

Fakultät für Maschinenwesen

Beitrag zur Gestaltung und Auslegung rotationssymmetrischer dickwandiger Pressverbindungen mit orthotropen Fügepartnern

Dipl.-Ing. Univ. Philipp Fahr

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:

Prof. Dr.-Ing. Karsten Stahl

Prüfer der Dissertation:

- 1. Prof. Dr.-Ing. Klaus Drechsler
- 2. Prof. Dr.-Ing. Helmut Rapp (Universität der Bundeswehr München)

Die Dissertation wurde am 11.04.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21.08.2018 angenommen.

Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Carbon Composites Boltzmannstraße 15 D-85748 Garching bei München

Tel.: +49 (0) 89 / 289 – 15092 Fax.: +49 (0) 89 / 289 – 15097 Email: info@lcc.mw.tum.de Web: www.lcc.mw.tum.de

DANKSAGUNG

Zur Fertigstellung dieser Arbeit haben viele Menschen einen Beitrag geleistet, denen ich an dieser Stelle meinen Dank ausdrücken möchte.

Bei Herrn Prof. Klaus Drechsler möchte ich mich für die Betreuung dieser Dissertation und die Möglichkeit, diese Arbeit am Lehrstuhl für Carbon Composites anzufertigen, bedanken. Mein Dank gilt auch Herrn Prof. Helmut Rapp vom Institut für Leichtbau der Universität der Bundeswehr München für die Übernahme des Koreferats und die engagierte Diskussion und Korrektur dieser Dissertation. Bei Herrn Dr. Roland Hinterhölzl möchte ich mich für die fachliche Diskussion der behandelten Thematik bedanken, der damit maßgeblich zur Entwicklung dieser Arbeit beigetragen hat. Frau Dr. Elisabeth Ladstätter hat mich in allen administrativen Belangen, die während meiner Zeit am Lehrstuhl und danach angefallen sind, nach Kräften unterstützt, wofür ich mich ebenfalls recht herzlich bedanken möchte. Mein Dank gilt außerdem all meinen Kollegen des Lehrstuhls für Carbon Composites für deren fachliche und persönliche Unterstützung während meiner Promotionszeit, besonders Daniel Teufl, Thorsten Hans, Robin Taubert und Philipp Schäfer für viele hilfreiche Anregungen während der Anfertigung dieser Arbeit und immer offene Bürotüren und Ohren. Bei den von mir betreuten Studenten, deren Arbeiten Eingang in die vorliegende Dissertation gefunden haben und die mich anderweitig während meiner Zeit am Lehrstuhl unterstützt haben, möchte ich mich ebenfalls bedanken.

Besonderer Dank gilt meinen Freunden und meiner Familie, die mich teilweise schon seit Jahrzehnten begleiten, mir mit Rat und Tat zur Seite stehen und mir die wichtigen Dinge im Leben vor Augen führen.

Meiner Frau Christine, die mich in all den Jahren mit unerschöpflicher Geduld und Ausdauer unterstützt hat, immer ein offenes Ohr für all meine Gedanken hat, in jeder Lebenssituation für mich da ist und maßgeblich zum Gelingen dieser Arbeit beigetragen hat, bin ich sehr dankbar.

Zu guter Letzt möchte ich mich bei meinen Eltern bedanken, die mir seit jeher jegliche denkbare Unterstützung haben zukommen lassen und ohne die ich persönlich und beruflich nicht dort stehen würde, wo ich heute bin.

München, im April 2018

Philipp Fahr

KURZFASSUNG

Für rotationssymmetrische Pressverbindungen zwischen außenliegenden Wellen aus Faserverbundwerkstoff und Stahlnaben besteht bei dickwandigen Fügepartnern Forschungsbedarf hinsichtlich einfacher Auslegungsvorgehensweisen und Gestaltungsempfehlungen. In der vorliegenden Arbeit werden mechanische und tribologische Aspekte von Pressverbindungen sowie Vereinfachungen, wie sie bei analytischen Ansätzen getroffen werden, untersucht. Darauf aufbauend werden Auslegungsempfehlungen ausgesprochen. Aus der experimentellen und numerischen Untersuchung verschiedener Gestaltungsparameter der Welle werden Gestaltungsempfehlungen abgeleitet.

Die bei einfachen Auslegungsvorgehensweisen zur Bestimmung der Einpresskraft, der Auszugskraft und des übertragbaren Torsionsmoments getroffenen Annahmen und vernachlässigten Aspekte werden identifiziert. Numerische Berechnungen zeigen zum einen, dass die Vernachlässigung der elastischen Deformationskraft, welche für die elastische Deformation der Fügepartner beim Einpressen zusätzlich zur Reibkraft aufgebracht werden muss, und des viskoelastischen Materialverhaltens der Welle eine nicht konservative Auslegung zur Folge hat. Zum anderen wird nachgewiesen, dass der Einfluss der Querkontraktion beim Einpress- und Auszugsvorgang auf den Fugendruck stark vom Faserwinkel abhängig ist. Anhand experimenteller Untersuchungen wird nachgewiesen, dass ein Einebnen der Rauheit der Stahlnabe stattfindet, dies für größere Ausgangsrauheiten stärker ausgeprägt ist, und das Rauheitsprofil der Stahlnabe, unabhängig von der Rauheit und dem vorherrschenden Fugendruck, vollständig mit Polymermatrix ausgefüllt ist. Beide Sachverhalte haben ein effektives Übermaß zur Folge, das geringer als das gemessene ist. Für die Reibkoeffizienten zwischen Stahl und kohlenstofffaserverstärktem Kunststoff zeigt sich, dass der Einfluss der Oberflächenrauheit der Stahlnaben auf die Reibkoeffizienten von der Belastungsrichtung abhängig ist. Die Relevanz der untersuchten Aspekte wird für die einfachen Auslegungsvorgehensweisen bewertet und der Einfluss der Wellenwandstärke diskutiert.

Es wird gezeigt, dass die Vereinfachungen eines analytischen Ansatzes, der von dünnwandigen, endlich ausgedehnten Pressverbindungen und orthotropen Fügepartnern ausgeht, für verschiedene Laminate unterschiedlich relevant sind. Aufgrund dieser Vereinfachungen wird der Mittelwert des Fugendrucks überschätzt, was in allen Fällen mit zunehmender Wellenwandstärke zunimmt.

Der Einfluss wichtiger Gestaltungsparameter auf den Einpressvorgang und das übertragbare Torsionsmoment wird experimentell bei Raumtemperatur untersucht. Anhand numerischer Parameterstudien werden Aussagen zur Effektivität von Parameteränderungen getroffen und Gestaltungsempfehlungen abgeleitet.

ABSTRACT

For rotationally symmetric interference fit assemblies of outer composite shafts and steel hubs exist certain needs concerning basic analysis and design guidelines for thick-walled parts. This thesis investigates mechanical and tribological aspects of the interference fit assembly and assumptions analytical approaches often act upon. Recommendations for analysis are given based on these studies. Furthermore, design guidelines are derived from experimental und numerical investigations of certain design parameters of the shaft.

Assumptions and neglected aspects within basic analysis procedures for calculating the assembly force, the disassembly force and the torque are identified. Numerical investigations show that neglecting the deformational force, which has to be applied for the elastic deformation of the parts during assembly in addition to the frictional force, and the viscoelasticity of the composite results in a non-conservative analysis. The influence of the lateral contraction on the contact pressure during assembly and disassembly is strongly dependent on the fiber angle. Experimental investigations show that asperities of the steel hub are levelled, which is more pronounced for rougher surfaces, and that these asperities are filled with polymer matrix, independently of roughness and contact pressure. Both circumstances result in a smaller effective interference than the measured value. The influence of the steel hub's surface roughness on the coefficient of friction between steel and carbon fiber reinforced plastic depends on the direction of relative movement. The relevance of the investigated aspects is evaluated for the basic analysis procedures and the influence of the thickness of the shaft is discussed.

It is shown that the simplifications of an analytical approach, assuming thin-walled, orthotropic, finite parts are of varying relevance for different laminates. Due to these simplifications the mean value of the contact pressure is overestimated, which increases in all cases as the thickness of the shaft increases.

The influence of important design parameters on the assembly process and the torque is investigated experimentally at room temperature. Based on numerical parameter studies the effectiveness of parameter variations is evaluated and design recommendations are given.

Inhaltsverzeichnis

Inha	altsv	erzeichnis	ix	
Nor	nenk	latur	xi	
Abk	ürzu	Ingsverzeichnis	xix	
Abb	oildu	ngsverzeichnis	xxi	
Tab	eller	verzeichnis	xxv	
1	Einl	eitung und Motivation	1	
2	Ziel	setzung und Vorgehen	3	
3	Gru	rundlagen		
	3.1	Pressverbindung	5	
		3.1.1 Allgemeines und Fügestrategien	5	
		3.1.2 Auslegung und Gestaltung	10	
	3.2	Viskoelastizität	21	
	3.3	Tribologie und Reibkoeffizienten	24	
	3.4	Klassische Laminattheorie und Ingenieurskonstanten	29	
4	Ana	lyse einfacher Auslegungsvorgehensweisen	. 35	
	4.1	Rechnerisches Auslegungsvorgehen	35	
	4.2	Experimentelles Auslegungsvorgehen	39	
5 Experimentelle Untersuchung dickwandiger Pressverbindu		erimentelle Untersuchung dickwandiger Pressverbindungen	. 43	
	5.1	Randbedingungen	43	
	5.2	Prüfkörper und Prüfaufbau	45	
	5.3	Qualifikation optisches Messsystem	50	
	5.4	Einpress- und Torsionsversuche	54	
		5.4.1 Einpressversuche	54	
		5.4.2 Torsionsversuche	60	
6	Unte	ersuchung mechanischer und tribologischer Aspekte	. 67	
	6.1	Rahmenbedingungen	67	
	6.2	Validierung numerisches Modell und Abgleich mit Einpressversuchen	72	
	6.3	Numerische Untersuchung mechanischer Aspekte	77	
		6.3.1 Elastische Deformationskraft	77	

		6.3.2	Viskoelastizität	83
		6.3.3	Querkontraktion	91
	6.4	Exper	imentelle Untersuchung tribologischer Aspekte	98
		6.4.1	Einebnung der Rauheit	98
		6.4.2	Reibkoeffizientenermittlung	102
		6.4.3	Eindringen der Rauheit	111
7	Unte	ersuch	nung analytischer Vereinfachungen	115
	7.1	Abgle	ich mit Einpressversuchen	115
	7.2	Getrer	nnte Untersuchung einzelner Vereinfachungen	119
		7.2.1	Rahmenbedingungen	119
		7.2.2	Untersuchung radiale Dehnung	120
		7.2.3	Untersuchung Fugendrucküberhöhung	123
	7.3	Komb	inierte Untersuchung aller Vereinfachungen	128
		7.3.1	Symmetrische Laminate	128
		7.3.2	Unsymmetrische Laminate	134
8	Rele	evanzk	peurteilung und Auslegungsempfehlungen	139
8	Rele 8.1	evanzk Mecha	beurteilung und Auslegungsempfehlungen	 139 139
8	Rele 8.1 8.2	wanzk Mecha Analy	Deurteilung und Auslegungsempfehlungen anische und tribologische Aspekte tische Vereinfachungen	 139 139 145
8	Rele 8.1 8.2 8.3	evanzk Mecha Analy Zusan	Deurteilung und Auslegungsempfehlungen anische und tribologische Aspekte tische Vereinfachungen nmenfassung der Auslegungsempfehlungen	139 139 145 149
8 9	Rele 8.1 8.2 8.3 Para	evanzk Mecha Analy Zusan	beurteilung und Auslegungsempfehlungen anische und tribologische Aspekte tische Vereinfachungen nmenfassung der Auslegungsempfehlungen rstudien und Gestaltungsempfehlungen	139 139 145 149 153
8	Rela 8.1 8.2 8.3 Para 9.1	evanzk Mecha Analy Zusan ameter Symm	beurteilung und Auslegungsempfehlungen anische und tribologische Aspekte tische Vereinfachungen nmenfassung der Auslegungsempfehlungen rstudien und Gestaltungsempfehlungen	139 139 145 149 153 154
9	Rela 8.1 8.2 8.3 Para 9.1 9.2	evanzk Mecha Analy Zusan ameter Symm Unsyr	beurteilung und Auslegungsempfehlungen anische und tribologische Aspekte tische Vereinfachungen nmenfassung der Auslegungsempfehlungen rstudien und Gestaltungsempfehlungen netrische Laminate	139 139 145 149 153 158
9	Rela 8.1 8.2 8.3 Para 9.1 9.2 9.3	Analy Zusan Symm Unsyn	beurteilung und Auslegungsempfehlungen anische und tribologische Aspekte tische Vereinfachungen menfassung der Auslegungsempfehlungen rstudien und Gestaltungsempfehlungen hetrische Laminate nmetrische Laminate mit ausgeglichenem Winkelverbund inne nmetrische Laminate mit ausgeglichenem Winkelverbund auße	139 145 145 149 153 154 en158 en165
9	Rela 8.1 8.2 8.3 Para 9.1 9.2 9.3 9.4	evanzk Mecha Analy Zusan ametei Symm Unsyn Unsyn Vergle	beurteilung und Auslegungsempfehlungen	139 139 145 149 153 154 en158 en165 168
9	Relation 8.1 8.2 8.3 Para 9.1 9.2 9.3 9.4 9.5	Analy Analy Zusan Ameter Symm Unsyr Unsyr Vergle Zusan	beurteilung und Auslegungsempfehlungen	139 145 145 149 153 154 en158 en165 168 171
8 9 10	Relation 8.1 8.2 8.3 Para 9.1 9.2 9.3 9.4 9.5 Zust	Analy Analy Zusan Ameter Symm Unsyr Unsyr Vergle Zusan	beurteilung und Auslegungsempfehlungen	139 145 145 149 153 154 158 en165 168 168 171 173
8 9 10 A	Relation 8.1 8.2 8.3 Para 9.1 9.2 9.3 9.4 9.5 Zust Anh	evanzk Mecha Analy Zusan ameter Symm Unsyn Unsyn Vergle Zusan amme amme	beurteilung und Auslegungsempfehlungen	139 145 145 149 153 154 165 168 168 171 173 173 179
8 9 10 A B	Relation 8.1 8.2 8.3 Para 9.1 9.2 9.3 9.4 9.5 Zust Anh Verd	evanzk Mecha Analy Zusan ameter Symm Unsyn Unsyn Vergle Zusan amme ang	beurteilung und Auslegungsempfehlungen anische und tribologische Aspekte tische Vereinfachungen menfassung der Auslegungsempfehlungen rstudien und Gestaltungsempfehlungen netrische Laminate nmetrische Laminate mit ausgeglichenem Winkelverbund inne nmetrische Laminate mit ausgeglichenem Winkelverbund auße eich der unterschiedlichen Laminate nmenfassung der Gestaltungsempfehlungen nfassung und Ausblick	139 145 145 149 153 154 168 168 168 171 173 173 179 197
8 9 10 A B C	Relation 8.1 8.2 8.3 Para 9.1 9.2 9.3 9.4 9.5 Zust Anh Verd Betr	evanzk Mecha Analy Zusan ameter Symm Unsyn Unsyn Vergle Zusan amme amme amme	beurteilung und Auslegungsempfehlungen anische und tribologische Aspekte tische Vereinfachungen menfassung der Auslegungsempfehlungen rstudien und Gestaltungsempfehlungen netrische Laminate nmetrische Laminate mit ausgeglichenem Winkelverbund inne nmetrische Laminate mit ausgeglichenem Winkelverbund auße eich der unterschiedlichen Laminate nmenfassung der Gestaltungsempfehlungen nfassung und Ausblick ichungen	139 145 145 149 153 154 158 165 168 168 171 173 179 197 199

Nomenklatur

Formelzeichen	Einheit	Beschreibung
A	mm²	Fügefläche
A, B, D	N/mm, N, Nmm	Steifigkeitsmatrizen bei der CLT
a, b, d	mm/N, 1/N, 1/Nmm	Nachgiebigkeitsmatrizen bei der CLT
$d_{,i/a}$	mm	Innen-/Außendurchmesser
$E_{(\dots)}\left[(0/t) ight]$	MPa	E-Modul (inRichtung bei orthotropen Werkstoffen) [optional: elastischer Kurzzeitwert/zeitabhängiger Wert zum Zeitpunkt t]
<i>Faus</i> ,	Ν	Axiale Auszugskraft
F _{ax}	Ν	Axiale Kraft
F _{ein,}	Ν	Axiale Einpresskraft
F _{elast} , F _{init}	Ν	elastische und initiale Deformationskraft
F _{max}	Ν	Maximale Kraft bei Einpressversuchen
F _{Reakt}	Ν	Reaktionskraft im numerischen Modell
F _{Reib,}	Ν	Reibkraft
$G_{(\dots)}[(t)]$	MPa	Schubmodul (inEbene bei orthotropen Werkstoffen) [optional: zeitabhängiger Wert zum Zeitpunkt <i>t</i>]
$l_{\dots}, l_F, l_{ges}, l_P$	mm	Axiale Länge von, Fügelänge, Gesamtlänge der PK, Länge der Fase der Nabe
în	Nmm/mm	Momentenflüsse am Plattenelement bei der CLT
m	-	Freiwert bei Findley-Formel

Formelzeichen	Einheit	Beschreibung
<i>M</i> _{<i>t</i>,}	Nm	Übertragbares Torsionsmoment
n	-	Freiwert bei Findley-Formel
n	-	Anzahl Lagen im Laminataufbau
ñ	N/mm	Kraftflüsse am Scheibenelement bei der CLT
$p_{F(,m),\dots}$	MPa	(Mittelwert) Fugendruck
$Q, \overline{Q}, \overline{Q}_k$	MPa	Steifigkeitsmatrix und transformierte Steifigkeitsmatrix des Scheibenelements und Steifigkeitsmatrix der k-ten Schicht in der CLT
r, r _{,i/a}	mm	(Füge-)Radius, Innen-/Außenradius von
R	±%	Rauschen des Messsignals der ARAMIS-Messung
R _a	μm	Arithmetischer Mittenrauhwert gemäß Niemann [1]
R_P	mm	Radius der Fase der Nabe
<i>R</i> _{<i>z</i>,}	μm	Gemittelte Rauhtiefe gemäß Niemann [1]
S _{ein}	Ν	Standardabweichung von \overline{F}_{ein}
Sk	-	Skalierungsfaktor
S _M	Nm	Standardabweichung von $\overline{M}_{t,exp}$
$s_{ar{\Delta}d}$	mm	Standardabweichung von $\overline{\Delta}d_{\dots}$
s _e	-	Standardabweichung von $\bar{\varepsilon}_{\theta}$
Sξ	-	Standardabweichung von $\bar{\xi}_M$
$s_{\xi heta}$	-	Standardabweichung von $\bar{\xi}_{\theta,b-e}$
S _{ξF}	-	Standardabweichung von $\bar{\xi}_{F,b-e}$
$S_{\overline{\mu}_{}}$	-	Standardabweichung von $\bar{\mu}_{\dots}$
t	mm	Wandstärke

Formelzeichen	Einheit	Beschreibung
t _{ein}	-	Zeitpunkt, an dem F_{ein} erreicht wird
t _{ent}	-	Zeitpunkt, an dem Prüfkörper axial entlastet ist
t _{krit}	mm	Kritische Wandstärke der 90°-Lagen
t _{max}	-	Zeitpunkt, an dem F_{max} erreicht wird
T_G	°C	Glasübergangstemperatur
t_k	mm	Schichtdicke der k-ten Schicht bei der CLT
<i>u</i>	mm	Verschiebung inRichtung
$\ddot{\mathrm{U}}_{d}, \ddot{\mathrm{U}}_{r,\ldots}$	mm	Übermaß (auf Durchmesser/Radius bezogen)
W	J	Arbeit
Z_k	mm	Abstand der k-ten Schicht zur Bezugsebene bei der CLT
α	0	Winkel der Faserorientierung zur Rotationsachse oder zum globalen Koordinatensystem
β	0	Winkel der Fase der Nabe
γ	-	Schiebung in derEbene
δ	-	Verhältnis von Außen- zu Innendurchmesser
Δ_p	MPa	Differenz der numerisch (Minuend) und analytisch (Sub- trahend) berechneten Fugendrücke $p_{F,M,\dots}$
Δd	mm	Differenz der Durchmesser vor dem Einpressen (Minu- end) und nach dem Lösen (Subtrahend)
$\delta p_{F,m}()$	MPa	Differenz des Fugendrucks eines unsymmetrischen zum jeweiligen Wert des symmetrischen Laminats
$\varDelta p_{F,m}(\dots)$	MPa	Fugendruckänderung bei Variation eines Gestaltungspa- rameters
$\delta\delta p_{F,m}()$	MPa	Änderung der Differenz des Fugendrucks $\delta p_{F,m}()$ bei Variation eines Gestaltungsparameters

Formelzeichen	Einheit	Beschreibung
$\Delta\Delta p_{F,m}(\dots)$	MPa	Änderung der Fugendruckänderung $\Delta p_{F,m}()$ bei Variation eines weiteren Gestaltungsparameters
$\Delta R_{z,}$	μm	Differenz der Rauheiten
$\Delta u_{r,}$	mm	Wandstärkenänderung
$\Delta_{\Delta u_r}$	mm	Differenz der Wandstärkenänderung $\Delta u_{r,\dots}$
$\Delta \ddot{\mathrm{U}}_{r,}$	mm	Übermaßänderung
E (0)	-	Vektor der Verzerrungen (der Bezugsebene) des Schei- ben-Plattenelements bei der CLT
ε[(0/t)]	-	Normaldehung inRichtung [optional: elastischer Kurzzeitwert/zeitabhängiger Wert zum Zeitpunkt t]
ζ	-	Schwankung der $R_{z,}$ -Messungen innerhalb eines Mess- zeitpunkts
ζ_{AWV}	-	Anteil der AWV-Lagen am Laminataufbau
κ_0	-	Vektor der Verwölbungen der Bezugsebene des Schei- ben-Plattenelements bei der CLT
μ	-	Reibkoeffizient inRichtung (erste Angabe: Richtung des Reibkoeffizienten; zweite Angabe: Normalenrich- tung der Ebene)
$\mu_{(init,)Gleit,}$		(initialer) Gleitreibkoeffizient
$\mu_{(init,)Haft,}$	-	(initialer) Haftreibkoeffizient
ν[(0/t)]	-	Querkontraktionszahl (bei orthotropen Werkstoffen ge- mäß international gebräuchlicher Nomenklatur (erste Angabe: Richtung der primären Dehnung aufgrund der anliegenden Kraft; zweite Angabe: Richtung der sich ergebenden Querdehnung)) [optional: elastischer Kurz- zeitwert/zeitabhängiger Wert zum Zeitpunkt <i>t</i>]
ξanalyt,	-	Relative Abweichung von $p_{F,m,num}$ vom mit den Ingenieurskonstanten berechneten analytischen Wert

Formelzeichen	Einheit	Beschreibung
ξ _{Ein}	-	Relative Abweichung aller charakteristischen mechani- schen Größe durch das Einebnen von den Werten, die mit dem einfachen rechnerischen Auslegungsvorgehen ermittelt werden
ξ _{Iter}	-	Relative Abweichung des iterativ ermittelten Fugen- drucks von dem mit dem Einpressvorgangsmodell ermit- telten Fugendruck
ξ_M	-	Relative Abweichung von $M_{t,ber}$ zu $M_{t,exp}$
ξ _{Peak}	-	Relative Abweichung des Fugendrucks durch die Fu- gendrucküberhöhung und einen etwaigen anderen Fu- gendruckverlauf vom analytisch berechneten Wert
ξrad	-	Relative Abweichung des Fugendrucks durch die radiale Dehnung vom analytisch berechneten Wert
ξθ,AR-DMS	-	Relative Abweichung der mittels ARAMIS gemessenen tangentialen Dehnung zu dem mit DMS gemessenen Wert
$\xi_{ heta,b-e}$	-	Relative Abweichung der berechneten tangentialen Deh- nung vom experimentell gemessenen Wert
$\xi_{F,b-e}$	-	Relative Abweichung der berechneten Einpresskraft vom experimentell gemessenen Wert
$\xi_{F_{ein}} \ {Def}_{F_{aus}, \ exp \ 'QK} \ M_t \ Ein$	-	Relative Abweichung von F_{ein} , F_{aus} oder M_t durch die elastische Deformationskraft (Def), die Viskoelastizität (VE), die Querkontraktion (QK) oder das Einebnen (Ein) von dem Wert, der mit dem rechnerischen oder experi- mentellen Auslegungsvorgehen ermittelt wird
ξ_r	-	Relative Änderung der Wandstärkenänderung $\Delta u_{r,}$
ξ_{VE}	-	Relative Abweichung aller mechanischen Größen durch die Viskoelastizität von den Werten, die mit einer der einfachen Auslegungsvorgehensweisen zum Zeitpunkt t_1 ermittelt werden

Formelzeichen	Einheit	Beschreibung
ξΔ	-	Anteil der Differenz der Wandstärkenänderung $\Delta_{\Delta u_r}$ am Übermaß Ü _r
П	J	Innere Energie
τ	MPa	Schubspannung
σ	MPa	Normalspannung inRichtung

_

Index	Beschreibung
	Mittelwert derWerte
.	Ingenieurskonstanten
1,2,3	Richtungen im natürlichen Koordinatensystem einer UD-Lage (1: parallel zur Faserrichtung; 2: senkrecht zur Faserrichtung; 3: normal zur Faserebene)
90°	Wert der 90°-Lagen
analyt, ana	Analytisch berechneter Wert
AR	Mit ARAMIS gemessen
aus	Während des Auszugsvorgangs
(rechn/exp)Ausl	Mit rechnerischem/experimentellem Auslegungsvorgehen er- mittelter Wert
AWV	Wert des ausgeglichenen Winkelverbunds
ax	In axiale Richtung
ber	Berechneter Wert
Def	Wert mit Berücksichtigung der elastischen Deformationskraft F_{elast}

Index	Beschreibung
DMS	Mit DMS gemessen
Ein	Wert mit Berücksichtigung der Einebnung
ein	Während des Einpressvorgangs
exp	Experimentell ermittelter Wert
korr	Um Δ_p korrigierter analytischer Fugendruckverlauf
m	Matrix
m	Mittelwert
М	In der Mitte der Fügelänge
Ν	Nabe
num	Numerisch berechneter Wert
PK,PKK	Prüfkörper, Prüfkörperklasse (vergleichbare Rauheiten und Fu- gendrücke)
QK	Wert mit Berücksichtigung der Querkontraktion
r	Radiale Richtung in zylindrischen Koordinaten
RK	Rauheitsklasse (vergleichbare Rauheiten)
SoV	Mit den SoV-Ingenieurskonstanten berechneter Wert
SR	Stützring
tang	In tangentiale Richtung
Tr	Trennfuge
t_0	Beginn der Betriebsdauer eines Bauteils nach dem Einpressen
t_1	Ende der Betriebsdauer eines Bauteils
VE	Wert mit Berücksichtigung der Viskoelastizität
W	Welle

Index	Beschreibung
Ζ	Axiale Richtung in zylindrischen Koordinaten
θ	Tangentiale Richtung in zylindrischen Koordinaten

Abkürzungsverzeichnis

Abkürzung	Beschreibung
Abaqus	Numerisches Softwaretool "Abaqus/CAE 6.14-2" von Dassault Systèmes
ARAMIS	Optisches Messsystem ARAMIS der GOM mbH, das auf der digi- talen Bildkorrelation basiert
AWV	Ausgeglichener Winkelverbund
AWVa	In dieser Arbeit untersuchte unsymmetrische Laminate mit außen- liegenden AWV-Lagen
AWVi	In dieser Arbeit untersuchte unsymmetrische Laminate mit innen- liegenden AWV-Lagen
CFK	Kohlenstofffaserverstärkter Kunststoff
CLT	Klassische Laminattheorie (engl.: Classical Laminate Theory)
DMS	Dehnmessstreifen
FVG	Faservolumengehalt
FVK	Faserverstärkter Kunststoff
FVW	Faserverbundwerkstoff
MSV	Mehrschichtverbund
РК	Prüfkörper
Sigrafil C30	Faser "SIGRAFIL [®] C30" der SGL CARBON SE
SIKA CR132-7	Zweikomponentiges Harzsystem (Epoxidharz "Biresin [®] CR132", aminbasierter Härter "Biresin [®] CH132-7") der Sika Deutschland GmbH [2]
SoV	Aus der Nachgiebigkeitsmatrix \tilde{a} der invertierten Steifigkeitsmatrix A ermittelte Scheibeningenieurskonstanten (<u>Scheibe ohne V</u> erwölbung)
UD	Unidirektional

Abbildungsverzeichnis

Abb. 1-1:	CFK-Walzen mit Anbindungsbereichen	2
Abb. 3-1:	Schematische Darstellung einer Pressverbindung	6
Abb. 3-2:	Exemplarischer Axialkraft-Einpressweg-Verlauf	.10
Abb. 3-3:	UD-Scheibenelement und Ebenen senkrecht zur Isotropieebene	.11
Abb. 3-4:	Räumlicher Spannungszustand in Zylinderkoordinaten	.12
Abb. 3-5:	Flüsse Schalenelement und Bereiche bei Lösung der Gleichungssysteme	.15
Abb. 3-6:	Natürliches und globales Koordinatensystem	.30
Abb. 3-7:	Kraft- und Momentenflüsse an Scheiben- und Plattenelement	.31
Abb. 4-1:	Rechnerisches Auslegungsvorgehen	.37
Abb. 4-2:	Experimentelles Auslegungsvorgehen	.40
Abb. 5-1:	Schematische Darstellung der Prüfkörper	.45
Abb. 5-2:	Sägevorrichtung und Planlaufgenauigkeiten	.48
Abb. 5-3:	Prüfaufbau der Einpressversuche	.50
Abb. 5-4:	Exemplarischer Kraft-Zeit-Verlauf und fertig gefügter Prüfkörper	.50
Abb. 5-5:	Mantellinie in ARAMIS und tangentiale Dehnungsverläufe	.52
Abb. 5-6:	Relative Abweichung von ARAMIS- zu DMS-Messwert	.53
Abb. 5-7:	Definition der Einpresskraft	.55
Abb. 5-8:	Einpresskraft kleine Baugröße	.56
Abb. 5-9:	Einpresskraft große Baugröße	.56
Abb. 5-10	: Tangentiale Dehnung kleine Baugröße	. 59
Abb. 5-11	: Tangentiale Dehnung große Baugröße	. 59
Abb. 5-12	: Abbildung Torsionsprüfstand in Anlehnung an [52]	.61
Abb. 5-13	: Definition des übertragbaren Torsionsmoments aus [52]	. 62
Abb. 5-14	: Torsionsmomente kleine Baugröße	. 62
Abb. 5-15	: Torsionsmomente große Baugröße	.63
Abb. 5-16	: Relative Torsionsmomentabweichung kleine Baugröße	.64
Abb. 5-17	: Relative Torsionsmomentabweichung große Baugröße	.64
Abb. 6-1:	Prinzipskizze des numerischen Basismodells	.68

Abb. 6-2:	Vernetzung des Anbindungsbereichs der Referenzvariante	72
Abb. 6-3:	Vernetzung des Anbindungsbereichs bei den Einpressversuchen	73
Abb. 6-4:	Relative Abweichung numerische tangentiale Dehnung kleine Baugröße	74
Abb. 6-5:	Relative Abweichung numerische tangentiale Dehnung große Baugröße	75
Abb. 6-6:	Relative Abweichung numerische Einpresskraft kleine Baugröße	76
Abb. 6-7:	Relative Abweichung numerische Einpresskraft große Baugröße	76
Abb. 6-8:	Skizze für die innere Arbeit im Zylindersegment	79
Abb. 6-9:	Plausibilitätsuntersuchung elastische Deformationskraft	80
Abb. 6-10:	Relative Abweichung bei Berücksichtigung der elastischen Deformationskraft	81
Abb. 6-11:	Folgen der elastischen Deformationskraft für Auslegungsvorgehen	82
Abb. 6-12:	Relative Abweichung bei Berücksichtigung der Viskoelastizität	86
Abb. 6-13:	Relative Abweichung bei Berücksichtigung der Viskoelastizität und Variation der Wellenwandstärke	87
Abb. 6-14:	Radiale Verschiebung an Innenradius und Außenradius	88
Abb. 6-15:	Kenngrößen der Wandstärkenänderung für verschiedene AWV- Winkel	89
Abb. 6-16:	Folgen der Viskoelastizität für Auslegungsvorgehen	91
Abb. 6-17:	Tangentiale Dehnung axial be- und entlasteter Prüfkörper und Prinzip Querkontraktion	92
Abb. 6-18:	Prinzipskizze numerisches Modell zur Abbildung des Einpressvorgangs	93
Abb. 6-19:	Prinzipskizze vereinfachtes numerisches Modell Querkontraktion	93
Abb. 6-20:	Vorgehen (n-te Iteration) zur Ermittlung des Fugendrucks zwischen schubbelasteten Komponenten	94
Abb. 6-21:	Relative Abweichung verschiedener Vorgehen zur Abbildung des Einpressvorgangs	94
Abb. 6-22:	Relative Abweichung bei Berücksichtigung der Querkontraktion	95
Abb. 6-23:	Folgen der Querkontraktion für Auslegungsvorgehen	97
Abb. 6-24:	Durchmesseränderung durch Einebnen der Stahlnabe	101
Abb. 6-25:	Folgen der Einebnung für Auslegungsvorgehen	102

Abb.	6-26:	Prinzipskizze Prüfstand Reibkoeffizientenermittlung	103
Abb.	6-27:	Prüfaufbau Reibkoeffizientenermittlung	105
Abb.	6-28:	Kräftegleichgewicht am Schlitten	105
Abb.	6-29:	Ergebnisse Voruntersuchung Reibkoeffizienten	106
Abb.	6-30:	Reibkoeffizientenverläufe und Definition Ergebnisgrößen	107
Abb.	6-31:	Haft-, Gleitreibkoeffizient und initialer Haftreibkoeffizient	108
Abb.	6-32:	Axialkraftverlauf Unterbrechung Einpressvorgang	110
Abb.	6-33:	Ringscheiben zur optischen Untersuchung der Trennfuge	111
Abb.	6-34:	Mikroskopieaufnahmen Trennfuge CFK-Welle und Stahlnabe	112
Abb.	6-35:	Schematische Darstellung gemessenes und effektives Übermaß	114
Abb.	7-1:	Relative Abweichung numerische und analytische tangentiale Dehnung kleine Baugröße	116
Abb.	7-2:	Relative Abweichung numerische und analytische tangentiale Dehnung große Baugröße	117
Abb.	7-3:	Relative Abweichung numerische und analytische Einpresskraft kleine Baugröße	118
Abb.	7-4:	Relative Abweichung numerische und analytische Einpresskraft große Baugröße	118
Abb.	7-5:	Relative Abweichung durch radiale Dehnung	121
Abb.	7-6:	Wandstärkenänderung und Querkontraktionszahl für verschiedene Winkel	122
Abb.	7-7:	Korrektur analytischer Fugendruckverläufe	124
Abb.	7-8:	Netzkonvergenzstudie Fugendruck	124
Abb.	7-9:	Abweichung durch Fugendrucküberhöhung	125
Abb.	7-10:	Fugendruckverläufe für verschiedene Varianten	127
Abb.	7-11:	Relative Abweichungen für symmetrisch diskretisierten AWV	129
Abb.	7-12:	Folgen der analytischen Vereinfachungen für Auslegungsvorgehen	130
Abb.	7-13:	Laminataufbauten für weitere Laminate	131
Abb.	7-14:	Partitionierung der Lagen für weitere Laminate	132
Abb.	7-15:	Relative Abweichung für weitere symmetrische Laminate	133
Abb.	7-16:	Relative Abweichung für unsymmetrische AWVi-Laminate	135
Abb.	7-17:	Relative Abweichung für unsymmetrische AWVa-Laminate	137

Abb. 8-1:	: Relative Abweichung bei Berücksichtigung der Querkontraktion un der Viskoelestizität	
		141
Abb. 9-1:	Fugendruck für weitere symmetrische Laminate	155
Abb. 9-2:	Fugendruck für unsymmetrische AWVi-Laminate	159
Abb. 9-3:	Fugendruck für weitere unsymmetrische AWVi-Laminate	162
Abb. 9-4:	Fugendruck für unsymmetrische AWVa-Laminate	166
Abb. A-1:	Mikroskopieaufnahmen Stahlplatten Reibkoeffizientenversuche	190
Abb. A-2:	Mikroskopieaufnahmen CFK Reibkoeffizientenversuche	191

Abb. A-3:	Haft- und	Gleitreibkoeffizienten	einzelne	Versuche	

Tabellenverzeichnis

Tab. 5-1:	Gestaltungsparameter und Einflussgrößen einer	
	Fügepartnern	44
Tab. 5-2:	Varianten mit Soll-Zahlenwerten der Gestaltungsparameter	46
Tab. 5-3:	Wandstärkenverhältnisse	47
Tab. 5-4:	Übersicht der an den CFK-Wellen gemessenen Größen	48
Tab. 5-5:	Übersicht der an den Stahlnaben gemessenen Größen	49
Tab. 5-6:	Soll-Abmessungen der Prüfkörper für die Voruntersuchungen des Messsystems	51
Tab. 5-7:	Anzahl geprüfter Prüfkörper Einpressversuche	54
Tab. 5-8:	Verhältnisse variierter Größen und Mittelwerte	57
Tab. 5-9:	Anzahl geprüfter Prüfkörper Torsionsversuche	61
Tab. 6-1:	Abmessungen der Referenzvariante zur numerischen Aspektuntersuchung	68
Tab. 6-2:	Gestaltungsparameter und Intervalle	69
Tab. 6-3:	Elastizitätsgrößen Matrix, Stahlnabe und UD-Schicht	71
Tab. 6-4:	Parameter zur Berechnung der Kriechmoduln	84
Tab. 6-5:	Rechnerisch ermittelte Elastizitätsgrößen der UD-Schicht	85
Tab. 6-6:	Anzahl Prüfkörper Untersuchung Einebnen	.100
Tab. 6-7:	Rauheiten Stahlkomponenten Reibkoeffizientenermittlung	.104
Tab. 6-8:	Anzahl Prüfkörper Eindringen	.112
Tab. 7-1:	Gestaltungsparameter für weitere Laminate	.131
Tab. 8-1:	Intervalle der Abweichungen durch Aspekte	.140
Tab. 8-2:	Winkelbereiche Viskoelastizität und Querkontraktion	.142
Tab. 8-3:	Abweichungen durch radiale Dehnung und Fugendrucküberhöhung	.146
Tab. 8-4:	Extremwerte analytische Abweichung	.147
Tab. 8-5:	Auslegungsempfehlungen für rechnerisches Auslegungsvorgehen	.151
Tab. 8-6:	Auslegungsempfehlungen für experimentelles Auslegungsvorgehen	.152
Tab. 9-1:	Fugendruckänderung für weitere symmetrische Laminate	.156
Tab. 9-2:	Fugendruckänderung für unsymmetrische AWVi-Laminate	.160

Tab. 9-3:	Gestaltungsparameter weiterführender Parameterstudien	161
Tab. 9-4:	Fugendruckänderung für weitere unsymmetrische AWVi-Laminate	163
Tab. 9-5:	Fugendruckänderung für unsymmetrische AWVa-Laminate	167
Tab. 9-6:	Differenz der Fugendrücke für Vergleich der Laminate	169

Tab. A-1:	Messwerte (1) kleine Baugröße	.179
Tab. A-2:	Messwerte (2) kleine Baugröße	.180
Tab. A-3:	Messwerte (1) große Baugröße	.181
Tab. A-4:	Messwerte (2) große Baugröße	.182
Tab. A-5:	Messwerte Voruntersuchung Messsysteme	.183
Tab. A-6:	Ergebnisgrößen Einpressversuche und Numerik kleine Baugröße	.184
Tab. A-7:	Ergebnisgrößen Einpressversuche und Numerik große Baugröße	.185
Tab. A-8:	Experimentelle und rechnerische Torsionsmomente kleine Baugröße	.186
Tab. A-9:	Experimentelle und rechnerische Torsionsmomente große Baugröße	.187
Tab. A-10:	Durchmesser Einebnung Stahlnabe	.188
Tab. A-11:	Rauheit Einebnung Stahlnabe	.189
Tab. A-12:	Haft- und Gleitreibkoeffizienten für Versuche einer	
	Bearbeitungsrichtung	.193
Tab. A-13:	Analytische Berechnungsergebnisse kleine Baugröße	.194
Tab. A-14:	Analytische Berechnungsergebnisse große Baugröße	.195

1 Einleitung und Motivation

Zur Steigerung der Nachhaltigkeit technischer Systeme wird eine Reduktion von deren Energieverbrauch durch geringere beschleunigte Massen angestrebt. Hierbei spielt Leichtbau eine wichtige Rolle, wobei die Klasse der Faserverbundwerkstoffe (FVWe) eine technisch herausragende Bedeutung hat. FVWe bestehen aus mindestens zwei Bestandteilen, Faser und Matrix, mit unterschiedlichen physikalischen, chemischen und mechanischen Eigenschaften. Die lasttragenden Fasern, die eine hohe Steifigkeit aufweisen, sind in eine Matrix eingebettet, die dem Schutz und der Stabilisierung der Fasern dient. Durch diese Kombination entsteht ein neues Material mit besseren Eigenschaften als die Einzelkomponenten. Vor allem kohlenstofffaserverstärkter Kunststoff (CFK) zeichnet sich durch herausragende gewichtsspezifische mechanische Kennwerte, wie eine hohe Steifigkeit in Faserrichtung, aus. Bei schnell rotierenden Bauteilen wie Walzen (siehe Abb. 1-1) ergeben sich aus der Möglichkeit, die Steifigkeit durch Anpassung der Faserorientierung gezielt einzustellen, weitere Vorteile. Die kritische Eigenfrequenz kann erhöht werden, was die Realisierung längerer Bauteile ermöglicht. Hierdurch kann eine Zweiteilung von langen Antriebswellen hinfällig werden, wodurch sich eine sekundäre Gewichtsreduktion und Kostenersparnis ergibt.

Die Integration von Bauteilen in technische Systeme macht Lasteinleitungen notwendig, die einen kritischen Bereich in Strukturen darstellen. Beim Vorhandensein unterschiedlicher Werkstoffe, bei sogenannten Hybridverbindungen, wird die Gestaltung von Lasteinleitungen durch verschiedene mechanische, thermische und elektrochemische Eigenschaften der Fügepartner erschwert. Bei FVWen müssen häufig die Lasten über die Matrix in die Fasern übertragen werden, was eine Schwachstelle darstellt. Für die Anbindung von Walzen aus FVW an innenliegende, metallische Komponenten, wie Flansche und Gelenkgabeln, stellt die Pressverbindung (siehe Abb. 1-1) eine Verbindungstechnik mit hohem mechanischen und wirtschaftlichen Potential dar. Die Fügepartner werden mit Übermaß ineinander gepresst, woraus ein Fugendruck in der Trennfuge resultiert. Dieser ermöglicht eine Lastübertragung durch Reibung. Das mechanische Potential der Pressverbindung ergibt sich unter anderem durch die flächige Lasteinleitung in die Faserverbundkomponente und die nahezu reine Zugbelastung von in Umfangsrichtung orientierten Fasern, was beides besonders faserverbundgerecht ist. Durch die kraftschlüssige Verbindung der Fügepartner weist die Pressverbindung ein ausgesprochen gutmütiges Verhalten bei Überlast auf. Aufgrund der rotationssymmetrischen Geometrie der Fügepartner und dem einfachen Fügevorgang können Pressverbindungen wirtschaftlich realisiert werden. Dies stellt zwei große Vorteile im Vergleich zu formschlüssigen Pin- und stoffschlüssigen Klebverbindungen dar.

Abb. 1-1: CFK-Walzen mit Anbindungsbereichen Exemplarische CFK-Walzen mit Anbindungsbereichen (links [3] und rechts [4])

Um den Einsatz von FVWen zu etablieren, sind einfache Auslegungsvorgehensweisen und Gestaltungsrichtlinien unter anderem für die Verbindungstechnik, wie beispielsweise die Pressverbindung, notwendig. Sie ermöglichen eine schnelle Abschätzung der Leistungsfähigkeit und eine zielgerichtete Umsetzung von Bauteilen. Vor allem bei mittelständischen und kleinen Unternehmen, bei denen häufig weder große Berechnungsabteilungen noch kostspielige numerische Auslegungstools existieren, sind solche Vorgehensweisen und Richtlinien essentiell. Erschwerend kommt hinzu, dass in gewissen Industriezweigen, wie beispielsweise dem Maschinen- und Anlagenbau, häufig dickwandige Bauteile vorliegen, deren mechanische Auslegung erfahrungsgemäß schwieriger ist als die von dünnwandigen Komponenten. In der Fachliteratur existieren einfache Auslegungsvorgehensweisen zur Bestimmung charakteristischer mechanischer Größen von Pressverbindungen, wie beispielsweise der Einpresskraft oder des übertragbaren Torsionsmoments. Aktuell sind diese einfachen Auslegungsvorgehensweisen und die dabei getroffenen Vereinfachungen und Annahmen sowie deren Auswirkungen auf die Auslegungsgenauigkeit für dickwandige Pressverbindungen mit orthotropen Fügepartnern aber nicht hinreichend untersucht. Ebenso ist nicht untersucht, inwiefern diese Auswirkungen von der Baugröße der Komponenten abhängen. Eine Übertragbarkeit von Untersuchungsergebnissen an kleinen Komponenten auf große Baugrößen wäre aus Kostengründen erstrebenswert. Eine Basis für einfache Auslegungsvorgehensweisen können analytische Ansätze sein, die meist einfach implementierbar sind und eine kostengünstige Auslegung von Komponenten ohne großen numerischen Berechnungsaufwand ermöglichen. Für eine geschlossen analytische Lösung sind aber häufig Vereinfachungen hinsichtlich des mechanischen Verhaltens von Strukturen notwendig, wodurch sich Einschränkungen für die Anwendbarkeit dieser Ansätze ergeben. Ansätze, die von dünnwandigen Komponenten ausgehen, berücksichtigen keine Dehnung in Dickenrichtung. Die Auswirkung der Berechnung dickwandiger Komponenten anhand eines solchen Ansatzes ist nicht untersucht. Selbiges gilt für Gestaltungsrichtlinien und den Einfluss wichtiger Gestaltungsparameter bei dickwandigen Pressverbindungen mit orthotropen Fügepartnern.

2 Zielsetzung und Vorgehen

Die in Kapitel 1 aufgeführten Defizite werden in der vorliegenden Arbeit adressiert, wobei ein Fokus der Untersuchungen auf dickwandigen Pressverbindungen mit orthotropen Fügepartnern verschiedener Baugrößen liegt, die mit axialen Zuglasten oder Torsionsmomenten belastet sind. Hierbei werden die folgenden **Ziele** verfolgt:

- Untersuchung mechanischer und tribologischer Aspekte der Pressverbindung und Quantifizierung der Auswirkung von deren Vernachlässigung bei den einfachen Auslegungsvorgehensweisen. Relevanzbeurteilung der Aspekte für die Auslegungsvorgehensweisen und Ableitung von Auslegungsempfehlungen.
- Auswahl eines analytischen Ansatzes und Quantifizierung der Auswirkungen von dessen Vereinfachungen bei den einfachen Auslegungsvorgehensweisen, Beurteilung von deren Relevanz und Ableitung von Auslegungsempfehlungen.
- Experimentelle und numerische Untersuchung des Einflusses von Gestaltungsparametern und Ableitung von Gestaltungsempfehlungen.

Die aufgeführten Ziele werden durch das im Folgenden dargelegte Vorgehen erreicht.

In **Kapitel 3** werden die für die vorliegende Arbeit relevanten Grundlagen der Pressverbindung, der Viskoelastizität, der Tribologie und Reibkoeffizientenermittlung sowie der klassischen Laminattheorie (engl.: Classical Laminate Theory, CLT) und der Ingenieurskonstanten dargestellt.

In **Kapitel 4** erfolgt die Analyse einfacher Auslegungsvorgehensweisen zur Bestimmung der charakteristischen mechanischen Größen der Pressverbindung. Zum einen wird ein rechnerisches Auslegungsvorgehen anhand eines analytisch oder numerisch ermittelten Fugendrucks definiert. Zum anderen wird ein experimentelles Auslegungsvorgehen definiert, das von einer experimentell ermittelten Einpresskraft ausgeht. Für beide Auslegungsvorgehensweisen werden die getroffenen Vereinfachungen und Annahmen sowie die vernachlässigten mechanischen und tribologischen Aspekte identifiziert, was die Grundlage für die Untersuchungen in den Kapiteln 6 und 7 sowie für die Beurteilung der Relevanz der untersuchten Aspekte in Kapitel 8 darstellt.

In **Kapitel 5** wird die experimentelle Untersuchung des Einpressvorgangs und der Torsionsbelastung bei dickwandigen Pressverbindungen beschrieben, anhand welcher der Einfluss verschiedener Gestaltungsparameter aufgezeigt wird. Hierbei werden verschiedene mechanische und tribologische Aspekte identifiziert und Hypothesen aufgestellt, die in den nachfolgenden Kapiteln untersucht werden. In **Kapitel 6** werden Aspekte der Pressverbindung untersucht, die in den einfachen Auslegungsvorgehensweisen in Kapitel 4 vernachlässigt werden. Hierfür werden in Kapitel 6.1 Parameterräume für die nachfolgenden Untersuchungen definiert. Die anhand eines in Kapitel 6.2 validierten numerischen Modells durchgeführten Untersuchungen mechanischer Aspekte der Pressverbindung werden in Kapitel 6.3 beschrieben. In Kapitel 6.4 wird die experimentelle Untersuchungen liegen die folgenden Forschungsfragen zugrunde:

- Forschungsfrage 1: Wie stark beeinflussen verschiedene mechanische und tribologische Aspekte die Pressverbindung?
- Forschungsfrage 2: Wie hängt der Einfluss der mechanischen Aspekte von der Wandstärke der Komponenten ab?

In **Kapitel 7** werden die Auswirkungen der Vereinfachungen des analytischen Ansatzes von *Fischer* [5] beleuchtet. Hierfür werden die Vereinfachungen getrennt voneinander und kombiniert für die in Kapitel 6.1 definierten Parameterräume und weitere Laminate untersucht. Den Untersuchungen liegen die folgenden Forschungsfragen zugrunde:

- Forschungsfrage 3: Welche Auswirkungen haben die Vereinfachungen des analytischen Ansatzes bei den einfachen Auslegungsvorgehensweisen?
- Forschungsfrage 4: Welche Abhängigkeiten weisen die analytischen Vereinfachungen auf?

In **Kapitel 8** wird die Relevanz der mechanischen und tribologischen Aspekte bei den einfachen Auslegungsvorgehensweisen für die definierten Parameterräume beurteilt. Die Relevanz der Vereinfachungen des analytischen Ansatzes wird ebenfalls für die definierten Parameterräume und weitere Laminate beurteilt. Hierauf aufbauend werden Empfehlungen für eine sinnvolle Auslegung abgeleitet, womit die folgende Forschungsfrage adressiert wird:

• Forschungsfrage 5: Welche Auslegungsempfehlungen können im Hinblick auf die einfachen Auslegungsvorgehensweisen gegeben werden?

In **Kapitel 9** werden im Rahmen numerischer Parameterstudien an verschiedenen Laminaten Gestaltungsparameter variiert und deren Auswirkung auf den Fugendruck untersucht. Die Ergebnisse dieser Untersuchungen werden in Gestaltungsempfehlungen überführt, denen die folgende Forschungsfrage zugrunde liegt:

• Forschungsfrage 6: Welchen Einfluss haben verschiedene Gestaltungsparameter bei dickwandigen Pressverbindungen mit orthotropen Fügepartnern?

In **Kapitel 10** werden die Ergebnisse der vorliegenden Arbeit zusammengefasst und ein Ausblick auf sinnvolle, weiterführende Arbeiten gegeben.

3 Grundlagen

In diesem Kapitel werden die relevanten Grundlagen für die im Rahmen dieser Arbeit durchgeführten Untersuchungen wiedergegeben.

3.1 Pressverbindung

Nach der Beschreibung des allgemeinen Prinzips von Pressverbindungen und verschiedener Fügestrategien (Kapitel 3.1.1) werden Grundlagen zur analytischen Auslegung und Gestaltung von Pressverbindungen mit orthotropen Fügepartnern sowie einfache Auslegungsvorgehensweisen aus der Literatur zur Abschätzung der charakteristischen mechanischen Größen einer Pressverbindung zusammengefasst (Kapitel 3.1.2).

3.1.1 Allgemeines und Fügestrategien

Verbindungstechniken werden anhand der Art ihrer Lastübertragung in stoff-, kraftund formschlüssige Verbindungen unterteilt. Die Pressverbindung ist eine kraftschlüssige Verbindungstechnik, bei der eine aus einem Fugendruck resultierende Normalkraft entsprechend dem Coulombschen Gesetz (siehe Kapitel 3.3) eine unmittelbare Lastübertragung ermöglicht. Der Fugendruck in den Reibflächen ergibt sich aus einer Deformation der Fügepartner, die von einem Übermaß zwischen diesen herrührt. Hierfür wird der Außendurchmesser des Innenteils größer als der Innendurchmesser des Außenteils gewählt. Das Zusammenspiel von Fugendruck und Reibung in der Trennfuge ermöglicht eine Übertragung von Lasten wie Torsionsmomenten oder Axialkräften zwischen den Bauteilen. Beim Vorhandensein von Fügepartnern unterschiedlicher Materialien spricht man von hybriden Verbindungen. In der vorliegenden Arbeit werden hybride zylindrische Pressverbindungen untersucht, deren außenliegender Fügepartner aus FVW und deren innenliegender Fügepartner aus Stahl besteht. Das außenliegende Bauteil aus FVW wird hierbei als Welle, das innenliegende Stahlbauteil als Nabe bezeichnet. Dies erfolgt konträr zu der Bezeichnung bei rein metallischen Verbindungen (wie beispielswiese bei *Niemann* [1]) und ist der Tatsache geschuldet, dass Bauteile aus FVW, wie beispielsweise Antriebswellen, aufgrund der nachfolgend aufgeführten Gründe meistens außen liegen. Fasern mit Orientierung in Umfangsrichtung eines außenliegenden Wellenlaminats werden durch die aus dem Übermaß resultierende tangentiale Dehnung fast ausschließlich auf Zug in Faserrichtung belastet. Hierdurch können laut Dickhut [6] die hohen faserparallelen Festigkeiten genutzt werden, wodurch sich eine faserverbundgerechte Verbindung ergibt. Eine schematische Darstellung einer Pressverbindung mit Bezeichnung der geometrischen Abmessungen der einzelnen Komponenten findet sich in Abb. 3-1. Der optional als zusätzliche Komponente abgebildete Stützring kann bei hybriden Pressverbindungen in Form von in Umfangsrichtung orientierten Lagen oder als Stahlbauteil zum Einsatz kommen.

Abb. 3-1:Schematische Darstellung einer PressverbindungAllgemeine schematische Darstellung einer rotationssymmetrischen Pressverbindung zwischen Welle, Nabe und Stützring mit den entsprechenden geometrischen Größen

Vorteile

Die Pressverbindung zeichnet sich laut Ehrenstein [7] im Allgemeinen durch eine einfache Bauteilgeometrie, einen wenig aufwendigen Zusammenbau und eine zerstörungsfreie Demontage aus und ist daher eine kostengünstige Verbindungstechnik. Weiterhin sind durch die unmittelbare Lastübertragung keine zusätzlichen Materialien notwendig, wodurch keine weiteren Kosten und kein zusätzliches Gewicht anfallen. Das Fügen unterschiedlicher Materialien ist möglich, wobei laut Rotheiser [8] eine druckdichte Verbindung hergestellt werden kann. Die direkt miteinander in Kontakt stehenden rotationssymmetrischen Bauteile zentrieren sich gemäß Croccolo [9] beim Fügen selbst, was ein Vorteil verglichen mit Klebverbindungen mit Klebespalt darstellt. Ebenfalls verglichen mit der Klebverbindung zeichnet sich die Pressverbindung durch ein günstiges Überlastverhalten aus, da gemäß Fischer [5] auch nach einem Durchrutschen eine Last übertragen werden kann. Dies wird in Dickhut [6] für die Materialkombination CFK-CFK nachgewiesen und in Fischer [5] für die Materialkombination GFK-Stahl. Fischer [5] misst sogar eine Zunahme des übertragbaren Torsionsmoments nach einem Durchrutschen, was auf eine Schädigung in der Fügefläche durch die Relativbewegung und einer damit verbundenen Blockade durch sich aufstauende Partikel zurückgeführt wird. Bei rein metallischen Pressverbindungen hat ein Durchrutschen ein Fressen der Fügepartner zur Folge, wodurch gemäß Niemann [1] die Lösbarkeit verloren geht. Dies ist bei hybriden Pressverbindungen nicht der Fall.

Nachteile

Von Nachteil ist die starke Abhängigkeit der Tragfähigkeit der Pressverbindung vom Reibkoeffizienten der Materialpaarung, welcher gemäß *Niemann* [1] starken Schwankungen unterliegen kann. Bei geringen Reibkoeffizienten ist ein großer Fugendruck zur Lastübertagung notwendig, was eine starke Belastung der Fügepartner und der Trennfuge zur Folge hat und durch Spannungsspitzen an den Enden der Trennfuge noch verstärkt wird. Im Fall von Fügepartnern aus FVW muss wie bei der Klebverbindung die Last aus der Trennfuge über interlaminaren Schub auf die innenliegenden Fasern weitergeleitet werden, was eine Schwachstelle der Verbindungstechnik darstellt.

Faserverbundspezifische Eigenschaften

Die Pressverbindung gilt aufgrund der folgenden Punkte als faserverbundgerechte Verbindungstechnik:

- Es erfolgt eine flächige Lasteinleitung, die keine lokale Belastungskonzentration zur Folge hat.
- In Umfangsrichtung orientierte Fasern werden fast ausschließlich auf Zug belastet.
- Eine unidirektionale (UD-) Schicht unter Querdruck weist gemäß Schürmann
 [10] eine erhöhte Schubtragfähigkeit auf und ist schadenstoleranter, da auch
 nach Schubrissen eine Schubresttragfähigkeit durch diesen Querdruck vorliegt.
 Bei einer Pressverbindung erhöht sich dementsprechend aufgrund des Querdrucks in radiale Richtung die Schubbelastbarkeit.

Fügestrategien

Das Fügen der Pressverbindung kann mechanisch, thermisch oder in Kombination der beiden Strategien erfolgen. Das mechanische Fügen wird als Längspressverbindung bezeichnet. Die Prüfkörper (PK) werden bei Raumtemperatur unter Aufbringung einer axialen Last ineinander gepresst. Die Einpresskraft kann laut *Dickhut* [6] zur Qualitätssicherung herangezogen werden und laut *Fischer* [5] Informationen über die Tragfähigkeit der Verbindung liefern. Die starke axiale Belastung der Fügepartner kann vor allem bei schlanken Bauteilen hinsichtlich deren Stabilität ein limitierender Faktor sein, da in der Regel höhere Axiallasten als im Betrieb auftreten. Auch festigkeitstechnisch führt *Fischer* [5] auf, dass diese axiale Belastung limitierend sein kann, da zu Beginn des Einpressvorgangs die höchsten lokalen Fugendrücke $p_F(z)$ und damit gemäß (3-1) mit dem Reibkoeffizienten in axiale Richtung μ_{zr} auch die höchsten Schubspannungsspitzen $\tau_{zr}(z)$ auftreten. Diese können bis zu einem Abscheren der innersten Lage des Laminats führen.

$$\tau_{zr}(z) = \mu_{zr} \cdot p_F(z) \tag{3-1}$$

Folgende Aspekte werden in der Literatur diskutiert:

- Durch die hohen Fugendrücke und rauen Oberflächen zwischen den Bauteilen kann beim Einpressen Abrieb vor allem am weichen FVW-Bauteil entstehen. Laut *Fischer* [5] können sich diese Partikel aufstauen, was sich reibwertsteigernd auswirken kann und eine Erhöhung der Einpresskraft und damit einen progressiven Einpresskraft-Weg-Verlauf bewirken kann. Gleichzeitig wird auch die Möglichkeit genannt, dass die Partikel in der Trennfuge ein Abgleiten der Fügepartner erleichtern können. Auch *Dickhut* [6] erwähnt, dass der Kraftverlauf Aufschluss über die Beschädigung des Laminats geben kann und sich diese in einem nichtlinearen Kraft-Weg-Verlauf bemerkbar macht. Eine nähere Spezifizierung erfolgt aber nicht, weshalb eine abschließende Beurteilung dieses Effekts auf Basis der Literatur nicht erfolgen kann.
- Eine Unterbrechung des Einpressvorgangs sollte laut *Dickhut* [6] vermieden werden, da dies eine Erhöhung der Einpresskraft durch die erneut notwendige Überwindung der Haftreibung bewirken kann.
- Eine Reduktion der Einpresskraft kann bei Längspressverbindungen durch ein • Schmieren erfolgen. Bei der Verwendung eines Klebstoffs als Schmiermittel kann dabei laut Dickhut [6] eine Erhöhung des übertragbaren Torsionsmoments durch eine Kombination verschiedener Krafteinleitungsarten bewirkt werden. Zusätzlich führt er den Korrosionsschutz des unedleren Fügepartners und ein Verhindern eines ruckartigen Einpressens, was als Stick-Slip bezeichnet wird, als Vorteile auf. Je nach Materialkombinationen (Stahl mit GFK, GKF mit GFK, CFK mit CFK) wird in Fischer [5] und Dickhut [6] eine Reduktion der Einpresskraft und eine Erhöhung der Auszugskraft und des übertragbaren Torsionsmoments nachgewiesen, wobei dies teilweise vom Übermaß abhängig ist und bei großen Fugendrücken teilweise kein Effekt der Schmierung mehr messbar ist. Croccolo [9, 11] stellt bei Verwendung eines anaeroben Klebstoffs bei verschiedenen Materialkombinationen (Stahl mit Stahl, Stahl mit GFK) teilweise sogar eine Erhöhung der Einpresskraft und teilweise keine Erhöhung der Auszugskraft fest. Neben dieser starken Abhängigkeit der Wirkung der Schmierung ist weiterhin nachteilig, dass bei vorhandener Klebung eine einfache Demontage der Bauteile verloren geht. Außerdem ist die Tragfähigkeit der Pressverbindung anhand der Einpresskraft schwerer abzuschätzen. Aus diesen Gründen wird in der vorliegenden Arbeit auf eine Schmierung beim mechanischen Einpressvorgang verzichtet.

Das thermische Fügen wird als **Querpressverbindung** bezeichnet. Je nach thermischem Ausdehnungskoeffizienten, Position in der Pressverbindung und Übermaß werden eines oder beide Bauteile erhitzt oder abgekühlt, sodass der Fügevorgang kraftfrei erfolgen kann. Die Verpressung stellt sich bei der Temperaturanpassung der Bauteile ein. Bei der Querpressverbindung tritt keine axiale Belastung der Bauteile auf, jedoch werden je nach notwendigem Temperaturniveau Vorrichtungen und Medien zum Erhitzen oder Abkühlen der Bauteile benötigt. Vor allem bei FVW sind die zulässigen Temperaturen begrenzt, da neben zu heißen Naben auch thermische Eigenspannungen das Laminat schädigen können. Der fehlende Einpressvorgang liefert keine Information über die Verhältnisse in der Trennfuge und deren Tragfähigkeit. Laut *Niemann* [1] kann nach dem Abkühlen der Bauteile ein Nachpressen notwendig sein, wenn die Bauteile nicht anliegen. Weiterhin führt er für metallische Bauteile die Gefahr des Verzugs beim Erwärmen und Abkühlen auf.

Für beide Fügestrategien ist entsprechend *Niemann* [1] mindestens am härteren der Fügepartner eine kegelige **Fase** notwendig, die einen abgerundeten Übergang zum zylindrischen Teil aufweist. Dies dient der Zentrierung der Bauteile zueinander und verhindert eine starke Beschädigung beim Einpressen. *Dickhut* [6] empfiehlt einen Winkel zwischen 5° und 15° für die Fase von längsverzahnten Stahlnaben, wobei dieser so flach wie möglich sein und zur zentrischen Positionierung der Stahlnabe einen Überstand von mindestens 1 mm aufweisen soll. *Fischer* [5] empfiehlt Radien am Übergang der Montagefase zum zylindrischen Bereich und untersucht numerisch Fasenwinkel von 15° und Radien zwischen 5 mm und 10 mm.

Einpresskraftverlauf

Der theoretische Verlauf der Axialkraft bei einer Längspressverbindung wird im Folgenden näher beleuchtet. Die zum Fügen zweier Bauteile notwendige Fügearbeit setzt sich gemäß *Fischer* [5] aus zwei Anteilen zusammen:

- Die reversible, elastische Verformungsarbeit, die an den Enden des Fügebereichs durch Aufweiten oder Verjüngen der Fügepartner geleistet wird. Voraussetzung für die Reversibilität ist hierbei, dass sich keine Komponente plastisch verformt. Die elastische Verformungsarbeit ist maßgeblich vom Übermaß, der tangentialen Dehnsteifigkeit und, wegen des Krempelmoments an den Übergängen zu den freien Bereichen, auch von der Axialsteifigkeit abhängig und wird in Form innerer Arbeit gespeichert.
- Die irreversibel verrichtete Reibarbeit, welche wiederum maßgeblich vom Reibwert und dem Fugendruck abhängig ist.

Die extern beim Einpressen verrichtete Arbeit steht im Gleichgewicht mit diesen beiden Größen und wird von unterschiedlichen Kraftkomponenten geleistet. Ein charakteristischer Axialkraft-Weg-Verlauf ist in Abb. 3-2 dargestellt, wobei charakteristische Kräfte und Arbeiten gekennzeichnet sind. Das lokale Kraftmaximum zu Beginn des Einpressvorgangs ist auf die erstmalige Verformung der im Kontakt stehenden und vor dem Fügebereich liegenden Bereiche von Welle und Nabe zurückzuführen und wird in der vorliegenden Arbeit als initiale Deformationskraft F_{init} bezeichnet. Im weiteren linearen Verlauf hat sich ein stationärer Zustand hinsichtlich der Verformung der Komponenten eingestellt. Das Einpressen um ein Weginkrement bedarf nur noch der Verformung eines Bereichs dieser Länge, was durch eine im Folgenden als elastische Deformationskraft F_{elast} bezeichnete Kraft erfolgt. Der lineare Verlauf der Axialkraft ergibt sich durch die linear zunehmende Reibkraft. Für lange Fügelängen kann der Anteil der Deformationsarbeit laut *Fischer* [5] vernachlässigt werden, womit die notwendige Einpresskraft in erster Näherung anhand der Reibkraft abgeschätzt werden kann. Hierbei werden jedoch keine Grenzwerte für die entsprechende Fügelänge angegeben.

Abb. 3-2: Exemplarischer Axialkraft-Einpressweg-Verlauf

Exemplarischer Axialkraft-Einpressweg-Verlauf mit Arbeitsanteilen und Deformationskräften (in Anlehnung an [5])

3.1.2 Auslegung und Gestaltung

Zur Berechnung des Fugendrucks, der sich durch eine Verpressung in der Trennfuge zwischen den Fügepartnern ergibt, stehen für unterschiedliche Randbedingungen verschiedene Vorgehensweisen zur Auswahl. Analytische Ansätze ermöglichen eine wenig rechenintensive Auslegung, unterliegen aber häufig Einschränkungen hinsichtlich des mechanischen Verhaltens der Fügepartner. Numerische Berechnungen ermöglichen die Abbildung komplexer Geometrien und mechanischer Vorgänge, bedürfen aber häufig eines intensiven Rechenaufwands und kostspieliger Softwaretools. Im Folgenden werden das orthotrope Elastizitätsgesetz in zylindrischen Koordinaten und analytische Berechnungsansätze näher beschrieben. Anschließend werden Gestaltungsempfehlungen, die teilweise auf numerischen Studien basieren, wiedergegeben. Abschließend werden Auslegungsvorgehensweisen aus der Literatur zusammengefasst.

Orthotropes Elastizitätsgesetz in zylindrischen Koordinaten

Eine Welle aus FVW besteht im Allgemeinen aus Schichten verschiedener Faserorientierung. Eine detaillierte Untersuchung zur Gestaltung solcher Antriebswellen erfolgt im Hinblick auf Festigkeits- und Stabilitätsversagen sowie die biegekritische Drehzahl durch *Kleschinski* [12]. Ein vorteilhaftes Fertigungsverfahren für Wellen aus FVW stellt das Nasswickelverfahren dar, mit dem Winkel zwischen 0° und nahezu 90° realisiert werden können, wobei der Winkel der Faserorientierung an der Rotationsache gemessen wird. Die Grundlagen des Nasswickelverfahrens finden sich in [13–19], wei-
terführende Arbeiten beispielsweise in [20, 21]. Eine Schicht mit Fasern einer Orientierung wird **UD-Schicht** genannt. Eine ideale UD-Schicht eines FVWs mit homogener Faserverteilung verhält sich in seinem natürlichen, kartesischen Koordinatensystem laut *Schürmann* [10] transversal isotrop. Das natürliche, kartesische Koordinatensystem zeigt in Richtung der Orthotropieachsen, welche längs (1 oder ||) und quer (2 beziehungsweise 3 oder \perp) zur Faserrichtung orientiert sind (siehe links in Abb. 3-3). Die transversal isotrope UD-Schicht weist eine isotrope Ebene senkrecht zur Faserlängsrichtung auf. In zu dieser isotropen Ebene senkrechten Ebenen liegen gleiche Eigenschaften vor (siehe rechts in Abb. 3-3). Das Elastizitätsgesetz des Scheibenelements ist damit nur noch von vier unabhängigen Grundelastizitätsgrößen abhängig. In einem allgemein definierten globalen Koordinatensystem verhält sich eine um einen Winkel ungleich 0° oder 90° gedrehte UD-Schicht jedoch anisotrop.

Abb. 3-3:UD-Scheibenelement und Ebenen senkrecht zur Isotropieebene
Natürliches Koordinatensystem und ebener Spannungszustand eines UD-
Scheibenelements (links); Ebenen mit gleichen Eigenschaften senkrecht zur Isotropieebe-
ne (rechts) [10]

Aufgrund der Rotationssymmetrie der in der vorliegenden Arbeit behandelten Komponenten werden im Folgenden ausschließlich **Zylinderkoordinaten** (siehe Abb. 3-4) verwendet und auf die Besonderheiten dieser Komponenten eingegangen.

Abb. 3-4: Räumlicher Spannungszustand in Zylinderkoordinaten Komponenten des räumlichen Spannungszustands (unvollständig) in Zylinderkoordinaten (angepasst aus [22])

Im Nasswickelverfahren werden meistens zwei Schichten mit gleichem Winkel unterschiedlicher Vorzeichen überlappend gefertigt. Eine vereinfachte Abbildung dieses Laminats kann mittels zweier UD-Schichten mit Faserorientierung unterschiedlichen Vorzeichens erfolgen. Diese bilden einen sogenannten ausgeglichenen Winkelverbund (AWV). Der AWV verhält sich, ebenso wie reine Axial- oder Umfangslagen, orthotrop im zylindrischen Koordinatensystem. Die Normalspannungen und Schiebungen sowie Schubspannungen und Normaldehnungen sind damit gemäß *Jakobi* [23] völlig voneinander entkoppelt und das **Elastizitätsgesetz** ergibt sich zu (3-2), wobei der Anteil der Dehnung durch thermische Ausdehnung nicht aufgeführt ist. Es gelten die grundlegenden Annahmen der linearen Elastizitätstheorie: Kleine Verformungen, linear elastisches Materialverhalten sowie Unabhängigkeit der Elastizitätsgrößen von Temperatur und Feuchte.

$$\begin{pmatrix} \varepsilon_{z} \\ \varepsilon_{\theta} \\ \varepsilon_{r} \\ \gamma_{\theta r} \\ \gamma_{rz} \\ \gamma_{z\theta} \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & s_{13} & 0 & 0 & 0 \\ & s_{22} & s_{23} & 0 & 0 & 0 \\ & s_{33} & 0 & 0 & 0 \\ \vdots & s_{44} & 0 & 0 \\ & sym & s_{55} & 0 \\ & & & s_{66} \end{pmatrix} \cdot \begin{pmatrix} \sigma_{z} \\ \sigma_{\theta} \\ \sigma_{r} \\ \tau_{\theta r} \\ \tau_{zg} \\ \tau_{z\theta} \end{pmatrix}$$
(3-2)

Die **Gleichgewichtsbeziehungen** am infinitesimalen Zylinderelement ergeben sich unter Berücksichtigung der Rotationssymmetrie zu (3-3) bis (3-5), wobei Volumenund Trägheitskräfte vernachlässigt werden.

$$\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\sigma_r - \sigma_\theta}{r} = 0$$
(3-3)

$$\frac{\partial \tau_{rz}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + \frac{\tau_{rz}}{r} = 0$$
(3-4)

$$\frac{\partial \tau_{\theta r}}{\partial r} + \frac{\partial \tau_{z\theta}}{\partial z} + \frac{2\tau_{\theta r}}{r} = 0$$
(3-5)

Fischer [5] weist darauf hin, dass (3-5) vollständig von (3-3) und (3-4) entkoppelt ist. Im Hinblick auf die Pressverbindung zeigt er weiterhin durch Umformung, dass sich in (3-5) ausschließlich eine Verschiebung aufgrund einer Torsionsbelastung und in (3-3) und (3-4) ausschließlich Verschiebungen, die sich aus der Verpressung der Bauteile ergeben, finden. *Fischer* [5] zieht den Schluss, dass bei rotationssymmetrischen Pressverbindungen mit orthotropen Fügepartnern im linear elastischen Fall eine getrennte Betrachtung der Lastfälle erfolgen kann und sich der Gesamtspannungszustand durch Superposition der Ergebnisse ergibt. Die **Verzerrungs-Verschiebungs-Beziehungen** unter Berücksichtigung der Rotationssymmetrie sind in (3-6) und (3-7) dargestellt. Bei konstanter radialer Verschiebung u_r ergibt sich ein zum Radius umgekehrt proportionaler Dehnungsverlauf der tangentialen Dehnung ε_{θ} .

$$\varepsilon_r = \frac{\partial u_r}{\partial r}; \ \varepsilon_\theta = \frac{u_r}{r}; \ \varepsilon_z = \frac{\partial u_z}{\partial z}; \ \gamma_{rz} = \frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z}$$
 (3-6)

$$\gamma_{z\theta} = \frac{\partial u_{\theta}}{\partial z}; \, \gamma_{\theta r} = \frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r}$$
(3-7)

Analytische Berechnungsansätze für Pressverbindungen mit orthotropen Fügepartnern

In allen nachfolgend aufgeführten analytischen Ansätzen wird von linear elastischem Materialverhalten ausgegangen und eine Viskoelastizität und Plastizität der Fügepartner nicht abgebildet. Eine Unterscheidung analytischer Ansätze kann anhand der berücksichtigten **Ausdehnung der Fügepartner** erfolgen:

- Ansätze, die von unendlich ausgedehnten, über ihre gesamte Länge verpressten Fügepartnern ausgehen, nehmen einen in Achsrichtung konstanten Spannungszustand an und berücksichtigen keine Randeffekte.
- Bei einer Betrachtung endlich ausgedehnter Fügepartner ergibt sich ein über die Länge variabler Fugendruckverlauf.

Eine weitere Unterscheidung kann anhand der Wandstärkenverhältnisse der Fügepartner erfolgen. Für dünnwandige Komponenten werden Spannungen in Dickenrichtung vernachlässigt und teilweise von über die Wandstärke konstanten Spannungen ausgegangen. Die Definition von **Dünn- und Dickwandigkeit** wird in *Jakobi* [23] und *Fischer* [5] diskutiert. Sowohl für reine Umfangslagen als auch für Mehrschichtverbunde (MSV) zeigt *Jakobi* [23], dass ein Radienverhältnis von 1,2 eine sinnvolle Grenze für den Einsatz dünnwandiger Theorien ist. Die Abweichung der festigkeitsbezogenen Auslegung von dünn- zu dickwandiger Berechnung ist für dieses Verhältnis ähnlich einem zuvor an isotropen Bauteilen ermittelten Vergleichswert. *Jakobi* [23] weist darauf hin, dass die einzelnen Spannungswerte bei diesem Radienverhältnis teilweise bereits stark voneinander abweichen, und dass dies vom Orthotropiegrad des Bauteils, das heißt vom Verhältnis der Steifigkeiten in die verschiedenen Belastungsrichtungen, beeinflusst wird. *Fischer* [5] erläutert diese Aussagen mittels eines energetischen Ansatzes und führt auf, dass die Vernachlässigung der Spannungen in Dickenrichtung nur zulässig ist, wenn in diesen nur ein geringer Anteil der in das Bauteil eingebrachten Verformungsarbeit gespeichert ist. *Fischer* [5] zeigt, dass mit zunehmendem Orthotropiegrad immer kleinere Radienverhältnisse für die Zulässigkeit der dünnwandigen Theorien notwendig sind. In der vorliegenden Arbeit wird die in *Jakobi* [23] festgehaltene Definition von Dünnwandigkeit verwendet.

Der **analytische Ansatz von** *Fischer* [5] dient der näherungsweisen Berechnung der Verpressung zweier orthotroper Fügepartner und ermöglicht damit entsprechend den obigen Ausführungen die Abbildung axialer Lagen, Umfangslagen, AWV-Lagen und isotroper Fügepartner. Der Ansatz ist in der Lage endlich ausgedehnte Fügepartner, die über einen Teil ihrer Länge verpresst sind, zu berücksichtigen und damit einen Fugendruckverlauf mit Abbildung der Biegeeffekte an den Enden der Trennfuge zu ermitteln. Für eine geschlossen analytische Lösung der über die Schubspannung τ_{rz} gekoppelten Differentialgleichungen in (3-3) und (3-4) werden die folgenden **Einschränkungen** hinsichtlich des mechanischen Verhaltens der Fügepartner getroffen:

- Es werden zylindrische Pressverbindungen dünnwandiger Fügepartner konstanter Wandstärke betrachtet, Spannungen in Dickenrichtung vernachlässigt und keine radiale Dehnung abgebildet.
- Die Ansätze gelten für ein linear elastisches Werkstoffgesetz.
- Es werden ein Ebenbleiben der Querschnitte, kleine Verformungen und vernachlässigbar kleine Verschiebungen gegenüber dem Schalenmittenradius angenommen.
- Die Abbildung der starken Fugendrucküberhöhung an den Enden der Trennfuge erfolgt nur grob.
- Pro Fügepartner wird ein Satz an Ingenieurskonstanten definiert, wodurch eine Abbildung einzelner Schichten nicht möglich ist.

Basierend auf diesen Annahmen erfolgt die Herleitung einer Differentialgleichung zur Beschreibung zweier partiell ineinander gepresster orthotroper Schalen mit unbekanntem Fugendruckverlauf. Bei der Schalenstatik ist es geläufig, die radiale Richtung mit "z" und die axiale Richtung mit "x" zu bezeichnen. Um eine bessere Nachvollziehbarkeit der Ausführungen von *Fischer* [5] zu gewährleisten, wird auch im Folgenden diese Bezeichnung entsprechend der linken Seite von Abb. 3-5 übernommen.

 Abb. 3-5: Flüsse Schalenelement und Bereiche bei Lösung der Gleichungssysteme Schalenelement mit den bei der Verpressung relevanten Flüssen ohne axialen Fluss (in Anlehnung an [5]) (links); Unterteilung der Pressverbindung in freie Bereiche und Verpressungsbereich bei der Lösung der Gleichungssysteme aus [5] (in Anlehnung an [5]) (rechts)

Die Ableitungen $\frac{\partial(.)}{\partial x}$ werden mit ()' abgekürzt. Für die rotationssymmetrische Pressverbindung ergeben sich mit dem Fugendruck p_F , den Flüssen N_{ϕ} , Q_x und dem Krempelmoment M_x die reduzierten Gleichgewichtsbeziehungen entsprechend (3-8), wobei der axiale Fluss N_x zu Null gesetzt wird. Die vereinfachten Verschiebungs-Verzerrungs-Beziehungen ergeben sich zu (3-9), wobei z der Abstand zur Schalenmittenebene, a deren Radius, u die Verschiebung in axiale, w die Verschiebung in radiale und v die Verschiebung in tangentiale Richtung beschreibt. Das vereinfachte Elastizitätsgesetz ergibt sich mit den Ingenieurskonstanten zu (3-10). Die Berechnung der Flüsse aus den Spannungen und die Kombination der Gleichungen ergibt die Differentialgleichung vierter Ordnung in (3-11), die eine zylindrische Schale unter Manteldruckbelastung und Biegebelastung beschreibt. Hierbei werden die Biegesteifigkeit K_x und die Dehnsteifigkeit D_{ϕ} in Umfangsrichtung gemäß (3-12) berechnet.

$$a \cdot Q'_{x} + N_{\phi} - p_{F} \cdot a = 0; M'_{x} - Q_{x} = 0$$
(3-8)

$$\varepsilon_x = u' - z \cdot w''; \ \varepsilon_\phi = \frac{w}{a+z}; \ \gamma_{x\phi} = \frac{a+z}{a} \cdot v'$$
(3-9)

$$\sigma_{x} = \frac{E_{x}}{1 - \nu_{\phi x} \cdot \nu_{x \phi}} \cdot \left(\varepsilon_{x} + \nu_{\phi x} \cdot \varepsilon_{\phi}\right); \sigma_{\phi} = \frac{E_{\phi}}{1 - \nu_{\phi x} \cdot \nu_{x \phi}} \cdot \left(\varepsilon_{\phi} + \nu_{x \phi} \cdot \varepsilon_{x}\right)$$

$$\tau_{x \phi} = G_{x \phi} \cdot \gamma_{x \phi}$$
(3-10)

$$K_x \cdot w^{IV} + \frac{D_{\phi}}{a^2} \cdot \left(1 - \nu_{x\phi} \cdot \nu_{\phi x}\right) \cdot w = p_F \tag{3-11}$$

$$K_{x} = \frac{E_{x} \cdot t^{3}}{12(1 - \nu_{x\phi} \cdot \nu_{\phi x})}; D_{\phi} = \frac{E_{\phi} \cdot t}{1 - \nu_{x\phi} \cdot \nu_{\phi x}}$$
(3-12)

Der homogene Teil der Differentialgleichung in (3-11) beschreibt das reine Biegeproblem ohne Fugendruck in den Bereichen vor dem Verpressungsbereich. Zur Lösung der partikulären Differentialgleichung für die druckbeaufschlagten Schalenbereiche wird der Fugendruck eliminiert, indem die Differentialgleichung von Innen- und Außenteil zusammengeführt werden, wobei sich der Zusammenhang zwischen den radialen Verschiebungen und dem Übermaß zunutze gemacht wird. Die Annahme, dass die Neigungen von Innen- und Außenteil identisch sind, hat zur Folge, dass kein Abgleiten der Komponenten abgebildet wird. Mit diesen Schritten ergibt sich eine inhomogene Differentialgleichung vierter Ordnung, die vom bekannten Übermaß abhängig ist und die davon ausgeht, dass sich Querkraft- und Momentenflüsse direkt nach dem Eintritt in den Verpressungsbereich entsprechend den Steifigkeiten von Innen- und Außenteil auf diese aufteilen. Dies hat zur Folge, dass die Fugendruckspitze an den Enden der Trennfuge nicht abgebildet wird. Zur Lösung der Gleichungssysteme wird die Pressverbindung gemäß der rechten Seite von Abb. 3-5 in drei Bereiche unterteilt. Zum einen in die freien Bereiche des Innen- und Außenteils und zum anderen in den Verpressungsbereich. Durch die Rand- und Übergangsbedingungen zwischen diesen Bereichen können die Flussgrößen bestimmt werden. Aus diesen ergeben sich mit dem Kräftegleichgewicht aus (3-8) die Verläufe des Fugendrucks und der Spannungen in den Komponenten.

Alle anderen bekannten Ansätze in der Literatur gehen von unendlich ausgedehnten Fügepartnern aus. Die Ableitungen nach der axialen Koordinate in (3-3) sowie das Gleichgewicht in axiale Richtung in (3-4) entfallen für diesen Fall. Die Verpressung resultiert damit nur in Normaldehnungen und -spannungen, die für isotrope und orthotrope Materialien vollkommen von den Schubkomponenten entkoppelt sind. Nie*mann* [1] gibt Formeln zur Berechnung der Verpressung zweier dickwandiger isotroper Fügepartner ohne zusätzliche axiale Belastung an, wobei eine zusätzliche Fliehkraftoder Temperatureinwirkung im entsprechenden Übermaß berücksichtigt wird. Schwarz [24] berechnet dick- und dünnwandige Pressverbindungen mit rein isotropen und orthotropen Fügepartnern mit konstanter Axiallast, wobei für Pressverbindungen mit rein isotropen Fügepartnern stirnseitige Schubspannungen aus einem Torsionsmoment zusätzlich angegeben werden können. Croccolo [25] berechnet ebenfalls dickwandige orthotrope Fügepartner mit Axiallast. Forbrig [26] berechnet radiale und tangentiale Spannungsverläufe in dickwandigen orthotropen Wellen, muss hierbei aber den jeweils wirkenden Fugendruck vorgeben. Lee und Lee [27] stellen einen analytischen Ansatz vor, der die Verpressung dickwandiger, axialkraft- und torsionsbelasteter und unter Fliehkraft- und Temperatureinwirkung stehender Bauteile ermöglicht, wobei einzelne anisotrope Schichten berechnet werden.

Der Ansatz von *Fischer* [5] stellt den einzigen bekannten Ansatz zur Berechnung der Verpressung endlich ausgedehnter orthotroper Fügepartner dar, der den Einfluss der freien Bereiche vor dem Verpressungsbereich abbildet. Aus diesem Grund wird dieser Ansatz in der vorliegenden Arbeit verwendet und in Kapitel 7 untersucht.

Gestaltungsempfehlungen für Pressverbindungen mit orthotropen Fügepartnern

Im Hinblick auf die **Torsionsbelastung** empfiehlt *Fischer* [5] innenliegende 90°-Lagen, da schubweiche Schichten an der Verbindungsfläche zur metallischen Nabe einen positiven Effekt auf den Schubspannungsverlauf haben. Dasselbe wird auch von *Lee und Lee* [27] im Hinblick auf die aus der Verpressung der Bauteile resultierenden Spannungen empfohlen, die in diesem Zug auch einen außenliegenden AWV empfehlen, da dieser gut für eine Torsionsbelastung geeignet ist. Im Hinblick auf den Fügevorgang einer Längspressverbindung sind innenliegende 90°-Lagen jedoch als kritisch zu bewerten, da die Belastung hierbei maßgeblich senkrecht zur Faserrichtung wirkt. Weitere Ausführungen zur optimalen Fügelänge bei einer Torsionsbelastung im Hinblick auf lokales Gleiten, auch Mikrogleiten genannt, sowie Ausführungen zur Torsionssteifigkeit der Fügepartner und damit verbundenen Spannungsüberhöhungen an den Enden der Trennfuge können *Fischer* [5] und den darin referenzierten Quellen entnommen werden.

Als sinnvoller Bereich des Fugendrucks bei hybriden Pressverbindungen werden von *Dickhut* [6] Werte zwischen 30 MPa und 50 MPa angegeben, wobei dieses Intervall nicht näher belegt wird. Zu hohe Fugendrücke können eine Schädigung der Bauteile zur Folge haben, was gemäß *Fischer* [5] beim Einpressen vorteilhaft sein kann, da die Erhöhung des Reibwerts bei Richtungsumkehr, also bei Auszugs- oder Torsionsbelastung, stärker ausgeprägt ist als beim Einpressvorgang. Eine übermäßige Schädigung sollte aber dennoch vermieden werden, wofür Radien am Übergang der Montagefase vorgesehen werden sollten (siehe Kapitel 3.1.1). Eine Reduktion der **Einpresskraft** und Schubbelastung beim Einpressvorgang kann nach *Fischer* [5] auf verschiedene Arten erfolgen:

- Durch eine Mikroverzahnung und eine damit verbundene Erhöhung des Reibkoeffizienten in eine bestimmte Belastungsrichtung werden geringere Fugendrücke notwendig und die Einpresskraft und das Torsionsmoment können unabhängig voneinander beeinflusst werden. Im Hinblick auf torsionsbelastete Pressverbindungen sind ein geringer axialer und ein großer tangentialer Reibkoeffizient vorteilhaft, weshalb in diesem Fall Fertigungsverfahren für metallische Bauteile mit axialer Fertigungsrichtung zu bevorzugen sind. Dies kann beispielweise durch Räumen oder Rändeln erfolgen, wobei beachtet werden muss, dass die Zähne die lasttragenden Fasern beim Eingraben in die Welle nicht durchtrennen.
- Ein variabler Fugendruckverlauf entsprechend der Schubbelastung bei Torsion kann durch gezielte Reduktion des Übermaßes oder der Umfangssteifigkeit erzeugt werden, hat aber gleichzeitig eine Reduktion der maximal übertragbaren Lasten zur Folge.
- Eine Reduktion des Übermaßes am Beginn der Trennfuge zur Reduktion der Fugendruckspitze kann kritisch sein, da in diesem Bereich auch die maximalen

Schubspannungen bei Torsionsbelastung auftreten und damit die Gefahr des Mikrogleitens zunimmt.

- Ein Schmieren der Kontaktflächen kann zur Reduktion der Einpresskraft verwendet werden (siehe Kapitel 3.1.1).
- Eine Reduktion der Einpresskraft kann durch eine Kombination von Längsund Querpressverbindung erfolgen.
- Außenliegende Stahlnaben machen geringere Fugendrücke notwendig, haben aber einen größeren Bauraum und ein größeres Gewicht zur Folge. Weiterhin bewirkt dies auch eine tangentiale Druckbelastung der Welle aus faserverstärktem Kunststoff (FVK), was je nach Faserorientierung der Welle als negativ zu bewerten ist.

Ein Zielkonflikt bei der Gestaltung von Wellenlaminaten kann sich daraus ergeben, dass eine stärkere axiale Orientierung der Fasern der FVK-Welle zwar höhere biegekritische Drehzahlen zur Folge hat, sich gleichzeitig aber die für die Pressverbindung relevanten Werte von Umfangssteifigkeit und -festigkeit reduzieren. Zur Abhilfe schlägt Fischer [5] zum einen eine lokal angepasste Faserorientierung in Umfangsrichtung vor, die auf geringem Raum fertigungstechnisch aber schwierig umsetzbar ist. Zum anderen können zusätzliche Umfangslagen oder ein metallischer Stützring die notwendige Umfangssteifigkeit gewährleisten. Dem Stützring wird von Fischer [5] aus den folgenden Gründen großes Potential hinsichtlich der Torsionsmomentübertragung zugeschrieben. Zum einen erhöht der Querdruck durch einen Stützring und die damit verbundene rissschließende Wirkung die ertragbare Schubspannung (siehe Kapitel 3.1.1). Zum anderen zieht ein über den Verpressungsbereich hinausragender Stützring das Torsionsmoment bereits vor der Trennfuge mit der Nabe entsprechend den Steifigkeitsverhältnissen von Welle und Stützring auf sich. Damit können die auftretenden Schubspannungsspitzen in der Trennfuge zur Nabe reduziert werden. Die Torsionssteifigkeit von Welle und Stützring sollte hierbei ähnlich zu derjenigen der Nabe sein, um einen symmetrischen Schubspannungsverlauf zu erreichen. Diese Anforderung in Kombination mit der geforderten Umfangssteifigkeit legt die Verwendung metallischer Stützringe nahe. Gleichzeitig wird durch den geringen Fugendruck zur Welle aber die Gefahr des Mikrogleitens in der Trennfuge zum Stützring genannt. Weiterhin erfordert ein Stützring einen zusätzlichen Fügeschritt und bewirkt zusätzliches Gewicht.

Auf dem Gebiet der Schwungräder für Energiespeichersysteme sind viele Arbeiten zur Verpressung von Ringen aus FVK untereinander und mit Stahlnaben durchgeführt worden. Die FVK-Ringe für solche Anwendungen bestehen meistens aus reinen Umfangslagen, weshalb keine Aussagen zur generellen Gestaltung von Pressverbindungen für axial- oder torsionsbelastete Bauteile hieraus abgeleitet werden können. Hinsichtlich des Einflusses der **Fliehkraftbelastung** auf die Spannungen in den Bauteilen und den vorherrschenden Fugendruck geben diese Arbeiten aber gute Einblicke. Exemplarisch sei hierfür auf die Quellen [28–31] verwiesen.

Bei anisotropen und orthotropen thermischen Ausdehnungskoeffizienten kann eine **Temperaturänderung** zu Spannungen in Bauteilen führen. Zusätzlich kann eine Temperaturänderung bei der hybriden Pressverbindung aufgrund der unterschiedlichen thermischen Ausdehnungskoeffizienten der miteinander in Kontakt stehenden Materialien eine Fugendruckänderung bewirken. Die Auswirkung auf die Spannungen in den Fügepartnern und den Fugendruck ist vom jeweiligen thermischen Ausdehnungskoeffizienten der Komponenten und deren Position in der Pressverbindung abhängig. Beispielsweise zeigt die linear elastische, numerische Untersuchung von *Kim und Lee* [32], dass der Fugendruck zwischen einem innenliegenden CFK-Rohr aus 0°- und 90°-Lagen und einer außenliegenden Stahlhülse bei Temperaturerhöhung stark abnimmt. In *Fischer* [5] wird die Temperaturabhängigkeit des Fugendrucks für eine innenliegende Stahlnabe und eine außenliegende FVK-Welle untersucht. Ohne zusätzlichen Stützring wird hierbei eine starke Temperaturabhängigkeit festgestellt. Durch Umfangslagen oder einen Stahlstützring gestützte Pressverbindungen weisen wesentlich stabilere Fugendruckverhältnisse auf.

Durch das zeitabhängige Materialverhalten des FVWs können Vorspannkraftverluste auftreten. In Fischer [5] werden Quellen zu experimentellen Untersuchungen des Fugendruckverlusts an Schwungrädern aus Umfangslagen aufgeführt, bei denen Verluste unter 5 % gemessen worden sind. Weiterhin wird in dieser Quelle der Fugendruckverlust für eine glatte Nabe rechnerisch unter Annahme linearer Viskoelastizität und experimentell ermittelt. Hierfür werden außenliegende GFK-Wellen mit einem AWV von ±15° und innenliegende Stahlnaben verpresst. Teilweise werden zusätzliche Lagen mit 80° Faserorientierung verschiedener Wandstärke oder ein Stahlstützring appliziert. Die Auslagerung erfolgt bei 80 °C. Vor allem für ungestützte Pressverbindungen wird ein starker Fugendruckverlust gemessen. Mit zunehmender Wandstärke der 80°-Lagen nimmt der Fugendruckverlust ab. Umfangslagen oder ein metallischer Stützring werden deshalb zur Reduktion des Fugendruckverlusts empfohlen. Bei mikroverzahnten Naben ist das Kriechen stärker ausgeprägt, da davon ausgegangen wird, dass verbleibende Hohlräume durch Relaxation gefüllt werden. Lee und Lee [27] untersuchen eine außenliegende FVK-Welle mit innenliegenden 90°-Lagen und eine innenliegende Stahlnabe experimentell und numerisch. In der experimentellen Untersuchung ist das übertragbare Torsionsmoment nach Auslagerung für 12 h bei 150 °C trotz innenliegender 90°-Lagen um 73 % geringer als das anfangs gemessene. Auch in der numerischen Berechnung, in der die Fasernachgiebigkeit und Querkontraktionszahl als zeitunabhängig angenommen werden, nimmt der Fugendruck um 30 % ab. Aufgrund der teilweise widersprüchlichen Aussagen in der Literatur wird der Einfluss viskoelastischen Materialverhaltens der FVK-Welle in der vorliegenden Arbeit untersucht.

Einfache Auslegungsvorgehensweisen

Neben den Berechnungsansätzen zur Bestimmung des Fugendrucks und den Gestaltungsempfehlungen werden in der Literatur Vorgehensweisen angegeben, mit denen die charakteristischen mechanischen Größen der Pressverbindung näherungsweise bestimmt werden können. Für ausreichend lange Fügelängen ist der Anteil der Verformungsarbeit gering (siehe Abb. 3-2) und die zum Fügen notwendige Einpresskraft F_{ein} ergibt sich näherungsweise gemäß (3-13) (entsprechend [1, 5]). Hierbei wird der Mittelwert des Fugendrucks beim Einpressvorgang mit $p_{F,m,ein}$ und der Haftreibkoeffizient in axiale Richtung mit $\mu_{Haft,ax}$ bezeichnet, wobei der Zusammenhang aus (3-1) Eingang findet. *Ehrenstein* [7] berechnet auch die Auszugskraft mit diesem Ausdruck.

$$F_{ein} \approx F_{Reib} = \int_{A} \tau_{zr} \, dA = \int_{A} \mu_{Haft,ax} \cdot p_{F,m,ein} dA \tag{3-13}$$

Das übertragbare Torsionsmoment M_t kann anhand des Mittelwerts des Fugendrucks $p_{F,m}$ und des Fügeradius r gemäß der linken Seite von (3-14) berechnet werden (entsprechend [1, 5, 7]). Der Fugendruck stellt mit den Reibkoeffizienten sowohl für die axialen Kräfte als auch für das Torsionsmoment die entscheidende Größe dar. *Fischer* [5] empfiehlt zur Berechnung des Torsionsmoments die Verwendung des Gleitreibkoeffizienten, da sich bereits vor dem Durchrutschen Gleitzonen über die gesamte Fügelänge bilden. Er nimmt weiterhin an, dass der Fugendruck beim Einpressen nicht stark vom Fugendruck bei Torsionsbelastung abweicht, wozu in [1, 7] keine Aussage getroffen wird. Damit kann das übertragbare Torsionsmoment M_t für isotrope Reibbedingungen ($\mu_{zr} = \mu_{\theta r}$) mit der rechten Seite von (3-14) anhand einer gemessenen Einpresskraft $F_{ein,exp}$ abgeschätzt werden. Die Abweichung der gemessenen zu den berechneten Werten beträgt bei *Fischer* [5] zwischen -2 % und -20 %. Die Auslegung ist damit nicht konservativ. Die große Abweichung tritt bei sehr kurzen Fügelängen auf, wofür die Verformungsarbeit als Ursache aufgeführt wird, was in der vorliegenden Arbeit näher untersucht wird.

$$M_t = r \int_A \mu_{\theta r} \cdot p_{F,m} dA \approx r \cdot F_{ein,exp}$$
(3-14)

Bei einer axial verzahnten Nabe oder beim geschmierten Einpressen können die Reibkoeffizienten in axiale und tangentiale Richtung stark voneinander abweichen, was als orthotrope Reibbedingungen bezeichnet wird. Für diese orthotropen Reibbedingungen kann das übertragbare Torsionsmoment M_t ebenfalls anhand einer gemessenen Einpresskraft $F_{ein,exp}$ abgeschätzt werden (siehe (3-15)). Hierfür ist jedoch die Kenntnis der Reibkoeffizienten in beide Belastungsrichtungen notwendig. Dies ist beim geschmierten Einpressen und auch bei axial verzahnten Naben eine Herausforderung, da die Menge des Schmierstoffs auf der Kontaktfläche sowie der Beitrag eines etwaigen Formschlusses durch die Verzahnung nur schwierig abzuschätzen sind.

$$M_t \approx \frac{\mu_{\theta r}}{\mu_{zr}} \cdot r \cdot F_{ein,exp} \tag{3-15}$$

Die aufgeführten analytischen Berechnungsansätze, Auslegungsvorgehensweisen und Gestaltungsempfehlungen werden von *Grüneis* [33] vertieft systematisiert und diskutiert. Weiterhin finden sich dort auch Quellen zu numerischen Untersuchungen von Pressverbindungen.

3.2 Viskoelastizität

Viskoelastisches Materialverhalten bezeichnet gemäß *Schürmann* [10] das Vorhandensein elastischer und viskoser Vorgänge unter Beanspruchung, wodurch das Verhalten einer Struktur von der Beanspruchungszeit abhängig wird. Die Stoffgesetze müssen den zeitlichen Verlauf von Spannung und Verformung verknüpfen, was mittels Kriech- oder Relaxationsfunktionen geschieht. Eine zeitlich konstante Last hat eine Zunahme der entsprechenden Verzerrungen zur Folge, was als Kriechen bezeichnet wird. Eine zeitlich konstante Verzerrung hingegen hat eine abnehmende Spannung zur Folge, was als Relaxation bezeichnet wird. Viskoelastische Vorgänge sind stark von der Temperatur abhängig. Bei Polymerwerkstoffen setzt sich die Verformung gemäß *Erhard* [34] aus verschiedenen **Anteilen** zusammen:

- Einem elastischen, reversiblen Anteil durch Abstandsänderung von Atomen und Valenzwinkelverschiebungen.
- Einem viskoelastischen, zeitabhängigen, reversiblen Anteil, der durch die Relaxationszeiten der Makromoleküle des Polymerwerkstoffs gekennzeichnet ist. Die Relaxationszeit ist die Zeit, die die Moleküle benötigen, um in eine Gleichgewichtslage entsprechend der anliegenden Spannung zu kommen.
- Einem viskosen, zeitabhängigen, irreversiblen Anteil, der stärkeres nichtlineares Verhalten zur Folge hat. Die bleibende Verformung entsteht hierbei gemäß *Rust* [35] durch Versetzung oder Aufbrechen von Hauptvalenzbindungen.

Die Steifigkeiten von Glas- und Kohlenstofffasern weisen nahezu keine Zeitabhängigkeit auf. Die Eigenschaften der polymeren Matrixsysteme hingegen sind gemäß *Schürmann* [10] stark zeit- und temperaturabhängig, weshalb bei FVK die Belastungsdauer und Temperatur für die matrixdominierten Belastungen eine wichtige Rolle spielen. Zu den positiven Folgen dieser Zeitabhängigkeit zählen die Reduktion thermischer Eigenspannungen, der Abbau von lokalen Spannungsüberhöhungen und die Kraftumlagerung von der Matrix in die Faser. Negative Folgen sind unter anderem die Reduktion der Steifigkeiten und damit verbundene Vorspannungsverluste oder größere Deformationen. Viskoelastische Effekte sind bei Belastung senkrecht zur Faserrichtung und bei Schubbelastung besonders stark ausgeprägt, da hierbei keine Umlagerungsmöglichkeit in Faserrichtung existiert. Dies ist auch bei Belastungen in Dickenrichtung der Fall.

Aufgrund der engmaschigen Vernetzung weisen **Duromere** gemäß *Erhard* [34] ein wenig ausgeprägtes viskoelastisches Verhalten auf. FVK mit Duroplastmatrixwerkstoffen zeigen bei niedrigen Spannungen gemäß *Schürmann* [10] linear viskoelastisches Materialverhalten, wobei ideal elastische und viskose Eigenschaften überlagert werden. Das Langzeitverhalten ist im Falle linearer Viskoelastizität von der Spannungshöhe unabhängig, wodurch lediglich eine Kriech- beziehungsweise Relaxationsfunktion notwendig ist. Hierdurch gilt das Superpositionsprinzip, sodass eine Last den Verlauf der Verzerrung aus einer anderen Last nicht beeinflusst. Die Gleichgewichtsund Kompatibilitätsbeziehungen aus der Elasto-Statik gelten nach wie vor, lediglich das Werkstoffgesetz muss angepasst werden, indem die Elastizitätsgrößen durch zeitabhängige Größen ersetzt werden.

Zeitabhängiges Materialverhalten kann auf verschiedene Arten mit unterschiedlichen Komplexitäts- und Genauigkeitsgraden abgebildet werden. Die folgenden **Vorgehensweisen** sind *Schürmann* [10] entnommen:

- Mittels Kriech- und Relaxationsfunktionen kann das Materialverhalten physikalisch sinnvoll abgebildet werden, wobei deren Bestimmung eine experimentelle Charakterisierung des Materialverhaltens und bei MSVen eine aufwendige Umrechnung von Kriech- in Relaxationsfunktionen mittels Rekursionsbeziehungen erfordert.
- Die quasistationäre Lösung, bei der nach wie vor von elastischem Verhalten • ausgegangen wird, die Grundelastizitätsgrößen der UD-Schicht aber mittels zeitabhängiger Funktionen beschrieben werden, bildet laut Schürmann [10] die lineare Viskoelastizität in guter Näherung ab. Vorteil hierbei ist der geringere Rechenaufwand verglichen mit der Beschreibung des Materialverhaltens mittels Kriech- und Relaxationsfunktionen, da wie im elastischen Fall gerechnet werden kann. Die Verläufe der zeitabhängigen Elastizitätsgrößen werden ebenfalls Kriechversuchen entnommen. Eine gängige, nicht physikalisch basierte Ansatzfunktion zur Approximation des zeitlichen Dehnungsverlaufs $\varepsilon(t)$ ist die Findley-Formel (siehe (3-16)), die von den beiden Freiwerten m und n abhängig ist. Die Umrechnung der zeitabhängigen Dehnung $\varepsilon(t)$ in den zeitabhängigen Kriechmodul E(t) für die Anwendung in einer quasistationären Lösung erfolgt gemäß (3-17), wobei E(0) der E-Modul zu Beginn des Versuchs ist. Eine weitere Beschreibung dieses Vorgehens, das auch als quasi-elastische Methode bezeichnet wird, erfolgt beispielsweise durch *Hinterhölzl* [36], der festhält, dass dieses Vorgehen im quasistatischen, viskoelastischen Fall für Materialien mit geringer Krümmung der zeitabhängigen Materialeigenschaftskurven eine Näherung mit angemessener Genauigkeit darstellt.

$$\varepsilon(t) = \varepsilon(0) + m \cdot (t)^n \tag{3-16}$$

$$E(t) = \frac{E(0)}{1 + \frac{m}{\varepsilon(0)} \cdot (t)^n}$$
(3-17)

- Eine stark vereinfachte Form der **quasistationären Lösung** stellt die **Reduktion gewisser Steifigkeiten** um fest vorgegebene Werte dar. Wenn ausschließlich die Fasern die Last tragen, können laut *Schürmann* [10] die matrixdominierten Steifigkeiten zur Vordimensionierung abgeschätzt werden. Hierbei wird die Reduktion des E-Moduls E_2 und des Schubmoduls G_{12} zur Abschätzung des Endzustands eines Laminats um 95 % empfohlen, was als sehr konservatives Vorgehen bezeichnet wird. Es werden jedoch keine Aussagen zur Anpassung der Querkontraktionszahlen getroffen, wodurch sich auch physikalisch nicht sinnvolle Kennwertsätze ergeben können.
- Ein weniger stark vereinfachtes Vorgehen zur quasistationären Lösung ist die • experimentelle Ermittlung der zeitlichen Verläufe der Kennwerte der unverstärkten Matrix. Aus diesen werden die Kennwerte einer UD-Schicht mittels der halbempirischen Näherungsformeln der Mikromechanik berechnet, auf die in Tab. 6-3 verwiesen wird. Versuche an UD-Schichten sind zwar sinnvoller, laut Schürmann [10] weichen die anhand der Matrixkennwerte berechneten Größen aber nur leicht von diesen Werten ab. Weiterhin ist der Aufwand bei der Untersuchung der reinen Matrix geringer. Die Abweichung der mit diesem Vorgehen bestimmten Kennwerte von an der UD-Schicht ermittelten Größen nimmt bei Vorhandensein von Mikroschädigungen jedoch zu. Die experimentelle Ermittlung des zeitlichen Verlaufs der Querkontraktionszahl der Matrix $v_m(t)$ ist schwierig, we shalb häufig eine rechnerische Bestimmung erfolgt. Unter der Annahme, dass bei der Ermittlung des zeitlichen Verlaufs des E-Moduls der Matrix $E_m(t)$ Volumenkonstanz herrscht, kann die Querkontraktionszahl der Matrix $v_m(t)$ entsprechend (3-18) berechnet werden. Hierbei repräsentiert $v_{m\infty}$ den Grenzwert von 0,5 der Querkontraktionszahl bei Volumenkonstanz. $E_m(0)$ und $\nu_m(0)$ sind die elastischen Kurzzeitwerte des E-Moduls und der Querkontraktionszahl der Matrix. Aus dem E-Modul der Matrix $E_m(t)$ und der Querkontraktionszahl der Matrix $v_m(t)$ kann wiederum der Schubmodul der Matrix $G_m(t)$ entsprechend dem bei isotropen Werkstoffen geltenden Zusammenhang (siehe (3-19)) bestimmt werden.

$$\nu_m(t) = \nu_{m\infty} \cdot \left[1 - \left(1 - 2\nu_m(0) \right) \cdot \frac{E_m(t)}{E_m(0)} \right]$$
(3-18)

$$G_m = \frac{E_m}{2 \cdot (1 + \nu_m)} \tag{3-19}$$

3.3 Tribologie und Reibkoeffizienten

Grundlagen

Die Tribologie ist gemäß Woydt [37], dem die Ausführungen im folgenden Absatz entnommen sind, die "Wissenschaft und Technik von aufeinander einwirkenden Oberflächen bei Relativbewegung". Sie schließt die Wechselwirkungen an den Grenzflächen mit ein und umfasst die Reibung, den Verschleiß und die Schmierung. Reibung und Verschleiß sind Systemeigenschaften eines sogenannten tribotechnischen Systems und keine geometrie- und stoffspezifischen Eigenschaften eines einzelnen Elements. Die vier grundlegenden Elemente eines tribotechnischen Systems sind der Grund- und der Gegenkörper sowie ein Zwischenstoff und ein Umgebungsmedium. Die beiden letzteren können unter Umständen entfallen. Relevante Eigenschaften des Grundmaterials und des oberflächennahen Bereichs von Grund- und Gegenkörper sind geometrische Größen wie die Abmessungen, die Welligkeiten und die Oberflächenrauheiten und werkstoffspezifische Größen wie die Festigkeiten, die Härte und die Oberflächenenergie. Die Reibung wirkt einer Relativbewegung entgegen und bewirkt eine Energiedissipation, das heißt eine irreversible Umsetzung mechanischer Energie in Wärme. Sie ist gemäß Woydt [37] die "Wechselwirkung zwischen sich berührenden, relativ zueinander bewegten Stoffbereichen". Allgemein kann zwischen äußerer und innerer Reibung unterschieden werden, wobei sich bei äußerer Reibung Stoffbereiche verschiedener Reibkörper und bei innerer Reibung Stoffbereiche eines Reibkörpers berühren. Ein Reibungszustand ist die Festkörperreibung zwischen Stoffbereichen mit Festkörpereigenschaften, das heißt ohne Grenzschicht, die aus den zwei folgenden Arten von Wechselwirkungen resultiert, denen sich die Reibungsmechanismen zuordnen lassen:

- Die atomare beziehungsweise molekulare Wechselwirkung durch das Trennen adhäsiver Bindungen bei Relativbewegung.
- Die mechanischen Wechselwirkungen durch plastische Deformation von Rauheiten und abrasive Beanspruchung (Furchung), also jeweils durch Verdrängen von Überschneidungen, und die durch innere Reibung verursachte Hysterese bei elastischer Deformation.

Die Reibungsmechanismen wirken häufig gleichzeitig, wobei der maßgebliche Mechanismus vom Reibungszustand abhängig ist. Der **Verschleiß** tritt bei Berührung von Grund- und Gegenkörper auf und ist gemäß *Woydt* [37] als "fortschreitender Materialverlust aus dem oberflächennahen Stoffbereich eines festen Körpers" durch tribologische Beanspruchung durch "Kontakt und Relativbewegung eines festen [...] Gegenkörpers" definiert. Als Auswirkung gelten losgelöste Partikel, Werkstoffüberträge und Stoff- und Formänderungen. **Verschleißmechanismen** können einzeln, nacheinander oder überlagert auftreten. Die wichtigsten sind die Oberflächenzerrüttung durch Rissbildung und -wachstum sowie das Abtrennen von Partikeln, die Abrasion durch Ritzungen und Mikrozerspanungen, die Adhäsion durch atomare Bindungen und die tribochemische Reaktion.

Die erwähnten **Adhäsionskräfte** sind gemäß *Popov* [38] Wechselwirkungskräfte (vander-Waals-Kräfte) zwischen Körpern, die meist zu einer Anziehung führen und schnell mit dem Abstand der Körper zueinander abnehmen. Bei glatten Oberflächen, einem sehr weichen Kontaktpartner, Klebstoffen, mikroskopischen Systemen und Gummireibung spielt adhäsive Reibung eine ausgeprägte Rolle. Die von der Adhäsion abhängigen Kontakteigenschaften sind im Wesentlichen von der Oberflächenenergie der Materialien der kontaktierenden Körper abhängig. Adhäsionskräfte werden durch Risse und Oberflächenrauheit stark vermindert. Die kritische Rauheit, ab der die Adhäsionskraft stark abfällt, ist von der Oberflächenenergie und dem Schubmodul der kontaktierenden Körper abhängig.

Bei Polymerwerkstoffen ist die Adhäsionsenergie auf die elektrostatische Energie zurückzuführen. Hierbei wird zwischen polaren und unpolaren Werkstoffen unterschieden, wobei bei unpolaren Polymeren unter adhäsiven Bedingungen von geringer Reibung ausgegangen werden kann. Epoxidharze gelten als polar, da der polare Anteil der Oberflächenenergie gemäß Kopczynska [39] größer als 1 mN/m ist, was wiederum in Erhard [34] als Grenze für Polarität angegeben wird. Erhard [34] gibt die Ergebnisse einer Studie wieder, in der die Reibkoeffizienten zwischen unpolaren beziehungsweise polaren Polymeren und Stahl experimentell ermittelt werden. Für die unpolaren Polymere nimmt die Reibungszahl mit zunehmender Rauheit zu. Bei den polaren Polymeren nimmt die Reibungszahl mit zunehmender Rauheit ab, da der adhäsive Gleitmechanismus abnimmt. Bei diesen Untersuchungen liegen sehr geringe Rauheitswerte (gemittelte Rauhtiefe R_z von 0,4 µm bis 2,9 µm) der untersuchten Stahlpartner vor. Erhard [34] hält fest, dass bei glatten Fügepartnern und geringer Flächenpressung die adhäsive, bei größeren Pressungen und Rauheiten die deformative Reibung überwiegt. Auch Popov [38] trifft die Aussage, dass bei makroskopischen Kontakten harter Körper die Adhäsion meistens nahezu vernachlässigbar ist, womit die mechanischen Wechselwirkungen dominieren. Die Abnahme des adhäsiven Reibanteils durch zunehmende Rauheit fällt in diesem Fall nicht mehr stark ins Gewicht.

Beim Kontakt von Werkstoffen mit unterschiedlichen Elastizitätsmoduln dringen die Spitzen des härteren Partners gemäß *Erhard* [34] in die Oberfläche des weicheren ein. Bei Relativbewegung entsteht ein Wulst vor jeder Erhebung, der weitergeschoben wird und eine Verlustarbeit bewirkt. Je steifer oder härter der Polymerwerkstoff ist, desto geringer wird die Reibung. Je höher die Zähigkeit ist, desto geringer wird der Verschleiß. Polymere mit Glas- oder Kohlefaserverstärkung können die Oberflächentopographie des Stahlpartners verändern und die Stahlgleitfläche glätten.

Gemäß *Woydt* [37] kann sich die Kontaktfläche durch plastische Deformation und Verschleiß bei tribologischer Beanspruchungen ändern. Oberflächenrauheiten beeinflussen die Reibung und den Verschleiß stark, da hierdurch die **reale Kontaktfläche**

wesentlich geringer als die nominelle Kontaktfläche ist. Weiterhin beeinflusst die Mikrogeometrie die Zerstörung der Oberfläche. Die reale Kontaktfläche entsteht durch Welligkeiten und Rauheiten, wodurch bei Festkörperreibung ein Kontakt nur an wenigen Stellen auftritt. Hieraus resultiert eine höhere Flächenpressung, welche wiederum eine plastische Verformung bewirkt.

Die Festkörperreibung ist ein äußerst kompliziertes Phänomen, deren Eigenschaften näherungsweise dennoch mit einem einfachen Zusammenhang beschrieben werden können. Die folgenden Ausführungen sind Popov [38] entnommen. Das Coulombsche Reibungsgesetz besagt, dass die Reibungskraft proportional zu der aus einem Fugendruck resultierenden Normalkraft ist. In erster Näherung wird hierbei keine Abhängigkeit von der Gleitgeschwindigkeit, der scheinbaren Kontaktfläche und der Rauheit angenommen. Der Reibungskoeffizient ergibt sich als Quotient aus der Reibungskraft und der Normalkraft F_N , wobei zwischen Haftreibung und Gleitreibung unterschieden wird. Die statische Reibungskraft oder Haftreibungskraft F_s muss überwunden werden, um einen Körper auf einer ebenen Unterlage aus dem Ruhezustand zu bringen. Sie ist proportional zur Normalkraft, woraus sich der statische Reibungskoeffizient oder Haftreibungskoeffizient μ_{Haft} ergibt (siehe (3-20)). Dieser wird als von der Materialpaarung abhängig und von der Kontaktfläche und der Rauheit aber nahezu unabhängig angenommen. Die kinetische Reibungskraft oder Gleitreibungskraft F_k muss nach Überwinden der Haftung wirken, um die Bewegung des Körpers aufrechtzuerhalten. Auch sie ist proportional zur Normalkraft, woraus sich der kinetische Reibungskoeffizient oder Gleitreibungskoeffizient μ_{Gleit} ergibt (siehe (3-21)). Dieser wird als von der Kontaktfläche, der Rauheit und der Gleitgeschwindigkeit nahezu unabhängig angenommen und kann näherungsweise gleich dem Haftreibungskoeffizienten gesetzt werden.

$$\mu_{Haft} = \frac{F_s}{F_N} \tag{3-20}$$

$$\mu_{Gleit} = \frac{F_k}{F_N} \tag{3-21}$$

Diskussion und Ergebnisse aus der Literatur

Popov [38] nimmt zu den Annahmen des Coulombschen Reibungsgesetzes hinsichtlich der **Abhängigkeiten der Reibungskoeffizienten** Stellung. Für den Haftreibungskoeffizienten wird eine logarithmische Zunahme mit der Verweildauer konstatiert. Diese wird unter anderem auf Kriechprozesse in Metallen beziehungsweise viskoelastische Effekte in Polymeren und eine damit zunehmende reale Kontaktfläche zurückgeführt. Auch eine Abhängigkeit des Gleitreibungskoeffizienten von der Gleitgeschwindigkeit für sehr große und kleine Gleitgeschwindigkeiten wird hiermit begründet. Die Proportionalität der Reibungskraft zur Normalkraft ist nur in einem bestimmten Kraftbereich erfüllt, der aber beispielsweise bei metallischen Stoffen mehrere Größenordnungen umfasst. Für weiche Stoffe wie Polymere wird die Aussage getroffen, dass diese Proportionalität nicht mehr gegeben ist, da die reale und die scheinbare Kontaktfläche ähnlich werden. Für die Rauheit wird die Aussage festgehalten, dass die Reibungskraft in einem großen Rauheitsbereich von dieser unabhängig ist. Dies widerspricht den zuvor getroffenen Aussagen zum **Einfluss der Rauheit**. Aus diesem Grund werden im Folgenden Quellen wiedergegeben, in denen Aussagen oder experimentelle Studien zum Reibkoeffizienten zwischen einem metallischen Körper und einem teilweise faserverstärkten Polymer festgehalten werden.

Ehrenstein [7] trifft die Aussage, dass der Reibungskoeffizient beim Kontakt eines Kunststoffs mit Metall von der Rauheit des Metallpartners und der Höhe des Fugendrucks abhängt. Als Haftreibungszahl wird hierbei, ohne weitere Erläuterung, ein Intervall von 0,2 bis 0,4 angegeben. Laut *Ehrenstein* [7] sinkt die Haftreibungszahl mit zunehmendem Fugendruck und eine große Rauheit des metallischen Fügepartners hat eine große Haftreibungszahl zur Folge.

Schön [40] ermittelt die Verschleiß- und Reibkoeffizienten eines endlosfaserverstärkten CFKs mit Epoxidharz in Kontakt mit Aluminium unter schwingender Bewegung. Die Fasern sind parallel zur Kontaktfläche ausgerichtet und die oberste Lage weist einen Winkel von 45° zur Abzugsrichtung auf. Der Prüfaufbau besteht aus einer mittig zwischen zwei Stahlplatten geklemmten CFK-Platte, die um einen gewissen Betrag aus diesen gezogen wird, was auch als "Pull-out"-Versuch bezeichnet wird. Der ermittelte Wert des initialen Haftreibkoeffizienten beträgt 0,23. Bei den Versuchen wird kein Einfluss des Fugendrucks auf den Reibkoeffizienten festgestellt. Die Werte des Fugendrucks liegen zwischen 2,6 MPa und 4,1 MPa.

Lee und Youn [41] ermitteln die Reibkoeffizienten und den Verschleiß eines kurzfaserverstärkten CFKs mit Polyamid-imid Matrix in Kontakt mit Edelstahl. Der CFK-PK wird hierbei auf einen rotierenden Stahlring gepresst, was als "Block-on-Ring"-Aufbau bezeichnet wird. Der Stahlring weist hierbei einen sehr geringen arithmetischen Mittenrauhwert R_a von ca. 0,07 µm auf. Der ermittelte Wert des Gleitreibkoeffizienten beträgt 0,31. Bei den Versuchen wird kein Einfluss des Fugendrucks auf den Reibkoeffizienten festgestellt. Die Werte des Fugendrucks liegen zwischen 0,5 MPa und 1,1 MPa.

Herrington und Sabbaghian [42] ermitteln Haft- und Gleitreibungskoeffizienten eines endlosfaserverstärkten CFKs mit Epoxidharz in Kontakt mit Stahl. Die Fasern sind parallel zur Kontaktfläche ausgerichtet und die oberste Lage weist einen Winkel von 0°, 45° oder 90° zur Abzugsrichtung auf. Neben der Faserorientierung werden der Fugendruck und das Material des metallischen Gegenkörpers variiert. Die Ermittlung erfolgt mittels eines "Pull-through"-Aufbaus, bei dem ein CFK-PK zwischen zwei Stahlplatten geklemmt wird und zu jedem Zeitpunkt über diese hinausragt. Die ermittelten Werte der Haftreibungskoeffizienten betragen zwischen 0,10 und 0,13. Bei den Versuchen ist kein Einfluss der Faserorientierung und des Fugendrucks auf den Reibkoeffizienten erkennbar. Die Werte des Fugendrucks liegen zwischen 2,9 MPa und 55,2 MPa. Das Material und die Oberflächeneigenschaften, wie beispielswiese eine Entfettung, weisen einen großen Einfluss auf den Reibkoeffizienten auf, wobei aber keine genauere Charakterisierung der Oberfläche stattfindet.

Jiang [43] untersucht den Einfluss der Oberflächenrauheit eines Polymerkörpers (arithmetischer Mittenrauhwert R_a von 0,5 µm bis 17,8 µm) und des Fugendrucks auf das Reibungsverhalten eines reinen Thermoplasts in Kontakt mit Edelstahl. Hierbei wird ein rechteckiger, flacher Stahlpin mit äußerst geringer Oberflächenrauheit (arithmetischer Mittenrauhwert R_a von 0,08 µm) auf einem ebenen Polymerkörper bewegt, wobei Drücke zwischen 0,05 MPa und 0,20 MPa herrschen. Die ermittelten Werte der Reibkoeffizienten betragen zwischen 0,2 und 0,5. Größere Rauheitswerte des Polymerkörpers haben bei diesen Untersuchungen geringere Reibkoeffizienten zur Folge, was für größere Fugendruckwerte weniger stark ausgeprägt ist. Als Ursache wird eine kleinere tatsächliche Kontaktfläche aufgeführt. Ein größerer Fugendruck erhöht den Reibkoeffizienten, was umso stärker ausgeprägt ist, je rauer die Oberfläche ist. Als Ursache wird eine Erhöhung der tatsächlichen Kontaktfläche aufgeführt. Für hohe Fugendruck einhergehende Deformation der Kontaktfläche aufgeführt. Für hohe Fugendruckwerte wird als Konsequenz dieser beiden Tatsachen vermutet, dass sich ein einheitlicher Wert des Reibkoeffizienten für alle Rauheiten einstellt.

Benabdallah [44] ermittelt den Haftreibkoeffizienten zwischen einem Thermoplast mit Additiven in Kontakt mit Stahl oder Aluminium. Der Versuchsaufbau besteht aus einem Thermoplastblock, der auf einer rotierenden Scheibe liegt. Die Rotationsgeschwindigkeit, bei der eine Ablösung stattfindet, ermöglicht die Berechnung der Reibkraft und des Reibkoeffizienten. Der arithmetische Mittenrauhwert R_a des Polymers beträgt hierbei ca. 0,3 µm, die der metallischen Kontaktflächen ca. 1,7 µm. Die ermittelten Werte der Haftreibkoeffizienten liegen für den Kontakt mit Aluminium zwischen 0,10 und 0,35 und für den Kontakt mit Stahl zwischen 0,06 und 0,33. Für geringe Normallasten nimmt der Haftreibkoeffizient mit zunehmender Normallast ab, nähert sich dann aber einem konstanten Niveau. Die Fugendrücke sind hierbei sehr gering und betragen maximal 0,005 MPa. Mit abnehmender Steifigkeit des Materials nimmt der Haftreibkoeffizient zu.

Abschließend kann Folgendes festgehalten werden:

In den Quellen, bei denen kein Einfluss des Fugendrucks auf den Reibkoeffizienten festgestellt wird ([40–42]), weisen die Fugendrücke Werte zwischen 0,5 MPa und 55,2 MPa auf, wobei Kombinationen von CFK mit Stahl oder Aluminium betrachtet werden. Bei *Jiang* [43] hat ein höherer Fugendruck einen größeren Reibkoeffizienten zur Folge, wobei Fugendrücke von maximal 0,2 MPa vorliegen. Bei *Benabdallah* [44] bewirkt ein höherer Fugendruck einen geringeren Reibkoeffizienten, wobei der Fugendruck maximal 0,005 MPa

beträgt. *Ehrenstein* [7] hält dieselbe Tendenz ohne Angabe eines Druckintervalls fest. Auf Basis der recherchierten Literatur kann damit keine abschließende Aussage zum Einfluss des Fugendrucks auf den Reibkoeffizienten getroffen werden.

 Gemäß *Ehrenstein* [7] nimmt der Reibkoeffizient mit zunehmender Rauheit des metallischen Bauteils zu. Hingegen trifft *Jiang* [43] eine gegensätzliche Aussage. Aufgrund dieser widersprüchlichen Aussagen kann keine abschließende Aussage zum Einfluss der Rauheit auf den Reibkoeffizienten getroffen werden.

3.4 Klassische Laminattheorie und Ingenieurskonstanten

Das lineare Elastizitätsgesetz einer UD-Schicht stellt die Grundlage für das Werkstoffgesetz des MSVs dar. In allen nachfolgenden, aus Schürmann [10] entnommenen, Ausführungen wird von linearer, idealer Elastizität ausgegangen. Elastisch bedeutet hierbei, dass ein Be- und Entlastungszyklus keine bleibende Verformung bewirkt und die gesamte Verformungsarbeit in Form innerer Energie im Bauteil gespeichert wird. Ideal elastisch besagt, dass die Verzerrung einer Spannung ohne zeitlichen Verzug folgt. Linear bedeutet, dass sich Spannung und Dehnung proportional zueinander verhalten. Das lineare Elastizitätsgesetz einer UD-Schicht als Scheibenelement im natürlichen Koordinatensystem der UD-Schicht (siehe Abb. 3-3), ausgedrückt in den Grundelastizitätsgrößen bei gegebenen Verzerrungen $\boldsymbol{\varepsilon}$, ist in (3-22) dargestellt. Die Matrix auf der rechten Seite wird hierbei als Steifigkeitsmatrix Q bezeichnet. Die Betrachtung als Scheibe setzt voraus, dass Kräfte nur in der Ebene und parallel zur Oberfläche wirken und Spannungen konstant über die Wanddicke sind. Kräfte greifen damit parallel und symmetrisch zur Mittelfläche an. Das Scheibenelement selbst ist eben und weist über die Abmessungen konstante Spannungen auf. Die UD-Schicht wird als transversal isotropes (siehe Kapitel 3.1.2), homogenes Kontinuum angesehen, weshalb Risse und Lufteinschlüsse nicht erfasst werden. Es wird von kleinen Verformungen und einem ebenen Spannungszustand ausgegangen.

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{pmatrix} = \begin{pmatrix} \frac{E_1}{1 - \nu_{12} \cdot \nu_{21}} & \frac{\nu_{21} \cdot E_1}{1 - \nu_{12} \cdot \nu_{21}} & 0 \\ \frac{\nu_{12} \cdot E_2}{1 - \nu_{12} \cdot \nu_{21}} & \frac{E_2}{1 - \nu_{12} \cdot \nu_{21}} & 0 \\ 0 & 0 & G_{12} \end{pmatrix} \cdot \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{pmatrix}$$
(3-22)

Die Indizierung der Werkstoffkennwerte erfolgt in der gesamten vorliegenden Arbeit entsprechend der international gebräuchlichen Nomenklatur. Beispielsweise wird der E-Modul in Faserrichtung einer UD-Schicht mit E_1 und nicht mit $E_{||}$ indiziert. Die große Querkontraktionszahl wird mit v_{12} bezeichnet und gibt das Verhältnis von Querzu Längsdehnung an, wobei die primäre Dehnung aufgrund der anliegenden Kraft in 1-Richtung und die Querdehnung in 2-Richtung erfolgt.

Weisen die Fasern einen Winkel α zu einem allgemeinen kartesischen Koordinatensystem auf (siehe Abb. 3-6), muss die Steifigkeitsmatrix Q aus dem natürlichen Koordinatensystem der UD-Schicht in dieses transformiert werden. Die Transformation erfolgt anhand von Transformationsmatrizen, die *Schürmann* [10] entnommen werden können. Die transformierte Steifigkeitsmatrix wird mit \overline{Q} bezeichnet. Die UD-Schicht verhält sich in ihrem natürlichen Koordinatensystem transversal isotrop und weist damit keine Kopplung von Dehnungen und Schiebungen auf. Wird eine Schicht um einen Winkel α gedreht, sodass das Koordinatensystem nicht mehr mit den Orthotropieachsen übereinstimmt, so weist diese Schicht anisotropes Verhalten in diesem Koordinatensystem auf. Dehnungen und Schiebungen sind in diesem Fall miteinander gekoppelt.

Abb. 3-6:Natürliches und globales KoordinatensystemWinkel α zwischen natürlichem (1,2-) Koordinatensystem einer UD-Schicht und einem
globalen (x,y-) Koordinatensystem (in Anlehnung an [10])

Klassische Laminattheorie

Das Elastizitätsgesetz eines MSVs wird anhand der Elastizitätsgesetze der Einzelschichten im Rahmen der CLT beschrieben, welche eine schichtenweise Spannungsanalyse ermöglicht. Um auch zweiachsige Biegung und Drillung abbilden zu können, wird der MSV als Kombination von Scheiben- und Plattenelement behandelt. Hierbei werden gemäß *Schürmann* [10] die Annahmen der Kirchhoffschen Plattentheorie getroffen. Der MSV ist hierbei aus einzelnen, ebenen Schichten aufgebaut, die ideal verklebt sind, wodurch keine Relativverschiebung auftritt. Die Klebschichten werden wiederum vernachlässigt.

Auf das Scheiben-Platten-Element des MSVs wirken die auf die Breite des Elements bezogenen Kraftflüsse \hat{n} des Scheibenelements und Momentenflüsse \hat{m} des Plattenelements (siehe Abb. 3-7). Als beliebig wählbare Bezugsebene wird häufig die Mittelebene gewählt, die wiederum häufig auch die Symmetrieebene des Laminats darstellt.

Abb. 3-7: Kraft- und Momentenflüsse an Scheiben- und Plattenelement Kraftflüsse am Scheibenelement und Abstände z... zweier Schichten zur Bezugsebene (links); Momentenflüsse am Plattenelement (rechts) (angepasst aus [10])

Die Kraft- und Momentenflüsse ergeben sich aus den über die Einzelschichten integrierten und für den MSV aufsummierten Spannungen. Die kinematischen Beziehungen des Scheiben-Plattenelements liefern den Zusammenhang zwischen den Verschiebungen und den Verzerrungen. Der Zusammenhang zwischen den Spannungen und Verzerrungen der Einzelschichten wird mit den entsprechenden Elastizitätsgesetzen hergestellt. Die Kombination dieser drei Zusammenhänge liefert die Gesetzmäßigkeit zwischen den Kraft- und Momentenflüssen und den Verzerrungen ε_0 (Dehnungen ε_x und ε_y und Schiebung γ_{xy}) und Verwölbungen κ_0 (Krümmungen κ_x und κ_y und Drillung κ_{xy}) der Bezugsebene entsprechend (3-23).

$$\begin{pmatrix} n_{x} \\ \hat{n}_{y} \\ \hat{n}_{xy} \\ \hat{m}_{x} \\ \hat{m}_{y} \\ \hat{m}_{xy} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66} \end{pmatrix} \cdot \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{pmatrix}_{0}$$
(3-23)

Die Untermatrizen der Steifigkeitsmatrix *ABD* haben gemäß *Schürmann* [10] folgende Bedeutung und werden folgendermaßen bezeichnet und berechnet:

- Die Scheibensteifigkeitsmatrix A ist von der Wahl der Bezugsebene unabhängig. Der Traganteil der Einzelschichten ist von der Schichtsteifigkeit und -dicke abhängig. Die Einträge ergeben sich durch Parallelschaltung der Scheibensteifigkeiten der Einzelschichten und berechnen sich aus den Einträgen der Steifigkeitsmatrizen \overline{Q}_k der n Einzelschichten und der zugehörigen Schichtdicke t_k gemäß (3-24).
- Die Koppelsteifigkeitsmatrix **B** koppelt die Kraftflüsse mit den Verwölbungen und die Momentenflüsse mit den Verzerrungen. Die Einträge sind von der Wahl der Bezugsebene abhängig und ergeben sich gemäß (3-25), wobei z_k der Abstand der k-ten Schicht zur Bezugsebene ist (Abb. 3-7).

• Die Plattensteifigkeitsmatrix **D** ist ebenfalls von der Wahl der Bezugsebene abhängig und ihre Einträge ergeben sich gemäß (3-26).

$$A_{ij} = \sum_{k=1}^{n} \bar{Q}_{ij,k} \cdot t_k \tag{3-24}$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} \bar{Q}_{ij,k} \cdot (z_k^2 - z_{k-1}^2)$$
(3-25)

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} \bar{Q}_{ij,k} \cdot (z_k^3 - z_{k-1}^3)$$
(3-26)

Die Nachgiebigkeitsmatrix **abd** ergibt sich durch Invertierung der gesamten Steifigkeitsmatrix **ABD**.

Ingenieurskonstanten

Bei vielen analytischen Berechnungsansätzen, wie beispielsweise dem in Kapitel 3.1.2 vorgestellten analytischen Ansatz zur Berechnung von Pressverbindungen mit orthotropen Fügepartnern, ist es nicht möglich jede Einzelschicht eines Laminats einzeln rechnerisch zu berücksichtigen. Das mechanische Verhalten eines MSVs muss in diesen Fällen "verschmiert" beschrieben werden, was für MSVe unter einachsiger Belastung anhand sogenannter Ingenieurskonstanten erfolgen kann. Die Berechnung solcher Ingenieurskonstanten und damit einhergehende Einschränkungen werden im Folgenden wiedergegeben.

Eine Berechnung von Ingenieurskonstanten für unsymmetrische Laminate wird unter anderem von *Tsai* [45] als nicht zulässig erachtet, da eine einachsige Belastung nicht mehr ausschließlich die zugehörige Normaldehnung und Querkontraktion bewirkt, sondern zusätzliche Deformationen zur Folge hat. In der vorliegenden Arbeit werden Fehler, die durch Vereinfachungen gemacht werden, untersucht, weshalb die nachfolgend definierten Ingenieurskonstanten auch für unsymmetrische Laminate verwendet werden.

Für Belastungen mit den Kraftflüssen des Scheibenelements kann folgende Vorgehensweise zur Bestimmung der Ingenieurskonstanten in Anlehnung an *Schürmann* [10] angewendet werden. Zur Beschreibung des Verhaltens eines MSVs unter einachsiger Zugbelastung in beispielsweise x-Richtung ist die Ingenieurskonstante \hat{E}_x von Interesse. Bei Vorgabe einer reinen Belastung \hat{n}_x ergibt sich eine Dehnung $\hat{\varepsilon}_x$, mit welcher die Ingenieurskonstante \hat{E}_x in Anlehnung an das Hookesche Gesetz bestimmt werden kann. Die Ausdrücke zur Berechnung der Ingenieurskonstanten ergeben sich damit zu (3-27), wobei t die Wandstärke des MSVs darstellt. In *Schürmann* [10] wird für die Nachgiebigkeitswerte in (3-27) lediglich die Scheibensteifigkeitsmatrix **A** in-

vertiert, deren Inverse der besseren Nachvollziehbarkeit mit \tilde{a} bezeichnet wird. Bei diesem Vorgehen werden entsprechend Palanterä [46] nur Scheibenverzerrungen zugelassen und Plattenverwölbungen verhindert, weshalb im weiteren Verlauf der Arbeit die auf diese Art berechneten Ingenieurskonstanten als SoV-Ingenieurskonstanten (Scheibe ohne Verwölbung) bezeichnet werden. Palanterä [46] bezeichnet diese Ingenieurskonstanten "zero-curvature". Bei der mit Berechnung der SoV-Ingenieurskonstanten ist die Reihenfolge der Schichten nicht relevant (siehe (3-24)). Durch Vorgabe der reinen \hat{n}_x -Belastung findet keine Querkontraktionsbehinderung statt, da alle anderen Kraftflüsse zu Null gesetzt werden und sich dementsprechend die anderen Verzerrungen frei einstellen können.

$$\hat{E}_x = \frac{1}{\tilde{a}_{11} \cdot t}; \, \hat{E}_y = \frac{1}{\tilde{a}_{22} \cdot t}; \, \hat{G}_{xy} = \frac{1}{\tilde{a}_{66} \cdot t}; \, \hat{\nu}_{xy} = -\frac{\tilde{a}_{12}}{\tilde{a}_{11}}; \, \hat{\nu}_{yx} = -\frac{\tilde{a}_{12}}{\tilde{a}_{22}} \tag{3-27}$$

4 Analyse einfacher Auslegungsvorgehensweisen

In diesem Kapitel werden, in Anlehnung an Kapitel 3.1.2, zwei einfache Auslegungsvorgehensweisen zur Bestimmung der **charakteristischen mechanischen Größen** einer Pressverbindung analysiert. Dabei wird davon ausgegangen, dass alle verwendeten und berechneten Kennwerte und Größen sowie die Fügepartner selbst bei Raumtemperatur vorliegen. Es gilt Folgendes:

- Die axiale Einpresskraft F_{ein} muss möglichst gering sein und wird für nachgeschaltete Festigkeits- und Stabilitätsnachweise beim Herstellen einer Längspressverbindung verwendet.
- Die axiale Auszugskraft F_{aus} und das übertragbare Torsionsmoment M_t müssen möglichst groß sein, da sie die für axialkraft- beziehungsweise torsionsbelastete Pressverbindungen relevanten Größen darstellen.

Im weiteren Verlauf der Arbeit wird hierauf aufbauend beurteilt, ob eine Auslegung konservativ oder nicht konservativ erfolgt. Wird beispielsweise die Einpresskraft durch ein Auslegungsvorgehen überschätzt, ist dies als konservative Auslegung anzusehen. Für die Auszugskraft und das übertragbare Torsionsmoment gilt das Umgekehrte. Es sei an dieser Stelle darauf hingewiesen, dass die nachfolgend vorgestellten Auslegungsvorgehensweisen der Vorauslegung einer Pressverbindung dienen. Entsprechende Festigkeits- und Stabilitätsnachweise der Bauteile sowie Auslegungsrechnungen hinsichtlich des dynamischen Verhaltens und des Langzeitverhaltens müssen sich anschließen und sind für eine Auslegung des Anbindungsbereichs unerlässlich.

4.1 Rechnerisches Auslegungsvorgehen

Beim rechnerischen Auslegungsvorgehen wird der Fugendruck einer Pressverbindung bestimmt, für welche die Abmessungen und Werkstoffkennwerte bekannt sind. Weiterhin ist der Haftreibkoeffizient μ_{Haft} in axiale Bewegungsrichtung für die Rauheit der vorliegenden Materialpaarung bekannt. Der Mittelwert des Fugendrucks ($p_{F,m,analyt}$ oder $p_{F,m,num}$) wird mit dem analytischen Ansatz von *Fischer* [5] (siehe Kapitel 3.1.2) oder einem numerischen Ansatz ermittelt. Als numerisches Modell kommt ein rotationssymmetrisches Modell zum Einsatz, welches den reinen Verpressungszustand der Komponenten mittels eines reibungsfreien Kontakts abbildet (siehe Kapitel 6.1). Für die numerische Berechnung wird zwar ein Softwaretool benötigt, das numerische Modell ist für numerische Maßstäbe aber dennoch einfach gehalten, bedarf eines geringen Rechenaufwands und genügt damit den in Kapitel 1 aufgeführten Anforderungen.

Mit dem Mittelwert des Fugendrucks $p_{F,m}$, der Fügefläche A und dem Haftreibkoeffizienten μ_{Haft} wird die axiale Einpresskraft F_{ein} bei diesem Auslegungsvorgehen entsprechend (4-1) berechnet. Die Verwendung des Haftreibkoeffizienten erfolgt im Hinblick auf ein etwaiges ruckartiges Einpressen, bei dem Haften und Gleiten im Wechsel auftreten und das Haften auslegungsrelevant ist. Die Auszugskraft F_{aus,t_1} wird bei diesem Auslegungsvorgehen ebenfalls entsprechend (4-1) bestimmt, wobei der Zeitpunkt t_1 das Ende der Betriebsdauer eines Bauteils beschreibt. Mit dem Fügeradius r ergibt sich das übertragbare Torsionsmoment M_{t,t_1} entsprechend (4-2).

$$F_{ein} = \mu_{Haft} \cdot A \cdot p_{F,m} = F_{aus,t_1} \tag{4-1}$$

$$M_{t,t_1} = \mu_{Haft} \cdot A \cdot p_{F,m} \cdot r \tag{4-2}$$

Beim rechnerischen Auslegungsvorgehen werden folgende Annahmen getroffen:

- Die Nabe ist nicht schief gestellt oder verkantet und durch Abrieb bedingte tribologische Einflüsse liegen nicht vor.
- Es liegt linear elastisches Materialverhalten vor.
- Es existieren keine Unregelmäßigkeiten im Material wie beispielsweise durch Schwankungen der Kennwerte und des Faservolumengehalts (FVGs), Fehlstellen oder Fertigungseinflüsse.
- Zur Bildung des Mittelwerts des Fugendrucks und zur Berechnung der Fügefläche zwischen den Bauteilen wird in der vorliegenden Arbeit die nominelle Fügelänge verwendet.
- Die Schubspannungsverteilung in der Trennfuge durch eine anliegende axiale oder tordierende Belastung, das damit verbundene, etwaige lokale Gleiten in Bereichen der Trennfuge und der damit verbundene Wechsel von Haft- auf Gleitkontakt in diesem Bereich werden nicht berücksichtigt.

Auf Basis dieser Annahmen kann davon ausgegangen werden, dass der numerisch berechnete Fugendruck $p_{F,m,num}$ den Fugendruck durch reine Verpressung der Bauteile korrekt wiedergibt. Weiterhin wird angenommen, dass ein etwaiges Einebnen der Rauheit der Stahlnaben beim Einpressvorgang auftritt, sodass das effektive Übermaß bereits beim Einpressen vorliegt. Die beim rechnerischen Auslegungsvorgehen zusätzlich indirekt getroffenen Annahmen, die dabei vernachlässigten Aspekte und die Kapitel, in denen diese untersucht werden, sind in Abb. 4-1 dargestellt und werden im Folgenden erläutert:

Abb. 4-1: Rechnerisches Auslegungsvorgehen

Indirekt getroffene Annahmen (Gleichheitszeichen und Größen in weißen Kästchen) und vernachlässigte Aspekte (grau) mit Kapiteln, in denen diese untersucht werden.

- Sowohl für das übertragbare Torsionsmoment M_{t,t_1} , die axiale Einpresskraft F_{ein} als auch die axiale Auszugskraft F_{aus,t_1} :
 - Durch Gleichsetzen des analytisch oder numerisch berechneten Fugendrucks $p_{F,m,analyt/num}$ und des Fugendrucks p_{F,m,t_0} wird ein etwaiges Einebnen der Stahlnaben beim Einpressvorgang vernachlässigt. Der Zeitpunkt t_0 bezeichnet den Anfang der Betriebsdauer eines Bauteils nach dem Einpressen. Weiterhin werden ein etwaiges Eindringen des Kunststoffs und ein damit verbundenes, geringeres effektives Übermaß vernachlässigt. Für den analytisch berechneten Fugendruck $p_{F,m,analyt}$ wird durch den Ansatz von *Fischer* [5] darüber hinaus die Deformation der Komponenten in Dickenrichtung, der Einfluss der Fugendrucküberhöhung und die Position der Lagen im Lagenaufbau vernachlässigt.
- Zusätzlich sowohl für die axiale Einpresskraft F_{ein} als auch die axiale Auszugskraft F_{aus,t_1} :
 - Durch Gleichsetzen von $p_{F,m,t_0} \cdot \mu_{Haft} \cdot A$ und der axialen Reibkraft nach dem Einpressen F_{Reib,ax,t_0} werden Unterschiede in den axialen Reibkoeffizienten bei verschiedenen Rauheiten vernachlässigt. Außerdem wird ein etwaiges reines Gleiten vernachlässigt, für das der Gleitreibkoeffizient ausschlaggebend ist.
- Zusätzlich für die axiale Einpresskraft F_{ein} :
 - O Durch Gleichsetzen der axialen Reibkraft nach dem Einpressen F_{Reib,ax,t_0} und beim Einpressen $F_{Reib,ax,ein}$ wird der Einfluss der Querkontraktion auf den Fugendruck vernachlässigt.
 - o Durch Gleichsetzen der axialen Reibkraft beim Einpressen $F_{Reib,ax,ein}$ und der axialen Einpresskraft F_{ein} wird die elastische Deformationskraft, ein Eindringen der Stahlnabe in den weichen Kunststoff und eine damit verbundene etwaige Krafterhöhung durch Einschneiden vernachlässigt.
- Zusätzlich für die axiale Auszugskraft F_{aus,t_1} :
 - Durch Gleichsetzen der axialen Reibkraft nach dem Einpressen F_{Reib,ax,t_0} und der axialen Reibkraft am Ende der Betriebsdauer F_{Reib,ax,t_1} wird die Viskoelastizität sowie ein etwaiger anderer initialer Reibkoeffizient nach Verweildauer der Oberflächen aufeinander vernachlässigt.
 - Durch Gleichsetzen der axialen Reibkraft am Ende der Betriebsdauer F_{Reib,ax,t_1} und beim Auszugsvorgang $F_{Reib,ax,aus}$ wird der Einfluss der Querkontraktion auf den Fugendruck vernachlässigt.
 - Durch Gleichsetzen der axialen Reibkraft beim Auszugsvorgang $F_{Reib,ax,aus}$ und der axialen Auszugskraft F_{aus,t_1} wird die elastische Deformationskraft vernachlässigt.

- Zusätzlich für das übertragbare Torsionsmoment M_{t,t_1} :
 - Durch Gleichsetzen des Fugendrucks nach dem Einpressen p_{F,m,t_0} mit dem Fugendruck am Ende der Betriebsdauer p_{F,m,t_1} wird die Viskoelastizität vernachlässigt.
 - Durch Gleichsetzen von $p_{F,m,t_1} \cdot \mu_{Haft} \cdot A$ mit der tangentialen Reibkraft bei Torsionsbelastung am Ende der Betriebsdauer $F_{Reib,tang,t_1}$ werden Unterschiede in den Reibkoeffizienten bei verschiedenen Belastungsrichtungen und Rauheiten sowie ein etwaiger abweichender initialer Reibkoeffizient vernachlässigt.
 - Durch Gleichsetzen von $F_{Reib,tang,t_1} \cdot r$ und dem übertragbaren Torsionsmoment M_{t,t_1} wird ein Eindringen der Stahlnabe in den weichen Kunststoff mit einem etwaigen damit verbundenen Formschluss durch Einschneiden vernachlässigt.

4.2 Experimentelles Auslegungsvorgehen

Beim experimentellen Auslegungsvorgehen wird die Auszugskraft F_{aus,t_1} und das übertragbare Torsionsmoment M_{t,t_1} einer Pressverbindung am Ende der Betriebsdauer eines Bauteils anhand einer experimentell ermittelten Einpresskraft $F_{ein,exp}$ abgeschätzt (siehe (4-3) und (4-4)).

$$F_{aus,t_1} = F_{ein,exp} \tag{4-3}$$

$$M_{t,t_1} = F_{ein,exp} \cdot r \tag{4-4}$$

Beim experimentellen Auslegungsvorgehen werden die folgenden **Annahmen** getroffen:

- Ein etwaiges Einebnen der Rauheit der Stahlnaben tritt ausschließlich beim Einpressvorgang auf, sodass das effektive Übermaß bereits beim Einpressen vorliegt.
- Annahmen zur Schiefstellung und zum Verkanten der Nabe, zu tribologischen Einflüssen durch Abrieb, zur Schubspannungsverteilung und dem damit verbundenen lokalen Gleiten entsprechen den Annahmen aus Kapitel 4.1

Die beim experimentellen Auslegungsvorgehen zusätzlich indirekt getroffenen Annahmen, die dabei vernachlässigten Aspekte und die Kapitel, in denen diese untersucht werden, sind in Abb. 4-2 dargestellt und werden im Folgenden erläutert:

Abb. 4-2:Experimentelles AuslegungsvorgehenIndirekt getroffene Annahmen (Gleichheitszeichen und Größen in weißen Kästchen) und
vernachlässigte Aspekte (grau) mit Kapiteln, in denen diese untersucht werden.

- Sowohl für das übertragbare Torsionsmoment M_{t,t_1} als auch die axiale Auszugskraft F_{aus,t_1} :
 - Durch Gleichsetzen der experimentell ermittelten axialen Einpresskraft $F_{ein,exp}$ mit der axialen Reibkraft beim Einpressen $F_{Reib,ax,ein}$ wird die elastische Deformationskraft, ein Eindringen der Stahlnabe in den weichen Kunststoff und eine damit verbundene etwaige Krafterhöhung durch Einschneiden vernachlässigt.
 - Durch Gleichsetzen der axialen Reibkraft beim Einpressen $F_{Reib,ax,ein}$ und nach dem Einpressen F_{Reib,ax,t_0} wird der Einfluss der Querkontraktion auf den Fugendruck vernachlässigt.
 - Durch Gleichsetzen der axialen Reibkraft nach dem Einpressen F_{Reib,ax,t_0} und nach Auslagerung F_{Reib,ax,t_1} wird die Viskoelastizität sowie ein etwaiger abweichender initialer Reibkoeffizient nach Verweildauer der Oberflächen aufeinander vernachlässigt.
- Zusätzlich für die axiale Auszugskraft F_{aus,t_1} :
 - Durch Gleichsetzen der axialen Reibkraft nach Auslagerung F_{Reib,ax,t_1} und beim Lösen $F_{Reib,ax,aus}$ wird der Einfluss der Querkontraktion auf den Fugendruck vernachlässigt.
 - Durch Gleichsetzen der axialen Reibkraft beim Lösen $F_{Reib,ax,aus}$ und der axialen Auszugskraft F_{aus,t_1} wird die elastische Deformationskraft vernachlässigt.
- Zusätzlich für das übertragbare Torsionsmoment M_{t,t_1} :
 - Durch Gleichsetzen der axialen Reibkraft nach Auslagerung F_{Reib,ax,t_1} und der tangentialen Reibkraft bei Torsionsbelastung $F_{Reib,tang,t_1}$ werden Unterschiede in den Reibkoeffizienten bei verschiedenen Belastungsrichtungen sowie ein etwaiger anderer initialer Reibkoeffizient vernachlässigt.
 - Durch Gleichsetzen von $F_{Reib,tang,t_1} \cdot r$ und dem übertragbaren Torsionsmoment M_{t,t_1} wird ein Eindringen der Stahlnabe in den weichen Kunststoff mit einem etwaigen damit verbundenen Formschluss durch Einschneiden vernachlässigt.

5 Experimentelle Untersuchung dickwandiger Pressverbindungen

Ziel dieses Kapitels ist es den Einfluss verschiedener Gestaltungsparameter auf die charakteristischen mechanischen Größen dickwandiger Pressverbindungen anhand experimenteller Untersuchungen aufzuzeigen. Der Fokus der experimentellen Untersuchungen liegt auf dem rein mechanischen Einpressvorgang der Pressverbindung bei Raumtemperatur. Anschließend erfolgt eine Beurteilung, inwiefern von diesen Größen auf das übertragbare Torsionsmoment der Pressverbindung geschlossen werden kann. In Kapitel 5.1 werden die zu variierenden Gestaltungsparameter unter Berücksichtigung der Randbedingungen ausgewählt. Die PK zur Untersuchung der Pressverbindung sowie der Prüfaufbau und –ablauf zur Untersuchung des Einpressvorgangs werden in Kapitel 5.2 beschrieben. In Kapitel 5.3 wird die Qualifikation des optischen Messsystems zur Erfassung der tangentialen Dehnung beim Einpressvorgang nachgewiesen. Der Einpress- und Torsionsvorgang wird in Kapitel 5.4 experimentell untersucht und die Ergebnisse der Untersuchung werden wiedergegeben und diskutiert.

5.1 Randbedingungen

Eine Übersicht der Gestaltungsparameter und Einflussgrößen einer rotationssymmetrischen Pressverbindung mit orthotropen Fügepartnern findet sich in Tab. 5-1. Eine schematische Darstellung einer Pressverbindung zwischen Welle, Nabe und Stützring mit den entsprechenden geometrischen Größen findet sich in Abb. 3-1.

Im Rahmen der experimentellen Untersuchungen der vorliegenden Arbeit werden die folgenden Einschränkungen hinsichtlich der Einflussgrößen und Gestaltungsparameter getroffen:

- Festlegung auf eine repräsentative Materialkombination aus dem Bereich des Maschinen- und Anlagenbaus (siehe Kapitel 5.2) und Herstellung der CFK-Wellen im Nasswickelverfahren.
- Verwendung eines in situ gefertigten FVW-Stützrings zur Steigerung der tangentialen Steifigkeit im Anbindungsbereich der CFK-Welle, der im Nasswickelverfahren mit geringem Fertigungsaufwand umgesetzt werden kann.
- Keine experimentelle Untersuchung zeit- und temperaturabhängiger Größen und des Einflusses verschiedener Medien.
- Mechanischer Fügevorgang bei Raumtemperatur ohne Schmierstoffe ermöglicht Rückschlüsse auf die Bedingungen in der Trennfuge (siehe Kapitel 4.2).

• Keine Variation der geometrischen Ausführung der Nabe, da der Fokus der Untersuchungen auf den geometrischen Größen der FVW-Komponenten liegt.

	Welle (FVW)	Nabe (Metall)	Stützring (FVW/ Metall)	Trennfugen (Welle/Nabe/ Stützring)	
Material	Faser, Matrix, FVG, Lagen- aufbau	Werkstoff	Faser, Matrix, FVG, Lagen- aufbau	-	
Geometrie	Wand- stärke, Länge	Wand- stärke, Länge, Fasen- geometrie	Wand- stärke, Länge	Länge, Übermaß	
Applikation	-	Längs-/ Querpress- verb.	Längs-/ Querpress- verb., In-Situ- Fertigung	-	
Oberfläche	-	-	-	Reibkoeffizient und Rauheit (axial und tangential), Einebnung	
Sonstiges	Zeit, Temperatur	-	Zeit, Temperatur	Zeit, Temperatur, Medieneinwirkung	

Tab. 5-1:Gestaltungsparameter und Einflussgrößen einer rotationssymmetrischen Pressver-
bindung mit orthotropen Fügepartnern

Entsprechend den Untersuchungszielen dieser Arbeit (siehe Kapitel 2) werden die folgenden Größen variiert und deren Einfluss experimentell untersucht:

- Wellenwandstärke t_W und Stützringwandstärke t_{SR} , wobei sich der Stützring über die gesamte Länge der Welle erstreckt.
- Länge $l_{Tr,N-W}$ der Trennfuge zwischen Nabe und Welle, welche im Folgenden als Fügelänge l_F bezeichnet wird.

- Übermaß Ü_d zwischen Welle und Nabe (auf den Durchmesser der Komponenten bezogen), da dieser Größe und der Fügelänge l_F eine große Bedeutung hinsichtlich der maximal übertragbaren Lasten zugeschrieben wird.
- Rauheit R_z (gemittelte Rauhtiefe gemäß Niemann [1]) der Stahlnabe, da neben der Materialkombination auch die Oberfläche der einzelnen Fügepartner bezüglich der Reibkoeffizienten eine Rolle spielt (siehe auch Kapitel 3.3). Hiermit sollen auch weitere, mit dieser Größe verbundene Aspekte untersucht werden.
- Untersuchung von PKn zweier Baugrößen, um die Skalierbarkeit von an kleinen PKn ermittelten Ergebnissen auf große PK zu untersuchen.

Die ausgewählten Gestaltungsparameter werden in einem einfaktoriellen Versuchsplan miteinander kombiniert (siehe Kapitel 5.2).

5.2 Prüfkörper und Prüfaufbau

Im Folgenden werden die PK und der Prüfaufbau beschrieben. Dies wurde teilweise von *Fahr* [47] veröffentlicht.

Prüfkörper

Die CFK-Hohlwelle besteht aus innenliegenden $\pm 30^{\circ}$ -Lagen und außenliegenden 90° -Lagen (Umfangslagen), wobei der Winkel α der Faserorientierung an der Rotationsachse gemessen wird. Die $\pm 30^{\circ}$ -Lagen stellen einen Kompromiss dar zwischen dem laut *Kleschinski* [12] für eine hohe Torsionssteifigkeit und –festigkeit idealen Winkel von $\pm 45^{\circ}$ und den für hohe biegekritische Drehzahlen der Antriebswelle notwendigen, stark axial orientierten Lagen. Die Umfangslagen entsprechen einem in situ gefertigten Stützring, was in ähnlicher Weise auch in anderen Arbeiten zur Pressverbindung eingesetzt wird (siehe Kapitel 3.1.2). Eine schematische Darstellung der PK, des Laminataufbaus und der Faser der Stahlnabe findet sich in Abb. 5-1. Die Gestaltung der Fase erfolgt in Anlehnung an die Empfehlungen aus Kapitel 3.1.

Abb. 5-1: Schematische Darstellung der Prüfkörper Allgemeine Abmessungen der beiden Baugrößen (links); Laminataufbau der CFK-Hohlwelle (mittig); Ausführung der Fase der Stahlnabe (rechts)

Die Varianten des einfaktoriellen Versuchsplans mit den Soll-Zahlenwerten der Gestaltungsparameter sind in Tab. 5-2 zusammengefasst.

ße/große Bau					
Variante	t _W [mm]	t _{SR} [mm]	<i>R_z</i> [μm]	Ü _d [mm]	l _F [mm]
Referenz	1,8/3,6	5,6/5,6	4/4	0,075/0,15	35/70
±30° dick	7,2/14,4	5,6/5,6	4/4	0,075/0,15	35/70
90° dick	1,8/3,6	11,2/11,2	4/4	0,075/0,15	35/70
Rau	1,8/3,6	5,6/5,6	13/13	0,075/0,15	35/70
Großes Übermaß	1,8/3,6	5,6/5,6	4/4	0,125/0,25	35/70
Kurze Fügelänge	1,8/3,6	5,6/5,6	4/4	0,075/0,15	17,5/35

Tab. 5-2: Varianten mit Soll-Zahlenwerten der Gestaltungsparameter

Varianten mit den Soll-Zahlenwerten der Gestaltungsparameter für die kleine Baugröße/große Baugröße

Die Festlegung der Soll-Zahlenwerte basiert auf Folgendem:

- Aufbauend auf den Werten von Fügedurchmesser und Fügelänge genügt die Gesamtlänge der PK dem Prinzip von de Saint Venant (siehe Kapitel 6.1), wodurch in der Mitte des PKs ein ungestörter Spannungszustand vorherrscht.
- Die Soll-Rauheiten der Stahlnaben orientieren sich an für die drehende Bearbeitung typischen Werten.
- Die Werte des Übermaßes haben Fugendruckwerte zwischen 15 MPa und 40 MPa zur Folge.
- Die Wandstärken ergeben dickwandige PK, wobei von der in Kapitel 3.1.2 vorgestellten Definition von Dickwandigkeit ausgegangen wird. Die Verhältnisse δ von Außen- zu Innendurchmesser sind in Tab. 5-3 dargestellt.
- Die PK der großen und kleinen Baureihe weisen dieselben Stützringwandstärken *t_{SR}* auf, womit eine größere Anzahl unterschiedlicher Wandstärkenverhältnisse untersucht werden kann.
- Um den Effekt einer geometrisch ähnlichen Skalierung aufzeigen zu können, entsprechen die Größen des Anbindungsbereichs $(d_{W,i}, d_{N,i}, l_F, t_W \text{ und } t_{SR})$ der Variante mit dickwandigem Stützring der großen Baugröße den mit einem Faktor 2 skalierten Werten der Referenzvariante der kleinen Baugröße.
Tab. 5-3: Wandstärkenverhältnisse

Variante	Nabe	Kleine Baugröße			Gr	oße Baug	röße
	δ_N [-]	δ _W [-]	δ _{SR} [-]	δ _{CFK} [-]	δ _W [-]	δ _{SR} [-]	δ _{CFK} [-]
Referenz	2,00	1,09	1,26	1,37	1,09	1,13	1,23
±30° dick	2,00	1,36	1,21	1,64	1,36	1,10	1,50
90° dick	2,00	1,09	1,51	1,65	1,09	1,26	1,37

Verhältnisse δ von Außen- zu Innendurchmesser von Nabe, Welle, Stützring und der gesamten CFK-Hohlwelle für die verschiedenen Varianten und Baugrößen

Die Herstellung der CFK-Wellen erfolgt im Nasswickelverfahren mit der Faser "SI-GRAFIL[®] C30" (Sigrafil C30) der SGL CARBON SE und einem zweikomponentigen Harzsystem, bestehend aus Epoxidharz "Biresin[®] CR132" mit zugehörigem aminbasiertem Härter "Biresin[®] CH132-7" der Sika Deutschland GmbH (SIKA CR132-7) (Datenblatt *SIKA* [2]). Das Wickelwerkzeug besteht aus Aluminium und weist eine geschliffene Oberfläche auf, wodurch eine glatte, referenzierbare Innenkontur der CFK-Welle gewährleistet wird. Die **Herstellung der CFK-Wellen** erfolgte gemäß folgendem Vorgehen:

- Das Matrixsystem wurde nach dem Mischvorgang nicht entgast und entsprechend *SIKA* [2] bei Raumtemperatur verarbeitet.
- Das Laminat wurde nach dem Wickeln mittels Abreißgewebe kompaktiert.
- Eine Voraushärtung der gewickelten CFK-Wellen erfolgte auf dem Wickelwerkzeug mittels eines Infrarotstrahlers bei Temperaturen zwischen 40 °C und 80 °C für mindestens zwei Stunden.
- Eine zweite Aushärtung erfolgte in einer Thermokammer bei 60 °C für zwei Stunden entsprechend *SIKA* [2].
- Eine Temperbehandlung des auf dem Wickelwerkzeug befindlichen Bauteils wurde in einer Thermokammer durchgeführt. Hierbei wurde das Bauteil mit einer Heiz- und Abkühlrate von ±0,5 K/min beaufschlagt und eine Temperatur von 125 °C für acht Stunden entsprechend *SIKA* [2] gehalten.

Beim Einpressvorgang ist eine hohe Planlaufgenauigkeit der Stirnflächen der CFK-Bauteile zu deren Rotationsachse notwendig, um die gemessenen Einpresskräfte nicht zu verfälschen. Die Außenflächen der nassgewickelten CFK-Wellen eignen sich nur bedingt als Referenzfläche für das Sägen der Bauteile. Deshalb wurde eine Sägevorrichtung als Fertigungshilfsmittel konstruiert, welche die, durch das Wickelwerkzeug vorgegebene, Innenfläche der CFK-Welle referenziert. Während des Sägevorgangs wird der PK auf einem Dorn gedreht. Durch die Verwendung der Sägevorrichtung werden Planlaufgenauigkeiten der PK von ca. 0,1 mm erreicht, was eine deutliche Verbesserung zu ohne Vorrichtung gesägten PKn darstellt (siehe Abb. 5-2).

Abb. 5-2: Sägevorrichtung und Planlaufgenauigkeiten Sägevorrichtung zur Referenzierung der Innenfläche der CFK-Wellen (links); Planlaufgenauigkeiten ohne (16 Messwerte) und mit (47 Messwerte) Sägevorrichtung

Eine Übersicht der im Rahmen der Prüfkörpercharakterisierung gemessenen Größen, die zugehörigen Messmittel und das zugrundeliegende Vorgehen findet sich in Tab. 5-4.

Größe	Messmittel	Methodik
$d_{W,i}$	Koordinatenmessmaschine (Genauigkeit <0,001mm)	3 Messungen je Seite der CFK-Welle über Fügelänge verteilt → Mittelwert
Planlauf	Koordinatenmessmaschine	1 Messung je Stirnseite der CFK-Welle
$t_{SR} \& t_W$	Graphische Vermessung unter Auflichtmikroskop	9 Messungen für jeweils $t_{SR} \& t_W$ je Seite der CFK-Welle \rightarrow Mittelwert
l_{ges}	Messschieber	3 Messungen je CFK-Welle \rightarrow Mittelwert
$R_{z,ax}$	Perthometer	2 Messungen entlang 4,8mm je Seite der CFK-Welle → Mittelwert
FVG	Thermogravimetrische Analyse	Messung je Seite der CFK-Welle für jeweils $t_{SR} \& t_W$
T_G	Dynamische Differenzkalorimetrie	Messung je Wandstärkenkombination in Anlehnung an DIN 65467-A

Tab. 5-4: Übersicht der an den CFK-Wellen gemessenen Größen

Aufbauend auf der geometrischen Vermessung der CFK-Wellen erfolgt die spanende Herstellung der Stahlnaben. Die Bauteile bestehen aus dem Vergütungsstahl 42CrMoS4 (Datenblatt [48]) und werden abgedreht und anschließend auf das entsprechende Übermaß geschliffen. Hierbei kommt eine Korundschleifscheibe mit Körnung $60-80 \,\mu\text{m}$ zum Einsatz. Die Stahlnaben mit erhöhtem Rauheitswert werden nach dem Schleifen gestrahlt, wobei als Strahlmedien Korund mit einer Körnung von 250-500 μm und anschließend Glas mit einer Körnung von 90-150 μm zum Einsatz kommen. Die in Tab. 5-5 aufgelisteten geometrischen und oberflächenspezifischen Kenngrößen wurden für die Stahlnaben gemessen. Die Messwerte aller PK finden sich im Anhang in Tab. A-1, Tab. A-2, Tab. A-3 und Tab. A-4.

Größe	Messmittel	Methodik		
$d_{N,a}$	Koordinatenmessmaschine (Genauigkeit <0,001mm)	3 Messungen pro Nabe über Fügelänge verteilt → Mittelwert		
$\begin{array}{c} R_{z,ax} \& \\ R_{z,\theta} \end{array}$	Perthometer	2 Messungen entlang 4,8mm pro Nabe → Mittelwert		

Tab. 5-5: Übersicht der an den Stahlnaben gemessenen Größen

Prüfaufbau und Prüfablauf

Das Einpressen der Stahlnaben erfolgt bei Raumtemperatur an einer servohydraulischen Zug-Druck-Prüfmaschine. Die CFK-Welle und die Stahlnabe werden jeweils mittels eines Adapters fixiert und zentriert. Während des gesamten Fügevorgangs wird die axiale Kraft F_{ax} mittels einer Kraftmessdose aufgezeichnet. Weiterhin wird die tangentiale Dehnung ε_{θ} auf der äußeren Mantelfläche der CFK-Welle mittels des optischen Messsystems ARAMIS der GOM mbH (ARAMIS) erfasst, das auf der Methodik der digitalen Bildkorrelation basiert. Der Nachweis der Qualifikation dieses optischen Messsystems für die Erfassung der PK-Dehnung erfolgt im Rahmen einer Voruntersuchung (siehe Kapitel 5.3). Die Länge des jeweils erfassten Bereichs beträgt für die PK der kleinen Baureihe 80 mm und für die PK der großen Baureihe 150 mm. Der Prüfaufbau ist in Abb. 5-3 dargestellt.

Vor dem Einpressvorgang werden die Außenfläche der Stahlnabe und die Innenfläche der CFK-Welle mit Isopropanol gereinigt. Anschließend werden die Bauteile in die Prüfmaschine gesetzt. Das Einpressen der Stahlnabe erfolgt weggesteuert mit vorgegebener Einpressgeschwindigkeit bis der Flansch der Stahlnabe auf der CFK-Welle anliegt. Eine vordefinierte maximale Kraft F_{max} wird angefahren, die zum Zeitpunkt t_{max} erreicht wird und für eine kurze Zeitspanne konstant gehalten wird. Anschließend erfolgt das kraftgesteuerte Entlasten des PKs. Zum Zeitpunkt t_{ent} liegt keine axiale Last mehr am PK an. Die zweite Stahlnabe wird nach dem gleichen Vorgehen eingepresst. Ein exemplarischer Kraft-Zeit-Verlauf mit Kennzeichnung der beschriebenen Phasen und Zeitpunkte ist links in Abb. 5-4 dargestellt. Eine CFK-Welle mit beidseitig eingepressten Stahlnaben ist rechts in Abb. 5-4 dargestellt.

Abb. 5-3: Prüfaufbau der Einpressversuche

5.3 Qualifikation optisches Messsystem

Bei den in Kapitel 5.2 beschriebenen Einpressversuchen wird die tangentiale Dehnung ε_{θ} gemessen, welche geringe Werte im Bereich von 0,03 % bis 0,18 % aufweist. Hierfür steht das optische Messsystem ARAMIS zur Verfügung, dessen Qualifikation für die Durchführung der Einpressversuche in diesem Kapitel nachgewiesen wird. Weiterhin wird ein Vorgehen zur Auswertung der Messgrößen definiert. Aufgrund der jahrzehntelangen Verwendung und Weiterentwicklung der Dehnmessstreifen-Messtechnologie (DMS) erfolgt im Folgenden die Qualifikation des ARAMIS-Messsystems durch einen Vergleich mit den mittels DMS gemessenen Werten. Eine Beschreibung des Funktionsprinzips des ARAMIS-Messsystems findet sich unter anderem in *GOM mbH* [49]. Grundlegende Informationen zu DMS finden sich unter anderem in *Fraden* [50] und *Keil* [51].

Prüfkörper, Prüfaufbau und Prüfablauf

Die Fügelänge l_F , der Innendurchmesser der CFK-Welle $d_{W,i}$ und der Innendurchmesser der Stahlnabe $d_{N,i}$ der PK zum Vergleich der Messsysteme entsprechen den in Kapitel 5.2 beschriebenen PKn. Die Wellenwandstärke t_W , die Stützringwandstärke t_{SR} und das auf den Durchmesser bezogene Übermaß Ü_d haben tangentiale Dehnungswerte ε_{θ} auf der Außenseite der CFK-Hohlwelle von etwa 0,08 % zur Folge, was den geforderten Werten entspricht. Die Soll-Abmessungen der PK sind in Tab. 5-6 zusammengefasst. Die Definition aller Größen kann Abb. 5-1 entnommen werden.

Tab. 5-6: Soll-Abmessungen der Prüfkörper für die Voruntersuchungen des Messsystems

t _W [mm]	t _{sr} [mm]	Ü _d [mm]	<i>l_F</i> [mm]	<i>d_{N,a}</i> [mm]	<i>d_{N.i}</i> [mm]
3	4	0,05	35	40	20

Die Messung der Durchmesser erfolgt wie in Tab. 5-4 beziehungsweise Tab. 5-5 beschrieben. Die Vermessung der Wellenwandstärke t_W und der Stützringwandstärke t_{SR} erfolgt mittels eines digitalen Messschiebers. Eine Übersicht der gemessenen Größen findet sich im Anhang in Tab. A-5. Der Prüfaufbau und –ablauf für die Voruntersuchungen entspricht dem in Kapitel 5.2 beschriebenen bis auf folgende **Abweichungen**:

- Auf den Voruntersuchungs-PKn sind zeitgleich beide Messsysteme appliziert.
- Die Messung mittels DMS erfolgt auf der äußeren Mantelfläche der CFK-Hohlwelle in der Mitte der Fügelänge mit einer Länge des Messgitters von 3 mm. Die Messrichtung ist hierbei in tangentiale Richtung orientiert.
- Die ARAMIS-Messung erfolgt ebenfalls auf der äußeren Mantelfläche der CFK-Hohlwelle in einem Bereich von ca. 80 mm Länge.
- Die axiale Entlastung der PK entfällt, wodurch sich die tangentialen Dehnungen durch das Verpressen und durch Querkontraktion überlagern, was die Vergleichbarkeit der beiden Messsysteme aber nicht beeinflusst.

Auswertung

Der DMS-Wert $\varepsilon_{\theta,DMS}(t_{max})$ zum Zeitpunkt t_{max} (siehe Abb. 5-4) wird bestimmt. Die Messdaten der ARAMIS-Messung werden mit den folgenden Einstellungen ausgewertet, die im Rahmen von Voruntersuchungen als geeignet identifiziert worden sind. Die Erklärungen der Einstellungen stammen aus *GOM mbH* [49], wo sich weiterführende Erläuterungen finden. Die Auswertung erfolgt mit quadratischen Facetten, die eine Seitenlänge von 40 Pixeln und einen Abstand der Mittelpunkte von 35 Pixeln aufweisen. Die Berechnung der Dehnung an einem Messpunkt erfolgt linear, wobei die direkt benachbarten Messpunkte für die Berechnung des mittleren Punktes verwendet werden (Bezeichnung Größe "3 x 3"). Um das Messrauschen zu reduzieren, werden die Ergebnisdaten mit einem Filter der Größe 3 einmalig gefiltert (Bezeichnung "3-1"). Bei diesem werden die direkt benachbarten Messpunkte zur Berechnung des statistischen Mittelwerts des Messpunkts in der Mitte verwendet. Die Auswertung der tangentialen Dehnung erfolgt entlang der Mantellinie der äußeren Mantelfläche der CFK-Hohlwelle (siehe linke Seite Abb. 5-5). Der Verlauf der tangentialen Dehnung wird durch den Filter geglättet und gibt näherungsweise den ungefilterten Dehnungsverlauf wieder (siehe rechte Seite Abb. 5-5). Am Rand des Messbereichs schwanken die Messwerte stark, was bei der Definition der Ergebnisgrößen berücksichtigt wird.

Abb. 5-5:Mantellinie in ARAMIS und tangentiale Dehnungsverläufe
Mantellinie zur Erzeugung des Verlaufs der tangentialen Dehnung in ARAMIS (links);
Verlauf der tangentialen Dehnung ohne und mit Filter (3-1) zum Zeitpunkt t_{max} bei an-
liegender Maximalkraft F_{max} (rechts)

Das Rauschen *R* des Messsignals wird durch Auswertung der tangentialen Dehnungswerte entlang der Mantellinie in einem lastfreien Zustand vor dem Einpressen der Stahlnabe beurteilt. Die Differenz des entlang der Mantellinie in diesem Zustand gemessenen minimalen und maximalen Werts der tangentialen Dehnung ergibt den Wert des Rauschens *R*. Für den Zeitpunkt t_{max} wird der Mittelwert $\varepsilon_{\theta,m,AR}(t_{max})$ der tangentialen Dehnung $\varepsilon_{\theta,AR}(x)$ über die Fügelänge von CFK-Hohlwelle und Stahlnabe gebildet, wobei am Anfang und Ende des Fügebereichs 10 % der Fügelänge bei der Bildung des Mittelwerts ausgespart werden. Hierdurch werden Randeffekte bei der Messung wie das starke Abfallen des Dehnungsverlaufs nicht berücksichtigt und Schwankungen des Messsignals über die Fügelänge ausgeglichen.

Ergebnisse und Diskussion

Im Rahmen der Voruntersuchungen wurden fünf PK getestet. Alle gemessenen und berechneten Werte können Tab. A-5 im Anhang entnommen werden. Die Werte des Rauschens der ARAMIS-Messung sind geringer als die zuvor erwähnte Messgenauigkeit des Messsystems. Bei den vorliegenden Messungen wird die Genauigkeit des ARAMIS-Messsystems damit optimal genutzt. Aus den Werten der tangentialen Dehnung $\varepsilon_{\theta,m.AR}(t_{max})$ der ARAMIS-Messung und $\varepsilon_{\theta,DMS}(t_{max})$ der DMS-Messung wird die relative Abweichung $\xi_{\theta,AR-DMS}$ des ARAMIS-Werts zum DMS-Wert berechnet, was für die einzelnen PK in Abb. 5-6 dargestellt ist.

Die relative Abweichung zwischen ARAMIS und DMS-Messwert ist für die meisten PK gering, lediglich bei einem der PK treten etwas größere Abweichungen auf. Die Größenordnung der absoluten Abweichung entspricht der Größenordnung des jeweils gemessenen Rauschens zwischen zwei lastfreien Stufen, welches daher ein ausschlaggebender Einfluss für die Abweichung sein kann.

Die Genauigkeit des ARAMIS-Messsystems ist für die vorliegende Anwendung geeignet. Neben den geringen Abweichungen zu den DMS-Messwerten wird das ARA-MIS-Messsystem aufgrund der leichten Applikation des Sprühmusters, den damit verbundenen geringen Kosten pro PK und des größeren Informationsgehalts, beispielsweise durch die Möglichkeit Dehnungsverläufe zu erzeugen, für die Hauptuntersuchungen verwendet.

5.4 Einpress- und Torsionsversuche

Im Rahmen der experimentellen Untersuchungen werden für die ermittelten Größen die Auswirkungen der variierten Gestaltungsparameter aufgezeigt und mögliche Ursachen diskutiert. Zusätzlich werden bei der Auswertung der Einpressversuche Hypothesen zu verschiedenen mechanischen und tribologischen Aspekten aufgestellt (Kapitel 5.4.1). Bei der experimentellen Ermittlung des übertragbaren Torsionsmoments wird beurteilt, inwiefern von der experimentell ermittelten Einpresskraft F_{ein} entsprechend dem einfachen Auslegungsvorgehen aus Kapitel 4.2 auf das übertragbare Torsionsmoment M_t geschlossen werden kann (Kapitel 5.4.2).

5.4.1 Einpressversuche

Ein Teil der nachfolgenden Inhalte wurde von Fahr [47] veröffentlicht.

Durchführung und Auswertung

Für die in Kapitel 5.2 beschriebenen Varianten wurde die in Tab. 5-7 aufgelistete Anzahl an PKn geprüft.

Baugröße	Anzahl Prüfkörper je Variante [-]					
	Referenz	±30° dick	90° dick	Rau	Großes Übermaß	Kurze Fügelänge
Klein	3	8	4	3	3	3
Groß	3	7	4	3	2	3

Tab. 5-7: Anzahl geprüfter Prüfkörper Einpressversuche

Bei der **Durchführung** der Versuche schlägt für manche der untersuchten PK der Wert der axialen Kraft beim Einpressvorgang stark aus, was mit einem lauten, schlagenden Geräusch einhergeht. Eine mögliche Ursache für dieses Ausschlagen stellt der Stick-Slip-Effekt dar, der sich durch den Wechsel zwischen Haften und Gleiten von gegeneinander bewegten Flächen auszeichnet. Die einhüllenden Kurven der minimalen und maximalen Kraftwerte sind hierbei meist Geraden (siehe Abb. 5-7), was für gleichbleibende Haft- und Gleitreibbedingungen spricht. Der Stick-Slip-Effekt stellt einen hochdynamischen Vorgang dar, der von einer Vielzahl an Einflussgrößen beeinflusst wird, was u. a. in *Erhard* [34] näher erläutert wird, im Rahmen der vorliegenden Arbeit aber nicht detailliert untersucht wird. Sowohl die glatten als auch die stark ausschlagenden Verläufe der axialen Kraft nehmen meist linear mit zunehmender Fügelänge zu, was dem theoretischen Verlauf aus Kapitel 3.1.1 entspricht. Vereinzelt treten Knicke im Kraftverlauf auf, welche teilweise progressiv und teilweise degressiv ausgeprägt sind. Diese können, wie in *Fischer* [5] diskutiert, tribologische Ursachen haben und durch das Abscheren von Bereichen beziehungsweise die Ansammlung von Partikeln bedingt sein (vergleiche Kapitel 3.1.1). Weiterhin der Tribologie zwischen den Fügepartnern geschuldet ist der nicht-metallische Werkstoffabrieb, der nach dem Einpressvorgang auf den entsprechenden Adaptern vorzufinden war und von der polymeren Matrix der CFK-Welle stammt.

Aus den in der Hauptuntersuchung gewonnenen Messdaten werden im Rahmen der Auswertung die Einpresskraft F_{ein} und der Mittelwert der tangentialen Dehnung $\varepsilon_{\theta,m.AR}$ bestimmt. Die zum Zeitpunkt t_{ein} anliegende Einpresskraft F_{ein} wird aus den Kraft-Zeit-Verläufen der axialen Kraft F_{ax} ermittelt. Sie wird als die beim Aufsetzen des Flanschs der Stahlnabe auf die CFK-Welle vorliegende Kraft definiert und ist die zum vollständigen Fügen der Fügepartner mindestens notwendige Kraft. Der in Abb. 5-4 gekennzeichnete Bereich ist auf der linken Seite von Abb. 5-7 im Detail dargestellt. Der Wert der Einpresskraft F_{ein} ist grafisch hervorgehoben und liegt an, bevor die Kraftkurve sprunghaft auf die Maximalkraft F_{max} (vergleiche Abb. 5-4) ansteigt. Auf der rechten Seite von Abb. 5-7 ist ein Detail eines stark ausschlagenden Kraft-Zeit-Verlaufs der axialen Kraft F_{ax} dargestellt. Die Einpresskraft F_{ein} wird für diese Verläufe als die maximale Kraft definiert, die noch auf der oberen einhüllenden Geraden des Kraftverlaufs liegt.

Abb. 5-7:Definition der Einpresskraft
Definition der Einpresskraft F_{ein} bei glattem (links) und stark ausschlagendem (rechts)
Verlauf der axialen Kraft F_{ax}

Die Auswertung der ARAMIS-Daten erfolgt bis auf die **folgenden Abweichungen** gemäß dem Vorgehen und mit den Einstellungen aus Kapitel 5.3, wobei die Länge einer Facette der Größe 40 Pixel auf dem realen Bauteil in etwa 1,5 mm beträgt:

• Es erfolgt die zweimalige Anwendung eines Filters der Größe 5 (Bezeichnung "5-2"), d.h. dass zwei Reihen an benachbarten Messpunkten zur Berechnung des statistischen Mittelwerts des Messpunkts in der Mitte verwendet werden. Die Auswirkungen des "5-2"-Filters sind vergleichbar mit denen in Abb. 5-5.

 Die tangentiale Dehnung wird in einem lastfreien Zustand vor dem Einpressen der Stahlnabe und im entlasteten Zustand zum Zeitpunkt t_{ent} (siehe Abb. 5-4) ausgewertet, bei dem die tangentiale Dehnung allein auf die Verpressung von CFK-Hohlwelle und Stahlnabe zurückzuführen ist.

Ergebnisse und Diskussion

Die Messwerte der Einpresskraft F_{ein} , der tangentialen Dehnung $\varepsilon_{\theta,m,AR}$ und des Rauschens *R* finden sich im Anhang in Tab. A-6 und Tab. A-7. Die Mittelwerte der Einpresskraft \overline{F}_{ein} und die zugehörige Standardabweichung s_{ein} der einzelnen Varianten sind in Abb. 5-8 und in Abb. 5-9 grafisch und tabellarisch dargestellt.

Abb. 5-8:Einpresskraft kleine BaugrößeMittelwerte \overline{F}_{ein} und Standardabweichung s_{ein} der Einpresskraft F_{ein} für die Varianten der
kleinen Baugröße

Abb. 5-9: Einpresskraft große Baugröße

Mittelwerte \overline{F}_{ein} und Standardabweichung s_{ein} der Einpresskraft F_{ein} für die Varianten der großen Baugröße

Die **Einpresskraft** F_{ein} schwankt für beide Baugrößen für PK derselben Variante nur geringfügig, was auf vergleichbare Reibbedingungen in der Trennfuge schließen lässt

und durch geringfügig unterschiedliche geometrische Abmessungen bedingt sein kann. Im Folgenden werden die Auswirkungen der einzelnen Gestaltungsparameter beschrieben. Hierfür erfolgt der Vergleich des Mittelwerts \overline{F}_{ein} einer Variante mit dem der Referenzvariante und der Vergleich der Messwerte der bei dieser Variante variierten Größe mit der jeweiligen Größe der Referenzvariante. Die entsprechenden Verhältnisse können Tab. 5-8 entnommen werden.

Tab. 5-8: Verhältnisse variierter Größen und Mittelwerte

Relevante Verhältnisse der je Variante variierten Größe und der Mittelwerte der Einpresskraft \overline{F}_{ein} , der tangentialen Dehnung $\overline{\varepsilon}_{\theta}$ und des übertragbaren Torsionsmoments $\overline{M}_{t,exp}$ zum jeweiligen Wert der Referenzvariante

Variante	Verhältr	Verhältnisse kleine Baugröße [-]				Verhältnisse große Baugröße [-]		
	Var. Größe	\overline{F}_{ein}	$ar{arepsilon}_{ heta}$	$\overline{M}_{t,exp}$	Var. Größe	\bar{F}_{ein}	$ar{arepsilon}_{ heta}$	$\overline{M}_{t,exp}$
±30° dick	3,73	0,65	-	-	3,55	0,77	-	-
90° dick	1,82	1,22	-	-	2,09	1,66	-	-
Rau	-	0,85	-	-	-	0,92	-	-
Großes Übermaß	1,68	1,50	1,80	1,53	1,69	1,65	1,55	-
Kurze Fügelänge	0,50	0,51	-	0,64	0,50	0,60	-	0,62

- $\pm 30^{\circ}$ dick: Durch die stark voneinander abweichenden Verhältnisse des Mittelwerts \overline{F}_{ein} und der Wellenwandstärke t_W wird der große Einfluss des Laminataufbaus ersichtlich. Der Mittelwert \overline{F}_{ein} ist für beide Baugrößen bei großer Wellenwandstärke t_W geringer, was folgende Ursachen haben kann:
 - Je größer die Wellenwandstärke t_W der ±30°-Lagen, desto geringer ist beim vorliegenden Laminataufbau die tangentiale Dehnung der außenliegenden 90°-Lagen, da diese mit zunehmendem Radius abnimmt (vergleiche (3-6)). Aus der geringeren Umfangssteifigkeit der ±30°-Lagen kann ein geringerer Fugendruck und damit eine geringere Einpresskraft F_{ein} resultieren (siehe Kapitel 9).
 - Wandstärkenänderung durch radiale Dehnung fällt bei dickwandigen Bauteilen stärker ins Gewicht (siehe Kapitel 7.2.2).
- 90° dick: Die Verhältnisse des Mittelwerts \overline{F}_{ein} und der Stützringwandstärke t_{SR} weichen stark voneinander ab. Die Einpresskräfte nehmen weniger stark zu als die zugehörige Stützringwandstärke t_{SR} gesteigert wurde, was daran liegt, dass die zusätzlichen Umfangslagen durch den größeren Abstand zum Fügera-

dius weniger stark gedehnt werden. Die größeren Einpresskräfte bei größeren Stützringwandstärken t_{SR} sind plausibel, da sich die Umfangssteifigkeit der CFK-Welle und damit der Fugendruck erhöht.

- **Rau**: Die raueren Stahlnaben haben einen geringeren Mittelwert \overline{F}_{ein} zur Folge, was folgende Ursachen haben könnte und in den angegebenen Kapiteln untersucht wird:
 - Eine Einebnung der Rauheit der Stahlnaben (siehe Kapitel 6.4.1).
 - Ein geringerer Reibkoeffizient bei rauen Oberflächen (siehe Kapitel 6.4.2).
 - Ein Eindringen der Rauheitsspitzen in das Material (siehe Kapitel 6.4.3).
- Großes Übermaß und kurze Fügelänge: Die relativ geringen Abweichungen in den Verhältnissen des Mittelwerts \overline{F}_{ein} und der Übermaße sowie der Fügelängen zeigen, dass die Einpresskraft in etwa proportional mit diesen beiden Gestaltungsparametern zunimmt. Hinsichtlich der Fügelänge muss beachtet werden, dass bei sehr kurzen Fügelängen die elastischen Verformungskräfte stärker ins Gewicht fallen (vergleiche Kapitel 3.1.1), was die Proportionalität beeinflussen kann (siehe Kapitel 6.3.1).
- **Baugrößen**: Die Erhöhung der Stützringwandstärke t_{SR} fällt bei der großen Baugröße etwas stärker aus, steigert die Werte des Mittelwerts \overline{F}_{ein} aber um ein Vielfaches verglichen mit der kleinen Baugröße (siehe Tab. 5-8). Da die große Baugröße geringere Radienverhältnisse als die kleine Baugröße (siehe Tab. 5-3) aufweist, legt dies nahe, dass eine Erhöhung der Stützringwandstärke t_{SR} bei dünnwandigen Profilen einen stärkeren Effekt hat, was in Kapitel 9 untersucht wird. Für die mit einem Faktor zwei skalierten Varianten (siehe Kapitel 5.2) beträgt das Verhältnis der Mittelwerte \overline{F}_{ein} 4,88 (Verhältnis von \overline{F}_{ein} "90° dick" in Abb. 5-9 zu \overline{F}_{ein} "Referenz" in Abb. 5-8). Bei Skalierung der angegebenen geometrischen Größen mit einem Faktor zwei sollte der Fugendruck laut eigener numerischer und analytischer Nebenrechnungen konstant bleiben. Da sich die Fügefläche vervierfacht, sollte ebenfalls eine Vervierfachung der Einpresskraft zu verzeichnen sein. Das größere gemessene Verhältnis zwischen den zwei skalierten Varianten kann verschiedene Ursachen haben:
 - Geringfügig unterschiedliche, geometrische Abmessungen der PK (wird bei den numerischen Berechnungen in Kapitel 6 untersucht).
 - Stärkere Ausprägung der oben beschriebenen, möglichen Auswirkungen der Rauheit der Stahlnaben bei der kleinen Baugröße (siehe Kapitel 6.4.1 und Kapitel 6.4.3) durch die gleiche Größenordnung der Rauheit (siehe im Anhang Tab. A-1 bis Tab. A-4). Dies wird durch die Tatsache bekräftigt, dass die raueren Stahlnaben bei der kleineren Baugröße eine stärkere Reduktion von \overline{F}_{ein} zur Folge haben.

Das gemessene **Rauschen** R der ARAMIS-Messung beträgt zwischen 0,000 % und 0,004 % und ist damit vergleichbar mit den in Kapitel 5.3 gemessenen Werten. Bezogen auf die gemessenen Werte der tangentialen Dehnung beträgt das Rauschen maximal 8 %.

Bei der kleinen Baugröße liegen die Werte der **tangentialen Dehnung** $\varepsilon_{\theta,m,AR}$ zwischen 0,03 % und 0,15 %, bei der großen Baugröße zwischen 0,06 % und 0,20 % und damit in dem Bereich, für den das Messsystem in Kapitel 5.3 qualifiziert wurde. Die Mittelwerte der tangentialen Dehnung $\bar{\varepsilon}_{\theta}$ und die zugehörige Standardabweichung s_{θ} der einzelnen Varianten sind in Abb. 5-10 und in Abb. 5-11 grafisch und tabellarisch dargestellt.

Abb. 5-10: Tangentiale Dehnung kleine Baugröße Mittelwerte $\bar{\varepsilon}_{\theta}$ und Standardabweichung s_{θ} der tangentialen Dehnung $\varepsilon_{\theta,m.AR}$ für die Varianten der kleinen Baugröße

Mittelwerte $\bar{\varepsilon}_{\theta}$ und Standardabweichung s_{θ} der tangentialen Dehnung $\varepsilon_{\theta,m.AR}$ für die Varianten der großen Baugröße

• **Rau**: Die raue Stahlnabe hat keine nennenswerten Unterschiede im Mittelwert $\bar{\varepsilon}_{\theta}$ zur Folge. Bei Vorhandensein der weiter oben aufgeführten, mit der Rauheit

der Stahlnabe verbundenen Effekte finden diese in solchen Größenordnungen statt, die auf der äußeren Mantelfläche der CFK-Hohlwelle nicht mehr messbar sind.

- **Großes Übermaß**: Die Werte des Mittelwerts $\bar{\varepsilon}_{\theta}$ sind für beide Baugrößen für die Variante mit großem Übermaß am größten, wobei deren Verhältnis zur Referenzvariante in beiden Fällen nur geringfügig vom Verhältnis der Übermaße abweicht (siehe Tab. 5-8). Beide Sachverhalte sind plausibel, da zum einen das größere Übermaß eine größere tangentiale Dehnung bewirkt und sich zum anderen das Übermaß direkt proportional auf die mechanischen Größen der Pressverbindung auswirkt.
- **Kurze Fügelänge**: Weiterhin sind die Werte des Mittelwerts $\bar{\varepsilon}_{\theta}$ für die kurze Fügelänge nahezu identisch mit den Werten der Referenzvariante, was aufgrund der sonstigen identischen Abmessungen der PK ebenfalls plausibel ist.
- Baugrößen: Der Mittelwert ε_θ ist für alle Varianten der kleinen Baugröße geringer als für diejenigen der großen Baugröße. Dies ist den größeren Wandstärkenverhältnissen der CFK-Hohlwellen der kleinen Baugröße geschuldet. Hierdurch ist das Verhältnis von radialer Verschiebung zu Außenradius geringer, welches die tangentiale Dehnung ergibt. Auch dieser Sachverhalt wird durch eine Deformation in Dickenrichtung noch verstärkt. Die mit einem Faktor zwei skalierten Varianten (siehe Kapitel 5.2) weisen nahezu identische Mittelwerte ε_θ auf, was plausibel ist.

5.4.2 Torsionsversuche

Die experimentelle Ermittlung des maximal übertragbaren Torsionsmoments erfolgte im Rahmen des Bayerischen Forschungsverbundes "CFK/Metall-Mischbauweisen im Maschinen- und Anlagenbau" (siehe Anwenderzentrum Material- und Umweltforschung [52]), wobei die Konstruktion des Prüfstands sowie die Durchführung und Auswertung der Torsionsversuche durch den Lehrstuhl für Maschinenelemente der Technischen Universität München durchgeführt worden sind.

Prüfaufbau, Durchführung und Auswertung

Der **Prüfaufbau** zur Ermittlung des Durchrutschmoments besteht aus einem Hubspindelgetriebe und einem damit verbundenen Hebel, über welchen ein Torsionsmoment in die sogenannte Hebelwelle eingeleitet wird. Diese ist über eine Wellenkupplung, die der Vermeidung von Zwangskräften dient, mit dem zu prüfenden PK verbunden, der an einen Drehmomentsensor zur Erfassung des anliegenden Drehmoments angeschlossen ist. Die jeweils nicht zu prüfende Seite des PKs wird mittels metallischer Schellen zusätzlich von außen geklemmt oder nach erfolgreicher Prüfung mit Bolzen versehen, um ein definiertes Durchrutschen zu erzielen. Der Prüfaufbau ist in Abb. 5-12 dargestellt und wird in *Anwenderzentrum Material- und Umweltforschung* [52] ausführlicher beschrieben.

Abb. 5-12: Abbildung Torsionsprüfstand in Anlehnung an [52]

Die **Durchführung** der Torsionsprüfung sieben Wochen nach dem Einpressvorgang erfolgt, wie die Auslagerung der PK, bei Raumtemperatur. Das Drehmoment wird bis zum Erreichen des ersten Durchrutschmoments konstant gesteigert. Dies erfolgt quasistatisch, sodass das im Folgenden definierte übertragbare Torsionsmoment als statisches Torsionsmoment angesehen werden kann. Bei der Torsionsprüfung wurde die in Tab. 5-9 dargestellte Anzahl an PKn geprüft.

Baugröße	Anzahl Prüfkörper je Variante [-]					
	Referenz	±30° dick	90° dick	Rau	Großes Übermaß	Kurze Fügelänge
Klein	3	4	4	3	3	3
Groß	2	2	4	2	0	3

Tab. 5-9: Anzahl geprüfter Prüfkörper Torsionsversuche

Bei Erreichen des Durchrutschmoments wurden zwei Verhaltensarten festgestellt. Für einen Teil der PK fällt das Torsionsmoment nach Erreichen eines maximalen Werts schlagartig ab, was mit einem knallenden Geräusch verbunden ist (siehe linke Seite von Abb. 5-13). Für einen anderen Teil der PK fällt das Torsionsmoment nach Erreichen eines maximalen Werts kontinuierlich ab (siehe rechte Seite von Abb. 5-13).

Bei der Auswertung wird der maximale Wert vor dem Abfallen als übertragbares Torsionsmoment $M_{t,exp}$ definiert, der eine globale Relativbewegung der Bauteile zueinander zur Folge hat. Ein lokales Gleiten in Bereichen der Trennfuge kann vor Erreichen dieses Werts auftreten, wird in den vorliegenden Experimenten aber nicht erfasst.

Abb. 5-13:Definition des übertragbaren Torsionsmoments aus [52]Definition des übertragbaren Torsionsmoments $M_{t,exp}$ bei schlagartig (links) und kontinu-
ierlich abfallendem (rechts) Torsionsmomentverlauf (Abbildung in Anlehnung an [52])

Ergebnisse und Diskussion

Die Werte der experimentell ermittelten, **übertragbaren Torsionsmomente** $M_{t,exp}$ sind im Anhang in Tab. A-8 und in Tab. A-9 aufgelistet. Die Mittelwerte $\overline{M}_{t,exp}$ und die zugehörige Standardabweichung s_M der experimentell ermittelten, übertragbaren Torsionsmomente $M_{t,exp}$ der einzelnen Varianten sind in Abb. 5-14 und in Abb. 5-15 grafisch und tabellarisch dargestellt.

- $\pm 30^{\circ}$ dick: Für beide Baugrößen ist der Mittelwert $\overline{M}_{t,exp}$ für die Varianten mit großer Wellenwandstärke t_W geringer als bei der Referenzvariante. Dies ist durch die geringeren Fugendrücke entsprechend der Erklärung aus Kapitel 5.4.1 plausibel.
- 90° dick: Für die kleine Baugröße weist die Variante mit großer Stützringwandstärke t_{SR} vergleichbare Mittelwerte $\overline{M}_{t,exp}$ wie die Referenzvariante auf. Entsprechend der Erklärung aus Kapitel 5.4.1 sollte der Fugendruck und damit auch das übertragbare Torsionsmoment für diese Variante größer sein. Die Ursachen für den vorliegenden Sachverhalt können den komplexen tribologischen Zusammenhängen in der Trennfuge geschuldet sein. Für die große Baugröße weist die Variante mit großer Stützringwandstärke t_{SR} größere Mittelwerte $\overline{M}_{t,exp}$ gegenüber der Referenzvariante auf, was durch die größere Umfangssteifigkeit entsprechend der Erklärung aus Kapitel 5.4.1 plausibel ist.
- **Rau**: Für die kleine Baugröße ist der Mittelwert $\overline{M}_{t,exp}$ der Variante mit rauer Stahlnabe trotz geringerer Einpresskräfte vergleichbar mit der Referenzvariante, für die große Baugröße sogar etwas größer. Ein Grund hierfür kann sein, dass die Unterschiede zwischen axialem und tangentialem Reibkoeffizienten für die rauen Naben anders ausgeprägt sind als für die geschliffenen Naben (siehe Kapitel 6.4.2). Das Verhältnis von Einpresskraft zu Torsionsmoment ist damit bei den rauen Stahlnaben besser als bei den geschliffenen.
- Großes Übermaß und kurze Fügelänge: Im Folgenden wird das Verhältnis des Mittelwerts $\overline{M}_{t,exp}$ einer Variante zu dem der Referenzvariante mit dem zugehörigen Verhältnis der Mittelwerte \overline{F}_{ein} verglichen (siehe Tab. 5-8). Für die kleine Baugröße mit großem Übermaß entspricht das Verhältnis der Mittelwerte $\overline{M}_{t,exp}$ in etwa dem Verhältnis der Mittelwerte \overline{F}_{ein} . Für die kleine Baugröße mit kurzer Fügelänge ist das Verhältnis der Mittelwerte $\overline{M}_{t,exp}$ etwas größer als das Verhältnis der Mittelwerte \overline{F}_{ein} . Für die große Baugröße mit kur-

zer Fügelänge entspricht das Verhältnis der Mittelwerte $\overline{M}_{t,exp}$ in etwa dem Verhältnis der Mittelwerte \overline{F}_{ein} . Dies zeigt erneut den direkten Einfluss der Größen Übermaß und Fügelänge auf die charakteristischen mechanischen Größen der Pressverbindung.

Mit dem **einfachen experimentellen Auslegungsvorgehen** aus Kapitel 4.2 wird das Torsionsmoment $M_{t,ber}$ berechnet. Die Werte des berechneten Torsionsmoments $M_{t,ber}$ und der relativen Abweichung ξ_M dieses Werts vom experimentell ermittelten Wert $M_{t,exp}$ sind im Anhang in Tab. A-8 und in Tab. A-9 aufgelistet. Die Mittelwerte $\overline{\xi}_M$ der relativen Abweichung und die zugehörige Standardabweichung s_{ξ} der einzelnen Varianten sind in Abb. 5-16 und in Abb. 5-17 grafisch und tabellarisch dargestellt.

Abb. 5-16: Relative Torsionsmomentabweichung kleine Baugröße Mittelwerte $\overline{\xi}_M$ und Standardabweichung s_{ξ} der relativen Abweichung ξ_M für die Varianten der kleinen Baugröße

	1/10/2				
"[%]	5%		Variante	$ar{\xi}_M$ [%]	<i>s</i> ξ [%]
ng Ser	0% -5%	%	Referenz	3	4
ichu	-10%	cht g	±30° dick	5	4
bwe	-13% -20%	I. I	90° dick	3	4
el. A	co	ent dick dick Ran man wine	Rau	-17	1
R	Refe	Reto 30 90 june tuger	Großes Übermaß	-	-
		CHOBS LIVE	Kurze Fügelänge	-1	5

Abb. 5-17: Relative Torsionsmomentabweichung große Baugröße Mittelwerte $\overline{\xi}_M$ und Standardabweichung s_{ξ} der relativen Abweichung ξ_M für die Varianten der großen Baugröße

Bei der kleinen Baugröße wird für die geschliffenen Naben in der Mehrzahl der Fälle das Torsionsmoment durch die Berechnung überschätzt. Hierbei ist eine große Abwei-

chung nur bei der Variante mit dickwandigem Stützring zu verzeichnen, ansonsten stimmen berechnete und gemessene Werte, unter Berücksichtigung der Standardabweichung, gut überein. Für die rauen Naben erfolgt rechnerisch eine gute Abschätzung. Bei der großen Baugröße wird für die geschliffenen Naben das Torsionsmoment durch die Berechnung gut abgeschätzt. Für die rauen Naben erfolgt rechnerisch eine deutliche Unterschätzung, was eine konservative Auslegung zur Folge hat. Das experimentelle Auslegungsvorgehen zur Berechnung des übertragbaren Torsionsmoments ist für die vorliegenden PK in den meisten Fällen für eine erste Auslegung geeignet und hat eine gute oder konservative Abschätzung des Torsionsmoments zur Folge. Lediglich bei der Variante mit großer Stützringwandstärke der kleinen Baugröße ist eine Auslegung nicht empfehlenswert. Die Abweichungen im Auslegungsvorgehen können aus den in Kapitel 4.2 aufgeführten vernachlässigten Aspekten und deren Zusammenspiel resultieren, was in den folgenden Kapiteln getrennt voneinander untersucht wird.

6 Untersuchung mechanischer und tribologischer Aspekte

Ziel der nachfolgenden Untersuchungen ist es, ein grundlegendes Verständnis der in den einfachen Auslegungsvorgehensweisen aus Kapitel 4 vernachlässigten mechanischen und tribologischen Aspekte und deren Einfluss auf die Pressverbindung zu vermitteln. Um die Vergleichbarkeit der Untersuchungen zu gewährleisten, werden Rahmenbedingungen definiert (Kapitel 6.1) und das verwendete numerische Modell validiert (Kapitel 6.2). Anschließend erfolgen die numerischen Untersuchungen der mechanischen Aspekte (Kapitel 6.3) sowie die experimentellen Untersuchungen der tribologischen Aspekte (Kapitel 6.4).

6.1 Rahmenbedingungen

Die in den nachfolgenden Untersuchungen ausgewerteten **Kenngrößen** beschreiben die relative Abweichung einer charakteristischen Größe durch Berücksichtigung eines Aspekts von dem Wert, der mit einer der einfachen Auslegungsvorgehensweisen ermittelt worden ist. Hierbei wird jeweils nur ein Aspekt betrachtet, wobei die restlichen in Kapitel 4 getroffenen Annahmen nach wie vor gelten. Eine etwaige Interaktion der Aspekte wird hierbei nicht berücksichtigt, aber in Kapitel 8 diskutiert. Die Kenngrößen werden bei den Untersuchungen im Hinblick auf die hier formulierte Anforderung definiert.

Die numerisch untersuchten Varianten werden ausgehend von einer Referenzvariante durch einfaktorielle Kombination der **Gestaltungsparameter** erzeugt. Pro Variante wird ein Gestaltungsparameter entsprechend den nachfolgend definierten Intervallen angepasst, alle anderen Gestaltungsparameter weisen die Werte der Referenzvariante auf. Die Untersuchungen erfolgen an einfachen Lagenaufbauten, wobei sich bei gewickelten Bauteilen als einfachster Lagenaufbau der AWV anbietet. Die **Referenzvariante** wird in Anlehnung an die PK aus Kapitel 5 definiert. Die Bezeichnung der geometrischen Größen der Komponenten und der Fasengeometrie der Stahlnabe können Abb. 6-1 entnommen werden und sind für die Referenzvariante in Tab. 6-1 aufgelistet.

Abb. 6-1: Prinzipskizze des numerischen Basismodells

Tab. 6-1:	Abmessungen de	er Referenzvariante	zur numerischen	Aspektuntersuchung
-----------	----------------	---------------------	-----------------	--------------------

Bezeichnung	Formelzeichen	Wert
Nabenaußenradius	$r_{N,a}$	20 mm
Fügelänge	l_F	35 mm
Übermaß (r-bezogen)	Ü _r	0,05 mm
Wandstärke Welle	t_W	3 mm
Wandstärke Nabe	t_N	3 mm
Winkel AWV	$lpha_{AWV}$	30°
Axialer Reibkoeffizient (nur bei QK in Kap. 6.3.3; ansonsten reibungsfreier Kontakt)	μ_{ax}	0,375
Gesamtlänge Welle	l_W	100 mm
Gesamtlänge Nabe	l_N	95 mm
Länge der Phase	l_P	10 mm
Winkel der Phase	β	10°
Radius der Phase	R	30 mm

Die Gesamtlängen l_W der Welle und l_N der Nabe werden in Anlehnung an das Prinzip von de Saint Venant gewählt. Dieses besagt laut *Niemann* [1], dass "in hinreichender Entfernung von der Krafteinleitungsstelle die Beanspruchung nur noch von der Resultierenden der angreifenden Kräfte und Momente abhängt, aber nicht mehr von der Art der Einleitung", wobei als hinreichende Entfernung das ein- bis eineinhalbfache der Querschnittsbreite angegeben wird. In *Balke* [53] wird für dieses Prinzip homogenes, isotropes, linear-elastisches Verhalten vorausgesetzt. In der vorliegenden Arbeit wird dieses Prinzip vereinfachend auch auf die orthotrope Komponente angewandt, wobei die Außendurchmesser von CFK-Welle und Stahlnabe als Querschnittsbreite betrachtet werden. Durch die gewählten Gesamtlängen der Komponenten wird sichergestellt, dass deren Einspannung keinen Einfluss auf den Spannungszustand im Fügebereich hat. Die Wandstärken der Referenzvariante sind so gewählt, dass die Radienverhältnisse der Komponenten an der Grenze zwischen Dünn- und Dickwandigkeit entsprechend Kapitel 3.1.2 sind.

Eine Übersicht aller Stellgrößen mit den zugehörigen **Intervallen** findet sich in Tab. 6-2. Bei einfaktorieller Kombination aller Gestaltungsparameter ergibt sich damit eine Gesamtanzahl der zu untersuchenden Varianten von 45.

Bezeichnung	Formelzeichen	Werte	Einheit
Skalierungsfaktor	Sk	0,5; 1,0; 2,0	_
Winkel AWV	$lpha_{AWV}$	1; 10; 20; 30; 40; 45; 50; 60; 70; 80; 89	0
Fügelänge	l_F	20; 25; 30; 35; 40; 45; 50	mm
Übermaß (r-bezogen)	Ü _r	0,01; 0,03; 0,05; 0,07; 0,09; 0,11; 0,13; 0,15	mm
Wandstärke Welle	t_W	1; 2; 3; 4; 5; 6; 7	mm
Wandstärke Nabe	t_N	1; 2; 3; 4; 5; 6; 7	mm
Axialer Reibkoeffizient	μ_{ax}	0,20; 0,25; 0,30; 0,35; 0,375; 0,40; 0,45; 0,50	-

Tab. 6-2: Gestaltungsparameter und Intervalle

Gestaltungsparameter und zugehörige Intervalle zur numerischen Untersuchung der Aspekte

Die Intervalle wurden folgendermaßen festgelegt:

- Zur Beurteilung der Übertragbarkeit der Ergebnisse auf andere Baugrößen werden die Innen- und die Außenradien, die Gesamt- und die Fügelänge der Komponenten sowie der Radius *R* und die Länge *l_P* der Fase mit dem Skalie-rungsfaktor *Sk* skaliert. Etwaige Unterschiede in material- und fertigungsspezifischen Aspekten, die sich bei unterschiedlichen Baugrößen ergeben, werden vernachlässigt.
- Die Wahl der Extremwerte für den **Winkel** α_{AWV} der Faserorientierung des AWVs erfolgt im Hinblick auf die Nasswickeltechnologie, bei welcher exakte Umfangslagen nach ASV [13] nicht und reine Axiallagen nach AVK [17] nur mit erhöhtem Aufwand realisierbar sind.

- Für Pressverbindungen mit orthotropen Fügepartnern sind keine Empfehlungen hinsichtlich des Verhältnisses von Fügedurchmesser und –länge bekannt. Das vorliegende Intervall der Fügelänge l_F orientiert sich deshalb an den in Niemann [1] für Pressverbindungen mit rein isotropen Fügepartnern empfohlenen Verhältnissen bei Wechseltorsionsbelastung, für welche die Fügelänge das 0,5 bis 1,0-fache des Fügedurchmessers betragen soll. Die Gesamtlänge der Bauteile wird mit der Fügelänge hierbei so angepasst, dass die freie Länge der Bauteile jeweils konstant bleibt.
- Die unterschiedlichen Übermaße Ü_r werden durch Anpassung des Innenradius der Welle abgebildet.
- Mit den Werten der Wandstärken t_W der Welle und t_N der Nabe wird ein breites Spektrum dünn- und dickwandiger Verhältnisse abgebildet. Bei Variation der Wellenwandstärke wird der Außenradius der Welle, bei Variation der Nabenwandstärke der Innenradius der Nabe variiert.
- Die Werte des axialen Reibkoeffizient μ_{ax} orientieren sich an den Werten aus Kapitel 3.3. Ein reibungsbehafteter Kontakt wird wie im Folgenden dargestellt nicht im numerischen Basismodell definiert, wird aber im Bedarfsfall bei den einzelnen Aspektuntersuchungen explizit erwähnt.

Das rotationssymmetrische, numerische Basismodell wird in dem numerischen Softwaretool "Abaqus/CAE 6.14-2" (Abaqus) von Dassault Systèmes erstellt. Es wird der reine Verpressungszustand der Komponenten abgebildet, wobei die Bauteile mit Übermaß zueinander konstruiert sind. Eine Prinzipskizze des Modells kann Abb. 6-1 entnommen werden. Die Berechnung der Modelle erfolgt unter der Annahme linear elastischen Materialverhaltens. Weiterhin wird von transversal isotropem Materialverhalten der UD-Schicht des FVWs ausgegangen (siehe Kapitel 3.1). Als FVW wird die in Kapitel 5 verwendete Materialkombination (Sigrafil C30 mit SIKA CR132-7) verwendet. Die Grundelastizitätsgrößen (E_{11} , E_{22} , G_{12} und v_{12}) einer UD-Schicht (siehe Abb. 3-3) wurden für dieses Material in Anwenderzentrum Material- und Umweltforschung [54] an PKn unterschiedlicher FVGe ermittelt. Die Anpassung an einen einheitlichen FVG erfolgt mittels mikromechanischer Formeln entsprechend Tab. 6-3, wobei die für die Formeln notwendigen Kennwerte aus den experimentell ermittelten Kennwerten bis auf die folgenden Ausnahmen berechnet werden. Für die Matrix wird der E-Modul E_m aus SIKA [2] und die Querkontraktionszahl v_m aus Schürmann [10] für ein warmhärtendes Wickelharz verwendet. Die Kennwerte zur Berechnung der Querkontraktionszahl v_{23} werden von einem vergleichbaren Material ausgehend ermittelt. Die anhand dieses Vorgehens berechneten Kennwerte des FVWs für einen FVG von 50 % sowie die Kennwerte der Matrix und der Stahlnabe sind in Tab. 6-3 zusammengefasst. Der E-Modul der Nabe E_N wird aus dem Datenblatt [48] der Legierung 42CrMoS4 verwendet. Für die Querkontraktionszahl der Nabe v_N wird der für Stahl gängige Wert entsprechend Niemann [1] verwendet.

Tab. 6-3: Elastizitätsgrößen Matrix, Stahlnabe und UD-Schicht

Angenommene und berechnete Elastizitätsgrößen von Matrix, Stahlnabe und UD-Schicht des FVWs (Sigrafil C30 mit SIKA CR132-7) bei einem FVG von 50 %

Formelzeichen	Wert	Einheit	Anmerkung
E_m	2,45	GPa	Aus Datenblatt [2]
ν_m	0,35	-	Aus [10]
E_N	210,00	GPa	Aus Datenblatt [48]
$ u_N$	0,30	-	Aus [1]
E_{11}	104,33	GPa	Lineare Mischungsregel aus [10]
$E_{22} = E_{33}$	6,24	GPa	Semi-empirische Mischungsregel nach Puck aus [10]
$\nu_{12} = \nu_{13}$	0,32	-	Lineare Mischungsregel aus [10]
v_{23}	0,40	-	Nach Foye aus [10]
$G_{12} = G_{13}$	3,68	GPa	Formel nach Förster aus [10]
G ₂₃	2,23	GPa	Aus E_{22} und v_{23} berechnet

Die Diskretisierung des AWVs mit Winkel α_{AWV} erfolgt durch Abbildung acht gleich dicker Lagen alternierenden Vorzeichens $(+\alpha_{AWV}/-\alpha_{AWV})_4$. Die Ondulationen und Faserwelligkeiten eines realen gewickelten Laminats haben Spannungskonzentrationen sowie einen Festigkeits- und Steifigkeitsverlust zur Folge (siehe Baker [14]), was mit der gewählten Diskretisierungsmethode nicht abgebildet wird. Grundlegende Aussagen können aber auch mit dieser vereinfachten Art der Laminatdiskretisierung getroffen werden. Aufgrund des rotationssymmetrischen Belastungszustands durch die Verpressung der Komponenten bieten sich achsensymmetrische Elemente an. Die verwendeten achsensymmetrischen Elemente können eine Verdrehung um die Rotationsachse abbilden, weisen acht Knoten mit quadratischen Ansatzfunktionen auf, werden reduziert integriert und haben damit jeweils vier Integrationspunkte (CGAX8R in Abaqus) (siehe Nasdala [55]). Jede Lage des AWVs wird mit einem Element über die Dicke abgebildet, womit die CFK-Welle acht Elemente über die Dicke aufweist. Die Elementgröße ist in allen Bauteilbereichen konstant und beträgt 1 mm. Die Stahlnabe weist vier Elemente in Dickenrichtung auf. Ein Ausschnitt der Vernetzung der Komponenten im Anbindungsbereich ist für die Referenzvariante in Abb. 6-2 dargestellt.

Der Kontakt zwischen CFK-Welle und Stahlnabe wird als Flächenkontakt modelliert ("Surface-to-surface" in Abaqus), wobei die CFK-Welle als Kontaktkörper beziehungsweise Slavefläche fungiert. Die Nabe wird als Zielkörper beziehungsweise Masterfläche ausgewählt, da sich diese aufgrund des Materials und der Geometrie tendenziell steifer verhält (siehe *Rust* [35]). Um die Relativbewegung der Kontaktflächen zueinander zu berücksichtigen, wird in den Kontakteinstellungen nicht die linearisierte Abschätzung, sondern die generelle Formulierung ("finite sliding" in Abaqus) und der pfadbasierte Suchalgorithmus ("contact tracking path" in Abaqus) gewählt. Es wird ein reibungsfreier Kontakt in tangentiale Richtung abgebildet. In Normalenrichtung wird ein harter Kontakt gewählt, der die Penetration der Flächen minimiert und keine Zugbelastung über die Kontaktflächen überträgt ("hard contact" und "allow separation" in Abaqus). Für die Lösung des Kontaktproblems wird standardmäßig die Penalty-Methode ("penalty enforcement method" in Abaqus) ausgewählt, die die Kontaktbedingung nur näherungsweise erfüllt (siehe *Rust* [35]). Die Stirnflächen der Komponenten werden bis auf den radialen Freiheitsgrad mit dem jeweiligen Referenzpunkt gekoppelt, der jeweils fest eingespannt ist. Die Berechnung des Modells erfolgt implizit und geometrisch nichtlinear, wobei die Durchdringung der Bauteile schrittweise aufgehoben wird.

Abb. 6-2: Vernetzung des Anbindungsbereichs der Referenzvariante

6.2 Validierung numerisches Modell und Abgleich mit Einpressversuchen

Im Folgenden erfolgt die Validierung des numerischen Modells anhand der experimentell ermittelten Kennwerte aus Kapitel 5.4. Ein Teil der nachfolgend dargestellten Untersuchungen wurde bereits von *Fahr* [56] veröffentlicht.

Das **numerische Modell** weist gegenüber dem Basismodell aus Kapitel 6.1 die folgenden **Abweichungen** auf:

• Jeder PK wird anhand der entsprechend Kapitel 5.2 gemessenen geometrischen Kenngrößen modelliert. Für die CFK-Hohlwelle werden die Wellenwandstärke der $\pm 30^{\circ}$ -Lagen t_W , die Stützringwandstärke der 90^{\circ}-Lagen t_{SR} sowie der Innendurchmesser $d_{W,i}$ verwendet. Die CFK-Hohlwelle wird mit halber Gesamt-

länge l_{ges} des PKs modelliert. Für die Stahlnabe wird der Außendurchmesser $d_{N,a}$ berücksichtigt und die Flanschgeometrie abgebildet.

- Die Kennwerte des Materials SIKA CR132-7 werden mittels mikromechanischer Formeln aus Tab. 6-3 an die FVGe der ±30°- und 90°-Lagen angepasst.
- Die Diskretisierung der $\pm 30^{\circ}$ -Lagen mit Winkel α_{AWV} erfolgt durch Abbildung 16 gleich dicker Lagen alternierenden Vorzeichens $(+\alpha_{AWV}/-\alpha_{AWV})_{8}$. Jede Lage wird mit einem Element über die Dicke abgebildet.
- Die globale Elementgröße für CFK-Hohlwelle und Stahlnabe beträgt 2 mm und im Anbindungsbereich 0,5 mm, woraus sich die Anzahl an Elementen über die Dicke der 90°-Lagen ergibt.
- Sowohl Stahlnabe als auch CFK-Hohlwelle weisen an den Enden des Anbindungsbereichs Bereiche auf, in welchen feiner vernetzte Geometrien mit Elementgröße 0,1 mm eingefügt sind (vergleiche Abb. 6-3). Diese sind mit der CFK-Hohlwelle beziehungsweise der Stahlnabe fest verbunden ("tie constraint" in Abaqus). Ein Ausschnitt der Vernetzung der Komponenten im Anbindungsbereich ist für einen exemplarischen PK der kleinen Baugröße in Abb. 6-3 dargestellt.

Abb. 6-3:Vernetzung des Anbindungsbereichs bei den EinpressversuchenVernetzung des Anbindungsbereichs eines exemplarischen Prüfkörpers der Einpressversuche mit Detailansicht des feiner vernetzten Bereichs am vorderen Ende der Trennfuge

Bei der Auswertung der numerischen Berechnung des Verpressungszustands der PK werden die tangentiale Dehnung $\varepsilon_{\theta,M,num}$ auf der Außenseite der CFK-Hohlwelle in

der Mitte der Fügelänge bestimmt. Der Mittelwert $p_{F,m,num}$ des Fugendrucks wird entlang der nominellen Fügelänge l_F entsprechend (6-1) ermittelt. Die Integration des Fugendrucks anhand der diskreten Fugendruckwerte des numerischen Modells erfolgt in Anlehnung an die zusammengesetzte Trapezregel aus *Hermann* [57].

$$p_{F,m,num} = \frac{1}{l_F} \int_{0}^{l_F} p_F(x) dx$$
 (6-1)

Anhand $p_{F,m,num}$ erfolgt die Berechnung der Einpresskraft $F_{ein,num}$ entsprechend (4-1). Hierbei wird der Wert des Haftreibkoeffizienten μ_{Haft} für jede Baugröße so gewählt, dass die Abweichung des numerischen Werts zum experimentellen Wert für die PK der Referenzvariante minimal wird, was einer Kalibrierung des numerischen Modells entspricht. Eine Auflistung der berechneten Größen findet sich im Anhang in Tab. A-6 und Tab. A-7. Abschließend werden die relativen Abweichungen $\xi_{\theta,b-e}$ und $\xi_{F,b-e}$ der berechneten numerischen Werte ($\varepsilon_{\theta,M,num}$ und $F_{ein,num}$) vom jeweiligen experimentell gemessenen Wert ($\varepsilon_{\theta,m,AR}$ und $F_{ein,exp}$) berechnet.

Die **Ergebnisse** des Mittelwerts $\overline{\xi}_{\theta,b-e}$ mit zugehöriger Standardabweichung $s_{\xi\theta}$ aller PK einer Variante und Baugröße sind in Abb. 6-4 und Abb. 6-5 dargestellt.

Abb. 6-4: Relative Abweichung numerische tangentiale Dehnung kleine Baugröße Mittelwert $\overline{\xi}_{\theta,b-e}$ und Standardabweichung $s_{\xi\theta}$ der relativen Abweichung der numerischen von der experimentellen tangentialen Dehnung für die kleine Baugröße

Abb. 6-5: Relative Abweichung numerische tangentiale Dehnung große Baugröße Mittelwert $\bar{\xi}_{\theta,b-e}$ und Standardabweichung $s_{\xi\theta}$ der relativen Abweichung der numerischen von der experimentellen tangentialen Dehnung für die große Baugröße

Die numerisch berechnete **tangentiale Dehnung** ist in allen Fällen geringer als die gemessene. Wenn in Realität ein Einebnen oder Einschneiden der Rauheit stattfindet, sollten die berechneten Dehnungen größer sein als die experimentell ermittelten. Eine mögliche Ursache für die geringeren numerischen Dehnungswerte kann eine zu steife Abbildung des Laminats durch Vernachlässigung von Fehlstellen sein, was auf Basis der vorliegenden Daten jedoch nicht weiter beurteilt werden kann. Hinsichtlich der Wandstärke ist keine Tendenz erkennbar. Dies ist plausibel, da die von der Wandstärke abhängigen Einflüsse wie die radiale Dehnung und die Position der einzelnen Lagen im numerischen Modell Berücksichtigung finden. Die Größenordnungen der relativen Abweichungen und Standardabweichungen sind bei beiden Baugrößen ähnlich. Im Allgemeinen ist zu beachten, dass für die vorliegenden PK die Absolutwerte der tangentialen Dehnung sehr gering sind. Aus diesem Grund kann ein Rauschen im Messsignal (siehe im Anhang Tab. A-6 und Tab. A-7) bereits eine gewisse Abweichung bewirken. In Anbetracht dieser Tatsache ist die Abweichung der numerischen tangentialen Dehnung akzeptabel und das **numerische Modell als validiert** anzusehen.

Die Mittelwerte $\overline{\xi}_{F,b-e}$ mit zugehöriger Standardabweichung $s_{\xi F}$ aller PK einer Variante und Baugröße sind in Abb. 6-6 und Abb. 6-7 dargestellt.

20				
20		Variante	$\bar{\xi}_{F,b-e}$ [%]	$s_{\xi F} [\%]$
$e^{-\frac{1}{6}}$		Referenz	0,2	4,0
-q لي -10	T	$\pm 30^{\circ}$ dick	14,2	5,3
-20		90° dick	0,6	1,5
cø	rent dick dick Rail rman vane	Rau	16,9	1,9
Ret	x30 90 giber fileer	Großes Übermaß	11,4	5,2
	Crobe Lure	Kurze Fügelänge	1,8	15,2

Abb. 6-6: Relative Abweichung numerische Einpresskraft kleine Baugröße Mittelwert $\bar{\xi}_{F,b-e}$ und Standardabweichung $s_{\xi F}$ der relativen Abweichung der numerischen von der experimentellen Einpresskraft für die kleine Baugröße ($\mu_{Haft} = 0,48$)

20			
$\overline{}$ 10	Variante	$\bar{\xi}_{F,b-e}$ [%]	$s_{\xi F} [\%]$
	Referenz	0,5	6,4
	$\pm 30^{\circ}$ dick	11,3	8,2
-20	90° dick	-10,9	3,7
estent dict dict Rai trans vange	Rau	12,5	5,2
Rest 30 00 siller fileer	Großes Übermaß	2,2	0,9
Grobb Hurle	Kurze Fügelänge	-9,8	3,3

Abb. 6-7: Relative Abweichung numerische Einpresskraft große Baugröße Mittelwert $\overline{\xi}_{F,b-e}$ und Standardabweichung $s_{\xi F}$ der relativen Abweichung der numerischen von der experimentellen Einpresskraft für die große Baugröße ($\mu_{Haft} = 0,47$)

Die numerisch berechneten **Einpresskräfte** weichen um maximal 17 % von den experimentell ermittelten Einpresskräften ab. Es ist keine eindeutige Abhängigkeit von der Wandstärke der Komponenten ersichtlich. Die größten Abweichungen treten für PK mit erhöhter Rauheit der Stahlnabe auf. Dies ist plausibel, da die Einpresskräfte anhand des an der Referenzvariante ermittelten Haftreibkoeffizienten berechnet worden sind. Die durch die Rauheit der Stahlnabe beeinflussten Effekte können daher bei der rauen Nabe anders ausgeprägt sein und die große Abweichung bewirken (siehe Kapitel 6.4.1 bis 6.4.3). Mögliche Erklärungen für die Abweichungen bei den anderen Varianten können leicht unterschiedliche tribologische Eigenschaften sowie Unterschiede in Deformationskraft und Querkontraktion sein (siehe Kapitel 6.3.1 und 6.3.3). Zusätzlich können Fertigungsungenauigkeiten der PK hinsichtlich der Rundheit und des Schrägstellens beim Einpressvorgang die Übereinstimmung mit den idealisierten Berechnungsergebnissen beeinflussen, was in der vorliegenden Arbeit nicht adressiert wird. Das Verhältnis der experimentell ermittelten Einpresskräfte für die entsprechend Kapitel 5.2 mit einem Faktor zwei skalierten Varianten beträgt 4,88 anstelle des theoretisch erwarteten Faktors vier, wofür Unterschiede in den gemessenen geometrischen Abmessungen verantwortlich gemacht werden (siehe Kapitel 5.4.1). Das Verhältnis der numerisch berechneten Einpresskräfte mit Berücksichtigung dieser geometrischen Abmessungen beträgt 4,34, was sich aus den Werten im Anhang (Tab. A-6 und Tab. A-7) ergibt. Das nach wie vor größere Verhältnis der experimentell ermittelten Einpresskräfte muss daher zusätzlich durch weitere Einflussgrößen wie unterschiedliche tribologische Eigenschaften bedingt sein.

Im Rahmen der numerischen Berechnung des Verpressungszustands der PK wurde die **von-Mises-Vergleichsspannung** in der Stahlnabe basierend auf der Gestaltänderungsenergiehypothese ermittelt. In den am stärksten belasteten Stahlnaben beträgt die maximale Vergleichsspannung ca. 200 MPa. Mit einer Streckgrenze von 500 MPa entsprechend dem Datenblatt [48] kann eine plastische Verformung der Stahlnaben daher ausgeschlossen werden, was für Kapitel 6.4.1 relevant ist.

6.3 Numerische Untersuchung mechanischer Aspekte

In diesem Kapitel wird untersucht, wie sich die Vernachlässigung der elastischen Deformationskraft (Kapitel 6.3.1), des zeitabhängigen Materialverhaltens (Kapitel 6.3.2) und der Querkontraktion bei axialer Belastung (Kapitel 6.3.3) bei den einfachen Auslegungsvorgehensweisen aus Kapitel 4 auswirkt.

6.3.1 Elastische Deformationskraft

Der Fokus dieses Kapitels liegt auf der elastischen Deformationskraft F_{elast} (siehe Kapitel 3.1.1), da für die Einpresskraft F_{ein} nur der maximale Wert der axialen Kraft F_{ax} relevant ist. Die Einpresskraft F_{ein} wird durch die elastische Deformationskraft F_{elast} , nicht aber durch die initiale Deformationskraft F_{init} erhöht, wenn die maximale axiale Kraft größer als die initiale Deformationskraft F_{init} ist, wovon in diesem Fall ausgegangen wird.

Die **Kenngrößen** in (6-2) bis (6-5) beschreiben jeweils die relative Abweichung einer charakteristischen mechanischen Größe durch die elastische Deformationskraft F_{elast} von dem Wert, der mit einer der einfachen Auslegungsvorgehensweisen ermittelt wird.

$$\xi_{F_{ein}, rechn, Def} = \frac{F_{ein, Def}}{F_{ein, rechnAusl}} - 1 = \frac{F_{Reib, ax, t_0} + F_{elast}}{F_{Reib, ax, t_0}} - 1$$
$$= \frac{F_{elast}}{F_{Reib, ax, t_0}}$$
(6-2)

$$\xi_{F_{aus, rechn, Def}} = \frac{F_{aus, t_1, Def}}{F_{aus, t_1, rechnAusl}} - 1 = \frac{F_{Reib, ax, t_0} - F_{elast}}{F_{Reib, ax, t_0}} - 1 = = -\frac{F_{elast}}{F_{Reib, ax, t_0}} = -\xi_{F_{ein}, rechn, Def}$$
(6-3)

$$\xi_{F_{aus, exp, Def}} = \frac{F_{aus, t_1, Def}}{F_{aus, t_1, expAusl}} - 1 = \frac{F_{aus, t_1, Def}}{F_{ein, exp}} - 1 =$$

$$= \frac{F_{Reib, ax, t_0} - F_{elast}}{F_{Reib, ax, t_0} + F_{elast}} - 1 = -2 \cdot \frac{F_{elast}}{F_{Reib, ax, t_0} + F_{elast}}$$
(6-4)

$$\xi_{M_{t}, exp, Def} = \frac{M_{t,t_{1}, Def}}{M_{t,t_{1}, expAusl}} - 1 = \frac{F_{Reib,ax,t_{0}} \cdot r}{F_{ein,exp} \cdot r} - 1 =$$

$$= \frac{F_{Reib,ax,t_{0}}}{F_{Reib,ax,t_{0}} + F_{elast}} - 1 = -\frac{F_{elast}}{F_{Reib,ax,t_{0}} + F_{elast}}$$
(6-5)

Die relativen Abweichungen werden mit dem in Kapitel 6.1 beschriebenen **numeri**schen Basismodell ermittelt. Die Reaktionskraft F_{Reakt} in axiale Richtung wird am Referenzpunkt der Nabe ausgewertet (siehe Abb. 6-1). Durch den reibungsfreien Kontakt entspricht die Reaktionskraft F_{Reakt} der elastischen Deformationskraft F_{elast} , was im Rahmen der Plausibilitätsuntersuchung nachgewiesen wird. Der Mittelwert des Fugendrucks wird anhand (6-1) entlang der Fügelänge ermittelt, aus welchem die zuvor definierten Abweichungen bestimmt werden. Hierbei wird F_{Reib,ax,t_0} für die Referenzvariante mit einem Reibkoeffizienten μ_{ax} in axiale Richtung von 0,375 in Anlehnung an (4-1) berechnet.

Plausibilitäts- und Sensitivitätsuntersuchung

Im Rahmen der nachfolgenden Untersuchung wird die **Plausibilität** der numerischen Ergebnisse des Verpressungsmodells bewertet. Hierfür wird die elastische Deformationskraft F_{elast} für die Geometrie eines PKs aus Kapitel 5.4 berechnet und mit den Ergebnissen zweier weiterer Modelle verglichen.

Die Grundlage für den **analytischen Ansatz** ist der Arbeitssatz für elastische Systeme aus *Gross* [58]. Dieser besagt, dass bei einem elastischen Körper die von den äußeren Lasten verrichtete Arbeit W als innere Energie Π gespeichert ist. Überträgt man diesen Satz auf das vorliegende System, in dem ohne Reibung ausschließlich elastische Verformungen der Komponenten vorliegen, heißt das, dass die Arbeit W durch die elastische Deformationskraft F_{elast} beim Einpressen gleich der inneren Energie Π sein muss, wenn die Arbeit der initialen Deformationskraft F_{init} vernachlässigt wird. Für die innere Energie im Zylindersegment werden zwei Annahmen getroffen:

- Die Krümmung der Komponenten wird bei der infinitesimalen Betrachtung vernachlässigt.
- Es wird keine Dehnung in radialer Richtung berücksichtigt, weshalb sich ausschließlich die tangentiale Dehnung ε_{θ} am Radius *r* aus der konstanten radialen Verschiebung u_r entsprechend (3-6) ergibt.

Die innere Arbeit ergibt sich, in Anlehnung an die innere Arbeit in einem Zugstab aus *Gross* [58], gemäß Abb. 6-8 zu (6-6). Die Integration ergibt die innere Energie entsprechend (6-7). Die inneren Energien in den $\pm 30^{\circ}$ -Lagen des CFKs Π_W und den Umfangslagen Π_{SR} werden aus der radialen Verschiebung am Innenradius der CFK-Welle $u_{r,W}$ und den jeweiligen tangentialen E-Moduln berechnet. Selbiges gilt für die Werte der Nabe (Π_N , $u_{r,N}$). Die gesamte innere Energie Π_{Ges} dieser drei Komponenten entspricht gemäß (6-8) der äußeren Arbeit W, wenn die elastische Deformationskraft F_{elast} von Anfang an konstant ist und die initiale Deformationskraft F_{init} und die innere Energie des Bereichs vor der Fase vernachlässigt werden. Hieraus ergibt sich die mit dem analytischen Ansatz berechnete elastische Deformationskraft $F_{elast,an}$, wobei die Verschiebungen $u_{r,W}$ und $u_{r,N}$ aus der numerischen Berechnung der Verpressung verwendet werden.

Abb. 6-8: Skizze für die innere Arbeit im Zylindersegment Skizze zur Ermittlung der inneren Arbeit in einem Zylindersegment (Krümmung des infinitesimalen Elements vernachlässigt)

$$d\Pi_{Zyl} = \frac{1}{2} \cdot N(r) \cdot \varepsilon(r) \cdot r \cdot d\varphi = \frac{1}{2} \cdot E \cdot \varepsilon(r)^2 \cdot dr \cdot dl \cdot r \cdot d\varphi$$
(6-6)

$$\Pi_{Zyl} = \frac{1}{2} \cdot E \cdot u_r^2 \cdot \int_{r_i}^{r_a} \int_{0}^{l_F} \int_{0}^{2\pi} \frac{1}{r} \cdot dr \cdot dl \cdot d\varphi$$

$$= E \cdot l_F \cdot u_r^2 \cdot \pi \cdot [\ln(r_a) - \ln(r_i)]$$
(6-7)

$$\Pi_{Ges} = \Pi_W + \Pi_{SR} + \Pi_N \stackrel{!}{=} W = F_{elast,an} \cdot l_F \tag{6-8}$$

Die **numerische Abbildung des Einpressvorgangs** erfolgt mit dem Modell aus Kapitel 6.3.3 (siehe Abb. 6-18), jedoch ohne tangentiale Reibung zwischen CFK-Welle und Stahlnabe. Hierdurch ist die axiale Kraft F_{ax} nahezu konstant über den Einpressweg (siehe rechte Seite von Abb. 6-9) und entspricht dem mit dem Modell des Einpressvorgangs ermittelten Wert der elastischen Deformationskraft $F_{elast,Einpr}$. Es sei darauf hingewiesen, dass aus dem dargestellten Verlauf von F_{ax} der Wert der initialen Deformationskraft F_{init} nicht ermittelt werden kann.

Die mittels des Verpressungsmodells berechnete Reaktionskraft F_{Reakt} und die **Ergebnisse** der soeben vorgestellten Modelle sind auf der linken Seite von Abb. 6-9 zusammengefasst. Aufgrund der guten Übereinstimmung der Ergebnisse wird der Wert von F_{elast} im weiteren Verlauf gleich F_{Reakt} aus dem Verpressungsmodell gesetzt.

Abb. 6-9:Plausibilitätsuntersuchung elastische DeformationskraftIm Rahmen der Plausibilitätsuntersuchung ermittelte Kraftwerte (links); Verlauf der axia-
len Kraft beim Modell des Einpressvorgangs ohne Reibung (rechts)

Im Rahmen einer **Sensitivitätsuntersuchung** am Verpressungsmodell wurde die Konvergenz des Mittelwerts des Fugendrucks $p_{F,m}$ und der elastischen Deformationskraft F_{elast} für unterschiedlich feine Vernetzungen nachgewiesen und die Aussagekraft der Ergebnisse mit der Vernetzung aus Kapitel 6.1 bestätigt. Weiterhin wurde gezeigt, dass Aussagen bezüglich der elastischen Deformationskraft F_{elast} unabhängig von der Fasengeometrie getroffen werden können, was physikalisch sinnvoll ist, da die innere Energie und damit die von der elastischen Deformationskraft F_{elast} verrichtete Arbeit maßgeblich von der Deformation der Komponenten im zylindrischen Bereich abhängt.

Parameterstudien

Die in (6-2) bis (6-5) definierten relativen Abweichungen sind für alle Baugrößen trotz geometrisch nichtlinearer Berechnung des numerischen Modells identisch. Die Werte für die Parameterstudien sind in Abb. 6-10 dargestellt und werden für $\xi_{F_{ein}, rechn, Def}$ diskutiert. Die restlichen Abweichungen sind entsprechend ihrer Definition lediglich Vielfache hiervon.

Abb. 6-10: Relative Abweichung bei Berücksichtigung der elastischen Deformationskraft Relative Abweichungen der mechanischen Größen zu den Werten der einfachen Auslegungsvorgehensweisen bei Berücksichtigung der elastischen Deformationskraft bei Variation unterschiedlicher Gestaltungsparameter, wobei die jeweils anderen Gestaltungsparameter der Referenzvariante entsprechen

Die relative Abweichung $\xi_{F_{ein}, rechn, Def}$ ist nahezu unabhängig vom Winkel α_{AWV} und nimmt mit zunehmender Fügelänge l_F ab, was plausibel ist, da die Reibkraft zunimmt und damit der Anteil der elastischen Deformationskraft F_{elast} geringer wird. Die Beträge der relativen Abweichungen nehmen linear mit dem Übermaß Ü_r zu, was auch mit der analytischen Abschätzung bestätigt werden kann. Für die unterschiedlichen Wandstärken der Welle t_W und der Nabe t_N sind die relativen Abweichungen nahezu konstant. Mit zunehmendem axialen Reibkoeffizienten μ_{ax} nehmen die Beträge der relativen Abweichungen ab, da die Reibkraft zunimmt und der Anteil der elastischen Deformationskraft F_{elast} geringer wird.

Fazit

Die Baugröße hat keinen Einfluss auf die relativen Abweichungen, weshalb die folgenden Aussagen auch für kleinere und größere Baugrößen als die untersuchten gelten. Die Folgen der Berücksichtigung der elastischen Deformationskraft F_{elast} verglichen mit den Auslegungsvorgehensweisen sind in Abb. 6-11 dargestellt.

Abb. 6-11:Folgen der elastischen Deformationskraft für AuslegungsvorgehenFolgen der Berücksichtigung der elastischen Deformationskraft F_{elast} (rot markiert) verglichen mit dem rechnerischen (oben) und experimentellen (unten) Auslegungsvorgehen

Die Einpresskraft F_{ein} ist durch das Vorhandensein der elastischen Deformationskraft F_{elast} größer und die Auszugskraft F_{aus} kleiner als die mit dem rechnerischen Auslegungsvorgehen berechneten Werte. Für das experimentelle Auslegungsvorgehen sind die Auszugskraft F_{aus} und das übertragbare Torsionsmoment M_t kleiner als der berechnete Wert. Durch Vernachlässigung der elastischen Deformationskraft F_{elast} erfolgt die Auslegung der aufgeführten charakteristischen mechanischen Größen bei beiden Auslegungsvorgehensweisen damit nicht konservativ. Lediglich das mit dem rechnerischen Auslegungsvorgehen ermittelte Torsionsmoment M_t ist von der elastischen Deformationskraft F_{elast} unbeeinflusst.
6.3.2 Viskoelastizität

In diesem Kapitel wird der Einfluss des zeitabhängigen Materialverhaltens der CFK-Welle auf den Fugendruck numerisch untersucht und in Abhängigkeit der Gestaltungsparameter aus Kapitel 6.1 quantifiziert.

Die **Kenngröße** in (6-9) beschreibt die relative Abweichung einer charakteristischen mechanischen Größe durch die Viskoelastizität von dem Wert, der mit einer der einfachen Auslegungsvorgehensweisen ermittelt wird. Diese relative Abweichung ξ_{VE} ist für alle charakteristischen mechanischen Größen, die zum Zeitpunkt t_1 berechnet werden, identisch und wird in (6-9) exemplarisch für die mit dem rechnerischen Auslegungsvorgehen bestimmte Auszugskraft hergeleitet.

$$\xi_{F_{aus,rechn,VE}} = \frac{F_{aus,t_1,VE}}{F_{aus,t_1,rechnAusl}} - 1 = \frac{F_{Reib,ax,t_1}}{F_{Reib,ax,t_0}} - 1 = \frac{p_{F,m,t_1}}{p_{F,m,t_0}} - 1 = \xi_{VE}$$
(6-9)

Die relative Abweichung ξ_{VE} wird mit dem in Kapitel 6.1 beschriebenen **numerischen Basismodell** ermittelt. Die Mittelwerte p_{F,m,t_0} und p_{F,m,t_1} des Fugendrucks werden mit den Werkstoffkennwerten zu den Zeitpunkten t_0 und t_1 berechnet. Die Schubspannungsverteilung in der Trennfuge bei Torsionsbelastung variiert durch das zeitabhängige Materialverhalten zwar ebenfalls, wird entsprechend der Annahmen in Kapitel 4 in der vorliegenden Arbeit aber nicht untersucht. Als Zeitpunkt t_1 werden 20 Jahre angesetzt. Die Pressverbindung soll bei Raumtemperatur eingesetzt werden, wodurch kein Einfluss erhöhter Temperaturen berücksichtigt werden muss. Zur Beschreibung des zeitabhängigen Werkstoffverhaltens des FVWs wird lineare Viskoelastizität angenommen (siehe Kapitel 3.2). Ein etwaiges unterschiedliches Verhalten an verschiedenen Positionen innerhalb der CFK-Welle oder in verschiedene Belastungsrichtungen kann damit nicht abgebildet werden. Für die vorliegende Arbeit sind keine experimentell ermittelten Werkstoffkennwerte für das zeitabhängige Materialverhalten vorhanden und müssen deshalb abgeschätzt werden, was für den Vergleich der Größenordnungen mit den weiteren in Kapitel 6 untersuchten Aspekten ausreichend ist.

Modellierung des zeitabhängigen Materialverhaltens

Die Modellierungsmöglichkeiten zur Abbildung linear viskoelastischen Materialverhaltens werden in Kapitel 3.2 beschrieben und anhand folgender Kriterien ausgewählt:

- Die Genauigkeit der Abbildung durch Relaxationsfunktionen sowie der quasistationären Lösung mit mittels Funktionen beschriebener Grundelastizitätsgrößen der UD-Schicht kann aufgrund fehlender experimentell ermittelter Eingangsgrößen nicht sinnvoll genutzt werden.
- Die quasistationäre Lösung zur Grobabschätzung des Endzustands aus *Schürmann* [10] durch Reduktion des Schubmoduls G_{12} und des E-Moduls E_{22} um je 95 % wird nicht weiterverfolgt. Zum einen wird keine Aussage hinsichtlich der

Anpassung der Querkontraktionszahlen getroffen. Zum anderen zeigt der Abgleich mit Kriechmoduln eines exemplarischen Epoxid-FVWs aus *Schürmann* [59], dass die Dauer bis zur Reduktion um 95 % die geforderte Betriebsdauer um mehrere Größenordnungen überschreitet.

 Die quasistationäre Lösung mit Reduktion der reinen Matrixkennwerte und Ermittlung der UD-Kennwerte mittels der halbempirischen Gleichungen der Mikromechanik liefert einen konsistenten Materialkennwertsatz aller Kennwerte der UD-Schicht. Lediglich die Größenordnung der Reduktion der Matrixkennwerte ist für die geforderte Betriebsdauer unbekannt. In Voruntersuchungen wurde der Einfluss der Querkontraktion auf die Pressverbindung nachgewiesen, weshalb diese Konsistenz sinnvoll erscheint.

Das im Folgenden beschriebene Vorgehen wird zur Bestimmung der Materialkennwerte der Materialkombination Sigrafil C30 mit SIKA CR132-7 bei einem FVG von 50 % zum Zeitpunkt t_1 gewählt. Durch die Annahme linearer Viskoelastizität ist lediglich ein Kennwertsatz notwendig. In einem ersten Schritt wird die Größenordnung von $E_{22}(t_1)$ und $G_{12}(t_1)$ bestimmt. Hierfür werden die Werte $E_{22,0S}(t_1)$ und $G_{12,0S}(t_1)$ für die quasistationäre Lösung mit (3-17) ermittelt, wobei der Zeitpunkt t_1 in Stunden angegeben wird und die Parameter eines exemplarischen Epoxid-FVWs aus Schürmann [59] verwendet werden. Diese sind unter vergleichbaren Bedingungen wie den in der vorliegenden Arbeit vorgegebenen Randbedingungen ermittelt worden und in Tab. 6-4 aufgeführt. Die zylindrischen PK in Schürmann [59] bestehen aus dem Epoxidharz Araldit LY556/HY917/DY070 von Ciba-Geigy und der E-Glasfaser Cosmostrand 859RS von Owens/Corning Fiberglas und weisen einen FVG von 49 % auf. Eine halbjährige Konditionierung und die Prüfung erfolgten im Normklima nach DIN EN 62. Das Spannungsniveau bei der Prüfung betrug 30 MPa. Genauere Angaben zur Herstellung der PK und zur Ermittlung der Kriechmoduln aus den experimentellen Kennwerten finden sich in Schürmann [59].

Tab. 6-4: Parameter zur Berechnung der Kriechmoduln

Parameter zur Berechnung der Kriechmoduln aus [59] für Epoxidharz Araldit LY556/HY917 mit E-Glasfaser und FVG von 49 % bei Spannung von 30 MPa

Kennwert	$\frac{m}{\varepsilon(0)}$ [-]	n [-]	
<i>E</i> ₂₂	0,041147	0,1811	
<i>G</i> ₁₂	0,1818	0,2678	

In einem zweiten Schritt werden die Matrixkennwerte für SIKA CR132-7 um einen Faktor λ reduziert, sodass die bei einem FVG von 50 % mittels Mikromechanik (Index MM) ermittelten Werte $E_{22,MM}(\lambda_1)$ und $G_{12,MM}(\lambda_2)$ den zuvor bestimmten Werten

 $E_{22,QS}(t_1)$ und $G_{12,QS}(t_1)$ entsprechen. Der Matrix-E-Modul $E_m(\lambda)$ ergibt sich entsprechend (6-10), die Querkontraktionszahl $\nu_m(\lambda)$ gemäß (3-18) und der Schubmodul $G_m(\lambda)$ gemäß (3-19). Die Kennwerte zum Zeitpunkt t_0 sowie die Formeln der Mikromechanik können Tab. 6-3 entnommen werden, wobei die Faserkennwerte zum Zeitpunkt t_1 unverändert bleiben.

$$E_m(\lambda) = E_m(0) \cdot (1 - \lambda) \tag{6-10}$$

Abschließend werden die Matrixkennwerte um den Mittelwert $\overline{\lambda}$ aus λ_1 und λ_2 reduziert und die Grundelastizitätsgrößen der UD-Schicht mittels Mikromechanik für den Zeitpunkt t_1 ermittelt (siehe Tab. 6-5).

Tab. 6-5: Rechnerisch ermittelte Elastizitätsgrößen der UD-Schicht

Rechnerisch ermittelte Elastizitätsgrößen der UD-Schicht des FVWs (Sigrafil C30 mit SIKA CR132-7) bei einem FVG von 50 % zum Zeitpunkt $t_1 = 20$ Jahre

Kennwert	Wert	Einheit
<i>E</i> ₁₁	103,6	GPa
$E_{22} = E_{33}$	3,2	GPa
$\nu_{12} = \nu_{13}$	0,37	-
v_{23}	0,52	-
$G_{12} = G_{13}$	1,3	GPa
<i>G</i> ₂₃	1,1	GPa

Dieses Vorgehen stellt eine Abschätzung dar. Eine realistische Größenordnung wird durch die Verwendung der Kriechmoduln aus *Schürmann* [59] sichergestellt. Durch die mikromechanische Berechnung wird ein in sich konsistenter, auf der Reduktion der Matrixkennwerte beruhender Kennwertsatz gewährleistet.

Parameterstudien

Die relative Abweichung ξ_{VE} ist für alle Baugrößen trotz geometrisch nichtlinearer Berechnung des numerischen Modells identisch. Die Werte für die Parameterstudien sind in Abb. 6-12 dargestellt.

Abb. 6-12: Relative Abweichung bei Berücksichtigung der Viskoelastizität Relative Abweichung ξ_{VE} der mechanischen Größen zu den Werten der einfachen Auslegungsvorgehensweisen bei Berücksichtigung der Viskoelastizität bei Variation unterschiedlicher Gestaltungsparameter, wobei die jeweils anderen Gestaltungsparameter der Referenzvariante entsprechen

Der Fugendruck nach Auslagerung zum Zeitpunkt t_1 ist für alle betrachteten Varianten geringer als zum Zeitpunkt t_0 , was sich an der durchweg negativen relativen Abweichung ξ_{VE} ablesen lässt.

Die relative Abweichung ξ_{VE} hängt stark vom Winkel α_{AWV} ab und ist betragsmäßig bei einem Winkel von 40° maximal und bei einem Winkel von 80° minimal, was anhand der lokalen Schichtspannungen erklärt werden kann. Bei einem Winkel von 1° entspricht die relative Abweichung ξ_{VE} in etwa der relativen Reduktion des E-Moduls E_{22} , was plausibel ist, da die tangentiale Spannung für dieses Laminat in dessen Richtung wirkt. Mit zunehmendem Winkel nehmen die Spannungen in Faserrichtung und die Schubspannungen in den Einzellagen zu. Die Schubspannungen werden für Winkel zwischen 30° und 50° maximal, für welche die relative Abweichung ξ_{VE} wiederum in etwa der relativen Reduktion des Schubmoduls G_{12} entspricht. Auffällig ist weiterhin, dass sich auch für reine Umfangslagen negative Werte der relativen Abweichung ξ_{VE} ergeben. Eine Untersuchung der zugrundeliegenden Ursachen erfolgt im weiteren Verlauf dieses Kapitels.

Die relative Abweichung ξ_{VE} ist von der Fügelänge unabhängig, da die Reduktion der mechanischen Kennwerte für alle Varianten gleich stark ins Gewicht fällt. Auch das Übermaß hat keine Auswirkung auf die relative Abweichung ξ_{VE} , was der Annahme der linearen Viskoelastizität und damit der Unabhängigkeit der Kennwerte vom Spannungsniveau geschuldet ist. Die Wandstärken der Welle t_W und der Nabe t_N haben nahezu keinen Einfluss auf die relative Abweichung ξ_{VE} .

Weiterführende Untersuchungen

Bei den Parameterstudien ist die relative Abweichung ξ_{VE} für den Winkel der Referenzvariante von 30° nahezu unabhängig von der Wellenwandstärke t_W . Im Folgenden wird der Einfluss der Wellenwandstärke t_W für andere Winkel α_{AWV} untersucht, was in Abb. 6-13 dargestellt ist.

Abb. 6-13: Relative Abweichung bei Berücksichtigung der Viskoelastizität und Variation der Wellenwandstärke

Relative Abweichung ξ_{VE} der mechanischen Größen zu den Werten der einfachen Auslegungsvorgehensweisen bei Berücksichtigung der Viskoelastizität für unterschiedliche Winkel α_{AWV} bei Variation der Wellenwandstärke t_W , wobei die restlichen Gestaltungsparameter der Referenzvariante entsprechen

Für Winkel α_{AWV} zwischen 0° und 40° hat die Wellenwandstärke t_W nahezu keinen Einfluss auf die relative Abweichung ξ_{VE} . Für Winkel zwischen 45° und 60° nimmt der Betrag der relativen Abweichung ξ_{VE} für größere Wellenwandstärken t_W ab. Eine Erhöhung der Wellenwandstärke t_W hat also eine geringere relative Reduktion des Fugendrucks zur Folge. Für Winkel zwischen 80° und 89° nimmt der Betrag der relativen Abweichung ξ_{VE} für größere Wellenwandstärken t_W zu. Bei reinen Umfangslagen beträgt die rechnerische Reduktion des Fugendrucks bis zu 13 % obwohl der E-Modul E_{11} um weniger als 1 % reduziert wird. Eine Untersuchung der zugrundeliegenden Ursachen erfolgt im folgenden Abschnitt.

Für reine Umfangslagen nimmt der Betrag der relativen Abweichung ξ_{VE} mit zunehmender Wellenwandstärke t_W zu, wohingegen dies bei beispielsweise 1°- und 45°-Lagen nicht der Fall ist. Es wird die Hypothese aufgestellt, dass bei reinen Umfangslagen die radiale Dehnung durch Reduktion des E-Moduls E_{33} zum Zeitpunkt t_1 bei großen Wellenwandstärken stärker ausgeprägt ist, und diese für die Fugendruckänderung ursächlich ist. Hinsichtlich der 1°- und 45°-Lagen wird angenommen, dass die radiale Dehnung bei der Fugendruckänderung weniger stark ins Gewicht fällt und diese hauptsächlich von der Reduktion des E-Moduls E_{22} und des Schubmoduls G_{12} herrührt. Die Wandstärkenabhängigkeit der radialen Deformation wäre für diese Winkel damit im Hinblick auf die Fugendruckänderung vernachlässigbar. Zum Nachweis dieser Hypothese wird die Wandstärkenänderung $\Delta u_{r,t}$ zu den Zeitpunkten t_0 und t_1 gemäß Abb. 6-14 und (6-11) bestimmt. Hierbei bezeichnet beispielsweise $u_{r,(1),t_1}$ die radiale Verschiebung an Stelle (1) zum Zeitpunkt t_1 . Weiterhin ergibt sich die relative Änderung der Wandstärkenänderung ξ_r zu (6-12). Aus der Differenz der Wandstärkenänderung $\Delta_{\Delta u_r}$ nach (6-13) ergibt sich der Anteil der Differenz der Wandstärkenänderung am Übermaß ξ_{Δ} nach (6-14). Die Ergebnisse der Untersuchungen sind in Abb. 6-15 dargestellt.

Abb. 6-14:Radiale Verschiebung an Innenradius und AußenradiusRadiale Verschiebung u_r an Innenradius (Stelle ①) und Außenradius (Stelle ②) derCFK-Welle zum Zeitpunkt t_1

$$\Delta u_{r,t_1} = u_{r,(2),t_1} - u_{r,(1),t_1} \tag{6-11}$$

$$\xi_r = \frac{\Delta u_{r,t_1}}{\Delta u_{r,t_0}} - 1$$
(6-12)

$$\Delta_{\Delta u_r} = \Delta u_{r,t_0} - \Delta u_{r,t_1} \tag{6-13}$$

$$\xi_{\Delta} = \frac{\Delta_{\Delta u_r}}{\ddot{U}_r} \tag{6-14}$$

Abb. 6-15: Kenngrößen der Wandstärkenänderung für verschiedene AWV-Winkel Relative Änderung der Wandstärkenänderung ξ_r (links oben), Wandstärkenänderung Δu_r (rechts oben) und Anteil der Differenz der Wandstärkenänderung am Übermaß ξ_{Δ} (links unten) für verschiedene Winkel des AWVs α_{AWV} , wobei die restlichen Gestaltungsparameter der Referenzvariante entsprechen

Für die **89°-Lagen** ist die relative Änderung der Wandstärkenänderung ξ_r für alle Wellenwandstärken t_W positiv. Das bedeutet, dass die Wandstärkenänderung zum Zeitpunkt t_1 stärker ausgeprägt ist. Hierbei entspricht die relative Änderung der Wandstärkenänderung ξ_r in etwa der relativen Änderung des E-Moduls E_{33} , was einen direkten Einfluss desselben nahelegt. Die Beträge der Wandstärkenänderung $\Delta u_{r,t_0}$ und $\Delta u_{r,t_1}$ sowie der Anteil der Differenz der Wandstärkenänderung am Übermaß ξ_{Δ} nehmen mit zunehmender Wellenwandstärke t_W zu. Das bedeutet, dass bei gleichem Übermaß Ü $_r$ die Wandstärkenänderung durch das zeitabhängige Materialverhalten mit zunehmender Wellenwandstärke t_W stärker ins Gewicht fällt. Der Anteil der Differenz der Wandstärkenänderung am Übermaß ξ_{Δ} entspricht in etwa der relativen Fugendruckänderung ξ_{VE} , womit die aufgestellte Hypothese in allen Punkten nachgewiesen werden konnte. Für die 1°-Lagen ist die relative Änderung der Wandstärkenänderung ξ_r für alle Wellenwandstärken t_W positiv und der Anteil der Differenz der Wandstärkenänderung am Übermaß ξ_{Δ} nimmt mit zunehmender Wellenwandstärke t_W zu, was den Erkenntnissen aus der Untersuchung der 89°-Lagen entspricht. Verglichen mit der Fugendruckänderung ξ_{VE} ist der Anteil der Differenz der Wandstärkenänderung am Übermaß ξ_{Δ} jedoch gering. Der Einfluss der radialen Deformation auf die Fugendruckänderung und deren Wandstärkenabhängigkeit sind damit gering und nahezu vernachlässigbar. Da bei einem Winkel von 1° die Fugendruckänderung ξ_{VE} in etwa der relativen Reduktion des E-Moduls E_{22} entspricht, ist es naheliegend, dass diese Größe für die Fugendruckreduktion die maßgebliche Ursache ist. Hiermit ist die aufgestellte Hypothese für die 1°-Lagen nachgewiesen.

Für die 45°-Lagen ist die relative Änderung der Wandstärkenänderung ξ_r für alle Wellenwandstärken t_W negativ, das heißt dass die Wandstärkenänderung zum Zeitpunkt t_1 weniger stark ausgeprägt ist. Dies widerspricht den Erkenntnissen der Untersuchung der 89°-Lagen und kann beispielsweise der Querkontraktion des Materials geschuldet sein, was jedoch einer vertieften Untersuchung bedarf. Der Betrag des Anteils der Differenz der Wandstärkenänderung am Übermaß ξ_{Δ} nimmt mit zunehmender Wellenwandstärke t_W zu, wobei die Größenordnung der Änderung derjenigen der Fugendruckänderung ξ_{VE} entspricht. Die Tendenz der Fugendruckänderung ξ_{VE} für die Wellenwandstärke t_W bei den 45°-Lagen kann also mit der Wandstärkenänderung erklärt werden. Der Anteil der Differenz der Wandstärkenänderung am Übermaß ξ_{Λ} ist jedoch gering verglichen mit der Fugendruckänderung ξ_{VE} , weshalb die Wandstärkenabhängigkeit nahezu vernachlässigbar ist. Da bei einem Winkel von 45° die Fugendruckänderung ξ_{VE} in etwa der relativen Reduktion des Schubmoduls G_{12} entspricht, ist es naheliegend, dass diese Größe für die Fugendruckreduktion die maßgebliche Ursache ist. Hiermit ist die anfangs aufgestellte Hypothese auch für die 45°-Lagen nachgewiesen.

Fazit

Die Baugröße hat keinen Einfluss auf die relative Abweichung, weshalb die folgenden Aussagen auch für kleinere und größere Baugrößen als die untersuchten gelten. Der Fugendruck nach Auslagerung ist für alle betrachteten Varianten geringer als vor der Auslagerung. Die Abweichung ist stark vom Winkel des AWVs α_{AWV} abhängig, für die untersuchten Varianten aber nahezu unabhängig von der Fügelänge l_F , dem Übermaß Ü_r und der Wandstärke der Nabe t_N . Der Einfluss der Wandstärke der Welle t_W ist abhängig vom Winkel des AWVs α_{AWV} . Die betragsmäßig größte Abweichung ergibt sich für einen Winkel des AWVs α_{AWV} von 40°. Die Folgen der Berücksichtigung der Viskoelastizität verglichen mit den Auslegungsvorgehensweisen sind in Abb. 6-16 dargestellt.

 Abb. 6-16:
 Folgen der Viskoelastizität für Auslegungsvorgehen

 Folgen der Berücksichtigung der Viskoelastizität (rot markiert) verglichen mit dem rechnerischen (oben) und experimentellen (unten) Auslegungsvorgehen

Die Auszugskraft sowie das übertragbare Torsionsmoment sind durch die Viskoelastizität geringer als die mit dem rechnerischen und experimentellen Vorgehen berechneten Werte. Beide Auslegungsvorgehensweisen sind damit durch Vernachlässigung der Viskoelastizität nicht konservativ. Lediglich die mit dem rechnerischen Auslegungsvorgehen ermittelte Einpresskraft ist von der Viskoelastizität unbeeinflusst.

6.3.3 Querkontraktion

Bei den Einpressversuchen in Kapitel 5.4 liegt im freien Bereich der CFK-Welle bei anliegender axialer Last eine tangentiale Dehnung vor, welche nach Entlastung der Bauteile verschwindet. Dies ist der Querkontraktion der CFK-Welle geschuldet, die mit der axialen Last einhergeht (siehe Abb. 6-17). In Fischer [5] werden Querdehnungseffekte bei hohen axialen Lasten beim Einpressvorgang erwähnt, deren Auswirkungen aber als geringfügig bewertet. In Croccolo [11] wird beim Fügen einer Al-St Pressverbindung hingegen ein progressiver Kraftverlauf gemessen, was teilweise auf ein zunehmendes Übermaß durch die elastische Deformation des innenliegenden Aluminiumbauteils zurückgeführt wird. In diesem Kapitel wird der Einfluss der Querkontraktion auf den Fugendruck numerisch untersucht und in Abhängigkeit der Gestaltungsparameter aus Kapitel 6.1 quantifiziert. Die Untersuchungen beschränken sich auf den Einpressvorgang, da beim Auszugsvorgang ein gleich stark ausgeprägter Effekt umgekehrten Vorzeichens auftritt, was in eigenen Voruntersuchungen nachgewiesen wurde. Dies ist der Fall, da von linear elastischem Materialverhalten und von Zugoder Druckbelastung unabhängigen Elastizitätsgrößen ausgegangen wird. Der Fugendruck beim Auszugsvorgang wird entsprechend (6-15) berechnet.

$$p_{F,m,aus} = 2 \cdot p_{F,m,t_0} - p_{F,m,ein} \tag{6-15}$$

Abb. 6-17: Tangentiale Dehnung axial be- und entlasteter Prüfkörper und Prinzip Querkontraktion

Die **Kenngrößen** in (6-16) bis (6-19) beschreiben jeweils die relative Abweichung einer charakteristischen mechanischen Größe durch die Querkontraktion von dem Wert, der mit einer der einfachen Auslegungsvorgehensweisen ermittelt wird. Für (6-17) und (6-18) wird der Zusammenhang aus (6-15) verwendet. Es wird davon ausgegangen, dass sich die Kontaktfläche durch die Querkontraktion nicht ändert.

$$\xi_{F_{ein}, rechn, QK} = \frac{F_{ein, QK}}{F_{ein, rechnAusl}} - 1 = \frac{F_{Reib, ax, ein}}{F_{Reib, ax, t_0}} - 1 = \frac{p_{F, m, ein}}{p_{F, m, t_0}} - 1 \tag{6-16}$$

$$\xi_{F_{aus,rechn,QK}} = \frac{F_{aus,t_1,QK}}{F_{aus,t_1,rechnAusl}} - 1 = \frac{F_{Reib,ax,aus}}{F_{Reib,ax,t_0}} - 1 = 1 - \frac{p_{F,m,ein}}{p_{F,m,t_0}} \quad (6-17)$$

$$\xi_{F_{aus,exp,QK}} = \frac{F_{aus,t_1,QK}}{F_{aus,t_1,expAusl}} - 1 = \frac{F_{Reib,ax,aus}}{F_{ein,exp}} - 1 = \frac{F_{Reib,ax,aus}}{F_{Reib,ax,ein}} - 1$$

$$= 2 \cdot \left(\frac{p_{F,m,t_0}}{p_{F,m,ein}} - 1\right)$$
(6-18)

$$\xi_{M_{t}, exp, QK} = \frac{M_{t, t_{1}, QK}}{M_{t, t_{1}, expAusl}} - 1 = \frac{F_{Reib, ax, t_{0}} \cdot r}{F_{ein, exp} \cdot r} - 1 = \frac{F_{Reib, ax, t_{0}}}{F_{Reib, ax, ein}} - 1 = \frac{p_{F, m, t_{0}}}{p_{F, m, ein}} - 1$$
(6-19)

Die relativen Abweichungen werden aufbauend auf dem in Kapitel 6.1 beschriebenen **numerischen Basismodell** ermittelt, das so angepasst wird, dass ein Einpressen der Stahlnabe in die CFK-Welle abgebildet und der Fugendruck im eingepressten Zustand bei anliegender axialer Last ermittelt wird (siehe Abb. 6-18). Es wird ein reibungsbehafteter Kontakt modelliert, der eine axiale Last und damit eine Querkontraktion bewirkt, welche wiederum das Übermaß und damit den Fugendruck und die axiale Lastverteilung zwischen den Bauteilen beeinflusst. Für die Referenzvariante wird ein axialer Reibkoeffizient μ_{ax} von 0,375 definiert. Der Referenzpunkt der Nabe wird um den Betrag Δu_{ax} , der der Fügelänge l_F entspricht, in axiale Richtung verschoben (siehe Abb. 6-18). Der implizite Berechnungsschritt wird durch Vorgabe eines Inkrements diskretisiert, wodurch pro Berechnungsschritt nur ein definierter Bruchteil der vorgegebenen Verschiebung aufgebracht wird. Der Mittelwert des Fugendrucks beim Einpressvorgang $p_{F,m,ein}$ wird entsprechend (6-1) ermittelt.

Abb. 6-18: Prinzipskizze numerisches Modell zur Abbildung des Einpressvorgangs

Plausibilitätsuntersuchung

Das Einpressvorgangsmodell wird mit einem weiteren numerischen Modell verglichen, bei dem abweichend zu dem in Kapitel 6.1 vorgestellten Modell kein Kontakt zwischen den Bauteilen abgebildet wird (siehe Abb. 6-19).

Abb. 6-19: Prinzipskizze vereinfachtes numerisches Modell Querkontraktion Prinzipskizze des numerischen Modells zur vereinfachten Abbildung der aus dem Einpressvorgang resultierenden Schubbelastung der Komponenten und der entsprechenden Querkontraktion

Das iterative Vorgehen bei diesem Modell wird im Folgenden für die Anfangsiteration (Index 0) beschrieben und ist in Abb. 6-20 für die n-te Iteration grafisch dargestellt. Aus dem anfänglichen Übermaß Ü_{r,0} wird der Mittelwert des Fugendrucks $p_{F,m,0}$ der reinen Verpressung ermittelt, der mit dem axialen Reibkoeffizienten μ_{ax} wiederum eine konstante Schubspannung $\tau_{m,0}$ ergibt. Die Schubspannung wird im numerischen Modell über die gesamte Fügelänge aufgebracht und bewirkt eine axial variierende radiale Verschiebung am Innenradius der CFK-Welle $u_{r,W,0}(z)$ und am Außenradius der Stahlnabe $u_{r,N,0}(z)$, aus denen sich eine Übermaßänderung $\Delta \ddot{U}_{r,0}(z)$ ergibt. Mit dem Mittelwert der Übermaßänderung $\Delta \ddot{U}_{r,0,m}$ wird ein neues Übermaß $\ddot{U}_{r,1}$ bestimmt, aus dem sich ein neuer mittlerer Fugendruck $p_{F,m,1}$ ergibt, der aufgrund des linear elastischen Materialverhaltens aus dem Verhältnis der Übermaße ermittelt werden kann.

$$\ddot{\mathbf{U}}_{r,n} \rightarrow p_{F,m,n} = p_{F,m,t_0} \cdot \frac{\ddot{\mathbf{U}}_{r,n}}{\ddot{\mathbf{U}}_{r,0}} \rightarrow \tau_{m,n} = p_{F,m,n} \cdot \mu_{ax}$$

$$n = n + 1$$

$$\ddot{\mathbf{U}}_{r,n+1} = \ddot{\mathbf{U}}_{r,0} + \Delta \ddot{\mathbf{U}}_{r,n,m} \leftarrow \Delta \ddot{\mathbf{U}}_{r,n,m} \leftarrow \Delta \ddot{\mathbf{U}}_{r,n}(z) = u_{r,N,n}(z) - u_{r,W,n}(z)$$

Abb. 6-20: Vorgehen (n-te Iteration) zur Ermittlung des Fugendrucks zwischen schubbelasteten Komponenten

Als Ergebnisgröße wird der Fugendruck $p_{F,m,n}$ der n-ten Iteration verwendet, für die (6-20) erfüllt ist.

$$\frac{p_{F,m,n}}{p_{F,m,n-1}} - 1 > 0,005 \tag{6-20}$$

Die relative Abweichung ξ_{Iter} des iterativ ermittelten Fugendrucks $p_{F,m,n}$ von dem mit dem Einpressvorgangsmodell ermittelten Fugendruck $p_{F,m,ein}$ ist für verschiedene Winkel des AWVs α_{AWV} für die Referenzgeometrie aus Kapitel 6.1 in Abb. 6-21 dargestellt. Die relative Abweichung ξ_{Iter} ist gering, was für die Plausibilität der Ergebnisse des Einpressvorgangsmodells spricht.

Abb. 6-21: Relative Abweichung verschiedener Vorgehen zur Abbildung des Einpressvorgangs Relative Abweichung ξ_{Iter} des mit dem vereinfachten Vorgehen berechneten Fugendrucks $p_{F,m,n}$ von dem mit dem Einpressvorgangsmodell ermittelten Fugendruck $p_{F,m,ein}$

Parameterstudien

Die in (6-16) bis (6-19) definierten relativen Abweichungen sind für alle Baugrößen trotz geometrisch nichtlinearer Berechnung des numerischen Modells identisch. Die Werte für die Parameterstudien sind in Abb. 6-22 dargestellt.

Abb. 6-22: Relative Abweichung bei Berücksichtigung der Querkontraktion Relative Abweichungen der mechanischen Größen zu den Werten der einfachen Auslegungsvorgehensweisen bei Berücksichtigung der Querkontraktion bei Variation unterschiedlicher Gestaltungsparameter, wobei die jeweils anderen Gestaltungsparameter der Referenzvariante entsprechen

Im Folgenden werden die Verläufe für die relative Abweichung $\xi_{F_{ein}, rechn,QK}$ diskutiert, da die restlichen Werte einen qualitativ ähnlichen Verlauf unterschiedlichen Vorzeichens aufweisen. Die relative Abweichung $\xi_{F_{ein}, rechn,QK}$ und damit die Änderung des Fugendrucks durch die Querkontraktion beim Einpressen verglichen mit dem reinen Verpressungszustand variieren stark mit dem Winkel des AWVs α_{AWV} . Die folgenden Intervalle der Winkel können mit den Werkstoffkennwerten variieren und gelten damit nur für das den Untersuchungen zugrundeliegende Material:

- Für Winkel zwischen 0° und 10° ist der Fugendruck beim Einpressen durch Querkontraktion nur geringfügig größer.
- Ab einem Winkel von 10° ist der Fugendruck beim Einpressen durch Querkontraktion geringer und erreicht sein Minimum für einen Winkel von 60°.
- Bei einem Winkel von 80° hat die Querkontraktion nahezu keinen Einfluss auf den Fugendruck.
- Bei einem Winkel von 90° ist der Fugendruck beim Einpressen durch die Querkontraktion größer.

Die Ursachen für diese Sachverhalte sind in den Werkstoffkennwerten des Laminataufbaus zu finden. Beispielsweise nimmt die mit der CLT für einen AWV mit Winkel 20° berechnete Querkontraktionszahl $v_{z\theta}$ (Querkontraktion in tangentiale Richtung durch axiale Dehnung) sehr große Werte an. Die zugehörige Querkontraktionszahl v_{zr} (Querkontraktion in radiale Richtung durch axiale Dehnung) nimmt negative Werte an. Durch axiale Kompression dehnt sich die Welle mit diesem Laminataufbau also stark in tangentiale Richtung und zieht sich zusätzlich in radiale Richtung zusammen, wodurch sich eine Reduktion des Übermaßes und damit des Fugendrucks ergibt. Für einen Winkel von 30° nimmt der Fugendruck beim Einpressen durch Querkontraktion ab, was bei Variation der restlichen Gestaltungsparameter für alle betrachteten Varianten der Fall ist.

Die Beträge aller Abweichungen nehmen mit zunehmender Fügelänge l_F annähernd linear zu, da mit zunehmender Fügelänge die Reibkraft und der Effekt der Querkontraktion zunehmen. Mit zunehmender Wandstärke der Nabe t_N nehmen diese zu, da größere Wandstärken der Nabe einen größeren Fugendruck und damit eine stärker ausgeprägte Querkontraktion der CFK-Welle bedingen. Mit zunehmendem Reibkoeffizienten μ_{ax} nehmen die Beträge aller Abweichungen zu, da ein größerer Reibkoeffizient eine größere axiale Last zur Folge hat, welche wiederum eine stärker ausgeprägte Querkontraktion verursacht.

Fazit

Die Baugröße hat keinen Einfluss auf die relativen Abweichungen, weshalb die folgenden Aussagen auch für kleinere und größere Baugrößen als die untersuchten gelten. Die Fügelänge l_F , die Wandstärke der Welle t_W und der axiale Reibkoeffizient μ_{ax} haben einen ausgeprägten Einfluss auf die relativen Abweichungen. Die betragsmäßig größten relativen Abweichungen ergeben sich für einen Winkel des AWVs α_{AWV} von 60°, für welchen der Fugendruck beim Einpressen durch Querkontraktion geringer ist. Die Konsequenzen im Hinblick auf die Auslegungsvorgehensweisen werden exemplarisch für diesen Winkel im Folgenden beschrieben und in Abb. 6-23 grafisch veranschaulicht. Die Einpresskraft ist durch die Querkontraktion um 28 % kleiner und die Auszugskraft um 28 % größer als die mit dem rechnerischen Vorgehen berechneten Werte. Für das experimentelle Vorgehen sind die Auszugskraft durch Querkontraktion um 77 % und das übertragbare Torsionsmoment um 39 % größer als der berechnete Wert. Durch Vernachlässigung der Querkontraktion erfolgt für diesen Winkel bei beiden einfachen Auslegungsvorgehensweisen eine konservative Auslegung.

Abb. 6-23: Folgen der Querkontraktion für Auslegungsvorgehen

Folgen der Berücksichtigung der Querkontraktion (rot markiert) verglichen mit dem rechnerischen (oben) und experimentellen (unten) Auslegungsvorgehen exemplarisch für die untersuchten Pressverbindungen mit einem Winkel des AWVs α_{AWV} von 60°

Bei den betrachteten Varianten ist der Fugendruck beim Einpressen durch Querkontraktion nur bei sehr kleinen und sehr großen Winkeln des AWVs größer als durch die reine Verpressung. Für alle anderen Winkel und betrachteten Varianten ist er geringer, womit die Auslegung der aufgeführten charakteristischen mechanischen Größen bei beiden Auslegungsvorgehensweisen durch Vernachlässigung der Querkontraktion konservativ erfolgt. Lediglich das mit dem rechnerischen Auslegungsvorgehen ermittelte Torsionsmoment ist von der Querkontraktion bei axialer Last unbeeinflusst.

6.4 Experimentelle Untersuchung tribologischer Aspekte

Bei der experimentellen Untersuchung des Einpressvorgangs in Kapitel 5.4 wurden für Stahlnaben mit erhöhter Rauheit geringere Einpresskräfte F_{ein} gemessen als für Stahlnaben mit geringerer Rauheit. Weiterhin wurden für PK der großen Baureihe mit Stahlnaben mit erhöhter Rauheit geringere tangentiale Dehnungen gemessen. Aufbauend auf diesen Sachverhalten werden in den folgenden drei Unterkapiteln Hypothesen bezüglich in der Trennfuge zwischen CFK-Welle und Stahlnabe auftretenden Effekten aufgestellt und experimentelle Untersuchungen zum Nachweis dieser Hypothesen durchgeführt. Erstens erfolgt die Untersuchung, inwiefern sich die Oberflächenrauheit der Stahlnaben und damit verbunden deren Außendurchmesser durch den Fugendruck ändern (Kapitel 6.4.1). Zweitens werden die Reibkoeffizienten der Materialpaarung CFK-Stahl für unterschiedliche Oberflächenrauheiten der Stahlkomponenten experimentell ermittelt (Kapitel 6.4.2). Drittens wird die Trennfuge optisch untersucht, um ein etwaiges Eindringen der Matrix des CFKs in das Rauheitsprofil der Stahlnaben nachzuweisen (Kapitel 6.4.3). Die experimentellen Untersuchungen orientieren sich an den im Rahmen der Einpress- und Torsionsversuche in Kapitel 5.4 untersuchten PKn.

6.4.1 Einebnung der Rauheit

In diesem Kapitel wird die Einebnung der Stahlnaben untersucht und die Relevanz des Einebnens exemplarisch für die PK aus Kapitel 5.4 beurteilt.

Die Ist-Oberfläche eines Bauteils weicht immer von der geometrisch idealen Oberfläche durch beispielsweise Gestaltabweichungen ab. Eine solche Gestaltabweichung nach DIN 4760 tritt durch Rauheiten auf, welche laut *Fischer* [60] unter anderem durch den Fertigungsprozess bedingt sind. Die Beschreibung der Oberflächenrauheit erfolgt beispielsweise anhand der gemittelten Rauhtiefe R_z . Für metallische Pressverbindungen ergibt sich gemäß *Niemann* [1] das wirksame Übermaß durch plastische Einebnung der Rauheitsspitzen beim Fügen. Der Wert der Glättung *G*, der vom durchmesserbezogenen Übermaß Ü_d subtrahiert wird, ergibt sich entsprechend *DIN Norm* [61] in Abhängigkeit der R_z -Werte von Innen- und Außenteil gemäß (6-21).

$$G = 0.4 \cdot (R_{zA} + R_{zI}) \tag{6-21}$$

In früheren Veröffentlichungen wie beispielsweise *Niemann* [1] und *DIN Norm* [62] wurde der entsprechende Faktor noch mit 0,8 angegeben, was aber basierend auf Erfahrungswerten angepasst wurde. Dies ist ein Indiz für die Komplexität der betreffenden Vorgänge, die selbst bei den intensiv erforschten metallischen Pressverbindungen eine Anpassung der Auslegungsvorschriften notwendig machen. Weitere Einflussfaktoren der Einebnung sind für metallische Pressverbindungen nicht bekannt. Für hybride Pressverbindungen sind keine Veröffentlichungen zur Glättung von Oberflächenrauheiten bekannt. Hierauf und auf den zu Beginn von Kapitel 6.4 beschriebenen Sachverhalten aufbauend, werden folgende **Hypothesen** aufgestellt:

- Hypothese 1: Der Fugendruck in der Trennfuge reduziert den Außendurchmesser der Stahlnabe, indem deren Rauheit eingeebnet wird.

Voraussetzung für die Hypothesen ist, dass keine plastische Deformation der Stahlnabe, abgesehen von derjenigen der Rauheitsspitzen, auftritt, da diese ebenfalls geringere Außendurchmesser zur Folge hätte. Dies wurde in Kapitel 6.2 anhand der numerisch berechneten von-Mises-Spannungen in den Stahlnaben nachgewiesen.

Für die Untersuchungen gelten die folgenden Rahmenbedingungen:

- Die in Kapitel 5.4 untersuchten PK weisen zwei unterschiedliche Rauheitsklassen auf.
- Die Stahlnaben dürfen vor der Untersuchung ausschließlich den Belastungen aus Einpress- und Torsionsversuchen ausgesetzt gewesen sein. Das Lösen der Stahlnaben muss deshalb mit geringstmöglicher Scherbeanspruchung erfolgen, um die Kontaktfläche der PK nicht zu verändern.

Beim rechnerischen Auslegungsvorgehen aus Kapitel 4.1 werden alle charakteristischen mechanischen Größen anhand des, beispielsweise numerisch berechneten, Mittelwerts des Fugendrucks $p_{F,m,num}$ ermittelt. Dieser wird mit dem gemessenen, auf den Radius bezogenen Übermaß Ü_{r,num} berechnet. Tritt eine Übermaßänderung Δ Ü_r durch Einebnung auf, weicht der Fugendruck p_{F,m,t_0} aufgrund des linear elastischen Verhaltens um diesen Anteil vom ursprünglich berechneten Fugendruck ab. Die **Kenngröße** ξ_{Ein} beschreibt die relative Abweichung der charakteristischen mechanischen Größen durch das Einebnen von den Werten, die mit dem einfachen rechnerischen Auslegungsvorgehen ermittelt werden. Die relative Abweichung ξ_{Ein} wird in (6-22) exemplarisch für die Einpresskraft hergeleitet.

$$\xi_{F_{ein}, rechn, Ein} = \frac{F_{ein, Ein}}{F_{ein, rechnAusl}} - 1 = \frac{p_{F, m, t_0}}{p_{F, m, num}} - 1 = \frac{\Delta \ddot{U}_r}{\ddot{U}_{r, num}} = \xi_{Ein} \quad (6-22)$$

Durchführung und Auswertung

Die vor dem Einpressvorgang vermessenen PK (siehe Kapitel 5.2) werden unter thermischer Zuhilfenahme kraftfrei gelöst. Die anschließend erneut gemessenen Außendurchmesser und Rauheiten der Stahlnaben werden mit den ursprünglichen Werten verglichen. Die pro Fugendruck p_F und Rauheit R_z untersuchten PK sind in Tab. 6-6 dargestellt. Die Einordnung erfolgt hierbei mittels der in Kapitel 6.2 numerisch berechneten Fugendrücke $p_{F,m,num}$.

Tab. 6-6: Anzahl Prüfkörper Untersuchung Einebnen

Anzahl der im Rahmen der Untersuchung des Einebnens pro Rauheit und Fugendruck $p_{F.m.num}$ untersuchten Prüfkörper

	$p_{F,m,num} \approx 18 MPa$	≈ 23MPa	≈ 30MPa
$R_{z1} \approx 4 \mu m$	3	-	3
$R_{z2} \approx 13 \mu m$	2	2	-

Die Vermessung der **Außendurchmesser** der Stahlnaben $d_{N,a}$ erfolgt mittels der in Kapitel 5.2 erwähnten Koordinatenmessmaschine an den drei bei der ersten Messung verwendeten axialen Positionen. Die Differenz der Durchmesser Δd wird an jeder axialen Position berechnet, wobei der Messwert nach dem Lösen von dem Wert vor dem Einpressen subtrahiert wird. Aus den Differenzen Δd werden die Mittelwerte mit zugehöriger Standardabweichung pro PK ($\overline{\Delta} d_{PK}$ und $s_{\overline{\Delta} d_{PK}}$), PK-Klasse ($\overline{\Delta} d_{PKK}$ und $s_{\overline{\Delta} d_{PKK}}$) und Rauheitsklasse ($\overline{\Delta} d_{RK}$ und $s_{\overline{\Delta} d_{RK}}$) ermittelt. Die PK einer PK-Klasse weisen hierbei vergleichbare Rauheiten und Fugendrücke auf, die einer Rauheitsklasse lediglich vergleichbare Rauheiten. Mit dem halben Wert der Durchmesseränderung pro PK $\overline{\Delta} d_{PK}$ (entspricht der Übermaßänderung $\Delta \ddot{U}_r$) wird die relative Abweichung ξ_{Ein} entsprechend (6-22) ermittelt.

Die axialen und tangentialen **Rauheiten** $R_{z, ax}$ und $R_{z, tang}$ werden jeweils entlang zweier Messstrecken der Länge 4,8 mm gemessen. Die Messtrecken vor dem Einpressen und nach dem Lösen sind nicht identisch, wodurch ein direkter Vergleich der Messwerte nicht möglich ist und der Mittelwert $\overline{R}_{z,...}$ pro Zeitpunkt verwendet wird. Die Schwankung innerhalb eines Messzeitpunkts wird anhand des Verhältnisses $\zeta_{...} = \left|\frac{\Delta R_{z,...}}{\overline{R}_{z,...}}\right|$ beurteilt, wobei $\Delta R_{z,...}$ die Differenz der axialen oder tangentialen Rauheiten der beiden Messungen eines Messzeitpunkts ist. Weiterhin wird die Differenz der Mittelwerte $\overline{R}_{z,...}$ pro PK $\Delta R_{z,...,PK}$ zwischen den beiden Messzeitpunkten ermittelt, wobei der Messwert nach dem Lösen von dem Wert vor dem Einpressen subtrahiert wird. Zur Beurteilung einer allgemeinen Tendenz werden für beide Rauheitsrichtungen kombiniert die Mittelwerte mit zugehöriger Standardabweichung pro Rauheitsklasse ($\overline{\Delta R_{z,RK}}$ und $s_{\overline{\Delta R_{z,RK}}}$) ermittelt.

Ergebnisse

Eine tabellarische Zusammenfassung der Messwerte findet sich im Anhang in Tab. A-10 und Tab. A-11, worauf die folgenden Aussagen basieren. Alle gemessenen **Durchmesser**änderungen Δd der Stahlnaben liegen zwischen 1 µm und 6 µm und damit im Bereich der Messgenauigkeit der Koordinatenmessmaschine. Zwischen den drei Messpunkten eines PKs variiert Δd nur geringfügig, was durch die geringen Werte von $s_{\overline{\Delta}d_{PK}}$ nachgewiesen wird. Dies lässt auf eine gleichmäßige Einebnung über die gesamte Fügefläche, unabhängig von der Strecke der Relativbewegung zur CFK-Welle, schließen. Die durchweg positiven Werte von Δd sind plausibel und sprechen für "Hypothese 1". Der Mittelwert der Durchmesseränderung $\overline{\Delta}d_{RK}$ für alle PK einer Rauheitsklasse ist für R_{z1} kleiner als für R_{z2} was für "Hypothese 2" spricht, aufgrund der großen Standardabweichung $s_{\overline{\Delta}d_{RK}}$ aber nur bedingt aussagekräftig ist.

Die Mittelwerte der Durchmesseränderung pro PK-Klasse $\overline{\Delta}d_{PKK}$ mit zugehöriger Standardabweichung $s_{\overline{\Delta}d_{PKK}}$ sind in Abb. 6-24 über dem Mittelwert des numerisch berechneten Fugendrucks $p_{F.m.num}$ dargestellt.

Abb. 6-24: Durchmesseränderung durch Einebnen der Stahlnabe Mittelwert $\overline{\Delta}d_{PKK}$ mit zugehöriger Standardabweichung der Durchmesseränderung pro Prüfkörperklasse bei der Untersuchung des Einebnens der Stahlnabe

Für die geringere Rauheit R_{z1} ist Δd_{PKK} für die verschiedenen Fugendrücke vergleichbar. Für die größeren Rauheiten R_{z2} ist $\overline{\Delta} d_{PKK}$ für kleine Fugendrücke größer, was nicht plausibel erscheint und der geringen Anzahl an Messwerten geschuldet sein kann. Für die geringeren Fugendrücke ist $\overline{\Delta} d_{PKK}$ für die geringeren Rauheiten R_{z1} kleiner als für die größeren Rauheiten R_{z2} , dies ist plausibel und entspricht "Hypothese 2". Die größeren Fugendrücke weichen für die unterschiedlichen Rauheitsklassen stärker voneinander ab, weshalb die Werte für $\overline{\Delta} d_{PKK}$ nicht miteinander verglichen werden.

Die Schwankung ζ der gemessenen **Rauheiten** innerhalb eines Messzeitpunkts ist für eine Vielzahl der PK nach dem Lösen kleiner als vor dem Einpressen. Dies lässt darauf schließen, dass Rauheitsunterschiede durch den Einpress- und den Torsionsvorgang eingeebnet werden. Die Änderung der Rauheit $\Delta R_{z,PK}$ ist für alle PK für beide Rauheitsrichtungen positiv. Dies ist plausibel und spricht für "Hypothese 1". Weiterhin legt dies eine gewisse Korrelation zwischen Rauheits- und Durchmesseränderung nahe, da auch die Durchmesseränderung Δd für alle PK positiv ist. Die Rauheitsänderung $\overline{\Delta}R_{z,RK}$ aller gemessenen Rauheiten für eine Rauheitsklasse ist für R_{z1} kleiner als für R_{z2} , wobei auch mit Berücksichtigung der Standardabweichung keine Überlappung der Werte vorliegt. Dies ist ebenfalls plausibel und stützt "Hypothese 2".

Fazit

"Hypothese 1" wird durch die Abnahme der Rauheit und der Durchmesser bei allen untersuchten PKn grundlegend bestätigt. "Hypothese 2" wird ebenfalls bestätigt, da die Mittelwerte von Rauheits- und Durchmesseränderung für die raueren PK größer sind. Weiterführende Aussagen zum Einfluss des Fugendrucks und Vorhersagen der Durchmesseränderung basierend auf Fugendruck- und Rauheitswerten sind mit den vorliegenden experimentellen Daten nicht möglich. Der größte Wert der relativen Abweichung ξ_{Ein} beträgt für die untersuchten PK 6 %.

Die Folgen der Berücksichtigung der Einebnung verglichen mit dem rechnerischen Auslegungsvorgehen sind in Abb. 6-25 grafisch veranschaulicht.

 Abb. 6-25:
 Folgen der Einebnung für Auslegungsvorgehen

 Folgen der Berücksichtigung der Einebnung der Rauheit der Stahlnaben (rot markiert)

 verglichen mit dem rechnerischen Auslegungsvorgehen

Die Einpresskraft, die Auszugskraft und das übertragbare Torsionsmoment sind durch das Einebnen geringer als die mit dem rechnerischen Vorgehen berechneten Werte. Die Auslegung der Einpresskraft erfolgt durch Vernachlässigung der Einebnung damit konservativ, die der beiden anderen Größen nicht konservativ.

6.4.2 Reibkoeffizientenermittlung

Aufbauend auf dem zu Beginn des Kapitels 6.4 beschriebenen Sachverhalt wird die im Folgenden untersuchte **Hypothese** aufgestellt:

• Hypothese 3: Die Materialpaarung CFK-Stahl weist für rauere Stahloberflächen geringere Reibkoeffizienten auf.

Hinsichtlich des Einflusses der Rauheit und des Fugendrucks auf den Reibkoeffizienten finden sich in der Literatur widersprüchliche Aussagen (siehe Kapitel 3.3). Im Rahmen von Voruntersuchungen wird deshalb für die vorliegenden Fugendrücke die Unabhängigkeit des Reibkoeffizienten vom Fugendruck untersucht. In diesem Zuge wird zusätzlich der Einfluss der Prüfgeschwindigkeit auf die experimentell ermittelten Reibkoeffizienten untersucht und die Reibung im Prüfstand quantifiziert. Anschließend erfolgt die Reibkoeffizientenermittlung für die in dieser Arbeit vorliegende Materialkombination für unterschiedliche Oberflächenrauheiten des Stahlpartners.

Prüfaufbau

Die Ermittlung der Haft- und Gleitreibkoeffizienten in den Hauptuntersuchungen erfolgt an der horizontalen Ebene mit ebenen PKn der Materialpaarung CFK-Stahl, wofür eine servo-hydraulische Zug-Druck-Prüfmaschine verwendet wird. Die ebenen PK ermöglichen die Applikation definierter Fugendrücke. Die CFK-PK werden an der Unterseite eines Schlittens befestigt, der mittels einer Schnur aus hochsteifem Polyethylen über eine Stahlplatte gezogen wird. Diese Schnur weist bei der Umlenkung durch eine Metallrolle eine geringe Biegesteifigkeit auf und reduziert die damit verbundene Verfälschung des Kraftwerts. Aus der im Versuch mittels einer Kraftmessdose gemessenen Zugkraft sowie der aus dem Gewicht des Schlittens resultierenden Normalkraft können die Reibkoeffizienten berechnet werden. Eine schematische Skizze des Prüfstands findet sich in Abb. 6-26, eine Darstellung des realen Versuchsaufbaus in Abb. 6-27.

 Abb. 6-26:
 Prinzipskizze Prüfstand Reibkoeffizientenermittlung

 Prinzipskizze des Prüfstands zur Reibkoeffizientenermittlung mit grundlegenden geometrischen Abmessungen

Bezüglich der **Übertragbarkeit** der Ergebnisse der Untersuchungen auf die Einpressversuche aus Kapitel 5 kann Folgendes festgehalten werden:

- Die CFK-PK und Stahlplatten bestehen aus den gleichen Materialien wie die in Kapitel 5.2 aufgeführten.
- Durch Planschleifen und anschließendes Strahlen mit Korund und Glas ist eine vergleichbare Fertigung der Stahlkomponenten möglich.
- Die Herstellung der CFK-PK erfolgt im "Resin Transfer Moulding"-Verfahren, wobei angenommen wird, dass unabhängig vom Fertigungsverfahren eine reine Matrixschicht die Oberfläche bildet, weshalb auch für diese eine Übertragbarkeit gewährleistet ist.

- Die Fugendrücke der Einpressversuche (10 bis 40 MPa entsprechend Kapitel 6.2) sind mit dem vorliegenden Versuchsaufbau nicht realisierbar. Laut Literaturrecherche in Kapitel 3.3 hat der Fugendruck bei der vorliegenden Größenordnung aber keinen Einfluss auf die Reibkoeffizienten, was im Rahmen der Voruntersuchungen nachgewiesen wird, weshalb auch diesbezüglich eine Übertragbarkeit gewährleistet ist.
- Für jede Stahlmessstrecke wird der Rauheitswert R_z entlang einer Messstrecke von 5,6 mm ermittelt, deren Mittelwerte mit zugehöriger Standardabweichung für die einzelnen Kombinationen in Tab. 6-7 dargestellt sind. Die Rauheiten entsprechen in etwa den im Anhang in Tab. A-1 bis Tab. A-4 aufgeführten Werten.
- Die Stahlnaben in Kapitel 5 werden drehend zerspant und geschliffen, wodurch eine tangentiale Vorzugsrichtung vorliegt. Beim Einpressen gleiten CFK und Stahlnabe senkrecht zu dieser Vorzugsrichtung aufeinander ab, wobei die Fasern der CFK-Welle einen Winkel von ±30° zur Gleitrichtung aufweisen. Bei der anschließenden Torsionsbelastung gleiten CFK und Stahl parallel zur Vorzugsrichtung aufeinander ab, wobei die Fasern einen Winkel von ±60° zur Gleitrichtung aufweisen. Diese für die Einpress- und Torsionsversuche relevanten Kombinationen aus Bearbeitungsrichtung des Stahls und Faserorientierung des CFK-Bauteils werden untersucht, indem die CFK-PK eine Decklage mit einem Winkel von 30° beziehungsweise 60° zur Abzugsrichtung aufweisen.
- Die Belastungshistorie der torsionsbelasteten PK, die zuvor eingepresst wurden, kann mit ebenen PKn nicht abgebildet werden. Jeder PK wird daher nur einmal getestet, um eine Vergleichbarkeit der Werte untereinander sicherzustellen.

Mittelwerte und Standardabweichungen der Rauheiten der Stahlkomponenten für die

Reibkoeffizientenermittlung zur Mess- und Prüfrichtung	g (Bearbeitungsrichtung sen)	nkrecht beziehungsweise paral
Material	Mittelwert Rauheit \overline{R}_{z} [µm]	Standardabweichung Rauheit [µm]
Stahl geschliffen, senkrecht	4,56	0,48
Stahl geschliffen, parallel	1,97	0,28
Stahl gestrahlt, parallel	8,69	1,76
Stahl gestrahlt, senkrecht	9,64	2,21

Tab. 6-7: Rauheiten Stahlkomponenten Reibkoeffizientenermittlung

Die Prüfstrecke $l_{Prüf}$ beträgt 100 mm. Die Soll-Abmessungen der CFK-PK 20 x 20 x 4,2 mm. Das Gesamtgewicht aus Schlitten, Zusatzgewicht und CFK-PK be-

trägt 22,93 kg, woraus sich ein Fugendruck p_F von 0,56 MPa ergibt. Die Position des Schlittens wird so gewählt, dass in der Mitte der Prüfstrecke kein Kippmoment auftritt, wodurch sich in Summe das geringste Kippmoment über den Versuchsverlauf ergibt. Aus den geometrischen Verhältnissen ergibt sich die Bedingung für kein Kippmoment um den Punkt A entsprechend Abb. 6-28 aus (6-23) zu (6-24). Die Wirkungslinie der Zugkraft F_Z muss durch den Punkt A gehen. Die Position l_{oK} ohne Kippmoment liefert die Startposition l_{Start} des Schlittens gemäß (6-25).

Abb. 6-27: Prüfaufbau Reibkoeffizientenermittlung

Übersicht des Prüfaufbaus zur Reibkoeffizientenermittlung (links), CFK-PK auf Unterseite des Schlittens (rechts oben), Schlitten auf Stahlplatte (rechts unten)

$$\sum M_A \stackrel{!}{=} 0: F_Z \cdot \sin(\alpha_{oK}) \cdot l_H - F_Z \cdot \cos(\alpha_{oK}) \cdot (h_H + h_{CFK}) = 0 \quad (6-23)$$

$$\tan(\alpha_{oK}) = \frac{h_H + h_{CFK}}{l_H}$$
(6-24)

$$l_{Start} = l_{oK} + \frac{l_{Pr\ddot{u}f}}{2} = \frac{h_R - R - h_{Stahl}}{\tan(\alpha_{oK})} + \frac{l_{Pr\ddot{u}f}}{2}$$
(6-25)

Voruntersuchung von Fugendruck und Reibungsverlusten

Im Rahmen der Voruntersuchung wird der Einfluss des Fugendrucks p_F sowie der Prüfgeschwindigkeit untersucht. Als Stahlplatte wird ein hochglanzpoliertes Blech verwendet, weshalb die Ergebnisse der Voruntersuchungen nicht quantitativ mit denen der Hauptuntersuchungen verglichen werden können. Es werden zwei Arten von CFK-PKn mit Abmessungen 20 x 20 mm beziehungsweise 30 x 30 mm untersucht, womit sich Fugendrücke von 0,55 MPa beziehungsweise 0,25 MPa ergeben. Als Prüfgeschwindigkeit werden 50, 100 und 150 mm/Min miteinander verglichen. Mit den unterschiedlichen Fugendrücken werden jeweils 15 Versuche, mit den unterschiedlichen Geschwindigkeiten jeweils 5 Versuche durchgeführt. Die Mittelwerte der Reibkoeffizienten mit zugehöriger Standardabweichung sind in Abb. 6-29 dargestellt. Die Ermittlung der Reibkoeffizienten erfolgt wie bei den Hauptuntersuchungen, was weiter unten beschrieben wird.

Abb. 6-29:Ergebnisse Voruntersuchung ReibkoeffizientenErgebnisse der Voruntersuchung zum Einfluss des Fugendrucks (links) und der Prüfgeschwindigkeit (rechts) auf den Haft- und Gleitreibkoeffizienten

Der Fugendruck und die Prüfgeschwindigkeit haben keinen maßgeblichen Einfluss auf die ermittelten Werte von Haft- und Gleitreibkoeffizient.

In einer weiteren Voruntersuchung wurden die Reibungsverluste im Prüfstand quantifiziert. Hierbei hat sich gezeigt, dass für die in den Hauptuntersuchungen relevanten Kraftbereiche die Reibungsverluste weniger als 1 % der gemessenen Zugkraft entsprechen und damit vernachlässigt werden können.

Durchführung und Auswertung der Reibkoeffizientenermittlung

Für jeden PK wird der Versuch zwei Minuten nach Gewichtsbeaufschlagung begonnen, wobei die Messung beim Erreichen einer Vorkraft von 10 N startet. Der Verfahrweg beträgt 100 mm und die Verfahrgeschwindigkeit 50 mm/Min. Pro Kombination aus Bearbeitungsrichtung und Faserorientierung werden fünf PK getestet. Bei der Durchführung war teilweise ein nahezu gleichmäßiges Gleiten und teilweise eine ruckartige Bewegung, die im Folgenden als Stick-Slip bezeichnet wird, zu verzeichnen. Der Reibkoeffizient zu einem Zeitpunkt *t* wird mittels (6-26) berechnet, wobei das Kräftegleichgewicht am Schlitten entsprechend Abb. 6-28 aufgestellt wird und entsprechend den Voruntersuchungen angenommen wird, dass die gemessene Kraft der Kraft F_Z am Schlitten entspricht. Der Winkel α wird gemäß (6-27) in Abhängigkeit der Traversenposition *x* berechnet.

$$\mu(t) \cong \frac{F_Z(t) \cdot \cos(\alpha(t))}{F_G - F_Z(t) \cdot \sin(\alpha(t))}$$
(6-26)

$$\alpha(t) = \tan^{-1}\left(\frac{h_R - R - h_{Stahl} - h_H - h_{CFK}}{l_{Start} - l_H - x(t)}\right)$$
(6-27)

Die Haft- und Gleitreibkoeffizienten werden für die gleitenden Verläufe entsprechend der linken Seite von Abb. 6-30 bestimmt. Der Haftreibkoeffizient μ_{Haft} wird gleich dem initialen Haftreibkoeffizient $\mu_{init,Haft}$ gesetzt. Der Gleitreibkoeffizient μ_{Gleit} wird als Mittelwert der Reibkoeffizienten im markierten Bereich bestimmt und der initiale Wert $\mu_{init,Gleit}$ gleich diesem Wert gesetzt. Für die Stick-Slip-Verläufe werden die Ergebnisgrößen entsprechend der rechten Seite von Abb. 6-30 bestimmt. Der Mittelwert der Maximalwerte liefert den Haftreibkoeffizienten μ_{Haft} , der der Minimalwerte liefert den Gleitreibkoeffizienten μ_{Gleit} .

Ergebnisse der Reibkoeffizientenermittlung

Schleifspuren und Abrieb: Außer für die geschliffenen, parallel zur Bearbeitungsrichtung belasteten Stahlplatten sind auf den Oberflächen aller Stahlplatten Schleifspuren erkennbar (siehe Untersuchung mittels Auflichtmikroskopie im Anhang Abb. A-1). Auch der mit bloßem Auge erkennbare Abrieb der CFK-PK, die parallel zu den geschliffenen Stahlplatten geprüft wurden, ist gering. Bei den restlichen PKn weisen vor allem diejenigen, die mit den gestrahlten Stahlplatten geprüft worden sind, einen stark ausgeprägten Abrieb auf (siehe Untersuchung mittels Auflichtmikroskopie im Anhang Abb. A-2).

Reibkoeffizientverläufe: Ein Gleiten tritt ausschließlich für parallel zur Bearbeitungsrichtung belastete Stahlplatten auf. Bei allen anderen Stahlplatten tritt ein Stick-Slip-Effekt auf. Bei den gestrahlten Stahlplatten ist ein starker Abfall nach dem initialen Haften und eine anschließende Zunahme der Reibkoeffizienten zu verzeichnen. Dieser Sachverhalt muss tribologische Ursachen haben.

Haft- und Gleitreibkoeffizienten: Die Haft- und Gleitreibkoeffizienten μ_{Haft} und μ_{Gleit} für die einzelnen Versuche und die Standardabweichungen bei deren Ermittlung (gemäß Abb. 6-30) können im Anhang Abb. A-3 entnommen werden. Für die geschliffenen Stahlplatten ist die Standardabweichung gering, weshalb die Mittelwerte dieser Kombinationen aussagekräftige Ergebnisse liefern. Für die gestrahlten Stahlplatten ist die Standardabweichung etwas größer, was den zunehmenden Verläufen geschuldet ist. Bei der Bewertung der Mittelwerte dieser Kombinationen sollte deshalb von einer etwas größeren Schwankung ausgegangen werden. Die Mittelwerte $\bar{\mu}_{Haft}$ und $\bar{\mu}_{Gleit}$ der Haft- und Gleitreibkoeffizienten einer Kombination mit zugehöriger Standardabweichung sowie die Mittelwerte des initialen Haftreibungskoeffizienten $\bar{\mu}_{init,Haft}$ sind in Abb. 6-31 dargestellt und im Anhang in Tab. A-12 zusammengefasst.

Abb. 6-31: Haft-, Gleitreibkoeffizient und initialer Haftreibkoeffizient Mittelwerte $\bar{\mu}_{Haft}$ und $\bar{\mu}_{Gleit}$ der Haft- und Gleitreibkoeffizienten und Mittelwert $\bar{\mu}_{init,Haft}$ des initialen Haftreibkoeffizienten der Kombinationen mit jeweiliger Standardabweichung

Die Haftreibkoeffizienten bei senkrechter Belastungsrichtung weichen für gestrahlte und geschliffene Stahlplatten nicht maßgeblich voneinander ab. Der Unterschied beim Gleitreibkoeffizienten ist etwas größer, wobei die gestrahlten Stahlplatten tendenziell größere Gleitreibkoeffizienten aufweisen. Die Haft- und Gleitreibkoeffizienten der gestrahlten Platte sind bei paralleler Belastungsrichtung um ein Vielfaches größer als bei der geschliffenen Platte. Bei den geschliffenen Platten sind die Haft- und Gleitreibkoeffizienten bei senkrechter Belastungsrichtung größer als bei paralleler. Die gestrahlten Platten weisen diesbezüglich keine nennenswerten Unterschiede auf. Der initiale Haftreibkoeffizient $\bar{\mu}_{init,Haft}$ ist für die gestrahlte, senkrecht belastete Stahlplatte deutlich größer als der entsprechende Haftreibkoeffizient $\bar{\mu}_{Haft}$. Für alle anderen Kombinationen nehmen die beiden Größen vergleichbare Werte an.

Diskussion der Reibkoeffizientenermittlung

Eine mögliche Erklärung für die Schleifspuren auf den Stahlplatten, den Abrieb der CFK-PK und den Stick-Slip-Effekt kann ein Verhaken der Oberflächenrauheiten sein, was bei den parallel zur Belastungsrichtung geschliffenen Stahlplatten nicht auftritt. Der stärkere Abrieb bei den gestrahlten Stahlplatten kann durch ein stärker abrasives Verhalten der rauen Oberfläche bedingt sein. Durch das Strahlen wird der Einfluss der Bearbeitungsrichtung nivelliert, da keine merklichen Unterschiede für die gestrahlten Stahlplatten bei unterschiedlichen Belastungsrichtungen zu verzeichnen sind. Für die gestrahlten Stahlplatten fällt der Reibkoeffizient nach Erreichen des initialen Haftreibkoeffizienten stark ab, was von einem dem Verweilen geschuldeten Ineinanderfließen der Oberflächen und einem daraus resultierenden Formschluss herrühren kann. Die ermittelten Reibkoeffizienten sind daher wahrscheinlich nicht inhärent für die vorliegende Werkstoffpaarung, sondern von der Prüfmethodik abhängig. Ein Vergleich der Werte untereinander ist dennoch möglich, da für alle Kombinationen gleiche Versuchsbedingungen vorherrschen. Da bei senkrechter Belastungsrichtung die Oberflächenbehandlung keinen maßgeblichen Einfluss auf den Haftreibkoeffizienten hat und den Gleitreibkoeffizienten nur geringfügig erhöht, kann davon ausgegangen werden, dass ein Verhaken der Oberflächen sowohl bei geschliffener als auch bei gestrahlter Oberfläche stattfindet. Bei paralleler Belastungsrichtung hat die Oberflächenbehandlung einen starken Einfluss auf die Ergebnisgrößen, was die obige Vermutung bekräftigt, dass bei der parallel belasteten, geschliffenen Oberfläche kein Verhaken stattfindet. Die größeren initialen Haftreibkoeffizienten können wie zuvor erwähnt einem Ineinanderfließen der Oberflächen geschuldet sein. Eine Erklärung, warum der initiale Haftreibkoeffizient nur für die gestrahlte, senkrecht zur Bearbeitungsrichtung belastete Stahlplatte größer ist als der zugehörige Haftreibkoeffizient, kann nicht gegeben werden.

Bei den Einpressversuchen in Kapitel 5.4 zeigt sich ebenfalls, dass eine Unterbrechung des Einpressvorgangs eine Krafterhöhung bei Fortsetzung des Einpressens zur Folge hat (siehe Abb. 6-32). Der hierbei erkennbare Kraftsprung kann von dem Unterschied zwischen Haftreibkoeffizient μ_{Haft} und initialem Haftreibkoeffizient $\mu_{init,Haft}$ herrühren. Auch in *Dickhut* [6] wird erwähnt, dass eine Unterbrechung des Einpressvorgangs vermieden werden soll, wobei hier die Überwindung der Haftreibung zwischen den Fügepartnern zum weiteren Fügen als Grund aufgeführt wird (siehe auch Kapitel 3.1).

 Abb. 6-32:
 Axialkraftverlauf Unterbrechung Einpressvorgang

 Exemplarischer Verlauf der axialen Kraft bei Unterbrechung des Einpressvorgangs für eine geschliffene Stahlnabe

Fazit

Der Einfluss der Oberflächenrauheit der Stahlplatten auf die Reibkoeffizienten ist von der Belastungsrichtung abhängig. Bei senkrechter Belastungsrichtung ändert sich der Haftreibungskoeffizient nicht maßgeblich, der Gleitreibungskoeffizient ist für rauere Stahlplatten etwas größer. Bei paralleler Belastungsrichtung weisen rauere Stahlplatten größere Haft- und Gleitreibkoeffizienten auf. Die anfangs aufgestellte "Hypothese 3" kann damit nicht bestätigt werden. Die geringeren Einpresskräfte bei den Einpressversuchen für die rauen Stahlnaben müssen daher andere Ursachen haben und können beispielsweise von der stärkeren Einebnung der Stahlnabenoberfläche bei rauen Naben (siehe Kapitel 6.4.1) herrühren.

Der große Unterschied zwischen den Haftreibkoeffizienten der geschliffenen Stahlplatten für die unterschiedlichen Belastungsrichtungen müsste zur Folge haben, dass die mit dem experimentellen Vorgehen aus Kapitel 4.2 anhand der Einpresskräfte berechneten Torsionsmomente stark überschätzt werden. Der Vergleich in Kapitel 5.4.2 zeigt für die meisten Varianten mit geschliffener Stahlnabe jedoch nur eine geringfügige Überschätzung. Die Übertragbarkeit auf die Versuche aus Kapitel 5.4 kann dadurch beeinträchtigt sein, dass für die parallel belasteten Stahlplatten die Belastungshistorie der Einpress- und anschließenden Torsionsversuche nicht abgebildet wurde und dies unterschiedliche Oberflächen und unterschiedliche Reibkoeffizienten bewirken kann.

Zur Auslegung von Pressverbindungen werden die folgenden Empfehlungen hinsichtlich Reibkoeffizienten ausgesprochen:

- Für eine genaue Auslegung der charakteristischen mechanischen Größen sollten die Haftreibkoeffizienten mit den zugehörigen initialen Werten für die jeweilige Materialkombination und Oberfläche ermittelt werden, wobei bei den tangentialen Werten die Belastungshistorie abgebildet werden sollte.
- Unterscheiden sich initialer Haftreibkoeffizient, Haftreibkoeffizient und Gleitreibkoeffizient für eine Materialpaarung, sollte für eine konservative Aus-

legung der Einpresskraft der initiale Haftreibungskoeffizient verwendet werden und für Auszugskraft und Torsionsmoment der Gleitreibkoeffizient.

• Aufgrund der teilweise höheren Werte der initialen Haftreibkoeffizienten und der bei den unterbrochenen Einpressvorgängen gemessenen Krafterhöhungen sollte eine Unterbrechung des Einpressvorgangs und die damit einhergehenden Lastspitzen vermieden werden.

Inwiefern die initialen Haftreibkoeffizient für die Auslegung relevant sind, kann im Rahmen der vorliegenden Arbeit nicht abschließend geklärt werden.

6.4.3 Eindringen der Rauheit

Aufbauend auf den zu Beginn des Kapitels 6.4 beschriebenen Sachverhalten werden folgende **Hypothesen** aufgestellt, die anhand der PK aus Kapitel 5.4 untersucht werden:

- Hypothese 4: Der Kunststoff des CFKs dringt in das Rauheitsprofil der Nabe ein, was eine geringere Dehnung des CFKs zur Folge hat.
- Hypothese 5: Dieses Eindringen ist für Naben mit größerer Rauheit stärker ausgeprägt.

Durchführung

Die PK werden im Anbindungsbereich senkrecht zur Rotationsachse getrennt und die entstehenden Ringscheiben poliert. Die Stirnflächen der Ringscheiben werden im Bereich der Trennfuge (siehe Abb. 6-33) mittels Auflichtmikroskopie untersucht.

Abb. 6-33: Ringscheiben zur optischen Untersuchung der Trennfuge

Die pro Fugendruck p_F und Rauheit R_z untersuchten PK sind in Tab. 6-8 dargestellt. Die Einordnung hinsichtlich der Fugendrücke erfolgt hierbei mittels der in Kapitel 6.2 numerisch berechneten Fugendrücke $p_{F,m,num}$. Pro Ringscheibe werden drei über den Umfang verteilte Positionen betrachtet.

Tab. 6-8: Anzahl Prüfkörper Eindringen

Anzahl der bei der Untersuchung des Eindringens pro Rauheit und Fugendruck untersuchten Prüfkörper

	$p_{F,m,num} \approx 18 MPa$	$\approx 23 MPa$	$\approx 30 MPa$
$R_{z1} \approx 4 \mu m$	1	-	1
$R_{z2} \approx 13 \mu m$	1	1	-

Exemplarische Aufnahmen der Trennfugen sind für einen PK mit geringer Rauheit und einen PK mit erhöhter Rauheit in Abb. 6-34 dargestellt.

Abb. 6-34: Mikroskopieaufnahmen Trennfuge CFK-Welle und Stahlnabe Mikroskopieaufnahme der Trennfuge zwischen CFK-Welle und Stahlnabe für Prüfkörper mit Rauheit $R_{z1} \approx 4 \,\mu m$ und Fugendruck $p_F \approx 18 \,MPa$ (oben) und Rauheit $R_{z2} \approx 13 \,\mu m$ und Fugendruck $p_F \approx 24 \,MPa$ (unten)

Ergebnisse und Diskussion

Einschneiden und Fließen: Die Oberfläche der Stahlnabe ist bei allen Aufnahmen meist mit der reinen Matrix und nur vereinzelt mit den Kohlenstofffaserfilamenten in Kontakt. Das Rauheitsprofil der Stahlnabe wird für alle PK ausschließlich von Matrix

ausgefüllt, wobei unabhängig von Rauheit und Fugendruck bei keiner Aufnahme Hohlräume zwischen CFK und Stahlnabe erkennbar sind. Eine mögliche Ursache hierfür kann ein Einschneiden der Rauheit der Stahlnabe in die Matrix beim Einpressvorgang sein, wofür der beim Einpressvorgang auftretende Abrieb spricht (siehe Kapitel 5.4). In Erhard [34] wird ebenfalls erwähnt, dass beim Kontakt von Werkstoffen verschiedener Steifigkeiten die Spitzen des steiferen Partners in die Oberfläche des weicheren eindringen. Eine zweite Ursache kann ein Fließen der Matrix sein. In Fischer [5] wird ein Füllen von Kerben in der Trennfuge aufgeführt, wofür Relaxation als Ursache genannt wird. Die Torsionsprüfung in Kapitel 5.4 zeigt zwar keinen nennenswerten Unterschied im übertragbaren Torsionsmoment der 24 beziehungsweise 1100 Stunden nach dem Einpressen tordierten PK. Ein Fließen könnte aber in noch kürzeren Zeiträumen stattfinden, was mit dieser Untersuchung nicht ausgeschlossen werden kann. Eine Kombination der beiden aufgeführten Ursachen erscheint plausibel, wobei vermutet wird, dass das Fließen auch während des Einpressens stattfinden kann. Laut Schürmann [10] weist ein polymeres Matrixsystem bei hohen Spannungen eine degressive Steifigkeitsnichtlinearität sowie eine erhöhte Kriechrate auf, wodurch das Fließen begünstigt werden könnte.

Effektives Übermaß: Die Außendurchmessermessung der Stahlnabe erfolgt durch den Messkopf an den Spitzen des Rauheitsprofils. Es wird vermutet, dass das CFK durch das Eindringen der Matrix in die Oberflächenrauheit der Stahlnabe weniger verdrängt wird als durch die Durchmessermessung angenommen. Hierdurch kann sich ein effektives Übermaß Ü_{d,eff} ergeben, welches geringer als das gemessene Übermaß Ü_{d,Mess} ist und eine geringere Dehnung der CFK-Welle und damit einen geringeren Fugendruck zur Folge hat (links in Abb. 6-35). Da bei den untersuchten PKn unabhängig von Rauheit und Fugendruck das gesamte Rauheitsprofil mit Matrix ausgefüllt ist, wird weiterhin vermutet, dass für größere Rauheiten der Stahlnabe dieser Effekt stärker ausgeprägt ist und sich ein geringeres effektives Übermaß ergibt (rechts in Abb. 6-35).

Rauheit der CFK-Welle: Die Rauheit der CFK-Welle wurde bei den vorliegenden Untersuchungen außer Acht gelassen, da bei den Einpressversuchen in Kapitel 5.4 lediglich die Stahlnaben variierende Rauheiten aufweisen. Die Rauheiten der CFK-Wellen variieren zwischen den Varianten nicht stärker als innerhalb einer Variante, weshalb die gemessenen Effekte bei den Einpressversuchen maßgeblich der Rauheit der Stahlnabe geschuldet sein müssen. Es wird aber davon ausgegangen, dass eine große Rauheit der CFK-Welle stärker eingeebnet werden kann, was das effektive Übermaß weiter reduziert. Die Differenz zwischen effektivem und gemessenem Übermaß wäre damit von beiden Rauheiten abhängig. Es wird vermutet, dass das dem Fließen geschuldete Eindringen stark vom Rauheitsprofil der Komponenten abhängt, da die Fläche zwischen den Rauheitsspitzen das von der Matrix auszufüllende Volumen und damit das effektive Übermaß beeinflusst.

Abb. 6-35:Schematische Darstellung gemessenes und effektives ÜbermaßSchematische Darstellung von gemessenem und effektivem Übermaß (links) und von verschiedenen Ausprägungen bei verschiedenen Rauheiten (rechts)

Fazit

Das Rauheitsprofil der Stahlnabe ist nachweislich komplett mit Matrix gefüllt, was ein geringeres effektives als gemessenes Übermaß und eine geringere tangentiale Dehnung zur Folge haben muss. Hiermit ist "Hypothese 4" nachgewiesen. Weiterhin tritt dieser Sachverhalt nachweislich für alle untersuchten Varianten unabhängig von Fugendruck und Rauheit auf. Das Eindringen muss also für Stahlnaben mit größerer Oberflächenrauheit stärker ins Gewicht fallen, womit "Hypothese 5" nachgewiesen ist. Inwiefern die nachgewiesenen Vorgänge für sehr geringe Fugendrücke und sehr große Rauheiten gelten, kann auf Basis dieser Untersuchungen nicht bewertet werden. Die getroffenen Aussagen gelten damit nur für die untersuchten Fugendruck- und Rauheitsbereiche der vorliegenden Materialkombination. Eine Quantifizierung des Eindringens und ein damit verbundener Vergleich mit den anderen in Kapitel 6 untersuchten Aspekten ist nicht möglich, da vermutet wird, dass die Ausprägung stark vom Rauheitsprofil der Komponenten abhängt. Die Auswirkung des Eindringens auf die Einpresskraft ist nicht quantifizierbar, da sich aus den vorliegenden Untersuchungen nicht ergibt, wieviel Kraftmehraufwand für das Eindringen erforderlich ist und wieviel sich die Kraft durch das geringere effektive Übermaß reduziert. Hinsichtlich der Auslegungsrichtlinien können keine expliziten Empfehlungen gegeben werden. Generell muss durch den erbrachten Nachweis des Eindringens aber davon ausgegangen werden, dass vor allem bei rauen Naben geringere effektive als gemessene Übermaße vorliegen. Für große Baugrößen sollte bei gleichen Rauheiten der Effekt des Eindringens weniger stark ins Gewicht fallen, da der Anteil am Übermaß geringer ist.

7 Untersuchung analytischer Vereinfachungen

Bei dem in Kapitel 4.1 definierten rechnerischen Auslegungsvorgehen mit analytisch ermitteltem Fugendruck wird der Ansatz von *Fischer* [5] verwendet. Entsprechend Kapitel 3.1.2 werden bei diesem Ansatz verschiedene **Vereinfachungen** getroffen:

- Die radiale Dehnung wird vernachlässigt.
- Die Fugendrucküberhöhung an den Enden der Trennfuge wird nicht abgebildet.
- Das Laminat muss anhand von Ingenieurskonstanten abgebildet werden.

Im folgenden Absatz erfolgt eine kurze Diskussion zum Thema Ingenieurskonstanten, deren Verwendung für unsymmetrische Laminate in bestimmter Fachliteratur kritisch gesehen wird (siehe Kapitel 3.4). Der unsymmetrische Laminataufbau wird durch die Rotationssymmetrie bei der Pressverbindung ausgeglichen, wodurch eine Verwendung der Ingenieurskonstanten entsprechend *Schürmann* [10] zulässig sein könnte. Aus den folgenden Gründen ergibt sich durch die Verwendung der Ingenieurskonstanten bei der Pressverbindung für symmetrische und unsymmetrische Laminate mit mehreren Faserorientierungen aber dennoch ein Fehler in der Auslegung. Bei der Pressverbindung liegt gemäß (3-6) bei konstanter radialer Verschiebung u_r eine über die Wandstärke variierende tangentiale Dehnungsverteilung vor, wodurch die Position der einzelnen Lagen eine Rolle spielt. Diese Information geht bei den Ingenieurskonstanten jedoch verloren. *Fischer* [5] trifft die Aussage, dass sein Ansatz für aus AWV und/oder 0°und 90°-Lagen bestehende Laminate geeignet ist, da sich diese orthotrop im Wellen-KS verhalten, geht aber nicht auf die Problematik der fehlenden Lagenposition ein. Die sich hieraus ergebenden Einschränkungen werden in diesem Kapitel untersucht.

Die Auswirkungen der Vereinfachungen werden für die PK aus Kapitel 5 durch Abgleich mit experimentell ermittelten und numerisch berechneten Größen aufgezeigt (Kapitel 7.1). Die Auswirkungen der einzelnen Vereinfachungen werden am symmetrisch diskretisierten AWV untersucht (Kapitel 7.2). Der Einfluss der Verwendung der Ingenieurskonstanten kann nur in Kombination mit den anderen Vereinfachungen untersucht werden, was für den symmetrisch diskretisierten AWV und weitere symmetrische und unsymmetrische Laminate erfolgt (Kapitel 7.3).

7.1 Abgleich mit Einpressversuchen

Ein Teil der nachfolgenden Untersuchungen wurde bereits von Fahr [47, 56] veröffentlicht.

Bei der analytischen Berechnung erfolgt die Berücksichtigung der Messwerte der einzelnen PK entsprechend dem Vorgehen aus Kapitel 6.2. Für das aus $\pm 30^{\circ}$ - und 90°-Lagen bestehende unsymmetrische Laminat werden die SoV-Ingenieurskonstanten ermittelt (siehe Kapitel 3.4). Die Berechnung der tangentialen Dehnung $\varepsilon_{\theta,M,ana}$ auf der äußeren Mantelfläche der CFK-Welle in der Mitte der Fügelänge erfolgt gemäß (7-1). Hierbei ist $u_{r,M,ana}$ die mit dem analytischen Ansatz von *Fischer* [5] berechnete radiale Verschiebung der CFK-Welle und $r_{W,a}$ deren Außenradius.

$$\varepsilon_{\theta,M,ana} = \frac{u_{r,M,ana}}{r_{W,a}} \tag{7-1}$$

Der Mittelwert des analytisch berechneten Fugendrucks $p_{F,m,ana}$ wird gemäß (6-1) bestimmt. Anhand dessen wird die Einpresskraft $F_{ein,ana}$ entsprechend (4-1) berechnet. Hierbei wird der Haftreibkoeffizient μ_{Haft} für beide Baugrößen so gewählt, dass die Abweichung für die PK der Referenzvariante minimal wird (Anmerkung: Dieser Wert entspricht nicht zwangsläufig dem in Realität vorliegenden physikalischen Wert des Haftreibkoeffizienten). Eine Auflistung der berechneten Größen findet sich im Anhang in Tab. A-13 und Tab. A-14.

Für die einzelnen Varianten sind die Mittelwerte der relativen Abweichung der tangentialen Dehnung $\bar{\xi}_{\theta,b-e}$ vom experimentell gemessenen Wert mit zugehöriger Standardabweichung $s_{\xi\theta}$ für die analytische und numerische Berechnung (aus Kapitel 6.2) in Abb. 7-1 und Abb. 7-2 dargestellt.

200					
160	160		Variante	$\bar{\xi}_{ heta,b-e}$ [%]	s _{ξθ} [%]
\sum_{80}^{120}	$\begin{bmatrix} 120 \\ 80 \\ 40 \\ 0 \\ -40 \end{bmatrix}$		Referenz	52,8	2,8
^e 40		I	±30° dick	100,3	20,3
-40		90° dick	134,5	44,5	
Referent dick dick Rall man hise inter		Rau	50,5	4,2	
		Großes Übermaß	44,4	6,4	
		CHOBES LINE	Kurze Fügelänge	50,9	7,9
		e ,			

Numerische Berechnung

Analytische Berechnung

Abb. 7-1: Relative Abweichung numerische und analytische tangentiale Dehnung kleine Baugröße

Mittelwert $\bar{\xi}_{\theta,b-e}$ und Standardabweichung der relativen Abweichung der numerischen und analytischen von der experimentellen tangentialen Dehnung für die kleine Baugröße (links); Zahlenwerte von $\bar{\xi}_{\theta,b-e}$ und $s_{\xi\theta}$ für die analytische Berechnung (rechts)

Numerische Berechnung

Analytische Berechnung

Abb. 7-2: Relative Abweichung numerische und analytische tangentiale Dehnung große Baugröße

Mittelwert $\bar{\xi}_{\theta,b-e}$ und Standardabweichung der relativen Abweichung der numerischen und analytischen von der experimentellen tangentialen Dehnung für die große Baugröße (links); Zahlenwerte von $\bar{\xi}_{\theta,b-e}$ und $s_{\xi\theta}$ für die analytische Berechnung (rechts)

Tangentiale Dehnung: Der Mittelwert der relativen Abweichung $\bar{\xi}_{\theta,b-e}$ ist für alle Varianten positiv, d.h. dass die analytisch berechneten tangentialen Dehnungswerte größer als die gemessenen Dehnungswerte sind. Durch die Vernachlässigung der radialen Dehnung ist die radiale Verschiebung konstant über die Wandstärke. In Realität tritt eine solche radiale Dehnung auf, wodurch die radiale Verschiebung an der Außenfläche geringer als an der Innenfläche ist und die tangentiale Dehnung bei der analytischen Berechnung tendenziell überschätzt wird (siehe Kapitel 7.2.2). Durch die Verwendung der SoV-Ingenieurskonstanten werden die 90°-Lagen virtuell näher an die Trennfuge verschoben, wodurch sich das Laminat in der Berechnung steifer verhält und die tangentiale Dehnung an der Außenfläche tendenziell unterschätzt wird. Dies legt nahe, dass die Vernachlässigung der radialen Dehnung für die vorliegenden PK stärker ins Gewicht fällt als die Verwendung der Ingenieurskonstanten, was in Kapitel 7.3 näher beleuchtet wird. Der Mittelwert der relativen Abweichung $\bar{\xi}_{\theta,b-e}$ ist für die Varianten mit der großen Wandstärke der ±30°- beziehungsweise 90°-Lagen größer als bei den restlichen Varianten, die vergleichbare Wandstärken aufweisen. Dies legt die Vermutung nahe, dass die Vereinfachungen stärker ins Gewicht fallen, je größer die Wandstärken sind, was in den nachfolgenden Kapiteln untersucht wird. Durch einen Vergleich der kleinen und großen Baugröße kann dies grundlegend bestätigt werden, da der Mittelwert $\bar{\xi}_{\theta,b-e}$ für jede Variante der kleinen Baugröße, die größere Wandstärkenverhältnisse der PK aufweisen (siehe Tab. 5-3), größer ist als bei der großen Baugröße.

Für die einzelnen Varianten sind die Mittelwerte der relativen Abweichung der Einpresskraft $\bar{\xi}_{F,b-e}$ vom experimentell gemessenen Wert mit zugehöriger Standardabweichung $s_{\xi F}$ für die analytische und numerische Berechnung (aus Kapitel 6.2) in Abb. 7-3 und Abb. 7-4 dargestellt.

Numerische Berechnung

Analytische Berechnung

Abb. 7-3: Relative Abweichung numerische und analytische Einpresskraft kleine Baugröße Mittelwert $\bar{\xi}_{F,b-e}$ und Standardabweichung der relativen Abweichung der numerischen und analytischen ($\mu_{Haft} = 0,31$) von der experimentellen Einpresskraft für die kleine Baugröße (links); Zahlenwerte von $\bar{\xi}_{F,b-e}$ und $s_{\xi F}$ für die analytische Berechnung (rechts)

Numerische Berechnung

Analytische Berechnung

Abb. 7-4: Relative Abweichung numerische und analytische Einpresskraft große Baugröße Mittelwert $\bar{\xi}_{F,b-e}$ und Standardabweichung der relativen Abweichung der numerischen und analytischen ($\mu_{Haft} = 0,37$) von der experimentellen Einpresskraft für die große Baugröße (links); Zahlenwerte von $\bar{\xi}_{F,b-e}$ und $s_{\xi F}$ für die analytische Berechnung (rechts)
Einpresskraft: Für beide Baugrößen ist der Mittelwert der relativen Abweichung $\bar{\xi}_{F,b-e}$ bei der Referenzvariante und den Varianten mit großem Übermaß und kurzer Fügelänge vergleichbar. Aufgrund der gleichen Wandstärkenverhältnisse und Oberflächen der Stahlnabe dieser Varianten ist die gute Übereinstimmung plausibel. Bei der kleinen und großen Baugröße ist der Mittelwert der relativen Abweichung $\bar{\xi}_{F,b-e}$ für die Variante mit der rauen Stahlnabe etwas größer, was durch die unterschiedliche Oberfläche der Stahlnabe und die damit verbundenen unterschiedlichen Reibverhältnisse bedingt sein muss. Bei der kleinen Baugröße ist der Mittelwert der relativen Abweichung $\bar{\xi}_{F,b-e}$ für die Varianten mit großer Wandstärke der $\pm 30^{\circ}$ - beziehungsweise 90°-Lagen am größten, was den bei der tangentialen Dehnung vermuteten zunehmenden Einfluss der Vereinfachungen des analytischen Ansatzes mit zunehmender Wandstärke untermauert. Bei der großen Baugröße sind die Unterschiede nur für die Variante mit großer Wandstärke der $\pm 30^{\circ}$ -Lagen stärke unterschied-Interschiede interschied-Interschiede interschied-Interschiede interschied-Interschiede nur für die Varianten mit großer Wandstärke unterschiede nur für die Varianten mit großer Stahlen Dehnung vermuteten Zunehmender Wandstärke untermauert. Bei der großen Baugröße sind die Unterschiede nur für die Varianten mit großer Wandstärke der $\pm 30^{\circ}$ -Lagen stärker ausgeprägt, was auf die unterschied-lichen Wandstärkenverhältnisse zurückzuführen ist.

Vergleich mit Numerik: Die Absolutwerte des Mittelwerts der relativen Abweichung $\bar{\xi}_{\theta,b-e}$ sind für die analytische Berechnung größer als für die numerische Berechnung. Bei der kleinen Baugröße ist der Mittelwert der relativen Abweichung $\bar{\xi}_{F,b-e}$ für die Varianten mit der großen Wandstärke der ±30°- beziehungsweise 90°-Lagen bei der analytischen Berechnung um ein Vielfaches größer als bei der numerischen. Bei der großen Baugröße ist dies für die Variante mit großer Wandstärke der ±30°-Lagen der Fall. Weiterhin sind die Mittelwerte $\bar{\xi}_{\theta,b-e}$ und $\bar{\xi}_{F,b-e}$ bei der analytischen Berechnung im Gegensatz zur numerischen Berechnung stark von den Wandstärkenverhältnissen abhängig. Die Vereinfachungen des analytischen Ansatzes werden in der numerischen Berechnung berücksichtigt, weshalb die aufgeführten Sachverhalte diesen Vereinfachungen.

7.2 Getrennte Untersuchung einzelner Vereinfachungen

In diesem Kapitel erfolgt die Untersuchung einzelner Vereinfachungen des analytischen Ansatzes an einem symmetrisch diskretisierten AWV. Für eine Vergleichbarkeit der Untersuchungen werden Rahmenbedingungen definiert (Kapitel 7.2.1), anhand derer die Vernachlässigung der radialen Dehnung (Kapitel 7.2.2) und der Fugendrucküberhöhung (Kapitel 7.2.3) untersucht wird.

7.2.1 Rahmenbedingungen

Die **Kenngrößen** werden für die einzelnen Vereinfachungen jeweils spezifisch formuliert. Hierbei liegt die Frage zugrunde, wie stark eine Größe der Pressverbindung durch Abbildung des vereinfachten Aspekts relativ von dem Wert abweicht, der ohne dessen Abbildung ermittelt wird. Die Gestaltungsparameter und die zugehörigen Intervalle aus Tab. 6-2 werden wie bei der numerischen Untersuchung einfaktoriell miteinander kombiniert. Lediglich der axiale Reibkoeffizient μ_{ax} kann analytisch nicht abgebildet und variiert werden. Die Referenzgeometrie für die einfaktorielle Kombination entspricht der Geometrie aus Kapitel 6.1 (siehe Abb. 6-1 und Tab. 6-1), wobei die Fase der Stahlnabe im analytischen Ansatz nicht abgebildet werden kann.

Die **analytische Berechnung** erfolgt mit dem Ansatz von *Fischer* [5] (siehe Kapitel 3.1.2), wobei die Werkstoffkennwerte aus Tab. 6-3 verwendet werden. Der AWV wird in einem Laminatanalyseprogramm mit acht Lagen symmetrisch $((+\alpha_{AWV}/ -\alpha_{AWV})_2)_s$ diskretisiert, woraus die SoV-Ingenieurskonstanten berechnet werden (siehe Kapitel 3.4). Die Verwendung der SoV-Ingenieurskonstanten hat für den symmetrischen AWV keinen Auslegungsfehler zur Folge, da kein unsymmetrisches Laminat und nur eine Faserorientierung vorliegen, wodurch die Position der einzelnen Lagen keine Rolle spielt.

Die analytisch berechneten Größen werden mit **numerischen Werten** verglichen, da beim numerischen Modell die jeweilige Vereinfachung nicht getroffen wird. Das verwendete Modell entspricht dem in Kapitel 6.1 beschriebenen reibungsfreien Basismodell der Pressverbindung, wobei 140 Elemente über die Fügelänge verwendet werden (siehe Konvergenzstudie in Kapitel 7.2.3).

7.2.2 Untersuchung radiale Dehnung

Im Folgenden wird untersucht, wie stark der Fugendruck durch die Berücksichtigung der radialen Dehnung von dem Wert ohne deren Berücksichtigung abweicht. Der Fugendruck wird in der Mitte der Trennfuge für eine Fügelänge l_F von 150 mm bestimmt, die im Rahmen einer Konvergenzstudie ermittelt wurde. Bei der analytischen und numerischen Berechnung haben Fugendruckverlauf und Fugendrucküberhöhung bei dieser Fügelänge bei den vorliegenden Varianten keinen Einfluss mehr auf den Wert in der Mitte der Trennfuge. Verglichen mit den in Kapitel 7.2.1 definierten Varianten entfällt damit die Untersuchung des Einflusses der Fügelänge. Anhand der numerisch und analytisch berechneten Fugendrücke in der Mitte der Fügelänge $p_{F,M,num}$ und $p_{F,M,analyt}$ wird die **relative Abweichung** ξ_{rad} bestimmt, welche die relative Abweichung des Fugendrucks mit radialer Dehnung ($p_{F,M,num}$) von dem Wert beschreibt, der ohne Berücksichtigung der radialen Dehnung ermittelt wird ($p_{F,M,analyt}$).

Parameterstudien

Die Baugröße hat trotz geometrisch nichtlinearer Berechnung des numerischen Modells keinen Einfluss auf die relative Abweichung ξ_{rad} , deren Werte für die Parameterstudien in Abb. 7-5 dargestellt sind.

Der Betrag der relativen Abweichung ξ_{rad} nimmt mit zunehmendem **Winkel** α_{AWV} bis zu einem Winkel von 60° ab und anschließend stark zu, was im Folgenden näher untersucht wird.

Der Einfluss des **Übermaßes** Ü_r auf die relative Abweichung ξ_{rad} ist vernachlässigbar, was aufgrund der linear elastischen Rechnung im numerischen und analytischen Fall plausibel ist.

Der Betrag der relativen Abweichung ξ_{rad} nimmt mit zunehmender Wellenwandstärke t_W zu. Dies bestätigt die in Kapitel 7.1 getätigte Vermutung, dass die radiale Dehnung bei größerer Wellenwandstärke stärker ins Gewicht fällt.

Der Betrag der relativen Abweichung ξ_{rad} nimmt mit zunehmender **Nabenwandstärke** t_N leicht zu. Auch dies ist auf die mit zunehmender Wandstärke stärker ausgeprägte radiale Dehnung zurückzuführen.

Weiterführende Untersuchungen

Für die Untersuchung des Einflusses des Winkels α_{AWV} auf die radiale Dehnung wird die Wandstärkenänderung der CFK-Hohlwelle $\Delta u_{r,W}$ aus dem numerischen Modell ermittelt, welche auf die Wandstärke bezogen der gemittelten radialen Dehnung ent-

spricht. Die radiale Dehnung der Nabe wird außer Acht gelassen, da diese um eine Größenordnung geringer ausfällt als die der CFK-Hohlwelle. Für die Berechnung der Wandstärkenänderung $\Delta u_{r,W}$ wird die radiale Verschiebung u_r am Innenradius der CFK-Hohlwelle von derjenigen am Außenradius subtrahiert. Die Werte der Wandstärkenänderung $\Delta u_{r,W}$ sind auf der linken Seite von Abb. 7-6 dargestellt. Der Verlauf der Wandstärkenänderung $\Delta u_{r,W}$ entspricht demjenigen der relativen Abweichung ξ_{rad} .

Die radiale Dehnung und damit die Wandstärkenänderung setzen sich aus einer radialen Kompression und einer radialen Querkontraktion zusammen, was dem Materialgesetz in zylindrischen Koordinaten für ein im Wellen-KS orthotropes Material entnommen werden kann (siehe (7-2) aus *Fischer* [5]).

$$\varepsilon_r = -\frac{\nu_{zr}}{E_z} \cdot \sigma_z - \frac{\nu_{\theta r}}{E_{\theta}} \cdot \sigma_{\theta} + \frac{\sigma_r}{E_r}$$
(7-2)

Ein zunehmender Winkel α_{AWV} hat aufgrund der größeren tangentialen Steifigkeit einen größeren Fugendruck zur Folge. Dieser bewirkt wiederum eine größere Spannung σ_r in radiale Richtung, welche eine größere radiale Kompression zur Folge hat. Die Querkontraktion in radiale Richtung durch die tangentiale Dehnung der CFK-Hohlwelle überlagert sich dieser radialen Kompression und wird durch die Querkontraktionszahl $v_{\theta r}$ beschrieben. Der Verlauf der Querkontraktionszahl $v_{\theta r}$ der CFK-Hohlwelle ist auf der rechten Seite von Abb. 7-6 dargestellt.

Abb. 7-6: Wandstärkenänderung und Querkontraktionszahl für verschiedene Winkel Wandstärkenänderung $\Delta u_{r,W}$ (links) und Querkontraktionszahl $v_{\theta r}$ (rechts) für verschiedene Winkel α_{AWV} , wobei die jeweils anderen Gestaltungsparameter der Referenzvariante entsprechen

Bei einem Winkel α_{AWV} von 60° wird die Querkontraktionszahl $\nu_{\theta r}$ minimal und nimmt einen negativen Wert an. Dies bedeutet, dass die Wandstärke durch Querkontraktion bei tangentialer Dehnung zunimmt, was der radialen Kompression entgegenwirkt. Aus diesem Grund ist die Wandstärkenänderung $\Delta u_{r,W}$ und damit auch die relative Abweichung ξ_{rad} für Winkel α_{AWV} im Bereich 60° gering. Der an der x-Achse gespiegelte Verlauf der Querkontraktionszahl $\nu_{\theta r}$ ist dem Verlauf der Wandstärkenänderung $\Delta u_{r,W}$ und der relativen Abweichung ξ_{rad} ähnlich, was dessen Relevanz für diese Größen aufzeigt.

Fazit

Die Baugröße hat keinen Einfluss auf die relative Abweichung ξ_{rad} , weshalb die folgenden Aussagen auch für kleinere und größere Baugrößen als die untersuchten gelten. Für alle betrachteten Varianten ist der numerisch berechnete Fugendruck $p_{F,M,num}$ kleiner als der analytisch berechnete Fugendruck $p_{F,M,analyt}$, da sich die Komponenten durch die Vernachlässigung der radialen Dehnung in der analytischen Rechnung steifer als bei der numerischen Berechnung verhalten. Die relative Abweichung ξ_{rad} ist von der Wandstärkenänderung $\Delta u_{r,W}$ und damit von der radialen Dehnung abhängig, deren Verlauf sich aus dem Zusammenspiel von radialer Kompression und Querkontraktion ergibt. Dieses Zusammenspiel variiert für unterschiedliche Winkel und wird maßgeblich von der Querkontraktionszahl $v_{\theta r}$ der Welle beeinflusst. Der Winkel α_{AWV} und die Wellenwandstärke t_W haben den größten Einfluss auf die relative Abweichung ξ_{rad} , deren Betrag für große Wellenwandstärken t_W und große Winkel α_{AWV} maximal wird. Der Einfluss der Nabenwandstärke t_N ist gering und derjenige des Übermaßes \ddot{U}_r vernachlässigbar. Die betragsmäßig größte relative Abweichung ξ_{rad} beträgt für die untersuchten Varianten -8,5 % und liegt bei der größten Wellenwandstärke vor. Bei der Auslegung mit dem analytischen Fugendruck werden die charakteristischen mechanischen Größen durch Vernachlässigung der radialen Dehnung überschätzt.

7.2.3 Untersuchung Fugendrucküberhöhung

Der analytische Ansatz von *Fischer* [5] berücksichtigt eine Fugendruckverteilung über die Fügelänge, bildet aber die Fugendrucküberhöhung an deren Anfang und Ende nicht ab. Das in Kapitel 7.2.1 beschriebene numerische Modell erfasst diese Fugendrucküberhöhung (siehe Abb. 7-7). Um den Einfluss der Fugendrucküberhöhung zu untersuchen, muss der Effekt der radialen Dehnung in den analytischen Ergebnissen rechnerisch umgangen werden. Für jede berechnete Variante wird in einem ersten Schritt die Differenz Δ_p der für die Fügelänge l_F von 150 mm in Kapitel 7.2.2 numerisch und analytisch berechneten Fugendrücke $p_{F,M,...}$ bestimmt, welche aus der radialen Dehnung resultiert. Aus dem analytischen Fugendruckverlauf $p_{F,analyt}(z)$ ergibt sich mit diesem Wert der korrigierte analytische Fugendruckverlauf $p_{F,analyt, korr}(z)$ (siehe Abb. 7-7). Die Mittelwerte der Fugendrücke $p_{F,m,...}$ werden entsprechend (6-1) bestimmt. Anschließend wird die **relative Abweichung** ξ_{Peak} durch die Fugendrucküberhöhung und einen etwaigen anderen Fugendruckverlauf ($p_{F,m,num}$) von dem mit dem analytischen Ansatz berechneten korrigierten Wert ($p_{F,m,analyt, korr}$) bestimmt.

Abb. 7-7: Korrektur analytischer Fugendruckverläufe

Netzkonvergenzstudie

Die Netzkonvergenz des numerischen Mittelwerts des Fugendrucks $p_{F,m,num}$ wird für die in Kapitel 7.2.1 definierte Referenzvariante nachgewiesen. Hiermit geht nicht zwangsläufig eine Konvergenz des Maximalwerts an den Enden der Trennfuge einher, welcher für die vorliegenden Untersuchungen jedoch nicht relevant ist. Die relative Abweichung der Mittelwerte zum mit der feinsten Vernetzung bestimmten Wert ist in Abb. 7-8 dargestellt.

Abb. 7-8: Netzkonvergenzstudie Fugendruck Relative Abweichung des numerischen Mittelwerts des Fugendrucks zum mit der feinsten Vernetzung bestimmten Wert für verschiedene Elementanzahlen (7 bis 3500) über die Fügelänge von CFK-Welle und Stahlnabe

Ab einer Elementanzahl von 140 Elementen beträgt die relative Abweichung weniger als 1 %, weshalb dieses Netz für die weiteren Untersuchungen verwendet wird.

Parameterstudien

Die Baugröße hat trotz geometrisch nichtlinearer Berechnung des numerischen Modells keinen Einfluss auf die relative Abweichung ξ_{Peak} , deren Werte für die Parameterstudien in Abb. 7-9 dargestellt sind.

Abb. 7-9: Abweichung durch Fugendrucküberhöhung

Relative Abweichung ξ_{Peak} des Fugendrucks durch Berücksichtigung der Fugendrucküberhöhung vom analytisch berechneten Wert bei Variation unterschiedlicher Gestaltungsparameter, wobei die jeweils anderen Gestaltungsparameter der Referenzvariante entsprechen

Die relative Abweichung ξ_{Peak} ist für alle **Winkel** α_{AWV} positiv und schwankt nur geringfügig. Der numerische Mittelwert des Fugendrucks $p_{F,m,num}$ ist damit größer als der korrigierte analytische Mittelwert des Fugendrucks $p_{F,m,analyt, korr}$, was durch die

Fugendrucküberhöhung in der numerischen Berechnung plausibel ist. Exemplarisch ist dies für einen Winkel α_{AWV} von 89° oben links in Abb. 7-10 dargestellt.

Auch für die untersuchten **Fügelängen** l_F ist die relative Abweichung ξ_{Peak} durchweg positiv. Mit zunehmender Fügelänge nimmt die relative Abweichung ab, da die Fugendrucküberhöhung einen anteilsmäßig geringeren Einfluss hat.

Die relative Abweichung ξ_{Peak} nimmt mit zunehmendem **Übermaß** ab und wird für sehr große Übermaße negativ. Die Ursache hierfür ist ein großer negativer Überschwinger beim numerischen Fugendruckverlauf $p_{F,num}(z)$ (siehe Abb. 7-10 rechts oben) in Kombination mit einem gleichzeitig stärkeren Anstieg am Ende der Trennfuge beim korrigierten analytischen Fugendruckverlauf $p_{F,analyt, korr}(z)$ (siehe Abb. 7-10 links unten).

Die relative Abweichung ξ_{Peak} nimmt mit zunehmender **Wellenwandstärke** t_W zuerst zu und dann ab, wobei die betragsmäßig größten Werte für die größte Wellenwandstärke t_W vorliegen. Für sehr kleine Wellenwandstärken t_W ist die negative Abweichung durch den negativen Überschwinger beim numerischen Fugendruckverlauf $p_{F,num}(z)$ (siehe Abb. 7-10 rechts oben) bedingt. Für sehr große Wellenwandstärken t_W nimmt der korrigierte analytische Fugendruckverlauf $p_{F,analyt, korr}(z)$ über eine große Strecke zu (siehe Abb. 7-10 links unten). In beiden Fällen ist damit der numerische Mittelwert des Fugendrucks $p_{F,m,num}$ trotz Fugendrucküberhöhung geringer als der korrigierte analytische Mittelwert des Fugendrucks $p_{F,m,analyt, korr}$.

Die relative Abweichung ξ_{Peak} nimmt mit zunehmender **Nabenwandstärke** t_N zu. Für kleine Nabenwandstärken t_N ist die relative Abweichung ξ_{Peak} negativ, was dem langsam ansteigenden korrigierten analytischen Fugendruckverlauf $p_{F,analyt, korr}(z)$ geschuldet ist (siehe Abb. 7-10 links unten). Für große Nabenwandstärken t_N ist die relative Abweichung ξ_{Peak} positiv, was sich durch einen nahezu konstanten korrigierten analytischen Fugendruckverlauf $p_{F,analyt, korr}(z)$ und eine starke Fugendrucküberhöhung beim numerischen Fugendruckverlauf $p_{F,num}(z)$, die den negativen Überschwinger mehr als ausgleicht, erklären lässt (siehe Abb. 7-10 rechts unten).

Abb. 7-10: Fugendruckverläufe für verschiedene Varianten Numerischer und analytisch korrigierter Fugendruckverlauf über die Fügelänge für die Varianten mit $\alpha_{AWV} = 89^{\circ}$ (oben links), $t_W = 1 mm$ (oben rechts), $t_W = 7 mm$ (unten links) und $t_N = 7 mm$ (unten rechts), wobei die jeweils anderen Gestaltungsparameter der Referenzvariante entsprechen

Fazit

Die Baugröße hat keinen Einfluss auf die relative Abweichung ξ_{Peak} , weshalb die folgenden Aussagen auch für kleinere und größere Baugrößen als die untersuchten gelten. Das Verhältnis von numerischem Mittelwert des Fugendrucks $p_{F,m,num}$ und korrigiertem analytischem Mittelwert des Fugendrucks $p_{F,m,analyt, korr}$ hängt von allen Gestaltungsparametern ab, wobei das Übermaß Ü_r, die Wellenwandstärke t_W und die Nabenwandstärke t_N einen vergleichbar großen Einfluss aufweisen. Die relative Abweichung ξ_{Peak} variiert für die untersuchten Varianten zwischen -8 % und +9 %, wobei negative Werte eine Überschätzung der charakteristischen mechanischen Größen bei der Auslegung mit dem analytischen Ansatz bedeuten. Die generelle Tendenz des numerischen Fugendruckverlaufs $p_{F,num}(z)$ wird durch den korrigierten analytischen Fugendruckverlauf $p_{F,analyt, korr}(z)$ korrekt abgebildet. Positive Abweichungen resultieren aus der Vernachlässigung der Fugendrucküberhöhung und teilweise nahezu konstanten analytischen Verläufen. Negative Abweichungen resultieren aus einem am Ende der Trennfuge über große Strecken zunehmenden analytischen Fugendruckverlauf, was teilweise durch einen starken negativen Überschwinger im numerischen Verlauf verstärkt wird. Der Fugendruckverlauf ist vom Zusammenspiel einer Vielzahl von geometrischen und werkstoffspezifischen Größen abhängig, was eine Kurvendiskussion der dem analytischen Ansatz von *Fischer* [5] zugrundeliegenden Gleichungen ergibt. Eindeutige Aussagen, für welche Ausprägungen der Gestaltungsparameter positive oder negative Abweichungen zu erwarten sind, lassen sich daher nicht treffen.

7.3 Kombinierte Untersuchung aller Vereinfachungen

In diesem Kapitel werden die Vereinfachungen des analytischen Ansatzes kombiniert untersucht, was in Kapitel 7.3.1 für symmetrische und in Kapitel 7.3.2 für unsymmetrische Laminate erfolgt.

Die **relative Abweichung** $\xi_{analyt,SoV}$ des numerischen Mittelwerts des Fugendrucks $p_{F,m,num}$ vom mit den SoV-Ingenieurskonstanten berechneten analytischen Mittelwert des Fugendrucks $p_{F,m,analyt,SoV}$ wird bestimmt. Hinsichtlich des rechnerischen Auslegungsvorgehens aus Kapitel 4.1 gibt diese Kenngröße an, wie stark eine charakteristische mechanische Größe der Pressverbindung ohne die analytischen Vereinfachungen relativ von dem Wert abweicht, der mit dem analytischen Fugendruck ermittelt wird.

7.3.1 Symmetrische Laminate

Symmetrisch diskretisierter AWV

Die nachfolgenden Untersuchungen orientieren sich an den Rahmenbedingungen aus Kapitel 7.2.1. Die relativen Abweichungen $\xi_{analyt,SoV}$ sind in Abb. 7-11 dargestellt, wobei die Baugröße trotz geometrisch nichtlinearer Rechnung des numerischen Modells keinen Einfluss auf die Abweichung hat.

Abb. 7-11: Relative Abweichungen für symmetrisch diskretisierten AWV Relative Abweichung $\xi_{analyt,SoV}$ des numerischen Fugendrucks vom analytisch berechneten Wert für einen symmetrisch diskretisierten AWV bei Variation unterschiedlicher Gestaltungsparameter, wobei die jeweils anderen Gestaltungsparameter der Referenzvariante entsprechen

Der Verlauf der relativen Abweichung $\xi_{analyt,SoV}$ ergibt sich aus der Summe der relativen Abweichungen ξ_{Peak} und ξ_{rad} (siehe Kapitel 7.2), was durch das bei linear elastischer Rechnung geltende Superpositionsprinzip plausibel ist. Die Begründungen für die einzelnen Verläufe können damit Kapitel 7.2 entnommen werden.

Fazit symmetrisch diskretisierter AWV

Die Baugröße hat keinen Einfluss auf die relative Abweichung $\xi_{analyt,SoV}$, weshalb die folgenden Aussagen auch für kleinere und größere Baugrößen als die untersuchten

gelten. Die Abweichung zwischen numerisch und analytisch berechnetem Mittelwert des Fugendrucks ist von allen Gestaltungsparametern abhängig, wobei der Winkel α_{AWV} , das Übermaß Ü_r, die Wellenwandstärke t_W und die Nabenwandstärke t_N einen vergleichbar großen Einfluss aufweisen. Vor allem für große Winkel α_{AWV} , sehr kleine und sehr große Übermaße Ü_r, große Wellenwandstärken t_W und geringe Nabenwandstärken t_N weicht der analytische Mittelwert des Fugendrucks $p_{F,m,analyt, SoV}$ stärker vom numerischen $p_{F,m,num}$ ab. Die Werte der relativen Abweichung $\xi_{analyt,SoV}$ variieren für die untersuchten Varianten zwischen -14 % und +5 %. Die betragsmäßig größte relative Abweichung $\xi_{analyt,SoV}$ liegt für die größten Wellenwandstärken t_W vor, was die in Abb. 7-12 exemplarisch dargestellten Konsequenzen auf das rechnerische Auslegungsvorgehen hat. Die charakteristischen mechanischen Größen werden in diesem Fall bei der Auslegung mit dem analytisch ermittelten Fugendruck überschätzt. Die Auslegung der Einpresskraft ist damit konservativ und die der Auszugskraft und des Torsionsmoments nicht konservativ.

Weitere symmetrische Laminate

Im Folgenden wird ein aus einem AWV und Umfangslagen bestehendes symmetrisches Laminat betrachtet, wobei auch die unsymmetrischen Laminate aus Kapitel 7.3.2 definiert werden. Die Untersuchung der Skalierbarkeit entfällt, da bei allen vorangegangenen Untersuchungen kein Einfluss derselben feststellbar war. Die Geometrie der berechneten Varianten orientiert sich an den vorangegangenen Untersuchungen. Die Werte des Nabenaußenradius $r_{N,a}$, der Fügelänge l_F , des Übermaßes Ü $_r$, der Nabenwandstärke t_N , der Länge der Welle l_W und der Nabe l_N können Tab. 6-1 entnommen werden. Der Lagenaufbau der CFK-Hohlwelle besteht aus einem AWV in Kombination mit 90°-Lagen. Als innerste Lage wird eine AWV-Lage verwendet, um die Gefahr der Schädigung beim Fügen eines Längspressverbands zu reduzieren. Die Lagen einer Faserorientierung sind gleichmäßig über die Wandstärke verteilt. Der Laminataufbau sowie die Wandstärke der CFK-Hohlwelle werden variiert, wobei die in Tab. 7-1 aufgeführten Intervalle der Gestaltungsparameter vollfaktoriell miteinander kombiniert werden, was jeweils eine Gesamtanzahl von 108 Kombinationen ergibt.

Tab. 7-1: Gestaltungsparameter f ür weitere Laminate

Gestaltungsparameter mit Intervallen für weiterführende symmetrische und unsymmetrische Laminate

Bezeichnung	Formelzeichen	Werte	Einheit
Winkel AWV	$lpha_{AWV}$	30; 45; 60	0
Wandstärke Welle	t_W	1; 3; 5; 7	mm
Anteil AWV-Lagen	ζ_{AWV}	0,1; 0,5; 0,9	-
Anzahl Lagen (bei symmetrischen Laminaten)	n	3; 5; 7	-
Anzahl Lagen (bei unsymmetrischen Laminaten)	n	2; 4; 6	-

Bei der Variation der Anzahl der Lagen n werden keine fertigungstechnischen Einschränkungen, wie beispielsweise die Mindestwandstärke einer Lage, berücksichtigt. Die Dicke der einzelnen Lagen ergibt sich für symmetrische und unsymmetrische Laminate gemäß (7-3) und (7-4). Exemplarische Laminataufbauten sind in Abb. 7-13 dargestellt.

$$t_{90^{\circ}} = \frac{t_W \cdot (1 - \zeta_{AWV}) \cdot 2}{(n-1)} \text{ (bei symm.) } t_{90^{\circ}} = \frac{t_W \cdot (1 - \zeta_{AWV}) \cdot 2}{n} \text{ (bei unsymm.)}$$
(7-3)

$$t_{AWV} = \frac{t_W \cdot \zeta_{AWV} \cdot 2}{(n+1)} \text{ (bei symm.) } t_{AWV} = \frac{t_W \cdot \zeta_{AWV} \cdot 2}{n} \text{ (bei unsymm.)}$$
(7-4)

Abb. 7-13: Laminataufbauten für weitere Laminate

Exemplarische Laminataufbauten für ein symmetrisches Laminat (links), ein unsymmetrisches Laminat mit innenliegendem (mittig) und außenliegendem (rechts) AWV mit Lagenanzahl n = 2 bzw.3 und Anteil an AWV-Lagen $\zeta_{AWV} = 0,5$ Eine exemplarische Untergliederung der einzelnen Lagen in Partitionen findet sich in Abb. 7-14. Es sei an dieser Stelle explizit darauf hingewiesen, dass eine Erhöhung der Lagenanzahl n eine feinere Verteilung der Lagen über die Wandstärke bewirkt und nicht mit einer Erhöhung der Wellenwandstärke t_W verwechselt werden darf.

Abb. 7-14:Partitionierung der Lagen für weitere Laminate
Partitionierung der Lagen im numerischen und analytischen Modell für die verschiedenen
Lagenanzahlen des symmetrischen Laminataufbaus (oben), des unsymmetrischen Lami-
nataufbaus mit innenliegendem (mittig) und außenliegendem (unten) AWV

Das numerische Modell entspricht bis auf die folgenden Änderungen dem in den vorangegangenen Untersuchungen verwendeten. Die CFK-Hohlwelle wird in 12 Partitionen über die Dicke unterteilt, denen jeweils ein Element zugeordnet wird (siehe Abb. 7-14). Eine Lage des AWVs wird immer mindestens als $(+\alpha_{AWV}/-\alpha_{AWV})$ abgebildet. Für ein geeignetes Verhältnis von Länge zu Höhe der Elemente werden 280 Elemente über die Fügelänge verwendet. Das analytische Modell entspricht den vorangegangenen Untersuchungen, wobei das Laminat in der CLT wie soeben beschrieben diskretisiert wird.

Die Ergebnisse der **Parameterstudien** sind für die weiteren symmetrischen Laminate in Abb. 7-15 zusammengefasst.

Die **relative Abweichung** $\xi_{analyt,SoV}$ ist in allen Fällen negativ, der numerische Mittelwert des Fugendrucks $p_{F,m,num}$ ist also kleiner als der analytische $p_{F,m,analyt,SoV}$. Dies ist zum einen der Vernachlässigung der radialen Dehnung in der Analytik und der damit verbundenen stärkeren tangentialen Dehnung geschuldet. Zum anderen werden die 90°-Lagen durch die Verwendung der Ingenieurskonstanten virtuell näher an die Trennfuge verschoben. Dies rührt vom Lagenaufbau mit innenliegenden AWV-Lagen her und kann für andere Lagenaufbauten anders ausgeprägt sein.

Der Betrag der relativen Abweichung $\xi_{analyt, SoV}$ nimmt in nahezu allen Fällen mit zunehmender **Wellenwandstärke** t_W zu. Zum einen ist dies auf die stärker ausgeprägte radiale Dehnung bei größerer Wellenwandstärke t_W zurückzuführen (siehe Untersuchung radiale Dehnung in Kapitel 7.2.2). Zum anderen spielt die Lagenposition mit größer werdender Wellenwandstärke t_W eine größere Rolle, was sich dem Effekt der radialen Dehnung überlagert. Der Betrag der relativen Abweichung $\xi_{analyt, SoV}$ nimmt für große Wellenwandstärken t_W mit größerer Lagenanzahl n ab, was aufgrund der homogener verteilten Lagen plausibel ist. Die Unterschiede in der Position der Lagen werden geringer, wodurch die Verwendung der Ingenieurskonstanten weniger stark ins Gewicht fällt. Bei geringen Wellenwandstärken t_W ist nahezu kein Unterschied für unterschiedliche Lagenanzahlen zu verzeichnen, da die Lagenposition aufgrund der weniger über die Wandstärke variierenden Dehnung weniger ins Gewicht fällt. Für gleiche Anteile an AWV- und Umfangslagen weist die Lagenanzahl den größten Einfluss auf. Der Unterschied durch die unterschiedlichen Lagenanzahlen ist aber generell gering. Es kann festgehalten werden, dass im Hinblick auf die Genauigkeit der analytischen Auslegung eine große Lagenanzahl wichtiger wird, je größer die Wellenwandstärke t_W ist.

Für einen Winkel α_{AWV} von 30° sind keine klaren Tendenzen hinsichtlich des **Anteils der AWV-Lagen** ζ_{AWV} erkennbar. Für Winkel α_{AWV} von 45° und 60° gilt, dass die Abweichung durch die analytischen Vereinfachungen geringer wird, je größer der Anteil der AWV-Lagen ζ_{AWV} ist.

Ein Vergleich der unterschiedlichen **Winkel der AWV-Lagen** α_{AWV} zeigt, dass der Betrag der relativen Abweichung $\xi_{analyt, SoV}$ mit zunehmendem Winkel α_{AWV} abnimmt. Dies ist plausibel, da die Unterschiede in der tangentialen Steifigkeit zwischen AWV- und Umfangslagen geringer werden, wodurch die jeweilige Position weniger wichtig wird. Die Unterschiede zwischen den verschiedenen Winkeln werden größer, je größer der Anteil der AWV-Lagen ζ_{AWV} ist. Dies lässt sich dadurch erklären, dass die Unterschiede in den tangentialen Steifigkeiten der AWV-Lagen mit zunehmendem Anteil stärker ins Gewicht fallen. Je kleiner der Winkel α_{AWV} ist, desto größer ist der Einfluss der Lagenverteilung, da die Unterschiede in den tangentialen Steifigkeiten von AWV- und Umfangslagen stärker ins Gewicht fallen.

Fazit weitere symmetrische Laminate

Die betragsmäßig größte Abweichung liegt bei einem Winkel α_{AWV} von 30°, geringer Lagenanzahl, maximaler Wellenwandstärke und ausgeglichenen Anteilen von AWVund Umfangslagen vor und beträgt -19 %. Die charakteristischen mechanischen Größen werden bei der analytischen Auslegung überschätzt, was eine konservative Auslegung der Einpresskraft und eine nicht konservative Auslegung der Auszugskraft und des Torsionsmoments zur Folge hat.

7.3.2 Unsymmetrische Laminate

Im Folgenden werden unsymmetrische Laminate untersucht, welche innenliegende (AWVi) oder außenliegende (AWVa) AWV-Lagen aufweisen. Wie in den vorangegangenen Untersuchungen wird auf den Einfluss aller analytischen Vereinfachungen eingegangen. Das numerische und analytische Modell sowie die Geometrie der berechneten Varianten entsprechen denjenigen, die bei den weiteren symmetrischen Laminaten beschrieben werden (siehe Kapitel 7.3.1).

AWV innen

Die Ergebnisse der Parameterstudien sind für die unsymmetrischen Laminate mit innenliegenden AWV-Lagen in Abb. 7-16 zusammengefasst.

Abb. 7-16: Relative Abweichung für unsymmetrische AWVi-Laminate Relative Abweichungen $\xi_{analyt,SoV}$ des numerischen Fugendrucks vom analytisch berechneten Wert für unsymmetrische AWVi-Laminate für Winkel $\alpha_{AWV} = 30^{\circ}$ (links oben), $\alpha_{AWV} = 45^{\circ}$ (links unten) und $\alpha_{AWV} = 60^{\circ}$ (rechts oben)

Der Verlauf der **relativen Abweichung** $\xi_{analyt,SoV}$, der Einfluss der **Wellenwand**stärke t_W , der Einfluss des **Winkels der AWV-Lagen** α_{AWV} und die jeweiligen Ursachen hierfür entsprechen denjenigen, die bei den weiteren symmetrischen Laminaten (siehe Kapitel 7.3.1) beschrieben werden.

Der Einfluss der Lagenanzahl n verhält sich ebenfalls ähnlich wie bei den weiteren symmetrischen Laminaten. Der Unterschied durch die unterschiedlichen Lagenanzahlen beträgt bis zu 10 %-Punkte und ist damit aber etwas stärker ausgeprägt. Es kann

festgehalten werden, dass im Hinblick auf die Genauigkeit der analytischen Auslegung eine große Lagenanzahl wichtiger wird, je größer die Wellenwandstärke t_W ist.

Für die vorliegenden Laminate ist keine klare Tendenz hinsichtlich des Einflusses des Anteils der AWV-Lagen ζ_{AWV} erkennbar.

Fazit AWV innen

Die betragsmäßig größte Abweichung liegt bei einem Winkel α_{AWV} von 30°, geringer Lagenanzahl, maximaler Wellenwandstärke und ausgeglichenen Anteilen von AWVund Umfangslagen vor und beträgt -29 %. Die charakteristischen mechanischen Größen werden bei der analytischen Auslegung überschätzt, was eine konservative Auslegung der Einpresskraft und eine nicht konservative Auslegung der Auszugskraft und des Torsionsmoments zur Folge hat.

AWV außen

Als innerste Lage wird bei diesem Laminat eine Umfangslage verwendet, was beim Fügen einer Längspressverbindung kritisch sein kann, weshalb für ein solches Laminat auf eine Querpressverbindung zurückgegriffen werden sollte. Die Ergebnisse der Parameterstudien sind für die unsymmetrischen Laminate mit außenliegenden AWV-Lagen in Abb. 7-17 zusammengefasst.

Abb. 7-17: Relative Abweichung für unsymmetrische AWVa-Laminate Relative Abweichung $\xi_{analyt,SoV}$ für unsymmetrische AWVa-Laminate für Winkel $\alpha_{AWV} = 30^{\circ}$ (links oben), $\alpha_{AWV} = 45^{\circ}$ (links unten) und $\alpha_{AWV} = 60^{\circ}$ (rechts oben)

Die **relative Abweichung** $\xi_{analyt,SoV}$ ist in nahezu allen Fällen negativ und nur vereinzelt leicht positiv. Durch die Vernachlässigung der radialen Dehnung in der Analytik und die damit verbundene stärkere tangentiale Dehnung wird der analytische Mittelwert des Fugendrucks überschätzt. Eine Unterschätzung des analytischen Mittelwerts des Fugendrucks $p_{F,m,analyt,SoV}$ ergibt sich durch die Verwendung der Ingenieurskonstanten, durch welche die 90°-Lagen für das vorliegende Laminat virtuell weiter nach außen verschoben werden und sich das Laminat weicher verhält. Dies wirkt der Versteifung durch die Vernachlässigung der radialen Dehnung entgegen.

Der Betrag der relativen Abweichung $\xi_{analyt, SoV}$ nimmt in nahezu allen Fällen mit zunehmender **Wellenwandstärke** t_W zu, was der stärker ausgeprägten radialen Dehnung geschuldet ist. Die Zunahme ist hierbei aufgrund des gegenläufigen Effekts der Verwendung der Ingenieurskonstanten geringer als bei den Laminaten mit innenliegendem AWV. Der Betrag der relativen Abweichung $\xi_{analvt, SoV}$ ist für die geringste Lagenanzahl n am geringsten und teilweise positiv und nimmt mit zunehmender Lagenanzahl zu. Dies kann durch den mit zunehmender Lagenanzahl abnehmenden Effekt der Verwendung der Ingenieurskonstanten erklärt werden, der somit dem Effekt der radialen Dehnung weniger entgegenwirkt. Die Unterschiede zwischen den verschiedenen Lagenanzahlen sind für große Wellenwandstärken t_W am stärksten ausgeprägt, da für diese alle zugrundeliegenden Effekte stärker ins Gewicht fallen. Die größten Unterschiede in der relativen Abweichung $\xi_{analyt, SoV}$ bei unterschiedlichen Lagenanzahlen ergeben sich für Varianten mit großem Anteil AWV-Lagen, da für diese die 90°-Lagen durch die Verwendung der Ingenieurskonstanten am stärksten virtuell nach außen verschoben werden. Je kleiner der Winkel α_{AWV} , desto größer ist der Einfluss der Lagenanzahl, da die Unterschiede in der tangentialen Steifigkeit der AWV- und Umfangslagen stärker ins Gewicht fallen. Der Unterschied durch die verschieden großen Lagenanzahlen beträgt bis zu 9 %-Punkte und hat damit einen vergleichbar ausgeprägten Einfluss wie bei den unsymmetrischen Laminaten mit innenliegenden AWV-Lagen. Es kann festgehalten werden, dass im Hinblick auf die Genauigkeit der analytischen Auslegung eine geringe Lagenanzahl wichtiger wird, je größer die Wellenwandstärke t_W ist.

Fazit AWV außen

Die betragsmäßig größte Abweichung liegt bei einem Winkel α_{AWV} von 60°, großer Lagenanzahl, maximaler Wellenwandstärke und einem geringen Anteil von AWV-Lagen vor und beträgt -16 %. Die charakteristischen mechanischen Größen werden bei der analytischen Auslegung überschätzt, was eine konservative Auslegung der Einpresskraft und eine nicht konservative Auslegung der Auszugskraft und des Torsionsmoments zur Folge hat.

8 Relevanzbeurteilung und Auslegungsempfehlungen

Im Folgenden wird die Relevanz der in Kapitel 6 untersuchten Aspekte für die Auslegungsvorgehensweisen aus Kapitel 4 beurteilt (Kapitel 8.1). Weiterhin wird die Relevanz der in Kapitel 7 untersuchten Vereinfachungen des analytischen Ansatzes für das rechnerische Auslegungsvorgehen mit analytisch ermitteltem Fugendruck beurteilt (Kapitel 8.2). Jeweils darauf aufbauend werden Auslegungsempfehlungen abgeleitet, die in Kapitel 8.3 zusammengefasst werden, womit die Forschungsfragen 1 bis 5 aus Kapitel 2 beantwortet werden.

8.1 Mechanische und tribologische Aspekte

In einem ersten Schritt wird die Relevanz der Aspekte für die einzelnen charakteristischen mechanischen Größen beurteilt. In einem zweiten Schritt wird für die einzelnen Aspekte angegeben, für welche Intervalle der Gestaltungsparameter diese relevant sind. Hierbei gelten die im folgenden Absatz aufgeführten Einschränkungen:

- Die Relevanz des Einebnens ist nicht direkt mit den im Rahmen von Parameterstudien untersuchten mechanischen Aspekten aus Kapitel 6.3 vergleichbar, da es lediglich f
 ür die PK der Einpress- und Torsionsversuche aus Kapitel 5.4 quantifiziert wurde. Die Größenordnung und die Auswirkung auf die Auslegung können aber dennoch beurteilt werden.
- Das Vorhandensein des **Eindringens** wird nachgewiesen, eine Quantifizierung erfolgt aber nicht, weshalb die Relevanz und die Auswirkung auf die Auslegungsvorgehensweisen nicht beurteilbar sind.
- Bei der Ermittlung der **Reibkoeffizienten** wird die Belastungshistorie der Pressverbindung bei den tangentialen Reibkoeffizienten nicht abgebildet. Die Auswirkung verschiedener Reibkoeffizienten ist weiterhin stark von den bei der Ermittlung der Reibkoeffizienten und den bei der Pressverbindung vorliegenden Oberflächenverhältnissen abhängig. Der Einfluss des Reibkoeffizienten wird aus diesen Gründen im Folgenden nicht quantifiziert.
- Die Untersuchung der einzelnen Aspekte erfolgt getrennt von den jeweils anderen Aspekten, wodurch **keine Interaktion** berücksichtigt wird, welche aber am Ende dieses Kapitels diskutiert wird.

In Kapitel 6 werden die relativen Abweichungen der charakteristischen mechanischen Größen der Pressverbindung bei Berücksichtigung eines Aspekts von dem Wert, der mit einer der einfachen Auslegungsvorgehensweisen ermittelt wird, bestimmt. Die dabei ermittelten Intervalle dieser Abweichungen sind in Tab. 8-1 dargestellt. In dieser ist zusätzlich vermerkt, ob die Vernachlässigung eines Aspekts durch die einfachen Auslegungsvorgehensweisen eine konservative ("k.") oder nicht konservative ("n.k.") Auslegung zur Folge hat. Die Aussage, inwiefern die Auslegung einer charakteristischen mechanischen Größe konservativ oder nicht konservativ erfolgt, wird entsprechend dem zu Beginn von Kapitel 4 beschriebenen Vorgehen getroffen.

Tab. 8-1: Intervalle der Abweichungen durch Aspekte

Intervalle der relativen Abweichungen der verschiedenen charakteristischen mechanischen Größen durch die Aspekte zu den mit dem rechnerischen Auslegungsvorgehen mit numerisch ermitteltem Fugendruck und dem experimentellen Auslegungsvorgehen ermittelten Werten und Beurteilung, ob die Auslegung durch eine Vernachlässigung des jeweiligen Aspekts bei den einfachen Auslegungsvorgehensweisen konservativ ("k.") oder nicht konservativ ("n.k.") erfolgt

Aspekt	Rechn. Vorgehen			Exp. Vorgehen	
	ξ _{Fein} ,rechn, [%]	$\xi_{F_{aus},rechn,}$ [%]	ξ _{Mt} ,rechn, [%]	ξ _{Faus} ,exp, [%]	ξ _{Mt} ,exp, [%]
Defor-	0-+0,5	-0,5 - 0	_	-1,10,1	-0,5-0
mationskraft	n.k.	n.k.	_	n.k.	n.k.
Quer-	-28-+10	-10-+28	_	-17 - +77	-9-+39
kontraktion	k. – n.k.	n.k. – k.	_	n.k. – k.	n.k. – k.
Visko-	_	-61 – -5	-61 – -5	-61 – -5	-61 – -5
elastizität	_	n.k.	n.k.	n.k.	n.k.
Einsbran	-61	-61	-61	_	_
Eineonen	k.	n.k.	n.k.	_	_

Diskussion für einzelne charakteristische mechanische Größen

Für die mit dem rechnerischen Auslegungsvorgehen mit numerisch ermitteltem Fugendruck berechnete Einpresskraft F_{ein} ist der Einfluss der Deformationskraft nahezu vernachlässigbar. Die Querkontraktion beim Einpressvorgang ist der relevanteste Aspekt, dessen Konsequenzen auf die Auslegung und dessen Relevanz stark vom Winkel α_{AWV} abhängig sind. Die Viskoelastizität hat keinen Einfluss auf die Berechnung der Einpresskraft F_{ein} . Für die PK aus Kapitel 5.4 ist die Einpresskraft F_{ein} durch das Einebnen um bis zu 6 % geringer als der berechnete Wert. Die Berücksichtigung der Querkontraktion reicht bei der Vorauslegung aus.

Für die mit dem **rechnerischen Auslegungsvorgehen mit numerisch ermitteltem Fugendruck berechnete Auszugskraft** F_{aus} ist der Einfluss der Deformationskraft nahezu vernachlässigbar. Die Relevanz von Querkontraktion und Viskoelastizität variiert stark mit dem Winkel α_{AWV} . Für die nachfolgende Diskussion sind die relativen Abweichungen durch Berücksichtigung der Querkontraktion und der Viskoelastizität und deren an der x-Achse gespiegelter Verlauf zur besseren Veranschaulichung in Abb. 8-1 abgebildet. Für die PK aus Kapitel 5.4 ist die Auszugskraft F_{aus} durch das Einebnen um bis zu 6 % geringer als der berechnete Wert.

Abb. 8-1: Relative Abweichung bei Berücksichtigung der Querkontraktion und der Viskoelastizität

Relative Abweichung verschiedener charakteristischer mechanischer Größen durch Berücksichtigung der Querkontraktion beziehungsweise der Viskoelastizität zu den mit den einfachen Auslegungsvorgehensweisen ermittelten Werten bei Variation des Winkels α_{AWV} , wobei die jeweils anderen Gestaltungsparameter der Referenzvariante entsprechen

Aufbauend auf Abb. 8-1 ist in Tab. 8-2 festgehalten, für welche Winkel α_{AWV} die Vernachlässigung der Viskoelastizität und der Querkontraktion beim rechnerischen Auslegungsvorgehen eine nicht konservative oder konservative Auslegung zur Folge hat, und welcher der beiden Aspekte jeweils stärker ausgeprägt ist. Je nach Winkel α_{AWV} ist der Einfluss der Querkontraktion oder der Viskoelastizität relevanter, wobei auch bei kombinierter Betrachtung der beiden Aspekte meist eine nicht konservative Auslegung durch das rechnerische Auslegungsvorgehen erfolgt und eine rechnerische Berücksichtigung der Aspekte damit sinnvoll ist. Die Intervalle der Winkel in Tab. 8-2 können mit den Werkstoffkennwerten variieren und gelten damit nur für das den Untersuchungen zugrundeliegende Material und die bei der Abbildung der Viskoelastizität getroffenen Annahmen. Da keine Interaktion der beiden Aspekte berücksichtigt wird, hat die Viskoelastizität keinen Einfluss auf die Ausprägung der Querkontraktion.

Für das mit dem rechnerischen Auslegungsvorgehen mit numerisch ermitteltem Fugendruck berechnete Torsionsmoment M_t haben die Deformationskraft und die Querkontraktion keinen Einfluss. Die Viskoelastizität ist für die untersuchten Intervalle am relevantesten. Das Torsionsmoment M_t kann aufgrund der Viskoelastizität bis zu 61 % geringer sein als der berechnete Wert. Für die PK aus Kapitel 5.4 ist das Torsi-

onsmoment M_t durch Einebnen um bis zu 6 % geringer als der berechnete Wert. Die Berücksichtigung der Viskoelastizität ist bei einer Vorauslegung ausreichend.

Tab. 8-2: Winkelbereiche Viskoelastizität und Querkontraktion

Bereiche des Winkels α_{AWV} , für welche die Auslegung durch Vernachlässigung der Viskoelastizität und der Querkontraktion bei den einfachen Auslegungsvorgehensweisen konservativ ("k.") oder nicht konservativ ("n.k.") erfolgt, wobei der jeweils stärker ausgeprägte Aspekt fett gedruckt ist

VE	QK	Bereich des Winkels α_{AWV} bei		
		F _{aus,rechn}	F _{aus,exp}	M _{t exp}
n.k.	n.k.	0°-10°	0°-10°	0°-10°
n.k.	k.	10°-65°	10°-50°	10°-60°
n.k.	k.	65°-75°	50°-80°	60°-75°
n.k.	$k \rightarrow n.k.$	75°-85°	80°-85°	75°-85°
n.k.	n.k.	85°-90°	85°-90°	85°-90°

Für die mit dem **experimentellen Auslegungsvorgehen berechnete Auszugskraft** F_{aus} ist der Einfluss der Deformationskraft nahezu vernachlässigbar. Die Relevanz von Querkontraktion und Viskoelastizität variiert stark mit dem Winkel α_{AWV} (siehe Abb. 8-1 und Tab. 8-2). Je nach Winkel α_{AWV} ist der Einfluss der Querkontraktion oder der Viskoelastizität relevanter. Wenn die Annahme zutrifft, dass das Einebnen bereits beim Einpressen stattfindet, hat dieses keine Auswirkung auf das Auslegungsvorgehen.

Für das mit dem **experimentellen Auslegungsvorgehen berechnete Torsionsmoment** M_t ist der Einfluss der Deformationskraft nahezu vernachlässigbar. Die Relevanz von Querkontraktion und Viskoelastizität variiert stark mit dem Winkel α_{AWV} (siehe Abb. 8-1 und Tab. 8-2). Je nach Winkel α_{AWV} ist der Einfluss der Querkontraktion oder der Viskoelastizität relevanter. Wenn die Annahme zutrifft, dass das Einebnen bereits beim Einpressen stattfindet, hat dieses keine Auswirkung auf das Auslegungsvorgehen.

Diskussion für einzelne Aspekte

Die Vernachlässigung der Deformationskraft bewirkt in allen Fällen eine nicht konservative Auslegung. Lediglich das rechnerisch bestimmte Torsionsmoment ist von diesem Aspekt unabhängig. Alle von der Deformationskraft abhängigen relativen Abweichungen sind für die untersuchten Intervalle gering, weshalb eine Berücksichtigung bei der Auslegung nicht notwendig ist. Bei sehr kurzen Fügelängen, sehr großen Übermaßen und sehr geringen axialen Reibkoeffizienten kann es sinnvoll sein, die Auswirkung der Deformationskraft zu bestimmen. Hierfür liefert das vorgestellte analytische Vorgehen ausreichend genaue Ergebnisse. Die Abweichung durch die Deformationskraft ist nahezu unabhängig von der Wellenwandstärke t_W .

Die Vernachlässigung der Querkontraktion bewirkt für Winkel α_{AWV} zwischen 10° und 80° eine konservative und für die restlichen Winkel eine nicht konservative Auslegung der charakteristischen mechanischen Größen. Lediglich das rechnerisch bestimmte Torsionsmoment ist unabhängig von diesem Aspekt. Der jeweilige Effekt ist umso stärker ausgeprägt, je länger die Fügelänge, je größer der Reibkoeffizient und je kleiner die Wellenwandstärke sind. Das Übermaß und die Wandstärke der Nabe haben hingegen nur einen geringfügigen Einfluss. Die maximalen Beträge der Abweichungen in Tab. 8-1 ergeben sich für einen Winkel α_{AWV} von 60° (konservative Auslegung) beziehungsweise 89° (nicht konservative Auslegung). Die Beträge der Abweichungen sind für Winkel von 0° bis 20° und von 75° bis 85° gering, weshalb die Querkontraktion für diese Intervalle bei der Vorauslegung vernachlässigt werden kann. Für Winkel zwischen 85° und 90° sollte die Querkontraktion berücksichtigt werden. Im Hinblick auf eine konservative Auslegung kann die Querkontraktion für Winkel zwischen 20° und 75° zwar vernachlässigt werden, sollte für eine genaue Bestimmung der charakteristischen mechanischen Größen allerdings dennoch Berücksichtigung finden, was mittels der verwendeten numerischen Modelle möglich ist. Die angegebenen Intervalle der Winkel können für unterschiedliche Werkstoffe variieren und gelten damit nur für das untersuchte, zugrundeliegende Material. Wenn möglich, kann sich der nachgewiesene Effekt der Querkontraktion bei der Gestaltung von Pressverbindungen zunutze gemacht werden, indem bei einem passenden Winkel geringere Fugendrücke beim Einpressen als bei Torsions- und Auszugsvorgang erzielt werden können.

Die Vernachlässigung der Viskoelastizität bewirkt in allen Fällen eine nicht konservative Auslegung. Lediglich die rechnerisch bestimmte Einpresskraft ist unabhängig von diesem Aspekt. Die Auswirkung der Viskoelastizität ist stark vom Winkel α_{AWV} abhängig, wobei die maximale Auswirkung für Winkel um 45° und die minimale Auswirkung für Winkel zwischen 80° und 90° vorliegt. Die Fügelänge, die Wandstärke der Nabe und das Übermaß haben keinen Einfluss auf die Auswirkung der Viskoelastizität, wobei für das Übermaß die Annahmen der linearen Viskoelastizität erfüllt sein müssen. Der Einfluss der Wandstärke der Welle auf die Auswirkung der Viskoelastizität ist abhängig vom Winkel. Für Winkel zwischen 0° und 40° weist diese keinen Einfluss auf. Für Winkel zwischen 40° und 60° reduziert sich die Auswirkung der Viskoelastizität mit zunehmender Wellenwandstärke. Für Winkel zwischen 80° und 90° nimmt die Auswirkung mit zunehmender Wellenwandstärke zu. Der Fugendruckverlust wird in diesem Fall maßgeblich durch die Deformation in Dickenrichtung bedingt, welche wiederum von der Steifigkeit E_{33} beeinflusst wird. Für Winkel kleiner oder gleich 70° sollte die Viskoelastizität in der Auslegung berücksichtigt werden. Bei größeren Winkeln sollte dies vor allem bei großen Wellenwandstärken geschehen. Gestaltungstechnisch können Umfangslagen zur Vorbeugung eines ausgeprägten Fugendruckverlusts verwendet werden, wobei bei dickwandigen Wellen eventuell auf Stahlhülsen zurückgegriffen werden muss (siehe Kapitel 3.1.2).

Eine Vernachlässigung der Einebnung der Rauheit der Stahlnabe hat für die charakteristischen mechanischen Größen teilweise eine konservative und teilweise eine nicht konservative Auslegung zur Folge. Wenn die Annahme zutrifft, dass die Einebnung bereits beim Einpressen auftritt, sind die mit dem experimentellen Auslegungsvorgehen ermittelten Werte unabhängig von diesem Aspekt. Die erfolgreiche Abschätzung des übertragbaren Torsionsmoments für die rauen PK der kleinen Baugröße in Kapitel 5.4.2 legt diesen Sachverhalt nahe, mit den vorliegenden Untersuchungen kann der Zeitpunkt der Einebnung jedoch nicht abschließend bestimmt werden. Durch Einebnung liegt ein kleineres effektives Übermaß vor, was mit zunehmender Rauheit stärker ausgeprägt ist. Für steifere Bauteile und kleinere Fügedurchmesser nimmt die Relevanz der Einebnung zu, da in beiden Fällen kleinere Übermaße zum Erreichen eines gewissen Fugendrucks notwendig sind und die Einebnung damit anteilsmäßig größer ist. Dies geht mit den Ergebnissen der Einpressversuche einher, bei denen für die kleine Baugröße die Einpresskräfte der rauen Naben um 15 %, für die große Baugröße aber nur um 8 % von den Einpresskräften der jeweiligen Referenzvariante abweichen (siehe Abb. 5-8 und Abb. 5-9). Da die tangentiale Steifigkeit mit zunehmender Wellenwandstärke t_W zunimmt, nimmt auch die Relevanz der Einebnung mit diesem Gestaltungsparameter zu. Für eine konservative Auslegung sollte die Einebnung bei der Einpresskraft nicht berücksichtigt werden und diese mit dem gemessenen Übermaß bestimmt werden. Bei Auszugskraft und Torsionsmoment sollte vor allem bei sehr rauen Naben mit dem effektiven Übermaß gerechnet werden, wobei eine experimentelle Ermittlung der Einebnung für die jeweilige Materialkombination und Oberfläche notwendig ist. Verglichen mit den anderen Aspekten weist die Einebnung einen geringen Einfluss auf, weshalb diese bei der Vorauslegung vernachlässigt werden kann.

Etwaige **Konsequenzen einer Interaktion** der untersuchten Aspekte werden im Folgenden diskutiert:

- Die **Deformationskraft** wird an der Fase der Stahlnabe in diese geleitet, wodurch die Einpresskraft erhöht und die Auszugskraft reduziert wird. Hierdurch ist die Querkontraktion der Stahlnabe beim Einpressen etwas stärker und beim Auszugsvorgang etwas geringer ausgeprägt, was bei der numerischen Ermittlung der Querkontraktion in Kapitel 6.3.3 bereits abgebildet wird. Aufgrund der sehr geringen Werte der Deformationskraft sollte diese Auswirkung aber vernachlässigbar sein. Es wird davon ausgegangen, dass die Deformationskraft keine Auswirkung auf VE, Reibkoeffizienten und Einebnen aufweist.
- Die Querkontraktion reduziert oder erhöht den Fugendruck beim Einpressund Auszugsvorgang. Dies kann bei einer Fugendruckabhängigkeit der Einebnung diese beeinflussen, was auf Basis der experimentellen Daten der vorliegenden Arbeit aber nicht beurteilt werden kann. Es wird davon ausgegangen, dass die Querkontraktion keine Auswirkung auf die Deformationskraft, die

Viskoelastizität und die Reibkoeffizienten hat, da die Reibkoeffizienten als vom Fugendruck unabhängig angenommen werden.

- Die **Viskoelastizität** kann sich auf die Ausprägung der Deformationskraft und die Querkontraktion auswirken, wobei Reibkoeffizienten und Einebnung als davon unabhängig angenommen werden.
- Geringere Reibkoeffizienten haben eine geringere Querkontraktion zur Folge. Die Deformationskraft wird zwar nicht direkt durch den Reibkoeffizienten beeinflusst, bei größeren Reibkoeffizienten hat die Deformationskraft aber einen geringeren Anteil an der Einpresskraft, wodurch die Abweichung durch deren Vernachlässigung geringer ausfällt. Viskoelastizität und Einebnen werden als vom Reibkoeffizient unabhängig angenommen.
- Das Einebnen bewirkt ein geringeres Übermaß, was wiederum eine geringere Deformationskraft und eine geringere Querkontraktion zur Folge hat. Etwaige Auswirkungen des Einebnens auf den Reibkoeffizient können nicht beurteilt werden, da die entsprechenden Vorgänge auf mikroskopischer Ebene ablaufen und eine detaillierte Untersuchung erforderlich machen.

Durch den Nachweis der **Skalierbarkeit** bei den numerisch untersuchten Aspekten gelten die dort getroffenen Aussagen auch für Bauteile größerer oder kleinerer Baugröße. Hierfür müssen die bei der Skalierung der Bauteile in Kapitel 5.2 aufgeführten geometrischen Größen mit einem einheitlichen Faktor skaliert werden. Der Reibkoeffizient sollte unabhängig von der Baugröße sein, insofern vergleichbare Oberflächen vorliegen und keine fertigungsbedingten Einflüsse diese verändern. Die Einebnung sollte für kleinere PK eine größere Relevanz als bei den untersuchten PKn aufweisen, da bei diesen die Einebnung stärker ins Gewicht fällt. Umgekehrtes gilt für PK einer größeren Baugröße. Dasselbe gilt für das Eindringen, wobei dessen Konsequenzen für die Auslegungsvorgehensweisen im Rahmen der vorliegenden Arbeit nicht quantifiziert werden.

8.2 Analytische Vereinfachungen

Im Folgenden wird die Relevanz der einzelnen analytischen Vereinfachungen getrennt voneinander (siehe Kapitel 7.2) und in Kombination (siehe Kapitel 7.3) beurteilt und diskutiert. Die für das Auslegungsvorgehen mit numerisch ermitteltem Fugendruck in Kapitel 6 untersuchten Aspekte sind auch für das Auslegungsvorgehen mit analytisch ermitteltem Fugendruck relevant. Deren Auswirkung kann mit dem analytischen Ansatz nicht einzeln bestimmt werden, weshalb kein erneuter relativer Vergleich dieser Aspekte mit dem analytischen Wert durchgeführt wird. In diesem Kapitel erfolgt aber ein qualitativer Vergleich der in Kapitel 8.1 diskutierten mechanischen Aspekte mit den analytischen Weiterhin werden die in Kapitel 7.3 abgeleiteten Auslegungsempfehlungen zusammengefasst.

Die folgenden Betrachtungen werden für die in der vorliegenden Arbeit verwendete Materialkombination durchgeführt. Bei anderen Materialkombinationen können sich andere Auswirkungen und Empfehlungen ergeben, wobei sich für vergleichbare Materialien ähnliche Tendenzen und Größenordnungen der beschriebenen Effekte ergeben sollten. Die Baugröße hat bei keiner der durchgeführten Untersuchungen einen Einfluss auf die numerischen und analytischen Ergebnisse, weshalb die folgenden Erkenntnisse auf die Auslegung anderer Baugrößen mit gleichen geometrischen Verhältnissen übertragen werden können.

Diskussion der analytischen Vereinfachungen

Die Untersuchung der Fugendrucküberhöhung und der radialen Dehnung erfolgt am symmetrisch diskretisierten AWV, für welchen die Verwendung der Ingenieurskonstanten keinen Fehler zur Folge hat. Die Extremwerte der Abweichungen für die untersuchten Intervalle und die Werte der Abweichungen für die Referenzvariante und die Variante mit der größten Wandstärke der CFK-Hohlwelle sind in Tab. 8-3 dargestellt.

Tab. 8-3: Abweichungen durch radiale Dehnung und Fugendrucküberhöhung

Extremwerte der relativen Abweichungen des Fugendrucks durch die radiale Dehnung ξ_{rad} und die Fugendrucküberhöhung ξ_{Peak} vom analytisch berechneten Wert sowie die entsprechenden Werte für die Referenzvariante und die Variante mit großer Wellenwandstärke t_W

Abweichung	Min.	Max.	Ref.	$t_W = 7mm$
ξ _{Peak} [%]	-8	9	2	-8
ξ _{rad} [%]	-8	0	-4	-8

Die Abweichung durch die **Fugendrucküberhöhung** ξ_{Peak} variiert stärker als die Abweichung durch die **radiale Dehnung** ξ_{rad} . Die Größenordnungen der beiden Abweichungen und damit deren Relevanz sind vergleichbar. Für die Referenzvariante weisen die beiden Abweichungen unterschiedliche Vorzeichen aber gleiche Größenordnungen auf und sind damit vergleichbar relevant. Der Einfluss beider Vereinfachungen nimmt mit zunehmender Wellenwandstärke t_W zu. Beide Abweichungen sind für große Wellenwandstärken t_W negativ, nehmen einen vergleichbar großen Betrag an und sind damit vergleichbar relevant.

Die in *Fischer* [5] für dünnwandige Strukturen getroffene Aussage, dass der dort hergeleitete analytische Ansatz für im Wellen-KS orthotrope Laminate zulässig ist, muss für dickwandige Bauteile eingeschränkt werden. Im Allgemeinen hat die **Verwendung der Ingenieurskonstanten** und der damit verbundene Verlust der Information über die Position der Lagen nur für im Wellen-KS orthotrope Laminate mit über die Wandstärke gleicher tangentialer Steifigkeit keine Auswirkung auf die Auslegung mit dem analytischen Ansatz. Für andere Laminate hat die Verwendung der Ingenieurskonstanten eine Auswirkung auf die analytische Auslegung, die stärker ausgeprägt ist, je größer die Wellenwandstärke t_W ist (siehe Kapitel 7.3), was im Folgenden mit den anderen analytischen Vereinfachungen verglichen wird. Der Einfluss der Verwendung der Ingenieurskonstanten ist nicht getrennt von den anderen Vereinfachungen untersuchbar. Im Folgenden wird daher angenommen, dass die Relevanz der radialen Dehnung und der Fugendrucküberhöhung bei anderen Laminaten mit ähnlichen Wandstärken vergleichbar mit dem symmetrisch diskretisierten AWV ist. In diesem Fall kann die Relevanz der Verwendung der Ingenieurskonstanten anhand der weiteren Laminate bewertet werden, wobei die Bewertung für verschiedene Laminate getrennt durchgeführt wird. Der Vergleich erfolgt hierbei basierend auf den relativen Abweichungen numerischen Fugendrucks vom analytisch mit den SoV- $\xi_{analyt,SoV}$ des Ingenieurskonstanten berechneten Wert. Die Extremwerte der relativen Abweichung $\xi_{analyt,SoV}$ sowie die Werte für die Variante mit der größten Wellenwandstärke sind für die verschiedenen Laminate in Tab. 8-4 dargestellt.

Tab. 8-4: Extremwerte analytische Abweichung

Extremwerte der relativen Abweichungen $\xi_{analyt,SoV}$ des numerischen Fugendrucks vom analytisch berechneten Wert sowie Werte für die Varianten mit großer Wellenwandstärke t_W für die verschiedenen untersuchten Laminate

Laminat	Min. ξ _{analyt,SoV} [%]	Max. $\xi_{analyt,SoV}$ [%]	$\xi_{analyt,SoV}$ bei $t_W = 7mm [\%]$
AWV	-14	5	-14
Weitere symm.	-19	0	-19
Unsymm. AWV innen	-29	0	-29
Unsymm. AWV außen	-16	3	-16

Der symmetrisch diskretisierte AWV weist für große Werte der Wellenwandstärke t_W die betragsmäßig größten Abweichungen auf, was sich entsprechend Kapitel 7.3.1 aus dem Zusammenspiel von radialer Dehnung und Fugendrucküberhöhung ergibt.

Für die weiteren symmetrischen Laminate aus Kapitel 7.3.1 ist die Abweichung $\xi_{analyt, SoV}$ immer negativ, was unter anderem der virtuellen Verschiebung der 90°-Lagen in Richtung der Trennfuge durch das "Verschmieren" bei der Berechnung der Ingenieurskonstanten geschuldet ist. Dieser versteifende Effekt trägt damit tendenziell zu betragsmäßig größeren negativen Abweichungen bei. Auch für diese Laminate ist die Abweichung für große Wellenwandstärken t_W betragsmäßig am größten. Die Differenz der Abweichung für die Variante mit der größten Wellenwandstärke t_W zum entsprechenden Wert des symmetrisch diskretisierten AWV ist gering. Unter der zuvor getroffenen Annahme ist die Verwendung der Ingenieurskonstanten für diese Laminate damit etwas weniger relevant als die Vernachlässigung der Fugendrucküberhöhung

und der radialen Dehnung. Aus auslegungstechnischer Sicht sind für diese Laminate eine große Lagenanzahl, ein großer Anteil an AWV-Lagen und große Winkel α_{AWV} vorteilhaft, da diese geringere Beträge der Abweichung zur Folge haben.

Für die **unsymmetrischen Laminate mit innenliegendem AWV** ist die Abweichung $\xi_{analyt, SoV}$ entsprechend der obigen Erklärung immer negativ und für große Wellenwandstärken t_W betragsmäßig am größten. Die Differenz der Abweichung für die Variante mit der größten Wellenwandstärke t_W zum entsprechenden Wert des symmetrisch diskretisierten AWV ist groß. Unter der zuvor getroffenen Annahme ist die Verwendung der Ingenieurskonstanten für diese Laminate damit relevanter als die Vernachlässigung der Fugendrucküberhöhung und der radialen Dehnung. Aus auslegungstechnischer Sicht sind für diese Laminate eine große Lagenanzahl und große Winkel α_{AWV} vorteilhaft, da diese geringere Beträge der Abweichung bewirken.

Für die **unsymmetrischen Laminate mit außenliegendem AWV** nimmt die Abweichung $\xi_{analyt, SoV}$ vereinzelt geringfügig positive Werte an. Dies ist der virtuellen Verschiebung der 90°-Lagen in Richtung Außenradius durch die Verwendung der Ingenieurskonstanten geschuldet, was ein weicheres Verhalten des Laminats in der analytischen Berechnung zur Folge hat und der Versteifung durch die Vernachlässigung der radialen Dehnung entgegenwirkt. Auch für diese Laminate ist die Abweichung für große Wellenwandstärken t_W betragsmäßig am größten. Die Differenz der Abweichung für die Variante mit der größten Wellenwandstärke t_W zum entsprechenden Wert des symmetrisch diskretisierten AWV ist gering. Unter der zuvor getroffenen Annahme ist die Verwendung der Ingenieurskonstanten für diese Laminate vergleichbar relevant wie die Vernachlässigung der Fugendrucküberhöhung und der radialen Dehnung und wirkt diesen entgegen. Aus auslegungstechnischer Sicht sind für diese Laminate eine geringe Lagenanzahl und ein großer Anteil an AWV-Lagen vorteilhaft, da diese geringere Beträge der Abweichung bewirken.

Die **Relevanz der einzelnen Vereinfachungen** ist damit vom jeweiligen Laminat abhängig, wobei bei allen Vereinfachungen der Einfluss mit zunehmender Wellenwandstärke t_W zunimmt. Für große Wellenwandstärken t_W sind die analytischen Vereinfachungen für keines der Laminate vernachlässigbar.

Basierend auf den größten Beträgen der Abweichungen aus Tab. 8-4 kann folgende Einteilung getroffen werden. Die **Gesamtheit der analytischen Vereinfachungen** fällt für unsymmetrische Laminate mit innenliegendem AWV am stärksten ins Gewicht. Beim weiteren symmetrischen Laminat und dem unsymmetrischen Laminat mit außenliegendem AWV sind die Auswirkungen vergleichbar. Den geringsten Einfluss weisen die Vereinfachungen beim symmetrisch diskretisierten AWV auf. In nahezu allen Fällen bewirken die analytischen Vereinfachungen eine Überschätzung des Fugendrucks, was eine konservative Berechnung der Einpresskraft F_{ein} und eine nicht konservative Berechnung der Auszugskraft F_{aus} und des Torsionsmoments M_t zur Folge hat. Für alle untersuchten Laminate nimmt der Betrag der Abweichung $\xi_{analyt, SoV}$ mit zunehmender Wellenwandstärke t_W zu, was eine konservativere oder weniger nicht konservative analytische Auslegung der Einpresskraft F_{ein} und eine weniger konservative oder stärker nicht konservative analytische Auslegung der Auszugskraft F_{aus} und des Torsionsmoments M_t bewirkt. Bei großen Werten der Wellenwandstärke t_W sollte deshalb vor allem zur Bestimmung der Auszugskraft F_{aus} und des Torsionsmoments M_t wenn möglich auf eine numerische Berechnung zurückgegriffen werden.

Vergleich mit mechanischen Aspekten

Der nachfolgende Vergleich mit den in Kapitel 6.3 untersuchten mechanischen Aspekten gilt lediglich für die untersuchten symmetrisch diskretisierten AWVs und das einfache rechnerische Auslegungsvorgehen.

Entsprechend Tab. 8-1 erfolgt die Auslegung der **Einpresskraft** F_{ein} durch die vernachlässigten Aspekte konservativ bis nicht konservativ, wobei die konservativen Werte betragsmäßig größer sind. Durch die analytischen Vereinfachungen erfolgt die analytische Auslegung in den meisten Fällen ebenfalls konservativ. Die maximalen Abweichungen und damit die Relevanz der analytischen Vereinfachungen sind für die Einpresskraft F_{ein} vergleichbar mit der der Querkontraktion.

Die Auslegung der **Auszugskraft** F_{aus} erfolgt durch die vernachlässigten Aspekte konservativ bis nicht konservativ, wobei die nicht konservativen Werte betragsmäßig größer sind. Durch die analytischen Vereinfachungen erfolgt die analytische Auslegung in den meisten Fällen ebenfalls nicht konservativ, woraus eine starke nicht konservative Auslegung resultiert. Die maximalen Abweichungen und damit die Relevanz der analytischen Vereinfachungen sind auch für die Auszugskraft F_{aus} vergleichbar mit der der Querkontraktion.

Die Auslegung des **Torsionsmoments** M_t erfolgt durch die vernachlässigten Aspekte nicht konservativ. Durch die analytischen Vereinfachungen erfolgt die analytische Auslegung in den meisten Fällen ebenfalls nicht konservativ, woraus eine starke nicht konservative Auslegung resultiert. Die maximalen Abweichungen und damit die Relevanz der analytischen Vereinfachungen sind für das Torsionsmoment M_t geringer als die der Viskoelastizität.

8.3 Zusammenfassung der Auslegungsempfehlungen

In diesem Kapitel werden die Ergebnisse der Diskussion und Relevanzbeurteilung der mechanischen und tribologischen Aspekte sowie der analytischen Vereinfachungen aus den Kapiteln 8.1 und 8.2 in einfach handhabbare Auslegungsempfehlungen überführt. Diese geben dem Konstrukteur ein Vorgehen zur Berechnung der charakteristischen mechanischen Größen einer Pressverbindung mit orthotropen, dickwandigen Fügepartnern zur Hand. Für eine Pressverbindung, die im Betrieb mit bestimmten Lasten belastet ist und die rein mechanisch gefügt wird, kann der Konstrukteur den folgenden Tabellen entnehmen, welche mechanischen Größen es zu berechnen gilt, welche Aspekte es dabei zu berücksichtigen gibt und welches Vorgehen zur Auslegung empfohlen wird. Die aufgeführte Druckkraft resultiert aus dem rein mechanischen Fügen der Längspressverbindung. Im Betrieb treten Zugkräfte beispielweise bei Zugstäben, Torsionsmomente beispielweise bei Antriebswellen auf. Eine Kombination dieser Belastungen kann beispielweise bei Walzen relevant sein.

Folgende Randbedingungen gelten für die nachfolgend aufgeführten Empfehlungen:

- Die Werkstoffkennwerte der Fügepartner sind bekannt.
- Das mechanische Einpressen und der Betrieb erfolgen bei Raumtemperatur.
- Die Erfassung der axialen Kraft beim Einpressvorgang ist Voraussetzung für das experimentelle Auslegungsvorgehen.
- Orthotrope Fügepartner bestehen ausschließlich aus einem Laminat mit ausgeglichenem Winkelverbund.
- Die Aussagen und Empfehlungen gelten für die den Untersuchungen zugrundeliegenden Parameterintervalle (siehe Tab. 6-2).
- Lediglich die Aspekte, deren Vernachlässigung bei den einfachen Auslegungsvorgehensweisen eine stark konservative oder nicht konservative Auslegung bewirkt, werden im Hinblick auf eine genaue Bestimmung der mechanischen Größen zur Berücksichtigung empfohlen. Nicht zu berücksichtigende Aspekte haben keinen oder nur einen vernachlässigbar geringen Einfluss auf die Auslegungsgenauigkeit der einfachen Auslegungsvorgehensweisen.
- Für die vorliegende Materialpaarung sollten die Reibkoeffizienten experimentell ermittelt werden, wobei im Idealfall die Belastungshistorie und die Richtung der Relativbewegung berücksichtigt werden und auch initiale Werte ermittelt werden. Die Empfehlungen für die zu verwendenden Reibkoeffizienten zielen auf eine konservative Auslegung ab. Sollten nicht alle geforderten Reibkoeffizienten bekannt sein, kann die Auslegung mit den Werten von Haft- oder Gleitreibungskoeffizient der Materialpaarung durchgeführt werden, wobei dies die Auslegungsgenauigkeit reduziert.
- Der analytische Ansatz von *Fischer* [5] weist bei dickwandigen Bauteilen eine nicht zu vernachlässigende Abweichung zum numerisch ermittelten Fugendruck auf. Deshalb wird die Verwendung dieses Ansatzes nur bei dünnwandigen Bauteilen zur Berechnung von mechanischen Größen, bei denen kein weiterer Aspekt außer der Viskoelastizität zu berücksichtigen ist, empfohlen.

Basierend auf dem rechnerischen Auslegungsvorgehen aus Kapitel 4.1 werden die Auslegungsempfehlungen in Tab. 8-5 ausgesprochen. In Anlehnung an das experimentelle Auslegungsvorgehen aus Kapitel 4.2 werden die Auslegungsempfehlungen in Tab. 8-6 ausgesprochen.

	rücksichtigende Aspekte ("X") und dafür empfohlenes rechnerisches Auslegungsvorgeher					
	Empfohlenes Auslegungsvorgehen	 <i>p_{F,m,ein,t₀}</i> mit num. Modell des reibungsbehafteten Einpressvorgangs (siehe Kapitel 6.3.3) ermitteln (mit μ_{init,Haft,ax}) <i>F_{ein,t₀}</i> mittels Formel (4-1) berechnen (mit μ_{init,Haft,ax}) 	 Ggf. Materialkennwerte zum Zeitpunkt t₁ bsp. mit Vorgehen aus Kapitel 6.3.2 grob abschätzen <i>PF,m,aus,t</i>₀ <i>bzw.t</i>₁ aus num. Modell des reibungsbehafteten Auszugvorgangs (ähnlich zu Kapitel 6.3.3) oder anhand num. bestimmter 	Werte von $p_{F,m,t_0} b_{zw.t_1}$ und $p_{F,m,ein,t_0} b_{zw.t_1}$ mittels Formel (6-15) ermitteln (alles mit $\mu_{Gleit,ax}$) • $F_{aus,t_0} b_{zw.t_1}$ mittels Formel (4-1) berechnen (mit $\mu_{Gleit,ax}$)	 Ggf. Materialkennwerte zum Zeitpunkt t₁ bsp. mit Vorgehen aus Kapitel 6.3.2 grob abschätzen <i>p_{F,m,t0} bzw.t</i>₁ num. ermitteln (siehe Kapitel 6.1) (analyt. mit Ansatz von [5] nur bei 	dünnwandigen Strukturen empfehlenswert) • $M_{t,t_0} b_{zw,t_1}$ mittels Formel (4-2) berechnen (mit $\mu_{Gleit,tang}$)
	nen					
te	Eineb	I	I	I	I	ı
Zu berücksichtigende Aspek	Querkon- traktion	Х	Х	Х		
	Visko- elastizität	1	ı	Х		X
	Deforma- tionskraft	1	1	I		
Mech. Größe		F _{ein,to}	°1'snv H	^τ ι'snvΗ	м ^{с,,} 0	^τ 2' ² <i>W</i>
Belastung		Axialer Druck	guZ ra	lsixA	Juəmoms	Torsion

Tab. 8-5: Auslegungsempfehlungen f ür rechnerisches Auslegungsvorgehen

Bei gegebener Bauteilbelastung zur Berechnung bestimmter mechanischer Größen zu berücksichtigende Aspekte $(,,X^{"})$ und dafür empfohlenes rechnerisches Auslegungsvorgehen

	Empfohlenes Auslegungsvorgehen	 Iterative Ermittlung von μ_{ber} (μ_{ber} anpassen bis p_{F,m,ein,to} aus num. Modell des reibungsbehafteten Einpressvorgangs (siehe Kapitel 6.3.3) F_{ein,exp} mittels Formel (4-1) ergibt) Ggf. Materialkennwerte zum Zeitpunkt t₁ bsp. mit Vorgehen aus Kapitel 6.3.2 grob abschätzen 	 <i>P</i>_{F,m,aus,to} <i>bzw.t</i>₁ aus num. Modell des reibungsbehafteten Auszugvorgangs (ähnlich zu Kapitel 6.3.3) oder anhand num. bestimmter Werte von <i>P</i>_{F,m,to} <i>bzw.t</i>₁ und <i>P</i>_{F,m,ein,to} <i>bzw.t</i>₁ mittels Formel (6-15) ermitteln (alles mit μ<i>ber</i>) <i>F_{aus,to} bzw.t</i>₁ mittels Formel (4-1) berechnen (mit μ<i>ber</i>) 	 Iterative Ermittlung von μ_{ber} (μ_{ber} anpassen bis p_{F,m,ein,to} aus num. Modell des reibungsbehafteten Einpressvorgangs (siehe Kapitel 6.3.3) F_{ein,exp} mittels Formel (4-1) ergibt) Ggf. Materialkennwerte zum Zeitpunkt t₁ bsp. mit 	 Vorgehen aus Kapitel 6.3.2 grob abschätzen <i>p_{F,m,t0} b_{Zw.t1}</i> num. ermitteln (siehe Kapitel 6.1) (analyt. mit Ansatz von [5] nur bei dünnwandigen Strukturen empfehlenswert) <i>M_{t,t0} b_{Zw.t1}</i> mittels Formel (4-2) berechnen (mit <i>μ_{ber})</i>
Zu berücksichtigende Aspekte	Einebnen	ı	ı		ı
	Querkon- traktion	×	×	Х	×
	Visko- elastizität	I	×	·	×
	Deforma- tionskraft	ı	ı		ı
פ ינ	ləəM 8örÐ	^o ₁'snv <u></u> H	^r 2'snv H	M ^{*,t} 0	^{1,1,3} M
Belastung		ຣີnZ ເ	alsixA	noment	Torsionsn

Tab. 8-6: Auslegungsempfehlungen f ür experimentelles Auslegungsvorgehen

Bei gegebener Bauteilbelastung zur Berechnung bestimmter mechanischer Größen zu berücksichtigende Aspekte ("X") und dafür empfohlenes experimentelles Auslegungsvorgehen

9 Parameterstudien und Gestaltungsempfehlungen

Im Folgenden werden Einflüsse von Gestaltungsparametern der CFK-Hohlwelle auf den Fugendruck aufgezeigt und Gestaltungsempfehlungen abgeleitet, womit Forschungsfrage 6 aus Kapitel 2 beantwortet wird. Die Parameterstudien erfolgen an symmetrischen (Kapitel 9.1) und unsymmetrischen Laminaten mit innenliegenden (Kapitel 9.2) und außenliegenden (Kapitel 9.3) AWV-Lagen. Abschließend werden die unterschiedlichen Laminate miteinander verglichen (Kapitel 9.4) und allgemeinere Empfehlungen abgeleitet (Kapitel 9.5).

Die nachfolgend untersuchten Laminate, Gestaltungsparameter und zugehörigen Intervalle entsprechen den im zweiten Teil von Kapitel 7.3.1 definierten und bestehen dementsprechend aus AWV- und Umfangslagen (siehe Abb. 7-13). **Ziel der Parameterstudien** ist es, den Mittelwert des Fugendrucks bei gegebenem Übermaß zu maximieren und Auffälligkeiten und Besonderheiten der Gestaltungsparameter aufzuzeigen.

Die numerische Berechnung der folgenden **Kenngrößen** erfolgt mit dem im zweiten Teil von Kapitel 7.3.1 definierten Modell. Basierend auf dem entsprechend (6-1) ermittelten Mittelwert des Fugendrucks $p_{F,m}$ wird die Fugendruckänderung $\Delta p_{F,m}(...)$ bei Variation eines Gestaltungsparameters bestimmt. Dies ist in (9-1) exemplarisch für die Variation der Wellenwandstärke t_W dargestellt. Hierbei nimmt der Index *i* bei der Wellenwandstärke t_W die Werte i = [1,2,3] an. Bei Variation der restlichen Größen nimmt der Index *i* die Werte i = [1,2] an. Der Wert $t_W(i + 1)$ steht hierbei für die nächstgrößere Wellenwandstärke im entsprechenden Intervall.

$$\Delta p_{F,m}(t_W(i), n, \zeta_{AWV}, \alpha_{AWV})$$

$$= p_{F,m}(t_W(i+1), n, \zeta_{AWV}, \alpha_{AWV})$$

$$- p_{F,m}(t_W(i), n, \zeta_{AWV}, \alpha_{AWV})$$
(9-1)

Weiterhin wird die Änderung der Fugendruckänderung $\Delta \Delta p_{F,m}(...)$ bei zusätzlicher Variation eines weiteren Gestaltungsparameters bestimmt. Bei Variation zweier unterschiedlicher Gestaltungsparameter ist dies exemplarisch für die Fugendruckänderung $\Delta p_{F,m}(t_W(i),...)$ und die Lagenanzahl n in (9-2) dargestellt. Hierbei nehmen die Indizes i beziehungsweise j für die Wellenwandstärke t_W die Werte i bzw. j = [1,2,3] an. Bei Variation der restlichen Größen nehmen die Indizes i beziehungsweise j die Werte *i bzw. j* = [1,2] an. Der Wert n(j + 1) steht hierbei für die nächstgrößere Lagenanzahl im entsprechenden Intervall.

$$\Delta \Delta p_{F,m}(t_W(i), n(j), \zeta_{AWV}, \alpha_{AWV})$$

$$= \Delta p_{F,m}(t_W(i), n(j+1), \zeta_{AWV}, \alpha_{AWV})$$

$$- \Delta p_{F,m}(t_W(i), n(j), \zeta_{AWV}, \alpha_{AWV})$$
(9-2)

Bei Variation zweier gleicher Gestaltungsparameter ist dies exemplarisch für die Fugendruckänderung $\Delta p_{F,m}(t_W(i),...)$ in (9-3) dargestellt. Hierbei nimmt der Index *i* für die Wellenwandstärke t_W die Werte i = [1,2] an. Bei Variation der restlichen Größen nimmt der Index *i* die Werte i = [1] an.

$$\Delta \Delta p_{F,m}(t_W(i) \& t_W(i+1), n, \zeta_{AWV}, \alpha_{AWV})$$

= $\Delta p_{F,m}(t_W(i+1), n, \zeta_{AWV}, \alpha_{AWV})$
- $\Delta p_{F,m}(t_W(i), n, \zeta_{AWV}, \alpha_{AWV})$ (9-3)

Die Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ können im mathematischen Sinn mit der ersten und zweiten partiellen Ableitung verglichen werden, wobei aufgrund der diskret vorliegenden Werte und der immer gleich großen Schritte zwischen den einzelnen Parameterstufen direkt die Differenz und nicht der Gradient betrachtet wird.

9.1 Symmetrische Laminate

Die Mittelwerte des Fugendrucks $p_{F,m}$ sind für die verschiedenen Varianten der weiteren symmetrischen Laminate (siehe Tab. 7-1 und Abb. 7-13) in Abb. 9-1 dargestellt. Eine tabellarische Zusammenfassung der betragsmäßig größten Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ findet sich in Tab. 9-1, worauf die nachfolgende Diskussion basiert.

Der Mittelwert des Fugendrucks $p_{F,m}$ nimmt mit zunehmender Wellenwandstärke t_W immer zu, was aufgrund der mit der Wandstärke zunehmenden tangentialen Steifigkeit der CFK-Hohlwelle plausibel ist. Die Fugendruckänderung $\Delta p_{F,m}(t_W(i),...)...$

- ... nimmt mit größerer Wellenwandstärke t_W ab, was mit der nach außen hin abnehmenden tangentialen Dehnung und der damit verbundenen geringeren tangentialen Dehnung zusätzlich aufgebrachter Lagen erklärt werden kann.
- ... nimmt mit größerer Lagenanzahl *n*, also mit feinerer Verteilung der Lagen, zu.
- ... nimmt mit größerem Anteil an AWV-Lagen ζ_{AWV} meist ab. Dies ist plausibel, da die Welle eine geringere tangentiale Steifigkeit aufweist, je größer der Anteil an AWV-Lagen ζ_{AWV} ist, wodurch eine Wandstärkenzunahme eine geringere Fugendruckänderung bewirkt.
- ... nimmt mit größerem Winkel α_{AWV} zu. Auch dies ist plausibel, da die Welle eine größere tangentiale Steifigkeit aufweist, je größer der Winkel α_{AWV} ist,

wodurch eine Wandstärkenzunahme eine größere Fugendruckänderung bewirkt.

Eine Erhöhung der Wellenwandstärke t_W ist eine Möglichkeit, eine große Fugendrucksteigerung zu erreichen. Die Wandstärke, von der ausgehend erhöht wird, und der Anteil an AWV-Lagen ζ_{AWV} können hierbei großen Einfluss auf die Effektivität der Wandstärkenerhöhung haben, wobei eine geringe Ausgangswandstärke und ein geringer Anteil an AWV-Lagen meist vorteilhaft sind. Die Lagenanzahl *n* hat nahezu keinen Einfluss auf die Effektivität der Wandstärkenerhöhung, wobei aber eine größere Lagenanzahl tendenziell vorteilhaft ist. Der Winkel der AWV-Lagen α_{AWV} kann einen mittleren Einfluss auf die Effektivität der Wandstärkenerhöhung haben, wobei ein großer Winkel der AWV-Lagen vorteilhaft ist.

Tab. 9-1: Fugendruckänderung für weitere symmetrische Laminate

Betragsmäßig größte Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ für die weiteren symmetrischen Laminate und Angabe, ob deren Wert durchweg positiv (++), meist positiv (+), meist negativ (-) oder durchweg negativ (--) ist, ob ein Vorzeichenwechsel mit Änderung des Gestaltungsparameters einhergeht (+ \rightarrow -) oder ob keine Tendenz ersichtlich ist (+ oder -)

Variierter Gestaltungs-	Betragsmäßig größter Wert von	Betragsm bei zus	äßig größter ätzlicher Vari	Wert von Δt ation von	∆p _{F,m} () . [MPa]
parameter	$\Delta p_{F,m}(\dots)$ [MPa]	t _W	n	ζ _{AWV}	<i>α_{AWV}</i>
t_W	12,8 (++)	-6,4 ()	0,3 (++)	-5,4 (-)	3,3 (++)
n	0,5 (++)	0,3 (++)	-0,3 ()	0,3/-0,4 (+ → -)	-0,2 ()
ζ_{AWV}	-13,4 ()	-5,4 (-)	0,3/-0,4 (+ oder -)	-5,2 ()	5,0 (++)
$lpha_{AWV}$	8,6 (++)	3,3 (++)	-0,2 ()	5,0 (++)	5,9 (++)

Der Mittelwert des Fugendrucks $p_{F,m}$ nimmt mit zunehmender Lagenanzahl n zu. Dies ist plausibel, da mit zunehmender Lagenanzahl und damit feinerer Verteilung der Lagen mehr 90°-Lagen in Richtung der Trennfuge verschoben werden, wodurch die CFK-Welle tangential steifer wird. Die Fugendruckänderung $\Delta p_{F,m}(n(i),...)$...

- ... nimmt mit größerer Wellenwandstärke t_W zu, da die Position der Lagen relevanter wird, je größer die Wellenwandstärke ist.
- ... nimmt mit größerer Lagenanzahl *n*, also mit feinerer Verteilung der Lagen, ab.

- ... ist für einen mittleren Anteil an AWV-Lagen ζ_{AWV} maximal, da die Position der anderen Lage und die Lagenanzahl bei kleinen und großen Anteilen einer Lage nicht so stark ins Gewicht fallen.
- ... nimmt mit größerem Winkel der AWV-Lagen α_{AWV} ab. Dies kann mit den geringer werdenden Unterschieden in der tangentialen Steifigkeit der AWVund Umfangslagen erklärt werden.

Eine Erhöhung der Lagenanzahl n ist eine Möglichkeit, eine geringfügige Fugendrucksteigerung zu erreichen. Alle anderen Parameter können hierbei großen Einfluss auf die Effektivität der Lagenanzahlerhöhung haben, wobei eine große Wellenwandstärke t_W , eine geringe Ausgangslagenanzahl n, ein mittlerer Anteil an AWV-Lagen ζ_{AWV} und ein kleiner Winkel der AWV-Lagen α_{AWV} vorteilhaft sind.

Der Mittelwert des Fugendrucks $p_{F,m}$ nimmt mit zunehmendem Anteil an AWV-Lagen ζ_{AWV} ab, da die tangentiale Steifigkeit der CFK-Hohlwelle reduziert wird. Der Betrag der Fugendruckänderung $\Delta p_{F,m}(\zeta_{AWV}(i),...)$...

- ... nimmt mit größerer Wellenwandstärke t_W meist zu.
- ... nimmt je nach Anteil an AWV-Lagen ζ_{AWV} mit der Lagenanzahl n zu oder ab.
- ... nimmt mit zunehmendem Anteil an AWV-Lagen ζ_{AWV} zu.
- ... nimmt mit größerem Winkel der AWV-Lagen α_{AWV} ab.

Eine Reduktion des Anteils ζ_{AWV} der AWV-Lagen ist eine Möglichkeit, eine große Fugendrucksteigerung zu erreichen. Die Wellenwandstärke t_W , der Anteil der AWV-Lagen ζ_{AWV} , von dem ausgehend reduziert wird, und der Winkel der AWV-Lagen α_{AWV} können großen Einfluss auf die Effektivität der Anteilreduktion haben. Hierbei sind eine große Wellenwandstärke, ein großer Ausgangsanteil und ein kleiner Winkel der AWV-Lagen meist vorteilhaft. Die Lagenanzahl hat nahezu keinen Einfluss auf die Effektivität der Anteilreduktion.

Der Mittelwert des Fugendrucks $p_{F,m}$ nimmt mit zunehmendem **Winkel** α_{AWV} zu, was aufgrund der mit zunehmendem Winkel steigenden tangentialen Steifigkeit der CFK-Hohlwelle plausibel ist. Die Fugendruckänderung $\Delta p_{F,m}(\alpha_{AWV}(i),...)$...

- ... nimmt mit größerer Wellenwandstärke t_W zu.
- ... nimmt mit zunehmender Lagenanzahl *n* ab.
- ... nimmt mit zunehmendem Anteil an AWV-Lagen ζ_{AWV} zu. Dies ist plausibel, da die Steifigkeitsänderung der AWV-Lagen bei größeren Anteilen der AWV-Lagen stärker ins Gewicht fällt.
- ... nimmt mit größerem Winkel der AWV-Lagen α_{AWV} zu.

Eine Erhöhung des Winkels der AWV-Lagen α_{AWV} ist eine Möglichkeit, eine große Fugendrucksteigerung zu erreichen. Die Wellenwandstärke t_W , der Anteil an AWV-Lagen ζ_{AWV} und der Winkel der AWV-Lagen α_{AWV} , von dem ausgehend erhöht wird,

können großen Einfluss auf die Effektivität der Winkelerhöhung haben. Hierbei sind eine große Wellenwandstärke, ein großer Anteil an AWV-Lagen und ein großer Ausgangswinkel vorteilhaft. Die Lagenanzahl n hat nahezu keinen Einfluss auf die Effektivität der Winkelerhöhung, wobei eine kleine Lagenanzahl vorteilhaft ist.

Fazit

Die folgenden zusammenfassenden Aussagen gelten im Hinblick auf die untersuchten Gestaltungsparameter und Intervallschritte zwischen diesen. Die maximale absolute Fugendrucksteigerung durch eine Erhöhung der Wellenwandstärke t_W ist vergleichbar mit derjenigen durch eine Reduktion des Anteils an AWV-Lagen ζ_{AWV} . Eine Erhöhung der Wellenwandstärke hat jedoch eine größere Bauteilmasse zur Folge und ist damit aus leichtbautechnischer Sicht unvorteilhaft. Die Reduktion des Anteils an AWV-Lagen wirkt sich nicht auf die Masse aus. Die Effektivität der Erhöhung der Wellenwandstärke ist bei dickwandigen Bauteilen geringer, diejenige der Reduktion des Anteils an AWV-Lagen größer. Eine Erhöhung des Winkels der AWV-Lagen α_{AWV} bewirkt eine geringere maximale absolute Fugendrucksteigerung als die Erhöhung der Wellenwandstärke, ist aber bei dickwandigen Bauteilen effektiver. Die Reduktion des Anteils an AWV-Lagen sowie die Erhöhung des Winkels der AWV-Lagen sind damit für den vorliegenden Laminattyp bevorzugte Maßnahmen zur Fugendrucksteigerung, müssen aber mit den Anforderungen an das CFK-Bauteil hinsichtlich der angreifenden Betriebslasten in Einklang gebracht werden.

9.2 Unsymmetrische Laminate mit ausgeglichenem Winkelverbund innen

Nach der Untersuchung der unsymmetrischen AWVi-Laminate aus Kapitel 7.3.2 werden weiterführende Untersuchungen in Anlehnung an die PK aus Kapitel 5 durchgeführt.

Grundlegende Untersuchungen

Die Mittelwerte des Fugendrucks $p_{F,m}$ sind für die verschiedenen Varianten des unsymmetrischen AWVi-Laminats (siehe Tab. 7-1 und Abb. 7-13) in Abb. 9-2 dargestellt. Eine tabellarische Zusammenfassung der betragsmäßig größten Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ findet sich in Tab. 9-2, worauf die nachfolgende Diskussion basiert.

Abb. 9-2: Fugendruck für unsymmetrische AWVi-Laminate Mittelwert des Fugendrucks $p_{F,m}$ für unsymmetrische AWVi-Laminate für Winkel $\alpha_{AWV} = 30^{\circ}$ (links oben), $\alpha_{AWV} = 45^{\circ}$ (links unten) und $\alpha_{AWV} = 60^{\circ}$ (rechts oben)

Die Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ entsprechen in den Tendenzen und Vorzeichen der Beschreibung aus Kapitel 9.1. Die zugehörigen Erklärungen sowie die für die einzelnen Gestaltungsparameter ausgesprochenen praktischen Empfehlungen können damit ebenfalls Kapitel 9.1 entnommen werden.

Tab. 9-2: Fugendruckänderung für unsymmetrische AWVi-Laminate

Betragsmäßig größte Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ für die unsymmetrischen AWVi-Laminate und Angabe, ob deren Wert durchweg positiv (++), meist positiv (+), meist negativ (-) oder durchweg negativ (--) ist, ob ein Vorzeichenwechsel mit Änderung des Gestaltungsparameters einhergeht (+ \rightarrow -) oder ob keine Tendenz ersichtlich ist (+ oder -)

Variierter Gestaltungs-	Betragsmäßig größter Wert von	Betragsm bei zus	äßig größter ätzlicher Vari	Wert von Δt ation von	∆ <i>p_{F,m}(…)</i> . [MPa]
parameter	$\Delta p_{F,m}(\dots)$ [MPa]	t _W	n	ζ _{AWV}	α _{AWV}
t_W	12,8 (++)	-6,4 ()	0,7 (++)	-5,3 (-)	3,4 (++)
n	2,0 (++)	0,7 (++)	-1,3 ()	1,0/-1,4 (+ → -)	-0,7 ()
ζ_{AWV}	-12,9 ()	-5,3 (-)	1,0/-1,4 (+ oder -)	-4,1 ()	4,8 (++)
α_{AWV}	9,0 (++)	3,4 (++)	-0,7 ()	4,8 (++)	6,0 (++)

Fazit grundlegender Untersuchungen

Die am Ende von Kapitel 9.1 getroffenen Aussagen gelten allesamt auch für das unsymmetrische Laminat mit innenliegendem AWV, müssen aber um Folgendes ergänzt werden. Eine Erhöhung der Lagenanzahl n bewirkt für das vorliegende Laminat eine merkliche Fugendrucksteigerung, die ebenfalls bei dickwandigen Bauteilen effektiver ausfällt. Dies stellt die vorteilhafteste Maßnahme zur Erhöhung des Fugendrucks dar, da diese keinen Einfluss auf das Bauteilgewicht aufweist und tendenziell positive Effekte auf die maximale Betriebslast bei Biegung und Torsion hat, da die AWV-Lagen weiter nach außen verlagert werden.

Weiterführende Untersuchungen

Im Hinblick auf die PK aus Kapitel 5 wird im Folgenden ein Szenario mit vorgegebener Betriebslast und daraus resultierender Wandstärke der AWV-Lagen t_{AWV} betrachtet. Der Einfluss der Wandstärke der 90°-Lagen $t_{90°}$ auf den Mittelwert des Fugendrucks wird untersucht, um Gestaltungsempfehlungen abzuleiten. Ein Teil der nachfolgend dargestellten Untersuchungen wurde bereits von *Fahr* [56] veröffentlicht.

Der Fokus der nachfolgenden Untersuchungen liegt ebenfalls auf der CFK-Hohlwelle und deren Laminat. Die AWV-Lagen sind innenliegend angeordnet, da dies für die Längspressverbindung vorteilhaft ist. In Anlehnung an die PK aus Kapitel 5 wird die Lagenanzahl auf zwei gesetzt. Die Werte des Nabenaußenradius $r_{N,a}$, der Fügelänge l_F , des Übermaßes Ü_r, der Nabenwandstärke t_N , der Länge der Welle l_W und der Nabe l_N können Tab. 6-1 entnommen werden und werden nicht variiert. Die Intervalle der variierten Gestaltungsparameter werden in Anlehnung an die PK aus Kapitel 5 gewählt und sind in Tab. 9-3 zusammengefasst. Aus der vollfaktoriellen Kombination dieser Parameter ergeben sich 108 Kombinationen.

Tab. 9-3: Gestaltungsparameter weiterführender Parameterstudien

Gestaltungsparameter mit Intervallen für die weiterführenden Parameterstudien am unsymmetrischen AWVi-Laminat

Bezeichnung	Formelzeichen	Werte	Einheit
Winkel AWV-Lagen	$lpha_{AWV}$	30; 45; 60	0
Wandstärke 90°-Lagen	t_{90°	0,5; 1,5; 2,5; 3,5; 4,5; 5,5	mm
Wandstärke AWV-Lagen	t_{AWV}	0,5; 1,5; 2,5; 3,5; 4,5; 5,5	mm

Die numerische Berechnung der folgenden Kenngrößen erfolgt mit dem im zweiten Teil von Kapitel 7.3.1 definierten Modell, wobei das unsymmetrische AWVi-Laminat entsprechend Abb. 7-14 diskretisiert wird. Basierend auf dem entsprechend (6-1) ermittelten Mittelwert des Fugendrucks $p_{F,m}$ wird die Fugendruckänderung $\Delta p_{F,m}(...)$ bei Variation eines Gestaltungsparameters in Anlehnung an (9-1) bestimmt. Hierbei nimmt der Index *i* bei Variation der Wandstärken der 90°-Lagen $t_{90°}$ oder der AWV-Lagen t_{AWV} die Werte i = [1,2,3,4,5] an. Bei Variation des Winkels der AWV-Lagen α_{AWV} nimmt der Index *i* die Werte *i* = [1,2] an. Weiterhin wird die Änderung der Fugendruckänderung $\Delta \Delta p_{F,m}(...)$ bei zusätzlicher Variation eines weiteren Gestaltungsparameters in Anlehnung an (9-2) bestimmt. Hierbei nehmen die Indizes i beziehungsweise j bei Variation der Wandstärken der 90°-Lagen $t_{90°}$ oder der AWV-Lagen t_{AWV} die Werte *i bzw. j* = [1,2,3,4,5] an. Bei Variation des Winkels der AWV-Lagen α_{AWV} nehmen die Indizes *i* beziehungsweise *j* die Werte *i bzw. j* = [1,2] an. Bei Variation zweier gleicher Gestaltungsparameter wird die Änderung der Fugendruckänderung $\Delta \Delta p_{F,m}(...)$ in Anlehnung an (9-3) bestimmt. Hierbei nimmt der Index *i* bei Variation der Wandstärken der 90°-Lagen $t_{90°}$ oder der AWV-Lagen t_{AWV} die Werte i =[1,2,3,4] an. Bei Variation des Winkels der AWV-Lagen α_{AWV} nimmt der Index *i* die Werte i = [1] an.

Die Mittelwerte des Fugendrucks $p_{F,m}$ sind für die verschiedenen Varianten der weiteren unsymmetrischen AWVi-Laminate in Abb. 9-3 dargestellt. Eine tabellarische Zusammenfassung der betragsmäßig größten Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ findet sich in Tab. 9-4, worauf die nachfolgende Diskussion basiert.

Der Mittelwert des Fugendrucks $p_{F,m}$ nimmt mit zunehmender **Wandstärke der 90°-**Lagen t_{90° zu, was aufgrund der zunehmenden tangentialen Steifigkeit der CFK-Hohlwelle plausibel ist. Die Fugendruckänderung $\Delta p_{F,m}(t_{90^\circ}(i),...)...$

- … nimmt mit größerer Wandstärke der 90°-Lagen t_{90°} ab, da zusätzliche 90°-Lagen aufgrund der nach außen hin abnehmenden tangentialen Dehnung weniger stark gedehnt werden.
- ... nimmt mit größerer Wandstärke der AWV-Lagen t_{AWV} ab, da zusätzliche 90°-Lagen bei größerer Wandstärke der AWV-Lagen weiter von der Trennfuge entfernt sind und dadurch weniger stark tangential gedehnt werden.
- ... nimmt mit größerem Winkel der AWV-Lagen α_{AWV} meist ab. Aufgrund der größeren tangentialen Steifigkeit der CFK-Hohlwelle bei größerem Winkel der AWV-Lagen fällt die Steigerung der Wandstärke der 90°-Lagen weniger ins Gewicht.

Eine Erhöhung der Wandstärke der 90°-Lagen $t_{90°}$ ist eine Möglichkeit, eine große Fugendrucksteigerung zu erreichen. Die Wandstärke der 90°-Lagen, von der ausgehend erhöht wird, kann hierbei großen Einfluss auf die Effektivität haben, wobei ein geringer Ausgangswert vorteilhaft ist. Die Wandstärke t_{AWV} und der Winkel der AWV-Lagen α_{AWV} können einen geringen Einfluss auf die Effektivität der Erhöhung der Wandstärke der 90°-Lagen haben, wobei eine geringe Wandstärke und ein geringer Winkel der AWV-Lagen vorteilhaft sind.

Tab. 9-4: Fugendruckänderung für weitere unsymmetrische AWVi-Laminate

Betragsmäßig größte Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ für die weiteren unsymmetrischen AWVi-Laminate und Angabe, ob deren Wert durchweg positiv (++), meist positiv (+), meist negativ (-) oder durchweg negativ (--) ist, ob keine Tendenz ersichtlich ist (+ oder -) oder ob die Erläuterung im Text erfolgt (+ bzw. -)

Variierter Gestaltungs-	Betragsmäßig größter Wert von	Betragsmä bei zusät	ßig größter Wert von Azlicher Variation von .	$\Delta p_{F,m}()$ [MPa]
parameter	$\Delta p_{F,m}(\dots)$ [MPa]	$t_{90^{\circ}}$	$\ldots t_{AWV}$	α _{AWV}
t _{90°}	8,7 (++)	-2,7 ()	-1,2 ()	-1,1 (-)
t_{AWV}	3,2/-2,5 (+ oder -)	-1,2 ()	0,5/-0,5 (+ bzw)	2,1 (++)
α_{AWV}	8,7 (++)	-1,1 (-)	2,1 (++)	6,0 (++)

Der Mittelwert des Fugendrucks $p_{F,m}$ nimmt mit zunehmender Wandstärke der AWV-Lagen t_{AWV} zu oder ab, wobei dies von der Wandstärke der 90°-Lagen $t_{90°}$ abhängig ist. Bei zunehmenden Wandstärken der AWV-Lagen werden die 90°-Lagen weiter von der Trennfuge weg positioniert und dadurch weniger stark gedehnt. Bei geringen Wandstärken der 90°-Lagen ist die Fugendruckzunahme durch die zusätzlichen AWV-Lagen größer als die Abnahme durch das Verschieben der 90°-Lagen. Je größer die tangentiale Steifigkeit der AWV-Lagen, d.h. je größer der Winkel der AWV-Lagen α_{AWV} , desto größer ist diese Wandstärke der 90°-Lagen. Die Wandstärke der 90°-Lagen $t_{90°}$, an der dieser Wechsel stattfindet, wird im Folgenden als kritische Wandstärke t_{krit} bezeichnet und kennzeichnet sich durch einen von der Wandstärke der AWV-Lagen t_{AWV} unabhängigen Mittelwert des Fugendrucks $p_{F,m}$, was der Schnittpunkt der jeweiligen Kurven in Abb. 9-3 ist und dort gekennzeichnet ist. Die Fugendruckänderung $\Delta p_{F,m}(t_{AWV}(i), \dots)$...

- ... nimmt mit zunehmender Wandstärke der 90°-Lagen $t_{90°}$ ab und nimmt ab der kritischen Wandstärke t_{krit} negative Werte an, deren Beträge wiederum zunehmen.
- ... nimmt mit größerem Winkel der AWV-Lagen α_{AWV} zu.

Der Betrag der Fugendruckänderung $\Delta p_{F,m}(t_{AWV}(i),...)$ nimmt in allen Fällen mit größerer Wandstärke der AWV-Lagen t_{AWV} ab, da die zugehörige Änderung der Fugendruckänderung positiv bei einer Fugendruckabnahme und negativ bei einer Fugendruckzunahme ist. Dies ist plausibel, da die Änderung der Wandstärke der AWV-Lagen umso weniger ins Gewicht fällt, je größer die Ausgangswandstärke ist. Je nach Wandstärke der 90°-Lagen $t_{90°}$ bietet eine Erhöhung oder Reduktion der Wandstärke der AWV-Lagen t_{AWV} die Möglichkeit, eine mittlere Fugendrucksteigerung zu erreichen. Die Wandstärke der 90°-Lagen kann großen Einfluss auf die Effektivität der Änderung der Wandstärke der AWV-Lagen haben, wobei eine stark von der kritischen Wandstärke t_{krit} abweichende Wandstärke der 90°-Lagen vorteilhaft ist. Die Wandstärke der AWV-Lagen t_{AWV} , von der ausgehend erhöht wird, kann einen geringen Einfluss auf die Effektivität haben, wobei ein geringer Ausgangswert vorteilhaft ist. Der Winkel der AWV-Lagen α_{AWV} kann großen Einfluss auf die Effektivität der Wandstärkenänderung der AWV-Lagen haben.

Der Mittelwert des Fugendrucks $p_{F,m}$ nimmt mit zunehmendem Winkel der AWV-Lagen α_{AWV} zu, was mit der zunehmenden tangentialen Steifigkeit der CFK-Hohlwelle erklärt werden kann. Die Fugendruckänderung $\Delta p_{F,m}(\alpha_{AWV}(i),...)...$

- … nimmt mit größerer Wandstärke der 90°-Lagen t_{90°} meist ab, da die Unterschiede in der tangentialen Steifigkeit der AWV-Lagen aufgrund der dominanten 90°-Lagen nicht mehr so stark ins Gewicht fallen.
- ... nimmt mit größerer Wandstärke der AWV-Lagen t_{AWV} zu, da die AWV-Lagen mit zunehmender Wandstärke stärker ins Gewicht fallen.
- ... nimmt mit größerem Winkel der AWV-Lagen α_{AWV} zu.

Eine Erhöhung des Winkels der AWV-Lagen α_{AWV} ist eine Möglichkeit, eine große Fugendrucksteigerung zu erreichen. Die Wandstärke der 90°-Lagen $t_{90°}$ kann einen geringen Einfluss auf die Effektivität der Winkelerhöhung haben, wobei eine geringe Wandstärke der 90°-Lagen vorteilhaft ist. Die Wandstärke der AWV-Lagen t_{AWV} kann einen mittleren Einfluss auf die Effektivität der Winkelerhöhung haben, wobei eine große Wandstärke der AWV-Lagen vorteilhaft ist. Der Winkel der AWV-Lagen α_{AWV} , von dem ausgehend erhöht wird, kann großen Einfluss auf die Effektivität der Winkelerhöhung haben, wobei ein großer Ausgangswinkel vorteilhaft ist.

Fazit weiterführender Untersuchungen

Die folgenden zusammenfassenden Aussagen gelten im Hinblick auf die untersuchten Gestaltungsparameter und Intervallschritte zwischen diesen. Die maximale Fugendrucksteigerung durch eine Erhöhung der Wandstärke der 90°-Lagen $t_{90°}$ ist vergleichbar mit derjenigen durch die Erhöhung des Winkels der AWV-Lagen α_{AWV} , aber aufgrund der daraus resultierenden größeren Bauteilmasse und der geringeren Effektivität bei größeren Wandstärken unvorteilhaft. Die Effektivität der Winkelerhöhung ist bei großen Wandstärken der 90°-Lagen ebenfalls geringer, bei großen Wandstärken

der AWV-Lagen hingegen größer. Es existiert eine kritische Wandstärke t_{krit} der 90°-Lagen, bei der eine Erhöhung der Wandstärke der AWV-Lagen t_{AWV} keine Fugendruckänderung bewirkt. Die kritische Wandstärke nimmt mit zunehmendem Winkel der AWV-Lagen zu. Für Wandstärken der 90°-Lagen kleiner als t_{krit} hat eine Erhöhung der Wandstärke der AWV-Lagen eine Fugendruckerhöhung zur Folge, die mit zunehmender Wandstärke der 90°-Lagen und der AWV-Lagen abnimmt. Für Wandstärken der 90°-Lagen größer als t_{krit} hat eine Erhöhung der Wandstärke der AWV-Lagen eine Fugendruckreduktion zur Folge, die mit zunehmender Wandstärke der 90°-Lagen zu und mit zunehmender Wandstärke der AWV-Lagen abnimmt, was aus leichtbautechnischer Sicht sehr unvorteilhaft ist. Die Steigerung des Winkels der AWV-Lagen ist für den vorliegenden Laminattyp damit die bevorzugte Maßnahme zur Fugendrucksteigerung, was mit den Anforderungen an das CFK-Bauteil hinsichtlich der angreifenden Betriebslasten in Einklang gebracht werden muss. Eine Steigerung der Wandstärke der 90°-Lagen erhöht den Fugendruck, hat aber eine größere Bauteilmasse zur Folge und nimmt mit zunehmender Wandstärke ab. Vor allem die Erhöhung der Wandstärke der AWV-Lagen ist bei diesen Laminaten kritisch. Wenn aus anwendungstechnischen Gründen ein Laminat mit rein innenliegenden AWV-Lagen gefordert ist, kann eine Erhöhung der Wandstärke der AWV-Lagen aus leichtbautechnischer Sicht unvorteilhaft sein, da dies bei einer Wandstärke der 90°-Lagen größer als t_{krit} eine Reduktion des Fugendrucks bewirkt. Wenn für den Anwendungsfall zulässig, sollten deshalb zusätzliche AWV-Lagen in allen Fällen außerhalb der 90°-Lagen hinzugefügt werden. Dies ist selbst bei Wandstärken der 90°-Lagen kleiner als tkrit effektiver als eine Erhöhung der Wandstärke der innenliegenden AWV-Lagen. Im Hinblick auf große Fugendrücke ist es daher immer vorteilhaft, Umfangslagen so nahe wie möglich an der Trennfuge zu positionieren, was wiederum mit fertigungstechnischen und fügetechnischen Aspekten in Einklang gebracht werden muss.

9.3 Unsymmetrische Laminate mit ausgeglichenem Winkelverbund außen

Die Mittelwerte des Fugendrucks $p_{F,m}$ sind für die verschiedenen Varianten des unsymmetrischen AWVa-Laminats (siehe Tab. 7-1 und Abb. 7-13) in Abb. 9-4 dargestellt. Eine tabellarische Zusammenfassung der betragsmäßig größten Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ findet sich in Tab. 9-5, worauf die nachfolgende Diskussion basiert.

Abb. 9-4: Fugendruck für unsymmetrische AWVa-Laminate Mittelwert des Fugendrucks $p_{F,m}$ für unsymmetrische AWVa-Laminate für Winkel $\alpha_{AWV} = 30^{\circ}$ (links oben), $\alpha_{AWV} = 45^{\circ}$ (links unten) und $\alpha_{AWV} = 60^{\circ}$ (rechts oben)

Für die Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ entsprechen die Tendenzen und Vorzeichen bis auf die folgenden Abweichungen den in Kapitel 9.1 erläuterten. Diesem Kapitel können auch die zugehörigen Erklärungen entnommen werden.

Die Fugendruckänderung $\Delta p_{F,m}(t_W(i),...)$ bei Variation der **Wellenwandstärke** t_W nimmt mit größerer Lagenanzahl n ab. Die Lagenanzahl hat nahezu keinen Einfluss auf die Effektivität der Wandstärkenerhöhung, wobei aber eine kleine Lagenanzahl tendenziell vorteilhaft ist. Der Winkel der AWV-Lagen α_{AWV} kann einen mittleren Einfluss auf die Effektivität der Wandstärkenerhöhung haben, wobei ein großer Winkel der AWV-Lagen meist vorteilhaft ist.

Der Mittelwert des Fugendrucks $p_{F,m}$ nimmt mit zunehmender **Lagenanzahl** n ab. Dies ist plausibel, da mehr 90°-Lagen in Richtung Außenradius verschoben werden, wodurch die CFK-Welle tangential weicher wird. Der Betrag der Fugendruckänderung $\Delta p_{F,m}(n(i),...)...$

- ... nimmt mit größerer Wellenwandstärke t_W zu, da die Position der Lagen relevanter wird.
- ... nimmt mit größerer Lagenanzahl *n* ab.
- ... ist für einen mittleren Anteil an AWV-Lagen ζ_{AWV} maximal. Bei kleinen und großen Anteilen einer Lage fallen die Position der anderen Lage und die Lagenanzahl nicht so stark ins Gewicht.
- … nimmt mit größerem Winkel der AWV-Lagen α_{AWV} ab. Dies kann mit den geringer werdenden Unterschieden in der tangentialen Steifigkeit von AWVund Umfangslagen erklärt werden.

Eine Reduktion der Lagenanzahl n ist eine Möglichkeit, eine geringfügige Fugendrucksteigerung zu erreichen. Alle anderen Parameter können hierbei großen Einfluss auf die Effektivität der Lagenanzahlreduktion haben, wobei eine große Wellenwandstärke t_W , eine geringe Ausgangslagenanzahl n, ein mittlerer Anteil an AWV-Lagen ζ_{AWV} und ein kleiner Winkel der AWV-Lagen α_{AWV} vorteilhaft sind.

Tab. 9-5: Fugendruckänderung für unsymmetrische AWVa-Laminate

Betragsmäßig größte Werte der Fugendruckänderung $\Delta p_{F,m}(...)$ und deren Änderung $\Delta \Delta p_{F,m}(...)$ für die unsymmetrischen AWVa-Laminate und Angabe, ob deren Wert durchweg positiv (++), meist positiv (+), meist negativ (-) oder durchweg negativ (--) ist, ob ein Vorzeichenwechsel mit Änderung des Gestaltungsparameters einhergeht (+ \rightarrow -) oder ob keine Tendenz ersichtlich ist (+ oder -)

Variierter Gestaltungs-	Betragsmäßig größter Wert von	Betragsm bei zus	äßig größter ätzlicher Vari	Wert von $\Delta \lambda$ ation von	∆ <i>p_{F,m}(…)</i> . [MPa]
parameter	$\Delta p_{F,m}(\dots)$ [MPa]	t _W	n	ζ _{AWV}	α _{AWV}
t_W	12,9 (++)	-6,4 ()	-0,4 ()	-5,9 (-)	3,3 (+)
n	-1,2 ()	-0,4 ()	0,7 (++)	-1,0/0,4 (- → +)	0,4 (++)
ζ_{AWV}	-15,0 ()	-5,9 (-)	-1,0/0,4 (+ oder -)	-9,4 ()	5,7 (++)
α_{AWV}	8,4 (++)	3,3 (+)	0,4 (++)	5,7 (++)	5,8 (++)

Die Fugendruckänderung $\Delta p_{F,m}(\alpha_{AWV}(i),...)$ bei Variation des Winkels der AWV-Lagen α_{AWV} ...

- ... nimmt mit größerer Wellenwandstärke t_W meist zu.
- ... nimmt mit zunehmender Lagenanzahl *n* zu.

Eine Erhöhung des Winkels der AWV-Lagen α_{AWV} ist eine Möglichkeit, eine große Fugendrucksteigerung zu erreichen. Die Wellenwandstärke t_W , der Anteil an AWV-

Lagen ζ_{AWV} und der Winkel der AWV-Lagen α_{AWV} , von dem ausgehend erhöht wird, können großen Einfluss auf die Effektivität der Winkelerhöhung haben. Hierbei sind eine große Wellenwandstärke, ein großer Anteil an AWV-Lagen und ein großer Ausgangswinkel meist vorteilhaft. Die Lagenanzahl *n* hat nahezu keinen Einfluss auf die Effektivität der Winkelerhöhung, wobei eine große Lagenanzahl vorteilhaft ist.

Fazit

Die am Ende von Kapitel 9.1 getroffenen Aussagen gelten bis auf die folgenden Abweichungen auch für das unsymmetrische AWVa-Laminat. Die maximale absolute Fugendrucksteigerung durch eine Erhöhung der Wellenwandstärke t_W ist etwas geringer als die durch Reduktion des Anteils der AWV-Lagen ζ_{AWV} . Eine Reduktion der Lagenanzahl *n* bewirkt für das vorliegende Laminat eine merkliche Fugendrucksteigerung, die ebenfalls bei dickwandigen Bauteilen effektiver ausfällt. Dies stellt die vorteilhafteste Maßnahme zur Erhöhung des Fugendrucks dar, da diese keinen Einfluss auf das Bauteilgewicht aufweist und tendenziell positive Effekte auf die maximale Betriebslast bei Biegung und Torsion hat, da die AWV-Lagen weiter nach außen verlagert werden. Aus festigkeitstechnischer Sicht kann eine Ansammlung von Lagen gleicher Orientierung jedoch kritisch sein.

9.4 Vergleich der unterschiedlichen Laminate

Für den Vergleich der Fugendruckwerte wird die Differenz der Fugendrücke $\delta p_{F,m}(...)$ zum jeweiligen Wert des symmetrischen Laminats gebildet, was exemplarisch für das unsymmetrische AWVi-Laminat in (9-4) dargestellt ist. Weiterhin wird die Änderung $\delta \delta p_{F,m}(...)$ dieser Differenz bei zusätzlicher Variation eines Gestaltungsparameters bestimmt, was exemplarisch für ein unsymmetrisches AWVi-Laminat und Variation der Wellenwandstärke t_W in (9-5) dargestellt ist. Hierbei nimmt der Index *i* für die Wellenwandstärke t_W die Werte i = [1,2,3] an. Bei Variation der restlichen Größen nimmt der Index *i* die Werte i = [1,2] an. Der Wert $t_W(i + 1)$ steht für die nächstgrößere Wandstärke im entsprechenden Intervall.

$$\delta p_{F,m}(t_W, n, \zeta_{AWV}, \alpha_{AWV}, AWVi) = p_{F,m}(t_W, n, \zeta_{AWV}, \alpha_{AWV}, AWVi) - p_{F,m}(t_W, n, \zeta_{AWV}, \alpha_{AWV}, symm)$$
(9-4)

$$\delta \delta p_{F,m}(t_W(i), n, \zeta_{AWV}, \alpha_{AWV}, AWVi) = \delta p_{F,m}(t_W(i+1), n, \zeta_{AWV}, \alpha_{AWV}, AWVi) - \delta p_{F,m}(t_W(i), n, \zeta_{AWV}, \alpha_{AWV}, AWVi)$$
(9-5)

Eine tabellarische Zusammenfassung der betragsmäßig größten Werte der Differenz der Fugendrücke $\delta p_{F,m}(...)$ und deren Änderung $\delta \delta p_{F,m}(...)$ findet sich in Tab. 9-6, worauf die nachfolgende Diskussion basiert.

Tab. 9-6: Differenz der Fugendrücke für Vergleich der Laminate

Betragsmäßig größte Werte der Differenz der Fugendrücke $\delta p_{F,m}(...)$ und deren Änderung $\delta \delta p_{F,m}(...)$ für den Vergleich der unsymmetrischen Laminate mit dem symmetrischen Laminat und Angabe, ob deren Wert durchweg positiv (++), meist positiv (+), meist negativ (-) oder durchweg negativ (--) ist oder ob ein Vorzeichenwechsel mit Änderung des Gestaltungsparameters einhergeht (+ \rightarrow -)

Laminattyp	Betragsmäßig größter Wert von	Betragsma be	ißig größter ei Variation	Wert von δ von [MP	δp _{F,m} () Pa]
	$\delta p_{F,m}(\dots)$ [MPa]	$\dots t_W$	n	ζ _{AWV}	α _{AWV}
AWVi	-2,8 ()	-1,0 ()	1,5 (++)	$\begin{array}{c} -1,7/1,8\\(-\rightarrow +)\end{array}$	1,0 (++)
AWVa	4,0 (++)	1,6 (++)	-1,7 ()	2,9/-2,2 (+ → -)	-1,4 ()

Der Mittelwert des Fugendrucks $p_{F,m}$ ist bei den AWVi-Laminaten immer geringer und bei den AWVa-Laminaten immer größer als beim symmetrischen Laminat. Dies ist plausibel, da bei den innenliegenden AWV-Lagen die 90°-Lagen weiter von der Trennfuge entfernt, beziehungsweise bei den außenliegenden AWV-Lagen die 90°-Lagen näher an der Trennfuge positioniert sind als beim symmetrischen Aufbau, wodurch sich die CFK-Hohlwelle tangential weicher beziehungsweise steifer verhält.

Die Beträge der Differenz der Fugendrücke $\delta p_{F,m}(AWVi,...)$ und $\delta p_{F,m}(AWVa,...)...$

- ... nehmen mit zunehmender Wellenwandstärke t_W zu, da die Position der Lagen relevanter wird.
- ... nehmen mit zunehmender Lagenanzahl *n* ab, da die Unterschiede in der Position der Lagen geringer werden.
- ... nehmen mit zunehmendem Anteil an AWV-Lagen ζ_{AWV} zuerst zu und dann ab. Die größte Differenz liegt bei einem mittleren Anteil an AWV-Lagen vor.
- ... nehmen mit zunehmendem Winkel der AWV-Lagen α_{AWV} ab. Dies ist aufgrund der geringer werdenden Steifigkeitsunterschiede zwischen den AWVund den Umfangslagen und der damit weniger relevanten Position der AWV-Lagen plausibel.

Ein Vergleich der tabellarisch zusammengefassten Werte der Fugendruckänderungen $\Delta p_{F,m}(...)$ und deren zugehörigen Änderungen $\Delta \Delta p_{F,m}(...)$ für die verschiedenen Laminattypen (Tab. 9-1, Tab. 9-2 und Tab. 9-5) liefert folgende Ergebnisse.

Eine Erhöhung der **Wellenwandstärke** t_W bewirkt bei allen Varianten eine Fugendruckzunahme vergleichbarer Größenordnung, die bei allen Varianten für größere Wellenwandstärken t_W und größere Anteile an AWV-Lagen ζ_{AWV} abnimmt und für größere Winkel der AWV-Lagen α_{AWV} zunimmt. Bei symmetrischen Laminaten und unsymmetrischen AWVi-Laminaten nimmt die Fugendruckzunahme bei Erhöhung der Wellenwandstärke für eine größere Lagenanzahl n zu, für AWVa-Laminate ab.

Eine Erhöhung der **Lagenanzahl** *n* bewirkt bei symmetrischen und unsymmetrischen AWVi-Laminaten eine Zunahme des Fugendrucks, bei den AWVa-Laminaten eine Abnahme. Bei den AWVi-Laminaten ist dieser Effekt am stärksten ausgeprägt, wobei die Auswirkung einer Erhöhung der Lagenanzahl bei allen Laminaten bei größeren Wellenwandstärken t_W stärker ausgeprägt, bei größerer Lagenanzahl *n* weniger stark ausgeprägt, bei einem mittleren Anteil an AWV-Lagen ζ_{AWV} am stärksten ausgeprägt und bei größerem Winkel der AWV-Lagen α_{AWV} weniger stark ausgeprägt ist.

Eine Erhöhung des Anteils der AWV-Lagen ζ_{AWV} bewirkt bei allen Laminaten eine Abnahme des Fugendrucks, was bei den AWVa-Laminaten am stärksten und bei den AWVi-Laminaten am wenigsten stark ausgeprägt ist. Die 90°-Lagen sind bei den AWVa-Lagen näher an der Trennfuge positioniert, weshalb eine Reduktion des Anteils derselben stärker ins Gewicht fällt. Bei allen Laminaten ist die Fugendruckreduktion durch Erhöhung des Anteils der AWV-Lagen bei größeren Wellenwandstärken t_W und größerem Anteil an AWV-Lagen stärker und bei größerem Winkel der AWV-Lagen α_{AWV} weniger stark ausgeprägt.

Eine Erhöhung des **Winkels der AWV-Lagen** α_{AWV} bewirkt bei allen Laminaten eine Zunahme des Fugendrucks vergleichbarer Größenordnung. Bei allen Varianten ist die Fugendruckzunahme hierbei für größere Wellenwandstärken t_W , einen größeren Anteil an AWV-Lagen ζ_{AWV} und einen größeren Winkel der AWV-Lagen α_{AWV} stärker ausgeprägt. Bei den symmetrischen Laminaten und den AWVi-Lagen ist die Fugendruckzunahme durch Erhöhung des Winkels der AWV-Lagen bei einer größeren Lagenanzahl *n* weniger stark, bei den AWVa-Laminaten stärker ausgeprägt.

Die AWVa-Laminate weisen jeweils den größten, die AWVi-Laminate jeweils den kleinsten Fugendruck auf. Die Unterschiede zwischen den Laminaten nehmen mit abnehmender Wellenwandstärke t_W , zunehmender Lagenanzahl n, geringem oder großem Anteil an AWV-Lagen ζ_{AWV} und großem Winkel der AWV-Lagen α_{AWV} ab. Je dickwandiger ein Bauteil ist, desto wichtiger ist die Anordnung der Lagen, um maximale Fugendrücke zu erreichen. Insofern es mit fertigungstechnischen und fügetechnischen Aspekten in Einklang zu bringen ist, sollten Umfangslagen so nah wie möglich an der Trennfuge positioniert werden.

9.5 Zusammenfassung der Gestaltungsempfehlungen

Ergänzend zu den bisherigen Empfehlungen aus der Literatur (siehe Kapitel 3.1.2) können aus den in der vorliegenden Arbeit durchgeführten Studien die folgenden allgemeingültigen Sachverhalte festgehalten und Gestaltungsempfehlungen ausgesprochen werden. Laminatspezifische Empfehlungen für die unterschiedlichen Laminattypen können den Kapiteln 9.1 bis 9.3 entnommen werden.

Allgemeingültige Sachverhalte:

- Je dickwandiger ein Fügepartner ist, desto geringer fällt die Fugendruckerhöhung durch Erhöhung von dessen Wandstärke aus.
- Je dickwandiger ein Fügepartner ist, desto größer ist der Einfluss der Lagenanordnung des Laminats auf den Fugendruck.

Bezüglich der Gestaltung von rotationssymmetrischen Pressverbindungen mit einem außenliegenden, dickwandigen, orthotropen Fügepartner lassen sich die folgenden Empfehlungen zusammenfassen:

- Insofern mit den Bauteilbelastungen in Einklang zu bringen, kann der Fugendruck bei konstantem Übermaß und konstanter Wandstärke der Fügepartner durch die folgenden Maßnahmen gesteigert werden:
 - Erhöhung des Winkels etwaiger AWV-Lagen des Laminats des orthotropen Fügepartners.
 - Erhöhung des Anteils an Umfangslagen des Laminats des orthotropen Fügepartners.
- Für den rein mechanischen Fügevorgang einer Längspressverbindung sollte die innerste Schicht des orthotropen Fügepartners ein AWV mit geringem Winkel sein.
- Gemäß Schürmann [10] ist eine feine Verteilung unterschiedlich orientierter Lagen eines Laminats aus festigkeitstechnischer Sicht empfehlenswert. Nahe am Fügeradius angeordnete Umfangslagen bewirken hohe Fugendrücke, haben gemäß Fischer [5] eine günstigere Verteilung der Schubspannungen bei Torsionsbelastung zur Folge und bewirken, dass etwaige AWV-Lagen weiter außen positioniert sind, was vorteilhaft bei Biege- und Torsionsbelastung ist was jeweils für eine Ansammlung von Umfangslagen nahe der Trennfuge spricht. Als Kompromiss zwischen diesen beiden konträren Sachverhalten wird daher empfohlen, Umfangslagen so über die Laminatdicke zu verteilen, dass die Dicke einzelner Ansammlungen von Umfangslagen größer ist, je näher sich diese an der Trennfuge befinden.

- Umfangslagen sind vor allem im Anbindungsbereich für eine hohe tangentiale Steifigkeit des orthotropen Fügepartners wichtig. Bezüglich der Beulsteifigkeit einer Welle sind diese gemäß *Kleschinski* [12] auch im freien Bereich zu gewissen Anteilen notwendig. Inwiefern sich unterschiedliche Anteile an Umfangslagen über die Wellenlänge realisieren lassen, muss aus fertigungstechnischer Sicht beurteilt werden.
- Durch AWV-Lagen mit Winkeln zwischen 80° und 89° lässt sich der Fugendruckverlust durch viskoelastisches Materialverhalten reduzieren. Bei dickwandigen Bauteilen kann dennoch die Applikation eines Stahlstützrings im Anbindungsbereich notwendig sein (siehe auch *Fischer* [5]), da selbst bei reinen Umfangslagen ein nicht zu vernachlässigender Fugendruckverlust durch die stärker ausgeprägte radiale Dehnung auftritt.
- Für orthotrope Fügepartner kann sich für Laminate aus AWV-Lagen mit Winkeln zwischen 10° und 80° die Querkontraktion zunutze gemacht werden, wodurch die Einpresskraft reduziert und die Auszugskraft erhöht wird.
- In der vorliegenden Arbeit weisen raue Stahlnaben ein besseres Verhältnis von Einpresskraft zu übertragbarem Torsionsmoment auf, weshalb deren Verwendung empfohlen wird. Aufgrund des Einebnens muss hierbei ein größeres Übermaß als bei geschliffenen Stahlnaben vorgesehen werden.

10 Zusammenfassung und Ausblick

Zusammenfassung

Für rotationssymmetrische dickwandige Pressverbindungen mit orthotropen Fügepartnern besteht Forschungsbedarf hinsichtlich einfacher Auslegungsvorgehensweisen und Gestaltungsempfehlungen. In der vorliegenden Arbeit werden für Pressverbindungen mit innenliegender Stahlnabe und außenliegender CFK-Hohlwelle mechanische und tribologische Aspekte sowie die Vereinfachungen eines analytischen Ansatzes untersucht, deren Auswirkungen quantifiziert und Auslegungsempfehlungen abgeleitet. Der Einfluss verschiedener Gestaltungsparameter wird experimentell und numerisch untersucht und Gestaltungsempfehlungen werden ausgesprochen.

Basierend auf gängigen Methoden aus der Literatur werden **einfache Auslegungsvorgehensweisen** zur Bestimmung der Einpresskraft, der Auszugskraft und des übertragbaren Torsionsmoments einer Pressverbindung definiert und analysiert. Hierbei getroffene Annahmen und Vereinfachungen sowie vernachlässigte Aspekte werden identifiziert, was die Grundlage für die nachfolgenden Untersuchungen darstellt.

Der **Einpressvorgang** und die **Torsionsbelastung** von Pressverbindungen werden an dickwandigen Prüfkörpern untersucht, wobei wichtige Gestaltungsparameter variiert werden. Die CFK-Hohlwelle besteht hierbei aus innenliegenden $\pm 30^{\circ}$ -Lagen und außenliegenden Umfangslagen. Die Untersuchungen ergeben folgende Ergebnisse:

- Eine Steigerung der Wandstärke der ±30°-Lagen reduziert die Einpresskraft. Bei Steigerung der Wandstärke der Umfangslagen nimmt die Einpresskraft weniger stark zu als die Wandstärke gesteigert wurde, was umso stärker ausgeprägt ist, je dickwandiger die CFK-Hohlwelle ist. Fügelänge und Übermaß weisen einen nahezu direkten Einfluss auf die Einpresskraft auf. Rauere Oberflächen der Stahlnaben haben geringere Einpresskräfte zur Folge. Eine Skalierbarkeit der Einpresskraft anhand geometrischer Größen ist nur bedingt gegeben, was auf das Vorhandensein unter anderem tribologisch bedingter, baugrößenabhängiger Einflüsse zurückgeführt wird.
- Das übertragbare Torsionsmoment wird durch eine Erhöhung der Wandstärke der ±30°-Lagen reduziert. Für rauere Stahlnaben ergibt sich ein besseres Verhältnis von Einpresskraft zu übertragbarem Torsionsmoment. Übermaß und Fügelänge weisen einen direkten Einfluss auf das übertragbare Torsionsmoment auf. Das anhand der experimentell ermittelten Einpresskraft berechnete übertragbare Torsionsmoment stimmt meist gut mit dem experimentell ermittelten Wert überein oder hat eine konservative Auslegung zur Folge.

Im Rahmen **numerischer Untersuchungen** wird der Einfluss verschiedener **mechanischer Aspekte** auf die Pressverbindung betrachtet, wobei die CFK-Hohlwelle aus einem ausgeglichenen Winkelverbund besteht. Die Baugröße zeigt hierbei keinen Einfluss, weshalb die folgenden Aussagen auch für andere Baugrößen gelten:

- Geringe Reibkoeffizienten, kurze Fügelängen und große Übermaße haben einen stärkeren Einfluss der **elastischen Deformationskraft** zur Folge, welche für die elastische Deformation der Fügepartner beim Einpressen zusätzlich zur Reibkraft aufgebracht werden muss. Durch deren Vernachlässigung liefern die einfachen Auslegungsvorgehensweisen nicht konservative Ergebnisse, wobei lediglich das rechnerisch ermittelte Torsionsmoment hiervon unabhängig ist.
- Durch das zeitabhängige Materialverhalten des Faserverbundwerkstoffs nimmt der Fugendruck für alle untersuchten Varianten mit der Zeit ab. Die größten Fugendruckverluste treten bei Winkeln nahe 45° auf. Für große Wandstärken der CFK-Hohlwelle ist selbst bei Winkeln größer 80° eine nicht zu vernachlässigende Reduktion des Fugendrucks zu verzeichnen. Bei den einfachen Auslegungsvorgehensweisen werden die mechanischen Größen durch Vernachlässigung des zeitabhängigen Materialverhaltens nicht konservativ bestimmt, wobei die rechnerisch ermittelte Einpresskraft hiervon unabhängig ist.
- Der Einfluss der Querkontraktion der Fügepartner auf den Fugendruck beim Einpress- und Auszugsvorgang ist stark vom Winkel des ausgeglichenen Winkelverbunds abhängig, wobei eine Fugendrucksteigerung oder -reduktion auftreten kann. Für Winkel des ausgeglichenen Winkelverbunds zwischen 10° und 80° hat die Vernachlässigung der Querkontraktion bei den einfachen Auslegungsvorgehensweisen eine konservative Auslegung zur Folge, wobei das rechnerisch ermittelte Torsionsmoment hiervon unabhängig ist.

Die experimentellen Untersuchungen der tribologischen Aspekte liefern folgende Ergebnisse:

- Der Fugendruck hat eine Reduktion des Außendurchmessers und eine **Einebnung** der Rauheit der Stahlnaben zur Folge, was für größere Ausgangsrauheiten stärker ausgeprägt ist.
- Ein **Eindringen** der Rauheiten der Stahloberfläche in das CFK kann unabhängig von der vorliegenden Rauheit und dem vorherrschenden Fugendruck nachgewiesen werden. Hierauf aufbauend wird der Schluss gezogen, dass das effektive Übermaß bei rauen Naben geringer ausfällt.

Der Ansatz von *Fischer* [5] wird in der vorliegenden Arbeit näher untersucht, da er als einziger bekannter analytischer Ansatz die Berechnung der Verpressung endlich ausgedehnter, dünnwandiger, orthotroper Fügepartner ermöglicht, wobei der Einfluss der freien Bereiche vor dem Verpressungsbereich abgebildet wird. Die Auswirkungen der **Vereinfachungen dieses analytischen Ansatzes** werden durch einen Vergleich von analytisch und numerisch berechnetem Fugendruck untersucht, was Folgendes liefert:

- Für die getrennte Untersuchung am ausgeglichenen Winkelverbund:
 - Der analytische Fugendruck wird durch die Vernachlässigung der radialen Dehnung überschätzt, was mit zunehmender Wandstärke der Welle zunimmt und zusätzlich vom Winkel des ausgeglichenen Winkelverbunds abhängt.
 - Der analytische Fugendruck wird durch die Vernachlässigung der Fugendrucküberhöhung an den Enden der Trennfuge teilweise über- und teilweise unterschätzt.
- Zusätzlich zu den getrennt untersuchten Vereinfachungen muss das Laminat beim analytischen Ansatz mit Ingenieurskonstanten beschrieben werden. Die Auswirkungen der **Gesamtheit dieser Vereinfachungen** werden für verschiedene Laminate untersucht, was folgende Ergebnisse liefert:
 - Beim reinen ausgeglichenen Winkelverbund weichen analytisch und numerisch berechneter Mittelwert des Fugendrucks f
 ür gro
 ße Wellenwandst
 ärken am st
 ärksten voneinander ab.
 - Für weitere, aus einem ausgeglichenen Winkelverbund und Umfangslagen bestehende **symmetrische und unsymmetrische Laminate** wird der analytisch berechnete Mittelwert des Fugendrucks überschätzt.

Für die untersuchten Varianten wird die **Relevanz** der mechanischen und tribologischen Aspekte sowie der analytischen Vereinfachungen beurteilt:

- Der Einfluss der elastischen Deformationskraft ist für alle mit den einfachen Auslegungsvorgehensweisen bestimmten Größen nahezu vernachlässigbar. Für die Einpresskraft stellt die Querkontraktion beim Einpressvorgang den relevantesten Aspekt dar. Für das mit dem rechnerischen Auslegungsvorgehen berechnete Torsionsmoment ist die Viskoelastizität der relevanteste Aspekt. Für die Auszugskraft und das mit dem experimentellen Auslegungsvorgehen berechnete Torsionsmoment variiert die Relevanz von Querkontraktion und Viskoelastizität stark mit dem Winkel des ausgeglichenen Winkelverbunds. Je nach Winkel ist der ein oder andere Aspekt relevanter, wofür entsprechende Parameterbereiche definiert werden.
- Die einzelnen analytischen Vereinfachungen sind f
 ür die verschiedenen Laminate unterschiedlich relevant, wobei deren Einfluss in allen F
 ällen mit zunehmender Wandst
 ärke der CFK-Hohlwelle zunimmt. Die Gesamtheit der analytischen Vereinfachungen ist f
 ür gro
 ße Wandst
 ärken der CFK-Hohlwelle f
 ür keines der Laminate vernachl
 ässigbar. F
 ür die unsymmetrischen Laminate mit in-

nenliegendem ausgeglichenen Winkelverbund fällt der Einfluss am stärksten, für den reinen ausgeglichenen Winkelverbund am geringsten aus. Aufgrund der analytischen Vereinfachungen wird der Fugendruck überschätzt, was eine konservative Auslegung der Einpresskraft und eine nicht konservative Auslegung von Auszugskraft und Torsionsmoment zur Folge hat.

Bei den **numerischen Parameterstudien** wird der Einfluss verschiedener Gestaltungsparameter der CFK-Hohlwelle auf den Fugendruck untersucht und Gestaltungsempfehlungen werden abgeleitet:

- Für die untersuchten **symmetrischen Laminate** stellen die Reduktion des Anteils des ausgeglichenen Winkelverbunds am Gesamtlaminat und die Erhöhung des Winkels dieser Lagen sinnvolle Maßnahmen zur Fugendrucksteigerung dar, insofern dies mit den Anforderungen an das CFK-Bauteil hinsichtlich der angreifenden Betriebslasten in Einklang gebracht werden kann.
- Für unsymmetrische Laminate mit innenliegendem ausgeglichenem Winkelverbund ergeben sich identische Empfehlungen wie bei den symmetrischen Laminaten, wobei eine feinere Verteilung der Lagen dieses Laminats eine zusätzlich sinnvolle Möglichkeit zur Fugendrucksteigerung ist. Bei weiteren Untersuchungen dieses Laminats wird die Existenz einer kritischen Wandstärke der Umfangslagen nachgewiesen, bei der eine Erhöhung der Wandstärke des ausgeglichenen Winkelverbunds keine Fugendrucksteigerung bewirkt.
- Für unsymmetrische Laminate mit außenliegendem ausgeglichenem Winkelverbund stellen die Reduktion des Anteils des ausgeglichenen Winkelverbunds am Gesamtlaminat und eine gröbere Lagenverteilung sinnvolle Maßnahmen zur Fugendrucksteigerung dar, insofern dies mit den Anforderungen an das CFK-Bauteil hinsichtlich der angreifenden Betriebslasten in Einklang gebracht werden kann.
- Der Vergleich der Laminattypen zeigt, dass das unsymmetrische Laminat mit außenliegendem ausgeglichenem Winkelverbund die größten Fugendrücke aufweist. Je dickwandiger ein Bauteil ist, desto stärker fällt die Lagenanordnung ins Gewicht. Insofern es aus fertigungs-, anwendungs-, festigkeits- und fügetechnischer Sicht möglich ist, sollten Umfangslagen so nahe wie möglich an der Trennfuge und zusätzliche Lagen des ausgeglichenen Winkelverbunds außerhalb der Umfangslagen angeordnet werden, um große Fugendrücke zu realisieren.

Ausblick

Hinsichtlich der Auslegung und Gestaltung dickwandiger Pressverbindungen mit orthotropen Fügepartnern existiert weiterer Handlungsbedarf in folgenden Bereichen, wofür die in dieser Arbeit durchgeführten Studien als Grundlage dienen können:

- **Festigkeits- und stabilitätstechnische** Anforderungen dürfen bei der Auslegung und Gestaltung einer Pressverbindung nicht außer Acht gelassen werden, weshalb eine Untersuchung dieser Themen notwendig ist.
- Eine weiterführende Untersuchung der **mechanischen Aspekte** Querkontraktion, elastischer Deformationskraft und zeitabhängiges Materialverhalten an komplexeren Laminaten ist sinnvoll. Bei der elastischen Deformationskraft gilt es hierbei, den Nutzen einer Untersuchung zu bewerten, da in der vorliegenden Arbeit nur geringfügige Einflüsse zu verzeichnen waren.
- Durch die Fase der Stahlnabe kann sich je nach Fasengeometrie ein von der **nominellen Fügelänge** abweichender Wert der Fügelänge und -fläche ergeben, was Gegenstand weiterführender Untersuchungen sein sollte.
- Hinsichtlich der Vereinfachungen des analytischen Ansatzes von Fischer [5] bestehen zwei Optionen zum weiteren Vorgehen. Zum einen kann ein analytischer Ansatz für dickwandige, orthotrope, endliche Fügepartner aufgestellt werden, was eine komplexe mechanische und mathematische Aufgabe darstellt. Zum anderen können Korrekturfaktoren empirisch ermittelt werden, um den Einfluss einzelner Vereinfachungen zu berücksichtigen.
- Die über die Fügelänge variierenden Fugendruck- und Schubspannungsverläufe können lokales Gleiten bewirken und damit das dynamische Verhalten und das Langzeitverhalten der Pressverbindung beeinflussen. Diese Verläufe gehen mit den Spannungsverläufen in den Komponenten einher. Erste Untersuchungen diesbezüglich werden in *Fischer* [5] durchgeführt. In weiterführenden Studien sollte die Auswirkung von Gestaltungsparametern auf diese Verläufe betrachtet werden.
- Hinsichtlich der Laminatgestaltung dürfen die Anforderungen an die Antriebswelle nicht außer Acht gelassen werden. Aussagen, inwiefern lokal unterschiedliche Laminataufbauten im Anbindungsbereich und dem Rest der Welle oder ein einheitlicher Aufbau für alle Belange sinnvoll sind, wären unter Berücksichtigung wirtschaftlicher Faktoren von großem Nutzen. Aus anwendungstechnischer Sicht wären Empfehlungen oder einfache Zusammenhänge zur vorläufigen Festlegung der Fügelänge, des Fügedurchmessers und des Übermaßes hilfreich.
- Alle untersuchten Aspekte und Vereinfachungen hängen in einem gewissen Maße von den zugrundeliegenden Werkstoffkennwerten der Fügepartner ab. Um allgemeingültigere Aussagen treffen zu können, ist die Untersuchung weiterer Werkstoffkombinationen sinnvoll, wobei auch der Einfluss des metallischen Fügepartners nicht außer Acht gelassen werden darf.

Die in der vorliegenden Arbeit untersuchten tribologischen Aspekte können im Rahmen experimenteller Untersuchungen in folgende Richtungen weiterverfolgt werden:

- Eine rechnerische Vorhersage der Größenordnung des **Einebnens** der Oberflächenrauheit der Stahlnabe wäre hilfreich, um effektive Übermaße besser vorhersagen zu können. Hierbei muss der Aufwand der Untersuchung in Relation zu deren Nutzen gesetzt werden, da in der vorliegenden Arbeit die Einebnung verglichen mit anderen Aspekten nur einen geringen Einfluss aufweist.
- Bei der **Reibkoeffizientenermittlung** sollte die Belastungshistorie im Hinblick auf mechanisch gefügte und anschließend torsionsbelastete Pressverbindungen abgebildet werden. Auch bezüglich der Auswirkungen hoher Fugendrücke auf den Reibkoeffizienten sollten weitere Untersuchungen erfolgen.

A Anhang

Tab. A-1: Messwerte (1) kleine Baugröße

Messwertübersicht (1) der Einpressprüfkörper der kleinen Baugröße

				CFK-W	Velle				St	ahlnabe		Allg.
ner	$d_{W,i}$ [mm]	Planlauf [mm]	t_W [mm]	t_{SR} [mm]	$R_{z,ax}$ [µm]	FVG_W [%]	FVG _{SR} [%]	T_G [°C]	$d_{N,a}$ [mm]	R _{z,ax} [µm]	$R_{z,\theta}$ [µm]	Ü _d [mm]
7	40,026	0,06	1,88	6,14	25,3	50,1	44,0	123,6	40,100	3,4	1,4	0,074
	39,998	0,04	1,87	5,43	26,1	52,5	42,8	123,6	40,070	4,8	1,6	0,072
V	40,030	0,05	1,82	6,11	22,6	50,1	44,0	123,6	40,102	3,7	1,3	0,072
7	40,043	0,04	2,00	6,13	27,0	49,7	44,5	123,6	40,116	13,3	10,0	0,073
7	40,051	0,04	1,79	6,29	20,3	46,8	43,6	123,6	40,119	14,1	9,8	0,068
× 4	39,924	0,06	1,83	5,64	25,1	52,2	44,0	126,3	39,998	13,0	6,9	0,073
7	40,009	0,03	1,92	5,06	20,1	53,6	44,7	123,6	40,131	3,1	1,2	0,121
7	40,035	0,04	1,93	6,12	28,9	49,7	44,5	123,6	40,158	3,3	1,2	0,123
<u><u></u>(1)</u>	39,918	0,00	1,88	5,58	24,3	52,8	45,0	126,3	40,042	3,9	1,4	0,123
7	40,044	0,04	1,89	6,19	20,7	46,8	43,6	123,6	40,115	3,3	1,4	0,071
C 1	39,918	0,09	1,94	4,56	18,7	50,9	55,0	126,3	39,987	4,1	1,3	0,069
× 1	39,926	0,09	1,74	5,68	21,7	52,2	44,0	126,3	39,996	3,5	1,1	0,070

Tab. A-2: Messwerte (2) kleine Baugröße

Messwertübersicht (2) der Einpressprüfkörper der kleinen Baugröße

Allg.	Ü _d [mm]	0,073	0,071	0,072	0,071	0,071	0,071	0,073	0,072	0,074	0,074	0,072	0,073
	$R_{z,\theta}$ [μ m]	1,1	1,3	1,8	1,3	1,6	1,6	1,2	0,8	1,2	1,4	1,1	1,4
ahlnabe	R _{z,ax} [µm]	4,3	3,7	3,9	3,5	2,9	4,3	3,1	4,2	3,8	4,1	3,7	3,7
St	$d_{N,a}$ [mm]	40,239	40,193	40,256	40,247	40,246	40,253	40,182	40,244	40,024	40,020	40,029	40,027
	T_G	121,1	121,1	121,1	121,1	121,1	121,1	121,1	121,1	126,3	126,3	126,3	126,3
	FVG _{SR} [%]	46,0	46,2	45,7	46,0	47,1	45,7	45,9	47,1	45,5	44,8	45,0	45,5
	FVG_W [%]	51,5	54,3	50,9	51,5	49,4	50,9	51,5	49,4	50,9	55,7	52,8	50,9
Velle	$R_{z,ax}$ [µm]	18,6	36,4	19,0	30,9	41,1	19,1	18,2	16,4	17,2	25,4	20,1	21,7
CFK-W	t_{SR} [mm]	5,90	5,67	5,89	5,86	5,86	5,75	4,88	5,70	11,14	10,11	10,38	11,32
	t_W [mm]	6,83	6,74	6,93	6,82	7,06	7,06	7,08	6,98	1,79	1,74	1,66	1,72
	Planlauf [mm]	0,03	0,03	0,18	0,05	0,03	0,10	0,10	0,06	0,04	0,09	0,11	0,04
	$d_{W,i}$ [mm]	40,166	40,122	40,185	40,176	40,175	40,182	40,108	40,171	39,950	39,946	39,957	39,954
	Variante & Nummer	±30° dick_1	±30° dick_2	±30° dick_3	±30° dick_4	±30° dick_5	±30° dick_6	±30° dick_7	±30° dick_8	90° dick_1	90° dick_2	90° dick_3	90° dick_4

Tab. A-3: Messwerte (1) große Baugröße

Messwertübersicht (1) der Einpressprüfkörper der großen Baugröße

				CFK-W	Velle				St	ahlnabe		Allg.
Variante & Nummer	$d_{W,i}$ [mm]	Planlauf [mm]	t_W [mm]	t_{SR} [mm]	$R_{z,ax}$ [μ m]	FVG_W [%]	FVG _{SR} [%]	T_G	$d_{N,a}$ [mm]	$R_{z,ax}$ [μ m]	$R_{z,\theta}$ [μ m]	Ü _d [mm]
Referenz_1	80,063	0,03	3,86	5,39	31,3	50,1	51,4	122,9	80,208	4,4	1,3	0,145
Referenz_2	80,060	0,14	3,54	5,41	28,5	54,9	47,4	122,9	80,205	3,9	1,2	0,145
Referenz_3	80,079	0,03	3,86	5,50	32,7	50,1	51,4	122,9	80,223	4,0	1,5	0,145
Rau_1	80,124	0,07	3,78	5,59	31,1	48,9	51,0	122,9	80,268	12,5	6,5	0,144
Rau_2	80,136	0,07	3,83	5,54	24,2	49,3	50,8	122,9	80,279	12,9	9,3	0,143
Rau_3	80,101	0,08	3,65	6,04	22,9	50,1	51,7	120,3	80,247	12,4	8,3	0,146
Großes Übermaß_1	80,109	0,07	3,58	5,40	10,5	54,2	45,5	122,9	80,353	3,9	1,1	0,245
Großes Übermaß_2	80,141	0,05	3,52	6,20	23,9	49,8	49,4	120,3	80,386	3,8	0,9	0,245
Kurze Fügelänge_1	80,133	0,25	3,78	5,39	22,1	49,3	50,8	122,9	80,271	4,5	1,1	0,138
Kurze Fügelänge_2	80,094	0,11	3,64	6,04	14,7	50,9	46,2	120,3	80,244	3,7	1,2	0,150
Kurze Fügelänge_3	80,091	0,07	3,62	6,03	24,6	50,1	51,7	120,3	80,242	3,9	1,8	0,151

Tab. A-4: Messwerte (2) große Baugröße

Messwertübersicht (2) der Einpressprüfkörper der großen Baugröße

				CFK-W	Velle				St	ahlnabe		Allg.
Variante & Nummer	$d_{W,i}$ [mm]	Planlauf [mm]	t_W [mm]	t_{SR} [mm]	$R_{z,ax}$ [μ m]	FVG_W [%]	<i>FVG_{SR}</i> [%]	T_{G}	$d_{N,a}$ [mm]	$R_{z,ax}$ [μ m]	$R_{z,\theta}$ [μ m]	Ü _d [mm]
±30° dick_1	80,266	0,10	12,50	5,65	24,9	56,0	53,7	121,7	80,408	4,0	1,0	0,142
±30° dick_2	80,406	0,04	13,51	5,78	29,9	49,7	54,9	121,7	80,548	4,2	1,4	0,142
±30° dick_3	80,340	0,10	13,63	5,72	27,7	49,5	55,1	121,7	80,481	3,8	1,3	0,141
±30° dick_4	80,382	0,20	13,61	5,95	15,1	49,6	54,6	121,7	80,527	4,3	1,0	0,146
±30° dick_5	80,413	0,23	13,62	5,79	18,4	49,7	54,9	121,7	80,558	4,7	1,4	0,145
±30° dick_6	80,337	0,11	12,79	5,67	12,5	56,2	51,5	121,7	80,481	5,8	1,7	0,144
±30° dick_7	80,378	0,24	13,59	5,83	17,0	49,6	54,6	121,7	80,522	4,1	1,4	0,144
90° dick_1	80,152	0,11	3,60	11,68	29,9	50,2	53,1	120,3	80,296	4,5	1,5	0,144
90° dick_2	80,143	0,06	3,56	11,79	30,5	52,8	51,8	120,3	80,281	5,3	1,2	0,138
90° dick_3	80,190	0,04	3,30	10,37	26,4	49,8	49,4	120,3	80,334	5,1	1,0	0,144
90° dick_4	80,163	0,11	3,55	11,61	6,8	50,2	53,1	120,3	80,307	5,0	1, 4	0,144

Tab. A-5: Messwerte Voruntersuchung Messsysteme

Messwerte und Ergebnisgrößen der Voruntersuchung der Messsysteme

$\begin{array}{c} a_{W,i} \\ [mm] \end{array} \begin{bmatrix} r \\ \end{array}$	t_W nm]	t_{SR} [mm]	$d_{N,a}$ [mm]	Ü _d [mm]	εθ,DMS(tmax) [%]	$\varepsilon_{ heta,m,AR}(t_{max})$ [%]	ξ <i>ө,а</i> г− <i>DMS</i> [%]	R [$\pm \%$]
(\cap)	,94	4,14	39,975	0,040	0,085	0,083	-2,3	0,001
•)	,92	4,26	39,977	0,041	0,082	0,080	-2,4	0,002
	,96	3,53	39,977	0,052	0,094	0,099	5,5	0,002
	,92	3,91	39,976	0,044	0,080	0,079	-1,0	0,003
()	,94	4,43	39,979	0,037	0,073	0,064	-12,8	0,002

Tab. A-6:	Ergebnisgrößen	Einpressversuche und	Numerik kleine Baugröße
		r	

Übersicht der Ergebnisgrößen der Einpressversuche der kleinen Baugröße sowie Ergebnisse der numerischen Berechnung der jeweiligen Prüfkörper

Variante & Nummer	F _{ein,exp} [kN]	$arepsilon_{ heta,m,AR} \ [\%]$	R [±%]	p _{F,m,num} [MPa]	F _{ein,num} [kN]	ε _{θ,M,num} [%]
Referenz_1	49,9	0,075	0,004	23,9	50,5	0,062
Referenz_2	49,1	0,077	0,002	22,1	46,6	0,069
Referenz_3	47,2	0,071	0,001	23,4	49,3	0,061
$\pm 30^{\circ}$ dick_1	31,4	0,051	0,003	17,7	37,3	0,045
$\pm 30^{\circ}$ dick_2	35,2	0,050	0,001	17,7	37,3	0,046
$\pm 30^{\circ}$ dick_3	31,8	0,052	0,002	17,1	36,2	0,044
$\pm 30^{\circ}$ dick_4	32,5	0,047	0,001	17,2	36,2	0,044
$\pm 30^{\circ}$ dick_5	30,4	0,048	0,001	16,7	35,3	0,042
$\pm 30^{\circ}$ dick_6	31,1	0,039	0,002	16,7	35,3	0,044
$\pm 30^{\circ}$ dick_7	28,0	0,047	0,001	16,5	34,8	0,052
$\pm 30^{\circ}$ dick_8	32,5	0,055	0,001	16,9	35,7	0,044
90° dick_1	59,5	0,029	0,001	28,6	60,4	0,028
90° dick_2	61,5	0,050	0,002	28,6	60,5	0,034
90° dick_3	57,5	0,038	0,003	27,9	58,8	0,032
90° dick_4	60,0	0,043	0,002	28,5	60,1	0,027
Rau_1	41,4	0,073	0,001	23,4	49,5	0,061
Rau_2	40,0	0,067	0,004	21,9	46,2	0,056
Rau_3	42,5	0,080	0,001	23,2	49,1	0,067
Großes Übermaß_1	74,3	0,145	0,002	36,8	77,8	0,122
Großes Übermaß_2	74,0	0,128	0,002	39,4	83,2	0,103
Großes Übermaß_3	70,7	0,129	0,001	39,2	82,8	0,114
Kurze Fügelänge_1	24,9	0,065	0,002	23,1	24,3	0,057
Kurze Fügelänge_2	20,6	0,072	0,001	23,9	25,2	0,073
Kurze Fügelänge_3	28,5	0,079	0,001	23,1	24,4	0,065

Tab. A-7: Ergebnisgrößen Einpressversuche und Numerik große Baugröße

Übersicht der Ergebnisgrößen der Einpressversuche der großen Baugröße sowie Ergebnisse der numerischen Berechnung der jeweiligen Prüfkörper

Variante & Nummer	F _{ein,exp} [kN]	ε _{θ,m,AR} [%]	R [±%]	p _{F,m,num} [MPa]	F _{ein,num} [kN]	ε _{θ,M,num} [%]
Referenz_1	135,1	0,114	0,001	17,4	144,3	0,104
Referenz_2	152,9	0,133	0,001	17,0	140,2	0,107
Referenz_3	142,0	0,136	0,001	17,7	146,0	0,103
$\pm 30^{\circ}$ dick_1	108,7	0,059	0,001	15,4	127,7	0,072
$\pm 30^{\circ}$ dick_2	115,3	0,077	0,001	14,3	118,5	0,066
±30° dick_3	104,6	0,080	0,001	14,1	116,8	0,066
$\pm 30^{\circ}$ dick_4	104,4	0,063	0,002	14,8	122,5	0,067
$\pm 30^{\circ}$ dick_5	120,4	0,069	0,003	14,6	120,8	0,067
$\pm 30^{\circ}$ dick_6	102,3	0,076	0,001	15,3	126,8	0,073
$\pm 30^{\circ}$ dick_7	113,9	0,067	0,004	14,5	119,9	0,067
90° dick_1	235,9	0,081	0,001	26,4	218,5	0,061
90° dick_2	247,3	0,080	0,001	25,3	209,5	0,059
90° dick_3	233,2	0,085	0,002	24,3	200,7	0,070
90° dick_4	235,2	0,079	0,002	26,4	218,4	0,062
Rau_1	122,8	0,114	0,001	17,6	145,3	0,101
Rau_2	135,1	0,118	0,001	17,3	142,8	0,101
Rau_3	138,8	0,118	0,001	19,1	157,5	0,100
Großes Übermaß_1	222,8	0,200	0,004	27,3	225,7	0,182
Großes Übermaß_2	250,0	0,196	0,000	31,2	257,8	0,168
Kurze Fügelänge_1	74,4	0,128	0,001	16,9	70,0	0,100
Kurze Fügelänge_2	89,2	0,090	0,002	18,6	76,7	0,105
Kurze Fügelänge_3	92,7	0,100	0,002	20,3	83,8	0,105

Tab. A-8: Experimentelle und rechnerische Torsionsmomente kleine Baugröße

Experimentell und rechnerisch bestimmte Torsionsmomente der Prüfkörper der kleinen Baugröße sowie relative Abweichung der beiden Werte zueinander

Variante & Nummer	M _{t,exp} [Nm]	M _{t,ber} [Nm]	ξ _M [%]
Referenz_1	940	999	6,25
Referenz_2	905	982	8,46
Referenz_3	662	943	42,50
$\pm 30^{\circ}$ dick_1	682	628	-7,98
$\pm 30^{\circ}$ dick_2	752	705	-6,27
$\pm 30^{\circ}$ dick_3	538	635	18,10
$\pm 30^{\circ}$ dick_4	587	649	10,59
90° dick_1	834	1191	42,76
90° dick_2	706	1230	74,24
90° dick_3	930	1149	23,55
90° dick_4	802	1200	49,57
Rau_1	845	828	-1,97
Rau_2	847	800	-5,54
Rau_3	898	849	-5,45
Großes Übermaß_1	1399	1487	6,28
Großes Übermaß_2	1317	1480	12,39
Großes Übermaß_3	1122	1413	25,97
Kurze Fügelänge_1	477	498	4,50
Kurze Fügelänge_2	499	412	-17,41
Kurze Fügelänge_3	631	570	-9,72

Tab. A-9: Experimentelle und rechnerische Torsionsmomente große Baugröße

Experimentell und rechnerisch bestimmte Torsionsmomente der Prüfkörper der großen Baugröße sowie relative Abweichung der beiden Werte zueinander

Variante & Nummer	M _{t,exp} [Nm]	M _{t,ber} [Nm]	ξ _M [%]
Referenz_1	5458	5403	-1,01
Referenz_2	5741	6116	6,53
$\pm 30^{\circ}$ dick_2	4223	4613	9,23
$\pm 30^{\circ}$ dick_3	4127	4184	1,39
90° dick_1	9303	9437	1,45
90° dick_2	9951	9891	-0,60
90° dick_3	8517	9326	9,50
90° dick_4	9181	9410	2,49
Rau_1	5798	4911	-15,29
Rau_3	6781	5552	-18,12
Kurze Fügelänge_1	3195	2976	-6,87
Kurze Fügelänge_2	3361	3568	6,17
Kurze Fügelänge_3	3809	3710	-2,60

Tab. A-10: Durchmesser Einebnung Stahlnabe

Übersicht der Durchmessermessungen zur Untersuchung der Einebnung der Stahlnabe

Prüfkörper	$p_{F,m,num}$ [N/mm ²]	Δd_1 [mm]	Δd_2 [mm]	Δd_3 [mm]	$\overline{\Delta}d_{PK}$ [mm]	$S_{\overline{\Delta}d_{PK}}$ [mm]	$ar{\Delta} d_{PKK}$ [mm]	$S_{\overline{\Delta}d_{PKK}}$ [mm]	$\overline{\Delta}d_{RK}$ [mm]	$S\overline{\Delta}d_{RK}$ [mm]
PKK1_1	17,32	0,001	0,002	0,002	0,0017	0,0005				
PKK1_2	17,34	0,003	0,003	0,003	0,0030	0,0000	0,003	0,0009		
PKK1_3	17,13	0,004	0,003	0,004	0,0037	0,0005				
PKK2_1	28,40	0,003	0,002	0,002	0,0023	0,0005			cuu,u	6000,0
PKK2_2	28,65	0,004	0,002	0,004	0,0033	0,0009	0,003	0,0008		
PKK2_3	29,49	0,003	0,002	0,003	0,0027	0,0005				
PKK3_1	19,64	0,004	0,004	0,005	0,0043	0,0005	0.005			
PKK3_2	17,81	0,006	0,005	0,005	0,0053	0,0005	c00,0	0,000,0		0.0016
PKK4_1	24,12	0,005	0,005	0,004	0,0047	0,0005	0.002	20000	0,004	0100,0
PKK4_2	22,56	0,001	0,002	0,001	0,0013	0,0005	c.000,0	/ 100,0		

Tab. A-11: Rauheit Einebnung Stahlnabe

Übersicht der Rauheitsmessungen zur Untersuchung der Einebnung der Stahlnabe

	~	/or dem	Einpresse	u		Nach d	em Lösen				۲ <	
Prut- körper	$\overline{R}_{z,ax}$ [μ m]	ζ_{ax} [%]	$ar{R}_{z,tang}$ [µm]	ζ _{tang} [%]	$\bar{R}_{z,ax}$ [μ m]	ζ_{ax} [%]	<u>R</u> z,tang [μm]	ζtang [%]	ΔK _{Z,ax,PK} [μm]	ΔK _{z,tang,PI} [µm]	∢ ΔK _{Z,RK} [μm]	s <u>∆</u> R _{z,RK} [μm]
PKK1_1	4,35	20,1	1,59	14,8	3,48	14,9	1,02	6,3	0,87	0,57		
PKK1_2	2,94	8,2	1,56	2,0	2,62	3,4	1,12	8,6	0,33	0,44		
PKK1_3	3,06	9,9	1,20	9,8	2,44	6,0	1,03	23,0	0,62	0,17	770	(2)
PKK2_1	3,89	45,9	1,08	1,2	2,31	0,1	0.95	30,0	1,58	0,13	0,04	2C,U
PKK2_2	3,74	10,7	1,09	25,0	2,61	4,3	0,95	26,1	1,13	0,14		
PKK2_3	4,14	0,5	1,41	1, 1	2,55	21,5	1,26	8,7	1,59	0,15		
PKK3_1	12,38	22,1	8,31	25,6	8,81	1,2	6,65	7,7	3,57	1,67		
PKK3_2	12,86	13,6	9,28	32,8	9,44	13,8	5,88	12,2	3,42	3,41	yr r	1.06
PKK4_1	13,34	26,6	9,98	6,3	12,95	1,4	8,13	0,5	0,39	1,86	07,7	1,00
PKK4_2	14,08	4,1	9,80	21,5	11,76	12,3	8,34	3,7	2,32	1,46		

Bearbeitungs- & Belastungs- richtung	Ungeprüfter Bereich	Geprüfter Bereich	Anmerkung
gestrahlt, parallel	<u>500μm</u>	1 1 ^{500μm}	Leichte Kratzspuren auf Oberfläche
gestrahlt, senkrecht	<u>500μm</u>	<u>500μm</u>	Leichte Kratzspuren auf Oberfläche
geschliffen, senkrecht	<u>500μm</u>	500μm	Leichte Kratzspuren auf Oberfläche
geschliffen, parallel	<u>500μm</u>	<u> </u>	Keine sichtbaren Änderung- en auf Oberfläche

Abb. A-1:Mikroskopieaufnahmen Stahlplatten Reibkoeffizientenversuche
Exemplarische Mikroskopieaufnahmen der Stahlplatten der Reibkoeffizientenversuche
(Bearbeitungsrichtung: schwarzer Pfeil; Belastungsrichtung: blauer Pfeil; Kratzspuren rot
markiert)

Abb. A-2: Mikroskopieaufnahmen CFK Reibkoeffizientenversuche

Exemplarische Mikroskopieaufnahmen der CFK-Prüfkörper der Reibkoeffizientenversuche (Faserrichtung: schwarzer Pfeil; Belastungsrichtung: blauer Pfeil)

Abb. A-3: Haft- und Gleitreibkoeffizienten einzelne Versuche Haft- und Gleitreibkoeffizienten μ_{Haft} und μ_{Gleit} für die einzelnen Versuche mit den Standardabweichungen bei deren Ermittlung

Tab. A-12: Haft- und Gleitreibkoeffizienten für Versuche einer Bearbeitungsrichtung

Mittelwerte $\bar{\mu}_{...}$ der Haft- und Gleitreibkoeffizienten und des initialen Haftreibkoeffizienten mit Standardabweichung für alle Versuche einer Bearbeitungsrichtung

Bearbeitung	$ar{\mu}_{Haft}$ [-]	$S\overline{\mu}_{Haft}$ [-]	$ar{\mu}_{Gleit}$ [-]	S [-]	$ar{\mu}_{init,Haft}$ [-]	$S\overline{\mu}_{init,Haft}$ [-]
geschliffen, senkrecht	0,38	0,03	0,30	0,04	0,37	0,02
geschliffen, parallel	0,17	0,02	0,19	0,02	0,17	0,02
gestrahlt, parallel	0,48	0,04	0,44	0,05	0,52	0,04
gestrahlt, senkrecht	0,43	0,05	0,40	0,06	0,61	0,07

Tab. A-13: Analytische Berechnungsergebnisse kleine Baugröße

Ergebnisse der analytischen Berechnung der Prüfkörper der kleinen Baugröße

Variante & Nummer	ε _{θ,M,ana} [%]	p _{F,m,ana} [N/mm ²]
Referenz_1	0,113	38,1
Referenz_2	0,116	33,4
Referenz_3	0,111	36,9
±30° dick_1	0,097	37,6
$\pm 30^{\circ}$ dick_2	0,096	36,0
±30° dick_3	0,096	36,7
$\pm 30^{\circ}$ dick_4	0,095	36,6
$\pm 30^{\circ}$ dick_5	0,094	36,9
±30° dick_6	0,094	35,7
$\pm 30^{\circ}$ dick_7	0,103	33,1
±30° dick_8	0,096	36,9
90° dick_1	0,089	57,9
90° dick_2	0,094	54,0
90° dick_3	0,091	53,8
90° dick_4	0,087	57,9
Rau_1	0,111	37,6
Rau_2	0,103	35,2
Rau_3	0,116	35,5
Großes Übermaß_1	0,197	55,1
Großes Übermaß_2	0,188	63,5
Großes Übermaß_3	0,195	60,4
Kurze Fügelänge_1	0,101	36,0
Kurze Fügelänge_2	0,113	34,1
Kurze Fügelänge_3	0,111	34,0

Tab. A-14: Analytische Berechnungsergebnisse große Baugröße

Ergebnisse der analytischen Berechnung der Prüfkörper der großen Baugröße

Variante & Nummer	ε _{θ,M,ana} [%]	p _{F,m,ana} [N/mm²]
Referenz_1	0,134	22,5
Referenz_2	0,136	21,2
Referenz_3	0,134	22,8
$\pm 30^{\circ}$ dick_1	0,111	24,7
$\pm 30^{\circ}$ dick_2	0,109	24,8
$\pm 30^{\circ}$ dick_3	0,108	24,5
$\pm 30^{\circ}$ dick_4	0,112	25,9
$\pm 30^{\circ}$ dick_5	0,111	25,4
$\pm 30^{\circ}$ dick_6	0,113	24,5
$\pm 30^{\circ}$ dick_7	0,111	25,3
90° dick_1	0,109	41,6
90° dick_2	0,105	39,3
90° dick_3	0,115	36,0
90° dick_4	0,110	41,4
Rau_1	0,133	22,9
Rau_2	0,132	22,5
Rau_3	0,133	25,0
Großes Übermaß_1	0,230	34,5
Großes Übermaß_2	0,223	41,1
Kurze Fügelänge_1	0,126	21,1
Kurze Fügelänge_2	0,135	23,3
Kurze Fügelänge_3	0,138	25,7

B Veröffentlichungen

Patentmeldungen

[P1] P. Fahr, P. Schäfer und C. Huber, "Verfahren zum Herstellen einer Fügestelle an einem Bauteil aus einem Faserverbundwerkstoff" DE102014012562B3, Oktober 8, 2015.

Konferenzbeiträge

- [K1] P. Fahr und R. Hinterhölzl, "Evaluation of an analytical analysis method for interference fit assemblies focusing on thick-walled parts based on experimental data" in 20th International Conference on Composite Materials, Kopenhagen, 2015.
- [K2] P. Fahr und R. Hinterhölzl, "Numerical investigation of interference fit assemblies and the influence of varying the laminate thickness" in *17th European Conference on Composite Materials*, München, 2016.

C Betreute studentische Arbeiten

Im Rahmen der Tätigkeit am Lehrstuhl für Carbon Composites wurde die Betreuung der nachfolgend aufgeführten studentischen Arbeiten unterstützt.

- [S1] M. Andrykoswki, "Entwicklung einer Laserrail in FVK-Bauweise", Diplomarbeit, Lehrstuhl f
 ür Carbon Composites, TUM, 2012.
- [S2] F. Kraft, nicht-öffentliche Masterarbeit in Kooperation mit Porsche AG, Lehrstuhl f
 ür Carbon Composites, TUM, 2013 gesperrt bis 2018.
- [S3] G. Volpert, "Konzeptionierung einer Lagerstelle bei der Wälzlagerung von CFK-Wellen", Diplomarbeit, Lehrstuhl für Carbon Composites, TUM, 2013.
- [S4] S. Strauß, "Untersuchung der Belastung von Aluminium-CFK-Verbindungen bei der Tauchlackierung", Diplomarbeit, Lehrstuhl für Carbon Composites, TUM, 2013.
- [S5] A. Bilic, "Erarbeitung und Umsetzung eines Fertigungskonzepts für die Lagerstelle einer CFK-Welle", Bachelorarbeit, Lehrstuhl für Carbon Composites, TUM, 2013.
- [S6] G. Rodriguez, "Development and implementation of a testing concept for the bearing of a carbon fiber shaft", Masterarbeit, Lehrstuhl f
 ür Carbon Composites, TUM, 2013.
- [S7] C. Huber, "Konzepterarbeitung für die Anbindung von Zahnrädern auf CFK-Antriebswellen", Masterarbeit, Lehrstuhl für Carbon Composites, TUM, 2014.
- [S8] M. Vock, "Grundlagen zur Simulation einer CFK-Zahnwelle", Semesterarbeit, Lehrstuhl für Carbon Composites, TUM, 2015.
- [S9] M. Pangerl, "Numerische Simulation von CFK-Stahl-Pressverbindungen", Bachelorarbeit, Lehrstuhl für Carbon Composites, TUM, 2014.
- [S10] A. Herzog, nicht-öffentliche Masterarbeit in Kooperation mit BMW AG, Lehrstuhl für Carbon Composites, TUM, 2014 gesperrt bis 2019.
- [S11] M. Humbs, nicht-öffentliche Masterarbeit in Kooperation mit Voith Composites GmbH & Co. KG, Lehrstuhl f
 ür Carbon Composites, TUM, 2014 gesperrt bis 2019.
- [S12] S. Ma, "Simulation einer wälzgelagerten CFK-Antriebswelle und Validierung anhand experimentell ermittelter Daten", Semesterarbeit, Lehrstuhl für Carbon Composites, TUM, 2015.
- [S13] J. Schulz, "Experimentelle Reibkoeffizientenermittlung der Materialpaarung CFK-Stahl unter hohen Fugendrücken", Bachelorarbeit, Lehrstuhl für Carbon Composites, TUM, 2015.

- [S14] A. Grüneis, "Pressverbindung Literaturrecherche und Systematisierung", Semesterarbeit, Lehrstuhl für Carbon Composites, TUM, 2015.
- [S15] C. Fassmann, nicht-öffentliche Masterarbeit in Kooperation mit AUDI AG, Lehrstuhl für Carbon Composites, TUM, 2015 gesperrt bis 2020.

Teile des Inhalts folgender Arbeiten haben in die vorliegende Dissertationsschrift Eingang gefunden: [S9], [S13], [S14]

Literaturverzeichnis

- [1] G. Niemann, H. Winter, und B.-R. Höhn, *Maschinenelemente*, 4th ed. Berlin: Springer, 2005.
- [2] SIKA Deutschland GmbH, "Biresin® CR132 Compositeharz-System: Vorläufiges Produktdatenblatt Version 05/2010", Bad Urach, 2010.
- [3] INOMETA GmbH, *CFK Hochleistungswalzen*. Abrufbar unter: http://www.inometa.de/de/produkte/walzen/cfk-hochleistungswalzen.html (2017, Dez. 06).
- [4] Voith Composites GmbH & Co. KG. Abrufbar unter: http://voith.com/composites-de/Voith-Ultra-Leichtbau-in-der-Papierindustrie.pdf (2017, Dez. 06).
- [5] T. Fischer, Der Pressverband als torsionsbelastete Krafteinleitung in Faser-Kunststoff-Verbund-Wellen: Ermittlung von Konstruktionsprinzipien und Dimensionierungsrichtlinien. Aachen: Shaker, 2005.
- [6] T. Dickhut, Beitrag zur Auslegung und Gestaltung von Antriebswellen aus Faser-Kunststoff-Verbunden: Eigenfrequenz, Schlagbelastung, Crashverhalten, Torsionsbeulen, Krafteinleitung. Aachen: Shaker, 2014.
- [7] G. W. Ehrenstein, *Handbuch Kunststoff-Verbindungstechnik*. München: Hanser, 2004.
- [8] J. Rotheiser, *Joining of plastics: Handbook for designers and engineers*, 3rd ed. München: Hanser, 2009.
- [9] D. Croccolo, M. de Agostinis, und N. Vincenzi, "Design of hybrid steelcomposite interference fitted and adhesively bonded connections", *International Journal of Adhesion and Adhesives*, vol. 37, pp. 19–25, 2012.
- [10] H. Schürmann, *Konstruieren mit Faser-Kunststoff-Verbunden: Mit 39 Tabellen*, 2nd ed. Berlin: Springer, 2007.
- [11] D. Croccolo, M. de Agostinis, und N. Vincenzi, "Static and dynamic strength evaluation of interference fit and adhesively bonded cylindrical joints", *International Journal of Adhesion and Adhesives*, vol. 30, no. 5, pp. 359–366, 2010.
- [12] M. Kleschinski, Antriebswellen aus Faser-Kunststoff-Verbunden: Auslegung und Optimierung unter Berücksichtigung des ermüdungsbedingten Torsionsbeulens. Aachen: Shaker, 2007.
- [13] ASM International Handbook Committee, *Composites: Volume 21*. Materials Park, Ohio: ASM International, 2001.

- [14] A. A. Baker, S. Dutton, und D. Kelly, *Composite materials for aircraft structures*, 2nd ed. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2004.
- [15] G. W. Ehrenstein, *Faserverbund-Kunststoffe: Werkstoffe, Verarbeitung, Eigenschaften,* 2nd ed. München: Hanser, 2006.
- [16] T. G. P. Gutowski, *Advanced composites manufacturing*. New York: Wiley, 1997.
- [17] AVK Industrievereinigung Verstärkte Kunststoffe, *Handbuch Faserverbundkunststoffe: Grundlagen, Verarbeitung, Anwendungen ; mit 46 Tabellen,* 3rd ed. Wiesbaden: Vieweg+Teubner, 2010.
- [18] S. K. Mazumdar, *Composites manufacturing: Materials, product, and process engineering*. Boca Raton, Florida: CRC Press, 2002.
- [19] M. Neitzel und G. Beresheim, *Handbuch Verbundwerkstoffe*. München: Hanser, 2004.
- [20] J. H. Romagna, "Neue Strategien in der Faserwickeltechnik" Dissertation, ETH Zürich, Zürich, 1997.
- [21] M. Schlottermüller, T. Bayerl, und R. Schledjewski, "Steigerung der Effizienz des duroplastischen Wickelprozesses" in *15. Symposium: Verbundwerkstoffe und Werkstoffverbunde*, Kassel, 2005.
- [22] F. Mathiak, "Die Methode der finiten Elemente (FEM): Einführung und Grundlagen" Vorlesungsskriptum Hochschule Neubrandenburg. Neubrandenburg, 2010.
- [23] R. Jakobi, "Zur Spannungs-, Verformungs- und Bruchanalyse an dickwandigen, rohrförmigen Bauteilen aus Faser-Kunststoff-Verbunden" Dissertation, Universität Kassel, Kassel, 1987.
- [24] M. Schwarz, Gezielte Steifigkeits- und Festigkeitssteigerung von Maschinenbauteilen durch vorgespannte Ringarmierungen aus Faser-Kunststoff-Verbunden. Aachen: Shaker, 2008.
- [25] D. Croccolo und M. de Agostinis, "Analytical solution of stress and strain distributions in press fitted orthotropic cylinders", *International Journal of Mechanical Sciences*, vol. 71, pp. 21–29, 2013.
- [26] F. Forbrig, "Einsatz von faserverstärkten Kunststoffen bei modernen Welle-Nabe-Verbindungen" in VDI-Berichte, Nr. 2176, Welle-Nabe-Verbindungen: Gestaltung - Fertigung - Anwendungen; 5. VDI-Fachtagung mit Fachausstellung; Nürtingen bei Stuttgart, 25. und 26. September 2012, VDI, Ed, Düsseldorf: VDI-Verl, 2012, pp. 189–200.

- [27] S. W. Lee und D. G. Lee, "Torque transmission capability of composite-metal interference fit joints", *Composite Structures*, vol. 78, no. 4, pp. 584–595, 2007.
- [28] J. Tang, Y. Zhang, S. S. Ge, und L. Zhao, "Hollow interference fitted multiring composite rotor of the superconducting attitude control and energy storage flywheel", *Journal of Reinforced Plastics and Composites*, vol. 32, no. 12, pp. 881–897, 2013.
- [29] G. Portnov, A.-N. Uthe, I. Cruz, R. P. Fiffe, und F. Arias, "Design of Steel-Composite Multirim Cylindrical Flywheels Manufactured by Winding with High Tensioning and in situ Curing.: 1. Basic Relations", *Mechanics of Composite Materials*, vol. 41, no. 2, pp. 139–152, 2005.
- [30] G. Ertz, "Design of low-cost flywheel energy storage systems" in *CAMX The Composites and Advanced Materials Expo*, Dallas, 2015.
- [31] G. Portnov, A.-N. Uthe, I. Cruz, R. P. Fiffe, und F. Arias, "Design of Steel-Composite Multirim Cylindrical Flywheels Manufactured by Winding with High Tensioning and in situ Curing.: 2. Numerical Analysis", *Mechanics of Composite Materials*, vol. 41, no. 3, pp. 241–254, 2005.
- [32] S. S. Kim und D. G. Lee, "Design of the hybrid composite journal bearing assembled by interference fit", *Composite Structures*, vol. 75, no. 4, pp. 222–230, 2006.
- [33] A. Grüneis, "Pressverbindung Literaturrecherche und Systematisierung" Semesterarbeit, Lehrstuhl für Carbon Composites, Technische Universität München, München, 2015.
- [34] G. Erhard, *Konstruieren mit Kunststoffen: [CD inside]*, 4th ed. München: Hanser, 2008.
- [35] W. Rust, *Nichtlineare Finite-Elemente-Berechnungen*. Wiesbaden: Springer Fachmedien, 2016.
- [36] R. Hinterhölzl, "Modeling the time dependent behavior of fiber reinforced plastics and particulate composites by the theory of viscoelasticity and damage mechanics" Dissertation, Leopold-Franzens-Universität Innsbruck, Innsbruck, 2000.
- [37] M. Woydt, *Reibung und Verschleiβ von Werkstoffen und Bauteilen*. Renningen: Expert Verlag, 2009.
- [38] V. L. Popov, *Kontaktmechanik und Reibung: Von der Nanotribologie bis zur Erdbebendynamik.* Berlin: Springer, 2010.

- [39] A. Kopczynska, "Oberflächenspannungsphänomene bei Kunststoffen: Bestimmung und Anwendung" Dissertation, Lehrstuhl für Kunststofftechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 2008.
- [40] J. Schön, "Coefficient of friction for aluminum in contact with a carbon fiber epoxy composite", *Tribology International*, vol. 37, no. 5, pp. 395–404, 2004.
- [41] K. H. Lee und J. R. Youn, "Friction and wear behavior of short fiberreinforced poly(amide-imide) composites", *Polym. Compos*, vol. 13, no. 3, pp. 251–257, 1992.
- [42] P. D. Herrington und M. Sabbaghian, "Factors affecting the friction coefficients between metallic washers and composite surfaces", *Composites*, vol. 22, no. 6, pp. 418–424, 1991.
- [43] H. Jiang, R. Browning, J. Fincher, A. Gasbarro, S. Jones, und H.-J. Sue, "Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins", *Applied Surface Science*, vol. 254, no. 15, pp. 4494–4499, 2008.
- [44] H. S. Benabdallah, "Static friction coefficient of some plastics against steel and aluminum under different contact conditions", *Tribology International*, vol. 40, no. 1, pp. 64–73, 2007.
- [45] S. W. Tsai, *Composites design*, 3rd ed. Dayton, Ohio: Think Composites, 1987.
- [46] M. Palanterä, "Theoretical Background of ESAComp Analyses: Part III -Laminates", Componeering Inc, Helsinki, 1998.
- [47] P. Fahr und R. Hinterhölzl, "Evaluation of an analytical analysis method for interference fit assemblies focusing on thick-walled parts based on experimental data" in 20th International Conference on Composite Materials, Copenhagen, 2015.
- [48] Deutsche Edelstahlwerke GmbH, "Werkstoffsdatenblatt 42CrMo4/ 42CrMoS4", Witten, Okt. 2015.
- [49] GOM mbh, "ARAMIS Benutzerhandbuch -Software: ARAMIS v6.3 und höher", Braunschweig, 2011.
- [50] J. Fraden, *Handbook of modern sensors: Physics, designs, and applications,* 3rd ed. New York: Springer, 2004.
- [51] S. Keil, *Dehnungsmessstreifen*. Wiesbaden: Springer Fachmedien, 2017.
- [52] Anwenderzentrum Material- und Umweltforschung, "Bayerischer Forschungsverbund CFK/Metall-Mischbauweisen im Maschinen- und Anlagenbau: Abschlussbericht - Projektlaufzeit 01.12.2011 bis 31.05.2015 - Berichts-

zeitraum 01.01.2014 bis 31.05.2015" Unveröffentlichter Bericht, Augsburg, 2015.

- [53] H. Balke, *Einführung in die technische Mechanik*, 2nd ed. Berlin: Springer, 2010.
- [54] Anwenderzentrum Material- und Umweltforschung, "Bayerischer Forschungsverbund CFK/Metall-Mischbauweisen im Maschinen- und Anlagenbau: Zweiter Zwischenbericht für den Zeitraum 01.12.2012 bis 31.12.2013" Unveröffentlichter Bericht, Augsburg, 2014.
- [55] L. Nasdala, *FEM-Formelsammlung Statik und Dynamik*. Wiesbaden: Vieweg+Teubner, 2012.
- [56] P. Fahr und R. Hinterhölzl, "Numerical investigation of interference fit assemblies and the influence of varying the laminate thickness" in *ECCM17 17th European Conference on Composite Materials*, München, 2016.
- [57] M. Hermann, *Numerische Mathematik*, 3rd ed. München: Oldenbourg, 2011.
- [58] D. Gross, W. Hauger, J. Schröder, und W. A. Wall, *Technische Mechanik 2: Elastostatik*. Berlin: Springer, 2012.
- [59] H. Schürmann, Zur Erhöhung der Belastbarkeit von Bauteilen aus Faser-Kunststoff-Verbunden durch gezielt eingebrachte Eigenspannungen. Fortschr.-Ber. VDI Reihe 1 Nr. 170. Düsseldorf: VDI-Verlag, 1989.
- [60] U. Fischer, *Tabellenbuch Metall*, 43rd ed. Haan-Gruiten: Verl. Europa-Lehrmittel Nourney, Vollmer, 2005.
- [61] Pressverbände Teil 1: Berechnungsgrundlagen und Gestaltungsregeln für zylindrische Pressverbände, DIN 7190-1:2017-02.
- [62] *Pressverbände Berechnungsgrundlagen und Gestaltungsregeln*, DIN 7190:2001-02.