

φ+
2


+

1

2

(
χ1 χ2

)
M̃χ

χ1

χ2

+
1

2

(
η1 η2

)
M̃η

η1

η2

+ . . . . (2.22)

The coefficients of η1,2 are

T1 = −v1m
2
11 + v2m

2
12 −

1

2
Λ1v

3
1 −

1

2
Λ345v

2
2v1 −

3

2
Λ6v2v

2
1 −

1

2
Λ7v

3
2 , (2.23)

T2 = −v2m
2
22 + v1m

2
12 −

1

2
Λ2v

3
2 −

1

2
Λ345v2v

2
1 −

1

2
Λ6v

3
1 −

3

2
Λ7v

2
2v1. (2.24)

with

Λ345 = Λ3 + Λ4 + Λ5. (2.25)

The mass matrices can be written as

M̃X = MX + MT ; X = φ, χ, η, (2.26)

with

MT =

 −T1

v1
0

0 −T2

v2

 (2.27)

and

Mη =

 m2
12
v2
v1

+ v2
1Λ1 + 3

2v1v2Λ6 − v32
2v1

Λ7 −m2
12 + v1v2Λ345 + 3

2v
2
1Λ6 + 3

2v
2
2Λ7

−m2
12 + v1v2Λ345 + 3

2v
2
1Λ6 + 3

2v
2
2Λ7 m2

12
v1
v2

+ v2
2Λ2 − v31

2v2
Λ6 + 3

2v2v1Λ7

 ,

(2.28)

Mχ =

 m2
12
v2
v1
− Λ5v

2
2 − 1

2v1v2Λ6 − v32
2v1

Λ7 −m2
12 + v1v2Λ5 + 1

2v
2
1Λ6 + 1

2v
2
2Λ7

−m2
12 + v1v2Λ5 + 1

2v
2
1Λ6 + 1

2v
2
2Λ7 m2

12
v1
v2
− Λ5v

2
1 −

v31
2v2

Λ6 − 1
2v2v1Λ7

 , (2.29)

Mφ =

 m2
12
v2
v1
− 1

2v
2
2Λ45 − 1

2v1v2Λ6 − v32
2v1

Λ7 −m2
12 + 1

2v1v2Λ45 + 1
2v

2
1Λ6 + 1

2v
2
2Λ7

−m2
12 + 1

2v1v2Λ45 + 1
2v

2
1Λ6 + 1

2v
2
2Λ7 m2

12
v1
v2
− 1

2v
2
1Λ45 − v31

2v2
Λ6 − 1

2v2v1Λ7

 .

(2.30)

In the last matrix the abbreviation

Λ45 = Λ4 + Λ5 (2.31)

is introduced.
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2.2. Higgs potential

The requirements that the tadpoles in (2.23) and (2.24) must vanish results in the minimum
conditions

m2
11 =− 1

2
Λ1v

2
1 +

v2

v1
m2

12 −
1

2
Λ345v

2
2 −

3

2
Λ6v1v2 −

v3
2

2v1
Λ7, (2.32a)

m2
22 =− 1

2
Λ2v

2
2 +

v1

v2
m2

12 −
1

2
Λ345v

2
1 −

v3
1

2v2
Λ6 −

3

2
Λ7v2v1. (2.32b)

Applying the minimum conditions to the quadratic terms in (2.22) eliminates MT . The
diagonalization of the remaining mass matrices results in the physical mass eigenstates.

In each of the mass matrices Mφ and Mχ one eigenvalue is equal to zero. The corresponding
scalar states are the unphysical Goldstone bosons G0 and G±, which are absorbed by the
longitudinal degrees of freedom of the gauge bosons.1 The rotationsG±

H±

 = R (β)

φ±1
φ±2

 ,

G0

A0

 = R (β)

χ1

χ2

 (2.33)

with

R (x) =

 cosx sinx

− sinx cosx

 (2.34)

diagonalize Mφ and Mχ. The mixing angle is given by

cosβ =
v1

v
, sinβ =

v2

v
, tanβ =

v2

v1
(2.35)

with
v2 = v2

1 + v2
2 . (2.36)

In addition to the Goldstone bosons, (2.33) gives a charged pair H± with mass

m2
H± =

m2
12

cβsβ
− v2

(
Λ45

2
+

Λ6

2tβ
+

Λ7tβ
2

)
, (2.37)

and a CP -odd scalar A0 with mass

m2
A0 =

m2
12

cβsβ
− 1

2
v2

(
2Λ5 +

Λ6

tβ
+ Λ7tβ

)
. (2.38)

The mass matrix Mη of the fields η1,2 has the two eigenvalues,

m2
h0 =

1

2

[
Mη

11 + Mη
22 −

√
(Mη

11 −Mη
22)

2
+ 4 (Mη

12)
2

]
, (2.39)

m2
H0 =

1

2

[
Mη

11 + Mη
22 +

√
(Mη

11 −Mη
22)

2
+ 4 (Mη

12)
2

]
. (2.40)

The two corresponding CP -even mass eigenstates h0 and H0 are obtained by the rotationH0

h0

 = R (α)

η1

η2

 . (2.41)

The mixing angle α of the CP -even scalars is given by

sin 2α =
2Mη

12√
(Mη

11 −Mη
22)

2
+ 4(Mη

12)2

, (2.42a)

cos 2α =
Mη

11 −Mη
22√

(Mη
11 −Mη

22)
2

+ 4(Mη
12)2

. (2.42b)

1As usual mass terms of the Goldstone bosons arise solely from the gauge-fixing part of the Lagrangian. In
the ‘t Hooft-Feynman gauge, which is used in this thesis, the resulting masses of the Goldstone-bosons are given
by the masses of the corresponding gauge bosons.
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2. The Two-Higgs-Doublet Model

Restricting the mixing angle to

− π

2
≤ α < π

2
(2.43)

fixes the sign of the mass eigenstates h0 and H0.
From now on we will use the short notation

sinx = sx, cosx = cx, tanx = tx (2.44)

for all the appearances of the mixing angles.
The parameters m2

11 and m2
22 can be eliminated by the minimum conditions. Five of the

remaining parameters can be traded for the scalar masses, the sum of the vacuum expectation
values v2 and the mixing angles α and β, resulting in

Λ1 = −m
2
12tβ
v2c2β

+
c2αm

2
H0 +m2

h0s2
α

v2c2β
+

1

2
Λ7t

3
β −

3Λ6tβ
2

, (2.45)

Λ2 = − m2
12

v2s2
βtβ

+
c2αm

2
h0 +m2

H0s2
α

v2s2
β

+
Λ6

2t3β
− 3Λ7

2tβ
, (2.46)

Λ3 = − m2
12

v2cβsβ
+

2m2
H±

v2
−
cαsα

(
m2
h0 −m2

H0

)
v2cβsβ

− Λ6

2tβ
− Λ7tβ

2
, (2.47)

Λ4 =
m2

12

v2cβsβ
+
m2
A0 − 2m2

H±

v2
− Λ6

2tβ
− Λ7tβ

2
, (2.48)

Λ5 =
m2

12

v2cβsβ
−
m2
A0

v2
− Λ6

2tβ
− Λ7tβ

2
. (2.49)

In addition v2 is fixed by the electric charge and the masses of the gauge bosons (see Section 2.3).
The remaining free parameters are m2

12, Λ6 and Λ7. As discussed before we will use Λ6,7 = 0
in the examination of the two-loop corrections to electroweak precision observables. Moreover
we will use the dimensionless parameter

λ5 =
2m2

12

v2sβcβ
. (2.50)

This combination is used in the THDM modelfile of FeynArts [130], a Mathematica program
for the automatic generation of Feynman diagrams. In this modelfile, the Feynman rules of the
THDM are derived from the Higgs potential with the conventions from [131], which contains
the parameter λ5. Since the two-loop corrections are obtained with the help of FeynArts, the
parameter λ5 is used instead of m2

12 in the discussion of the results.
The field rotations in (2.33) and (2.41) together with the minimum conditions in (2.32)

result in diagonal propagators and vanishing Goldstone-boson masses at the tree-level. At
higher-orders the propagators receive off-diagonal corrections since the scalars with identical
quantum numbers (neutral CP -even, neutral CP -odd and charged scalars) can mix. Identifying
the off-diagonal mass-terms at tree-level is advantageous for the renormalization of the mixing
terms and the Goldstone-boson masses in Chapter 4. Therefore the original fields in (2.22) are
rotated byG±

H±

 = R (βc)

φ±1
φ±2

 ,

G0

A0

 = R (βn)

χ1

χ2

 ,

H0

h0

 = R (α)

η1

η2

 , (2.51)

before imposing the minimums condition, leading to

V =− Thh0 − THH0 +
(
G− H−

)
M̃G±H±

G+

H+


+

1

2

(
G0 A0

)
M̃G0A0

G0

A0

+
1

2

(
H0 h0

)
M̃H0h0

H0

h0

+ . . . . (2.52)
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2.2. Higgs potential

The mixing angles of the CP -odd and the charged scalars are denoted by βn and βc to distin-
guish them from the angle β, which is defined by the ratio of v2 and v1 in (2.35). The terms
linear in η1,2 are translated into the tadpoles

Th =cαT2 − sαT1 (2.53a)

TH =cαT1 + sαT2 (2.53b)

of h0 and H0. The matrices for the quadratic terms are given by

M̃H0h0 =

 m̃2
H0 m̃2

H0h0

m̃2
H0h0 m̃2

h0

 = R (α)
[
Mη + MT

]
R (α)

−1
, (2.54a)

M̃G0A0 =

 m̃2
G0 m̃2

G0A0

m̃2
G0A0 m̃2

A0

 = R (βn)
[
Mχ + MT

]
R (βn)

−1
, (2.54b)

M̃G±H± =

 m̃2
G± m̃2

G±H±

m̃2
G±H± m̃2

H±

 = R (βc)
[
Mφ + MT

]
R (βc)

−1
. (2.54c)

The elements of the last two matrices can be expressed very simply in terms of the tadpoles
Th0 , TH0 and the masses mH± and mA0 defined by (2.37) and (2.38). For the CP -odd scalars
they take the form

m̃2
G0 =m2

A0s2
β−βn + Th

(cα−βc2βn − cα+β)

vs2β
+ TH

(c2βnsα−β − sα+β)

vs2β
, (2.55)

m̃2
A0 =m2

A0c2β−βn − Th
(cα+β + cα−βc2βn)

vs2β
− TH

(c2βnsα−β + sα+β)

vs2β
, (2.56)

m̃G0A0 =− 1

2
m2
A0s2β−2βn − Th

cα−βs2βn

vs2β
− TH

s2βnsα−β
vs2β

. (2.57)

The matrix-elements for the charged sectors are given by

m̃G± =s2
β−βcm

2
H± + Th

(c2βccα−β − cα+β)

vs2β
+ TH

(c2βcsα−β − sα+β)

vs2β
, (2.58)

m̃H± =c2β−βcm
2
H± − Th

(cα+β + c2βccα−β)

vs2β
− TH

(c2βcsα−β + sα+β)

vs2β
, (2.59)

m̃G±H± =− 1

2
s2β−2βcm

2
H± − Th

cα−βs2βc

vs2β
− TH

s2βcsα−β
vs2β

. (2.60)

The minimums-conditions are then equivalent to the requirement that the tadpoles vanish,

Th = 0, TH = 0, (2.61)

and the off-diagonal matrix-elements are equal to zero. This yields

βn = βc = β (2.62)

and fixes the mixing-angle α according to (2.42).
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2. The Two-Higgs-Doublet Model

2.3 Higgs-boson interaction with gauge bosons

The two doublets couple to the gauge bosons via the kinetic term

Lkin =
∑
i=1,2

(DµΦi)
†

(DµΦi) (2.63)

with the covariant derivative from (2.13). Inserting the vacuum expectation values from (2.20)
leads to the quadratic terms

g2
2v

2

8

(
W 1
µ + iW 2

µ

) (
W 1µ − iW 2µ

)
+
v2

8

(
W 3
µ , Bµ

) g2
2 −g1g2

−g1g2 g2
1

W 3µ

Bµ

 . (2.64)

To obtain diagonal mass terms, the fields W a
µ and Bµ have to be transformed to the physical

fields

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
(2.65)

and Zµ
Aµ

 =

cos θW − sin θW

sin θW cos θW

W 3
µ

Bµ

 , (2.66)

with the electroweak mixing angle θW and

cos θW = cW =
g2√
g2

1 + g2
2

, sin θW = sW =
g1√
g2

1 + g2
2

. (2.67)

With the physical fields the mass terms in (2.64) become

M2
WW

−
µ W

+µ +
1

2

(
Zµ, Aµ

)M2
Z 0

0 0

Zµ
Aµ

 . (2.68)

Here the physical masses are

M2
W =

g2
2v

2

4
(2.69)

and

M2
Z =

(
g2

1 + g2
2

)
v2

4
. (2.70)

Therefore we obtain for the weak mixing angle the relation

cW =
MW

MZ
. (2.71)

The massless field Aµ is identified with the photon field and its coupling to the electron with
the electric charge e =

√
4παem, where αem is the electromagnetic fine structure constant. For

the gauge couplings this yields

e =
g1g2√
g2

1 + g2
2

, (2.72)

or
g1 =

e

cW
, g2 =

e

sW
. (2.73)

The parameter v2 can be expressed in terms of the electric charge and the gauge boson masses
via

v2 = v2
1 + v2

2 =
4M2

W s
2
W

e2
, (2.74)

such that

v1 =
2MW sW

e
cosβ (2.75)

and

v2 =
2MW sW

e
sinβ. (2.76)

The Feynman rules for the interaction of the gauge bosons to the Higgs fields are given in
Appendix A.
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2.4. Yukawa interaction

Model uR dR lR

type-I -1 -1 -1

type-II -1 +1 +1

type-X -1 -1 +1

type-Y -1 +1 -1

Table 2.2: Transformations of the right-handed fermion singlets under the discrete Z2 symmetry
in the different versions of the THDM

Model Φu Φd Φl

type-I Φ2 Φ2 Φ2

type-II Φ2 Φ1 Φ2

type-X Φ2 Φ2 Φ1

type-Y Φ2 Φ1 Φ2

Table 2.3: Doublet-assignment in the different Z2 symmetric versions of the THDM

2.4 Yukawa interaction

The possible interaction between scalars and fermions are restricted strongly by the experi-
mental limits on tree-level flavour-changing neutral currents (FCNCs) obtained for example
from the meson decays or meson mixing. In the SM, the diagonalization of the fermion mass
matrix diagonalizes also the interaction of the Higgs boson with the fermions and FCNC pro-
cesses are automatically absent at the tree-level.

In extensions with more than one scalar doublet, each of the doublets can couple to the
quarks or leptons with its own Yukawa matrix. In general these matrices cannot be simultane-
ously diagonalized and introduce flavour changing couplings for the neutral scalars.

It has been shown in [132] and [133] that a necessary and sufficient condition to avoid the
FCNCs by neutral Higgs exchange at the tree-level is that not more than one of the doublets
couples to right-handed fermions of a given charge. In the THDM, this requirement can be
enforced by imposing a discrete Z2 symmetry on the doublets and the right-handed fermions.
Depending on the charge-assignment to the right-handed lepton or quark states, the Z2 sym-
metry can be imposed in four different ways, which are usually classified as type-I, type-II,
type-X or type-Y. The possible realization differ in the transformation of the right-handed fer-
mion singlets under the Z2 symmetry. Whether the right-handed fermion singlets transform
even (fR → fR) or odd (fR → −fR) under the Z2 symmetry in the different models is sum-
marized in Table 2.2. Denoting the doublet which couples to the right-handed fermion-states
f (f = u, d, l) by Φf , the Yukawa-part of the Lagrangian can be written in the general form

LY = −
3∑

i,j=1

[
(Y ′l )ij L

′L
i Φll

′R
j + (Y ′d)ij Q

′L
i Φdd

′R
j + (Y ′u)ij Q

′L
i Φ̃uu

′R
j + h.c.

]
(2.77)

with Φ̃i ≡ iσ2Φ?i . The assignment of Φf (f = u, d, l) in the different models is given in
Table 2.3. The diagonalization of the Yukawa-matrices transforms the fermion-states from
the weak-interaction basis into the mass eigenstates.

For the leptons the bi-unitary transformation

UL†l Y ′l U
R
l = Yl =


ye 0 0

0 yµ 0

0 0 yτ

 , (2.78)
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2. The Two-Higgs-Doublet Model

gives the field redefinitions

LLi =
(
UL†l

)
ij
L′Lj =

νi
lLi

 , (2.79)

lRi =
(
UR†l

)
ij
l′Rj . (2.80)

Since we are discarding right-handed neutrino states, the neutrino fields can be redefined such
that the matrix ULl is canceled in the interaction of the leptons with the charged Higgs states
or the W bosons. The masses of the unprimed states are given by

vl√
2
Yl =


me 0 0

0 mµ 0

0 0 mτ

 (2.81)

where vl denotes the vacuum expectation value of the doublet, which is assigned to Φl in
Table 2.3.

The Yukawa-coupling matrices of the quarks are diagonalized by the bi-unitary transform-
ations

UL†u Y ′uU
R
u = Yu =


yu 0 0

0 yc 0

0 0 yt

 (2.82)

and

UL†d Y ′dU
R
d = Yd =


yd 0 0

0 ys 0

0 0 yt

 . (2.83)

The resulting quark mass states are given by the field redefinitions

dRi =
(
UR†d

)
ij
d′Rj ; dLi =

(
UL†d

)
ij
d′Lj ;

uRi =
(
UR†u

)
ij
u′Rj ; uLi =

(
UL†u

)
ij
u′Lj .

(2.84)

Due to unitarity, the matrices UL,Rq cancel themselves in the interaction of the quark fields with
the neutral components of the scalar doublets. This leads to the diagonal mass-matrix

vu√
2
Yu =


mu 0 0

0 mc 0

0 0 mt

 , (2.85)

vd√
2
Yd =


md 0 0

0 ms 0

0 0 mb

 , (2.86)

and a flavour-diagonal interaction between the quarks and the neutral scalars. The up-type
quarks receive their mass in all of the different version of the THDM by the doublet Φ2 such that
vu = v2. For the down-type quarks vd denotes the vacuum expectation value, which is assigned
to the doublet Φd in Table 2.3. In the interaction of the quark with the charged component
of the doublets, the different field-redefinitions of the up- and down-type quarks introduce the
CKM-matrix

V = UL†u ULd , (2.87)
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2.4. Yukawa interaction

ξuh ξdh ξlh ξuH ξdH ξlH ξuA ξdA ξlA

type-I cα
sβ

cα
sβ

cα
sβ

sα
sβ

sα
sβ

sα
sβ

1
tβ

− 1
tβ

− 1
tβ

type-II cα
sβ

− sαcβ − sαcβ
sα
sβ

cα
cβ

cα
cβ

1
tβ

tβ tβ

type-X cα
sβ

cα
sβ

− sαcβ
sα
sβ

sα
sβ

cα
cβ

1
tβ

− 1
tβ

tβ

type-Y cα
sβ

− sαcβ
cα
sβ

sα
sβ

cα
cβ

sα
sβ

1
tβ

tβ − 1
tβ

Table 2.4: Proportionality factors of the couplings of the fermions to the scalars in the different
versions of the Z2 symmetric THDM

which enters also the interaction of the quarks with the W boson, if the electroweak eigenstates
of the quarks in the kinetic part in (2.14) are expressed in terms of the mass eigenstates defined
via (2.84).

With the mass eigenstates of the Higgs bosons the Yukawa-part of the Lagrangian can be
written as follows,

LY = −
∑
l

[ (
ψ̄lψl

)
ml +

ξlhml

v

(
ψ̄lψl

)
h0 +

ξlHml

v

(
ψ̄lψl

)
H0

+
iml

v

(
ψ̄lγ5ψl

)
G0 − iξlAml

v

(
ψ̄lγ5ψl

)
A0

+

√
2ml

v

( (
ψ̄lω−ψνl

)
G− +

(
ψ̄νlω+ψl

)
G+
)

−
√

2ξlAml

v

( (
ψ̄lω−ψνl

)
H− +

(
ψ̄νlω+ψl

)
H+
)]

−
∑
j

[ (
ψ̄djψdj

)
mdj +

(
ψ̄ujψuj

)
muj

−G0

(
imuj

v

(
ψ̄ujγ5ψuj

)
−
imdj

v

(
ψ̄djγ5ψdj

))
−A0

(
imdjξ

d
A

v

(
ψ̄djγ5ψdj

)
+
imujξ

u
A

v

(
ψ̄ujγ5ψuj

))

+ h0

(
mdjξ

d
h

v

(
ψ̄djψdj

)
+
mujξ

u
h

v

(
ψ̄ujψuj

))

+H0

(
mdjξ

d
H

v

(
ψ̄djψdj

)
+
mujξ

u
H

v

(
ψ̄ujψuj

))]

+
∑
j,i

[
G+

(√
2muiVij
v

(
ψ̄uiω−ψdi

)
−
√

2mdjVij

v

(
ψ̄uiω+ψdj

))

+G−

(√
2muiVij

∗

v

(
ψ̄djω+ψui

)
−
√

2mdjVij
∗

v

(
ψ̄djω−ψuj

))

+H+

(√
2mdjVijξ

d
A

v

(
ψ̄uiω+ψdj

)
+

√
2muiVijξ

u
A

v

(
ψ̄uiω−ψdi

))

+H−

(√
2mdjVij

∗ξdA
v

(
ψ̄djω−ψuj

)
+

√
2muiVij

∗ξuA
v

(
ψ̄djω+ψui

))]
. (2.88)

The factors ξfs for the different versions of the Z2-symmetric THDM are specified in Table 2.4.
The resulting Feynman rules for the Yukawa-interaction are given in Appendix A.

If the discrete symmetries are not imposed in the Yukawa sector each of the doublets is
in principle allowed to couple to all fermions and a different mechanism has to be considered
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2. The Two-Higgs-Doublet Model

in order to suppress the FCNCs. For example in the (flavour-)aligned model [134, 135] one
assumes that the Yukawa-coupling matrices of the two doublets are proportional to each other.
The diagonalization of the fermion mass matrices eliminates then all the tree-level FCNC. This
flavour-aligned model contains three arbitrary proportionality constants and the four different
realization of the Z2 symmetric Yukawa sector are contained as specific choices of the pro-
portionality constants. Another example is known as the type-III models [136–139], in which
the the flavour-changing couplings are proportional to

√
mimj/v, where mi and mj are the

masses of the fermions interacting with the neutral scalars. This so-called Cheng-Sher ansatz
[136] suppresses the Yukawa-couplings of the first two generations, from which the most strict
bounds on the FCNCS arise. More details on these and other models with flavour-changing
interactions of the neutral scalars can be found in [58] and references therein. In this work we
will restrict ourselves on the Z2 symmetric versions of the THDM.

2.5 The alignment limit

Due to the fact that a scalar particle with a mass of approximately 125 GeV has been observed
at the LHC [6, 7] we have to identify one of the CP -even scalars with the observed resonance.
Choosing h0 (without loss of generality) corresponds to setting

mh0 = 125 GeV. (2.89)

Furthermore the analysis of the Higgs couplings by ATLAS [140] and CMS [141] indicate no
significant deviations from the couplings of the Higgs boson in the SM. Therefore we choose to
work in the alignment limit [68, 69, 75], in which the angles are correlated via

α = β − π

2
(2.90)

and the couplings of h0 to the vector bosons and fermions are identical to the corresponding
couplings of the Higgs boson in the SM. In this limit the CP -even Higgs states are obtained byH0

h0

 =

sβ −cβ
cβ sβ

η1

η2

 (2.91)

and the two doublets can be rewritten as

Φ1 = cβΦSM − sβΦNS, (2.92)

Φ2 = sβΦSM + cβΦNS (2.93)

with

ΦSM =

 G+

1√
2

(
v + h0 + iG0

)
 , (2.94)

ΦNS =

 H+

1√
2

(
−H0 + iA0

)
 . (2.95)

Moreover, the relations for Λ1, Λ2 and Λ3 are given by

Λ1 =
1

v2

(
m2
h0 +m2

H0t2β −
m2

12tβ
c2β

)
+

1

2
Λ7t

3
β −

3Λ6tβ
2

, (2.96)

Λ2 =
1

v2

(
m2
h0 +

m2
H0

t2β
− m2

12

s2
βtβ

)
+

Λ6

2t3β
− 3Λ7

2tβ
, (2.97)

Λ3 =
1

v2

(
m2
h0 −m2

H0 + 2m2
H± −

m2
12

cβsβ

)
− Λ6

2tβ
− Λ7tβ

2
. (2.98)
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2.6. The Inert-Higgs-Doublet Model

The potential can be rewritten in terms of the doublets given in (2.94) and (2.95). For the
classification with respect to the custodial symmetry in Chapter 5, we split it in the four parts:

V =VI + VII + VIII + VIV; (2.99)

VI =
m2
h0

2v2

(
Φ†SMΦSM

)
2 − 1

2
m2
h0

(
Φ†SMΦSM

)
, (2.99a)

VII =

[
1

2v2

(
m2
h0 +

4

t22β

(
m2
H0 −

m2
12

sβcβ

))
+

Λ6 (2c2β − 1)

4cβs3
β

− Λ7 (2c2β + 1)

4c3βsβ

](
Φ†NSΦNS

)
2

+

(
m2

12

cβsβ
−
m2
h0

2

)(
Φ†NSΦNS

)
, (2.99b)

VIII =

(
m2
A0

v2
−

2m2
H±

v2
+
m2
H0

v2

)(
Φ†SMΦNS

)(
Φ†NSΦSM

)
+

(
m2
H0

2v2
−
m2
A0

2v2

)((
Φ†NSΦSM

)
2 +

(
Φ†SMΦNS

)
2
)

+
(

Φ†NSΦNS

)(
Φ†SMΦSM

)(2m2
H±

v2
+
m2
h0

v2
− 2m2

12

v2cβsβ

)
, (2.99c)

VIV =

(
2

v2t2β

(
m2
H0 −

m2
12

cβsβ

)
− Λ7

2c2β
+

Λ6

2s2
β

)(
Φ†NSΦNS

)(
Φ†NSΦSM + Φ†SMΦNS

)
. (2.99d)

We see that only the parts VII and VIV depend on the parameters Λ6 and Λ7. The part VII

gives the quartic couplings between four non-standard scalars. As we will see in Chapter 5 the
non-standard corrections to the ρ parameter are independent of these couplings. The part VIV

gives the coupling between three non-standard scalars, when the vacuum expectation value

〈ΦSM〉 =
1√
2

0

v

 (2.100)

is inserted for the doublet ΦSM. The only dependence on Λ6 and Λ7 in ∆ρ follows from these
triple non-standard scalar couplings. For the THDM without a hard Z2 violation, the term VIV

is simply given by

VIV =
1

t2β

(
2m2

H0

v2
− λ5

)(
Φ†NSΦNS · Φ†NSΦSM + Φ†NSΦNS · Φ†SMΦNS

)
, (2.101)

where we replaced m2
12 by λ5 with the help of (2.50).

By imposing (2.90) on the Yukawa-couplings given in Table 2.4 one finds that the resulting
coupling between the SM-like scalar h0 and the fermions are identical to the Yukawa couplings
in the SM. The couplings of the non-standard Higgs states A0, H0 and H± to the top-quark
receive an additional factor of t−1

β in all of the different models. The couplings of the non-
standard Higgs bosons to the bottom quark is model dependent: in the models of type-I and
type-X they are proportional to t−1

β , whereas in the THDM of type-II or type-Y they are
proportional to tβ .

2.6 The Inert-Higgs-Doublet Model

The Inert-Higgs-Doublet Model (IHDM) is a version of a THDM with an exact, unbroken Z2

symmetry [59]. Under this symmetry all the fermions and gauge boson as well as the doublet Φ1

transform even, whereas Φ2 transforms like Φ2 → −Φ2. The potential of the IHDM is therefore
given by (2.16) with

m2
12 = 0, (2.102)

Λ6 = 0, (2.103)

Λ7 = 0. (2.104)
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2. The Two-Higgs-Doublet Model

Since the Z2 symmetry should not be spontaneously broken, only the doublet Φ1 is allowed to
develop a non-vanishing vacuum expectation value

〈Φ1〉 =

 0

v√
2

 , 〈Φ2〉 =

0

0

 , (2.105)

which fulfills the minimum condition

v2 = −2m2
11

Λ1
. (2.106)

With the expansion around the vacuum state, the SM-like doublet Φ1 and the so-called
inert doublet Φ2 are written as

Φ1 =

 G±

1√
2

(
v + h0 + iG0

)
 , Φ2 =

 H±

1√
2

(
H0 + iA0

)
 , (2.107)

where G0 and G± are the Goldstone bosons and h0, H0, A0 and H± are already mass eigen-
states. The scalar h0 is identical to the Higgs boson in the SM and its mass is given by

m2
h0 = −2m2

11 = Λ1v
2. (2.108)

The inert doublet gives four massive particles: two neutral scalars A0 and H0 and a pair of
charged states H±. Their masses are

m2
H0 = m2

22 +
1

2
(Λ3 + Λ4 + Λ5) v2, (2.109)

m2
A0 = m2

22 +
1

2
(Λ3 + Λ4 − Λ5) v2, (2.110)

m2
H± = m2

22 +
1

2
Λ3v

2. (2.111)

The couplings of the scalar h0 to the fermions and gauge bosons are identical to the cor-
responding couplings of the Higgs boson in the SM and we can identify it with the resonance
observed at the LHC, which results again in (2.89). Due to the Z2 symmetry the additional
scalars H0, A0 and H± do not couple to the fermions in the IHDM. Moreover these scalars can
only appear in pairs in their interaction vertices and the lightest of these non-standard scalars
will be stable. If this stable particle is one of the neutral states H0 or A0, the IHDM provides
a good dark matter candidate.

Since the non-standard scalars do not couple to the fermions, a clear assignment which
of the neutral scalars is CP -even and which is CP -odd is not possible. From the coupling
to the gauge-bosons we can only deduce that H0 and A0 have opposite CP -properties. The
two possible CP -transformations, H0 → H0, A0 → −A0 or H0 → −H0, A0 → A0, get
interchanged by the transformation of the doublet Φ2 → iΦ2, which exchanges the role of H0

and A0. Moreover, the sign of Λ5 is also phenomenologically irrelevant, since the replacement
Λ5 → −Λ5 interchanges just the masses and couplings of H0 and A0. In this sense the scalars
H0 and A0 are indistinguishable in the IHDM and we can assume without loss of generality

mH0 < mA0 (2.112)

and
Λ5 > 0. (2.113)

With this choice the parameter
Λ345 = Λ3 + Λ4 + Λ5, (2.114)

is of special interest, since it describes the size of the coupling of the SM-like Higgs to the dark
matter candidate.

The vacuum expectation value v is again fixed by electroweak symmetry breaking and
one parameter of the potential is eliminated by the minimums condition. For the remaining
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free parameters we choose the masses of the scalar particles, the quartic coupling of the non-
standard scalars Λ2 and the parameter Λ345. With these parameters the potential of the IHDM
is expressed by

V IHDM =V IHDM
I + V IHDM

II + V IHDM
III , (2.115)

V IHDM
I =

m2
h0

(
Φ†1Φ1

)
2

2v2
− 1

2
m2
h0

(
Φ†1Φ1

)
, (2.115a)

V IHDM
II =

1

2
Λ2

(
Φ†2Φ2

)
2 +

1

2

(
Φ†2Φ2

) (
2m2

H0 − Λ345v
2
)
, (2.115b)

V IHDM
III =

(
m2
A0 − 2m2

H± +m2
H0

)
v2

(
Φ†2Φ1

)(
Φ†1Φ2

)
+

(
m2
H0 −m2

A0

)
2v2

((
Φ†1Φ2

)
2 +

(
Φ†2Φ1

)
2
)

+
(

Φ†1Φ1

)(
Φ†2Φ2

)(
Λ345 −

2
(
m2
H0 −m2

H±

)
v2

)
. (2.115c)

2.7 Theoretical constraints

The parameters of the potential in (2.16) are subject to various restrictions. For example a
stable vacuum requires the potential to be bounded from below such that it does not tend to
−∞ for large field values. In the THDM this requirement has to be fulfilled for all possible
directions along which the component fields of Φ1,2 go to large values. In the THDM with
Λ6 = Λ7 = 0 the conditions

Λ1 > 0 (2.116)

Λ2 > 0 (2.117)

Λ3 +
√

Λ1Λ2 > 0 (2.118)

Λ3 + Λ4 − |Λ5| > −
√

Λ1Λ2 (2.119)

are necessary and sufficient to ensure that the quartic terms in the potential stay positive
along all directions [59, 142, 143]. These requirements should be taken with some caution,
since they are very constraining and may exclude interesting scenarios (see the discussion in
[58]).2 Moreover, improved conditions should also consider higher-order corrections of the
potential. For example a recent analysis for the THDM of type-II showed that many parameter
points which are excluded by the tree-level conditions are revived if the loop-corrected, effective
potential is used instead [144].

Additional constraints on the potential parameters arise from the requirement that the
unitarity of the scattering matrix is not violated in scattering processes between physical scalars.
Moreover, due to the Goldstone boson equivalence theorem the scattering of longitudinal gauge
bosons can be calculated as scalar-scalar scattering by replacing the gauge boson with the
corresponding Goldstone bosons. Due to the optical theorem, the s-wave scattering length
a0 is restricted to |a0| ≤ 1/2. For scalar-scalar scattering processes in the high-energy limit
a0 is directly proportional to the scalar couplings. In the SM, this has lead to an upper
bound on the Higgs mass [145, 146]. The application of the analysis in the THDM [147–153]
is more complicated due to the larger number of possible scattering processes and the more
complex structure of the scalar quartic couplings. The scattering matrix of the coupled scalar-
scalar channels can be simplified by using the original fields φ+

i , ηi and χi instead of the mass
eigenstates with the help of unitary transformation. In the THDM with Λ6 = Λ7 = 0 the
restriction on the s-wave scattering length constraints the eigenvalues of the scattering matrix

2Softer requirements allow also directions in which the quartic terms go to zero for large values of the
component fields, as long as the quadratic terms do not go to negative values in this direction.
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at tree-level (see [58, 151, 152]), given by

e1,2 =
3

2
(Λ1 + Λ2)±

√
9

4
(Λ1 − Λ2) 2 + (2Λ3 + Λ4) 2, (2.120)

e3,4 =
1

2
(Λ1 + Λ2)± 1

2

√
(Λ1 − Λ2) 2 + 4Λ2

4, (2.121)

e5,6 =
1

2
(Λ1 + Λ2)± 1

2

√
(Λ1 − Λ2) 2 + 4Λ2

5, (2.122)

e7 =Λ3 + 2Λ4 − 3Λ5, (2.123)

e8 =Λ3 − Λ5, (2.124)

e9 =Λ3 + 2Λ4 + 3Λ5, (2.125)

e10 =Λ3 + Λ5, (2.126)

e11 =Λ3 + Λ4, (2.127)

e12 =Λ3 − Λ4, (2.128)

to fulfill |ei| ≤ 8π. The constraints in THDM with Z2 violation are more complicated and were
studied in [153]. For more accurate restrictions higher-order corrections need to be considered
in the scattering processes. A one-loop analysis of the unitarity bounds can be found in [154,
155].

An additional constraint arises in the the THDM, due to the possibility that the potential
can have several minima of different depth. In addition to charge- and CP -conserving vacua
in the form of (2.20), also charge-breaking or CP -violating minima can exist. A specific set of
parameters determined in terms of masses and couplings together with the requirement that
the electroweak symmetry is broken selects a specific vacuum. If the selected vacuum is not the
global minimum it will be metastable and can decay into the deeper minimum via tunneling.
In [156, 157] it has been shown that if a neutral, CP -conserving minima exists, all the possible
charge-breaking or CP -violating stationary points are automatically saddle points. However it
is possible that two neutral minima can coexist in the tree-level potential of the THDM [158,
159]. Simple methods were developed in [160–162] in order to test whether the selected vacuum
is the global minimum. In the CP -conserving THDM with a softly broken Z2 symmetry, it is
sufficient to check the sign of the discriminant

D = m2
12

(
m2

11 − k2m2
22

)
(tβ − k) (2.129)

with

k =

(
Λ1

Λ2

) 1
4

. (2.130)

The selected vacuum is the global minimum if and only if D > 0 [161]. If D < 0, the selected
vacuum is a local minimum, which is metastable. In this case, the corresponding parameters
should be excluded if the tunneling time is smaller than the age of the universe. The calculation
of the vacuum lifetime is however a very complicated task. An estimation in [161] showed that
for a scan over parameter points with two co-existing minima the vacuum lifetime is shorter than
the age of the universe in most cases. However, the estimation relies on specific assumptions
and the result might change for different assumptions.

The constraints from the stability of the vacuum and the unitarity of the scattering matrix
are identical in the aligned THDM and the IHDM. In the IHDM the parameters are further
constrained by

µ2
1√
Λ1

<
µ2

2√
Λ2

(2.131)

to ensure that the configuration in (2.105) is the global minimum of the potential [163].
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Chapter 3

Higher-order corrections

The evaluation of Feynman diagrams for the calculation of higher order corrections in pertur-
bative quantum field theories involves integrals over the momenta of particles in closed loops.
The denominator of the integrand consists of the squared masses and momenta from the propa-
gators of the particles running in the loop. If the numerator contains a Lorentz index which is
originating from the integration momenta, the integral is called a tensor integral. Otherwise the
integral is called a scalar integral. This chapter outlines the techniques used in the calculation
of gauge-boson self-energy corrections.

3.1 Dimensional regularization

For large loop momenta the loop integrals are in general divergent. For a consistent treatment
of the divergences, the integrals are redefined in a procedure called regularization. In this thesis
the popular method of dimensional regularization is used, which preserves Lorentz and gauge
invariance [164–167]. In dimensional regularization, the integrals are evaluated in a generic
number of dimensions D instead of four dimensions:∫

d4q → µ4−D
D

∫
dDq. (3.1)

In order to keep the couplings dimensionless the regularization mass parameter µD with mass
dimension one is introduced. The integrals in D dimensions are convergent. The result can be
expanded in δ = (D − 4)/2 and the divergences appear as poles in δ for δ → 0.

3.2 Gauge-boson self-energies

The dominant non-standard corrections to electroweak precision observables in the THDM are
given in terms of the gauge-boson self-energies. The self-energies describe the higher-order
contributions in the two-point vertex functions. In the ’t Hooft-Feynman gauge, which is used
in this thesis, the two-point functions for the gauge bosons are given by

Γabµν (p) = −igµν
(
k2 −M2

a

)
δab − iΣabµν (p) , (3.2)

where p is the external momentum and a, b = γ, Z for the neutral gauge bosons (with Mγ = 0)
and a = b = W for the W boson. The two-point functions are decomposed in the tree-level
contributions, which are equivalent to the inverse of the tree-level gauge-boson propagator,
and the self-energies Σabµν . These gauge-boson self-energies can be written in terms of scalar
quantities with the help of the tensor-decomposition

Σabµν (p) =

(
gµν −

pµpν
p2

)
ΣabT

(
p2
)

+
pµpν
p2

ΣabL
(
p2
)
. (3.3)

The transverse and longitudinal parts are obtained by projection operators of the form

ΣabT
(
p2
)

=
1

D − 1

(
gµν − pµpν

p2

)
Σabµν (p) , (3.4)
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and

ΣabL
(
p2
)

=
pµpν

p2
Σabµν (p) . (3.5)

For processes with light external fermions the contributions from the longitudinal parts of
the gauge-boson self-energies are suppressed by the light fermion masses and can be neglected.
The transverse part, which is extracted with the help of (3.4), can be expressed just in terms of
scalar loop integrals by the methods described in [168] for the one-loop case and in [169] for the
two-loop case. For processes with zero external momentum, which are considered in this thesis,
all the scalar loop integrals can be reduced to two types of scalar one- and two-loop integrals,
which are specified in the next section.

3.2.1 One-loop integrals for self-energies

The reduction of one-loop tensor integrals was first discussed in [168]. At the one-loop order,
all the tensor integrals can be reduced to a set of scalar n-point integrals, which correspond
to the scalar one-loop diagrams with n external legs that are connected to the loop only by
three-vertices. For n ≤ 4 the scalar n-point integrals are denoted by A0, B0, C0 and D0.
The integrals for n > 4 can be reduced to a linear combination of the box integrals D0 [170].
Therefore all the one-loop amplitudes can be expressed in terms of the basis integrals A0, B0,
C0 and D0, for which analytic results were derived in [171]. More details can be found in [172,
173]. In the following, only the necessary expression for the calculation of one-loop self-energies
are reviewed.

The only one-loop scalar integrals which are needed for the evaluation of the self-energies
are

A0(m2) =

∫
dDq

iπ2(2πµ)D−4

1

(q2 −m2 + iε)
, (3.6)

B0(p2,m2
1,m

2
2) =

∫
dDq

iπ2(2πµ)D−4

1

(q2 −m2
1 + iε)((p+ q)2 −m2

2 + iε)
. (3.7)

The analytic expressions up to terms of the order δ0 can be found in [172]. Two-loop calculations
contain also products of these one-loop integrals and an expansion up to the order δ1 is necessary,
which can be found in [174, 175].

The following two tensor integrals appear in the calculation of one-loop two-point functions,

Bµ(p2,m2
1,m

2
2) =

∫
dDq

iπ2(2πµ)D−4

qµ
(q2 −m2

1 + iε)((p+ q)2 −m2
2 + iε)

, (3.8)

Bµν(p2,m2
1,m

2
2) =

∫
dDq

iπ2(2πµ)D−4

qµqν
(q2 −m2

1 + iε)((p+ q)2 −m2
2 + iε)

. (3.9)

Since these integrals are Lorentz covariant, they can be expressed in terms of Lorentz tensors
constructed from the external momentum and the metric tensor gµν :

Bµ
(
p2,m2

1,m
2
2

)
= pµB1

(
p2,m2

1,m
2
2

)
,

Bµν
(
p2,m2

1,m
2
2

)
= gµνB00

(
p2,m2

1,m
2
2

)
+ pµpνB11

(
p2,m2

1,m
2
2

)
.

(3.10)

The scalar coefficient functions B1 and B00 can be obtained by inverting (3.10),

B1(p2,m2
1,m

2
2) =

1

p2
pµBµ

(
p2,m2

1,m
2
2

)
, (3.11)

B00(p2,m2
1,m

2
2) =

1

2(D − 1)

(
gµν − pµpν

p2

)
Bµν

(
p2,m2

1,m
2
2

)
. (3.12)

The resulting scalar products in the numerator can be expressed in terms of the squared mo-
menta via

2p · q = (p+ q)2 − p2 − q2. (3.13)
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 3.1: Topologies for the two-loop self-energy diagrams

The squared momenta can be canceled by the propagators, resulting in the scalar coefficient
functions

B1(p2,m2
1,m

2
2) =

1

2p2

[
A0(m2

1)−A0(m2
2)− (p2 +m2

1 −m2
2)B0(p2,m2

1,m
2
2)
]
, (3.14)

B00(p2,m2
1,m

2
2) =

1

2(D − 1)

[
A0(m2

1) + 2m2
1B0(p2,m2

1,m
2
2)

+ (p2 +m2
1 −m2

2)B1(p2,m2
1,m

2
2)
]
. (3.15)

3.2.2 Two-loop integrals for self-energies

For two-loop self-energy diagrams the reduction of tensor integrals to scalar integrals is described
in [169]. It was shown, with the help of a generalization of the Passarino-Veltman-techniques
[168] together with symmetry properties of the resulting scalar integrals, that every two-loop
self-energy amplitude can be written in terms of a small number of two-loop scalar integrals as
well as products of the one-loop integrals A0 and B0. The routines for the tensor decomposition
and the reduction of the scalar integrals are implemented in the Mathematica program TwoCalc

[169, 176]. In the following the conventions for the two-loop scalar integrals are reviewed.

All of the needed two-loop self-energy diagrams are related to one of the topologies shown
in Figure 3.1. The tensor reduction and the symmetry properties of the scalar integrals are
derived in [169], where it was shown that the self-energy amplitudes can be expressed in terms
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of a class of scalar two-loop integrals

Ti1i2...in
(
m2

1,m
2
2, . . . ,mn

)
=

∫ ∫
dDq1d

Dq2

(iπ2(2πµ)D−4)2

1[
k2
i1
−m2

1

] [
k2
i2
−m2

2

]
· · ·
[
k2
in
−m2

n

] ,
(3.16)

with ij ∈ {1, 2, 3, 4, 5}. kij and mj denote the momenta and the mass of the j-th propagator.
Thereby the internal momenta are expressed by the integration momenta q1 and q2 and the
external momentum p as

k1 = q1, k2 = q1 + p, k3 = q2 − q1, k4 = q2, k5 = q2 + p. (3.17)

Extracting the transverse part of the self-energy with the help of (3.4) results in scalar products
of the momenta (ki · kj), (ki · p), p2 in the numerator. By using momentum conservation and
(3.17), all scalar products can be expressed as sums of k2

i and p2 (in an analogous way to the
one-loop case in (3.13)). If all the k2

i appearing in the numerator are also contained in the
denominator, they can be canceled against the corresponding propagator via

k2
i =

(
k2
i −m2

i

)
+m2

i , (3.18)

and the loop integral can be written in the form of (3.16). If one of the squared momenta in the
numerator is not contained in the denominator, one can perform a decomposition of a subloop
by expressing it in terms of tensors build by the external momentum of the subloop and scalar
coefficient functions (similar to the decomposition (3.10) of the tensor integrals in the one-loop
case). In [169] it is explicitly shown, that the scalar products resulting from this decomposition
are canceled and that all the loop integrals can be expressed in terms of scalar integrals of the
form of (3.16).

Additional relations between the T -integrals exist, which can be used to reduce the number
of occuring integrals. For example all the scalar integrals are invariant under the permutations

k1 ↔ k2, k4 ↔ k5; (3.19a)

k1 ↔ k4, k2 ↔ k5; (3.19b)

k1 ↔ k5, k2 ↔ k4; (3.19c)

which results from the definition in (3.17) and the invariance of the integrals under a shift in
the integration momenta. If one of the five momenta from (3.17) is absent in the loop integrals,
further symmetries can be found. For example, if k1 is absent, then the integral is invariant
under

k2 ↔ k3. (3.20)

Additional relations between the scalar integrals can be derived by integration by parts methods
or partial fractioning (for details see Appendix B).

For self-energies evaluated at vanishing external momentum, the only remaining kinematic
variables from (3.17) are k1, k3 and k4. In this case all the scalar loop integrals appearing in the
Feynman amplitudes after the tensor decomposition, can be expressed in terms of one scalar
two-loop integral

T134

(
m2

1,m
2
2,m

2
3

)
=

∫ ∫
dDq1d

Dq2

(iπ2(2πµ)D−4)2

1

[k2
1 −m2

1] [k2
3 −m2

2] [k2
4 −m2

3]
(3.21)

and products of one-loop integrals A0. For the basis-integral T134 an analytic expression is
known [177, 178]. A compact form can be found in [175], which is repeated in Appendix B for
the sake of completeness.

For the massive two-loop integral with non-vanishing external momentum an analytic ex-
pression is in general not possible [179] and numerical techniques are needed for the evaluation.

3.3 Technical evaluation of higher-order corrections

All needed diagrams and amplitudes are generated with the help of the Mathematica pack-
age FeynArts [130]. The evaluation of the one-loop amplitudes and the calculation of the
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renormalization constants is done with the help of the package FormCalc [180], which is also
employed to generate a Fortran expression of the result. For the numerical evaluation the
program LoopTools [180] is used.

The package TwoCalc [169, 176] is applied to deal with the Lorentz and Dirac algebra of
the two-loop amplitudes and to reduce the tensor integrals to scalar integrals. In the gauge-
less limit the external momenta of all the two-loop diagrams are equal to zero and the result
depends only on the one-loop functions A0 and B0 (see Appendix B.1) and on the two-loop
function T134 (see Appendix B.2).

The calculation cannot be done in a single Mathematica session due to conflicts between
the different packages. Therefore, the intermediate results have to be saved externally and
reloaded in a new session. For the implementation of the two-loop Higgs-mass corrections at
O
(
α2
t

)
in FeynHiggs, this procedure was automated by dividing the calculation into different

working steps which are implemented as shell scripts [181]. These scripts run the Mathemat-
ica Kernel internally as described in [182] and load just the packages required in the specific
step. In addition, a lot of sophisticated techniques were developed, leading to a very compact
Fortran code for the result. The scripts from [181] were used as a template and adapted for
the calculation of the two-loop corrections to the ρ parameter in the THDM. This allows a
repetition of the calculation in different versions of the THDM or different SM extensions in a
fairly straightforward way.

For the evaluation of the one-loop corrections to electroweak precision observables in the
THDM, a Fortran code was developed in [94]. These routines are now supplemented with the
two-loop corrections to the self-energies. For the numerical evaluation of the two-loop integral
T134 we use the Fortran routine encoded in the program FeynHiggs [183, 184].
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Chapter 4

Renormalization

As discussed in the previous chapter, loop integrals lead to divergences in the higher-order
prediction of physical processes. These higher-order contributions modify also the relations
between the theory parameters and the measurable observables. In order to obtain physical
predictions, the original parameters of the Lagrangian, the bare parameters, have to be redefined
in the renormalization of the theory. The renormalized parameters are then finite and can be
related to measurable observables by a set of renormalization conditions.

4.1 Renormalized perturbation theory

In the framework of renormalized perturbation theory, the bare masses m0 and couplings g0 are
divided into the renormalized parameters m and g and the renormalization constants δm and
δg (also called counterterms)

m0 =m+ δm, (4.1)

g0 =g + δg. (4.2)

The divergences from loop corrections to the S-matrix elements are then absorbed by the renor-
malization constants. The radiative corrections modify also the normalization of the external
fields, resulting in UV-divergent Green functions. If the external fields are renormalized, by
expanding the bare fields

φ0 = Z
1/2
φ φ = (1 +

1

2
δZφ)φ, (4.3)

the Green functions are also finite.
In a renormalizable quantum-field-theory, as for example quantum electrodynamics (QED),

only a finite number of counterterms is necessary to cancel all the UV-divergences in the calcula-
tion of physical processes. This is a consequence of the Bogoliubov-Parasiuk-Hepp-Zimmermann
theorem [185–187]. The renormalizability of non-Abelian gauge theories with spontaneous sym-
metry breaking, such as the SM or the THDM, was proven by ’t Hooft in 1971 [188, 189].

The definition of the renormalized parameters is specified in the renormalization scheme.
The divergent parts of the renormalization constants are independent of the renormalization
scheme, since they are required to compensate the divergences from the loop integrals. The
finite part of the counterterms differ in different renormalization schemes, resulting in a renor-
malization scheme dependence of finite-order calculations in perturbation theory. Equivalent
results of physical quantities in different results would only be obtained in an exact (all-order)
calculation. Popular renormalization schemes are:

• the on-shell renormalization scheme, in which the renormalized parameters are equal to
physical parameters in all orders of perturbation theories. For example, the renormalized
masses are identified with the poles of the propagators, which correspond to the physical
masses. Another example is the electric charge, which is defined by the Thomson cross
section in the on-shell renormalization of QED. The extension of the on-shell scheme to
electroweak theories was first proposed by Ross and Taylor [190] and has been used for
many calculations in the SM (see for example [172]). More details are given in Section 4.2.
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• the minimal subtraction scheme (MS-scheme), in which the renormalization constants
contain only divergent parts and the renormalized parameters are defined at the arbit-
rary mass scale µD. In the modified minimal subtraction scheme (MS-scheme) the coun-
terterms absorb also the finite parts log(4π) and γe, which are a by-product of the loop
integrals in dimensional regularization (see Appendix B). The MS-scheme is often used
in the definition of the light quark masses, for which a direct measurement is not possible
due to the strong interaction.

4.2 On-shell renormalization scheme

In this thesis we use the on-shell renormalization scheme, following the conventions from [100,
172]. The renormalized parameters for the gauge bosons and fermions are the particle masses
and the electric charge. The corresponding renormalization conditions together with the field
renormalization are given in Section 4.2.1 for the gauge bosons and in Section 4.2.2 for the
fermions.

The Higgs potential can be renormalized in terms of the original parameters of the potential
and the vacuum expectation values. The resulting counterterms can be traded for tadpole and
mass counterterms, which are fixed by the renormalization conditions given in Section 4.2.3.
More details about the renormalization of the Higgs sector in the THDM can be found in [191–
197].

4.2.1 Renormalization of the gauge-boson sector

The renormalized parameters for the gauge bosons are the masses MW and MZ as well as
the electric charge. The expansion of the bare parameter into renormalized parameters and
counterterms is given at the two-loop order by

e0 = Zee = (1 + δ(1)Ze + δ(2)Ze)e, (4.4)

M2
W,0 = M2

W + δ(1)M2
W + δ(2)M2

W , (4.5)

M2
Z,0 = M2

Z + δ(1)M2
Z + δ(2)M2

Z . (4.6)

The two-loop counterterms are used in Chapter 6 and Chapter 7 to identify the universal
corrections to the precision observables.

Following the conventions from [172] the physical fields W±, Z and γ are renormalized.1

We restrict ourselves to field renormalization at the one-loop order. For the bare field of the W
boson it is given by

W±µ,0 = (ZW )
1/2

W±µ = (1 +
1

2
δ(1)ZW )W±µ . (4.7)

Since the photon and the Z boson carry the same quantum numbers, the two fields mix at
higher orders. In order to define the renormalized fields as mass eigenstates also at the one-
loop order, a matrix-valued field renormalization is introduced. The field renormalization of
the photon and the Z boson at one-loop order is therefore given byZµ,0

Aµ,0

 =

1 + 1
2δ

(1)ZZZ
1
2δ

(1)ZZγ

1
2δ

(1)ZγZ 1 + 1
2δ

(1)Zγγ

Zµ
Aµ

 . (4.8)

The renormalization conditions for the mass and field counterterms are fixed via the renor-
malized one-particle irreducible two-point functions. In the ’t Hooft-Feynman gauge the two-

1Alternatively the Lagrangian can be renormalized in its original, symmetric form, such that one field re-
normalization constant is introduced for the field Bµ and just one renormalization constant for the fields in the
triplet Wa

µ . This minimal field renormalization is used for example in [198].

28



4.2. On-shell renormalization scheme

point vertex functions of the gauge bosons are given by

Γ̂Wµν (p) =− igµν
(
p2 −M2

W

)
− i
(
gµν −

pµpν
p2

)
Σ̂W

(
p2
)
, (4.9)

Γ̂Zµν (p) =− igµν
(
p2 −M2

Z

)
− i
(
gµν −

pµpν
p2

)
Σ̂Z
(
p2
)
, (4.10)

Γ̂γµν (p) =− igµνp2 − i
(
gµν −

pµpν
p2

)
Σ̂γ
(
p2
)
, (4.11)

Γ̂γZµν (p) =− i
(
gµν −

pµpν
p2

)
Σ̂γZ

(
p2
)
, (4.12)

where we kept only the transversal part of the gauge-boson self-energies. The renormalized
self-energies are denoted by Σ̂. At the one-loop order these are related to the unrenormalized
self-energies via

Σ̂
(1)
W

(
p2
)

= Σ
(1)
W

(
p2
)

+ p2δ(1)ZW −M2
W δ

(1)ZW − δ(1)M2
W , (4.13)

Σ̂
(1)
Z

(
p2
)

= Σ
(1)
Z

(
p2
)

+ p2δ(1)ZZZ −M2
Zδ

(1)ZZZ − δ(1)M2
Z , (4.14)

Σ̂(1)
γ

(
p2
)

= Σ(1)
γ

(
p2
)

+ p2δ(1)Zγγ , (4.15)

Σ̂
(1)
γZ

(
p2
)

= Σ
(1)
γZ

(
p2
)

+ p2 1

2

(
δ(1)ZγZ + δ(1)ZZγ

)
−M2

Z

1

2
δ(1)ZZγ . (4.16)

where the number i in the parentheses of a self-energy Σ(i) indicates the loop order. In the on-
shell scheme the renormalized masses are identified with the physical masses. For the W boson,
the physical mass at one-loop order is equivalent to the pole of the real part of the propagators,
which correspond to the zero of the one-particle irreducible two-point functions. In order to use
this on-shell mass renormalization also for the Z boson, diagonal two-point functions for on-
shell photons or Z bosons are defined with the help of the matrix-valued field renormalization.
This fixes the off-diagonal element of the field renormalization matrix. The diagonal elements
(and the field counterterm of the W boson) are determined by the condition that the residues of
the renormalized propagators are equal to one and no external wave function corrections need
to be considered. The resulting one-loop renormalization conditions are

Re Σ̂
(1)
W

(
M2
W

)
= 0;

Re Σ̂
(1)
Z

(
M2
Z

)
= 0; Re Σ̂(1)

γ (0) = 0;

Re Σ̂
(1)
γZ (0) = 0; Re Σ̂

(1)
γZ

(
M2
Z

)
= 0;

Re
∂Σ̂

(1)
W

(
p2
)

∂p2

∣∣∣∣∣
p2=M2

W

= 0;

Re
∂Σ̂

(1)
Z

(
p2
)

∂p2

∣∣∣∣∣
p2=M2

Z

= 0; Re
∂Σ̂

(1)
γ

(
p2
)

∂p2

∣∣∣∣∣
p2=0

= 0.

(4.17)

The condition that the photon self-energy vanishes for zero external momentum is automatic-
ally fulfilled due to a Ward identity. The remaining conditions determine the one-loop mass
counterterms

δ(1)M2
W = Re Σ

(1)
W

(
M2
W

)
, δ(1)M2

Z = Re Σ
(1)
Z

(
M2
Z

)
, (4.18)

and field renormalization constants

δ(1)ZW = −Re
∂Σ

(1)
W

(
p2
)

∂p2

∣∣∣∣∣
p2=M2

W

,

δ(1)ZZZ = −Re
∂Σ

(1)
Z

(
p2
)

∂p2

∣∣∣∣∣
p2=M2

Z

, δ(1)Zγγ = −Re
∂Σ

(1)
γ

(
p2
)

∂p2

∣∣∣∣∣
p2=0

,

δ(1)ZγZ = −2
Re Σ

(1)
γZ

(
M2
Z

)
M2
Z

, δ(1)ZZγ = 2
Σ

(1)
γZ (0)

M2
Z

.

(4.19)
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For the renormalization of the electric charge the eeγ vertex is used. The renormalized
electric charge is defined as the coupling of the electron to the photon for on-shell external
particles and vanishing photon momentum. Due to the gauge-boson field renormalization, no
photon-Z-mixing or external wave-function corrections have to be considered. The counterterm
of the electric charge has to absorb the additional vertex corrections. The resulting expression
can be simplified by a generalization of the QED Ward identity. At one-loop order this results
in the counterterm2

δ(1)Ze = −1

2
δ(1)Zγγ −

sW
cW

1

2
δ(1)ZγZ =

1

2
Π(1)
γ (0) +

sW
cW

Σ
(1)
γZ (0)

M2
Z

(4.20)

where

Π(1)
γ (0) =

∂Σ
(1)
γ

(
p2
)

∂p2

∣∣∣∣∣
p2=0

(4.21)

denotes the one-loop photon vacuum polarization

Π(1)
γ

(
p2
)

=
Σ

(1)
γ

(
p2
)

p2
(4.22)

for vanishing momentum. The contribution to the photon vacuum polarization from the light
fermions does not depend on the details of the electroweak theory and gives a dominant, uni-
versal correction to many precision observables (see the discussion in Chapter 6).

In the on-shell scheme, the relation between the weak mixing angle and the gauge-boson
masses,

s2
W = 1− M2

W

M2
Z

(4.23)

is valid to all orders of perturbation theory. The bare parameters are related via

s2
W,0 = 1− c2W,0 = 1−

M2
W,0

M2
Z,0

. (4.24)

Inserting the bare masses from (4.5) and (4.6) and expanding the ratio up to the one-loop order
leads to the counterterm

δ(1)s2
W

s2
W

= − c
2
W

s2
W

δ(1)c2W
c2W

=
c2W
s2
W

(
δ(1)M2

Z

M2
Z

− δ(1)M2
W

M2
W

)
. (4.25)

The definition of the renormalized mass as the pole of the real part of the propagators results
in a gauge-dependent mass parameter at the two-loop order, since the W and the Z boson are
unstable particles [199]. For a gauge-independent definition at the two-loop order, the masses
of the W and the Z boson have to be defined according to the real part of the complex pole
of the propagator (see [100] and references therein). For the two-loop mass counterterms this
definition yields

δ(2)M2
W = Re Σ

(2)
W

(
M2
W

)
− δ(1)M2

W δ
(1)ZW + Im Σ

(1)′
W

(
M2
W

)
Im Σ

(1)
W

(
M2
W

)
, (4.26)

δ(2)M2
Z = Re Σ

(2)
Z

(
M2
Z

)
− δ(1)M2

Zδ
(1)ZZZ +

M2
Z

4

(
δ(1)ZγZ

)2

+

(
Im Σ

(1)
γZ

(
M2
Z

))2

M2
Z

+ Im Σ
(1)′
Z

(
M2
Z

)
Im Σ

(1)
Z

(
M2
Z

)
, (4.27)

where Σ
(1)′
V

(
k2
)

denotes the derivative of the self-energy with respect to k2. In the mass-
definition according to the pole of the real part of the propagator the terms with the imaginary
part of the one-loop self-energies are absent.

The two-loop self-energy contains also contributions from the subloop renormalization.
These are one-loop diagrams which contain one-loop counterterms in a vertex or in a pro-
pagator. For the discussion of the two-loop corrections to electroweak precision observables in

2More details can be found for example in [172].
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4.2. On-shell renormalization scheme
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Figure 4.1: Generic diagrams of the gauge-boson self-energies with vertex counterterm insertions
for internal scalars or fermions.

Chapter 6 and Chapter 7 it will be useful to describe them in more detail. The field coun-
terterms of the internal particles drop out in the final result. The remaining contribution of
the subloop renormalization can be divided into the part with the mass counterterms of the
internal particles and the remaining renormalization constants from the counterterm insertions
in the vertices. For self-energies which contain only internal scalars or fermions, the diagrams
with vertex counterterm insertions are depicted in Figure 4.1. The contributions from these
diagrams can be rewritten in a universal way as products of one-loop counterterms and self-
energies. With the vertex counterterms given in Appendix A, the gauge-boson self-energies
which contain only scalars or fermions as internal particles can be decomposed as follows,

Σ
(2)
W

(
p2
)

=

(
2δ(1)Ze −

δ(1)s2
W

s2
W

+ δ(1)ZW

)
Σ

(1)
W

(
p2
)

+ Σ̃
(2)
W

(
p2
)
, (4.28)

Σ
(2)
Z

(
p2
)

=

(
2δ(1)Ze −

c2W − s2
W

c2W

δ(1)s2
W

s2
W

+ δ(1)ZZZ

)
Σ

(1)
Z

(
p2
)

+

(
δ(1)ZγZ − 2

sW
cW

δ(1)s2
W

s2
W

)
Σ

(1)
γZ

(
p2
)

+ Σ̃
(2)
Z

(
p2
)
, (4.29)

Σ(2)
γ

(
p2
)

=
(

2δ(1)Ze + δ(1)Zγγ

)
Σ(1)
γ

(
p2
)

+ δ(1)ZZγΣ
(1)
γZ

(
p2
)

+ Σ̃(2)
γ

(
p2
)
, (4.30)

Σ
(2)
γZ

(
p2
)

=

(
2δ(1)Ze +

1

2
δ(1)ZZZ +

1

2
δ(1)Zγγ −

1

2

c2W − s2
W

c2W

δ(1)s2
W

s2
W

)
Σ

(1)
γZ

(
p2
)

+

(
1

2
δ(1)ZγZ −

sW
cW

δ(1)s2
W

s2
W

)
Σ(1)
γ

(
p2
)

+
1

2
δ(1)ZZγΣ

(1)
Z

(
p2
)

+ Σ̃
(2)
γZ

(
p2
)
. (4.31)

The contribution of the genuine two-loop diagrams and the part of the subloop renormali-

zation from the mass counterterms of the internal particles are contained in Σ̃
(2)
V

(
p2
)

with
V = W,Z, γ, γZ.

The term in (4.28) which is proportional to the one-loop self-energy of the W boson can be
understood by looking at the vertex counterterms given in Appendix A. The vertex counterterms
with the W boson contain the field counterterm δ(1)ZW from the expansion of the bare field
and the counterterms following from the expansion

g2,0 =
e0

sW,0
=

e

sW

(
1 + δ(1)Ze −

1

2

δ(1)s2
W

s2
W

)
. (4.32)

of the bare gauge coupling. The corresponding parts in the vertex counterterms are directly
proportional to the tree-level coupling and lead therefore to the first term in (4.28).

The decompositions of the photon and the Z boson self-energy are more complicated due
to the photon-Z-mixing. For a better understanding we write the bare covariant derivative of
a generic field φ (which corresponds to the internal scalar or fermion) as

Dµφ = · · ·+ i
e0

sW,0cW,0

(
I3
φ − s2

W,0Qφ
)
Zµ0 φ0 + ie0QφA

µ
0φ0 + . . . . (4.33)

Expanding the bare parameters up to the first order leads to the following part in the coun-
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4. Renormalization

terterm Lagrangian

i
e

sW cW

(
I3
φ − s2

WQφ
)(

δ(1)Ze +
1

2
δ(1)ZZZ −

1

2

c2W − s2
W

c2W

δ(1)s2
W

s2
W

)
Zµφ

+ ieQφ

(
1

2
δ(1)ZγZ −

sW
cW

δ(1)s2
W

s2
W

)
Zµφ

+ ieQφ

(
δ(1)Ze +

1

2
δ(1)Zγγ

)
Aµφ+ i

e

sW cW

(
I3
φ − s2

WQφ
) 1

2
δ(1)ZZγAµφ. (4.34)

We see that the counterterm vertex of the Z boson has one part which is proportional to the
electric coupling to the photon and the vertex counterterm from the photon receives a part
which is proportional to the tree-level coupling to the Z boson. This explains the terms in the
subloop renormalization which contains the photon-Z-mixing at the one-loop order.

Inserting the decompositions (4.28) and (4.29) into the two-loop renormalization condition
in (4.26) and (4.27) leads to the following parts in the two-loop mass counterterms of the gauge
bosons,

δ(2)M2
W =

(
2δ(1)Ze −

δ(1)s2
W

s2
W

)
δ(1)M2

W + Im Σ
(1)′
W

(
M2
W

)
Im Σ

(1)
W

(
M2
W

)
+ . . . (4.35)

δ(2)M2
Z =

(
2δ(1)Ze −

c2W − s2
W

c2W

δ(1)s2
W

s2
W

)
δ(1)M2

Z +
M2
Z

2

sW
cW

δ(1)s2
W

s2
W

δ(1)ZγZ −
M2
Z

4

(
δ(1)ZγZ

)2

+

(
Im Σ

(1)
γZ

(
M2
Z

))2

M2
Z

+ Im Σ
(1)′
Z

(
M2
Z

)
Im Σ

(1)
Z

(
M2
Z

)
+ . . . . (4.36)

For the two-loop counterterm of s2
W , the expansion of the ratio of the bare masses in (4.24)

up to two-loop order results in

δ(2)s2
W

s2
W

=− c2W
s2
W

δ(2)c2W
c2W

=
c2W
s2
W

(
−δ

(1)M2
Z

M2
Z

(
δ(1)M2

Z

M2
Z

− δ(1)M2
W

M2
W

)
+

(
δ(2)M2

Z

M2
Z

− δ(2)M2
W

M2
W

))
. (4.37)

For the two-loop renormalization of the electric charge, the generalization of the QED Ward
identity at the two-loop order gives [100]

δ(2)Ze =− 1

2
δ(2)Zγγ −

1

2

sW
cW

δ(2)ZZγ +
(
δ(1)Ze

)2

+
1

8

(
δ(1)Zγγ

)2

− 1

4

sW
c3W

δ(1)ZZγ
δ(1)s2

W

s2
W

.

(4.38)

Analogous to the one-loop renormalization condition, the two-loop field counterterm of the
photon is given by

δ(2)Zγγ = −Re
∂Σ

(2)
γ

(
p2
)

∂p2

∣∣∣∣∣
p2=0

. (4.39)

4.2.2 Renormalization of the fermion sector

The renormalization of the fermion masses and fields are needed up to the one-loop order. The
expansion of the bare masses gives

mf,0 = mf + δ(1)mf . (4.40)

Independent field renormalization constants are introduced for the left- and right-handed fer-
mion fields. The CKM matrix is approximated by the unity matrix, since the off-diagonal
elements of the CKM matrix have a negligible influence on the calculations in this thesis.
Therefore, no mixing between different fermion generations has to be considered and the field
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4.2. On-shell renormalization scheme

renormalization up to the one-loop order is given by

fL0 =
(
ZLf
)1/2

fLi =

(
1 +

1

2
δ(1)ZLf

)
fL, (4.41)

fR0 =
(
ZRf
)1/2

fRi =

(
1 +

1

2
δ(1)ZRf

)
fR. (4.42)

With the decomposition of the fermion self-energy

Σf
(
p2
)

= /pω−ΣLf
(
p2
)

+ /pω+ΣRf
(
p2
)

+mfΣSf
(
p2
)
, (4.43)

the two-point vertex function can be written as

Γ̂f (p) = i
(
/p−mf

)
+ i
[
/pω−Σ̂Lf

(
p2
)

+ /pω+Σ̂Rf
(
p2
)

+mf (ω− + ω+) Σ̂Sf
(
p2
)]
. (4.44)

The renormalized self-energy is related to the unrenormalized self-energy by

Σ̂Lf
(
p2
)

= ΣLf
(
p2
)

+ δ(1)ZLf , (4.45)

Σ̂Rf
(
p2
)

= ΣRf
(
p2
)

+ δ(1)ZRf , (4.46)

Σ̂Sf
(
p2
)

= ΣSf
(
p2
)
− 1

2

(
δ(1)ZLf + δ(1)ZRf

)
− δ(1)mf

mf
. (4.47)

The renormalization constants are again fixed by the conditions that the renormalized mass
is equal to the real part of the pole of the renormalized propagator and that the residues of
the renormalized propagators are equal to one. These renormalization conditions yield for the
different components of the renormalized self-energy

mf

[
Re Σ̂Lf

(
m2
f

)
+ Re Σ̂Sf

(
m2
f

)]
= 0, (4.48)

mf

[
Re Σ̂Rf

(
m2
f

)
+ Re Σ̂Sf

(
m2
f

)]
= 0, (4.49)

Re Σ̂Lf
(
m2
f

)
+m2

f

∂

∂p2
Re
[
ΣLf
(
p2
)

+ ΣRf
(
p2
)

+ 2ΣSf
(
p2
)] ∣∣∣

p2=m2
f

= 0, (4.50)

Re Σ̂Rf
(
m2
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)
+m2

f

∂

∂p2
Re
[
ΣLf
(
p2
)

+ ΣRf
(
p2
)

+ 2ΣSf
(
p2
)] ∣∣∣

p2=m2
f

= 0. (4.51)

The resulting fermion mass counterterm and field renormalization constants are

δ(1)mf =
1

2
mf

[
Re ΣLf

(
m2
f

)
+ Re ΣRf

(
m2
f

)
+ 2 Re ΣSf

(
m2
f

)]
, (4.52)

δ(1)ZLf = −Re ΣLf
(
m2
f

)
−m2

f

∂

∂p2
Re
[
ΣLf
(
p2
)

+ ΣRf
(
p2
)

+ 2ΣSf
(
p2
)] ∣∣∣

p2=m2
f

, (4.53)

δ(1)ZRf = −Re ΣRf
(
m2
f

)
−m2

f

∂

∂p2
Re
[
ΣLf
(
p2
)

+ ΣRf
(
p2
)

+ 2ΣSf
(
p2
)] ∣∣∣

p2=m2
f

. (4.54)

4.2.3 Renormalization of the Higgs sector

Most of the counterterm vertices of the Higgs sector have been implemented in the FeynArts

modelfile of the THDM as part of this work and are now available for further calculations.
In order to provide an overview, the renormalization of the Higgs sector is discussed here in
more detail, although the renormalization of the Higgs masses is in principle sufficient for the
calculations of this thesis.

The Higgs sector can be renormalized by introducing counterterms

m2
ii,0 = m2

ii + δm2
ii, (i = 1, 2), (4.55a)

m2
12,0 = m2

12 + δm2
12, (4.55b)

Λi,0 = Λi + δΛi, (i = 1, . . . , 7), (4.55c)
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4. Renormalization

for the original potential parameters. Following [192, 200] the fields are renormalized by intro-
ducing field renormalization constants ZΦi for the two doublets Φi, resulting in bare doublets

Φi,0 =
√
ZΦi

 φ+
i

1√
2

(vi + δvi + ηi + iχi)

 ; i = 1, 2. (4.56)

In addition to the field renormalization the counterterms δvi (i = 1, 2) are introduced. These
counterterms cancel radiative corrections in the minimum of the Higgs potential, such that
the renormalized vacuum expectation values are the actual minimum of the effective potential.
This condition is equivalent to the requirement that the renormalized tadpoles vanish. With
the additional counterterms the renormalized tβ is defined by the ratio√

ZΦ2

ZΦ1

v2 + δv2

v1 + δv1
= tβ,0 = tβ + δtβ . (4.57)

Expanding the bare vacuum expectation values results in

δtβ
tβ

=
δv2

v2
− δv1

v1
+

1

2
(δZΦ2

− δZΦ1
) . (4.58)

Imposing the renormalization condition [192, 200–202]

δv1

v1
=
δv2

v2
(4.59)

leads to
δtβ
tβ

=
1

2
(δZΦ2

− δZΦ1
) . (4.60)

In an analogous manner to (2.22) the bare potential can be decomposed in the linear and
quadratic terms

V0 =− T1,0η1,0 − T2,0η2,0 +
(
φ−1,0 φ−2,0

)
M̃φ

0

φ+
1,0

φ+
2,0


+

1

2

(
χ1,0 χ2,0

)
M̃χ

0

χ1,0

χ2,0

+
1

2

(
η1,0 η2,0

)
M̃η

0

η1,0

η2,0

+ . . . . (4.61)

with the bare field components

ηi,0 = (1 +
1

2
δZΦi)ηi, (4.62a)

χi,0 = (1 +
1

2
δZΦi)χi, (4.62b)

φ±i,0 = (1 +
1

2
δZΦi)φ

±
i . (4.62c)

The bare tadpoles and mass matrices are obtained by replacing the parameters in the corres-
ponding expressions in Section 2.2 with the bare counterparts. Expanding the bare parameters
and fields in (4.61) results in the counterterm potential in the original fields with

Ti,0 = Ti + δTi, (i = 1, 2) (4.63)

M̃X
0 = M̃X + δM̃X , (X = φ, χ, η). (4.64)

However, the potential expressed in the mass-eigenstates and physical parameters is more suit-
able for the definition of on-shell renormalization conditions. In the following part, the mixing
angles in (2.51) are defined to diagonalize the tree-level mass matrices MX (X = φ, η, χ),
resulting in (2.42) for the CP -even angle α and in

β = βn = βc (4.65)
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4.2. On-shell renormalization scheme

where β is defined via the ratio of the renormalized vacuum expectation values, according to
(4.57). Applying the rotations on the bare fields givesG±0

H±0

 = R (β)

φ±1,0
φ±2,0

 =

1 + 1
2δZG±

1
2δZG±H±

1
2δZG±H± 1 + 1

2δZH±

G±
H±

 , (4.66)

G0
0

A0
0

 = R (β)

χ1,0

χ2,0

 =

1 + 1
2δZG0

1
2δZA0G0

1
2δZA0G0 1 + 1

2δZA0

G0

A0

 , (4.67)

H0
0

h0
0

 = R (α)

η1,0

η2,0

 =

1 + 1
2δZH0

1
2δZh0H0

1
2δZh0H0 1 + 1

2δZh0

H0

h0

 , (4.68)

with

δZh0 = s2
αδZΦ1

+ c2αδZΦ2
, (4.69)

δZH0 = c2αδZΦ1
+ s2

αδZΦ2
, (4.70)

δZA0 = δZH± = s2
βδZΦ1

+ c2βδZΦ2
, (4.71)

δZG0 = δZG± = c2βδZΦ1
+ s2

βδZΦ1
, (4.72)

δZh0H0 = sαcα
(
δZΦ2

− δZΦ1

)
, (4.73)

δZA0G0 = δZH±G± = sβcβ
(
δZΦ2

− δZΦ1

)
, (4.74)

as the field renormalization of the mass eigenstates.

The counterterms of the original parameters can be related to counterterms of the tadpoles
and the physical masses. The expansion of the bare tadpoles in (4.61) gives

− δT1η1 − δT2η2 = −δThh0 − δTHH0 (4.75)

with

δTh =cαδT2 − sαδT1, (4.76a)

δTH =cαδT1 + sαδT2, (4.76b)

as tadpole-counterterms for the states h0 and H0. The counterterm expansion in the quadratic
terms gives

1

2

(
η1 η2

)
δM̃η

η1
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1

2

(
H0 h0

) δm2
H0 δm2

h0H0

δm2
h0H0 δm2

h0

H0

h0

 , (4.77)

1

2

(
χ1 χ2

)
δM̃χ

χ1

χ2

 =
1

2

(
G0 A0

) δm2
G0 δm2

A0G0

δm2
A0G0 δm2

A0

G0

A0

 , (4.78)

(
φ−1 φ−2

)
δM̃φ

φ+
1

φ+
2

 =
1

2

(
G− H−

) δm2
G± δm2

G±H±

δm2
G±H± δm2

H±

G+

H+

 , (4.79)

as counterterms in the mass eigenstate basis. In addition to the mass counterterms on the
diagonal entries, mixing counterterms are obtained in the off-diagonal elements. This is a
consequence of the definition of the mixing angles via the diagonalization of the tree-level mass
matrix. A diagonal mass matrix at higher-orders can be obtained by introducing additional
counterterms for the mixing angles, which remove the off-diagonal counterterms. A detailed
discussion can be found for example in [197]. In the following the mass counterterms δm2

S

(S = h0, H0, A0, H±) and the mixing counterterm δmh0H0 are kept as free renormalization
constant. The remaining mixing counterterms and the mass counterterms of the Goldstone-
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bosons are related to the tadpole counterterms and δtβ by

δmG0 = −cα−β
δTH
v

+ sα−β
δTh
v
, (4.80)

δmA0G0 = −m2
A0c2βδtβ − cα−β

δTh
v
− sα−β

δTH
v
, (4.81)

δmG± = −cα−β
δTH
v

+ sα−β
δTh
v
, (4.82)

δmG±H± = −m2
H±c2βδtβ − cα−β

δTh
v
− sα−β

δTH
v
. (4.83)

These relations can also be derived from the tree-level expressions of the Goldstone-masses in
(2.55) and (2.58) and the mixing-terms in (2.57) and (2.60), if the bare tadpoles

Th,0 = Th + δTh, (4.84)

TH,0 = TH + δTH , (4.85)

are introduced and β is replaced by the bare angle β0 defined in (4.57). The expansion of the
bare parameters results then in the counterterms as stated above. Note that the angles βn
and βc, which originate only from the rotation to the mass-eigenstates receive no additional
counterterm.

The renormalized tadpoles

T̂H = T
(1)
H + δTH , (4.86)

T̂h = T
(1)
h + δTh, (4.87)

contain the counterterms δTh,H together with the sum of the respective one-loop tadpole graphs,

denoted by T
(1)
h,H . The tadpole counterterms are fixed by the conditions, that the renormalized

tadpoles vanish, resulting in

δTh = −T (1)
h , (4.88)

δTH = −T (1)
H . (4.89)

These renormalization conditions fix also the mass counterterms of the Goldstone bosons.
Moreover, they have the advantage, that Feynman diagrams with tadpoles as subgraphs can be
discarded in higher-order calculations.

The renormalized one-particle irreducible two-point functions for the scalars are

Γ̂ab
(
p2
)

= iδab
(
p2 −m2

a

)
+ iΣ̂

(1)
ab

(
p2
)

(4.90)

with a, b = h0, H0, A0, G0, H±, G±. The renormalized diagonal self-energies are

Σ̂
(1)
h0

(
p2
)

= Σ
(1)
h0

(
p2
)
− δm2

h0 +
(
p2 −m2

h0

)
δZh0 , (4.91)

Σ̂
(1)
H0

(
p2
)

= Σ
(1)
H0

(
p2
)
− δm2

H0 +
(
p2 −m2

H0

)
δZH0 , (4.92)

Σ̂
(1)
A0

(
p2
)

= Σ
(1)
A0

(
p2
)
− δm2

A0 +
(
p2 −m2

A0

)
δZA0 , (4.93)

Σ̂
(1)
H±

(
p2
)

= Σ
(1)
H±

(
p2
)
− δm2

H± +
(
p2 −m2

H±

)
δZH± , (4.94)

Σ̂
(1)
G0

(
p2
)

= Σ
(1)
G0

(
p2
)
− δm2

G0 + p2δZG0 , (4.95)

Σ̂
(1)
G±

(
p2
)

= Σ
(1)
G±

(
p2
)
− δm2

G± + p2δZG± . (4.96)

The renormalized mixing self-energies are

Σ̂
(1)
h0H0

(
p2
)

= Σ
(1)
h0H0

(
p2
)
− δm2

h0H0 +

(
p2 − 1

2

(
m2
h0 +m2

H0

))
δZh0H0 , (4.97)

Σ̂
(1)
A0G0

(
p2
)

= Σ
(1)
A0G0

(
p2
)
− δm2

A0G0 +

(
p2 − 1

2
m2
A0

)
δZA0G0 , (4.98)

Σ̂
(1)
H±G±

(
p2
)

= Σ
(1)
H±G±

(
p2
)
− δm2

H±G± +

(
p2 − 1

2
m2
H±

)
δZH±G± . (4.99)
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4.2. On-shell renormalization scheme

The renormalized masses are identified again with the zeros of the renormalized two-point
functions, such that

Re Σ̂
(1)
S

(
m2
S

)
= 0, (S = h0, H0, A0, H±). (4.100)

The corresponding conditions for the mass counterterms reads

δm2
S = Re ΣS

(
m2
S

)
, (S = h0, H0, A0, H±). (4.101)

These renormalization conditions are sufficient to obtain finite results in Chapter 5. The field re-
normalization constants drop out, since the scalars appear only as internal particles. Moreover,
no mass-mixing counterterms are needed due to the alignment limit.

The renormalization of the Yukawa interaction and the kinetic part of the Higgs-Lagrangian
results in the counterterm vertices of the scalars with the gauge bosons or fermions. The bare
vacuum expectation values are related to the bare gauge-boson masses and the bare electric
charge via

v2
0 = v2

1,0 + v2
2,0 =

4M2
W,0s

2
W,0

e2
0

. (4.102)

Expanding the bare parameters leads to

v2
0 = v2 + δv2 (4.103)

with
δv2

v2
= −2δ(1)Ze +

δ(1)M2
W

M2
W

+
δ(1)s2

W

s2
W

. (4.104)

Reexpressing v1,0 and v2,0 in terms of

v1,0 = v0cβ,0 (4.105)

v2,0 = v0sβ,0 (4.106)

with

cβ,0 = cβ − sβc2βδtβ (4.107)

sβ,0 = sβ − c3βδtβ (4.108)

gives the renormalized kinetic Higgs-Lagrangian expressed in the renormalized parameters MW ,
sW , e and tβ . In a similar manner, the renormalized Yukawa-interaction is expressed in terms
of the renormalized fermion masses mf and MW , sW , e and tβ . The resulting counterterm
vertices are stated in Appendix A.

The vertex counterterms for the interaction of the scalars with the gauge bosons or fermions
were implemented in the FeynArts modelfile for the THDM of type-I and type-II and UV-
finiteness was tested for all the vertices. In addition also the counterterm vertices of the triple
scalar interaction for the THDM with a softly broken Z2 symmetry were implemented and
tested. For the test of the UV-finiteness the renormalization conditions for δm2

h0H0 and the
scalar field counterterms δZΦi were taken from [192].3

3The vertices between three scalars contain an additional counterterm for the parameter λ5. For the test
of UV-finiteness this counterterm was fixed as the divergent part from the one-loop correction to the vertex
between three h0.
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Chapter 5

The ρ parameter in the THDM

The dominant process-independent higher-order contributions to many precision observables
can be identified with the loop corrections to the so-called ρ parameter. The ρ parameter
is defined in the effective four-fermion interaction at low-energies as the ratio between the
strengths of the charged and neutral currents (see Section 5.2). In electroweak theories these
currents are mediated by the exchange of massive gauge bosons. The SM and its extensions
by an additional number of scalar doublets fulfill the relation ρ = 1 at the tree-level, due to an
global custodial symmetry of the kinetic part of the scalar Lagrangian. This is in accordance
with electroweak precision measurements which allow only small deviations of the ρ parameter
from unity. Such deviations from higher-order corrections, named ∆ρ, originate from terms
in the Lagrangian that break the custodial symmetry. For example, in the SM the Yukawa-
interaction leads to a correction which is quadratic in the top mass [21–23]. In the THDM the
custodial symmetry is in general broken by the Higgs potential, resulting in large corrections
for large mass differences between charged and neutral scalars [85–88, 91, 131].

5.1 Custodial symmetry in the SM and the THDM

The Higgs potential in the SM has a global SU(2)L × SU(2)R symmetry. The non-vanishing
vacuum expectation value of the Higgs field breaks this symmetry to a remaining SU(2)L+R

symmetry, the custodial symmetry, which is responsible for the tree-level value of the ρ para-
meter [18–20]. Since the Higgs potential in the SM respects the custodial symmetry, the ρ
parameter is protected from radiative corrections quadratic in the Higgs mass. In the gauge
interaction the custodial symmetry is only approximate since it is broken by the hypercharge
coupling g1. Moreover, the custodial symmetry is broken by the Yukawa interaction which leads
to large corrections to the ρ parameter for large mass differences between quarks in the same
doublet [21–23]. A detailed review can be found for example in [203].

5.1.1 Custodial symmetry in the SM

As already mentioned, the custodial symmetry is a global symmetry of the potential

VSM (Φ) = −µ2Φ†Φ + λ
(
Φ†Φ

)2
, (5.1)

with the complex doublet

Φ =

φ+

φ0

 . (5.2)

To make the symmetry apparent, it is useful to introduce the complex matrix field

M =
(

Φ̃|Φ
)

=

 φ0∗ φ+

−φ− φ0

 (5.3)
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5. The ρ parameter in the THDM

where

Φ̃ = iσ2Φ∗ =

 0 1

−1 0

φ−
φ0∗

 . (5.4)

With this matrix field the potential can be expressed by

VSM (M) = −µ2 1

2
TrM†M+ λ

(
1

2
TrM†M

)2

. (5.5)

In addition to the global version of the SU(2)L gauge symmetry, which transformsM according
to

M→ LM (5.6)

the potential is also invariant for SU(2)R transformations of the form

M→MR†. (5.7)

While after electroweak symmetry breaking the vacuum expectation value

〈M〉 =
1

2

v 0

0 v

 (5.8)

breaks both symmetries
L〈M〉 6= 〈M〉; 〈M〉R† 6= 〈M〉, (5.9)

the potential is still invariant under the subgroup SU(2)L+R of simultaneous SU(2)L and
SU(2)R transformations with L = R, since

L〈M〉L† = 〈M〉. (5.10)

This remaining SU(2)L+R is called the custodial symmetry.
However the custodial symmetry is not an exact symmetry of the SM. It is broken by the

hypercharge coupling g1 in the kinetic term of the Higgs Lagrangian which can be written with
the matrix field M as

1

2
Tr (DµM)

†
(DµM) (5.11)

with the covariant derivative

DµM =
(
∂µM+ i

g2

2
~σ · ~WµM− i

g1

2
BµMσ3

)
. (5.12)

When neglecting g1 the kinetic term is invariant under the custodial symmetry since ~Wµ trans-
forms as a triplet under the global SU(2)L,

~σ · ~Wµ → L~σ · ~WµL
†, (5.13)

which corresponds to a rotation of the triplet fields W a
µ (a = 1, 2, 3). Since in addition the

vacuum expectation value 〈M〉 is invariant under the custodial symmetry, the masses of the
gauge bosons fulfill the relation

M2
W

M2
Zc

2
W

= 1, (5.14)

which is equivalent to the tree-level value of the ρ-parameter, as will be shown in Section 5.2.
The custodial symmetry in the SM is also broken by the Yukawa interaction. For simplicity

we will consider only one quark family with a left handed doublet

QL =

uL
dL

 (5.15)

and right handed singlets
uR, dR. (5.16)
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5.1. Custodial symmetry in the SM and the THDM

In this case the Yukawa interaction is given by

LY = −yuQLΦ̃uR − ydQLΦdR + h.c. (5.17)

with the Yukawa couplings yq. Inserting the vacuum expectation value leads to

LY = −muuLuR −mddLdR + h.c., (5.18)

with the quark masses

mq = yq
v√
2
. (5.19)

For
yu = yd ≡ y (5.20)

we can write
LY = −yQLMQR + h.c. (5.21)

with

QR =

uR
dR

 . (5.22)

The Yukawa interaction is then invariant under the SU(2)L × SU(2)R and the quark doublets
transform as

QL → LQL, QR → RQR. (5.23)

Therefore the custodial symmetry is broken by mass differences of two quarks belonging to the
same doublet. For example the mass difference between the top- and the bottom quark leads
to an important correction to the ρ parameter, which is quadratic in the top mass.

5.1.2 Custodial symmetry in the THDM potential

A scalar potential with two doublets contains additional terms which can violate the custodial
symmetry. A lot of work has been dedicated to investigations of how the custodial symmetry
can be restored in the THDM [204–209], since there are several possibilities to implement the
SU(2)L × SU(2)R transformations for two doublets. One way is to introduce matrix fields

Mi =
(

Φ̃i|Φi
)

; i = 1, 2, (5.24)

similar to (5.3) with the two original doublets in (2.15). These matrices transform under the
SU(2)L × SU(2)R as

Mi → LMiR
†. (5.25)

and the potential is then custodial invariant for mH± = mA0 [204, 205]. A different imple-
mentation of the custodial transformations was found in [205, 206] by introducing the matrix
field

M21 =
(

Φ̃2|Φ1

)
(5.26)

which transforms as
M21 → LMR† (5.27)

under the SU(2)L × SU(2)R. For an unbroken SU(2)L+R after electroweak symmetry break-
ing, the vacuum expectation values have to fulfill v1 = v2. An invariant potential under this
custodial transformation requires mH± = mH0 . However, as shown by [207–209] these different
implementations of the SU(2)L × SU(2)R transformations are dependent on the selected basis
of the two doublets and are related by a basis transformation of the form (2.17).

We will demonstrate how the custodial symmetry can be imposed in the alignment limit on
the potential for the basis of ΦSM and ΦNS as defined in (2.94) and (2.95). This choice of basis
corresponds to the so-called Higgs basis as defined for example in [128, 210] in which only one
of the doublets has a non-vanishing vacuum expectation value in its neutral component. Note
that the definition of the Higgs basis is only specified up to a rephasing of the second doublet.
As explained in [208], the matrix fields

MSM =
(

Φ̃SM|ΦSM

)
(5.28)
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5. The ρ parameter in the THDM

and
MNS =

(
Φ̃NS|ΦNS

)
(5.29)

are the only two possible definitions that preserve the custodial SU(2)L+R after electroweak
symmetry breaking. Following [206, 208] the transformations under the SU(2)L × SU(2)R are
written as

MSM → LMSMR
†, MNS → LMNSR

′†, (5.30)

with L ∈ SU(2)L and R,R′ ∈ SU(2)R. Since both doublets transform in the same way under
the weak SU(2)L gauge transformations, they have the same transformation matrix L in (5.30).
The same requirement does not hold for transformations under SU(2)R. As explained in [206,
208, 209], the matrices R and R′ are only related by the fact that the doublets ΦSM and ΦNS

have the same hypercharge and that the U(1)Y is a subgroup of the SU(2)R. When writing
R = exp (iθnaT aR) in terms of an unit vector na and the generators T aR = σa/2 (a = 1, 2, 3), the
hypercharge operator for the matrix fields is

Y = diag(−1, 1) = 2T 3
R. (5.31)

In order to obtain the same hypercharge transformations for MSM and MNS the matrices R
and R′ are related by

R = X−1R′X, (5.32)

with
X exp (iθY )X−1 = exp (iθY ). (5.33)

This requires the matrix X to have the form

X =

e−iχ 0

0 eiχ

 , 0 ≤ χ ≤ 2π. (5.34)

A scalar potential is invariant under the transformations in (5.30) if it contains only the invariant
combinations

TrM†SMMSM = 2Φ†SMΦSM, (5.35)

TrM†NSMNS = 2Φ†NSΦNS, (5.36)

and
TrM†SMMNSX = e−iχΦ†NSΦSM + eiχΦ†SMΦNS. (5.37)

The parts VI and VII of the potential in (2.99) are clearly custodial invariant. The parts VIII

and VIV are in general not invariant under the transformations in (5.30). In order to restore
the custodial symmetry the parameters have to be adjusted depending on the value of χ. For
a CP -conserving potential with real parameters this is only possible for χ = 0 and χ = π/2.

For χ = 0, we have R = R′ and therefore

MSM → LMSMR
†, (5.38)

MNS → LMNSR
†. (5.39)

This leads to the invariant quantity

TrM†SMMNSX = TrM†SMMNS = Φ†NSΦSM + Φ†SMΦNS. (5.40)

The part VIV from the potential in (2.99) is invariant under this custodial transformation since
it can be written as follows:

VIV =

(
1

v2t2β

(
m2
H0 −

m2
12

cβsβ

)
− Λ7

4c2β
+

Λ6

4s2
β

)
TrM†NSMNS TrM†SMMNS (5.41)

If we set mA0 = mH± we can also write VIII in terms of the invariant quantities,

VIII
mA0=mH±−−−−−−−→

m2
H0 −m2

H±

2v2

(
TrM†SMMNS

)2

+

(
2m2

H± +m2
h0

v2
− 2m2

12

v2cβsβ

)
· 1

4
TrM†SMMSM TrM†NSMNS (5.42)
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5.1. Custodial symmetry in the SM and the THDM

Consequently custodial invariance in the potential can be restored for mA0 = mH± .

For χ = π
2 we have

X =

−i 0

0 i

 (5.43)

and
TrM†SMMNSX = −iΦ†NSΦSM + iΦ†SMΦNS. (5.44)

Invariance of VIII under this custodial transformation is obtained for m2
H0 = m2

H± :

VIII
mH0=mH±−−−−−−−−→

m2
A0 −m2

H±

2v2

(
TrM†SMMNSX

)2

+

(
2m2

H± +m2
h0

v2
− 2m2

12

v2cβsβ

)
· 1

4
TrM†SMMSM TrM†NSMNS. (5.45)

However, the part VIV in the potential cannot be written in terms of the invariant quantity
specified in (5.44). Consequently, it has to vanish in the case of a potential invariant under this
custodial transformation. This can be achieved by setting

2m2
H0

v2
= λ5 (5.46)

or
tβ = 1. (5.47)

5.1.3 Custodial symmetry in the Yukawa sector of the THDM

Here we investigate the custodial symmetry in the different types of Yukawa interactions in the
THDM. For simplicity we restrict ourselves again to one quark family.

For the THDM of type-I or type-X the Yukawa interaction in the aligned doublets is given
by

LY =− ydQLΦ2dR − yuQLΦ̃2uR + h.c. (5.48)

=− sβydQLΦSMdR − sβyuQLΦ̃SMuR + h.c.

− cβydQLΦNSdR − cβyuQLΦ̃NSuR + h.c. (5.49)

Inserting the vacuum expectation value for ΦSM leads to the quark masses

mq =
sβyqv√

2
. (5.50)

For
mu = md ≡ m (5.51)

we can write
LY = −

√
2
m

v
QLMSMQR −

√
2
m

vtβ
QLMNSQR + h.c. (5.52)

which is invariant under the custodial transformations (5.23) and (5.30) for χ = 0.

For the THDM of type-II or type-Y the Yukawa couplings of the quarks to the aligned
doublets are written as

LY =− ydQLΦ1dr − yuQLΦ̃2uR + h.c.

=− cβydQLΦSMdR − sβyuQLΦ̃SMuR + h.c.

+ sβydQLΦNSdR − cβyuQLΦ̃NSuR + h.c. (5.53)
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5. The ρ parameter in the THDM

The vacuum expectation value of ΦSM leads to the quark masses

md = cβ
ydv√

2
, (5.54)

mu = sβ
yuv√

2
, (5.55)

and the Yukawa interaction takes the form

LY =−
√

2
md

v
QLΦSMdR −

√
2
mu

v
QLΦ̃SMuR + h.c.

+
√

2
mdtβ
v

QLΦNSdR −
√

2
mu

vtβ
QLΦ̃NSuR + h.c. (5.56)

The requirement that the part with ΦSM should be invariant under the custodial transformation
leads again to

mu = md = m. (5.57)

If in addition

tβ =
1

tβ
= 1, (5.58)

we can write the Yukawa interaction in the form

LY = −
√

2
m

v
QLMSMQR − i

√
2
m

v
QLMNSXQR + h.c., (5.59)

with

X =

−i 0

0 i

 . (5.60)

The Yukawa interaction in the THDM of type-II or type-Y is therefore invariant under the
custodial transformations (5.23) and (5.30) for χ = π/2 for equal quark masses and tβ = 1.

5.1.4 Custodial symmetry in the IHDM

The original doublets Φ1 and Φ2 are already corresponding to the Higgs basis due to the
unbroken Z2 symmetry, such that

Φ1 ≡ ΦSM, Φ2 ≡ ΦNS, (5.61)

in the IHDM. The matrix fields

Mi =
(

Φ̃i|Φi

)
, (i = 1, 2) (5.62)

transform as
M1 → LM1R

†, M2 → LM2R
′†, (5.63)

under the SU(2)L×SU(2)R and preserve the custodial SU(2)L+R after electroweak symmetry
breaking. The discussion about the custodial breaking terms of the IHDM potential is then
analogous to the discussion in the aligned THDM. Using the parameterization (2.115) of the
potential in the IHDM, we see directly that the terms V IHDM

I and V IHDM
II respect the custodial

symmetry, since they can be expressed by the invariant quantities

TrM†iMi = 2Φ†i Φi, (i = 1, 2). (5.64)

The term V IHDM
III is in general not custodial invariant. However a custodial symmetry can be

restored for
mA0 = mH± (5.65)

or
mH0 = mH± . (5.66)

Differently from the potential in the aligned THDM, an additional custodial violating term,
which would correspond to VIV, is absent in the IHDM potential due to the exact Z2 symmetry.
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5.2. Corrections to the ρ parameter from quantum loops

5.2 Corrections to the ρ parameter from quantum loops

The ρ parameter

ρ =
GNC

GCC
(5.67)

was originally introduced [211] for four-fermion processes at low momentum. GNC is the
strength in the effective four-fermion interaction

Leff
NC =

GNC√
2
gµνJ

µ
NCJ

ν†
NC (5.68)

of the neutral current (NC)

JµNC = ψfγ
µ
[(
If3 − 2s2

WQf

)
− If3 γ5

]
ψf . (5.69)

GNC can be determined for example in neutrino-scattering experiments. GCC is the strength
of the effective four-fermion interaction

Leff
CC =

GCC√
2
gµνJ

µ
CCJ

ν†
CC (5.70)

of the charged current (CC)

JµCC = ψνlγ
µ (1− γ5)ψl, (5.71)

which is stated here for simplicity just for the interaction between leptons and neutrinos. The
charged-current strength can be measured in the decay of the muon and is identical to the
Fermi constant GF . In the electroweak theory both classes of processes are mediated by the
exchange of a heavy gauge boson, the Z boson for NC and the W± boson for CC processes. In
the effective theory for low momentum transfer we can approximate the propagators by 1/M2

V

(V = W,Z). Therefore the effective couplings at the tree level are given by

GNC√
2

=
e2

8s2
W c

2
WM

2
Z

, (5.72)

GCC√
2

=
e2

8s2
WM

2
W

, (5.73)

which results in

ρ =
M2
W

c2WM
2
Z

= 1. (5.74)

Including higher-order contributions in the calculation of the effective couplings GNC and GCC
leads to a deviation from unity, written as [25, 27, 212]

ρ =
1

1−∆ρ
, (5.75)

with the loop expansion

∆ρ = ∆ρ(1) + ∆ρ(2) + · · · . (5.76)

Although conceptually defined at low-momentum scales, the quantity ∆ρ represents an impor-
tant ingredient for electroweak precision observables as the leading universal correction, with a
substantial impact e.g. on the effective electroweak mixing angle and the W mass.

The higher-order corrections to the charged and neutral current processes consist of the
gauge-boson self-energies as well as corrections from vertex- and box-diagrams, all evaluated
for vanishing external momentum q2 ≈ 0. The dominant part of ∆ρ originates from the self-
energies, which lead in the SM for example in the one-loop correction quadratic in the top mass.
The vertex- and box-contributions are small in comparison.
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Figure 5.1: Non-standard contributions from the THDM scalars to the Z and W boson self-
energies in the alignment limit at the one-loop level.

5.2.1 One-loop corrections in the SM and the THDM

The contributions to the effective coupling strengths from the self-energies is given at the one-
loop order by

GNC√
2

=
e2

0

8s2
W,0c

2
W,0M

2
Z,0

[
1 +

Σ
(1)
Z (0)

M2
Z

]
(5.77)

and

GCC√
2

=
e2

0

8s2
W,0M

2
W,0

[
1 +

Σ
(1)
W (0)

M2
W

]
. (5.78)

The expansions of the bare parameters cancel when calculating the ρ parameter. Therefore,
the correction to the ρ parameter at the one-loop order is given by

∆ρ(1) =
Σ

(1)
Z (0)

M2
Z

−
Σ

(1)
W (0)

M2
W

. (5.79)

A large contribution to ∆ρ(1) arises from the large mass splitting between the top and the
bottom quark and is identical to the dominant part of the one-loop corrections to ∆ρ in the
SM [21–23]. It reads

∆ρ
(1)
tb =

3αem
16πM2

W s
2
W

(
m2
t +m2

b − 2
m2
bm

2
t

m2
t −m2

b

log

(
m2
t

m2
b

))
. (5.80)

When neglecting the mass of the bottom quark we obtain the one-loop result

∆ρ
(1)
t =

3αem
16πM2

W s
2
W

m2
t , (5.81)

which is proportional to m2
t/v

2 due to the parameterization of v2 in (2.74).

The extended scalar sector of the THDM gives additional scalar contributions to ∆ρ [85–88,
91, 131]. In the alignment limit the additional correction follows from the scalars H0, A0 and
H±. The gauge-boson self-energies from the diagrams in Figure 5.1 give rise to the non-standard
one-loop part

∆ρ
(1)
NS =

αem
16πs2

WM
2
WD

{
4m2

A0B0

(
0,m2

A0 ,m2
H±

)
+ 4m2

H0B0

(
0,m2

H0 ,m2
H±

)
− 4m2

A0B0

(
0,m2

A0 ,m2
H0

)
+ (8− 2D)A0

(
m2
H±

)
− 4A0

(
m2
H0

)}
(5.82)

which is finite for D → 4, yielding

∆ρ
(1)
NS

D→4−−−→ αem
16πs2

WM
2
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{
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A0m2

H0

m2
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log
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−
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log
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−
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log

(
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)
+m2
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}
. (5.83)
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This contribution contains only the Higgs-self-couplings, since it is proportional to m2
S/v

2 (with
S = H0, A0, H±). It increases quadratically with the mass difference between the charged and
the neutral Higgs states, and it vanishes for

mH0 = mH± (5.84)

or
mA0 = mH± . (5.85)

The reason is that this correction originates only from the couplings between the Goldstone
bosons and the non-standard scalars H0, A0 and H± which are determined by the part VIII of
the potential. As explained in Section 5.1, the custodial symmetry in this part can be restored
for equal charged and neutral Higgs masses.

In the SM no contributions to ∆ρ(1) arise from the Higgs-self-coupling due to the custodial
symmetry of the Higgs potential. In a similar way there is no scalar correction from the SM-like
scalars h0, G0 and G± in the THDM in the alignment limit described in Section 2.5, since the
part VI of the potential in (2.99) is custodial invariant. The contributions to the gauge-boson
self-energies which are proportional to m2

h0/v2 are given by

Σ
(1)
V,SM (0)

M2
V

=
αem

16πs2
WM

2
W

(D − 4)

D
A0

(
m2
h0

)
, (5.86)

for both V = W,Z. They cancel in the difference for ∆ρ(1) in (5.79). The remaining parts of
the gauge-boson self-energies with the SM-like scalars as internal particles are proportional to
the gauge couplings. Since their UV-divergences are not canceled in the difference in (5.79),
a UV-finite result including also contributions from the gauge couplings requires a complete
calculation of ∆ρ.

In the THDM in the alignment limit the one-loop correction is therefore dominated by two
parts

∆ρ(1) = ∆ρ
(1)
t + ∆ρ

(1)
NS (5.87)

originating from the top-Yukawa interaction and the scalar sector.

5.2.2 Approximations for the two-loop contributions

For an improved calculation of the ρ parameter in the THDM, we hence need the two-loop
contributions from the top-Yukawa and the scalar-self-interaction, since these sectors give the
dominant one-loop effects. Technically these two-loop corrections are obtained by applying the
gauge-less limit (as done in [119] for the MSSM) and neglecting the light fermion masses, as
explained in the following part.

In the gauge-less limit the electroweak gauge couplings g1,2 are set to zero and thus the
gauge-boson masses are also equal to zero,

M2
W =

g2
2v

2

4
→ 0, M2

Z =

(
g2

1 + g2
2

)
v2

4
→ 0 , (5.88)

while their ratio in cW and sW stays constant. Moreover, the gauge-less limit sets the masses
of the Goldstone bosons equal to zero,

mG0 = mG± = 0. (5.89)

The ratios
ΣV (0)

M2
V

(V = W,Z). (5.90)

are non-zero in the gauge-less limit, since the gauge-couplings in self-energies of O
(
g2

1,2

)
cancel

with the ones contained in the gauge-boson masses. Consequently, only diagrams with internal
scalars or fermions contribute to ∆ρ. Also the ratios δ(1)M2

V /M
2
V , which are contained in the

counterterm of s2
W in (4.25) have remaining contributions. The resulting one-loop renormali-

zation conditions in the gauge-less limit are given by

δ(1)M2
W

M2
W

=
Re Σ

(1)
W (0)

M2
W

,
δ(1)M2

Z

M2
Z

=
Re Σ

(1)
Z (0)

M2
Z

. (5.91)
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Due to a Ward identity valid in the gauge-less limit [26, 28] the ratios in (5.90) can be
calculated also by the relations

ΣZ (0)

M2
Z

= −Σ′G0 (0) ,
ΣW (0)

M2
W

= −Σ′G± (0) , (5.92)

where the Goldstone self-energies are decomposed according to

ΣG
(
p2
)

= ΣG (0) + p2Σ′G
(
p2
)
, (G = G0, G±). (5.93)

We use this Ward identity as a test for our result. Moreover, the origin of a specific contribution
in ∆ρ is not always directly visible in the calculation based on the gauge-boson self-energies
due to the cancellation of the gauge couplings in the ratio (5.90). In these cases, the involved
couplings can be identified with the help of the Ward identity.

Note that in the alignment case the entire non-standard one-loop contribution to ∆ρ is
exclusively given by the expression (5.83), corresponding to the gauge-less limit.

In addition to the gauge-less limit the Yukawa-couplings of the light fermions can also be
neglected, since they are suppressed by the light masses. In the top-Yukawa approximation all
the fermion masses with the exception of the top-quark mass are set to zero. Especially for the
bottom quark, which appears in some of the diagrams for the O

(
α2
t

)
contributions, the mass

is set to mb = 0 in the top-Yukawa approximation. However, in contrast to the top-Yukawa
coupling, which is universal in all of the four models, the Yukawa coupling of the bottom quark
is model specific. In models of type-I and type-X, the bottom- and top-Yukawa interactions
have the same structure, and the additional contributions to ∆ρ from the b quark are negligible
due to the small value of mb. In models of type-II or type-Y, the b-Yukawa coupling can be
enhanced by tβ , and the top-Yukawa approximation is justified in these models only as long as
we do not consider large values of tβ . Therefore, the two-loop correction to the ρ parameter
from the Yukawa interaction is calculated with and without the contribution from the bottom
quark. In this way we can test the values of tβ for which the top-Yukawa approximation is
valid.

5.2.3 Higher-order corrections in the THDM

As mentioned above, it is sufficient to keep only the corrections from the gauge-boson self-
energies in the calculation of the effective neutral and charged current interaction of the four
fermion processes. The one- and two-loop contributions to the effective couplings from the
gauge-boson self-energies are given by

GNC√
2

=
e2

0

8s2
W,0c

2
W,0M

2
Z,0

1 +
Σ
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Z (0)
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Z

+

(
Σ
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Z (0)

M2
Z

)2

+
Σ

(2)
Z (0)

M2
Z

 (5.94)

and

GCC√
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=
e2
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8s2
W,0M

2
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1 +
Σ

(1)
W (0)
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− δ(1)M2
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Σ

(1)
W (0)

M2
W
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+
Σ

(2)
W (0)

M2
W

 . (5.95)

With the renormalization condition (5.91) for the gauge-boson mass counterterms in the gauge-
less limit the products of one-loop corrections in the brackets cancel. The calculation of ρ as
defined by (5.67) then yields the deviation ∆ρ in (5.75) as follows,

∆ρ =

(
Σ

(1)
Z (0)

M2
Z

−
Σ

(1)
W (0)

M2
W

)

−
Σ

(1)
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(
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(1)
Z (0)
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−
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(1)
W (0)
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)
+

(
Σ

(2)
Z (0)
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−
Σ

(2)
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)
=∆ρ(1) + ∆ρ(2), (5.96)
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Figure 5.2: Generic diagrams for the gauge-boson self-energies containing quarks with coun-
terterm insertions. V = {W,Z}; f, f ′ = {t, b}.

where the two-loop part is given by

∆ρ(2) ≡ −
Σ

(1)
Z (0)

M2
Z

∆ρ(1) +

(
Σ

(2)
Z (0)

M2
Z

−
Σ

(2)
W (0)

M2
W

)
. (5.97)

∆ρ(1) summarizes the one-loop corrections as given by (5.79) and (5.87). The self-energy of
the Z boson in the first term in (5.97) consists of all the corrections from the top quark and
the scalars as internal particles. Note that it contains also the part from the SM-like scalars in
(5.86), which cancel in ∆ρ(1). The second part of (5.97) follows from the two-loop corrections
to the gauge-boson self-energies. In addition to the part from the genuine two-loop diagrams
(labelled as δρ(2Loop)) it also includes one-loop diagrams with counterterm insertions for the
subloop renormalization.

With the assumptions from Section 5.2.2 we have two sources for the two-loop contribution
∆ρ(2): the top- and bottom-Yukawa interaction and the scalar self-interaction. Due to the
alignment limit we can subdivide the Yukawa corrections into two parts. The first one is identical
to the corresponding two-loop contribution in the SM and is discussed in Section 5.2.3.1. The
second one originates from the coupling of the non-standard scalars H0, A0 and H± to the top-
and the bottom quark. It is described in more detail in Section 5.2.3.2. A similar separation
can be made for the additional corrections to the ρ parameter from the scalar self-interaction.
The part VI of the potential (see (2.99a)), which describes only the interaction between h0 and
the Goldstone bosons G0, G±, is invariant under the custodial symmetry and the corresponding
contributions to the vector-boson self-energies in ∆ρ cancel each other. The remaining part of
the potential gives rise to two finite subsets in ∆ρ(2). One follows from the interaction between
the SM-like scalars h0, G0, G± and the non-standard scalars H0, A0, H± and is discussed
in Section 5.2.3.4. The other one contains only the non-standard scalars H0, A0 and H± as
internal particles in the gauge-boson self-energies and is described in Section 5.2.3.3.

With this categorization we subdivide the contribution from the genuine two-loop diagrams
(without subloop renormalization) to the vector-boson self-energies into different parts, accord-
ing to their origin,

δρ(2Loop) = δρ
(2Loop)
tb,SM + δρ

(2Loop)
tb,NS + δρ

(2Loop)
H,NS + δρ

(2Loop)
H,Mix (5.98)

which are classified by the participating couplings:

• δρ(2Loop)
tb,SM originates from the coupling between the heavy quarks and the SM-like scalars

h0, G0 and G± (see Section 5.2.3.1);

• δρ(2Loop)
tb,NS is the part which follows from the Yukawa interaction of the non-standard scalars

H0, A0 and H± (see Section 5.2.3.2);

• δρ(2Loop)
H,NS contains the scalar self-coupling between the non-standard scalars (see Sec-

tion 5.2.3.3);

• δρ(2Loop)
H,Mix follows from the interaction between the SM-like scalars and the non-standard

scalars (see Section 5.2.3.4).

For one-loop subrenormalization we need the diagrams shown in Figure 5.2 for the self-
energies with the top quarks and in Figure 5.3 for the scalar contribution. In the gauge-less
limit only two types of renormalization constants contribute: the counterterm δ(1)s2

W from the
counterterm insertions in the vertices, and the mass counterterms in the propagators of the
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V V

S S

S
′

V V

S

V

V

S

S′

V V

SS

V

V

S

S′

Figure 5.3: Generic diagrams for the gauge-boson self-energies V = {W,Z} containing scalars
with counterterm insertions. The contribution from the diagrams can be divided into two
parts: one part with only the SM-like scalars (S, S′ = {h0, G0, G±}) and one part with only
the non-standard scalars (S, S′ = {H0, A0, H±}).

internal particles. All field counterterms of the internal particles drop out in the calculation,
and all other counterterms are zero in the gauge-less limit.

From the diagrams of Figure 5.2 we obtain the part of the subloop renormalization from
the heavy quarks. The renormalization of the weak mixing angle is contained in the diagrams
with vertex counterterm insertions (see Appendix A), which yield the term

s2
W

c2W

δ(1)s2
W

s2
W

Σ
(1)
Z,tb (0)

M2
Z

− δ(1)s2
W

s2
W

∆ρ
(1)
tb . (5.99)

From the diagrams with counterterms in the propagators in Figure 5.2 we obtain the term
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2
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(
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b

))}
(5.100)

If the bottom-Yukawa coupling is neglected, the contribution simplifies to

δρ
(CT)
t = −

3αem(D − 4)(D − 2)2A0

(
m2
t

)
16πDM2

W s
2
W

δmt

mt
. (5.101)

Due to the alignment limit we can split the result of the quark mass counterterms into a SM-like
and a non-standard part. We use this for the separation

δρ
(CT)
tb = δρ

(CT)
tb,SM + δρ

(CT)
tb,NS , (5.102)

where the two parts are defined as follows:

• the part δρ
(CT)
tb,SM contains the correction to the quark-mass counterterms from the SM-like

scalars h0, G0, G± as shown in the self-energy diagrams in Figure 5.4;

• the second part δρ
(CT)
tb,NS contains the part of the quark-mass counterterms which comes

from the self-energy corrections from the non-standard scalars as depicted in Figure 5.5.

For the subloop renormalization diagrams in Figure 5.3 with the SM-like scalars h0, G0 and
G± we find that the mass counterterms drop out in the difference of the W and Z self-energy,
due to custodial symmetry. From the vertex counterterms we obtain the contribution

s2
W

c2W

δ(1)s2
W

s2
W

Σ
(1)
Z,SM (0)

M2
Z

(5.103)
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Figure 5.4: One-loop diagrams for the standard contribution to the quark mass counterterms.
For δmt: f = t and f ′ = b. For δmb: f = b and f ′ = t.

f

f

f

H0

f

f

f

A0

f

f

f ′

H±

Figure 5.5: One-loop diagrams for the non-standard contribution to the quark mass coun-
terterms. For δmt: f = t and f ′ = b. For δmb: f = b and f ′ = t.

with the one-loop self-energy from (5.86).

The diagrams in Figure 5.3 with the possible insertions of the non-standard scalars for S and
S′ give the last part of the subloop renormalization. With the Feynman rules of Appendix A
the counterterms in the vertices yield the contribution

Σ
(1)
Z,NS (0)
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Z

s2
W

c2W

δ(1)s2
W

s2
W

− δ(1)s2
W

s2
W

∆ρ
(1)
NS, (5.104)

where the Z self-energy in the first term contains just the contribution of the non-standard
scalars.

The diagrams with the mass counterterms δm2
H0 , δm2

A0 and δm2
H± in Figure 5.3 yield the

result, denoted by
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We will classify three different parts

δρ
(CT)
H = δρ

(CT)
H,tb + δρ

(CT)
H,NS + δρ

(CT)
H,Mix , (5.106)

which are defined by the insertions for the scalar mass counterterms as follows:
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Figure 5.6: One-loop diagrams for the Yukawa contribution to the non-standard scalar mass
counterterms. f, f ′ = {t, b}.

H0

H0

S′

S

A0

A0

S′

S

H±

H±

S′

S

Figure 5.7: One-loop diagrams for the non-standard scalar mass counterterms from the inter-
action between the non-standard scalars. For the H0 self-energy: S = S′ = H0, A0, H±. For
the A0 self-energy: S = A0 and S′ = H0. For the H± self-energy: S = H± and S′ = H0.

• δρ(CT)
H,tb contains the non-standard scalar mass counterterms originating from the Yukawa

coupling of the non-standard scalars to the heavy quarks. The corresponding diagrams
are shown in Figure 5.6.

• δρ(CT)
H,NS labels the part which contains only non-standard scalars in the calculation of

δm2
H0 , δm2

A0 and δm2
H± . The diagrams are displayed in Figure 5.7.

• δρ(CT)
H,Mix incorporates the contribution to the mass counterterms of H0, A0 and H± which

originates from the couplings of the non-standard scalars to the SM-like scalars. The
corresponding self-energy diagrams are presented in Figure 5.8.

When we combine the various parts from the subloop renormalization, their overall contri-
bution to ∆ρ(2) can be written as follows:

∆ρ(CT) =
s2
W

c2W

δ(1)s2
W

s2
W

Σ
(1)
Z (0)

M2
Z

− δ(1)s2
W

s2
W

(
∆ρ

(1)
tb + ∆ρ

(1)
NS

)
+ δρ(CT). (5.107)

The first term incorporates all parts from (5.99), (5.103) and (5.104) involving a single Z-boson
self-energy; the second term corresponds to the remaining terms from the renormalization of
sW in (5.99) and (5.104). The last term

δρ(CT) = δρ
(CT)
tb + δρ

(CT)
H (5.108)

collects the various parts resulting from the mass counterterm insertions in the internal lines.
The two-loop correction to the ρ parameter in (5.97) can be further simplified, since the

counterterm of the weak mixing angle reduces to

δ(1)s2
W

s2
W

=
c2W
s2
W

(
Σ

(1)
Z (0)

M2
Z

−
Σ

(1)
W (0)

M2
W

)
=
c2W
s2
W

∆ρ(1). (5.109)

in the gauge-less limit (see (5.91)). The first term in (5.107) cancels therefore the first term in
(5.97) and we obtain

∆ρ(2) = − c
2
W

s2
W

(
∆ρ(1)

)2

+ δρ(2). (5.110)

In this notation, the genuine two-loop part

δρ(2) = δρ(CT) + δρ(2Loop) (5.111)

contains δρ(CT) resulting exclusively from the insertions of the mass counterterms, and the
contribution δρ(2Loop) from the pure two-loop diagrams for the Z,W self-energies (without
subloop renormalization) in (5.97).
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Figure 5.8: One-loop diagrams for the non-standard scalar mass counterterms from the interac-
tion between the SM-like scalars S = h0, G0, G± and the non-standard scalars S′ = H0, A0, H±.

The appearance of the reducible term
(
∆ρ(1)

)2
in ∆ρ(2) is a consequence of the parameter-

ization of v2 by
1

v2
=

e2

4s2
WM

2
W

(5.112)

together with the on-shell renormalization of sW . A different parameterization in terms of the
Fermi constant GF can be introduced with the help of the relation

√
2GF =

e2

4M2
W s

2
W

(1 + ∆r) , (5.113)

where the quantity ∆r describes the higher-order corrections (for more details see Chapter 6).
In the gauge-less limit the one-loop contribution is given by

∆r = −δ
(1)s2

W

s2
W

. (5.114)

Consequently, the reparameterization of the one-loop result ∆ρ(1) in terms of GF induces a two-
loop shift originating from ∆r, which effectively cancels the reducible term in ∆ρ(2) in (5.110).
Hence, in the GF expansion, the two-loop contribution in ∆ρ is identified as the irreducible
two-loop part δρ(2) in (5.111). In this way, the same pattern for ρ is found as in the SM [212].

The structure of the irreducible quantity δρ(2) in (5.111) with δρ(2Loop) defined in (5.98)
allows us to divide it into four finite subsets of different origins,

δρ(2) = δρ
(2)
tb,SM + δρ

(2)
tb,NS + δρ

(2)
H,NS + δρ

(2)
H,Mix , (5.115)

which we describe now in more detail.

5.2.3.1 Standard model corrections from the top-Yukawa coupling
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Figure 5.9: Generic two-loop diagrams for the top-Yukawa corrections to the vector boson

self-energies with V = {W,Z} and f = {t, b}. The standard contribution δρ
(2Loop)
t,SM follows

from S, S′ = {h0, G0, G±}. The non-standard contribution δρ
(2Loop)
t,NS is obtained by all possible

insertions of S, S′ = {H0, A0, H±}.

The first contribution under investigation are the two-loop corrections from the top- and
bottom-Yukawa coupling. In the alignment limit these corrections can be separated into a
SM-like and a non-standard part. The bottom-Yukawa coupling to the SM-like scalars can be
neglected due to the light b-quark mass. From the coupling of the top quark to h0, G0 and G±

we obtain the finite correction

δρ
(2)
t,SM = δρ

(CT)
t,SM + δρ

(2Loop)
t,SM . (5.116)
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The first part δρ
(2Loop)
t,SM contains the pure two-loop contributions, which are depicted by the

generic diagrams in Figure 5.9 for S, S′ = h0, G0, G±. Its divergences are cancelled by δρ
(CT)
t,SM ,

the part of (5.101) with the top-mass counterterm calculated from the diagrams in Figure 5.4.

The contribution δρ
(2)
t,SM is identical to the already known SM contribution from the top-Yukawa

interaction. First the result was calculated in the approximation MH = 0 [25] and as an
expansion for large values of MH [24]. Later the full result for arbitrary Higgs masses was
obtained [26–28]. We checked that our calculation leads to the same result.

5.2.3.2 Non-standard corrections from the top-Yukawa coupling
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Figure 5.10: Generic two-loop diagrams for the top-Yukawa corrections to the Goldstone boson
self-energies. G = {G0, G±}; f = {t, b}; S = {H0, A0, H±}.

More interesting is the additional contribution due to the coupling of the non-standard scalars
H0, A0 and H±, to the heavy quarks. Since the bottom-Yukawa coupling can be enhanced
in the THDM of type-II and type-Y, the top-Yukawa approximation might be insufficient for
large values of tβ . In order to have a direct comparison the correction was calculated with
and without the bottom-Yukawa contribution. The result including the b-Yukawa coupling is
obtained by

δρ
(2)
tb,NS = δρ

(CT)
tb,NS + δρ

(CT)
H,tb + δρ

(2Loop)
tb,NS . (5.117)

The term δρ
(2Loop)
tb,NS is the pure two-loop part, originating from the generic diagrams shown in

Figure 5.9 with S, S′ = {H0, A0, H±}. In this contribution the custodial symmetry is broken by
the Yukawa-couplings and the couplings of the Goldstone bosons to the non-standard scalars.
We checked analytically that the contribution vanishes if the custodial symmetry is restored. As
discussed in Section 5.1, the requirements depend on the specific type of the Yukawa interaction.

In the THDM of type-I (and equivalently type-X) we found that δρ
(2)
tb,NS is zero for mb = mt and

mA0 = mH± , since the Yukawa interaction and the Higgs potential are then invariant under the

custodial transformations for χ = 0. In the THDM of type-II, δρ
(2)
tb,NS vanishes for mt = mb,

tβ = 1 and mH0 = mH± , since the Yukawa interaction and the part VIII of the scalar potential
then fulfill the custodial symmetry for χ = π/2.

If the mass of the bottom quark is neglected, the result in the top-Yukawa approximation
is given by

δρ
(2)
t,NS = δρ

(CT)
t,NS + δρ

(CT)
H,t + δρ

(2Loop)
t,NS , (5.118)

resulting from (5.117) by taking mb → 0. The analytic expression can be found in Ap-
pendix C.2.1. The result does not only consist of terms of O

(
α2
t

)
, which originate only from

the top-Yukawa interaction, but also of contributions of O (αtλi) which contain the scalar
self-couplings in addition to the top-Yukawa coupling. In the calculation by means of the
gauge-boson self-energies the separation between the O

(
α2
t

)
and the O (αtλi) contributions is

obscured. Using the Ward identity in (5.92) can help to disentangle the two different finite
contributions of O

(
α2
t

)
and O (αtλi). The Goldstone boson self-energies corresponding to the

diagrams (a) and (b) in Figure 5.10 lead to the O
(
α2
t

)
part. Its divergences are canceled by

δρ
(CT)
t,NS which originates from the subloop renormalization diagrams of Figure 5.2 with the top-

mass counterterm calculated from the diagrams in Figure 5.5. The O (αtλi) corrections are
obtained by the Goldstone boson self-energies from the diagrams (c)-(f) in Figure 5.10. The

divergences are cancelled by δρ
(CT)
H,t with the mass counterterms calculated from the diagrams

in Figure 5.6. The two parts of the subloop renormalization can be found in Appendix C.2.1.
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Figure 5.11: Corrections from the quartic couplings between four non-standard scalars. The
diagrams of type (a) give the generic two-loop diagrams for the gauge-boson self-energies,
which contain a coupling between four non-standard scalars. The diagrams of type (b) give the
subloop renormalization diagrams which contain the mass counterterms of the non-standard
scalars. These mass counterterms receive contributions from the scalar coupling between four
non-standard scalars from the diagrams of type (c). V = {W,Z}; S = {H0, A0, H±}.

5.2.3.3 Scalar corrections from the interaction of the non-standard scalars

The interaction between the non-standard scalars gives another finite subset. When inspecting
this contribution we found that all the corrections from a coupling between four non-standard
scalars are cancelled. The generic two-loop diagrams which contain such a coupling are given
by the diagrams of type (a) in Figure 5.11. They can be written as a product of two scalar
one-loop integrals. If the mass counterterms of the non-standard scalars are calculated from
the diagrams (c) in Figure 5.11 and inserted in the subloop renormalization (depicted by the
diagrams (b) in Figure 5.11) one obtains the same product of scalar one-loop integrals, but with
an opposite sign. Consequently the two terms cancel each other.
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Figure 5.12: Generic two-loop diagrams for the vector-boson self-energies from the interaction
between the non-standard scalars. V = {W,Z}; S = {H0, A0, H±}.

The remaining contribution

δρ
(2)
H,NS = δρ

(CT)
H,NS + δρ

(2Loop)
H,NS (5.119)

results from all the diagrams which include a triple scalar coupling between H0, A0 and H±.

δρ
(2Loop)
H,NS is the result for the vector-boson self-energies of the generic two-loop diagrams in

Figure 5.12. For the subloop renormalization we need the corrections from the triple non-
standard scalar coupling to the scalar self-energies, as shown in Figure 5.7. Inserting the

corresponding mass counterterms into (5.105) leads to the result of δρ
(CT)
H,NS. The expressions for

both terms are shown in Appendix C.2.2.
As discussed in Section 2.5, the triple non-standard coupling in the alignment limit follows

from the part VIV of the potential in (2.99). For calculation in the THDM without the hard

Z2-violating terms in the potential, the correction δρ
(2)
H,NS depends on the parameters λ5, tβ and

the masses of the non-standard scalars. The result in the most general CP -conserving THDM
in the alignment limit would contain an additional dependence on the parameters Λ6 and Λ7.

5.2.3.4 Scalar corrections from the interaction of the non-standard scalars with
the SM scalars

As already mentioned another finite subset of two-loop corrections to the ρ parameter comes
from the interaction between the scalars h0, G0, G± with the non-standard scalars H0, A0, H±.
This interaction originates exclusively from the part VIII of the potential (see (2.99c)) which is
custodial-symmetry breaking. We denote the resulting contribution by

δρ
(2)
H,Mix = δρ

(CT)
H,Mix + δρ

(2Loop)
H,Mix , (5.120)
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Figure 5.13: Generic two-loop diagrams from the interaction between the SM-like scalars S =
h0, G0, G± and the non-standard scalars S′ = H0, A0, H±. V = {W,Z}

where δρ
(2Loop)
H,Mix is the part from the two-loop diagrams shown in Figure 5.13. The divergences

are canceled by δρ
(CT)
H,Mix from (5.106). The analytic result can be found in Appendix C.2.3.

Since the correction δρ
(2)
H,Mix originates solely from the part VIII of the potential (see (2.99c)),

it is independent of the parameters Λ6 and Λ7. However the coupling of h0 to the non-standard
scalars contains an additional dependence on m2

12 (or equivalently λ5), which is absent in the

one-loop correction ∆ρ
(1)
NS.

5.2.4 Corrections to the ρ parameter in the IHDM

Since the IHDM and the THDM in the alignment limit are very similar, the results from the
previous section can be used to discuss the corrections to ∆ρ in the IHDM. Using the potential
of the IHDM in the form of (2.115), the following considerations can be made:

• There is no non-standard correction to ∆ρ from the top-Yukawa interaction, since the
interaction of the fermions with the non-standard scalars is forbidden by the Z2 symmetry.

• The part V IHDM
I has the same structure as the scalar potential of the SM and will not lead

to contributions to the ρ parameter since it is invariant under the custodial symmetry
(see Section 5.1).

• In the IHDM all the quartic couplings between four non-standard scalars are proportional
to Λ2, which is selected as a free parameter in Section 2.6. However, as discussed in
Section 5.2.3.3, all the two-loop corrections from couplings between four non-standard
scalars vanish in the calculation of ∆ρ. The two-loop contribution to the ρ parameter is
therefore not dependent on Λ2.

• As mentioned in Section 5.2.3.3, the correction δρ
(2)
H,NS contains the interaction between

three of the non-standard scalars H0, A0 and H±, which follows from the part VIV of
the potential in (2.99). Couplings between three non-standard scalars are forbidden in
the IHDM because of the exact Z2 symmetry. As a consequence, corrections to the ρ

parameter which would correspond to δρ
(2)
H,NS are absent in the IHDM.

• The only part of the IHDM potential which violates the custodial symmetry is V IHDM
III .

It describes the interaction of the SM-like scalars h0, G0 and G± with the non-standard

scalars H0, A0 and H±. The resulting non-standard one-loop correction ∆ρ
(1)
NS depends

only on the masses of the non-standard scalars and therefore takes the same form in

the IHDM and the aligned THDM. The two-loop correction is denoted by δρ
(2)
IHDM. It

is the only non-standard, two-loop contribution in the IHDM, if the gauge-less limit is

applied. It is similar to the correction δρ
(2)
H,Mix in the aligned THDM: it originates from

the two-loop diagrams shown in Figure 5.13 and the scalar mass counterterms for the
subloop renormalization are calculated from the diagrams in Figure 5.8. In contrast to

the one-loop correction, δρ
(2)
IHDM has an additional dependence on the IHDM parameter

Λ345 from the couplings between h0 and the non-standard scalars.
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5.3 Numerical analysis

In this part we investigate the numerical impact of the two-loop corrections on the ρ parameter.
We study the dependence on the various parameters of the aligned THDM and compare the non-
standard two-loop contributions with the one-loop result which is part of existing calculations
of electroweak precision observables so far. In this way the parameter regions emerge where
the one-loop calculations are insufficient and bounds on parameters derived from experimental
precision data will be significantly changed when the two-loop terms are taken into account.
The values for the SM input parameters are [213]

MW = 80.385 GeV, (5.121)

MZ = 91.1876 GeV, (5.122)

mt = 173.21 GeV. (5.123)

Since we want to investigate also the corrections from the bottom-Yukawa coupling, we also
need the pole mass of the bottom quark. It can be obtained from the MS mass, which is given
in [213] as

mb (mb) = 4.18 GeV. (5.124)

The relation to the pole mass reads [213]

mb =mb (mb) [1 + 0.10 + 0.05 + 0.03]

=4.93 GeV. (5.125)

For the mass of the SM-like Higgs state h0 we use the value mh0 = 125 GeV.
The corrections to the ρ parameter are calculated in the THDM without Z2-violating terms

of mass dimension 4. Consequently, we have Λ6 = Λ7 = 0. As free parameters we take the
scalar masses, tβ and the parameter λ5, defined by (2.50).

The effect of non-standard corrections to electroweak observables is often parameterized in
terms of the parameter set S, T , U , originally defined in [214, 215]. Following the conventions
of [213], the quantity T is related to the correction ∆ρ via

∆ρ = α̂ (MZ)T (5.126)

with the running electromagnetic fine structure constant [213]

α̂ (MZ)
−1

= 127.950± 0.017 . (5.127)

The current value of T [213], determined from experimental data,

T = 0.08± 0.12 , (5.128)

can be translated into bounds for ∆ρ according to

− 0.000313 ≤ ∆ρ ≤ 0.00156, (5.129)

which can be used for a quick estimate of the effect of the higher-order contributions to ∆ρ in
view of current experimental constraints.

5.3.1 Results for the top-Yukawa contribution

We start with the analysis of the contribution δρ
(2)
t,NS which originates from the coupling between

the top quark and the non-standard scalars. As a first test of our result we examine the
behaviour in the so-called decoupling limit [67], in which the masses of the non-standard scalars
are much larger than m0

h. In this limit the scalar sector of the THDM can be described by an

effective theory which is identical to the SM Higgs sector. Consequently we expect δρ
(2)
t,NS to

vanish for large, equal non-standard Higgs masses. The decoupling scenario is investigated on

the left side of Figure 5.14, where δρ
(2)
t,NS is shown for degenerate masses of the non-standard

scalars. The solid lines represent results for different values of tβ . Since the top-Yukawa coupling
breaks the custodial symmetry this contribution is still non-zero, even if the custodial symmetry
in the Higgs potential is restored by equal masses of the charged and neutral Higgs states. As
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Figure 5.14: Analysis of δρ
(2)
t,NS. The left side presents a variation of the degenerate masses

mH0 , mA0 and mH± up to large values. The solid lines correspond to different values of tβ .

On the right side δρ
(2)
t,NS is plotted as a function of tβ for different values of mH± . The masses

of H0 and A0 are fixed at mH0 = 350 GeV and mA0 = 300 GeV. The value of the two-loop

top-Yukawa correction in the SM, δρ
(2)
t,SM = −1.60 · 10−4, is shown by the black dashed line for

comparison.

expected it approaches zero when the masses increase. Moreover, we can see that larger values
of tβ suppress the correction. The reason is that the coupling of the top quark to the scalars
H0, A0 and H± scales with t−1

β in the alignment limit (see Section 2.5).

The influence of tβ is visualized on the right side of Figure 5.14 with δρ
(2)
t,NS for the mass

configurations as described by the legend, showing the decrease of the contribution with tβ . In
addition different mass splittings between charged and neutral scalars yield noticeable deviations
in the result and can even lead to different signs. In general, the top-Yukawa contribution is of

the order of the SM value δρ
(2)
t,SM or smaller.

5.3.2 Quality of the top-Yukawa approximation

In order to test the validity of the top-Yukawa approximation, we compare the result with and
without the bottom-Yukawa corrections in Figure 5.15. In the THDM of type-I and type-X the
additional corrections from the bottom-Yukawa coupling are negligibly small, as expected from
their suppression by the b-quark mass (see Section 5.2.2). Therefore we only present results in
the type-II or type-Y models, in which the contribution from the bottom-Yukawa coupling can
be enhanced for large values of tβ . On the left-hand side both results are plotted in dependence

of tβ . The solid lines represent δρ
(2)
t,NS and the dashed lines represent δρ

(2)
tb,NS. The difference

between the two results is plotted directly in the right graph. The different colours correspond
to results for different charged Higgs masses, as it is indicated by the legend on the bottom. We
see that the bottom-Yukawa contributions lead to visible differences for tβ ≥ 10. Additional

two-loop contributions from finite mb that reach the level of δρ
(2)
t,SM, require tβ ' 40− 50. For

such large values of tβ , however, one has to prevent the non-standard scalar self-couplings from
becoming non-perturbative by restricting the parameter λ5 to be very close to λ5v

2 = 2m2
H0 [151,

216]. Moreover, the constraints from flavour physics give further significant restrictions for large
values of tβ (see for example [81, 82]). Consequently the top-Yukawa approximation is justified

for the allowed values of tβ and we will use δρ
(2)
t,NS in the calculation of the electroweak precision

observables in Chapter 6 and Chapter 7.

5.3.3 Results for the non-standard scalar contribution

We now discuss the numerical results of the contribution δρ
(2)
H,NS which originates from the

coupling between three non-standard scalars as described in Section 5.2.3.3. The influence of a
mass splitting between charged and neutral scalars is presented in Figure 5.16. The two panels
show results for mH0 = 350 GeV, mA0 = 400 GeV and λ5 = ±1. The variation of mH± yields
similar mass differences for the specified parameter settings. The different lines correspond to
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Figure 5.15: Comparison between δρ
(2)
t,NS and δρ

(2)
tb,NS in the THDM of type-II and type-Y. On

the left side both results are plotted in dependence of tβ . The solid lines represent δρ
(2)
t,NS. The

dashed lines represent δρ
(2)
t,NS. The difference is shown directly on the right hand side. The

different colours correspond to different charged Higgs masses as stated by the legend on the
bottom. The masses of the neutral scalars are given on top of the figures.

250 300 350 400 450 500
-0.002

-0.001

0.000

0.001

0.002

0.003

250 300 350 400 450 500
-0.002

-0.001

0.000

0.001

0.002

0.003

Figure 5.16: Effect of mass differences between neutral and charged scalars on δρ
(2)
H,NS for

λ5 = ±1. The neutral masses are fixed at mH0 = 350 GeV and mA0 = 400 GeV. The mass
of H± is varied from 250 GeV to 500 GeV. The solid lines represent different values of tβ
as explained in the legend. The blue dashed line shows the non-standard one-loop correction

∆ρ
(1)
NS for comparison. The grey area depicts the bounds from the experimental limits of the T

parameter.
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Figure 5.17: Influence of a variation of tβ on δρ
(2)
H,NS for the specified mass configurations. The

solid lines present different values of λ5. The blue dashed line gives the value of the non-

standard one-loop correction ∆ρ
(1)
NS for the specified masses. The grey area depicts the bounds

from the experimental limits of the T parameter.

different values of tβ as defined in the legend. For comparison the blue dashed line displays

the result for the one-loop non-standard correction ∆ρ
(1)
NS. The grey area indicates the bounds

from the T parameter in (5.128).
Rather moderate values for the scalar masses are selected, since very heavy scalars are

excluded due to unitarity constraints. Moreover a small difference between mA0 and mH±

is chosen, in order to illustrate the effect of the custodial transformations as described in

Section 5.1. The one-loop contribution ∆ρ
(1)
NS is zero for mH0 = mH± and mA0 = mH± since

it originates only from the part VIII of the potential which is custodial symmetric for these
two mass settings. As explained in Section 5.1.2 the part VIV is invariant under the custodial

transformation for χ = 0. Consequently δρ
(2)
H,NS = 0 for mA0 = mH± since all the involved

couplings are custodial invariant for this mass degeneracy. However, for mH0 = mH± we have

δρ
(2)
H,NS 6= 0 since in that case VIII is invariant only under custodial transformations for χ = π

2 ,
but then VIV is not invariant and the triple couplings between three non-standard scalars hence
break the custodial symmetry (see Section 5.1.2). Degenerate masses of A0 and H0 will lead to

similar result, but with one common zero at mH± = mH0 = mA0 for both ∆ρ
(1)
NS and δρ

(2)
H,NS.

We see that the contribution δρ
(2)
H,NS can give corrections to the ρ parameter which are

comparable in size or even larger than the one-loop correction. This enhancement follows from
the new couplings between three non-standard scalars which enter for the first time in the two-
loop contribution. Adding the two-loop corrections to the one-loop result can lead to noticeable
modifications of the parameter region allowed by the constraints on T .

The triple non-standard scalar couplings arise from the term VIV of the potential in (2.99),
when the vacuum expectation value is inserted for the doublet ΦSM. Since they enter quad-

ratically in all the diagrams in Figure 5.12, the contribution δρ
(2)
H,NS is proportional to (see

(2.99d))

1

4

(
1

tβ
− tβ

)2(2m2
H0

v2
− λ5

)2

. (5.130)

The prefactor explains the strong influence of tβ on the results in Figure 5.16. The enhancement
of the coupling can be weakened for positive values of λ5 (see the right side of Figure 5.16) or
increased for negative values of λ5 (see the left side of Figure 5.16).

The dependence of δρ
(2)
H,NS on tβ is visualized directly in Figure 5.17 for different values of

λ5, displaying the increase with tβ and the modification by the choice of λ5 according to (5.130).

Due to the alignment limit the result for δρ
(2)
H,NS will be similar in the most-general, CP -

conserving THDM with additional Z2-violating terms. Since the coupling between four non-
standard scalars drops out in the calculation, the only difference will be the parameterization
of the coupling between three non-standard scalars (see the discussion in Section 2.5). If Z2-
violating terms of mass-dimension four are allowed in the potential, this triple non-standard
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Figure 5.18: Influence of mass splitting between charged and neutral scalars on δρ
(2)
H,Mix. The

two plots show different values of mH0 and mA0 , and the variation of mH± leads to comparable
mass differences for the different mass configurations. The results are independent of tβ . The
different lines represent different values of λ5. The blue dashed line shows the result of the

non-standard one-loop correction ∆ρ
(1)
NS for comparison. The grey area depicts the bounds from

the experimental limits of the T parameter.

coupling is proportional to

C[SNS , SNS , SNS ] ∝ 2

vt2β

(
m2
H0 −

m2
12

cβsβ

)
+

1

2
v

(
Λ6

s2
β

− Λ7

c2β

)
. (5.131)

Since this coupling enters twice in each diagram of δρ
(2)
H,NS, the result in the most-general, CP -

conserving THDM will be directly proportional to the square of (5.131). Besides the different

parameterization the properties of δρ
(2)
H,NS are unchanged: due to the custodial breaking terms

in the potential it will vanish for mA0 = mH± but in general not for mH0 = mH± .

5.3.4 Results for the mixed scalar contribution

In this part we discuss the contribution δρ
(2)
H,Mix from the interaction of the SM-like scalars h0,

G0, G± with the non-standard scalars H0, A0, H±. Similar to the one-loop correction ∆ρ
(1)
NS it

originates only from the part VIII of the potential in (2.99). Consequently it is independent of
tβ (see (2.99c)).

In Figure 5.18 we analyse the influence of a mass splitting between the charged and neutral
scalars. We show two scenarios for different values of mH0 and mA0 , while the mass of mH± is
varied in such a way that the mass splittings are comparable. The three solid lines present the

results for different values of λ5. The blue dashed line gives the one-loop contribution ∆ρ
(1)
NS

for comparison.
The results of Figure 5.18 can again be explained with the help of the custodial symmetry.

As discussed in Section 5.1 there are the two possible ways,

mH0 = mH± (5.132)

or
mA0 = mH± , (5.133)

to restore a custodial symmetry in VIII. For these two mass configurations ∆ρ
(1)
NS and δρ

(2)
H,Mix

vanish, since they do not contain any additional custodial-symmetry breaking couplings.
While the one-loop contribution originates only from the coupling of the non-standard sca-

lars to the Goldstone bosons, new couplings between h0 and the non-standard scalars enter the
two-loop diagrams in Figure 5.13. These are proportional to the combination

2m2
S +m2

h0 − λ5v
2 (5.134)

where S can be either of H0, A0 or H±, depending on which scalar couples to h0 (see the
Feynman rules in Appendix A). The effect of these new couplings is clearly visible in the
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Figure 5.19: Results for the two-loop corrections to the ρ parameter in the IHDM. The two

graphs show δρ
(2)
IHDM in dependence of the charged Higgs mass. The selected masses of the

remaining non-standard scalars are stated at the top of the corresponding graph. The different
solid lines correspond to different values of Λ345 as indicated by the legend at the bottom. The

blue dashed line shows the result of the non-standard one-loop correction ∆ρ
(1)
NS. The gray area

depicts the bounds from the experimental limits of the T parameter.

numerical results. By comparing the left- and the right-hand side of Figure 5.18 we see that

larger masses of the non-standard scalars yield larger values of δρ
(2)
H,Mix. In addition the couplings

can be enhanced or suppressed by negative or positive values of λ5, which explains the variation
between the different solid lines representing different values of λ5.

Since the correction δρ
(2)
H,Mix is independent of tβ it will be the dominant scalar two-loop

correction to the ρ parameter for tβ ≈ 1, where δρ
(2)
H,NS is small. However, for mH0 = mH±

both the one-loop correction ∆ρ
(1)
NS and δρ

(2)
H,Mix vanish independently of tβ , and δρ

(2)
H,NS is the

only remaining scalar correction to the ρ parameter (for tβ 6= 1).

5.3.5 Results in the IHDM

The non-standard two-loop correction to the ρ parameter in the IHDM is investigated in Fig-
ure 5.19. In order to show the dependence on the mass splitting between charged and neutral
Higgs states, the charged Higgs mass is varied around different values of mH0 and mA0 in the

two graphs. The blue dashed line shows the one-loop correction ∆ρ
(1)
NS, which is identical in

the IHDM and the aligned THDM. The visible characteristics of δρ
(2)
IHDM are similar to the

ones of δρ
(2)
H,Mix in the aligned THDM. The contribution vanishes for equal masses of charged

and neutral Higgs states, due to the restoration of a custodial symmetry. Also the influence
of the coupling of h0 to the non-standard Higgs states is apparent: the contribution increases
for larger non-standard Higgs masses and for larger values of Λ345. The coupling of h0 to the
charged Higgs states is especially striking if mH± is smaller than mH0 . The sign of this coupling
changes with the size of Λ345 (see the Feynman rules in Appendix A). For smaller values of

Λ345, the coupling can lead to a negative contribution of δρ
(2)
IHDM, as displayed for mH± < mH0

by the orange and red lines in Figure 5.19.
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Chapter 6

The MW–MZ interdependence

The decay of the muon leads to a relation between the gauge boson masses (MW , MZ), the fine
structure constant αem and the Fermi constant GF , which provides an important precision test
of electroweak theories. The calculation of the µ-lifetime τµ in the effective four-point Fermi
interaction leads to the result

1

τµ
=
G2
Fm

5
µ

192π3
F

(
m2
e

m2
µ

)(
1 +

3

5

m2
µ

M2
W

)
(1 + ∆q), (6.1)

with F (x) = 1− 8x− 12x2 lnx+ 8x3−x4. By convention the QED corrections ∆q are included
in the calculation in the Fermi model. Results for ∆q have been obtained at the one-loop
[217–219] and at the two-loop level [220–222]. Equation (6.1) is used as the defining equation
for GF in terms of the experimental µ-lifetime.

In the electroweak theory the muon decays via the exchange of the W boson. Neglecting
the transferred momentum due to the light external fermion gives the relation

M2
W

(
1− M2

W

M2
Z

)
=

παem√
2GF

(1 + ∆r) . (6.2)

The higher-order corrections to the muon decay are incorporated in the quantity ∆r. Note
that the finite QED corrections are absent, since these are already included in the definition of
GF in (6.1). The (numerically insignificant) term 3m2

µ/(5M
2
W ), which arises from tree-level W

propagator effects, is also included conventionally in (6.1) although it is not part of the Fermi
model prediction.

Since
∆r = ∆r (MW ,MZ ,mt, . . . ) (6.3)

depends on all the parameters of the virtual particles in the loop corrections, it is a model-
dependent quantity. Equation (6.2) provides a prediction of MW in terms of MZ , αem, GF
and the result of ∆r. The comparison with the measured value of MW allows precise tests of
the SM and its extensions. After a short overview of the corrections in the SM, we will discuss
the non-standard corrections from the THDM in the alignment limit. Numerical results are
presented in Chapter 8.

6.1 Corrections in the SM

Calculating the muon decay amplitude in the SM for vanishing transferred momentum (q2 ≈ 0)
and comparing the result with the same quantity in the effective four-point Fermi interaction
leads at the one-loop order to the relation

GF√
2

=
e2

0

8s2
W,0M

2
W,0

[
1 +

Σ
(1)
W (0)

M2
W

+ δvertex+box

]
. (6.4)

The last term incorporates the vertex and box corrections, without the QED corrections that
are already included in (6.1). The bare parameters are defined in Chapter 4. Expanding the

63



6. The MW –MZ interdependence

bare parameters in (6.4) and keeping only terms of one loop order leads to (see for example
[172, 223])

∆r(1) =2δ(1)Ze +
Σ

(1)
W (0)− δ(1)M2

W

M2
W

− δ(1)s2
W

s2
W

+ δvertex+box (6.5)

The explicit expressions for the one-loop counterterms and self-energies in the SM can be found
for example in [172]. The one-loop vertex- and box-corrections in the SM are given by (see for
example [173])

δvertex+box = − 2

sW cW

Σ
(1)
γZ (0)

M2
Z

+
α

4πs2
W

(
6 +

7− 4s2
W

2s2
W

log c2W

)
. (6.6)

The dominant one-loop contribution to ∆r in the SM can be identified as

∆r
(1)
SM = ∆α− c2W

s2
W

∆ρ
(1)
t + ∆r(1)

rem (MH) . (6.7)

The first term contains the contribution of the light fermion loops to the photon vacuum
polarization, which is defined in (4.21) and (4.22). The finite part

∆α = −Re Π(1)
γ

(
M2
Z

)
+ Π(1)

γ (0) (6.8)

contains logarithmic terms of the form logMZ/mf (f 6= t) and represent a QED-induced shift
in the electromagnetic fine structure constant. With the renormalization of the electric charge
in (4.20), the contribution ∆α in the quantity ∆r originates from the one-loop counterterm

δ(1)Ze =
1

2
Π(1)
γ (0) + · · · ' 1

2
∆α+ . . . . (6.9)

The second term in (6.7) contains the correction to the ρ parameter given in (5.81), which is
quadratic in the mass of the top quark. This correction enters the quantity ∆r due to the
renormalization of s2

W (see (4.25)) as part of the one-loop counterterm,

δ(1)s2
W

s2
W

' c2W
s2
W

∆ρ(1) + . . . . (6.10)

The remainder part ∆r
(1)
rem contains all the other terms, especially the dependence on the Higgs

boson mass in the SM and a term logarithmic in the top mass.

Beyond the one-loop order, the corrections to ∆r contain reducible contributions which con-
sist of products of finite one-loop quantities, as well as irreducible higher-order contributions
that cannot be written in terms of one-loop quantities. For the reducible contributions, resum-
mations of the leading one-loop contributions ∆α and ∆ρ(1) were derived in [212, 224, 225],
which incorporate the two-loop terms of the form (∆ρ(1))2 and (∆α∆ρ(1)) as well as (∆α)n to
all orders. In the following part we will briefly sketch the appearance of these reducible terms
at the two-loop order.

As discussed before, the dominant corrections ∆α and ∆ρ are contained in the renormali-
zation of the electric charge and the weak mixing angle (see (6.9) and (6.10)). The reducible
contributions can be traced back to products of the one-loop counterterms of the form(

δ(1)Ze

)2

, δ(1)s2
W δ

(1)Ze,
(
δ(1)s2

W

)2

. (6.11)

Such terms follow directly from the expansion of the bare parameters in (6.4), which at the
two-loop order gives

∆r =2δ(1)Ze −
δ(1)s2

W

s2
W

− 2δ(1)Ze
δ(1)s2

W

s2
W

+
(
δ(1)Ze

)2

+

(
δ(1)s2

W

s2
W

)2

+ 2δ(2)Ze −
δ(2)s2

W

s2
W

+ . . . . (6.12)
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6.1. Corrections in the SM

Additional terms with the products given in (6.11) are contained in the two-loop coun-
terterms δ(2)s2

W and δ(2)Ze:

• The two-loop counterterm of s2
W is given in (4.37). With the decomposition of the gauge-

boson self-energies in (4.28) and (4.29), the following products of one-loop counterterms
can be identified

δ(2)s2
W

s2
W

= 2δ(1)Ze
δ(1)s2

W

s2
W

+
cW
sW

δ(1)s2
W

s2
W

δ(1)ZγZ −
1

4

c2W
s2
W

(
δ(1)ZγZ

)2

−
(
δ(1)s2

W

s2
W

)2

+ . . . .

(6.13)
We are only interested in the terms given in (6.11), since these give the contributions from
∆α and ∆ρ(1). Keeping only these terms in (6.13) and inserting (6.9) and (6.10) for the
one-loop counterterms leads to

δ(2)s2
W

s2
W

' ∆α
c2W
s2
W

∆ρ(1) − c4W
s4
W

(
∆ρ(1)

)2

+ . . . . (6.14)

• The two-loop counterterm of the electric charge is given in (4.38). From this counterterm
we are only interested in the terms, which are quadratic in the one-loop photon vacuum
polarization, (

Π(1)
γ (0)

)2

, (6.15)

since these lead to the terms quadratic in ∆α. The two-loop field counterterm of the
photon, δ(2)Zγγ , does not contain the one-loop photon vacuum polarization as can be
seen from the decomposition of the two-loop photon self-energy in (4.30). If we insert

δ(1)Ze =
1

2
Π(1)
γ (0) + . . . , (6.16)

δ(1)Zγγ = −Π(1)
γ (0) , (6.17)

into the first term of (4.30), we see that the one-loop photon vacuum polarization cancels
in the subloop renormalization of the photon self-energy and consequently also in the
two-loop field counterterm of the photon, due to the renormalization condition in (4.39).
Therefore, the only terms in (4.38), which are quadratic in the one-loop photon vacuum
polarization follow from the squared one-loop counterterms(

δ(1)Ze

)2

(6.18)

and (
δ(1)Zγγ

)2

, (6.19)

which together with (6.16) and (6.17) leads to

δ(2)Ze =
3

8

(
Π(1)
γ (0)

)2

+ · · · ' 3

8
(∆α)

2
+ . . . , (6.20)

as the correction from the one-loop photon vacuum polarization in the two-loop coun-
terterm of the electric charge.

Inserting the dominant terms from (6.9), (6.10), (6.14) and (6.20) into (6.12) leads then to

∆r = ∆α+ ∆α2 − c2W
s2
W

∆ρ(1)

(
1 + 2∆α− 2

c2W
s2
W

∆ρ(1)

)
+ . . . . (6.21)

The appearance of these reducible products at the two-loop order is affected by the paramet-
erization of

∆ρ
(1)
t =

3e2m2
t

64π2M2
W s

2
W

=
3m2

t

16π2v2
(6.22)

in terms of
1

v2
=

e2

4s2
WM

2
W

. (6.23)
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6. The MW –MZ interdependence

If v2 is expressed in term of the Fermi-constant GF , the corrections from ∆r(1) in

GF√
2

=
e2

8s2
WM

2
W

(
1 + ∆r(1) + . . .

)
(6.24)

lead to the parameterization

1

v2
=
√

2GF

(
1−∆r(1) + . . .

)
, (6.25)

which introduces an additional two-loop shift in ∆ρ(1). If only the one-loop corrections from
(6.21) are kept for ∆r(1) in (6.25), the reparameterization of ∆ρ(1) in terms of GF leads to

∆ρ
(1)
t → ∆ρ

(1)
t −∆α∆ρ

(1)
t +

c2W
s2
W

(
∆ρ

(1)
t

)2

, (6.26)

where

∆ρ
(1)
t =

3GF

8
√

2π2
m2
t , (6.27)

denotes the one-loop corrections to the ρ-parameter expressed in terms of GF . Consequently
the dominant terms in ∆r expressed in the GF -expansion

∆r = ∆α+ ∆α2 − c2W
s2
W

∆ρ(1)

(
1 + ∆α− c2W

s2
W

∆ρ(1)

)
+ . . . (6.28)

show the same pattern as in the expanded form

1

1−∆α
· 1

1 +
c2W
s2W

∆ρ(1)
' 1 + ∆α+ ∆α2 − c2W

s2
W

∆ρ(1)

(
1 + ∆α− c2W

s2
W

∆ρ(1)

)
+ . . . (6.29)

given in [212].

QCD corrections to ∆r are calculated at O (ααs) [29–31, 96–98, 226], O
(
αα2

s

)
[32, 33, 113,

114] and O
(
αα3

sm
2
t

)
[36–38]. The electroweak corrections in the SM are known at the complete

two-loop level and contain the fermionic [99–101] and the purely bosonic contributions [102–
105]. The leading three-loop corrections to the ρ parameter are obtained at O

(
G3
Fm

3
t

)
and

O
(
G2
Fm

2
tαs
)

[34, 35]. Three-loop corrections in the limit of a large Higgs mass are calculated
in [115, 227]. In addition the pure fermion-loop corrections [228, 229] up to four-loop order are
known.

In [106] a simple parameterization is given,

MW =M0
W − c1dH− c2dH2 + c3dH4 + c4(dh− 1)− c5dα+ c6dt

− c7dt2 − c8dH dt + c9dh dt− c10dαS + c11dZ,
(6.30)

which reproduces the SM prediction for MW with the following loop contributions

∆r = ∆r(α) + ∆r(ααs) + ∆r(αα
2
s) + ∆r(αα

3
smt) + ∆r

(α2)
ferm + ∆r

(α2)
bos + ∆r(G

2
Fαsm

4
t) + ∆r(G

3
Fm

6
t),

(6.31)

where ∆r(α) is the one-loop result of (6.7), ∆r(ααs), ∆r(αα
2
s) and ∆r(αα

3
smt) are the two-

loop, three-loop and approximate four-loop QCD corrections, and ∆r
(α2)
ferm and ∆r

(α2)
bos are the

fermionic and the bosonic electroweak two-loop corrections, respectively. The contributions

∆r(G
2
Fαsm

4
t) and ∆r(G

3
Fm

6
t) are the leading three-loop contributions to the ρ-parameter. The

required input parameters for

dH = log

(
MH

100 GeV

)
, dh =

(
MH

100 GeV

)2

, dt =

(
mt

174, 3 GeV

)2

− 1,

dZ =
MZ

91.1875 GeV
− 1, dα =

∆α

0.05907
− 1, dαs =

αs (MZ)
2

0.119
− 1,

(6.32)
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are the masses of the top quark, the Z boson and the SM Higgs boson, the strong coupling
constant αS

(
M2
Z

)
and the quantity ∆α. The coefficients in (6.30) are1

M0
W = 80.3799 GeV, c1 = 0.05263 GeV, c2 = 0.010239 GeV,

c3 = 0.000954 GeV, c4 = −0.000054 GeV, c5 = 1.077 GeV,

c6 = 0.5252 GeV, c7 = 0.0700 GeV, c8 = 0.004102 GeV,

c9 = 0.000111 GeV, c10 = 0.0774 GeV, c11 = 115.0 GeV.

(6.33)

6.2 Non-standard corrections in the THDM

γ γ

H±

γ

γ

H±

H±

γ Z

H±

γ

Z

H±

H±

Figure 6.1: Non-standard contributions to the photon self-energy and γ − Z mixing from the
charged scalars in the alignment limit

In the THDM, the extended scalar sector leads to additional non-standard corrections,
which have to be combined the known SM contributions. The THDM prediction for ∆r in the
alignment limit can be written as

∆r = ∆rSM + ∆rNS, (6.34)

where ∆rSM contains all the known SM corrections and ∆rNS contains the additional non-
standard contributions. The corrections which originate only from the SM-like scalars h0, G0

and G± are identical to the scalar contributions in the SM which are already included in the SM
result ∆rSM. The non-standard contribution originates therefore only from the non-standard
scalars H0, A0 and H±. The vertex- and box-corrections from the non-standard scalars can be
neglected due to the small Yukawa couplings to the external fermions. Consequently the non-
standard part ∆rNS can be obtained from the contributions to the gauge-boson self-energies
with the scalars H0, A0 and H± as internal particles. We write the resulting non-standard
contribution as the sum

∆rNS = ∆r
(1)
NS + ∆r

(2)
NS, (6.35)

with the non-standard one-loop contribution ∆r
(1)
NS and the leading two-loop contribution ∆r

(2)
NS.

For the contribution ∆r
(1)
NS the result from [94] in the alignment limit is used. The non-standard

one-loop result is supplemented in this thesis with the contribution ∆r
(2)
NS, which incorporates

the non-standard two-loop corrections to the ρ parameter as discussed below.

The non-standard one-loop contribution has the same form as (6.5), except that the non-
standard vertex- and box-corrections can be neglected due to the light masses of the external

fermions. The contribution ∆r
(1)
NS can be calculated therefore in terms of the non-standard

one-loop contributions to the gauge-boson self-energies from the diagrams shown in Figure 5.1
and Figure 6.1. The resulting one-loop contribution to ∆r is given by

∆r
(1)
NS = δ(1)ZNS

e +
Σ

(1)
W,NS (0)− δ(1)M2

W,NS

M2
W

−
δ(1)s2

W,NS

s2
W

, (6.36)

where the subindex at the counterterms indicates that only the non-standard self-energies are
used for their calculation. The expressions for the one-loop non-standard self-energies can be
found in Appendix C.1. We denote the result of MW with just the one-loop non-standard

contribution by M
(1)
W . The one-loop contribution ∆r

(1)
NS has a high sensitivity on large mass

differences between neutral and charged Higgs states. This dominant effect can be traced back

1Note that the coefficients changed in comparison to the ones used in [94], since the parameterization in [106]
was updated to include also the corrections of O

(
αα2

sm
2
t

)
.
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6. The MW –MZ interdependence

to the non-standard correction to the ρ parameter, since the violation of the custodial symmetry

for mH0 6= mH± or mA0 6= mH± leads to large contributions from ∆ρ
(1)
NS.

The non-standard two-loop contribution ∆r
(2)
NS in (6.35) contains the non-standard correc-

tions from the top-Yukawa coupling and the self-interaction of the non-standard scalars. These
contributions are of special interest, since these sectors give already dominant corrections at

the one-loop order in terms of ∆ρ
(1)
t and ∆ρ

(1)
NS. Analogous to the corrections in the SM, the

non-standard two-loop contribution can be written in terms of a reducible part ∆r
(2)
NS,red and

an irreducible part ∆r
(2)
NS,irr, such that

∆r
(2)
NS = ∆r

(2)
NS,red + ∆r

(2)
NS,irr. (6.37)

The reducible non-standard contribution, ∆r
(2)
NS,red, arises from the non-standard one-loop

correction to the ρ parameter, which introduces additional factorized terms in (6.21). In the
THDM in the alignment limit ∆ρ(1) contains the two terms

∆ρ(1) = ∆ρ
(1)
t + ∆ρ

(1)
NS. (6.38)

The reducible two-loop contribution is obtained by inserting (6.38) for ∆ρ(1) in (6.21). However,

the reducible terms which contain only ∆α and ∆ρ
(1)
t are already included in the SM result.

Therefore we need only the non-standard term

∆r
(2)
NS,red = −2

c2W
s2
W

∆α∆ρ
(1)
NS + 4

c4W
s4
W

∆ρ
(1)
NS∆ρ

(1)
t + 2

c4W
s4
W

(
∆ρ

(1)
NS

)2

, (6.39)

which originates from the presence of ∆ρ
(1)
NS in (6.38).

The irreducible part ∆r
(2)
NS,irr in (6.37) follows from δρ(2), the irreducible two-loop contri-

bution to the ρ parameter given in (5.111). This irreducible correction enters via the two-loop
counterterm of s2

W , as we will discuss in the following part by writing the renormalization
condition (4.37) in the gauge-less limit.

In the gauge-less limit the ratios δ(1)M2
V /M

2
V in the first term of (4.37) are given by the

relations (5.91) (see the discussion in Section 5.2.2). Analogous relations hold for the ratios
δ(2)M2

V /M
2
V in the second term of (4.37). The two-loop mass counterterms for the gauge-bosons

are given in (4.26) and (4.27). In addition to the two-loop self-energies, these renormalization
conditions contain also terms with the gauge-boson field counterterms and the imaginary parts
of the one-loop self-energies. In the gauge-less limit the gauge-boson field counterterms and the
imaginary parts are zero. The two-loop renormalization conditions for the ratios δ(2)M2

V /M
2
V

in the gauge-less limit are therefore given by

δ(2)M2
W

M2
W

=
Re Σ

(2)
W (0)

M2
W

,
δ(2)M2

Z

M2
Z

=
Re Σ

(2)
Z (0)

M2
Z

, (6.40)

where the gauge-couplings of O
(
g2

1,2

)
in the self-energies are again canceled by the ones con-

tained in the gauge-boson masses. With the relations (5.91) and (6.40) the two-loop renorma-
lization condition in (4.37)in the gauge-less yields

δ(2)s2
W

s2
W

=
c2W
s2
W

(
−

Σ
(1)
Z (0)

M2
Z

∆ρ(1) +

(
Σ

(2)
Z (0)

M2
Z

−
Σ

(2)
W (0)

M2
W

))

=
c2W
s2
W

∆ρ(2), (6.41)

where ∆ρ(2) is the two-loop correction to the ρ parameter as obtained in (5.97). In (5.110) the
two-loop contribution ∆ρ(2) is divided into a term quadratic in the one-loop contribution ∆ρ(1)

and the irreducible part δρ(2) from (5.111). The term quadratic in ∆ρ(1) is already included in

∆r
(2)
NS,red. The irreducible two-loop part

∆r
(2)
irr = − c

2
W

s2
W

δρ(2) (6.42)

68



6.3. Non-standard corrections in the IHDM

contains therefore only the non-standard parts of δρ(2). According to the separation in (5.115),
we define the non-standard parts2

∆r
(2)
t,NS = − c

2
W

s2
W

δρ
(2)
t,NS, (6.43)

∆r
(2)
H,NS = − c

2
W

s2
W

δρ
(2)
H,NS, (6.44)

∆r
(2)
H,Mix = − c

2
W

s2
W

δρ
(2)
H,Mix, (6.45)

such that
∆r

(2)
NS,irr = ∆r

(2)
t,NS + ∆r

(2)
H,NS + ∆r

(2)
H,Mix. (6.46)

6.3 Non-standard corrections in the IHDM

The non-standard one-loop contributions to the gauge-boson self-energies in the IHDM are
identical to the ones in the general THDM in the alignment limit. Consequently the non-

standard one-loop correction ∆r
(1)
NS and the reducible two-loop correction ∆r

(2)
NS,red are equal

in both models. Differences arise in the irreducible two-loop corrections to ∆r. In the IHDM
in the gauge-less limit, we have just one non-standard irreducible two-loop correction to the ρ

parameter, labelled as δρ
(2)
IHDM in Chapter 5. The corresponding contribution to ∆r is given by

∆r
(2)
IHDM = − c

2
W

s2
W

δρ
(2)
IHDM. (6.47)

This correction introduces an additional dependence on the IHDM parameter Λ345, which is

absent in the contributions ∆r
(1)
NS and ∆r

(2)
NS,red. As discussed in Chapter 5, the quartic coupling

between four non-standard scalars cancels in the two-loop result of ∆ρ which is therefore not
sensitive on Λ2. Consequently our prediction of MW in the IHDM will also be independent of
Λ2.

6.4 Incorporation of non-standard corrections

For a prediction of MW in the THDM, which is as accurate as possible, we have to combine the
higher-order contributions from the SM with all the available non-standard corrections. The
resulting quantity ∆r depends on all the free parameters in the THDM. The prediction of MW

fulfills the relation (6.2) for a specific set of parameters. Formally it is obtained by solving
(6.2) for MW . However, since ∆r itself depends on MW , the prediction of MW is calculated in
practice by evaluating

M2
W = M2

Z

[
1

2
+

√
1

4
− παem√

2GFM2
Z

(1 + ∆r)

]
(6.48)

iteratively. Since the full SM result is a lengthy expression which involves furthermore numerical
integrations, we proceed as follows: we use the explicit one-loop result in the SM

∆r
(1)
SM (MW , . . . ) (6.49)

for the iteration and approximate the higher-order corrections by the constant term

δrh.o.
SM = ∆rh.o.

SM −∆r
(1)
SM (MW,SM) . (6.50)

The contribution ∆rh.o.
SM corresponds to the result of ∆r in the SM with the corrections from

(6.31). It is obtained from MW,SM, the mass of the W boson in the SM calculated from the
parameterization in (6.30). Inverting (6.2) for ∆r, we obtain

∆rh.o.
SM =

√
2GFM

2
W,SM

παem

(
1−

M2
W,SM

M2
Z

)
− 1. (6.51)

2We neglect the corrections from the bottom Yukawa-coupling, since the contribution is small except for a
THDM of type-II or type-Y for very large values of tβ (see the discussion in Chapter 5).
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From this result we subtract the one-loop contribution in the SM with MW = MW,SM and
obtain the contribution δrh.o.

SM , which stays constant during the iteration.
Adding all the available non-standard corrections we obtain as the complete result for ∆r

∆r (MW , . . . ) = ∆r
(1)
SM (MW ) + δrh.o.

SM + ∆r
(1)
NS (MW ) + ∆r

(2)
NS,red (MW ) + ∆r

(2)
NS,irr (MW ) (6.52)

with (6.46) for the general THDM in the alignment limit.
In an analogous way, we obtain

∆r (MW , . . . ) = ∆r
(1)
SM (MW ) + δrh.o.

SM + ∆r
(1)
NS (MW ) + ∆r

(2)
NS,red (MW ) + ∆r

(2)
IHDM (MW ) (6.53)

in the IHDM.
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Chapter 7

Precision observables at the Z
pole

The production of a fermion-antifermion pair in electron-positron collisions has been studied
comprehensively by the experiments at LEP and SLC [230]. The energy-dependent cross-
sections and the polarization and angular asymmetries have been measured with high accuracy.
From these ”realistic” observables a set of pseudo-observables [231] is obtained by applying
deconvolution processes under specific assumptions with the help of sophisticated programs
like ZFITTER [232, 233] and TOPAZ0 [234]. The set of pseudo-observables is chosen in order
to describe the features of the Z resonance in a largely model-independent manner (for more
details see the discussion in the introduction of [230]). Examples for such pseudo-observables
are the total width of the Z boson or the effective leptonic mixing angle.

The tree-level amplitude, depicted by the diagrams in Figure 7.1, consists of the QED contri-
butions due to the photon-exchange and the electroweak contributions due to the Z-exchange.
When higher-order corrections are included, the separation is only partially preserved. At the
one-loop level the corrections can be classified in terms of QED and electroweak corrections in
a gauge-invariant way and additional QCD corrections for quarks in the final state. The QED
corrections are given by the loop-diagrams with a virtual photon (which couples to the ex-
ternal fermions) and the bremsstrahlung diagrams with real photon emission from the external
legs and are therefore dependent on the experimental cuts applied to the emitted final-state
photon. Although numerically very important, the QED corrections are not sensitive on the
specific structure of the electroweak theory. A large part in the difference between realistic ob-
servables and pseudo-observables originates from the deconvolution of model-independent QED
corrections. The electroweak corrections, which are given by the residual electroweak loop dia-
grams, depend on the remaining parameters of the electroweak theory and are also sensitive on
contributions from new physics.

The only QCD corrections at the one-loop level occur as diagrams with real or virtual
gluons for quark pair production processes (e+e− → qq). At higher-orders also mixed QCD-
electroweak corrections appear, for example as gluonic corrections to quark loops in gauge-boson
self-energies. A review of the QCD corrections can be found in [235].

At the Z resonance the total cross section for e+e− → ff is dominated by the Z-exchange
due to the enhancement by the resonant propagator. In the Z pole approximation the non-
resonant loop-contributions are therefore neglected. For example the relative contribution of
weak box diagrams is less than 10−4 and is therefore negligible. The matrix-element can then
again be separated into a dressed photon- and a dressed Z-exchange contribution. The higher-
order electroweak corrections are incorporated in terms of effective couplings of the fermions to
the Z boson. For more details see for example [231].

In [94] the calculation of the non-standard one-loop correction to precision observables at
the Z resonance was discussed. In this chapter we describe how the two-loop corrections to the
ρ parameter can be incorporated in the effective couplings and how they enter the calculation of
the Z width and the effective leptonic mixing angle as two representative examples for precision
observables. Numerical results are given in Chapter 8.
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7. Precision observables at the Z pole
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Figure 7.1: Feynman diagrams for the process e+e− → ff at the tree-level.

7.1 The width of the Z boson

The total width ΓZ of the Z boson is obtained from the sum of all partial widths Γf ≡
Γ
(
Z → ff

)
[112, 231],

ΓZ =
∑
f 6=t

Γf = 3Γν + Γe + Γµ + Γτ + Γhad, (7.1)

with the hadronic width given by the decay into quark pairs

Γhad = Γu + Γd + Γc + Γs + Γb. (7.2)

The partial widths are all described in terms of effective coupling gfV,A by

Γf = Γ0N
f
c

[(
gfV

)2

RfV +
(
gfA

)2

RfA

]
(7.3)

or alternatively in terms of form factors ρf and κf by

Γf = Γ0N
f
c ρf

[(
If3 − 2Qfs

2
Wκf

)2

RfV +
(
If3

)2

RfA

]
. (7.4)

Nf
c is a colour factor, such that Nf

c = 1 for leptons and Nf
c = 3 for quarks. The normalization

factor Γ0 is written as

Γ0 =
GFM

3
Z

6
√

2π
. (7.5)

The final-state QED and QCD corrections are incorporated into factorized radiation factors
RfV,A. The electroweak corrections are included either in the effective couplings gfV,A or in the
form factors ρf and κf . They contain the electroweak vertex-corrections, the contribution from
γ − Z mixing and the wave function renormalization of the external legs, all evaluated at the
center-of-mass energy s = M2

Z .
The effective couplings are written in the loop expansion as follows,

gfV = vf + ∆(1)gfV + ∆(2)gfV + . . . , (7.6)

gfA = af + ∆(1)gfA + ∆(2)gfA + . . . , (7.7)

where

af = If3 , (7.8)

vf = If3 − 2s2
WQf , (7.9)

denote the tree-level vector and axial-vector couplings of the Z boson to the fermion species f .
If3 is the third isospin component and Qf the electric charge of f . The form factors ρf and κf
are related to the effective couplings gfV,A via

ρf =

(
gfA
af

)2

, (7.10)

κf =
1

4s2
W |Qf |

(
1−

gfV
gfA

)
. (7.11)
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Using the expansion of the effective couplings in (7.6) and (7.7), the expansion of (7.10) and
(7.11) gives

ρf = 1 + ∆(1)ρf + ∆(2)ρf + . . . , (7.12)

κf = 1 + ∆(1)κf + ∆(2)κf + . . . , (7.13)

with

∆(1)ρf = 2
∆(1)gfA
af

, (7.14)

∆(2)ρf =

(
∆(1)gfA
af

)2

+ 2
∆(2)gfA
af

, (7.15)

and

∆(1)κf = −vf
af

1

4s2
W |Qf |

(
∆(1)gfV
vf

−
∆(1)gfA
af

)
, (7.16)

∆(2)κf = −
∆(1)gfA
af

∆(1)κf −
vf
af

1

4s2
W |Qf |

(
∆(2)gfV
vf

−
∆(2)gfA
af

)
. (7.17)

7.1.1 QED and QCD corrections in radiation factors

The radiation factors RfV,A in (7.3) and (7.4) include the final state QED and QCD interactions
and finite mass corrections. For consistency with the most recent calculation of the partial
widths in the SM the results given in the appendix of [112] are used.1

For neutrinos the radiation factors are equal to one, such that

Γν =
GFM

3
Z

3
√

2π
(gν)

2
, (7.18)

with
gν = gνV = gνA. (7.19)

For the charged leptons, the radiation factors depend on the electromagnetic coupling con-
stant α

(
M2
Z

)
, and on the lepton mass [231]. Additional O

(
α2
)

contributions from diagrams
with closed fermion loops [236] are also included, resulting in

RlV =1 +
3Q2

l

4

α
(
M2
Z

)
π

+Q2
l

(
2Ct2

(
M2
Z/m

2
t

)
+ Cγ2

)(α (M2
Z

)
π

)2

− 6
m4
l

M4
Z

, (7.20)

RlA =1 +
3Q2

l

4

α
(
M2
Z

)
π

+Q2
l

(
2Ct2

(
M2
Z/m

2
t

)
+ Cγ2

)(α (M2
Z

)
π

)2

− 6
m2
l

M2
Z

+ 6
m4
l

M4
Z

. (7.21)

1For the calculation of the Z widths in [94] the radiation factors were evaluated with the help of ZFITTER. In
order to allow a self-contained calculation, the radiation factors are now also implemented in the Fortran code
for the evaluation of precision observables in the THDM developed in this thesis.
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7. Precision observables at the Z pole

For the decays into quarks additional QCD corrections have to be included in the radiation
factors. They contain corrections up to O

(
α4
s

)
for massless final-state quarks and O

(
α2
s

)
for

terms including the masses of the external quarks [235, 237, 238]. Neglecting terms of O
(
m6
f

)
,

O
(
m4
fαs

)
, O

(
m2
fα

2
s

)
and O

(
m2
fα
)

, the radiation factors for the quarks read

RqV =1 +
3Q2

q

4

α
(
M2
Z

)
π

+
αs
(
M2
Z

)
π

−
Q2
q

4

α
(
M2
Z

)
π

αs
(
M2
Z

)
π

+
(
Ct2
(
M2
Z/m

2
t

)
+ C02

)(αs (M2
Z

)
π

)2

+Q2
q

(
2Ct2

(
M2
Z/m

2
t

)
+ Cγ2

)(α (M2
Z

)
π

)2

+ C03

(
αs
(
M2
Z

)
π

)3

+ C04

(
αs
(
M2
Z

)
π

)4

+
12m2

q

(
M2
Z

)
M2
Z

αs
(
M2
Z

)
π

−
6m4

q

(
M2
Z

)
M4
Z

, (7.22)

RqA =1 +
3Q2

q

4

α
(
M2
Z

)
π

+
αs
(
M2
Z

)
π

−
Q2
q

4

α
(
M2
Z

)
π

αs
(
M2
Z

)
π

+Q2
q

(
2Ct2

(
M2
Z/m

2
t

)
+ Cγ2

)(α (M2
Z

)
π

)2

+
(
Ct2
(
M2
Z/m

2
t

)
+ C02 − 2Iq3I2

(
M2
Z/m

2
t

))(αs (M2
Z

)
π

)2

+
(
C03 − 2Iq3I3

(
M2
Z/m

2
t

))(αs (M2
Z

)
π

)3

+
(
C04 − 2Iq3I4

(
M2
Z/m

2
t

))(αs (M2
Z

)
π

)4

− 22
αs
(
M2
Z

)
π

m2
q

(
M2
Z

)
M2
Z

+
6m4

q

(
M2
Z

)
M4
Z

−
6m2

q

(
M2
Z

)
M2
Z

. (7.23)

The masses of the u, d and s quarks are neglected in the radiation factors. For the c and the b
quark the running masses in the MS scheme at the scale M2

Z are used, which can be obtained
with the Mathematica program RunDec [239].

The following abbreviations are introduced for the above formulas:

Cγ2 = −55

6
+

20

3
ζ3, (7.24)

C02 =
365

24
− 11ζ3 + nq

(
2

3
ζ3 −

11

12

)
, (7.25)

C03 = −6.63694− 1.20013nq − 0.005178n2
q, (7.26)

C04 = −156.61 + 0.0215n3
q − 0.7974n2

q + 18.77nq, (7.27)

Ct2 (x) = x

(
44

675
− 2 log(x)

135

)
, (7.28)

I2 (x) = −37

12
log(x) +

7

81
x+

79

6000
x2 + +O

(
x3
)
, (7.29)

I3 (x) = −15.9877 +
67

18
log(x) +

23

12
log2(x) +O (x) , (7.30)

I4 (x) = 49.0309− 17.6637 log(x) + 14.6597 log2(x) + 3.6736 log3(x) +O (x) , (7.31)

where nq = 5 is the number of active quarks and

ζ3 = 1.2020569 (7.32)

is the Riemann Zeta function

ζs =

∞∑
k=1

k−s (7.33)

evaluated at s = 3.
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Z

f

f

+
Z

f

f

Figure 7.2: Higher-order corrections to the Z → ff decay. The left diagram represents the sum
of all electroweak loop diagrams for the vertex corrections. The right diagram corresponds to
the vertex counterterm.

7.1.2 Electroweak corrections in effective couplings

The electroweak corrections to the partial widths are incorporated into the effective couplings
gfV,A in (7.3) or alternatively into the form factors ρf and κf in (7.4). In the THDM the
electroweak corrections consist of a SM-like part and a non-standard part from the extended
scalar sector. In the alignment limit the corrections which originate only from the scalars h0,
G0 and G± are identical to the scalar corrections in the SM and are therefore already included
in the SM-like part. The non-standard contribution originate from the scalars H0, A0 and H±.
For the one-loop corrections to the effective couplings gfV,A the results from [94] are used. In
this thesis also the non-standard two-loop corrections to the ρ parameter are incorporated in
the partial Z widths, for which it is more convenient to use the parameterization (7.4) with the
form factors ρf and κf .

The effective couplings at the one-loop order are identical to the results obtained in [94],
where more details can be found. The expressions are just repeated here for completeness. The
one-loop corrections for Z → ff are symbolized by Figure 7.2. The resulting contributions to
the effective couplings are

∆(1)gfV =vf

{
−1

2
∆r(1) +

1

2
δ(1)ZZZ + δ(1)Ze +

1

2

s2
W − c2W
s2
W

δ(1)s2
W

s2
W

}
+ 2sW cWQf

{
1

2
δ(1)ZγZ −

cW
sW

δ(1)s2
W

s2
W

}
+ F fV

(
M2
Z

)
, (7.34)

∆(1)gfA =af

{
−1

2
∆r(1) +

1

2
δ(1)ZZZ + δ(1)Ze +

1

2

s2
W − c2W
s2
W

δ(1)s2
W

s2
W

}
+ F fA

(
M2
Z

)
. (7.35)

The renormalization conditions for the various counterterms in (7.34) and (7.35) can be found
in Chapter 4. Due to our renormalization scheme, the corrections in the external legs appear
as a part of the vertex-counterterms in Figure 7.2. The quantity ∆r(1) originates from the
normalization of the partial widths in terms of GF . The form factors F fV,A in (7.34) and (7.35)
are build by the non-photonic vertex corrections and the non–QED parts of the counterterms
δZL,Rf , which contain the fermion field renormalization with the renormalization conditions
given in (4.53) and (4.54).

A short discussion about the normalization of the partial widths is appropriate. With the
tree-level couplings vf and af the tree-level matrix element for Z → ff is written as

MBorn
Zff

=
e

2sW cW
εµ (p)u (q) [vfγµ − afγµγ5] v (q′) (7.36)

where q′ = p − q and u (q), v (q′) and εµ (p) are the wave-functions of the fermion f , the
antifermion f , and the Z boson. In the on-shell scheme from Section 4.2 the vector- and
axial-vector couplings are defined without the overall prefactor

e

2sW cW
. (7.37)
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Neglecting the higher-order corrections as well as finite-mass terms from the external fermions
yields the tree-level widths

Γ̂f = Γ̂0N
f
c

[
v2
f + a2

f

]
(7.38)

with the normalization factor2

Γ̂0 =
αemMZ

12s2
W c

2
W

. (7.39)

This normalization depends on the W boson mass due to the definition of the weak mixing
angle in the on-shell scheme. Since MW is calculated in terms of the relation (6.2) it contains
an implicit dependence also on the THDM parameters. Therefore a distinct separation between
standard and non-standard corrections to the partial widths is obscured. A normalization factor
in terms of GF , which is independent of THDM corrections, is achieved by using the relation

e2

4s2
W c

2
W

(1 + ∆r) = GFM
2
Z

√
2 (7.40)

and incorporating ∆r in the effective couplings. In this way the normalization leads to (7.5) and
the corrections in the effective couplings can be separated into a standard and a non-standard
part. The partial widths in both parameterizations were implemented in the Fortran code de-
veloped in this thesis. A direct comparison of the results of the total widths showed deviations
less than 0.3 MeV. This small deviation is negligible in comparison to the experimental un-
certainties and reassures us that the normalization in terms of the Fermi constant is sensible.

The normalization of the partial widths in terms of GF allows a clear separation of the
effective couplings into a SM-like part and a non-standard part, since the quantity ∆r can be
written as

∆r = ∆rSM + ∆rNS. (7.41)

For the effective couplings at the one-loop order in (7.34) and (7.35) this separation yields

gfV = vf + ∆(1)gfV,SM + ∆(1)gfV,NS, (7.42)

gfA = af + ∆(1)gfA,SM + ∆(1)gfA,NS. (7.43)

The SM parts are given by

∆(1)gfV,SM =vf

{
−1

2
∆r

(1)
SM +

1

2
δ(1)ZSM

ZZ + δ(1)ZSM
e +

1

2

s2
W − c2W
s2
W

δs2
W,SM

s2
W

}

+ 2sW cWQf

{
1

2
δ(1)ZSM

γZ −
cW
sW

δs2
W,SM

s2
W

}
+ F fV,SM

(
M2
Z

)
, (7.44)

∆(1)gfA,SM =af

{
−1

2
∆r

(1)
SM +

1

2
δ(1)ZSM

ZZ + δ(1)ZSM
e +

1

2

s2
W − c2W
s2
W

δs2
W,SM

s2
W

}
+ F fA,SM

(
M2
Z

)
, (7.45)

where the index denotes that only the corrections from the SM particles are kept in the calcu-
lation of the counterterms and the form factors. The scalar contributions to the vertex form
factors F fV,A can be neglected for f 6= b, because of the small Yukawa couplings. For the decay
into two bottom quarks, the scalar contributions with a virtual top quark have to be taken into
account due to the large top mass.

2In order to distinguish the different normalization factors, we denote the parameterization via αem with a
caret.
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The non-standard parts in (7.42) and (7.43) are

∆(1)gfV,NS =vf

{
−1

2
∆r

(1)
NS +

1

2
δ(1)ZNS

ZZ + δ(1)ZNS
e +

1

2

s2
W − c2W
s2
W

δs2
W,NS

s2
W

}

+ 2sW cWQf

{
1

2
δ(1)ZNS

γZ −
cW
sW

δs2
W,NS

s2
W

}
+ F fV,NS

(
M2
Z

)
, (7.46)

∆(1)gfA,NS =af

{
−1

2
∆r

(1)
NS +

1

2
δ(1)ZNS

ZZ + δ(1)ZNS
e +

1

2

s2
W − c2W
s2
W

δs2
W,NS

s2
W

}
+ F fA,NS

(
M2
Z

)
. (7.47)

The non-standard form factors F fV,NS

(
M2
Z

)
and F fA,NS

(
M2
Z

)
in (7.46) and (7.47) can be neg-

lected due to the small Yukawa couplings, except for the couplings of Z → bb, where the large
top mass enters via loops including the charged Higgs bosons. Moreover the bottom-Yukawa
couplings can be enhanced by large values of tanβ in the THDM of type-II and type-Y. In the
IHDM, the non-standard scalars do not couple to the fermions and the effective couplings are
given by (7.46) and (7.47) without the non-standard form factors F fV,NS

(
M2
Z

)
and F fA,NS

(
M2
Z

)
.

In the alternative parameterization of the partial widths in (7.4), the electroweak corrections
are incorporated in the form factors ρf and κf . The form factors can be divided in an universal
part (independent of the fermion species) and a non-universal part (depending on the fermion
species). At the one-loop order, the universal part arises from the gauge-boson self energies
in terms of the gauge-boson counterterms in (7.34) and (7.35). The non-universal part arises
from the vertex-corrections and the fermion field renormalization contained in the vertex form
factors F fV,A.

The leading one-loop contribution to the universal parts are the corrections to the ρ para-
meter contained in the counterterm of the weak mixing angle. The light-fermion contributions
via ∆α is absent in the effective couplings at the one-loop order. The corresponding corrections
which are contained in the electric-charge counterterm and ∆r(1) cancel each other in (7.34)
and (7.35). The dominant one-loop parts of ρf and κf are thus given by

∆(1)ρf = ∆ρ(1) + . . . (7.48)

∆(1)κf =
c2W
s2
W

∆ρ(1) + . . . . (7.49)

For a more accurate prediction of the partial Z widths in the THDM we want to improve the
calculation by including also the non-standard two-loop corrections to the ρ parameter, as well
as additional reducible two-loop contributions arising from the non-standard one-loop correction

∆ρ
(1)
NS. These contributions are incorporated very conveniently in terms of the form factors ρf

and κf , as we will describe in the following part. The resulting non-standard contributions to
the partial widths are presented in Section 7.1.3.

For the additional reducible and irreducible two-loop corrections, we are interested in the
contributions to the form factors from ∆α and ∆ρ at the two-loop order. As discussed in
Chapter 6 the corrections from ∆α and ∆ρ can be traced back to the counterterms of the
electric charge and weak mixing angles with the help of the relations (6.9), (6.10), (6.14) and
(6.20). Only these counterterms are therefore needed in the two-loop counterterm vertex for
Zff (the corresponding Feynman rule can be found in Appendix A). Additional corrections
from ∆α and ∆ρ are contained in the two-loop contributions to ∆r from (6.21) and (6.42), which
enter the form factors ρf and κf due to the normalization of the partial widths in terms of
GF . The combination of the contributions from ∆r with the ones from the vertex counterterms
leads to the following two-loop parts

∆(2)ρf = ∆α∆ρ(1) +

(
1− c2W

s2
W

)(
∆ρ(1)

)2

+ δρ(2) + . . . , (7.50)

∆(2)κf = ∆α
c2W
s2
W

∆ρ(1) − c4W
s4
W

(
∆ρ(1)

)2

+
c2W
s2
W

δρ(2) + . . . . (7.51)
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Γf [MeV] Γν Γe,µ Γτ Γu Γd,s Γc Γb ΓZ

X0 167.157 83.966 83.776 299.936 382.770 299.860 375.724 2494.254

c1 -0.055 -0.047 -0.047 -0.34 -0.34 -0.34 -0.30 -2.0

c2 1.26 0.807 0.806 4.07 3.83 4.07 -2.28 19.7

c3 -0.19 -0.095 -0.095 14.27 10.20 14.27 10.53 58.60

c4 -0.02 -0.01 -0.01 1.8 -2.4 1.8 -2.4 -4.0

c5 0.36 0.25 0.25 1.8 0.67 1.8 1.2 8.0

c6 -0.1 -1.1 -1.1 -11.1 -10.1 -11.1 -10.0 -55.9

c7 503 285 285 1253 1469 1253 1458 9267

Table 7.1: Coefficients for the parameterisation formula (7.59) of the partial widths in the SM.

for the form factors in (7.12) and (7.13).
The appearance of the light fermion contribution ∆α in the two-loop terms is a consequence

of the parameterization of v2 via (6.23). Using the reparameterization of ∆ρ(1) in terms of the
Fermi-constant leads to the two-loop shift from (6.26). This two-loop shift cancels the reducible
contributions with ∆α, and the form factors in the GF -expansion are given by

∆(1)ρf = ∆ρ(1) + . . . , (7.52)

∆(2)ρf =
(

∆ρ(1)
)2

+ δρ(2) + . . . , (7.53)

and

∆(1)κf =
c2W
s2
W

∆ρ(1) + . . . , (7.54)

∆(2)κf =
c2W
s2
W

δρ(2) + . . . , (7.55)

where ∆ρ(1) and δρ(2) give the corrections to the ρ parameter in the parameterization in terms
of GF (see (6.26) and (6.27)). These leading reducible contributions can also be obtained from
the expansions

ρf =
1

1−∆ρ(1) − δρ(2)
+ · · · = 1 + ∆ρ(1) +

(
∆ρ(1)

)2

+ δρ(2) + . . . , (7.56)

κf = 1 +
c2W
s2
W

∆ρ(1) +
c2W
s2
W

δρ(2) + . . . , (7.57)

as derived in [212, 240]

7.1.3 Partial Z widths

Since the initial- and final-state QED+QCD corrections are contained in the radiation factors
RfV,A, the non-standard electroweak corrections to the partial widths can be incorporated with
the help of the loop-expansion of the effective couplings given in (7.6) and (7.7). With the
separation of the one-loop couplings into a standard and a non-standard part in (7.42) and
(7.43), the one-loop SM result is denoted by

Γ
(1)
f,SM = Nf

c Γ0

[(
v2
f + 2vf∆(1)gfV,SM

)
RfV +

(
a2
f + 2af∆(1)gfA,SM

)
RfA

]
. (7.58)

For the electroweak corrections to the partial widths in the SM the complete one-loop
contribution together with the two-loop corrections which contain one or two closed fermion
loops [112] are known. For the most accurate prediction of the partial widths, they are combined
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with the O (ααs) corrections of the gauge boson self-energies [29–31, 98, 226], the higher-
order corrections from the top quark at O

(
αtα

2
s

)
[32, 33, 113], O

(
α2
tα

2
s

)
, O

(
α3
t

)
[34, 35]

and O
(
αtα

3
s

)
[36–38]. The final-state QED- and QCD corrections are incorporated through

the radiation functions RV,A given in (7.20),(7.21), (7.22) and(7.23). Moreover, an additional
vertex-correction of O (ααs) [241–246] is included, which cannot be factorized into electroweak
correction and final-state QED/QCD corrections. Since numerical integrations are necessary in
the calculation of the two-loop integrals, a simple parameterization formula

ΓSM
f = X0 + c1LH + c2∆t + c3∆αs + c4∆2

αs + c5∆αs∆t + c6∆α + c7∆Z (7.59)

with

LH = log
MH

125.7 GeV
, ∆t =

(
m2
t

173.2 GeV

)
, ∆αs =

αs
(
M2
Z

)
0.1184

− 1,

∆α =
∆α

0.059
− 1, ∆Z =

MZ

91.1876 GeV
− 1, (7.60)

is provided in [112], which reproduces the result to a very good accuracy. The coefficients for
the different partial widths and the total Z width are given in Table 7.1. They correspond
to the partial widths in the SM calculated with the SM-result of the W boson mass, MW,SM.
In order to capture the MW -dependence of the corrections of the partial widths, we use the
explicit one-loop result in the SM given in (7.58) and approximate the higher-order corrections
by

∆Γ
(h.o)
f,SM = ΓSM

f − Γ
(1)
f,SM (MW,SM) . (7.61)

This constant approximation is added to the SM one-loop result evaluated for the prediction of
MW in the THDM, yielding

Γf,SM = Γ
(1)
f,SM (MW ) + ∆Γ

(h.o)
f,SM. (7.62)

The additional non-standard corrections are added on top of the SM result, which leads to

Γf = Γf,SM + ∆Γf,NS. (7.63)

for the partial widths in the THDM. The non-standard part

∆Γf,NS = ∆(1)ΓfNS + ∆(2)ΓfNS (7.64)

includes the complete non-standard one-loop part ∆(1)ΓfNS, as well as the leading two-loop

contributions in ∆(2)ΓfNS.
The one-loop non-standard terms of the effective couplings in (7.46) and (7.47) give

∆(1)ΓfNS = Nf
CΓ0

[
2vf∆(1)gfV,NSR

f
V + 2af∆(1)gfA,NSR

f
A

]
(7.65)

as the one-loop non-standard corrections to the partial widths. We denote the result of the
total Z width with just the one-loop non-standard corrections by

Γ
(1)
Z =

∑
f 6=t

(
Γf,SM + ∆(1)ΓfNS

)
. (7.66)

The one-loop non-standard corrections are complemented with the leading two-loop correc-
tions to the ρ parameter together with reducible products of the dominant one-loop contribu-
tions ∆α and ∆ρ(1). For these contributions it is more convenient to use the parameterization
in terms of the form factors ρf and κf . Using the loop-expansions in (7.12) and (7.13) and
keeping only the terms up to the two-loop order results

∆(2)Γf =Γ
(0)
f ∆(2)ρf − 4Γ0N

f
c s

2
WQfvfR

f
V ∆(2)κf

+ 4Γ0N
f
c s

2
WQfR

f
V ∆(1)κf

(
Qfs

2
W∆(1)κf − vf∆(1)ρf

)
, (7.67)
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where we introduced
Γ

(0)
f = Nf

c Γ0

[
v2
fR

f
V + a2

fR
f
A

]
. (7.68)

The two-loop corrections ∆(2)ρf and ∆(2)κf in (7.50) and (7.51) contain factorized terms with
∆α and ∆ρ(1) as well as terms with the irreducible two-loop correction to the ρ parameter,
δρ(2). Consequently, we can write the non-standard part of the two-loop contribution in (7.67)
as

∆(2)ΓfNS = ∆(2)ΓfNS,red + ∆(2)ΓfNS,irr, (7.69)

where the reducible part ∆(2)ΓfNS,red contains only the factorized terms with ∆α and ∆ρ(1) and

the irreducible part ∆(2)ΓfNS,irr contains the irreducible two-loop contribution δρ(2).

The reducible part ∆(2)ΓfNS,red follows from (7.67) by taking for ∆(2)ρf and ∆(2)κf only

the factorized terms with ∆α and ∆ρ(1) from (7.50) and (7.51). For the non-standard part of
the reducible contribution, the quantity ∆ρ(1) has to be divided in the top-Yukawa correction

∆ρ
(1)
t and the non-standard correction ∆ρ

(1)
NS (see (5.87)). The terms without ∆ρ

(1)
NS are already

incorporated in the SM result of the partial widths. Therefore, the non-standard part contains
only

∆(2)ΓfNS,red =Γ
(0)
f

[
∆α∆ρ

(1)
NS +

(
1− c2W

s2
W

)(
2∆ρ

(1)
t ∆ρ

(1)
NS +

(
∆ρ

(1)
NS

)2
)]

− 4Γ0N
f
c s

2
WQfvfR

f
V

[
∆α

c2W
s2
W

∆ρ
(1)
NS −

c4W
s4
W

(
2∆ρ

(1)
t ∆ρ

(1)
NS +

(
∆ρ

(1)
NS

)2
)]

+ 4Γ0N
f
c c

2
WQfR

f
V

(
c2WQf − vf

) [
2∆ρ

(1)
t ∆ρ

(1)
NS +

(
∆ρ

(1)
NS

)2
]
. (7.70)

The irreducible part ∆(2)ΓfNS,irr from (7.67) follows from the irreducible terms of ∆(2)ρf

and ∆(2)κf in (7.50) and (7.51), which are given by

∆(2)ρf,irr = δρ(2), (7.71)

∆(2)κf,irr =
c2W
s2
W

δρ(2). (7.72)

With the separation in (5.115) the following non-standard contributions to the partial widths
are specified in the aligned THDM:

• the non-standard two-loop top-Yukawa corrections

∆(2)Γft,NS = Γ
(0)
f δρ

(2)
t,NS − 4Γ0N

f
c QfvfR

f
V c

2
W δρ

(2)
t,NS, (7.73)

• the pure non-standard scalar two-loop corrections

∆(2)ΓfH,NS = Γ
(0)
f δρ

(2)
H,NS − 4Γ0N

f
c QfvfR

f
V c

2
W δρ

(2)
H,NS, (7.74)

• the mixed non-standard scalar corrections

∆(2)ΓfH,Mix = Γ
(0)
f δρ

(2)
H,Mix − 4Γ0N

f
c QfvfR

f
V c

2
W δρ

(2)
H,Mix. (7.75)

The total irreducible two-loop part ∆(2)ΓfNS,irr is given by the sum

∆(2)ΓfNS,irr = ∆(2)Γft,NS + ∆(2)ΓfH,NS + ∆(2)ΓfH,Mix. (7.76)

The reducible part in the IHDM is identical to ∆(2)ΓfNS,red from the THDM in the alignment
limit. Differences arise in the irreducible part, since there exists only one irreducible two-loop

contribution δρ
(2)
IHDM to the ρ parameter in the IHDM. The corresponding correction to the

partial widths is given by

∆(2)ΓfIHDM = Γ
(0)
f δρ

(2)
IHDM − 4Γ0N

f
c QfvfR

f
V c

2
W δρ

(2)
IHDM, (7.77)
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and is corresponding to ∆(2)ΓfH,Mix (see the discussion in Section 5.2.4).

In total the result for the partial widths is

Γf = Γf,SM + ∆(1)ΓfNS + ∆(2)ΓfNS (7.78)

with
∆(2)ΓfNS = ∆(2)ΓfNS,red + ∆(2)Γft,NS + ∆(2)ΓfH,NS + ∆(2)ΓfH,Mix (7.79)

in the aligned THDM, and

∆(2)ΓNS = ∆(2)ΓfNS,red + ∆(2)ΓfIHDM (7.80)

in the IHDM.
The decay of the Z boson into the b and the b quark receives additional non-standard

corrections from the two-loop vertex diagrams with the non-standard scalars and the top quark
as internal particles. These diagrams lead to corrections of O

(
α2
t

)
or of O (αtλi), which are of

the same order as the two-loop corrections to the ρ parameter from the top-Yukawa coupling,

δρ
(2)
t,NS. The calculation of these vertex corrections is however beyond the scope of this work

and they are therefore not included in the prediction of the total Z width.

7.2 The effective leptonic weak mixing angle

The effective mixing angles are commonly used to parameterize the ratio of the effective coup-
lings via

sin2 θfeff = s2
f ≡

1

4 |Qf |

(
1−

gfV
gfA

)
= s2

Wκ
f . (7.81)

Assuming lepton universality and separating off lepton mass effects, a common leptonic mixing
angle,

s2
l = sin2 θleff ≡ s2

Wκ = s2
W (1 + ∆κ) , (7.82)

is defined, which has been measured with a high accuracy and is therefore well suited for test-
ing the Standard Model and its extensions. Experimentally it is determined by the forward-
backward asymmetry AFB in e+e− annihilations, obtained by the difference between the integ-
rated cross-sections over the forward and backward hemispheres, or the left-right asymmetry
ALR between the cross-sections for left- and right-handed electron helicities. At the tree-level
the effective couplings are given by the tree-level coupling vl and al and the effective leptonic
mixing angle is identical to the on-shell mixing angle s2

W from (4.23),

s2
l = s2

W =
1

4

(
1− vl

al

)
. (7.83)

The higher-order corrections are conventionally absorbed in the quantity ∆κ. It depends on
all the particles which enter in the virtual corrections. An additional model-dependence is
contained in the on-shell weak-mixing angle s2

W , since it is calculated from the prediction of
MW in terms of the Fermi-constant GF .

The loop corrections to glV,A lead to deviations from κ = 1. The one-loop expansion (7.16)
results in

s2
l = s2

W

(
1 +

vl
vl − al

(
∆(1)glV
vl

− ∆(1)glA
al

))
. (7.84)

The expressions from (7.34) and (7.35) give the one-loop contribution

∆κ(1) = −1

2

sW
cW

δ(1)ZAZ +
δ(1)s2

W

s2
W

+
vl

vl − al

(
F lV
(
M2
Z

)
vl

−
F lA
(
M2
Z

)
al

)
. (7.85)

The one-loop SM correction to the effective couplings in (7.44) and (7.45) lead to

∆κ
(1)
SM = −1

2

sW
cW

δ(1)ZSM
AZ +

δ(1)s2
W,SM

s2
W

+
vl

vl − al

(
F lV,SM

vl
−
F lA,SM

al

)
, (7.86)
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as the one-loop contribution to ∆κ in the SM. For the leptonic form factors we use l = e.
The one-loop result of s2

l in the SM was calculated in [247–250]. QCD corrections are known
at the two-loop order [29–31, 96–98, 226], as well as the leading three-loop [32, 33, 113] and
four-loop corrections [36–38] from the top quark. The two-loop electroweak contributions in
the SM are calculated in [107–110]. The leading three-loop corrections to the ρ parameter at
O
(
G3
Fm

3
t

)
and O

(
G2
Fα

2
sm

2
t

)
are calculated for a massless Higgs in [35] and with Higgs mass

dependence in [34]. Three-loop electroweak corrections of O
(
G3
FM

4
H

)
for a large Higgs mass

were obtained in [115, 227].
In [110] a simple parameterization is given, which incorporates the complete electroweak

one- and two-loop corrections together with the QCD corrections of O (ααs) [29–31, 96–98,
226] and O

(
αα2

s

)
[32, 33, 113] and the leading electroweak three-loop corrections of O

(
G3
Fm

3
t

)
and O

(
G2
Fα

2
sm

2
t

)
[34, 35]:

s2
l,SM = s0 + d1LH + d2L

2
H + d3L

4
H + d4

(
∆2
H − 1

)
+ d5∆α

+ d6∆t + d7∆2
t + d8∆t (∆H − 1) + d9∆αs + d10∆Z ,

(7.87)

with

LH = log

(
MH

100 GeV

)
, ∆H =

MH

100 GeV
, ∆α =

∆α

0.05907
− 1,

∆t =

(
m2
t

178.0 GeV

)2

− 1, ∆αs =
αS (MZ)

0.117
− 1, ∆Z =

MZ

91.1876 GeV
− 1.

(7.88)

The coefficients are specified by

s0 = 0.2312527, d1 = 4.729 · 10−4, d2 = 2.07 · 10−5, d3 = 3.85 · 10−6,

d4 = −1.85 · 10−6, d5 = 2.07 · 10−2, d6 = −2.851 · 10−3, d7 = 1.82 · 10−4,

d8 = −9.74 · 10−6, d9 = 3.98 · 10−4, d10 = −0.655.

(7.89)

Not included are the higher-order corrections of O
(
G3
FM

4
H

)
[115, 227] and O

(
GFm

2
tα

3
s

)
[36–

38].

The effective leptonic mixing angle in the THDM receives additional non-standard contri-
butions in two ways. The on-shell weak mixing angle s2

W in (7.82) depends on the THDM
parameters since it is calculated from the prediction of MW in the THDM, which is described
in Chapter 6. In addition there exist also explicit non-standard contributions to the quantity
∆κ. Due to the alignment limit we can write ∆κ as

∆κ = ∆κSM + ∆κNS, (7.90)

with a SM-like part ∆κSM and a non-standard part ∆κNS.
The standard part ∆κSM depends also on the W boson mass. For the one-loop correction of

∆κ in the SM we use the explicit result from (7.86), which depends on the given input of MW .
Furthermore, we approximate the higher-order contribution to ∆κ in the SM by the constant
term

δκ
(h.o.)
SM = ∆κ

(h.o.)
SM −∆κ

(1)
SM (MW,SM) . (7.91)

The part ∆κ
(h.o.)
SM is extracted from s2

l,SM in (7.87), which corresponds to the prediction of the
effective leptonic mixing in the SM for MW = MW,SM. By solving (7.82) for ∆κ we obtain

∆κ
(h.o.)
SM =

s2
l,SM

1− M2
W,SM

M2
Z

− 1. (7.92)

In total the SM part of ∆κ is obtained as

∆κSM = ∆κ
(1)
SM (MW ) + δκ

(h.o.)
SM . (7.93)
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The non-standard part

∆κNS = ∆κ
(1)
NS + ∆κ

(2)
NS (7.94)

contains the non-standard one-loop contribution ∆κ
(1)
NS and the leading two-loop contribution

∆κ
(2)
NS. The vertex corrections and the corrections to the lepton self-energies from the non-

standard scalars are suppressed due to the small Yukawa couplings of the leptons. Consequently,

we neglect the non-standard contributions to the form-factors F
(l)
V,A. The one-loop non-standard

correction to ∆κ is then given by

∆κ
(1)
NS = −1

2

sW
cW

δ(1)ZNS
γZ +

δ(1)s2
W,NS

s2
W

. (7.95)

The index on the counterterm indicates that only the non-standard part of the self-energies
are used in the renormalization conditions in (4.19) and (4.25). We denote the result of the
effective leptonic mixing angle including just the one-loop non-standard corrections by

sin2 θ
(1)
eff =

1−

(
M

(1)
W

MZ

)2
(1 + ∆κSM + ∆κ

(1)
NS

)
, (7.96)

where M
(1)
W is the result for the W boson mass, which includes just the one-loop part of the

non-standard contribution ∆rNS (see the discussion in Chapter 6).

The non-standard two-loop part ∆κ
(2)
NS incorporates the leading two-loop corrections to the

ρ parameter from the top-Yukawa coupling and the scalar self-interaction. With the two-loop

contribution to κ from (7.51) the non-standard two-loop part ∆κ
(2)
NS can be written as

∆κ
(2)
NS = ∆κ

(2)
NS,red + ∆κ

(2)
NS,irr, (7.97)

where the reducible part ∆κ
(2)
NS,red contains the factorized terms with ∆α and ∆ρ(1) and the

irreducible part ∆κ
(2)
NS,irr contains the terms with δρ(2).

For the reducible non-standard part ∆κ
(2)
NS,red we insert the one-loop contribution

∆ρ(1) = ∆ρ
(1)
t + ∆ρ

(1)
NS (7.98)

into the factorized terms with ∆α and ∆ρ(1) in (7.51). Since the terms without ∆ρ
(1)
NS are

already incorporated in ∆κSM, the non-standard reducible part is given by

∆κ
(2)
NS,red = ∆α

c2W
s2
W

∆ρ
(1)
NS −

c4W
s4
W

(
2∆ρ

(1)
t ∆ρ

(1)
NS +

(
∆ρ

(1)
NS

)2
)
. (7.99)

The irreducible part ∆κ
(2)
NS,irr incorporates the terms from (7.51) which contain δρ(2). In (5.115)

the non-standard part of δρ(2) is divided in the different finite contributions, which lead to the
following irreducible two-loop corrections to κ:

• the contribution from the non-standard top-Yukawa correction

∆κ
(2)
t,NS =

c2W
s2
W

δρ
(2)
t,NS, (7.100)

• the contribution from the pure non-standard scalar corrections

∆κ
(2)
H,NS =

c2W
s2
W

δρ
(2)
H,NS, (7.101)

• the contribution from the mixed scalar corrections

∆κ
(2)
H,Mix =

c2W
s2
W

δρ
(2)
H,Mix. (7.102)
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The total irreducible non-standard part is then given by

∆κ
(2)
NS,irr = ∆κ

(2)
t,NS + ∆κ

(2)
H,NS + ∆κ

(2)
H,Mix. (7.103)

The reducible part ∆κ
(2)
NS,red is identical in the IHDM and the THDM in the alignment

limit. Differences arise however in the irreducible part, since there exists just one irreducible

non-standard two-loop correction to the ρ parameter in the IHDM, which is denoted by δρ
(2)
IHDM

in Section 5.2.4. The corresponding contribution to ∆κ is

∆κ
(2)
IHDM =

c2W
s2
W

δρ
(2)
IHDM. (7.104)

With these non-standard corrections, the prediction of the effective leptonic mixing angle is
given by

s2
l =

(
1− M2

W

M2
Z

)(
1 + ∆κ

(1)
SM + δκ

(h.o)
SM + ∆κ

(1)
NS + ∆κ

(2)
NS

)
(7.105)

with
∆κ

(2)
NS = ∆κ

(2)
NS,red + ∆κ

(2)
t,NS + ∆κ

(2)
H,NS + ∆κ

(2)
H,Mix (7.106)

in the aligned THDM and

∆κ
(2)
NS = ∆κ

(2)
NS,red + ∆κ

(2)
IHDM (7.107)

in the IHDM. As mentioned before, the prefactor in (7.105) contains also the non-standard
corrections in MW . In order to have a consistent calculation, the non-standard corrections in the

calculation ofMW are always corresponding to those in ∆κ. For example, since sin2 θ
(1)
eff in (7.96)

includes only the non-standard one-loop contribution ∆κ
(1)
NS, the calculation of M

(1)
W includes

also only the one-loop contribution ∆r
(1)
NS as the non-standard correction. If furthermore the

reducible contribution ∆κ
(2)
NS,red is added to the calculation of ∆κ, also the reducible contribution

∆r
(2)
NS,red is contained in the calculation of MW , and so forth.
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Chapter 8

Numerical Results

In this chapter we present numerical results for the prediction of the W boson mass, MW , the
effective leptonic mixing angle, sin2 θleff ≡ s2

l , and the total width of the Z boson, ΓZ in the
various step of the approximations. The predictions are compared with the experimental results

MW = 80.385± 0.015 GeV, (8.1)

s2
l = 0.23153± 0.00016, (8.2)

ΓZ = 2.4952± 0.0023 GeV. (8.3)

The value for MW is taken from [213]; for the other two observables the experimental values
are given in [230].

We present specific parameter configurations which highlight the impact of the different
two-loop corrections. After this general discussion we investigate specific scenarios which are
motivated by different phenomenological aspects of the THDM. Of particular interest are the
results in the IHDM, for which we investigate also scenarios preferred by astrophysical con-
straints.

The comparison of the theoretical predictions with the experimental results yields restric-
tions on the free parameters. Additionally shown are the theoretical constraints from tree-level
unitarity and vacuum stability, as given in Section 2.7. Since these constraints are obtained
only at the tree-level, they should be regarded as an estimate for parameters that are of interest
in physical scenarios. A more thorough analysis should include the theoretical constraints at
next-to-leading order.

8.1 Input parameters

For the analysis of the precision observables the following input for the SM parameters [213]
are used

MZ = 91.1876 GeV, (8.4)

mt = 173.21 GeV, (8.5)

αs
(
M2
Z

)
= 0.1181, (8.6)

Gµ = 1.1663787 · 10−5 GeV−2, (8.7)

α−1
em = 137.035999139. (8.8)

For the mass of SM-like Higgs boson we use the value

mh0 = 125 GeV. (8.9)

In addition we also need the input for the shift ∆α in the electromagnetic fine structure constant,
given in (6.8). It can be split into a leptonic and a hadronic part

∆α = ∆αlept + ∆αhad. (8.10)
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The leptonic contribution can be calculated directly with the measured lepton masses. Taking
into account the corrections up to the three-loop order [251] leads to

∆αlept = 0.031497. (8.11)

Since perturbative QCD is not applicable in the low-energy range, the hadronic part has to be
extracted from experimental data with the help of dispersion relations. For our analysis we use

∆αhad = 0.027572± 0.000359 (8.12)

from [252], which is also used in [106] for the prediction of MW in the SM. In total we have

∆α = 0.05907, (8.13)

which is the default value for ∆α in the parameterizations in (6.30) and (7.87).
With these input parameters the SM prediction for MW , s2

l and ΓZ from (6.30), (7.59) and
(7.87) yield

MW,SM = 80.360± 0.004 GeV, (8.14)

s2
l,SM = 0.231514± 0.000047, (8.15)

ΓZ,SM = 2.49405± 0.0005 GeV, (8.16)

with the intrinsic theoretical uncertainties from currently unknown higher-order corrections,
which are estimated in [106, 110, 112].1 While the prediction of the effective leptonic mixing
angle and the total Z width are in good agreement with the measurements, there is a slight
tension between the prediction of MW and its experimental value.

For the radiation factors RfV,A of the partial widths in (7.3) and (7.4) we also need the

running masses of the charm and the bottom quark at the scale M2
Z . The result from the

program RunDec [239] gives

mc

(
M2
Z

)
=0.435 GeV, (8.17)

mb

(
M2
Z

)
=2.859 GeV. (8.18)

The total Z width also depends on the bottom-Yukawa coupling, due to the decay Z → bb.
The coupling of the non-standard scalars to the bottom quark, which are contained in the
non-standard one-loop corrections to the Zbb-vertex, differ in the various types of the THDM.
The following results for the total Z width are obtained for a THDM of type-II (which has the
same structure for the bottom-Yukawa coupling as the THDM of type-Y).

The predictions of MW and s2
l do not depend on the type of THDM, since the bottom-

Yukawa coupling is neglected in the two-loop contribution δρ
(2)
t,NS and the remaining non-

standard corrections are independent of the Yukawa couplings.
We present results for a THDM without a hard violation of the Z2 symmetry, such that

Λ6 = Λ7 = 0. As discussed in Chapter 5 this version of the THDM covers already the main
characteristics of the two-loop corrections. The free parameters entering the predictions of MW ,
s2
l and ΓZ are therefore the masses of the non-standard scalars, tβ and the parameter λ5, which

is used to replace m2
12 with the help of (2.50).

In the IHDM the one-loop non-standard corrections of MW , s2
l and ΓZ depend only on the

masses of the non-standard scalars. The non-standard two-loop correction δρ
(2)
IHDM introduces

an additional dependence on the parameter Λ345 defined in (2.114), which controls the coupling
of the dark matter candidate to the SM-like Higgs.

8.2 Influence of reducible two-loop corrections

The two-loop contributions to the precision observables are classified in Chapter 6 and Chapter 7
into reducible and irreducible contributions. The reducible parts contain only the factorized

1Additional parametric uncertainties in the theoretical predictions arise from the experimental errors of the
input parameters. These parametric uncertainties can be obtained from variations of the input parameters in
the parameterizations in (6.30), (7.59) and (7.87).
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8.2. Influence of reducible two-loop corrections
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Figure 8.1: Influence of the reducible two-loop corrections on MW . The difference to the SM
result is shown for a variation of the charged Higgs mass with mH0 = 500 GeV and mA0 =
550 GeV. The blue dashed line corresponds to the result, which includes just the one-loop non-

standard correction ∆r
(1)
NS. The green dotted line includes in addition the reducible product

between ∆α and ∆ρ
(1)
NS. The solid magenta line presents the result which contains the complete

non-standard reducible correction ∆r
(2)
NS,red. The grey shaded region displays the measurement

with its 1σ uncertainties.

terms with the one-loop quantities ∆α and ∆ρ(1). In the following we investigate the influence
of the non-standard reducible contributions to MW , s2

l and ΓZ , which arise due to the non-

standard one-loop correction to the ρ parameter, ∆ρ
(1)
NS. These contributions are identical in the

different types of the THDM and also in the IHDM. Since ∆ρ
(1)
NS has a great sensitivity on the

mass difference between the charged and neutral scalars, the results are presented for a variation

of mH± for fixed values of mH0 and mA0 . As discussed in Chapter 5, the contribution ∆ρ
(1)
NS is

equal to zero for mH± = mH0 and mH± = mA0 due to a restoration of the custodial symmetry.
A small mass difference between H0 and A0 is therefore selected, in order to highlight the effect
of the custodial symmetry. Since very heavy masses of the non-standard scalars are forbidden
by unitarity constraints, the values mH0 = 500 GeV and mA0 = 550 GeV are chosen, which are
in accordance with the theoretical constraints. Degenerate masses of H0 and A0 would lead to

just one zero of ∆ρ
(1)
NS at mH± = mH0 = mA0 .

The influence of the reducible two-loop contribution on the prediction of MW is shown in
Figure 8.1. The results are not depending on the parameters λ5 and tβ . The different lines show
the difference to the SM prediction for different non-standard corrections. The result with the

one-loop non-standard correction ∆r
(1)
NS is presented by the blue dashed line. The effects of the

different reducible terms in (6.39) are displayed separately. The green dotted line corresponds

to the result, which includes the product between ∆α and ∆ρ
(1)
NS in addition to the one-loop

non-standard correction. The solid magenta line corresponds to the result with the complete

reducible two-loop correction ∆r
(2)
NS,red. The grey shaded area presents the measurement of MW

with the 1σ uncertainties.
All the three lines show the quadratic dependence on the mass splitting between charged

and neutral Higgs states and the corrections are small for mH0 ' mH± or mA0 ' mH± . The
reducible contributions lead only to very small deviations from the blue dashed line. The

contribution from the product of ∆α and ∆ρ
(1)
NS increases with the mass difference between

charged and neutral Higgs bosons. However, adding the residual reducible terms leads to a
cancellation (see (6.39)), such that the solid magenta line is almost identical to the blue dashed
line.

Similar cancellations take place also in the quantities ∆κ
(2)
NS,red and ∆(2)ΓfNS,red (see (7.70)

and (7.99)). The reducible contribution to the effective leptonic mixing or the total Z width
therefore yield also only small corrections as can be seen in Figure 8.2. The left panel shows
the results for s2

l and the right panel shows the results for ΓZ . Again the difference to the SM
prediction is presented for a variation of mH± around mH0 = 500 GeV and mA0 = 550 GeV.
The prediction of ΓZ depends also on tβ due to the non-standard one-loop corrections to the
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Figure 8.2: Influence of the reducible two-loop corrections on s2
l (left panel) and ΓZ (right

panel). The difference to the SM prediction in dependence of the charged Higgs mass is shown
for the calculation including just the one-loop non-standard corrections (blue dashed lines) as
well as the calculation with the additional reducible two-loop corrections (solid magenta lines).
The grey shaded region displays the measurements with their 1σ uncertainties.

decay Z → bb. The results in the right panel of Figure 8.2 correspond to tβ = 2. The blue
dashed lines present the prediction with the one-loop non-standard corrections. The solid
magenta lines give the prediction including also the reducible two-loop corrections. The grey
shaded area correspond to the measurements with their 1σ uncertainties. For both observables
only small differences due to the reducible contributions are visible.

In total the investigation of the reducible corrections showed that their effect on the predic-
tions of MW , s2

l and ΓZ is negligible, due to the cancellation between the different terms.

8.3 Results in the aligned THDM

Since the non-standard one-loop contribution ∆ρ
(1)
NS is very sensitive on the difference between

the masses of the charged and neutral scalars, we investigate the effect of a variation of mH± for
constant masses of the neutral Higgs states. In order to highlight the influence of the custodial
symmetry, we select again the values mH0 = 500 GeV and mA0 = 550 GeV for the masses
of the neutral scalars. Results for different values of tβ and λ5 are presented in Figure 8.3.
The upper row shows the prediction of MW , the middle row shows the prediction for the
effective leptonic mixing angle and the lower row shows the prediction for the total Z width.
In the upper panels of the different graphs we display the deviation from the SM result for the
calculation which includes either just the one-loop non-standard corrections (blue dashed line)
or all the available non-standard corrections (purple solid line). The grey shaded areas display
the experimental results with their 1σ uncertainties. The lower panels show the results with
the individual two-loop contributions. To highlight the effect of the two-loop corrections, we
subtract the result which includes just the one-loop and the reducible non-standard parts. The
different lines in Figure 8.3 correspond to the calculation with different irreducible two-loop
corrections. The result of the red line includes just the corrections from the non-standard top-

Yukawa contribution, δρ
(2)
t,NS, which is described in Section 5.2.3.2. The orange line includes

just the non-standard correction δρ
(2)
H,NS, which originates only from the interaction between the

non-standard scalars and is described in Section 5.2.3.3. The green line includes just δρ
(2)
H,Mix,

which originates from the interaction of the non-standard scalars with the SM-like scalars and
is described in Section 5.2.3.4. Note that the W boson mass used in the prediction of s2

l and
ΓZ is also calculated with the corresponding two-loop contribution.

The one-loop non-standard quantities ∆r
(1)
NS and ∆κ

(1)
NS are only dependent on the scalar

masses and not on tβ and λ5. The one-loop corrections to the Z width has a dependence
on tβ from the non-standard one-loop vertex corrections to Z → bb. The blue dashed lines

show clearly that the dominant one-loop correction to the precision observables is ∆ρ
(1)
NS. The

resulting corrections to the SM predictions are small for mH± ' mH0 or mH± ' mA0 and
grow quadratically with the mass difference between charged and neutral scalars. Since the
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Figure 8.3: Results of MW (upper row), s2
l (middle row) and ΓZ (lower row) for a variation of

mH± . The masses of the neutrals scalars are mH0 = 500 GeV and mA0 = 550 GeV. The upper
panels show the difference to the SM result for the calculation with the one-loop non-standard
correction (blue dashed line) and the calculation including all the available non-standard correc-
tion (purple line). The measured values with the 1σ uncertainties are indicated by the grey area.

The lower panels display the effect from the different corrections of δρ
(2)
t,NS (red line), δρ

(2)
H,NS

(orange line) or δρ
(2)
H,Mix (green line). In order to reveal the effect of the additional two-loop

corrections the results which contain only the one-loop and two-loop reducible non-standard
corrections are subtracted.
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SM prediction of MW lies slightly below the experimental 1σ limits, a moderate mass splitting
between charged and neutral scalars can improve the agreement of the theoretical prediction
with the measurement. For the effective leptonic mixing angle, on the other hand, increasing the
mass splitting between neutral and charged Higgs states distorts the good agreement between
theory and experiment. The 1σ limits of the Z width are violated only for very large mass
differences in the order of 70−80 GeV. Such large mass splittings lead already to strong conflicts
between the theoretical predictions and the measurements of MW and s2

l . The restrictions of
the mass difference between the charged and neutral scalars which is obtained from ΓZ are
therefore not competitive with the restrictions from MW and s2

l .

For tβ = 1 the contribution from δρ
(2)
H,NS is zero. The top-Yukawa contribution δρ

(2)
t,NS

can have a noticeable influence, especially for equal charged and neutral masses, for which

both ∆ρ
(1)
NS and δρ

(2)
H,Mix are zero. For MW the top-Yukawa correction can result in a shift

of 5 − 10 MeV. Increasing tβ suppresses the top-Yukawa contribution and the non-standard

contributions δρ
(2)
H,NS is enhanced by the quadratic dependence in tβ (see the discussion in

Section 5.3). The sign of δρ
(2)
H,NS depends on the mass hierarchy between H± and A0. For

mH± = mH0 both the corrections from ∆ρ
(1)
NS and δρ

(2)
H,Mix are equal to zero, and δρ

(2)
H,NS gives

the largest non-standard effect. The contribution δρ
(2)
H,Mix is not affected by the choice of tβ .

Similar to the correction from ∆ρ
(1)
NS it is zero for mH± = mH0 or mH± = mA0 and grows

quadratically with the mass difference between charged and neutral scalars. Larger positive
values of λ5 suppress the couplings between h0 and the non-standard scalars and reduce the

size of the correction δρ
(2)
H,Mix.

In Figure 8.4 and Figure 8.5 we display regions in the parameter space of the THDM, which
lead to an agreement between the theoretical prediction and the measurement of MW (in the
upper rows), the effective leptonic mixing angle (in the middle rows) and the total Z width
(in the lower rows). Results including all the available two-loop corrections are shown for a
variation of tβ and λ5 (Figure 8.4) or mH± and tβ (Figure 8.5). The masses of the neutral
scalars are again set to mH0 = 500 GeV and mA0 = 550 GeV. The values of the remaining
parameters are specified above the different plots. The coloured regions illustrate the parameter
configurations, which lead to a prediction in accordance with the 1σ uncertainty level of the
measurements. Different shades are used to indicate the variation of the result, as specified
by the legends on the right. Moreover the red-shaded areas display the excluded parameters
from the constraints from vacuum stability and tree-level unitarity. In Figure 8.5 we illustrate
the mass configurations for which the predictions including just the one-loop non-standard
corrections are within the 1σ uncertainty level of the measurement by the grey shaded regions.

Figure 8.4 illustrates the influence of tβ and λ5 on the precision observables in more detail.

Since the one-loop contributions ∆r
(1)
NS and ∆κ

(1)
NS are only affected by the scalar masses, the

predictions for M
(1)
W and sin2 θ

(1)
eff stay constant for the variation of tβ and λ5 and their value

are given in the right corner at the bottom of the different panels. As discussed before the

prediction of Γ
(1)
Z contains a dependence on tβ , and the value given in the bottom corner of the

lower row corresponds to tβ = 1. In both scenarios M
(1)
W and Γ

(1)
Z are within the experimental

1σ limits, whereas sin2 θ
(1)
eff lies on the lower edge of the 1σ limits (on the left side) or below

the 1σ limits (on the right side). The contribution δρ
(2)
H,NS has the highest sensitivity on tβ

and λ5. The corrections from this contribution are small for the regions around tβ ' 1 or
λ5v

2 ' 2m2
H0 , in which the coupling between three non-standard scalars is small (see (5.130)).

Going away from this regions enhances the size of δρ
(2)
H,NS. The two different values of mH± lead

to different signs of δρ
(2)
H,NS. On the left side the theoretical predictions of MW and ΓZ overshot

the 1σ bounds of the measurements. On the right side they fall below the 1σ limits due to the

different sign of δρ
(2)
H,NS. The result of s2

l on the right side runs through the 1σ limit due to the

positive correction from δρ
(2)
H,NS. For tβ = 1 the other two non-standard two-loop contribution

can become important. In the right panel in the top of Figure 8.4 the enhancement of ∆r
(2)
H,Mix

with λ5 forbids the region around tβ = 1 for λ5 < 0. In the left panel at the top, the negative

top-Yukawa contribution ∆r
(2)
t,NS is large enough to compensate the enhancement of ∆r

(2)
H,Mix,
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Figure 8.4: Influence of tβ and λ5 on the theoretical prediction of MW (upper row), s2
l (middle

row) and ΓZ (lower row). The coloured areas indicate parameter configurations for which the
calculation with all the available non-standard corrections are within the measured 1σ limits
(see the legends on the right). The value of the mass of H± are given above the corresponding
figures. The masses of the neutral scalars are set to mH0 = 500 GeV and mA0 = 550 GeV. The
corresponding results of the calculation with just the non-standard one-loop correction is given
in the right corner at the bottom. The red-shaded areas give the parameter regions which are
excluded by vacuum stability and tree-level unitarity.

91



8. Numerical Results

allowing also negative values of λ5 for tβ = 1. The theoretical constraints from vacuum stability
and tree-level unitarity are displayed by the red-shaded areas in Figure 8.4. The upper bound
on λ5 is coming mainly from the requirement of the stable vacuum. The lower bound on λ5 is
coming only from the unitarity of the tree-level scattering matrix. In the alignment limit this
constraint on the quartic scalar couplings can be fulfilled either for tβ ' 1 or λ5v

2 ' 2m2
H0 (see

for example the discussion in [216]). The theoretical constraints are already very restrictive and
exclude a large part of the regions in which the two-loop contribution give large corrections.
However with more precise measurements of the observables at the LHC and future colliders,
the two-loop contributions can lead to bounds on the parameter space, which are competitive
with the theoretical constraints.

Figure 8.5 repeats the analysis for a variation of mH± and tβ . The neutral masses are set
again to mH0 = 500 GeV and mA0 = 550 GeV. Results are shown for λ5 = 1 on the left side
and for λ5 = 6 on the right side. As before, the coloured areas display the regions in which the
prediction with all the available non-standard corrections agrees with the experimental 1σ limit.

For comparison, the grey-shaded areas illustrate the corresponding regions for M
(1)
W , sin2 θ

(1)
eff

and Γ
(1)
Z . Around tβ = 1 the contribution δρ

(2)
H,NS is close to zero and the main deviations

from the grey areas arise from δρ
(2)
H,Mix, which gives additional corrections in the mass-splitting

between charged and neutral scalars. Increasing tβ enhances δρ
(2)
H,NS, which leads to additional

deviations from the grey areas. These deviations are especially influential for mH0 = mH± ,

where ∆ρ
(1)
NS and δρ

(2)
H,Mix are zero. For tβ smaller than one, the corrections from the top-

Yukawa coupling become relevant. In the total Z width this coupling influences already the
non-standard one-loop corrections to the decay into the b quarks. However, such small values
of tβ are restricted strongly by flavour observables like the leptonic decays of B0 mesons or the

mass difference in B0 −B0
mixing (see for example [82]).

The scenarios in the previous section are representative examples for the modification of the
theoretical prediction by the two-loop corrections. Selecting other values for the scalar masses
will not change the influence of tβ . For heavier scalars the results in the tβ-λ5-plane look similar
to Figure 8.4 but for larger values of λ5. The regions of the grey areas in the mH±-tβ-plane

are affected by the values of mH0 and mA0 , since these correspond to the zeros of ∆ρ
(1)
NS in a

mH± variation. Especially striking are the corrections from δρ
(2)
H,NS in the region mH0 ' mH± ,

which can be additionally increased with a larger mass difference between H0 and A0. The
scenario with equal masses of H0 and H± is often selected in phenomenological studies of the

THDM, since ∆ρ
(1)
NS is equal to zero and large corrections to electroweak precision observables

are absent at the one-loop order. We will look at a few examples which demonstrate that the
two-loop contributions can become essential in such scenarios. We start with a scenario in which
A0 is light. Such a scenario can provide an explanation for the discrepancy between the SM
prediction and the measurement of the anomalous magnetic moment of the muon. Afterwards
we will look at two benchmark scenarios which have been worked out by the LHC Higgs Cross
Section Working Group [253].

8.3.1 Results for a light pseudoscalar

A light pseudoscalar with mA0 < 125 GeV is still not ruled out by the collider experiments.
A detailed analysis of theoretical and experimental constraints on the THDM parameter space
with a light pseudoscalar can be found in [77]. In the following we present the additional
restrictions arising from the two-loop corrections to MW , s2

l and ΓZ . The mass of the charged
scalar has to be close to one of the masses of the neutral scalars, in order to avoid large one-
loop corrections to the precision observables. Since a light charged scalar is excluded by direct
searches at LEP and LHC [70, 83], mH± has to be close to mH0 and both masses are heavier
than mA0 . However, the mass splitting between A0 and the other scalars cannot be arbitrary
large, due to the theoretical constraints in Section 2.7. In Figure 8.6 we present results with
mA0 = 60 GeV for a variation of the charged Higgs mass around mH0 = 250 GeV, a value
which is still compatible with the restrictions from vacuum stability and tree-level unitarity.
For mA0 < mh0/2, the coupling of h0 to two pseudoscalars has to be small to suppress the
decay channel h0 → A0A0 [77]. In the alignment limit this requires λ5v

2 ' 2m2
A0 + m2

h0 (see
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Figure 8.5: Influence of mH± and tβ on the theoretical prediction of MW (upper row), s2
l

(middle row) and ΓZ (lower row). The coloured areas indicate parameter configurations for
which the calculation with all the non-standard corrections reproduces the measured values
(see the legend on the right). For the massses of the neutral scalars the values mH0 = 500 GeV
and mA0 = 550 GeV are chosen. The value of the parameter λ5 is given above the corresponding
figures. The red-shaded areas give the parameter regions which are excluded by vacuum stability
and tree-level unitarity. The grey areas display the mass configurations for which the calculation
with just the one-loop non-standard contributions lies within the 1σ limits of the measured
value.
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Figure 8.6: Results of MW (upper row), s2
l (middle row) and ΓZ (lower row) for a light A0. The

masses of the neutral scalars are set to mH0 = 250 GeV and mA0 = 60 GeV. The upper panels
show the difference to the SM result for the calculation with the one-loop non-standard correc-
tion (blue dashed line) and the calculation including all the available non-standard corrections
(purple line). The measured values with the 1σ uncertainties are indicated by the grey area.

The lower panels display the effect from the different corrections of δρ
(2)
t,NS (red line), δρ

(2)
H,NS

(orange line) or δρ
(2)
H,Mix (green line). In order to reveal the effect of the additional two-loop

corrections the results which contain only the one-loop and two-loop reducible non-standard
corrections are subtracted.
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(5.134)), resulting in

λ5 = 0.377 (8.19)

for mA0 = 60 GeV. The structure of Figure 8.6 is similar to Figure 8.3. The upper panels
show the difference to the SM predictions arising from the one-loop non-standard corrections
(blue dashed line) or all the available non-standard corrections (purple solid line). The lower

panels show the influence on δρ
(2)
t,NS (red line), δρ

(2)
H,NS (orange line) or δρ

(2)
H,Mix (green line).

The results including just the non-standard one-loop and two-loop reducible contributions are
subtracted again, in order to highlight the effect of the different irreducible corrections. On

the left side tβ is equal to one and δρ
(2)
H,NS is zero. The remaining two-loop corrections are

small for mH± ' mH0 . The contribution δρ
(2)
H,Mix follows the direction of ∆ρ

(1)
NS and amplifies

the dependence on the mass difference between H0 and H±. On the right side tβ = 2.5 and

the corrections from δρ
(2)
H,NS give a notable effect, especially for mH± ' mH0 , where the other

two-loop corrections are small. For mH± > mH0 , δρ
(2)
H,Mix starts to compensate the influence of

δρ
(2)
H,NS, since both contributions enter with an opposite sign.
Results for a light pseudoscalar with mA0 = 60 GeV in the tβ-λ5-plane are presented in the

left side of Figure 8.7. As before the coloured regions indicate the parameter configurations for
which the predictions including all the available non-standard corrections are in good agreement
with the experimental 1σ limits (as indicated by the legends on the right). For the selected
values mH0 = 250 GeV and mH± = 260 GeV of the remaining scalar masses, the results for

M
(1)
W and Γ

(1)
Z are within the experimental 1σ limits, whereas the prediction of sin2 θ

(1)
eff is

slightly below the 1σ limits (see the values in the right corner at the bottom of the panels). As

in Figure 8.4 the contribution δρ
(2)
H,NS leads to large corrections for regions away from tβ ' 1

and λ5v
2 ' 2m2

H0 . This corrections are enhanced additionally by the larger mass difference
between H0 and A0.

In the right side of Figure 8.7, the analysis is repeated in the mH± -tβ-plane. The masses
of the neutral scalars are again equal to mA0 = 60 GeV and mH0 = 250 GeV. The regions

in which M
(1)
W , sin2 θ

(1)
eff and Γ

(1)
Z are in good agreement with their experimental 1σ limits are

again indicated by the grey areas. The value of λ5 is set again to 0.377, in order to suppress the
coupling of h0 to two pseudoscalars. For tβ = 1 only slight deviations from the grey areas by

the contributions δρ
(2)
t,NS and δρ

(2)
H,Mix are visible. For larger values of tβ the enhanced influence

of δρ
(2)
H,NS leads to large deviations.

Scenarios with a light A0 are especially appealing with respect to the measured value of
the muon anomalous magnetic moment aµ, since Barr-Zee type two-loop diagrams can provide
an explanation for the 3σ difference between the SM prediction and the measurement [254].
An improved agreement between theory and experiment consistent with several theoretical and
experimental constraints require a type-X model with very large values of tβ (see [95, 255] and
references therein). Usually mH± = mH0 is assumed, to fulfill the constraints from electroweak

precision observables. In this scenario the contributions from ∆ρ
(1)
NS and δρ

(2)
H,Mix vanish. Fur-

thermore, the top-Yukawa contribution δρ
(2)
t,NS is strongly suppressed for such large values of tβ .

However in order to avoid large corrections from the non-standard scalar contribution δρ
(2)
H,NS

the parameter λ5 needs to be adjusted very close to λ5 = 2m2
H0/v2.

8.3.2 Results in the CP -overlap scenario

A selection of different benchmark scenarios of the THDM is given by the LHC Higgs Cross
Section Working Group in [253]. Usually these require equal masses of charged and neutral
Higgs states in order to fulfill the electroweak precision constraints imposed in terms of one-
loop corrections to the S, T and U parameters [214, 215]. For mA0 = mH± both scalar
two-loop corrections to the ρ parameter are zero. Therefore, we concentrate on scenarios with

mH0 = mH± in which additional additional corrections from δρ
(2)
H,NS arise.

The CP -overlap scenario, labelled as the benchmark scenario BP1C in [253], is characterized
by mass-degenerate Higgs-states h0 and A0 with mh0 = mA0 = 125 GeV [256]. The scenario
is used to parameterize a CP -odd admixture to the signal rates of the 125 GeV resonance. A
significant contribution of the pseudoscalar is visible for a production of the two scalars via
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Figure 8.7: Prediction of MW , s2
l and ΓZ for a light A0 in the tβ-λ5-plane (left side) and the

mH± -tβ-plane (right side). For the masses of the neutral scalars the values mH0 = 250 GeV
and mA0 = 60 GeV are selected. The values of the other parameters are specified above
the corresponding plots. The coloured areas indicate parameter configurations for which the
calculation with all the non-standard corrections agrees with the measured values (see the
legends on the right). The red-shaded areas give the parameter regions which are excluded by
vacuum stability and tree-level unitarity. The grey areas in the right panels display the mass
configurations for which the predictions including just the one-loop non-standard contribution
are within the 1σ limits of the measured values.
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Figure 8.8: Prediction of MW , s2
l and ΓZ for a variation of tβ in the CP -overlap benchmark

scenario with mA0 = mh0 = 125 GeV. The other scalar masses are fixed at 300 GeV. The
different lines show the difference to the SM result. The blue dashed lines show the predictions
including just the one-loop non-standard corrections. The predictions including also the avail-
able two-loop corrections are presented by the solid lines. The different colours correspond to
different values of λ5, as indicated by the legend. The measured values with the 1σ uncertainties
are displayed by the grey areas.

gg → h0/A0 or bb → h0/A0, followed by the decay into τ±. The predicted rate depends on
tβ and differs in the various version of the THDM. In the THDM of type-I, the bb-production
can be neglected since there is no enhancement of the bottom-Yukawa coupling with tβ . For
gluon fusion, the production of h0 is dominant except for small values of tβ , which enhance the
coupling of the top quark to A0. Since the CP -odd contribution decreases with tβ , the scenario
in the type-I THDM can be used to parameterize an arbitrary small CP -odd contribution to
the 125 GeV signal. In the THDM of type-II, the CP -odd contribution becomes much more
important due to the enhancement of the bottom-Yukawa coupling with tβ , such that the total
cross section does not approach the SM value for any tβ . The magnitudes of the CP -even and
CP -odd contributions are similar in the investigated range of 1 < tβ < 10 and the scenario is
well-suited to test the CP -properties of the 125 GeV Higgs boson in the τ+τ− channel. For an
elaborate discussion of the benchmark scenario see [256].

In order to obtain an SM-like h0, the alignment limit is chosen in the CP -overlap scenario.
The masses of H0 and H± are set to be equal, but their explicit values have no influence on
the decay of the overlapping states h0 and A0. The remaining free parameter λ5 has also only
a minor impact on the signal rate in the ττ channel. In the analysis of [256] the values

mH0 = mH± = 300 GeV (8.20)

and

λ5 =
2m2

A0

v2
' 0.516 (8.21)

are selected.
The electroweak precision observables MW , s2

l and ΓZ in the CP -overlap scenario are presen-
ted in Figure 8.8. The differences of the predictions to the SM results are shown for a variation
of tβ . The blue dashed lines show the predictions including just the one-loop non-standard cor-
rections. The different solid lines present the prediction including also the two-loop corrections
for three values of λ5. The value in the middle corresponds to the one used in the analysis

of [256]. We present also values below and above, since the contribution from δρ
(2)
H,NS is very
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sensitive on λ5. The masses of H0 and H± are set to 300 GeV, but different masses will lead
to similar results. As discussed before the results for MW and s2

l are not dependent on the dif-
ferent versions of the THDM. For ΓZ the model-dependence of the one-loop corrections to the
decay of the Z into b quarks is negligible for such small values of tβ . The results of Figure 8.8
are therefore applicable in both versions of the CP -overlap scenario. The strong dependence

of δρ
(2)
H,NS on tβ is clearly visible in Figure 8.8. Increasing tβ enhances the deviations from

the blue-dashed lines. For the effective leptonic mixing angle, the good accordance between
measurement and prediction is preserved for a wide range of tβ and the 1σ limits are violated
only for large values of tβ . The situation is different for the mass of the W boson and the total
Z width. The negative corrections to these two observables distort the agreement between
theory and experiment already for smaller values of tβ . Especially for MW this leads to an
increasing tension between theory and experiment. A precise fine-tuning of λ5v

2 ' 2m2
H0 is

required, in order to keep the two-loop corrections in this scenario small in the complete range
of 1 < tβ < 10 used in the CP -overlap scenario.

8.3.3 Results in the exotic decay scenario

Another set of benchmark scenarios is motivated by decays of a heavy Higgs state into light
Higgses [257]. These ’exotic’ decay modes require a sizable mass splitting among the differ-
ent non-standard Higgs states. Once these decay modes are kinematically allowed, they will
dominate over the ’conventional’ decay channels of the heavy Higgs into fermions or gauge
bosons. Since the current exclusion limits from direct searches rely mostly on the conventional
decays, the exotic decay modes can significantly relax these limits. Furthermore the exotic de-
cay modes provide also new discovery channels, which lead to complementary exclusion limits.
First searches with the LHC data at 8 TeV were already conducted by CMS [258].

A large number of benchmark scenarios (labelled as BP2 in [253]) for the exotic Higgs
decays are specified in [257]. In order to fulfill the one-loop constraints from the electroweak
precision measurements the masses of the charged scalar and one of the neutral scalars are
set equal, resulting in the two possible benchmark planes mA0 vs. mH0 = mH± and mH0 vs.
mA0 = mH± . For the remaining parameters, two scenarios are motivated by the theoretical
constraints from unitarity and vacuum stability:

• Case 1: λ5v
2 = 2m2

H0 with tβ = 1.5, 7, 30;

• Case 2: λ5 = 0 with tβ = 1.5.

We will focus on the scenarios with mH0 = mH± , in which the two-loop contribution δρ
(2)
H,NS can

give additional corrections to precision observables. The possible exotic decays are depending
on the mass hierarchy between the non-standard scalars. For mA0 > mH0 = mH± the decays
A0 → H±W∓ and A0 → H0Z are allowed. For mA0 < mH0 = mH± the decays H0 → A0Z,
H0 → A0A0 and H± → A0W± are open. The products of the cross sections and decay
branching ratios in the benchmark planes can be found in [257]. In Figure 8.9 we present the
precision observables MW , s2

l and ΓZ for a variation of mA0 with mH0 = mH± = 350 GeV as
a representative example for these benchmark scenarios. Similar to the previous figures, the
upper panels show the difference to the SM result with the one-loop and two-loop non-standard
corrections. The lower panels highlight the effect of the different two-loop contributions. Results
are shown for λ5 = 0 (left side) and λ5 = 2m2

H0/v2 (right side). The parameter tβ is always set
to tβ = 1.5. The larger values of tβ in Case 1 can be omitted, since the only surviving two-loop

contribution δρ
(2)
t,NS scales as t−2

β .

For equal masses of H0 and H±, the two-loop contribution δρ
(2)
H,Mix is zero. On the left side

of Figure 8.9, δρ
(2)
H,NS is the dominant two-loop contribution. Its sign depends on the hierarchy

between mA0 and mH0 = mH± . The dependence of δρ
(2)
H,NS on mA0 is roughly opposite to

the one of the one-loop non-standard corrections in this example. For s2
l and ΓZ the resulting

modifications are much smaller than the current experimental uncertainties. For MW the

correction from δρ
(2)
H,NS can become important formA0 < mH0 , since the negative shift moves the

prediction further away from the current measurement. This effect will be enhanced for larger
masses of H0, since the coupling between three non-standard scalars is directly proportional
to m2

H0 for λ5 = 0. The region mA0 < mH0 = mH± is constrained additionally from the
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Figure 8.9: Results of MW , s2
l and ΓZ for a variation of mA0 with mH0 = mH± = 350 GeV

and tβ = 1.5. The two sides show results for different values of λ5, which are given at the top
of the figure. The upper panels show the difference to the SM result. Results are shown for the
calculation with the one-loop non-standard correction (blue dashed line) and the calculation
including all the available non-standard correction (purple line). The measured values with
their 1σ uncertainties are displayed by the grey area. The lower panels display the effect from

the different corrections of δρ
(2)
t,NS (red line), δρ

(2)
H,NS (orange line) or δρ

(2)
H,Mix (green line). In

order to reveal the effect of the additional two-loop corrections the results which contain only
the one-loop and two-loop reducible non-standard corrections are subtracted.
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direct search of the decay H0 → A0Z by CMS [258]. For mH0 = 350 GeV only a narrow
window around mA0 ' 100 GeV survives, in which the corrections to MW are substantial. If

mA0 > mH0 = mH± , the correction from δρ
(2)
H,NS is positive and moves the prediction of MW

nearer to the experimental limits. However for large values of mA0 the top-Yukawa contribution

δρ
(2)
t,NS starts to become important, leading to a partial cancellation of the different two-loop

contributions. This cancellation is absent on the right side of Figure 8.9, where the choice of

λ5 sets the contribution δρ
(2)
H,NS equal to zero. The only surviving contribution δρ

(2)
t,NS leads to

a negative shift in the prediction of MW . This shift will be further enhanced for smaller values
of tβ , which increase the top-Yukawa contribution. In this context it is interesting to note that
a THDM with tβ ' 1 and a heavy A0 with mH0 ' mH± < mA0 is favoured by the requirement
of a strong electroweak phase transition in the early universe [57].

8.4 Results in the IHDM

The predictions of the precision observables in the IHDM are dominantly influenced by the
mass difference between the neutral and charged Higgs states. If only the one-loop corrections

∆r
(1)
NS and ∆κ

(1)
NS are considered, the results for MW and s2

l are equivalent to the results in
the aligned THDM, which are shown in the previous section. In the prediction of the total Z
width the non-standard one-loop vertex corrections to Z → bb are absent in the IHDM. The

corrections from the reducible products from ∆ρ
(1)
NS and ∆α are also identical in the IHDM and

in the THDM in the alignment limit. Differences arise by the irreducible corrections in the

gauge-less limit, which consists of just δρ
(2)
IHDM in the IHDM. These corrections introduce an

additional dependence on the parameter Λ345, which is absent in the one-loop corrections.

Figure 8.10 shows the difference to the SM predictions for a variation of the charged Higgs
mass for different values of Λ345 as indicated by the legend on the bottom. The results with
just the non-standard one-loop corrections are displayed by the blue dashed line for comparison.
The values selected for mH0 and mA0 are specified above the corresponding plots. In order to
emphasize the dependence of the result on the mass splitting, we allow also H± to be the
lightest scalar in the variation of mH± , although in this scenario the IHDM provides no dark
matter candidate. As in the previous section, the one-loop results are very sensitive on the mass
difference between charged and neutral scalars. The additional two-loop corrections follow the
behaviour of the one-loop result and enhance the dependence on the mass difference. The two-
loop corrections can be further increased by larger values of Λ345, due to the larger couplings
of the non-standard scalars to h0.

In Figure 8.11 we investigate values in the the mH± -Λ345-plane which lead to an agreement
between the theoretical prediction and the experimental 1σ limits. The corresponding regions
are presented again by the coloured areas, as indicated by the legend on the right. The grey

areas show the corresponding regions for M
(1)
W , sin θ

(1)
eff and Γ

(1)
Z . The red-shaded areas display

the theoretical constraints on the parameter space. In addition to the constraints from tree-
level unitarity and vacuum stability, the constraint of the inert vacuum, as given in (2.131),
is also included. Note that, in difference to the two-loop corrections to the ρ parameter, the
theoretical constraints are also affected by the choice of Λ2. The selected value Λ2 = 1 results
in rather loose bounds. The two columns in Figure 8.11 correspond to different values of mH0

and mA0 , which are given above the corresponding panels. The larger mass difference between
H0 and A0 on the right side splits up the parameter configurations preferred by s2

l and ΓZ
into the two distinct regions around mH± ' mH0 and mH± ' mA0 , where the non-standard
corrections are small. In a similar manner, the two regions preferred by MW are narrowed
for a larger separation of mA0 and mH0 . By comparing the coloured and the grey regions,
the additional sensitivity on the mass splitting between charged and neutral scalars from the
two-loop corrections is visible, which narrows the allowed regions especially for larger values of
Λ345.

After this more general presentation of the two-loop corrections to precision observables in
the IHDM, we want to investigate these contributions in scenarios in which the IHDM agrees
well with dark matter constraints. Apart from direct and indirect searches, dark matter models
are mainly restricted by the measurement of the dark matter relic density

ΩDMh
2 = 0.1184± 0.0012 (8.22)
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Figure 8.10: Prediction of MW , s2
l and ΓZ in the IHDM in dependence of the charged Higgs

mass. The values of mH0 and mA0 are given above the different panels. The different solid lines
represent different values of Λ345, as indicated in the legend at the bottom. The blue dashed
line gives the result including just the non-standard one-loop corrections for comparison. The
experimental values with the 1σ uncertainties are displayed by the grey area.
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Figure 8.11: Results in the IHDM in the mH± -Λ345-plane. The different colour-shades indicate
the size of the prediction, as explained by the legend on the right. The red areas give the
parameter configurations, which are excluded by the theoretical constraints in Section 2.7. The

grey areas display the values of mH± , for which M
(1)
W , sin2 θ

(1)
eff and Γ

(1)
Z are within the 1σ limits

of the measurement.
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Figure 8.12: Two-loop corrections to precision observables in the IHDM for a light dark matter
candidate. A variation of the charged Higgs mass is presented for mass degenerate neutral
scalars with mH0 = mA0 = 50 GeV. The different solid lines correspond to different values of
Λ345 as indicated by the legend. The results of the precision observables which include only the
non-standard one-loop contributions and the non-standard two-loop reducible contributions are

subtracted to highlight the difference arising from the irreducible two-loop correction δρ
(2)
IHDM.

from Planck [259, 260]. Following the discussion in [66], we focus on two mass regions

45 GeV . mH0 . 62.5 GeV (8.23)

and

62.5 GeV . mH0 . 80 GeV, (8.24)

in which the stable scalar H0 can contribute substantially to the relic density, without leading to
dark matter overabundance. The region below mH0 = 45 GeV is excluded by an interplay of the
relic density measurement with LEP and LHC limits. For a mass of the dark matter candidate
which is larger than MW , the decay channel H0H0 → W+W− is open and the relic density
drops below the lower bound of the Planck limit. This is of course no hard exclusion limit,
since different sources of dark matter could also contribute to the relic density. Nevertheless
we will concentrate on the parameter regions in which the IHDM provides an essential part
of the relic density. Another possible region in this respect are large dark matter masses with
mH0 & 490 GeV, which however requires a large mass degeneracy between the inert scalars, to
avoid the suppression of the relic density by the annihilation into longitudinal vector bosons.
Therefore no large corrections to the ρ parameters can be expected in this scenario. For a more
detailed analysis of the different limits on the IHDM see [66] and references therein.

As an example for the first scenario, results of the precision observables in the IHDM
are presented in Figure 8.12 for mH0 = mA0 = 50 GeV. Since mH0 <

mh0
2 , annihilation

of the DM candidate into the scalar h0 is impossible. The only possibility to suppress the
relic density below the upper experimental limit is the coannihilation process H0 + A0 → Z,
which requires almost mass degenerate scalars H0 and A0. The results are presented for a
variation of the charged Higgs mass, starting at the lower bound mH± = 70 GeV, which
was obtained in [261] by a reinterpretation of LEP limits. The size of Λ345 is constrained in
this scenario by the LHC limits on the invisible Higgs decay, since the decay h0 → H0H0

is kinematically open. The analysis in [66], which takes into account the ATLAS search for
an invisible Higgs decay [262], leads to approximately |Λ345| . 0.02. For such small values
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Figure 8.13: Precision observables in the IHDM for mH0 = 70 GeV and mA0 = 200 GeV.
Results are presented for a variation of the charged Higgs mass. The different solid lines
correspond to different values of Λ345 as indicated by the legend. The results of the precision
observables which include only the non-standard one-loop contributions and the non-standard
two-loop reducible contributions are subtracted to highlight the difference arising from the

irreducible two-loop correction δρ
(2)
IHDM.

the effect of the two-loop corrections are tiny, as can be seen in Figure 8.12. The solid lines
present the non-standard corrections to MW , s2

l and ΓZ which arise only from the irreducible

two-loop contribution δρ
(2)
IHDM. The different colours correspond to different values of Λ345, as

indicated by the legend. The resulting corrections to the precision observables are negligible in
comparison to the experimental uncertainties.

For the scenario with 62.5 GeV . mH0 . 80 GeV, results with mH0 = 70 GeV are presen-
ted in Figure 8.13. In contrast to the previous scenario, the annihilation of the dark matter
candidate into h0 is sufficient to suppress the relic density and the masses of A0 and H0 do
not need to be degenerate. The examples in Figure 8.13 correspond to mA0 = 200 GeV and
the charged Higgs mass is varied around this value. As discussed before, the results vanish
for mH± = mA0 . The increase with the mass-splitting between H± and A0 is enhanced if the
scalar A0 is much heavier than H0. Since the decay h0 → H0H0 is kinematically forbidden,
the LHC limits allow a broader range for Λ345. Additional restrictions arise however from di-
rect dark matter searches. As discussed in [66], limits from LUX [263] lead to approximately
|Λ345| . 0.04. The different solid lines correspond to different values within this range, as
indicated by the legend. As before, only the non-standard corrections to MW , s2

l and ΓZ which

arise from the irreducible contribution δρ
(2)
IHDM are presented. The remaining corrections are a

little bit larger than in the previous scenario but still not comparable to the experimental un-
certainties. In total the analysis showed that for very small values of Λ345, which are preferred
by astrophysical constraints, the scalar two-loop corrections can be neglected in the calculation
of precision observables.
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Chapter 9

Conclusions

The indirect restriction of free parameters via the comparison of precisely measured observables
with accurate theoretical predictions played an important role in the validation of the elec-
troweak Standard Model (SM). At higher-orders, also those parameters that are not present at
the tree-level enter through the quantum corrections. After the discovery of a scalar particle at
the LHC all the input parameters of the SM are fixed, such that these precision observables offer
now an excellent possibility to constrain also new physic scenarios. The main subject of this
thesis is the improvement of theoretical prediction in extensions of the SM by a second Higgs
doublet, known as Two-Higgs-Doublet Models (THDM). Most of the previous calculations of
the non-standard contributions in these models are done at the one-loop order only. The dom-
inant correction is related to the one-loop non-standard contribution to the ρ parameter, which
is very sensitive on the mass difference between charged and neutral scalars. Consequently,
large differences between the masses of charged and neutral scalars yield substantial corrections
to the electroweak precision observables. In order to achieve a more accurate prediction, the
leading two-loop corrections to the ρ parameter in the THDM and their influence on electroweak
precision observables are presented in this work.

To be more specific, the top-Yukawa corrections and the corrections from the scalar self-
interaction are calculated in the CP -conserving THDM. Since the Higgs-signal measurements
by the ATLAS and CMS experiments are in good agreement with the predictions in the SM,
the alignment limit is applied in which the lighter of the CP -even scalars is identified with the
scalar resonance observed at the LHC with couplings identical to ones of the Higgs boson in
the SM. The leading contributions are obtained in the top-Yukawa approximation, in which
all the fermions except the top-quark are considered massless, and in the gauge-less limit, in
which the gauge couplings are neglected by setting the masses of the gauge bosons to zero, but
keeping their ratio in the electroweak mixing angle constant. In the special case of the Inert-
Higgs-Doublet Model (IHDM) the non-standard top-Yukawa corrections are absent and the
only non-standard two-loop corrections to the ρ parameter in the gauge-less limit are following
from the scalar self-interaction.

The results for the two-loop corrections to the ρ parameter are incorporated in Fortran
routines, which allow a fast numerical evaluation of the model predictions. As a by-product of
the calculation, most of the vertex counterterms are now incorporated in the THDM modelfile
of FeynArts. The details of the renormalization procedure can be found in this work.

The non-standard contribution to the ρ parameter from the coupling of the non-standard
scalars to the heavy quarks has been calculated with and without the contribution from the
bottom-Yukawa coupling. An explicit comparison has shown that the corrections from the
bottom-Yukawa coupling are only important in a THDM of type-II or type-Y for very large
values of tβ . Such large values of tβ are however strongly restricted by unitarity constraints and
flavour observables. If the mass of the bottom quark is set to zero this contribution is universal
for the different versions of the THDM (type-I, type-II, type-X and type-Y). The remaining
top-Yukawa correction scales as t−2

β , and can be enhanced by large mass differences between
the non-standard scalars.

The scalar self-interaction gives rise to two distinct finite contributions to ∆ρ at the two-loop

level. One contains only the non-standard scalars as virtual particles and is labelled as δρ
(2)
H,NS.

The second contribution contains in addition also the SM-like scalar, as well as the Goldstone
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bosons. It is labelled as δρ
(2)
H,Mix.

The characteristics of the contribution δρ
(2)
H,Mix are very similar to those of the non-standard

one-loop correction to ∆ρ. It grows with the mass difference between charged and neutral sca-
lars and is zero for mH0 = mH± or mA0 = mH± . For these mass settings a custodial symmetry
is restored in the Higgs potential, which protects the ρ parameter from large corrections. Fur-
thermore this contribution contains an additional dependence on the parameter λ5. This free
parameter of the Higgs potential is absent in the one-loop corrections and enters in the coup-
lings between the SM-like Higgs boson to the non-standard scalars. It can give an additional

enhancement in the two-loop correction δρ
(2)
H,Mix.

The pure non-standard scalar contribution δρ
(2)
H,NS introduces a lot of distinct new features,

which distinguish it from the one-loop correction. It contains the coupling between three non-
standard scalars, which is very sensitive on the parameters tβ and λ5 and vanishes for tβ = 1
or λ5v

2 = 2m2
H0 . This coupling can enhance the contribution substantially. Furthermore it

breaks the custodial symmetry which is responsible for the vanishing one-loop contribution at

mH0 = mH± such that the additional two-loop contribution δρ
(2)
H,NS can become very important

for this mass setting. For mA0 = mH± also the two-loop contribution δρ
(2)
H,NS vanishes, since all

the participating couplings respect the corresponding custodial symmetry.

In the IHDM the non-standard scalars do not couple to the fermions and therefore no
additional non-standard top-Yukawa corrections are present. The only non-standard two-loop
correction in the IHDM originates from the scalar self-interaction and resembles the contribution

δρ
(2)
H,Mix in the aligned THDM: it grows with the mass difference between charged and neutral

scalars and is zero for mH0 = mH± or mA0 = mH± . It can be additionally enhanced by Λ345, a
combination of the parameters in the Higgs potential which controls the coupling of the SM-like
Higgs to the dark matter candidate in the IHDM.

The loop corrections to the ρ parameter are important entries for the calculation of elec-
troweak precision observables. The second part of this thesis describes the incorporation of
the two-loop contributions into prominent examples for such observables namely the mass of
the W boson, the effective leptonic mixing angle and the total width of the Z boson. These
non-standard corrections are combined with the complete one-loop corrections and the known
higher-order contributions from the SM. The results are encoded in Fortran routines.

For the THDM in the alignment limit the investigation of representative parameter settings
has shown that the various two-loop contributions can lead to significant deviations from the
one-loop predictions. The sensitivity on the mass splitting between charged and neutral sca-
lars, which is already present in the one-loop correction, is amplified further by the contribution

δρ
(2)
H,Mix. Moreover, the scalar two-loop corrections introduce additional dependencies on the

parameters λ5 and tβ , which are absent at the one-loop order. This can be used to obtain
improved constraints on the Higgs potential of the THDM. Especially interesting is the case
mH0 = mH± . This mass configuration is often assumed in phenomenological studies in order
to fulfill the constraints from electroweak precision observables at the one-loop order. How-
ever, the non-standard scalar two-loop corrections can give a non-vanishing contribution to the
precision observables also for mH0 = mH± . Various examples of such benchmark scenarios
have demonstrated that the two-loop correction can result in an increased tension between the
prediction and the measurement.

In the IHDM the main feature from the additional two-loop correction to the precision
observables is an increased sensitivity on the mass difference between charged and neutral
scalars. Furthermore a new dependence on the parameter Λ345 is introduced in the prediction
of the precision observables. However this parameter is already strongly constrained by direct
dark matter searches and collider limits. Analysing the precision observables in two mass ranges
motivated from astrophysical constraints has shown that the two-loop corrections are negligible
for small values of |Λ345|, which are required by the constraints from direct dark matter searches
and LHC limits.

If future measurements of the precision observables reduce the experimental uncertainties
further the constraints on the parameters become more restrictive. For the mass of the W
boson, a more accurate experimental determination can be expected in foreseeable future at
the LHC. A first measurement with the 7 TeV data by ATLAS [264] is similar in precision to
the measurements performed at Tevatron. A significant improvement in the measurement of
the effective leptonic mixing angle and the total Z width could be obtained by a future linear
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e+e− collider running at the Z pole [265–267].
A higher accuracy at the experimental side requires also more precise theoretical predic-

tions. For the CP -conserving THDM in the alignment limit, the two-loop corrections to the ρ
parameter provide the first contributions beyond the one-loop order. A further improvement of
the prediction is of course desirable. A relaxation of the alignment limit will probably lead to
no significant modifications, since the Higgs-signal measurements allow only small deviations.
More interesting are additional corrections from the gauge-couplings. A complete two-loop cal-
culation of the non-standard corrections to electroweak precision observables requires additional
numerical integration and is a much more challenging and time-consuming task. However with
the recent improvements in the computation of higher-order corrections also these calculations
are in principle feasible.

The calculation of electroweak precision observables provides an important test for the
validity of the THDM. Its interplay with theoretical constraints, flavour observables and direct
searches, can severely limit this model, especially if the LHC would find evidence for additional
scalars in the future.
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Appendix A

Feynman Rules of the THDM

This appendix gives the Feynman rules of the THDM in the ’t Hooft-Feynman gauge. For the
propagator counterterms and the vertices of the scalars with the gauge bosons or fermions the
counterterms at the one-loop order are included. The vertices of the scalar self-interaction are
given for the THDM with a soft Z2 violation in the alignment limit as well as for the IHDM.
In the vertices all the momenta are considered as incoming.

Propagator counterterms of the gauge bosons

V1,µ V2,ν

p p

= −igµν
[
C1p

2 − C2

]

V1V2 C1 C2

W±W± δZW M2
W δZW + δM2

W

ZZ δZZZ M2
ZδZZZ + δM2

Z

AZ 1
2δZγZ + 1

2δZZA M2
Z

1
2δZZγ

AA δZγγ 0

Propagator counterterms of the scalars:

S1

p

S2

p
= i
[
C1p

2 − C2

]

S1S2 C1 C2

h0h0 δZh0 δm2
h0 +m2

h0δZh0

H0H0 δZH0 δm2
H0 +m2

H0δZH0

A0A0 δZA0 δm2
A0 +m2

A0δZA0

H±H± δZH± δm2
H± +m2

H±δZH±

G0G0 δZG0 δm2
G0

G±G± δZG± δm2
G±

h0H0 δZh0H0 δm2
h0H0 + 1

2

(
m2
h0 +m2

H0

)
δZh0H0

A0G0 δZA0G0 δm2
A0G0 + 1

2m
2
A0δZA0G0

H±G± δZG±H± δm2
G±H± + 1

2m
2
H±δZG±H±
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A. Feynman Rules of the THDM

Propagator counterterms of the fermions

f

p

f

p
= i
[
/pω−CL + /pω+CR − CS

]

CL = δZLf

CR = δZRf

CS =

(
δmf +

1

2

(
δZLf + δZRf

))

Feynman rules for the interaction between gauge bosons and fermions

Vµ

fi

f j

= ieγµ (C+ω+ + C−ω−)

γff :

C
− = −Qf

(
1 + δZe + 1

2δZγγ + δZLf

)
+ g−f

δZZγ
2

C+ = −Qf
(

1 + δZe + 1
2δZγγ + δZRf

)
+ g+

f
δZZγ

2

Zff :


C− = g−f

(
1 + δZe +

δg−f
g−f

+ 1
2δZZZ + δZLf

)
− 1

2QfδZγZ

C+ = g−f

(
1 + δZe +

δg+f
g+f

+ 1
2δZZZ + δZRf

)
− 1

2QfδZγZ

W+du :

{
C− = − 1√

2sW

(
1 + δZe + 1

2δZW − 2
δs2W
s2W

+ 1
2δZ

L
u + 1

2δZ
L
d

)
C+ = 0

W−ud :

{
C− = − 1√

2sW

(
1 + δZe + 1

2δZW − 2
δs2W
s2W

+ 1
2δZ

L
u + 1

2δZ
L
d

)
C+ = 0

W+νl :

{
C− = − 1√

2sW

(
1 + δZe + 1

2δZW − 2
δs2W
s2W

+ 1
2δZ

L
ν + 1

2δZ
L
l

)
C+ = 0

W−νl :

{
C− = − 1√

2sW

(
1 + δZe + 1

2δZW − 2
δs2W
s2W

+ 1
2δZ

L
ν + 1

2δZ
L
l

)
C+ = 0

In the coupling of the fermions to the Z boson the abbreviations

g+
f =

sW
cW

Qf , δg+
f = g+

f

2

c2W

δs2
W

s2
W

, (A.1)

and

g−f = −

(
If3 − s2

WQf

)
sW cW

, δg−f = − If3
sW cW

s2
W − c2W
c2W

δs2
W

s2
W

+ δg+
f . (A.2)

are introduced. If3 is the third isospin component and Qf the electric charge of the fermion f .
The effekt of CKM mixing is neglected and the CKM matrix is approximated by the identity
matrix in the vertices between the fermions and the W boson.
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The counterterm for the Zff vertex is needed at the two-loop order for the calculation of the
Z observables. Here we indicate explicitly the one-loop and two-loop parts of the counterterms.

Z

f

f

=
−ieγµ

2cW sW

{
(vf − afγ5)

(
δ(1)Ze

(
s2
W − c2W

)
2c2W

δ(1)s2
W

s2
W

+

(
3c4W − 2c2W s

2
W + 3s4

W

)
8c4W

(
δ(1)s2

W

s2
W

)2

+

(
s2
W − c2W

)
2c2W

δ(2)s2
W

s2
W

+ δ(2)Ze

)

− 2Qfs
2
W

(
δ(1)Ze

δ(1)s2
W

s2
W

−
(
c2W − s2

W

)
2c2W

(
δ(1)s2

W

s2
W

)2

+
δ(2)s2

W

s2
W

)
+ . . .

}
(A.3)

Omitted terms indicated by the ellipsis are not required for the leading two-loop contributions
considered in this thesis.
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A. Feynman Rules of the THDM

Feynman rules for the scalar-vector-vector couplings

S

V1,µ

V2,ν

= gµνC [S, V1, V2]

C
[
h0, Z, Z

]
= − ieMW sα−β

c2W sW

(
1 + δZe +

δM2
W

2M2
W

+ δs2W

(
1

c2W
− 1

2s2W

)
−

c2β
tα−β

δtβ

− δZh0H0

2tα−β
+
δZh0

2
+ δZZZ

)

C
[
H0, Z, Z

]
=
ieMW cα−β
c2W sW

(
1 + δZe +

δM2
W

2M2
W

+ δs2W

(
1

c2W
− 1

2s2W

)
+ δtβc

2
βtα−β

− 1

2
tα−βδZh0H0 +

δZH0

2
+ δZZZ

)

C
[
h0,W−,W+] = − ieMW sα−β

sW

(
1 + δZe +

δM2
W

2M2
W

− δs2W
2s2W

−
δtβc

2
β

tα−β
− δZh0H0

2tα−β
+
δZh0

2
+ δZW

)

C
[
H0,W−,W+] =

ieMW cα−β
sW

(
1 + δZe +

δM2
W

2M2
W

− δs2W
2s2W

+ δtβc
2
βtα−β

− 1

2
tα−βδZh0H0 +

δZH0

2
+ δZW

)

C
[
G±, γ,W∓

]
= ieMW

(
1 + δZe +

δM2
W

2M2
W

− sW
2cW

δZZγ +
δZγγ

2
+
δZG±

2
+
δZW

2

)
C
[
G±, Z,W∓

]
= − ieMW sW

cW

(
1 + δZe +

δM2
W

2M2
W

+
δs2W

2c2W s
2
W

− cW
2sW

δZγZ +
δZG±

2
+
δZW

2
+
δZZZ

2

)
C
[
H±, γ,W∓

]
= ieMW

(
δtβc

2
β +

1

2
δZG±H±

)
C
[
H±, Z,W∓

]
= −i eMW sW

2cW

(
δZG±H± + 2δtβc

2
β

)
C
[
h0, γ, Z

]
= − ieMW sα−β

2c2W sW
δZZγ

C
[
H0, γ, Z

]
=
ieMW cα−β

2c2W sW
δZZγ
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Feynman rules for the vector-scalar-scalar couplings

Vµ

S1, k1

S2, k2

= C [V, S1, S2] (k1,µ − k2,µ)

C
[
Z, h0, A0

]
=

ecα−β

2cW sW

(
1 + δZe +

δs2W
(
s2W − c

2
W

)
2c2W s2W

+
δZA0

2
+

1

2
tα−β (δZh0H0 − δZA0G0 ) +

δZh0

2
+
δZZZ

2

)

C
[
Z, h0, G0

]
= −

esα−β

2cW sW

(
1 + δZe +

δs2W
(
s2W − c

2
W

)
2c2W s2W

−
δZA0G0

2tα−β
+
δZG0

2
−
δZh0H0

2tα−β
+
δZh0

2
+
δZZZ

2

)

C
[
Z,H0, A0

]
=

esα−β

2cW sW

(
1 + δZe +

δs2W
(
s2W − c

2
W

)
2c2W s2W

+
δZA0G0

2tα−β
+
δZA0

2
+
δZh0H0

2tα−β
+
δZH0

2
+
δZZZ

2

)

C
[
Z,H0, G0

]
=

ecα−β

2cW sW

(
1 + δZe +

δs2W
(
s2W − c

2
W

)
2c2W s2W

+
1

2
tα−βδZA0G0 +

δZG0

2

−
1

2
tα−βδZh0H0 +

δZH0

2
+
δZZZ

2

)

C
[
W∓, G±, h0

]
= ±

iesα−β

2sW

(
1 + δZe −

δs2W
2s2W

−
δZG±H±

2tα−β
+
δZG±

2
−
δZh0H0

2tα−β
+
δZh0

2
+
δZW

2

)

C
[
W∓, G±, H0

]
= ∓

iecα−β

2sW

(
1 + δZe −

δs2W
2s2W

+
1

2
tα−βδZG±H± +

δZG±

2
−

1

2
tα−βδZh0H0 +

δZH0

2
+
δZW

2

)
C
[
W∓, G±, A0

]
= −

e

4sW
δZA0G0 −

e

4sW
δZG±H±

C
[
W∓, G±, G0

]
= −

e

2sW

(
1 + δZe −

δs2W
2s2W

+
δZG0

2
+
δZG±

2
+
δZW

2

)

C
[
W∓, H±, h0

]
= ∓

iecα−β

2sW

(
1 + δZe −

δs2W
2s2W

−
1

2
tα−βδZG±H± +

1

2
tα−βδZh0H0 +

δZh0

2
+
δZH±

2
+
δZW

2

)

C
[
W∓, H±, H0

]
= ∓

iesα−β

2sW

(
1 + δZe −

δs2W
2s2W

+
δZG±H±

2tα−β
+
δZh0H0

2tα−β
+
δZH0

2
+
δZH±

2
+
δZW

2

)

C
[
W∓, H±, A0

]
= −

e

2sW

(
1 + δZe −

δs2W
2s2W

+
δZA0

2
+
δZH±

2
+
δZW

2

)
C
[
W∓, H±, G0

]
= −

e

4sW
δZA0G0 −

e

4sW
δZG±H±

C
[
γ,G+, G−

]
= −ie

(
1 + δZe +

(
c2W − s

2
W

)
4cW sW

δZZγ +
δZγγ

2
+ δZG±

)

C
[
γ,H+, H−

]
= −ie

(
1 + δZe +

(
c2W − s

2
W

)
4cW sW

δZZγ +
δZγγ

2
+ δZH±

)
C
[
γ,G±, H∓

]
= ∓ieδZG±H±

C
[
Z,G+, G−

]
= −

ie
(
c2W − s

2
W

)
2cW sW

(
1 + δZe −

δs2W
2c2W s2W

(
c2W − s

2
W

) +
cW sW

c2W − s
2
W

δZγZ + δZG± +
δZZZ

2

)

C
[
Z,H+, H−

]
= −

ie
(
c2W − s

2
W

)
2cW sW

(
1 + δZe −

δs2W
2c2W s2W

(
c2W − s

2
W

) +
cW sW

c2W − s
2
W

δZγZ + δZH± +
δZZZ

2

)

C
[
Z,G±, H∓

]
= ∓

ie
(
c2W − s

2
W

)
2cW sW

δZG±H±

C
[
γ, h0, A0

]
=

ecα−β

4cW sW
δZZγ

C
[
γ, h0, G0

]
= −

esα−β

4cW sW
δZZγ

C
[
γ,H0, A0

]
=

esα−β

4cW sW
δZZγ

C
[
γ,H0, G0

]
=

ecα−β

4cW sW
δZZγ
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A. Feynman Rules of the THDM

Feynman rules for the scalar-scalar-vector-vector couplings

S1

S2

V1,µ

V2,ν

= gµνC [S1, S2, V1, V2]

C
[
h0, h0, Z, Z

]
=

ie2

2c2W s2W

(
1 + 2δZe +

δs2W
(
s2W − c

2
W

)
c2W s2W

+ δZh0 + δZZZ

)

C
[
h0, h0,W−,W+

]
=
ie2

2s2W

(
1 + 2δZe + δZh0 −

δs2W
s2W

+ δZW

)

C
[
H0, H0, Z, Z

]
=

ie2

2c2W s2W

(
1 + 2δZe +

δs2W
(
s2W − c

2
W

)
c2W s2W

+ δZH0 + δZZZ

)

C
[
H0, H0,W−,W+

]
=
ie2

2s2W

(
1 + 2δZe −

δs2W
s2W

+ δZH0 + δZW

)

C
[
A0, A0, Z, Z

]
=

ie2

2c2W s2W

(
1 + 2δZe +

δs2W
(
s2W − c

2
W

)
c2W s2W

+ δZA0 + δZZZ

)

C
[
A0, A0,W−,W+

]
=
ie2

2s2W

(
1 + 2δZe + δZA0 −

δs2W
s2W

+ δZW

)

C
[
G0, G0, Z, Z

]
=

ie2

2c2W s2W

(
1 + 2δZe +

δs2W
(
s2W − c

2
W

)
c2W s2W

+ δZG0 + δZZZ

)

C
[
G0, G0,W−,W+

]
=
ie2

2s2W

(
1 + 2δZe −

δs2W
s2W

+ δZG0 + δZW

)

C
[
G−, G+, Z, Z

]
=
ie2
(
c2W − s

2
W

)
2

2c2W s2W

(
1 + 2δZe −

δs2W
c2W s2W

(
c2W − s

2
W

) + δZG± + δZZZ +
2cW sW

c2W − s
2
W

δZγZ

)

C
[
G−, G+,W−,W+

]
=
ie2

2s2W

(
1 + 2δZe −

δs2W
s2W

+ δZG± + δZW

)

C
[
H−, H+, Z, Z

]
=
ie2
(
c2W − s

2
W

)
2

2c2W s2W

(
1 + 2δZe −

δs2W
c2W s2W

(
c2W − s

2
W

) +
2cW sW

c2W − s
2
W

δZγZ + δZH± + δZZZ

)

C
[
H−, H+,W−,W+

]
=
ie2

2s2W

(
1 + 2δZe −

δs2W
s2W

+ δZH± + δZW

)

C
[
G−, G+, γ, γ

]
=2ie2

(
1 + 2δZe +

(
c2W − s

2
W

)
2cW sW

δZZγ + δZγγ + δZG±

)

C
[
G−, G+, γ, Z

]
=
ie2
(
c2W − s

2
W

)
cW sW

(
1 + 2δZe −

δs2W
2c2W s2W

(
c2W − s

2
W

) +
cW sW

c2W − s
2
W

δZγZ

+

(
c2W − s

2
W

)
4cW sW

δZZγ +
δZγγ

2
+ δZG± +

δZZZ

2

)

C
[
H−, H+, γ, γ

]
=2ie2

(
1 + 2δZe +

δZZγ
(
c2W − s

2
W

)
2cW sW

+ δZγγ + δZH±

)

C
[
H−, H+, γ, Z

]
=
ie2
(
c2W − s

2
W

)
cW sW

(
1 + 2δZe −

δs2W
2c2W s2W

(
c2W − s

2
W

) +
cW sW

c2W − s
2
W

δZγZ

+

(
c2W − s

2
W

)
4cW sW

δZZγ +
δZγγ

2
+ δZH± +

δZZZ

2

)

C
[
G±, h0, γ,W∓

]
=−

ie2sα−β

2sW

(
1 + 2δZe −

δs2W
2s2W

−
sW

2cW
δZZγ +

δZγγ

2
−
δZG±H±

2tα−β
+
δZG±

2

−
δZh0H0

2tα−β
+
δZh0

2
+
δZW

2

)

C
[
G±, h0, Z,W∓

]
=
ie2sα−β

2cW

(
1 + 2δZe +

δs2W
2c2W

−
cW

2sW
δZγZ −

δZG±H±

2tα−β
+
δZG±

2
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−
δZh0H0

2tα−β
+
δZh0

2
+
δZW

2
+
δZZZ

2

)

C
[
H∓, h0, γ,W±

]
=
ie2cα−β

2sW

(
1 + 2δZe −

δs2W
2s2W

−
sW

2cW
δZZγ +

δZγγ

2
−

1

2
tα−βδZG±H±

+
1

2
tα−βδZh0H0 +

δZh0

2
+
δZH±

2
+
δZW

2

)

C
[
H±, h0, Z,W∓

]
=−

ie2cα−β

2cW

(
1 + 2δZe +

δs2W
2c2W

−
cW

2sW
δZγZ −

1

2
tα−βδZG±H± +

1

2
tα−βδZh0H0

+
δZh0

2
+
δZH±

2
+
δZW

2
+
δZZZ

2

)

C
[
G±, H0, γ,W∓

]
=
ie2cα−β

2sW

(
1 + 2δZe −

δs2W
2s2W

−
sW

2cW
δZZγ +

δZγγ

2
+

1

2
tα−βδZG±H± +

δZG±

2

−
1

2
tα−βδZh0H0 +

δZH0

2
+
δZW

2

)

C
[
G±, H0, Z,W∓

]
=−

ie2cα−β

2cW

(
1 + 2δZe +

δs2W
2c2W

−
cW

2sW
δZγZ +

1

2
tα−βδZG±H± +

δZG±

2

−
1

2
tα−βδZh0H0 +

δZH0

2
+
δZW

2
+
δZZZ

2

)

C
[
H±, H0, γ,W∓

]
=
ie2sα−β

2sW

(
1 + 2δZe −

δs2W
2s2W

−
sW

2cW
δZZγ +

δZγγ

2
+
δZG±H±

2tα−β
+
δZh0H0

2tα−β

+
δZH0

2
+
δZH±

2
+
δZW

2

)

C
[
H±, H0, Z,W∓

]
=−

ie2sα−β

2cW

(
1 + 2δZe +

δs2W
2c2W

−
cW

2sW
δZγZ +

δZG±H±

2tα−β
+
δZh0H0

2tα−β

+
δZH0

2
+
δZH±

2
+
δZW

2
+
δZZZ

2

)

C
[
G∓, A0, γ,W±

]
=∓

(
e2

4sW
δZA0G0 +

e2

4sW
δZG±H±

)

C
[
G∓, A0, Z,W±

]
=±

(
e2δZA0G0

4cW
+
e2δZG±H±

4cW

)

C
[
H±, A0, γ,W∓

]
=±

e2

2sW

(
1 + 2δZe −

δs2W
2s2W

+
δZA0

2
−

sW

2cW
δZZγ +

δZγγ

2
+
δZH±

2
+
δZW

2

)

C
[
H±, A0, Z,W∓

]
=∓

e2

2cW

(
1 + 2δZe +

δs2W
2c2W

+
δZA0

2
−

cW

2sW
δZγZ +

δZH±

2
+
δZW

2
+
δZZZ

2

)

C
[
G±, G0, γ,W∓

]
=±

e2

2sW

(
1 + 2δZe −

δs2W
2s2W

−
sW

2cW
δZZγ +

δZγγ

2
+
δZG0

2
+
δZG±

2
+
δZW

2

)

C
[
G±, G0, Z,W∓

]
=∓

e2

2cW

(
1 + 2δZe +

δs2W
2c2W

−
cW

2sW
δZγZ +

δZG0

2
+
δZG±

2
+
δZW

2
+
δZZZ

2

)

C
[
H±, G0, γ,W∓

]
=

(
e2

4sW
δZA0G0 +

e2

4sW
δZG±H±

)

C
[
H±, G0, Z,W∓

]
=∓

(
e2δZA0G0

4cW
+
e2δZG±H±

4cW

)

C
[
H0, h0, Z, Z

]
=

ie2

2c2W s2W
δZh0H0

C
[
H0, h0,W−,W+

]
=
ie2

2s2W
δZh0H0

C
[
G0, A0, Z, Z

]
=

ie2

2c2W s2W
δZA0G0

C
[
G0, A0,W−,W+

]
=
ie2

2s2W
δZA0G0
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A. Feynman Rules of the THDM

C
[
h0, h0, γ, Z

]
=

ie2

4c2W s2W
δZZγ

C
[
H0, H0, γ, Z

]
=

ie2

4c2W s2W
δZZγ

C
[
A0, A0, γ, Z

]
=

ie2

4c2W s2W
δZZγ

C
[
G0, G0, γ, Z

]
=

ie2

4c2W s2W
δZZγ

C
[
H±, G∓, γ, γ

]
=2ie2δZG±H±

C
[
H±, G∓, γ, Z

]
=
ie2
(
c2W − s

2
W

)
cW sW

δZG±H±

C
[
H±, G∓, Z, Z

]
=
ie2
(
c2W − s

2
W

)
2

2c2W s2W
δZG±H±

C
[
H+, G−,W−,W+

]
=
ie2δZG±H±

2s2W

C
[
H−, G+,W−,W+

]
=
ie2δZG±H±

2s2W

Feynman rules for the Yukawa interaction in the THDM

S

f

f̄

= C+ω+ + C−ω−

h0 l̄l :


C+ = − iemlξ

l
h

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
h0

2
+

δZ
h0H0ξ

l
H

2ξl
h

+
δξlh
ξl
h

+
δZLl
2

+
δZRl
2

)
C− = − iemlξ

l
h

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
h0

2
+

δZ
h0H0ξ

l
H

2ξl
h

+
δξlh
ξl
h

+
δZLl
2

+
δZRl
2

)

H0 l̄l :


C+ = − iemlξ

l
H

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
H0

2
+

δZ
h0H0ξ

l
h

2ξl
H

+
δξlH
ξl
H

+
δZLl
2

+
δZRl
2

)
C− = − iemlξ

l
H

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
H0

2
+

δZ
h0H0ξ

l
h

2ξl
H

+
δξlH
ξl
H

+
δZLl
2

+
δZRl
2

)

A0 l̄l :

C
+ = − emlξ

l
A

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
A0

2
− δZ

A0G0

2ξl
A

+
δξlA
ξl
A

+
δZLl
2

+
δZRl
2

)
C− =

emlξ
l
A

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
A0

2
− δZ

A0G0

2ξl
A

+
δξlA
ξl
A

+
δZLl
2

+
δZRl
2

)
G0 l̄l :

C
+ = eml

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
G0

2
+

δZLl
2

+
δZRl
2

)
C− = − eml

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
G0

2
+

δZLl
2

+
δZRl
2

)
G+ν̄l :

C+ = − ieml√
2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
G±
2

+
δZRl
2

+
δZLν
2

)
C− = 0

G− l̄ν :

C
+ = 0

C− = − ieml√
2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
G±
2

+
δZRl
2

+
δZLν
2

)
H+ν̄l :

C+ =
iemlξ

l
A√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
H±
2

− δZ
G±H±
2ξl
A

+
δξlA
ξl
A

+
δZRl
2

+
δZLν
2

)
C− = 0

H− l̄ν :

C
+ = 0

C− =
iemlξ

l
A√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δml
ml

+
δZ
H±
2

− δZ
G±H±
2ξl
A

+
δξlA
ξl
A

+
δZRl
2

+
δZLν
2

)
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h0ūu :

C
+ = − iemuξ

u
h

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
h0

2
+

δZ
h0H0ξ

u
H

2ξu
h

+
δξuh
ξu
h

+
δZLu
2

+
δZRu
2

)
C− = − iemuξ

u
h

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
h0

2
+

δZ
h0H0ξ

u
H

2ξu
h

+
δξuh
ξu
h

+
δZLu
2

+
δZRu
2

)
H0ūu :

C
+ = − iemuξ

u
H

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
H0

2
+

δZ
h0H0ξ

u
h

2ξu
H

+
δξuH
ξu
H

+
δZLu
2

+
δZRu
2

)
C− = − iemuξ

u
H

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
H0

2
+

δZ
h0H0ξ

u
h

2ξu
H

+
δξuH
ξu
H

+
δZLu
2

+
δZRu
2

)
A0ūu :

C
+ = − emuξ

u
A

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
A0

2
+

δZ
A0G0

2ξu
A

+
δξuA
ξu
A

+
δZLu
2

+
δZRu
2

)
C− =

emuξ
u
A

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
A0

2
+

δZ
A0G0

2ξu
A

+
δξuA
ξu
A

+
δZLu
2

+
δZRu
2

)
G0ūu :

C
+ = − emu

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
G0

2
+

δZLu
2

+
δZRu
2

)
C− = emu

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
G0

2
+

δZLu
2

+
δZRu
2

)

h0d̄d :


C+ = − iemdξ

d
h

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
h0

2
+

ξdHδZh0H0

2ξd
h

+
δξdh
ξd
h

+
δZLd
2

+
δZRd
2

)
C− = − iemdξ

d
h

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
h0

2
+

ξdHδZh0H0

2ξd
h

+
δξdh
ξd
h

+
δZLd
2

+
δZRd
2

)

H0d̄d :


C+ = − iemdξ

d
H

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
H0

2
+

ξdhδZh0H0

2ξd
H

+
δξdH
ξd
H

+
δZLd
2

+
δZRd
2

)
C− = − iemdξ

d
H

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
H0

2
+

ξdhδZh0H0

2ξd
H

+
δξdH
ξd
H

+
δZLd
2

+
δZRd
2

)

A0d̄d :

C
+ = − emdξ

d
A

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
A0

2
− δZ

A0G0

2ξd
A

+
δξdA
ξd
A

+
δZLd
2

+
δZRd
2

)
C− =

emdξ
d
A

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
A0

2
− δZ

A0G0

2ξd
A

+
δξdA
ξd
A

+
δZLd
2

+
δZRd
2

)
G0d̄d :

C
+ = emd

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
G0

2
+

δZLd
2

+
δZRd
2

)
C− = − emd

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
G0

2
+

δZLd
2

+
δZRd
2

)
G+ūd :

C
+ = − iemd√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
G±
2

+
δZRd
2

+
δZLu
2

)
C− = iemu√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
G±
2

+
δZLd
2

+
δZRu
2

)
G−d̄u :

C
+ = iemu√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
G±
2

+
δZLd
2

+
δZRu
2

)
C− = − iemd√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
G±
2

+
δZRd
2

+
δZLu
2

)
H+ūd :

C
+ =

iemdξ
d
A√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
H±
2

− δZ
G±H±
2ξd
A

+
δξdA
ξd
A

+
δZRd
2

+
δZLu
2

)
C− =

iemuξ
u
A√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
H±
2

+
δZ
G±H±
2ξu
A

+
δξuA
ξu
A

+
δZLd
2

+
δZRu
2

)
H−d̄u :

C
+ =

iemuξ
u
A√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmu
mu

+
δZ
H±
2

+
δZ
G±H±
2ξu
A

+
δξuA
ξu
A

+
δZLd
2

+
δZRu
2

)
C− =

iemdξ
d
A√

2MW sW

(
1 + δZe − δM2

W

2M2
W

− δs2W
2s2
W

+ δmd
md

+
δZ
H±
2

− δZ
G±H±
2ξd
A

+
δξdA
ξd
A

+
δZRd
2

+
δZLu
2

)
The effect of CKM mixing is neglected and the CKM matrix is approximated by the identity

matrix in the vertices between the fermions and the charged scalars. The proportionality factors
ξfS are dependent on the specific versions of the THDM. The actual values can be found in
Table 2.4. The corresponding counterterms are listed in Table A.1.
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A. Feynman Rules of the THDM

type-I type-II type-X type-Y

δξuh
ξuh

−c2β
δtβ
tβ

−c2β
δtβ
tβ

−c2β
δtβ
tβ

−c2β
δtβ
tβ

δξdh
ξdh

−c2β
δtβ
tβ

s2
β
δtβ
tβ

−c2β
δtβ
tβ

s2
β
δtβ
tβ

δξlh
ξlh

−c2β
δtβ
tβ

s2
β
δtβ
tβ

s2
β
δtβ
tβ

−c2β
δtβ
tβ

δξuH
ξuH

−c2β
δtβ
tβ

−c2β
δtβ
tβ

−c2β
δtβ
tβ

−c2β
δtβ
tβ

δξdH
ξdH

−c2β
δtβ
tβ

s2
β
δtβ
tβ

−c2β
δtβ
tβ

s2
β
δtβ
tβ

δξlH
ξlH

−c2β
δtβ
tβ

s2
β
δtβ
tβ

s2
β
δtβ
tβ

−c2β
δtβ
tβ

δξuA
ξuA

−c2β
δtβ
tβ

−c2β
δtβ
tβ

−c2β
δtβ
tβ

−c2β
δtβ
tβ

δξdA
ξdA

−c2β
δtβ
tβ

s2
β
δtβ
tβ

−c2β
δtβ
tβ

s2
β
δtβ
tβ

δξlA
ξlA

−c2β
δtβ
tβ

s2
β
δtβ
tβ

s2
β
δtβ
tβ

−c2β
δtβ
tβ

Table A.1: Counterterms from the proportionality factors ξfS in the different versions of the
THDM

Feynman rules for the triple scalar couplings in the aligned THDM

S1

S2

S3

= C [S1, S2, S3]

C
[
h0, h0, h0

]
= −

3im2
h0

v

C
[
h0, H0, H0

]
= −

i
(
m2
h0 + 2m2

H0 − λ5v2
)

v

C
[
H0, H0, H0

]
= −

3i
(
λ5v2 − 2m2

H0

)
vt2β

C
[
h0, A0, A0

]
= −

i
(

2m2
A0 +m2

h0 − λ5v2
)

v

C
[
H0, A0, A0

]
= −

i
(
λ5v2 − 2m2

H0

)
vt2β

C
[
H0, A0, G0

]
= −

i
(
m2
A0 −m2

H0

)
v

C
[
h0, G0, G0

]
= −

im2
h0

v

C
[
h0, G+, G−

]
= −

im2
h0

v

C
[
H0, G−, H+

]
=
i
(
m2
H0 −m2

H±

)
v

C
[
A0, G−, H+

]
=
m2
H± −m2

A0

v

C
[
H0, G+, H−

]
=
i
(
m2
H0 −m2

H±

)
v

C
[
A0, G+, H−

]
=
m2
A0 −m2

H±

v

C
[
h0, H+, H−

]
= −

i
(

2m2
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Feynman rules for the triple scalar couplings in the IHDM
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Appendix B

Loop integrals

In this section we present the analytic results for the expansion of the relevant one- and two-loop
integrals. The integrals are expanded in

δ =
(D − 4)

2
(B.1)

and the divergences appear as poles in δ.

B.1 One-loop integrals

The analytic results for the divergent and finite terms of the scalar one-loop integrals were
first derived in [171]. The expansion up the terms linear in δ, which are needed in two-loop
calculations, are given in [174]. The following expressions are taken from [175].

The scalar one-point integral is defined by

A0

(
m2
)

=

∫
dDq

(2πµ)D−4iπ2

1

q2 −m2
. (B.2)

The expansion in δ yields
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(
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=
m2

δ
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+ δ ·m2

(
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12
+
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2
+

1

2

(
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D

)
− C

)2
)
, (B.3)

with
C = 1− γE + log(4π), (B.4)

where γE is the Euler-Mascheroni constant. A special case is

A0 (0) = 0. (B.5)

For the derivatives one obtains

∂

∂m2
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(
m2
)

=
D/2− 1

m2
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(
m2
)
, (B.6)

∂2

∂ (m2)
2A0

(
m2
)

=
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(
D

2
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)
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(
m2
)
. (B.7)

The scalar two point function is defined as
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2
2

)
=

∫
dDq

(2πµ)D−4iπ2

1

[q2 −m2
1] [(q + p)2 −m2

2]

=
1

δ
+Bfin

0

(
p2,m2

1,m
2
2

)
+ δBδ0

(
p2,m2

1,m
2
2

)
. (B.8)
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The finite part is given by
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The term linear in δ is
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For the above expressions the abbreviation

R0 =
√
m4
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2 + p4 − 2 (m2

1p
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2m
2
1) (B.11)

has been introduced.

Special cases for the two-point functions are
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For the other scalar functions we have
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B.2 Two-loop integrals

For two-loop self-energy diagrams the reduction of tensor integrals and the definition of the
resulting scalar two-loop integrals is given in [169]. As discussed in Chapter 3 the results of
the self-energies can be expressed in terms of the scalar integrals given in (3.16). For vanishing
external momentum the scalar integrals contain only the internal momenta k1, k3 and k4 from
(3.17) and can be expressed in terms of products of one-loop integrals and the two-loop integral
T134 from (3.21). Here we review the techniques for the reduction of the scalar integrals and
give the analytic expression for the T134 integral, following the presentations in [175] and [268].

We introduce the notation

I (ν1, ν2, ν3;m1,m2,m3) = T1 . . .︸︷︷︸
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3 . . .︸︷︷︸
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∫ ∫
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2 −m2
3]
ν3 (B.19)

for scalar integrals with vanishing external momentum and three different types of propagators.
Relations between these type of scalar integrals can be derived with the integration-by-parts
technique [269]. It leads to identities of the form

0 =

∫
dDq

∂
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f (q) , (B.20)

which follow from the translation invariance of dimensionally regularized integrals

∫
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For the integrals I (ν1, ν2, ν3;m1,m2,m3) the integration-by-parts method leads to the three
independent relations
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These relations result in the following system of equations:1


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 (B.23)

with

F = ν2I(ν1, ν2 + 1, ν3 − 1)− ν2I(ν1 − 1, ν2 + 1, ν3). (B.24)

The solution of these equations expresses integrals with ν1 +ν2 +ν3 = s+1 in terms of integrals
with ν1 + ν2 + ν3 = s.

For scalar two-loop integrals which contain only powers of two different propagators, ad-
ditional relations can be obtained by taking the derivative of the integrals of lower rank with
respect to the masses. The resulting expressions
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for x > 1, y ≥ 1,
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for x ≥ 1, y > 1,

with a, b ∈ {1, 3, 4}, can be applied iteratively until

Tab
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)
A0

(
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2
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is reached.

Partial fracion can be used to simplify integrals with propagators with the same loop-
momentum but different masses, such that
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2

[
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(B.28)

for m2
1 6= m2

2 and a ∈ {1, 3, 4}.
If the external momentum is equal to zero, the techniques described above reduce all the

two-loop integrals to the scalar integral T134 from (3.21), which can be calculated analytically
[177, 178]. The following compact expression is taken from [175]:
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1The masses are omitted in the arguments.
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The function Φcyc is defined by

Φcyc
(
m2, 0, 0

)
= m2π

6
, (B.30)
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, (B.31)
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Appendix C

Analytic results

The explicit results for the different non-standard corrections are presented in this appendix.
The results are presented for a THDM in the alignment limit without Z2-violating terms of
mass dimension four in the potential.

C.1 Non-standard one-loop corrections to the gauge bo-
son selfenergies

The one-loop contributions to the gauge boson self-energies from the nonstandard scalars in
the aligned THDM are presented in the following. The corresponding diagrams are shown in
Figure 5.1 and Figure 6.1. The resulting expressions are

Σ
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(
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)

=
αem

16πs2
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[
2A0(m2

H±) +A0(m2
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]

(C.1)
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Σ
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[
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(C.3)

Σ
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=
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c2W − s2
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4πcW sW

[
A0(m2
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H±)
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(C.4)

From the result for the photon-Z-mixing we see that the additional non-standard contribu-
tion vanishes for p2 = 0 since

B00(0,m2,m2) =
1

2
A0(m2). (C.5)
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C. Analytic results

C.2 Two-loop corrections to the ρ parameter

In this appendix we give the full result for the non-standard two-loop corrections to the ρ
parameter. The results are given for arbitrary space-time dimension D in terms of the scalar
integrals A0

(
m2
)

and T134

(
m2

1,m
2
2,m

2
3

)
. Following [118] we use the shorthand notation

∆i,j,k,l = i+ jD + kD2 + lD3, ∆i,j,k = i+ jD + kD2. (C.6)

C.2.1 Non-standard corrections from the top-Yukawa coupling

The two-loop diagrams from Figure 5.9 with all possible insertions of the non-standard scalars
for S and S′ give the following contribution:
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C. Analytic results

To obtain the finite result we need also the subloop renormalization from the diagrams in
Figure 5.2 and Figure 5.3 with the counterterms calculated from the self-energies in Figure 5.5
and Figure 5.6. The corresponding result are given by
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C.2.2 Scalar corrections from the interaction of the non-standard sca-
lars

For the interaction between the non-standard scalars the result from the two-loop diagrams in
Figure 5.12 reads
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For the subloop renormalization the result from the diagrams in Figure 5.3 with the coun-
terterms calculated from the diagrams in Figure 5.7 reads
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C.2.3 Scalar corrections from the interactions of the SM scalars with
the non-standard scalars

The two-loop diagrams from Figure 5.13 result in the following expression

δρ
(2Loop)
H,Mix =

α2
em

64π2DM4
W s4W

×

×
[
A0

(
m2
A0

)
A0

(
m2
H0

)(
3− 2D +

(
2m2

A0 +m2
h0 − λ5v2

)(
m2
h0

+ 2 m2
H0 − λ5v2

)
(
m2
A0 −m2

H0

)
2

+
1

2
(
m2
H0 −m2

H±

)(
m2
A0 −m2

H±

)×
×
[
−m2

A0

(
−D

(
2m2

H0 − 4m2
H±
)

+ 2m2
H0 − 6 m2

H±
)

+ (3− 2D)
(
2m2

H0m
2
H± − 2m4

H±
)
− (2−D)

(
m4
A0 +m4

H0

) ])

+ T134
(
m2
H± ,m

2
A0 , 0

)(
∆3,2,−1m

2
A0 +

3
(
m2
A0 −m2

H±

)
2

m2
h0

+m2
H±

−
1(

m2
A0 −m2

H0

)(
m2
H0 −m2

H±

)×
×
[
2m4

A0

(
m2
H0 − (2−D)m2

H±
)

+ (1−D)m6
A0

−m2
H±

(
m2
H0 −m2

H±
) (

2m2
H± − (4−D)m2

H0

)
+m2

A0

(
(5−D)m4

H0 − (14− 3D)m2
H0m

2
H±

+ (10− 3D) m4
H±
)])

+ T134
(
m2
H± ,m

2
H0 , 0

)(
∆3,2,−1m

2
H0 +

3
(
m2
H0 −m2

H±

)
2

m2
h0

+m2
H±

+
1(

m2
A0 −m2

H0

)(
m2
A0 −m2

H±

)×
×
[
m4
A0

(
(5−D)m2

H0 + (4−D)m2
H±
)

+m2
A0

(
−(14− 3D)m2

H0m
2
H± − (6−D)m4

H± + 2 m4
H0

)
+ (1−D)m6

H0 − 2(2−D)m4
H0m

2
H±

+ (10− 3D)m2
H0m

4
H± + 2m6

H±
])

+ T134
(
m2
H± ,m

2
H0 ,m

2
h0

)(
−

1

m2
h0

[
3
(
m2
H0 −m2

H±
)
2

− 2
(
m2
h0

(
m2
H0 +m2

H± − λ5v2
)

+m4
h0

) ]
−

1(
m2
H0 −m2

H±

)
2
×

×
[
2
(
m4
h0

(
m2
H0 +m2

H± − λ5 v2
)

+ λ5v
2
(
m2
H0 −m2

H±
)
2
)

+m6
h0

+m2
h0

(
− 2

(
λ5v

2
(
m2
H0 +m2

H±
)

+m4
H0 +m4

H±
)

+ 8m2
H0m

2
H± + λ25v

4
)])

+ T134
(
m2
H± ,m

2
h0 ,m

2
A0

)(
−

1

m2
h0

[
3m4

A0 − 2m4
h0 + 3m4

H±

− 2
(
m2
A0

(
m2
h0 + 3m2

H±
)

+m2
h0

(
m2
H± − λ5v2

)) ]
−

1(
m2
A0 −m2

H±

)
2
×

×
[
2m2

A0

(
m2
h0

(
4m2

H± − λ5 v2
)

+m4
h0 − 2λ5v

2m2
H±
)

+
(
m2
h0 − λ5v2

)
×

×
(
−2
(
m4
A0 +m4

H±
)

+m2
h0

(
2m2

H± − λ5 v2
)

+m4
h0

) ])

133



C. Analytic results

+ T134
(
m2
H0 ,m

2
h0 ,m

2
A0

)( 1

m2
h0

[
3
(
m4
A0 +m4

H0

)
+ 2λ5v

2m2
h0

− 2
(
m2
A0

(
m2
h0 + 3m2

H0

)
+m2

h0 m
2
H0 +m4

h0

) ]
+

1(
m2
A0 −m2

H0

)
2
×

×
[
2m2

A0

(
m2
h0

(
4m2

H0 − λ5 v2
)

+m4
h0 − 2λ5v

2m2
H0

)
+
(
m2
h0 − λ5v2

)
×

×
(
−2

(
m4
A0 +m4

H0

)
+m2

h0

(
2m2

H0 − λ5 v2
)

+m4
h0

) ])

+ T134
(
m2
H0 ,m

2
A0 , 0

)(
2(3−D)

(
−m2

A0 −m2
H0

)
−

3
(
m2
A0 −m2

H0

)
2

m2
h0

+
1(

m2
H0 −m2

H±

)(
m2
A0 −m2

H±

)×
×
[
(1−D)m6

A0 −m4
A0

(
(5− 3D)m2

H± − (3−D)m2
H0

)
+m2

A0

(
2(2−D)m4

H± + (3−D)
(
m4
H0 − 2m2

H0 m
2
H±
))

+m2
H0

(
m2
H0 −m2

H±
) (

(1−D)m2
H0 − 2(2−D) m2

H±
) ])

+A0

(
m2
H0

)
2

(
1

2

(
m2
h0 + 2m2

H0 − λ5v2
)
×

×

−2m2
A0 −m2

h0
+ λ5v2(

m2
A0 −m2

H0

)
2

+
m2
h0 + 2m2

H± − λ5v2(
m2
H0 −m2

H±

)
2


−

(D − 2)
(
m2
A0 −m2

H±

)(
m2
h0 + 2m2

H0 − λ5v2
)

2

2
(
m2
H0 −m2

A0

)(
m2
h0
− 4m2

H0

)(
m2
H0 −m2

H±

))

+A0

(
m2
A0

)
2

(
(D − 2)

(
m2
H0 −m2

H±

)(
2m2

A0 +m2
h0 − λ5v2

)
2

2
(

4m2
A0 −m2

h0

)(
m2
A0 −m2

H0

)(
m2
A0 −m2

H±

)
+

1

2

(
2m2

A0 +m2
h0 − λ5v2

)
×−m2

h0 − 2m2
H0 + λ5v2(

m2
A0 −m2

H0

)
2

+
m2
h0 + 2m2

H± − λ5v2(
m2
A0 −m2

H±

)
2

)

+A0

(
m2
H±
)
2

(
−

(D − 2)
(
m2
A0 +m2

H0 − 2m2
H±

)(
m2
h0

+ 2m2
H± − λ5v2

)
2

2
(
m2
H± −m2

H0

)(
m2
H± −m2

A0

)(
m2
h0
− 4m2

H±

)
+

1

2

(
m2
h0 + 2m2

H± − λ5v2
)2m2

A0 +m2
h0 − λ5v2(

m2
A0 −m2

H±

)
2

+
m2
h0 + 2m2

H0 − λ5v2(
m2
H0 −m2

H±

)
2


−

(D − 2)D
(
m2
h0 − λ5v2

)
2

4m2
H±

(
m2
h0 − 4m2

H±

) −
(D − 2)D

(
m2
h0

+m2
H± − λ5v2

)
m2
h0 − 4m2

H±
+

2D − 4

3−D

)

+ T134
(
m2
H0 ,m

2
H0 ,m

2
h0

)((m2
h0

+ 2m2
H0 − λ5v2

)
2

m2
h0
− 4m2

H0

×

×
[

(D − 3)m4
H0 − (D + 1)m2

H0m
2
H± +m2

h0
m2
H±(

m2
H0 −m2

H±

)
2

−
m2
A0

(
m2
h0 − (D + 1)m2

H0

)
+ (D − 3)m4

H0(
m2
A0 −m2

H0

)
2

]

+
1

2

(
m2
h0 + 2m2

H0 − λ5v2
)
×

×
[(

2m2
H0 −m2

h0

)(
2m2

A0 +m2
h0 − λ5v2

)
(
m2
A0 −m2

H0

)
2

134



C.2. Two-loop corrections to the ρ parameter

+

(
m2
h0 − 2m2

H0

)(
m2
h0 + 2m2

H± − λ5v2
)

(
m2
H0 −m2

H±

)
2

])

+ T134
(
m2
h0 ,m

2
A0 ,m

2
A0

)( (
m2
H0 −m2

H±

)(
2m2

A0 +m2
h0 − λ5v2

)
2(

4m2
A0 −m2

h0

)(
m2
A0 −m2

H0

)
2
(
m2
A0 −m2

H±

)
2
×

×
[
m4
A0

(
m2
h0 − (D − 3)

(
m2
H0 +m2

H±
))

+ (D + 1)m2
A0m

2
H0m

2
H±

+ (D − 7)m6
A0 −m2

h0m
2
H0m

2
H±
]

+
1

2

(
2m2

A0 +m2
h0 − λ5v2

)
×

×
[(

2m2
A0 −m2

h0

)(
m2
h0 + 2m2

H0 − λ5v2
)

(
m2
A0 −m2

H0

)
2

+

(
m2
h0 − 2m2

A0

)(
m2
h0 + 2m2

H± − λ5v2
)

(
m2
A0 −m2

H±

)
2

])

+ T134
(
m2
H± ,m

2
H± ,m

2
h0

)((m2
h0

+ 2m2
H± − λ5v2

)
2

2
(
m2
h0 − 4m2

H±

) ×

×
[

2
(
m2
A0

(
m2
h0 − (D + 1)m2

H±

)
+ (D − 3)m4

H±

)
(
m2
A0 −m2

H±

)
2

− (D − 3)D

+
2
(
m2
H±

(
(D − 3)m2

H± − (D + 1)m2
H0

)
+m2

h0m
2
H0

)
(
m2
H0 −m2

H±

)
2

]

+
1

2

(
m2
h0 + 2m2

H± − λ5v2
)
×

×
[(

m2
h0 − 2m2

H±

)(
2m2

A0 +m2
h0 − λ5v2

)
(
m2
A0 −m2

H±

)
2

+

(
m2
h0 − 2m2

H±

)(
m2
h0 + 2m2

H0 − λ5v2
)

(
m2
H0 −m2

H±

)
2

− 4

])

+A0

(
m2
A0

)
A0

(
m2
H±
)(
−
D
(

(2−D)m2
A0 −Dm2

H±

)
4m2

H±

−

(
2m2

A0 +m2
h0 − λ5v2

)(
m2
h0 + 2m2

H± − λ5v2
)

(
m2
A0 −m2

H±

)
2

−
1

2
(
m2
A0 −m2

H0

)(
m2
H0 −m2

H±

)×
×
[
m2
A0

(
(4−D)m2

H0 −Dm2
H±
)
− (2−D)

(
m4
A0 + 2m4

H±
)

− 2(3−D)m4
H0 + (8− 3D) m2

H0m
2
H±
])

+A0

(
m2
H0

)
A0

(
m2
H±
)(
−
D
(

(2−D)m2
H0 −Dm2

H±

)
4m2

H±

−

(
m2
h0 + 2m2

H0 − λ5v2
)(

m2
h0 + 2m2

H± − λ5v2
)

(
m2
H0 −m2

H±

)
2

+
1

2
(
m2
A0 −m2

H0

)(
m2
A0 −m2

H±

)×
×
[
m2
A0

(
(4−D)m2

H0 + (8− 3D)m2
H±
)

− 2(3−D)m4
A0 −Dm2

H0m
2
H±

− (2−D)
(
m4
H0 + 2 m4

H±
) ])

+A0

(
m2
A0

)
A0

(
m2
h0

)(−2
(
m2
A0 −m2

H0

)
+ 2

(
m2
A0 −m2

H±

)
+m2

H0 −m2
H±

m2
h0

135



C. Analytic results

+
1

4
(

4m2
A0 −m2

h0

) (
m2
A0 −m2

H0

)×
×
[
m2
A0

(
(20− 6D)m2

h0 − 4(4−D)λ5v
2
)

+
(
m2
h0
− λ5v2

) (
(4− 3D)m2

h0 − 2(2−D)λ5v
2
) ]

−
1

4
(

4m2
A0 −m2

h0

)(
m2
A0 −m2

H±

)×
×
[
2m2

A0

(
(10− 3D)m2

h0 − 2(4−D)λ5v
2
)

+
(
m2
h0 − λ5v2

) (
(4− 3D)m2

h0 − 2(2−D)λ5v
2
) ])

+A0

(
m2
H0

)
A0

(
m2
h0

)(2
(
m2
A0 −m2

H0

)
+m2

A0 −m2
H± + 2

(
m2
H0 −m2

H±

)
m2
h0

+
1

4
(
m2
A0 −m2

H0

)(
m2
h0 − 4 m2

H0

)×
×
[
m2
h0

(
(20− 6D)m2

H0 − (8− 5D)λ5v
2
)

+ (4− 3D)m4
h0 + 2λ5v

2
(
(2−D)λ5v

2 − 2(4−D) m2
H0

) ]
+

1

4
(
m2
h0 − 4m2

H0

)(
m2
H0 −m2

H±

)×
×
[
m2
h0

(
(20− 6D)m2

H0 − (8− 5D)λ5v
2
)

+ (4− 3D)m4
h0

+ 2λ5v
2
(
(2−D)λ5v

2 − 2(4−D) m2
H0

) ])

+A0

(
m2
H±
)
A0

(
m2
h0

)( 1

m2
h0

[
− 2

(
m2
A0 −m2

H±
)
−m2

A0 −m2
H0

+ 2m2
H± − 2

(
m2
H0 −m2

H±
) ]

−
D (2−D)

8m2
H±

(
m2
h0 − 4m2

H±

) (3m2
h0
− 2λ5v

2
) (
m2
h0 + 2m2

H± − λ5v2
)

−
1

4
(
m2
A0 −m2

H±

)(
m2
h0
− 4m2

H±

)×
×
[
m2
h0

(
(20− 6D)m2

H± − (8− 5D)λ5v
2
)

+ (4− 3D)m4
h0 + 2λ5v

2
(
(2−D)λ5v

2 − 2(4−D) m2
H±
) ]

−
1

4
(
m2
H0 −m2

H±

)(
m2
h0 − 4m2

H±

)×
×
[
m2
h0

(
(20− 6D)m2

H± − (8− 5D)λ5v
2
)

+ (4− 3D)m4
h0

+ 2λ5v
2
(
(2−D)λ5v

2 − 2(4−D) m2
H±
) ])]

. (C.12)

136



C.2. Two-loop corrections to the ρ parameter

The diagrams from Figure 5.3 with the counterterms calculated from Figure 5.8 leads to
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”

Corrections of order O(GFM
2
t α

2
s) to

the ρ parameter“. Phys. Lett. B351 (1995), pp. 331–338. doi: 10.1016/0370-2693(95)
00380-4. arXiv: hep-ph/9502291 [hep-ph].

[34] M. Faisst et al.
”

Three loop top quark contributions to the ρ parameter“. Nucl. Phys. B665
(2003), pp. 649–662. doi: 10.1016/S0550-3213(03)00450-4. arXiv: hep-ph/0302275
[hep-ph].

[35] J. J. van der Bij et al.
”

Three-loop leading top mass contributions to the ρ parameter“.
Phys. Lett. B498 (2001), pp. 156 –162. doi: http://dx.doi.org/10.1016/S0370-
2693(01)00002-8.
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