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Abstract

Replacing conventional taxis with electric vehicles would be an efficient measure to
reduce CO2 emissions in the transportation sector. The high daily mileage of taxis
offers the chance to compensate the higher purchasing price of electric vehicles by lower
energy costs. However, due to their limited range and long charging times, covering high
mileage still poses a challenge on today’s electric vehicles. To tackle this challenge and
at the same time, to offer a convenient solution to the drivers, a customised charging
infrastructure is vital to make electric taxis an attractive alternative.

This thesis proposes a method to optimise a charging infrastructure for electric
taxis and applies this method in the context of Singapore. Therefore, a detailed driving
profile analysis of almost 3,000 taxis was conducted. Furthermore, vehicle energy models
were developed to simulate the energy consumption and charging process of electric
vehicles. The aim of the infrastructure optimisation is to maximise the economic profit
of both, the taxi drivers and a charging infrastructure provider while taking today’s taxi
drivers’ activity patterns and break location choices into account. Therefore, a bi-level
simulation-optimisation approach was chosen.

For this purpose, an agent-based taxi driving profile simulation was developed which
is capable of reproducing today’s taxis’ driving patterns while respecting electric vehicle
restrictions regarding range and charging time. This simulation model was validated
with respect to the recorded driving profiles.

To quantify the economic potential of electric taxis, Total Cost of Ownership (TCO)
models were applied to assess electric vehicles and charging stations. In order to take
economic considerations into account for the charging infrastructure optimisation, the
objective function’s parameters were derived from the TCO models.

The objective of the optimisation is to minimise the opportunity cost from detours
and waiting times as well as charging infrastructure costs. These costs are minimised
by selecting locations where charging stations shall be placed and assigning the ideal
number of charging stations to each location. This problem is described as the multiple
server location problem.

The optimisation results showed that today’s electric vehicles can reach almost the
same mileage as conventional taxis. Thereby, electric taxi drivers would not have to
adjust their activity patterns by changing the time of their breaks or even work longer.

Lower energy costs of electric vehicles compensate for the lower achievable revenue
so that the economic potential of electric and conventional taxis is almost identical.
Upcoming electric vehicles with longer range and shorter charging times are expected to
exceed the economic potential of today’s conventional taxis.
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Kurzfassung

Das Ersetzen von konventionellen Taxis durch Elektroautos wäre eine effiziente Maßnah-
me um CO2 Emissionen im Verkehrssektor einzusparen. Die hohe tägliche Laufleistung
von Taxis bietet die Möglichkeit höhere Kaufpreise von Elektroautos durch geringere
Energiekosten zu kompensieren. Aufgrund der begrenzten Reichweite und langen Lade-
zeiten stellt das Erreichen einer hohen täglichen Laufleistung nach wie vor eine Heraus-
forderung für heutige Elektroautos dar. Um diese Herausforderung zu bewältigen und
gleichzeitig Taxifahrern eine komfortable Lösung anbieten zu können ist eine speziell für
diesen Anwendungsfall ausgelegte Ladeinfrastruktur essentiell. Nur unter dieser Bedin-
gung können Elektrotaxis eine attraktive Alternative zu konventionellen Taxis darstellen.

Diese Arbeit schlägt eine Methodik vor um eine Ladeinfrastruktur für Elektrota-
xis zu optimieren und wendet diese Methodik für Taxis in Singapur an. Dafür wurde
eine detaillierte Analyse der Fahrprofile von nahezu 3.000 Taxis durchgeführt. Außer-
dem wurden Energiemodelle entwickelt um den Energieverbrauch und den Ladevorgang
von Elektroautos zu simulieren. Das Ziel der Infrastrukturoptimierung ist es den wirt-
schaftlichen Gewinn von sowohl Taxifahrern als auch einem Ladeinfrastrukturbetreiber
zu maximieren. Gleichzeitig werden hierbei die Bewegungsprofile und die Auswahl an Or-
ten um Pause zu machen von Taxifahrern berücksichtigt. Hierfür wurde ein zweistufiger
Simulation-Optimierungsansatz gewählt.

Für diesen Zweck wurde eine agentenbasierte Fahrprofilsimulation für Taxis entwi-
ckelt die sowohl Fahrprofile heutiger Taxis reproduziert und gleichzeitig Einschränkun-
gen von Elektroautos bezüglich Reichweite und Ladezeiten berücksichtigt. Dieses Modell
wurde anhand der aufgezeichneten Fahrprofile validiert.

Des Weiteren, wurden Gesamtwirtschaftlichkeitsmodelle angewandt um das wirt-
schaftliche Potenzial von Elektrofahrzeugen und Ladestationen zu quantifizieren. Um
wirtschaftliche Faktoren in der Ladeinfrastrukturoptimierung zu berücksichtigen wurden
Parameter von den Wirtschaftlichkeitsmodellen abgeleitet und in die Zielfunktion der
Optimierung integriert.

Das Ziel der Optimierung ist es Opportunitätskosten von Umwegen um Ladestationen
zu erreichen, Wartezeiten auf eine verfügbare Ladestation und Ladeinfrastrukturkosten
zu minimieren. Hierfür werden sowohl optimale Orte für das Aufstellen von Ladestatio-
nen ausgewählt als auch die optimale Anzahl an Ladestationen an jedem dieser Orte
identifiziert. Dieses Optimierungsproblem ist beschrieben als ein multiple server location
problem.

Die Optimierungsergebnisse zeigten, dass Fahrer von heutigen Elektroautos annä-
hernd die gleiche Laufleistung und Einnahmen von Fahrern mit konventionellen Taxis
erreichen könnten. Dabei müssten Elektrotaxifahrer weder länger arbeiten noch ihre ge-
wöhnlichen Pausenzeiten anpassen.
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Die geringeren Energiekosten von Elektroautos gleichen die etwas geringeren Ein-
nahmen aus, sodass das wirtschaftliche Potenzial von konventionellen und Elektrotaxis
nahezu identisch ist. Es ist zu erwarten, dass in naher Zukunft Elektrofahrzeuge mit
höheren Reichweiten und geringeren Ladezeiten das wirtschaftliche Potenzial konventio-
neller Taxis übertreffen werden.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approach and structure . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Context and data background 6
2.1 Taxis in Singapore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Electric vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Charging infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Driving profile data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Logger data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Status data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Revenue data . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Street network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Driving profile analysis 17
3.1 Pre-processing and merging of data sets . . . . . . . . . . . . . . . . . 17
3.2 Standstill periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Location clustering . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Shift schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Trips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Status and classification . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Mileage and revenue estimation . . . . . . . . . . . . . . . . . 27
3.3.3 Map-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Traffic statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Choice of street types . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Speed profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.4 Driving shares . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Vehicle energy model 37
4.1 Energy consumption model . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Model and parameter . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Speed-based approach . . . . . . . . . . . . . . . . . . . . . . . 41

v



CONTENTS vi

4.1.3 Route-based approach . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Charging model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Charging curve . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Model and parameter . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Charging process . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Driving profile simulation 51
5.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Approach and model design . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Shift schedule pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Trip generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.1 Trip synthetisation . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.2 Trip sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Agent memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.7 Behaviour models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7.1 Standstill behaviour . . . . . . . . . . . . . . . . . . . . . . . . 68
5.7.2 Charging behaviour . . . . . . . . . . . . . . . . . . . . . . . . 71

5.8 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.9 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Economic model 81
6.1 TCO of taxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Acquisition costs . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2 Operation costs . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1.3 End-of-life value . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.4 Cost comparison of vehicle types . . . . . . . . . . . . . . . . . 84

6.2 TCO of charging stations . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Cost factors and profit . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Infrastructure Optimisation 90
7.1 Infrastructure concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Optimisation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.1 Flow-capturing model . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.2 P-median problem . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.3 Maximum covering problem . . . . . . . . . . . . . . . . . . . . 93
7.3.4 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.5 Simulation-based heuristic . . . . . . . . . . . . . . . . . . . . 94
7.3.6 Multiple server location problem . . . . . . . . . . . . . . . . . 94
7.3.7 Matching of optimisation criteria . . . . . . . . . . . . . . . . . 95

7.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5 Waiting time estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.6 Optimisation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.6.1 Charging location optimisation . . . . . . . . . . . . . . . . . . 103
7.6.2 Charging station optimisation . . . . . . . . . . . . . . . . . . . 106
7.6.3 Charging demand reallocation . . . . . . . . . . . . . . . . . . 107



CONTENTS vii

8 Results 110
8.1 Scenario definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2 Infrastructure design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3 Driving profile analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4 Economic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9 Summary and discussion 124
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.2 Main Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography 132

Glossary 144

Acronyms 149

List of Figures 151

List of Tables 154

A OSM street type description 156

B Speed clusters 158

C Fit parameter 159

D Database design 173

E Simulation model classes 177

F Functional design of actions 182

G Infrastructure optimisation approaches 189



Chapter 1

Introduction

This chapter gives the introduction to this thesis. First, the motivation for optimising
a charging infrastructure for electric taxis in Singapore is explained in Chapter 1.1.
Subsequently, the aim of this work is described in Chapter 1.2. Next, the overall approach
and structure of this work is presented in Chapter 1.3. Finally, a brief summary of some
highlights of this thesis is given in Chapter 1.4.

1.1 Motivation
Combating climate change is one of the United Nations’ sustainable development goals,
joining the likes of no poverty, zero hunger, good health and well-being (United Na-
tions, 2015). In 2009, transport contributed about one quarter of energy-related global
greenhouse gas emissions and consumed one fifth of the total energy use. According
to the Climate Summit 2014, one of the options to reduce the carbon footprint is to
accelerate the introduction of urban electric transport (United Nations, 2014). This
can be achieved by substituting internal combustion engine vehicles with battery electric
vehicles. Battery electric vehicles1 are vehicles whose energy source comes exclusively
from battery and are typically recharged at charging stations.

Apart from reducing CO2 emissions, local air pollution and noise, electric vehicles
also require lower maintenance and energy costs (Thomas, 2009; Verheijen and Jabben,
2010; Egbue and Long, 2012). However, in contrast to these advantages, electric vehicles
still have the problem of higher investment costs, limited range, and long recharging
times (Kochhan and Sellmair, 2016). Hence, the key is finding the context in which the
benefits of electric vehicles use outweigh its disadvantages.

High vehicle mileage and consequently, low operational cost are necessary to com-
pensate for the higher investment costs. Due to the range limitation of electric vehicles,
it would be ideal to split the mileage into many short trips with the possibility of post-
poning subsequent trips in order to charge the battery. The driving patterns of taxis are
matching these characteristics very well. Since taxis are operated in one or two shifts
which are about eight to twelve hours long, high mileage is reached. Furthermore, trips
with passengers on board are on average around 10 km long and taxi drivers are free to
decide after each trip whether they serve the next customer or have a break to recharge
the battery. Another advantage of electric taxis would be that many people would have

1in the remainder of this thesis this type of vehicles is referred as “electric vehicles”
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CHAPTER 1. INTRODUCTION 2

the chance to get in touch with this technology and may consider to buy an electric
vehicle of their own in the future. Having a substantial amount of electric vehicles would
also reflect positively on a city’s sustainable and innovative image.

Electric taxis can only be economically competitive if the amount of time they use
for driving to charging stations, waiting for an available charging station, and recharging
the battery is low. Thus, it is of utmost importance to provide a well-designed charging
infrastructure in order to ensure their economic competitiveness.

The developed methodology in this thesis is applied in the context of taxis in Singa-
pore. Singapore is an island city-state with a total area of 719 km2 (Department of
Statistics Singapore, 2016b) and a population of 5,607,000 people (Department of Stat-
istics Singapore, 2016a). Due to its spatial constraints, the use of private vehicles is
limited by high taxes. As a result, the contribution of taxis to Singapore’s transportation
system is significantly higher than in most other cities. Thus, substituting conventional
vehicle taxis by electric taxis would have a disproportional high impact on emission
savings.

Furthermore, Singapore is seen as a role model for many cities in the Asian region. A
successful launch of electric taxis there could spearhead the adoption of electric vehicles
in the whole region.

1.2 Aim
The aim of this thesis is to present a methodology to optimise a charging infrastructure
for electric taxis for different electric vehicle types and charging stations. Thereby,
individual driving patterns of taxi drivers have to be taken into account in order to
ensure that drivers can combine their usual breaks with recharging the battery at their
preferred location and time of the day. The optimisation algorithm has to decide how
many charging stations shall be placed at a suitable set of candidate locations.

The optimisation objective is to maximise the economic benefit of the whole system
consisting of taxi drivers, the taxi operators which rent the vehicles to drivers and
the charging infrastructure providers. Thereby, the costs of detours to reach charging
stations, waiting times at charging stations, and additional stop durations caused by
charging the battery have to be considered.

Based on the optimised charging infrastructures, the economic potential of different
electric vehicle types shall be assessed. Furthermore, roadmaps are to be developed
which describe the set up and extension of charging infrastructures beginning with a
small test fleet and ultimately extending to an entirely electrified taxi fleet. Apart
from that, an economically ideal configuration regarding the taxi’s battery capacity and
charging power shall be derived.

1.3 Approach and structure
The approach presented in this thesis requires driving profile data of taxis, the city’s
street network, and electric vehicle and charging station characteristics as inputs to
derive the objectives defined in the previous section. Provided that this information is
available, this approach is applicable for any city. Figure 1.1 illustrates the required
input, processing steps and output of this approach. The structure of this thesis is
derived from this scheme.
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The context and data background of this thesis is described in Chapter 2. It explains
the selection of electric vehicles and charging stations which are considered in this work.
Furthermore, the taxi driving profile data sets are introduced as well. These data sets
contain information about the taxis’ location, status, and revenue. Apart from that,
Singapore’s Open Street Map (OSM) data set is described at the end of this chapter.

Subsequently, the driving profile data sets are analysed in combination with the
street network in Chapter 3. Thereby, trips and shift schedules which describe the
drivers’ activity patterns are extracted from the data. Moreover, traffic statistics are
derived from the trips’ speed profiles and a clustering algorithm is applied to extract the
drivers’ most frequently chosen break location.

Chapter 4 introduces the vehicle energy model which is applied to simulate the
vehicles’ energy consumption and charging process. The energy consumption can be
estimated with respect to a speed profiles extracted from recorded trips or with respect
to a given route. The route-based approach utilises the traffic statistics derived in the
previous chapter.

The vehicle energy model is integrated into the driving profile simulation model
which is presented in Chapter 5. The driving profile simulation is not only capable of
reproducing driving profiles of conventional taxis but is also applicable to simulate driving
profiles of electric taxis with respect to the vehicle type and the charging infrastructure.
The simulation results allow to extract mileage, revenue, waiting times, and the charging
demand of electric taxis. Thereby, the derived trips and shift schedules in Chapter 3
constitute the statistical background of this model.

A Total Cost of Ownership (TCO) analysis regarding electric vehicles (Kochhan,
2017) and charging stations is made in Chapter 6. The applied economic models are
used to evaluate the economic potential of electric taxis with respect to the vehicle type,
charging infrastructure, and driving profile simulation results. Furthermore, cost factors
are derived to parametrise the infrastructure optimisation objective function.

The developed methodology to optimise a charging infrastructure for electric taxis is
presented in Chapter 7. The optimisation problem is formulated as a bi-level simulation-
optimisation multiple server location problem (Berman and Drezner, 2007). Thereby,
the driving profile simulation model is applied to generate the charging demand of an
electric taxi fleet and an optimisation algorithm decides to which charging locations
this demand shall be allocated to and how many charging stations are required at each
location. The optimisation’s objective is to minimise detour, waiting time, and charging
infrastructure costs.

The optimised placement of charging stations is presented in Chapter 8. Several
optimisations for different numbers of electric taxis were executed so that a roadmap
regarding how to set up and extend a charging infrastructure can be derived from the
results. Furthermore, driving profiles were simulated on the basis of the optimised
charging infrastructures, so that the economic potential of different electric vehicle types
could be compared with conventional taxis. Moreover, different combinations of battery
capacity and charging power were analysed in order to derive an ideal configuration for
electric taxis.

Finally, Chapter 9 summarises and concludes this thesis.
This thesis contains a number of custom-defined terms. To help the reader with

keeping track of those terms, all custom-defined terms are written in italic font and
described in the glossary.
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1.4 Contribution
This section summarises some highlights of this work which surpass the current state of
the art.

This work is based on a broad data basis including status and revenue information
of a taxi fleet of almost 3,000 taxis. The implemented driving profile simulation model
utilises this data basis and is therefore capable of reproducing individual driving patterns
of almost 3,000 taxis. Hence, the simulated share of active taxis with respect to time
complies with the activity patterns extracted from the recorded data. Furthermore, the
simulated agents have breaks at the same time and location as real taxi drivers.

These characteristics are very important as it is assumed that the drivers would
predominantly utilise their usual break times and locations to recharge the vehicle’s bat-
tery. The charging demand extracted from the simulation results reflects these habits.
Moreover, as the simulated charging demand is given as input to the charging infra-
structure optimisation, individual taxi driver profiles are also considered in the resulting
optimised charging infrastructure.

Regarding the optimisation, a trade-off between infrastructure costs and the availab-
ility of charging stations has to be found. On the one hand, a lack of charging stations
would cause long detours and waiting times for taxi drivers which would ultimately affect
their revenue. On the other hand, if too many charging stations were available, their
utilisation would be too low to justify the related investment costs.

Therefore, in order to balance these two aspects, this work presents an holistic
approach to maximise the economic profit of both the electric taxi drivers and a charging
infrastructure provider. Thus, in contrast to most other approaches, the presented
methodology returns the ideal number of charging stations for a given taxi fleet instead
of requiring this number as constraint.

The ideal number of charging stations can only be derived by balancing waiting time
and charging station costs. Thus, it is essential to estimate the taxis’ waiting times
with respect to the charging demand and the number of charging stations at a specific
location. In the literature, this estimation was either made by a non-linear function
or vastly simplified. Using a non-linear function makes the solving of the optimisation
problem significantly more difficult and does not ensure that the global optimum could
be found, while over-simplified estimations affect the quality of the solution. This thesis
presents an approach of accurately respecting waiting times while formulating a linear
optimisation problem to identify ideal charging locations.



Chapter 2

Context and data background

This chapter introduces the context to which the developed methodology is applied to
and describes the main data sources. Therefore, Chapter 2.1 provides an introduction
to Singapore and its taxi business. Subsequently, Chapter 2.2 and 2.3 describe the
chosen vehicle types and charging concept. The analysed taxi driving profile data sets
are explained in Chapter 2.4. Finally, Singapore’s street network data set is introduced
in Chapter 2.5.

2.1 Taxis in Singapore
As this work was carried out in the context of taxis in Singapore, this section gives a
brief introduction to Singapore and its taxi business.

Figure 2.1: Map of Singapore (Open Street Map, 2017a)

Singapore is an island city-state with a total area of 719 km2 (Department of Stat-
istics Singapore, 2016b) and a population of 5,607,000 people (Department of Statistics

6
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Singapore, 2016a). A map of Singapore is depicted in Figure 2.1. Singapore’s Central
Business District (CBD) is in the south (where the word “SINGAPORE” is written).
There are two big nature reserves in the middle and the west of the island, it’s main
public airport is located in the very east of the island. The map also shows the express-
ways as grey lines and major roads as red lines. Singapore is connected by two bridges
in the north and west with the main land of Malaysia.

Due to Singapore’s limited size and high population, roads account for 12% of the
land area (LTA, 2013b). Hence, in order to limit the number of vehicles on the road,
the Land Transport Authority (LTA) imposes very high taxes on vehicles. The most
expensive taxes is the Additional Registration Fee (ARF), which ranges between 100
and 180% of the vehicle’s Open Market Value (OMV) (LTA, 2017c) and the Certificate
Of Entitlement (COE) which is obtained by a bidding system and had an average value
of 62,195 SGD1 in 2015 (Kochhan, 2017). As a result, only 536,882 private vehicles
were registered in 2014 (LTA, 2015b), which translates into a proportion of 9.6% of the
inhabitants owning a car.

Therefore, taxis are a very popular mode of transport in Singapore. In 2015, there
were 27,534 taxis registered and 100,411 citizens holding a taxi driver’s vocational license
(LTA, 2016b). The average daily ridership by taxi was 1,020,000 (LTA, 2015b) which
translates to a daily ridership per inhabitant of 0.19. That’s clearly higher than other
megacities like New York (0.07), London (0.04), or Tokyo (0.10) (Commission Taxi
& Limousine, 2014; Sustrans, 2014; Association Tokyo Hire-Taxi, 2015), which can be
explained by the low fares of taxis in Singapore. The 2017 Taxi Price Index ranked
Singapore’s taxi prices as the 20th cheapest among 80 surveyed cities (Carspring, 2017),
ahead of other Asian cities such as Hong Kong (ranked 31st) and Seoul (ranked 30th).
This might come as a surprise, given that Singapore was recently ranked the most
expensive city in the world according to the 2017 Economist Intelligence Unit’s annual
worldwide cost of living survey (The Economist, 2017).

Taxi drivers in Singapore are self-employed, meaning that they rent a car from a
taxi operator, pay for the fuel, and keep the generated revenue (Kochhan and Sellmair,
2016). Many drivers operate their taxi in two shifts and share the rental fees with the
relieve driver. Due to these conditions driving profiles of taxis are very heterogeneous,
e.g. the average daily mileage of taxis ranges from 150 km to up to 650 km.

In 2016, the first all-electric taxi operator HDT Singapore Taxi started operating as
part of the government’s electric vehicle test bed. In early 2017, it has reached a fleet
size of 50 BYD e6 taxis and targeted to reach a size of 100 taxis by mid 2017. These
taxis were supplied by 57 charging stations in total, which were distributed across seven
charging locations. In contrast to all other taxi operators, drivers are hired by HDT and
get a fixed salary plus bonus if they manage to exceed a monthly revenue target (Lim,
2016; Ying, 2017).

2.2 Electric vehicles
The criteria for selecting electric vehicles for this work were that these vehicles must be
on the market already, otherwise an economic assessment would not be possible. Fur-
thermore, these vehicles must be operable as taxis, therefore each vehicle must already

1the average exchange rate from 2006 to 2015 of 1 Singapore Dollar (SGD) was 0.7332 to USD and
0.5558 to EUR (Kochhan, 2017)
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been used as a taxi in at least one city. Based on these requirements, the chosen vehicles
were:

– BYD e6 (BYD, 2017)

– Kia Soul EV (Kia, 2017)

– Nissan Leaf (Nissan, 2017a)

– Tesla Model S (Tesla, 2017b)

Table 2.1: Cities with electric taxis

Vehicle City
BYD e6 Singapore (Lim, 2016), Brussels (BYD, 2015), Shenzhen

(Huifeng, 2015), Beijing (Vetter, 2016), London (Vetter, 2016),
Bogota (Vetter, 2016)

Kia Soul EV Sofia (Hadzhistoykov, 2015), Montreal (Hanley, 2015)
Nissan Leaf New York (Ross, 2013), Rio de Janeiro (Crowe, 2013a), Zurich

(Edelstein, 2013), Amsterdam (Vetter, 2016), Mexico City
(Crowe, 2013b), Madrid (Crowe, 2014), Barcelona (Crowe,
2014), Montreal (Hanley, 2015), Budapest (Vetter, 2016)

Tesla Model S Montreal (Hanley, 2015), Amsterdam (Vetter, 2016), Oslo
(Wolfram, 2015), Sydney (Parkinson, 2015), Vienna (Ungureanu,
2014)

Table 2.1 gives an overview of the cities and the distribution of electric vehicles that
are operated as taxis. With over 230,000 units sold between year 2011 and 2016, the
Nissan Leaf is not only the most sold electric vehicle worldwide (Ranarison et al., 2017),
but also the vehicle which is most commonly operated as electric taxi. In contrast, the
Kia Soul EV is operated in the smallest number of cities, which may be due to its latest
start of production compared to the other vehicles.

The listed vehicles were compared with EVA (Bender et al., 2014), an electric vehicle
prototype developed by TUMCREATE. EVA was specially designed to be used as a taxi
in tropical megacities. Therefore, in order to minimise the loss of time due to charging,
which is a critical factor for this purpose, it was designed for a charging power of 160 kW.
Although EVA is not on the market and consequently there is no official price, a detailed
economic evaluation was carried out in (Kochhan and Sellmair, 2016) so that it could
be compared with the other vehicles.

The most important technical parameter of the chosen vehicles are listed in Table 2.2.
The weights of the BYD e6, Kia Soul EV, Nissan Leaf SV, and Tesla Model S 70D were
taken from (EPA, 2016). These values include not only the vehicle’s curb weight but also
additional weight of 136 kg in total. In order to make EVA comparable, the same weight
was added to its curb weight of 1,500 kg. Despite having the lowest weight, EVA’s
battery capacity is considerably higher than those of the Kia Soul EV and Nissan Leaf.
The reduction of EVA’s weight comes mainly from its carbon fibre reinforced polymer
(CFRP) body, which is 150 kg lighter than a comparable steel body (TUM CREATE,
2013). Whereby the BYD e6 has the highest weight due to its battery size and steel
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Table 2.2: Technical parameter of electric vehicles

Vehicle Weight [kg] Battery capacity [kWh] Charging power [kW]
BYD e6 2,495 61.4 40
EVA 1,636 50 160

Kia Soul EV 1,644 27 100
Nissan Leaf SV 1,701 30 50

Tesla Model S 70D 2,286 70 60

body (BYD, 2014). The weight is an especially important factor for electric vehicles as
it affects the energy consumption which in turn affects the vehicle’s range and energy
costs.

The charging power of BYD e6 vehicles was estimated to be 40 kW as HDT claims
that one and a half hours are required to fully charge the battery (Lim, 2016). Although,
the Tesla Model S is capable of using Tesla’s Superchargers which deliver a charging
power of 120 kW, the power output of privately-owned Superchargers is restricted to
60 kW per vehicle (Lambert, 2016). Therefore, the later is used as charging power es-
timate for these vehicles. Although the disparity between Tesla- versus private-owned
charging capacity was not made clear, a plausible explanation could be that Tesla limits
the charging power to avoid extensive fast charging in order to limit battery degrada-
tion. The charging power of the remaining vehicles was set to their designed maximum
charging power limit. Chapter 6.1 contains an economic assessment of these electric
vehicles for the use case of taxis.

Electric taxis with an energy consumption of 170Wh/km and a charging station
efficiency of 92.6% (Genovese et al., 2015) could with respect to Singapore’s electricity
emission grid factor of 0.4313 kgCO2/kWh (Energy Market Authority, 2016) save 72%
CO2 emissions compared to diesel taxis and 35% compared to hybrid taxis. Meaning that
in total 694,000 respectively 150,000 tons of CO2 emissions could be saved compared to
a pure taxi fleet of diesel respectively hybrid vehicles. Thereby, the used vehicle energy
consumptions were 0.104 l/km for diesel vehicles (Chevrolet Epica) and 0.053 l/km for
hybrid vehicles (Toyota Prius) (Kochhan, 2017). The applied fuel emission factors are
2.31 kgCO2/l for gasoline (used by hybrid vehicles) and 2.68 kgCO2/l for diesel (Ogden
and Anderson, 2011).

2.3 Charging infrastructure
There are three main approaches to recharge a vehicle’s battery: conductive charging,
inductive charging, and battery swapping.

Conductive charging means that the electric vehicle is connected by a cable to a
charging station which supplies electrical energy to recharge the battery. All of today’s
electric vehicles have this option. Unfortunately, there are different charging standards
which prevent the ubiquitous use of all charging stations by any vehicle type. An overview
of all charging standards can be found in (Falvo et al., 2014).

There are two types of conductive charging: AC and DC charging. AC charging
means that the vehicle is supplied with AC voltage and the vehicle’s on-board charger
inverts the voltage to DC to charge the battery. This charging type can not only be used
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to recharge via charging stations but also to use normal household sockets. However, the
charging power is limited by the design of the on-board charger which has an efficiency
of 97.1% (Genovese et al., 2015). EVA’s on-board charger is designed for the lowest
charging power of 3.3 kW (Bender et al., 2014), whereby the BYD e6 can be charged
with the highest AC charging power of 40 kW.

DC charging is necessary to recharge the battery with higher power. In this case, a
transformer in the charging station inverts AC voltage to the DC voltage required by the
battery management system. This voltage is directly applied to recharge the battery.
Due to the cost of the transformer, DC charging stations are significantly more expensive
than AC charging stations. The efficiency of a DC charging station is 92.6% (Genovese
et al., 2015). A cost analysis of charging stations follows in Chapter 6.2.

A more convenient option is inductive charging, which does not require a physical
connection of the vehicle with the charging equipment. The recharging power is trans-
mitted by an electromagnetic field which is generated by primary coils in the ground
and received by one or more secondary coils installed at the bottom of the vehicle. The
vehicle can be inductively charged while it is stationary (static) as well as while it is
moving (dynamic). A review on the state of the art technology in the field of inductive
charging can be found in (Bi et al., 2016). A static inductive charging concept with
5 kW power and an overall efficiency from the AC grid to the battery pack of 90%
was presented in (Wu et al., 2012). As dynamic inductive charging is technically more
challenging, (Choi et al., 2015) measured a lower efficiency of 72 - 83% for a charging
power between 3 and 25 kW. The estimated costs for a 3.3 kW static inductive charger
range between 1,940 and 2,440USD (2,646 to 3,328 SGD) (Plugless Power, 2015) while
the hardware and deployment costs of an one mile long dynamic charging lane were
estimated to 2.8 million USD (3.8 million SGD) (Jones and Onar, 2014). As only EVA
is eligible for static inductive charging among the vehicles included in the thesis, this
charging concept is not further explored.

Battery swapping is an alternative to the options above. In this case, the driver has
to come to a swapping station where the vehicle’s discharged battery is automatically
replaced by another fully charged battery within minutes. This concept was pioneered
and implemented by the company Better Place which declared bankruptcy in 2013. In
the same year, Tesla presented a battery swapping prototype which was only applicable
to Tesla vehicles and was never brought into series production. The main drawbacks
of this concept are that batteries have to be standardised and that customers may not
accept to replace the battery they bought by an older one (Kerns, 2016). To date,
there is no battery swapping applicable electric vehicle model on the market. Therefore,
battery swapping will not be discussed further.

Apart from charging concepts, research was also conducted in the field of smart
charging algorithms. Thereby, the scheduling to recharge the battery is optimised with
respect to electricity prices (Glanzer et al., 2011), grid constraints (Sundstrom and
Binding, 2012), battery degradation (Trippe et al., 2014) and other considerations.
These techniques are most efficient, the more time is available to schedule the charging
procedure, which is especially interesting in case of private vehicles due to their low
energy demand and long standstill times. The driving profiles of taxis however consist of
long driving durations and short standstill times. Hence, smart charging algorithms had
a much smaller degree of freedom to improve the charging process. Therefore, smart
charging is not taken into account in this thesis.
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2.4 Driving profile data
The main objective of this work is to present a method for designing a charging in-
frastructure that is tailored to the mobility patterns of today’s taxi drivers. Thus, a
detailed understanding of taxi driving profiles is essential. Therefore, three types of data
sets were taken into account: logger, status, and revenue data. All data concerns taxis
in Singapore. The logger data was recorded in collaboration with the public transport
company SMRT Corporation Ltd (SMRT, 2017), while the status and revenue data sets
were provided by SMRT as well.

2.4.1 Logger data
The data set with the highest recording frequency and accuracy is denoted as logger
data set. To record this data set, Columbus V-990 GPS data loggers (Columbus, 2017)
were installed in 50 taxis over a period of six month. The data recording period spanned
from 9.6.2014 to 13.4.2015 2.

The accuracy stated by the manufacturer is 5.0m/CEP (95%) (CEP: Circular Error
Probability), which means that 95% of all data points fall below a circular error of 5.0m.
The GPS logger records one data point per second, thereby each data point includes
the observables: index, date, time, latitude, longitude and speed. The device is plugged
into the cigarette lighter socket and is turned on automatically when the vehicle’s on
board power supply was switched on.

Table 2.3: Logger data excerpt

Index Date Time Latitude [deg] Longitude [deg] Speed [km/h]

56 140609 033503 01.449803N 103.795596E 0

57 140609 033504 01.449801N 103.795598E 0

58 140609 033505 01.449798N 103.795600E 4

59 140609 033506 01.449761N 103.795621E 6

60 140609 033507 01.449743N 103.795631E 8

Table 2.3 depicts an example subset of five recorded data points. The index is the
consecutive data point number, the date format is interpreted as yymmdd and the time
format is hhmmss (e.g. the first row’s timestamp means 9.6.2014 3:35:03). The field
speed contains the speed value between two data points in the unit of km/h.

Figure 2.2 shows a recorded trajectory where the data points are coloured with
respect to the recorded speed. This trajectory is based on the raw data without any
pre-processing. It matches very well to the underlying street network (Open Street
Map, 2017a), which reflects the GPS logger’s high accuracy with remarkably detailed
depiction. Furthermore, the speed information is plausible as the highest speed was
reached on express-ways whereby other streets had predominantly speed values below
50 km/h. As the recording frequency was constantly one point per second, the distance

2not all taxis entered the study period from the start
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Figure 2.2: Trajectory sample

of consecutive data points correlates very well with the recorded speed. The higher the
speed, the farther the data points were apart from each other.

In general, the data quality was very good, albeit with some occasional inaccuracies.
For example, in the above figure, there are two instances, one in the north east and one
in the west whereby the distance between data points is uncommonly big. Obviously,
there is at least one data point missing. As the logger recorded the time as well, these
cases were easily identified and interpolated values were used to fill these gaps.

Another inaccuracy appeared in the very west where the driver changed from one
express-way to another. There are two data points in this area with a notable high speed
of 89 km/h although the trailing and successive points had a speed of 71 km/h. It is
most unlikely that the driver increased and decreased its speed by 18 km/h within two
seconds. Hence, the recorded speed of these points must be incorrect. Apparently, the
car drove underneath a bridge when theses points were recorded, which certainly affected
the recording quality. These cases are detected by computing the vehicle’s acceleration
between two consecutive data points. Whenever a threshold was violated, data points
were replaced by interpolated values.

2.4.2 Status data
The status data set contains the taxis’ operational status at a certain point in time
and location. It was obtained through the Mobile Data Terminal (MDT), each taxi is
equipped with. The MDT continuously captures the taxi’s position, timestamp (format:
mm/dd/yyyy hh:mm:ss) and status information with an approximate sampling period
of three minutes. The driver manually changes the status on the MDT. Table 2.4 lists
a description of all statuses.

The status of all taxis was transmitted to SMRT and got stored in a database. An
excerpt is listed in Table 2.5.
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Table 2.4: Taxi status description

Status Description
hired taxi has customer on board
STC soon to clear: taxi finishes trip with customer soon and can

receive new bookings
payment taxi arrived at customer’s destination, taxi meter is stopped
for hire driver is searching for next customer
on call driver accepted booking and drives to pick-up point
arrived taxi arrived at pick-up point
no show customer did not appear at pick-up point, booking is cancelled
busy driver is having a private trip
change shift driver ends shift and drives to shift change location
log off taxi is inactive

Table 2.5: Status data excerpt

License platea Latitude [deg] Longitude [deg] Status Datetime

SHB59XXX 1.289653 103.8544 hired 6/30/2014 13:23:56

SHB1XXX 1.448395 103.7947 log off 6/30/2014 13:24:01

SHB12XXX 1.280097 103.8495 for hire 6/30/2014 13:26:31

SHB55XXX 1.346845 103.8592 hired 6/30/2014 13:26:33

SHB1XXX 1.333402 103.8950 busy 6/30/2014 13:26:34

athe last three digits were anonymised to protect the drivers’ privacy

2.4.3 Revenue data
Additional to the status data set, SMRT provided a revenue data set which contains
the information which taxi (identified by license plate) started a hired trip at what time
and the amount of money charged at the end of the trip. Table 2.6 shows a sample of
the revenue data set.

2.5 Street network
A street network of Singapore was used to analyse the driving profiles in greater detail
in Chapter 3 and to simulate the agent’s driving profiles in Chapter 5. Therefore,
Singapore’s street network was downloaded from Open Street Map (OSM) (Open Street
Map, 2014), all pre-processing steps to make the downloaded data usable for this work
were described in (Moecker, 2014).

Figure 2.3 illustrates some definitions of the pre-processed street network. Only
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Table 2.6: Revenue data excerpt

License platea Datetime Amount paid [SGD]

SHF4XXX 8/10/2014 0:02 8.36

SHC40XXX 8/10/2014 0:03 35.73

SHC45XXX 8/10/2014 0:06 47.60

SHFXXX 8/10/2014 0:08 13.65

SHD62XXX 8/10/2014 0:11 10.99

athe last three digits were anonymised to protect the drivers’ privacy

Node

Section

Way

Figure 2.3: Street network definitions

intersections and end of roads are represented by nodes, all other nodes from the OSM
which are used to describe the shape of the road were removed. Each node has a
geographical position (latitude and longitude) and a corresponding OSM Node ID as
property. Sections refer to road segments connecting two neighbouring nodes with each
other. The information, which sections are directly connected with each other was
stored in a connectivity matrix. Each section has following features: OSM Node IDs of
connected nodes, length, and OSM Way ID. All sections belonging to the same street
have the same Way ID. Moreover, all streets are classified with respect to their street
type (e.g. motorway, residential, ..). A description of all street types can be found in
Appendix A.

Some key figures of the street network are listed in Table 2.7. There are more nodes
than sections since the street network has many dead ends which are represented by
nodes as well. Each way consists of only 1.9 sections on average. The reasons for that
are twofold. First, the street network consists of many small residential streets with
unique Way IDs. Second, major roads and express-ways are represented by two different
ways with opposite directions and different IDs.
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Table 2.7: Key figures of street network

Number of nodes 46,291
Number of sections 39,177
Number of ways 20,260

Number of street types 14
Total length [km] 5,123

All ways were classified into 14 different street types, whereby service was the most
common class with 6,206 ways and residential was the type with the highest total length
of 1,467 km. The total length of the street network is 5,123 km, which is significantly
higher than the official street network length of 3,496 km provided by the LTA (LTA,
2014b). Again, this can be explained by the split of main roads into two ways of opposite
directions which resulted in double counting the length of these roads.

Figure 2.4: Street network of Singapore

The complete street network is shown in Figure 2.4, where the six most common
street types are represented by one colour each and all remaining classes were grouped
as other. The network of express-ways (denoted by motorway) coincides very well with
Figure 2.1 but also with other maps like Google Maps (Google, 2017). Also, the layout
of the primary streets which are major roads with multiple lanes in each direction fits
well together with these maps.

However, the declaration of smaller roads (secondary, residential, and service) is in
some areas not consistent. For example, there are several areas with a mixture of these
street types whereby the street network’s topology does not indicate explicitly whether
there is a different hierarchy among these types. Furthermore, there are residential
streets in Tuas at the very south west of Singapore, although Tuas is a purely industrial
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district. Hence, it is unclear whether the street type classification is sufficiently reliable
to allow quantitative distinctions among the smaller street’s type. Another problem
of the OSM street network is that the fifth most common street type is unclassified,
meaning that these streets were not assigned to any class.

These inaccuracies are inherent to crowd-sourced data such as OSM. Due to the huge
number of users who are entitled to edit the maps without major restrictions, different
interpretations are combined, which compromises consistency (Moecker, 2014). Despite
these issues, the used street network is comprehensive and well connected. Hence, it
constitutes a good basis for the analysis and simulation of driving profiles.



Chapter 3

Driving profile analysis

This chapter describes the analysis of taxi driving profiles. First, Chapter 3.1 summarises
all pre-processing steps and explains the merging of the original data sets into two data
sets. Subsequently in Chapter 3.2, standstill periods are extracted from the driving
profiles and classified. Based on that, shift schedules are derived which describe the
taxi drivers’ activity patterns. Next, in Chapter 3.3 the taxis’ trips are classified and
analysed with respect to the taxis’ status. Furthermore, the algorithm to match the
driving profiles to Singapore’s street network is introduced. Finally, traffic statistics are
derived from the map-matched trips in Chapter 3.4 in order to estimate the energy
consumption of electric vehicles and to estimate travel durations.

3.1 Pre-processing and merging of data sets
The taxis’ driving profile analysis was made on two data sets which were derived from
the raw data sets introduced in Chapter 2.4. The first data set was generated by merging
the logger, status, and revenue data sets and is denoted as High Frequency Data set
(HFD) due to the high recording frequency of the logger data. The HFD includes driving
profiles of 50 taxis over a period of six months. The second data set comprised only
of status data and covered 2,973 taxis over one month. Due to the lower recording
frequency of the status data (one data point every 3min), this data set is denoted as
Low Frequency Data set (LFD).

Both data sets were essential for the analysis of the taxis’ driving profiles. On basis
of its high accuracy, the HFD allowed the investigation of route choices, trips, and traffic
conditions in great detail. Whereas the LFD contains a significantly higher number of
taxis and thereby enabled a more representative analysis on the drivers’ activity schedules,
shift change, and break location choices.

Before the logger data set was integrated into the HFD, following pre-processing
steps were applied to improve its quality:

1. outlier detection (spatial and dynamic),

2. interpolation, and

3. smoothing.

As the first step, it was checked if the recorded data points were plausible. This was
done with respect to their location (spatial) and their correlation with neighbouring

17
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data points (dynamic). The spatial outlier detection ascertained whether the recorded
points were located within Singapore’s boundaries. The dynamic detection considered
the speed and acceleration derived from the data point’s location and recorded speed
values. Each data point which speed exceeded 150 km/h or which acceleration was
outside the range of -6 to +4m/s2 was detected as outlier and consequently, deleted.

All gaps in the data set caused by either deleted outliers or missing recordings were
filled by interpolated values. Here, the Piecewise Cubic Hermite Interpolating Polynomial
Method (Fritsch and Carlson, 1980) was applied. Finally, a moving window low pass
filter was applied to smooth the speed profile. All pre-processing steps are explained in
detail in (Moecker, 2014).

The outlier detection was also applied to the status data sets. However, since its
recording frequency was much lower, fewer outliers could be detected. Outliers were
removed and not replaced by interpolations as the lower recording frequency made it
very difficult to find reasonable substitutions.

After the pre-processing, the HFD was created by merging the logger, status, and
revenue data sets. Therefore, the logger data set was used as basis and got extended
with the features status and revenue. The status of all logger data set points which
time was exactly the same as the time in the status data was set to the corresponding
value of the status data set. This status information was copied to all successive data
points until the next data point with a status value originating from the status data
set was reached (Moecker, 2014). As the revenue data set contained the exact time
when a hired trip started, this information was also used to alter the status feature.
The information on the amount of taxi fare, charged after the trip, was added to the
corresponding data point when the hired trip started. All other data points’ revenue
entries remained vacant.

Table 3.1: Key figures of data sets

Unit HFD LFD
Recording frequency 1/s 1 1/180
Number of taxis - 50 2,973
Recording period d 184 31

Mileage km 2,521,055 31,285,627
Number of data points - 304,914,091 35,819,968

Some key figures of the HFD and LFD are listed in Table 3.1. Due to its much higher
recording frequency, the HFD contains 8.5 times the number of data points compared
to the LFD. However, as the LFD covers many more taxis, the total recorded mileage
of this data set is considerably higher (a description on how the mileage of the LFD
was estimated follows in Chapter 3.3). Nevertheless, the HFD contains more than 2.5
million km of high quality driving profiles and constitutes a good basis for the following
analysis.

Both data sets are stored in databases that design is presented in Appendix D.
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3.2 Standstill periods
In order to identify locations where charging is possible and to simulate the charging
behaviour of taxi drivers, it is essential to gain a detailed understanding of the taxis’
standstill periods. A standstill period is defined as a time period when the taxi is
stationary. These events could be used to recharge the taxis’ battery. To distinguish
these events from stops which were caused by traffic conditions (traffic jam, red light, ...)
the required minimum standstill duration was set to 5min.

3.2.1 Detection
Regarding the HFD, standstill periods were identified by analysing the speed profiles.
Anytime the speed of all data points within a period of at least 5min was zero, a
standstill period has been detected.

Since the LFD contains much less information than the HFD, a different approach
was applied to identify standstill periods. Therewith, the first step was to classify data
points as standstill if at least one of the following conditions was fulfilled:

Condition 1: duration to next data point greater than 15min

Condition 2: average speed to next data point below 0.25 km/h

Condition 3: status is log off

Condition 1 takes into account that there are big gaps in the data set when the taxi
was switched off. Hence, a standstill period must be assigned at each of these events.
Condition 2 considers if the taxi remained at almost the same location of the previous
data point. Usually, when taxis are parked, the status is switched to log off, this case
is respected by Condition 3. Next, data points classified as standstill which were not
farther apart than 10min were combined to one standstill period. Data points between
two combined standstill periods were classified as standstill as well. Finally, all standstill
periods shorter than 5min were removed.

3.2.2 Classification
Standstill periods of both data sets were classified as break or shift change. Breaks are
short interruptions of shifts when drivers have a rest or eat, whereas shift changes are
periods when the taxi is parked for a longer duration (typically several hours) until either
the same or another driver uses the taxi to start a new shift.

This classification is important in the context of simulating the charging behaviour of
electric taxi drivers. During breaks, public charging stations with high charging power are
required to minimise the drivers’ loss of time. However, if public charging stations could
be used during the drivers’ shift change as well, the charging station utilisation would be
considerably lower, as shift change durations are typically much longer than the time to
fully recharge the battery. As a result, charging stations would be blocked by taxis which
would have completed their charging process already long time ago. Furthermore, this
classification also allows to analyse the option of using cheaper low power AC charging
stations at the drivers’ shift change location to recharge during the shift change.

The standstill period classification was done in four steps:
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Step 1: Assign shift change to all standstill periods which are longer than two hours

Step 2: Assign shift change to standstill periods subject to location, standstill duration,
and shift duration

Step 3: Assign additional shift changes to standstill periods of shifts which are longer
than 16 hours

Step 4: Assign break to all standstill periods which were not classified as shift change

It is assumed that no taxi driver has breaks longer than two hours, thus all these standstill
periods were classified as shift change in Step 1. After this assignment, a set of shifts
was extracted, whereby each shift is defined as a set of consecutive standstill periods
between two shift changes.

In Step 2, within each shift, candidate standstill periods for an assignment of shift
change were searched for. Each candidate had to fulfil three conditions:

Condition 1: The standstill duration must be longer than 30min

Condition 2: The duration of both resulting shifts must be at least four hours if shift
change was assigned to the candidate standstill period

Condition 3: The candidate standstill period must have taken place within the area
with the most shift changes of the considered taxi

These conditions shall ensure that the resulting shifts and shift changes are not too
short and that the shift change locations are not too far away from the place where the
taxi drivers are usually having their shift changes.

For all shifts which had more than one candidate, a decision had to be made which
of these candidates was assigned as shift change. Therefore, for each candidate a total
weight wTotal was calculated while the candidate with the highest weight was selected.
The total weight is calculated by cumulating five normalised weights:

wTotal = wDuration + wArea + wActivity + wShiftChangeHistory + wShiftMiddle (3.1)

Thereby, the weights take following aspects into account (all weights were calculated for
each taxi individually):

Duration: The higher the standstill duration the higher the weight. Durations of two
hours got a weight of one.

Area: Singapore got divided into 306 areas. If the candidate location was in the same
area where most of the taxi’s shift changes took place, the weight was one. Oth-
erwise it was set to zero.

Activity: It is expected that drivers followed certain mobility patterns and had shift
changes at times when they were least active. Therefore, time intervals of one
hour were defined and for each time interval the ratio of standstill duration to
the interval duration was calculated. The weight was set to the ratio of the time
interval in which the candidate standstill period occurred.
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Shift change history: Furthermore, it was calculated how many shift changes started
in each time interval. This weight was set to the ratio of the number of shift
changes at the candidate’s time interval to the maximum number of shift changes
over all time intervals.

Shift middle: To avoid the assignment of shift changes shortly after or before another
shift change, this weight is one if the candidate standstill event took place in the
exact middle of two shift changes and decreases with respect to the time difference
to the closest shift change.

After the assigning shift changes to the candidate standstill periods with respect to
the total weight of equation 3.1 in Step 2, Step 3 checks if there are any shifts left
which were longer than 16 hours. Shifts exceeding this duration are considered as not
possible and were split into several shifts by assigning additional shift changes within
these shifts. In contrast to Step 2, no conditions were applied to constrain the selection
of candidates. The decision which candidate was assigned as shift change was again
made with respect to the total weights of equation 3.1.

Finally in Step 4, all standstill periods which were not classified as shift change got
assigned as breaks.

Figure 3.1: Distribution of break (a) and shift change (b) duration

Figure 3.1 shows the distribution of break and shift change durations of the LFD set.
The frequency of breaks decreased with respect to the break duration whereby breaks
with a duration between 5 and 10min were with 25% most common. The average
break duration was 28min which would be sufficient to recharge 23 kWh with a charging
power of 50 kW. This amount of energy would allow to drive another 137 km at an
energy consumption of 170Wh/km. As taxis had 1.9 breaks per shift on average, and
the average mileage per shift was 195 km, breaks alone would be sufficient to recharge
the taxis’ energy demand.

The frequency of shift changes also decreased continuously with respect to the shift
change duration whereby durations up to two hours occurred in 26% of all cases. The
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average shift change duration was 6.0 h. If a taxi with a battery capacity of 50 kWh
would use a 50 kW charging station during the shift change, the battery could have
been fully charged after approximately 1.0 h1 which would have resulted in blocking the
charging station for the next 5.0 h. Hence, the utilisation of the charging station would
have been only 17% during the shift change.

Another interesting aspect is that if the battery could be charged by an AC charging
station with a charging power of 6 kW, 36 kWh could be recharged during the shift
change on average. This would be enough to drive 212 km which is more than the
average mileage per shift.

Hence, both charging concepts could be viable solutions. However, these estimations
were only made for average values, whereby the distributions show that there is a big
variance in break and shift change durations. In order to take the big variety of taxi
driving profiles into account, a taxi driving profile simulation model was developed (see
Chapter 5).

Figure 3.2: Activity of taxi fleet with respect to time

Apart from the duration of standstill periods, it is also important to take into account
when these events occurred. Therefore, Figure 3.2 visualises which percentage of the
taxi fleet of the LFD set was active (taxi was driving) or had a break or shift change
with respect to time. At 4:45 the lowest percentage (21%) of the taxi fleet was active
whereby the highest share of active taxis was reached at 19:00 with 69%. This peak is
reached as the percentage of taxis having shift changes decreased from 28% at 17:00
to 23% at 19:00. One reason why many drivers started their shift at that time could
be that as of 18:00 an evening surcharge of 25% is added to the standard fare (LTA,
2017a).

The percentage of taxis having breaks varied only between 5 and 7% throughout the
whole night while it significantly increased from 5 to 12% between 9:00 and 11:00. This
increase may be explained by the ending of the morning peak hour surcharge at 9:30,
which could cause drivers to have a rest.

1the duration would be slightly longer as the charging power decreases after the battery’s charging
level exceeds 80%
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The drivers’ activity patterns are an important information for the planning of the
charging infrastructure in order to estimate the taxis’ charging demand with respect to
time and to derive the required number of charging stations to supply that demand.
Therefore, the driving profile simulation model is designed to reproduce these patterns.

3.2.3 Location clustering
Another essential aspect for the charging infrastructure planning is to identify locations
where charging stations shall be installed. In order to reach a high acceptance of the
drivers, it is vital to give them the chance to recharge their taxi at locations where they
would stop anyway to have a break. Therefore, a clustering algorithm was applied to
derive candidate charging locations for the placement of charging stations from the set
of all standstill period locations.

The main requirement for the clustering algorithm was to identify locations with the
highest density of standstill events whereby events outside these hotspots did not have
to be matched to any cluster. The density-based spatial clustering of applications with
noise (DBSCAN) algorithm (Tran et al., 2013) fulfils these requirements. It identifies
clusters where at least nmin data points are within a maximum radius of ε.

The parameters ε and nmin have to be adjusted with respect to the application. In
order to limit the size of each cluster to the size of car parks or parking houses, ε was
set to 50m. The minimum number of data points per cluster nmin was set in order
to get approximately 300 clusters in total. This number was defined as approximately
50 charging locations with 5 charging stations each would be required for an electric
taxi fleet of 3,000 vehicles. In order to give the optimisation some freedom to choose
locations, a six fold higher number of clusters was targeted. After clustering all 457,657
standstill events of the LFD with different values of nmin, a value of 180 was finally
chosen which generated 291 clusters.

In order to embed the clusters to the street network, each cluster was assigned with
the node ID of the street network node which was nearest to the cluster’s centroid.

Figure 3.3: Map with common standstill clusters
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Figure 3.3 shows the locations of all standstill events and the found clusters. There
was a high density of clusters in the south at the Central Business District (CBD) which
can be explained by the general high density of taxis in this area. Apart from that, there
was also an area in the very north with a high number of clusters. This is due to the fact
that many drivers are living in this area, and that many drivers had their shift change
or breaks near their home. The airport in the very east was another place where many
standstill events took place.

Additionally to these clusters which were based on the standstill periods of all taxis,
clusters were derived for each taxi individually. To distinguish these types of clusters,
the clusters derived from all taxis are denoted as common standstill clusters whereby the
latter are named individual standstill clusters. Although the common standstill clusters
are representative as they are based on the driving profiles of all taxis, they may not
be sufficient to reflect the taxi drivers’ individual choice of standstill locations. For
example, it could be that a driver has a break at the same location every day but as he
or she might be one of very few drivers who prefer this place it would not be among
the common standstill cluster locations. Therefore, individual standstill clusters are very
useful to understand the behaviour of each driver in more detail.

Since the data set to identify individual standstill clusters is much smaller, the
maximum radius ε was increased to 200m and the required minimum number of points
per cluster nmin was reduced to six. With these parameters the average number of
individual standstill clusters per taxi was 3.7 whereby 3,705 individual standstill clusters
were found in total. Each individual standstill cluster was also assigned with one street
network node ID. For all individual standstill clusters which had one standstill period
in common with a common standstill cluster, the common standstill cluster’s node ID
was used. Otherwise, the cluster’s centroid was calculated and matched to the nearest
street network node.

3.2.4 Shift schedules
Shift schedule sets were derived from the LFD to summaries the activity pattern of
each taxi2. Thereby, each shift schedule represents one shift and contains following
information:

– start time

– start location

– end time

– end location

– shift change duration

whereby the start and end location is described by a street network node ID. Furthermore,
each shift schedule contains a break set which includes the information of all breaks
which were executed during the shift. Each break set contains following features:

– start time
2taxis can be operated by more than one driver, hence shift schedules may cover the behaviour of

not only one driver
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– duration

– driving distance to break location

– location

The feature “driving distance to break location” contains the taxi’s driving distance after
it finished the last hired trip until it arrived at the break location. Based on this feature
it is possible to assess whether the driver had the intension to stop at a specific location
or chose an arbitrary location nearby. The “location” feature includes the node ID if
the taxi stopped at an individual standstill cluster location or is empty otherwise. The
generated shift schedules are an essential input for the driving profile simulation model
to reproduce the taxis’ driving profiles in great detail.

3.3 Trips
Apart from shift schedules, trips are the other main statistical input of the driving profile
simulation. In order to simulate the driving profiles of electric taxis it is necessary to
estimate the energy consumption of each trip. Therefore, only trips of the HFD were
used as only this data set contains detailed information about the vehicles’ speed profiles.

3.3.1 Status and classification
A trip is defined as a set of consecutive data points of the same status which are not
interrupted by any standstill periods.

Figure 3.4: Share of status with respect to driving distance (a) and duration (b)

Figure 3.4 shows the frequency of the trips’ status with respect to the driving distance
(a) and the duration (b) extracted from the HFD. In both cases the status hired was
clearly dominant, followed by the statuses for hire and busy. All other statuses combined
had a share of 4 respectively 5%. The share of hired trips was with respect to the
driving distance with 66% clearly higher than with respect to the duration (55%). This
can be explained by the trips’ average speed: hired trips had an average speed of
36.2 km/h while for hire trips were considerably slower with 22.2 km/h. The reason for
this difference is that in case of hired trips, the driver had a defined destination which
he or she tried to reach as fast as possible. In contrast, during for hire trips the driver
circles around and has to reduce the speed in order to find the next passenger.
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Due to these significant differences in the driving profiles with respect to the trips’
status, two classes of trips were defined: engaged trips and search trips. Engaged trips
are trips with customer on board, hence the status must be hired, soon to clear (STC),
or payment (Chapter 2.4.2). Directly connected trips of these statuses without any
standstill periods in between were combined to one engaged trip. However, it must
be considered that the taxis’ status information was only recorded every three minutes
and that it is possible that the driver could have found the next customer in less than
that time. In this case two separate engaged trips were detected with the help of the
revenue data set which contains all points in time whenever a new trip started. Thus,
engaged trips can be directly connected with each other. The second trip of these pairs
was additionally tagged as instant pickup trip.

A search trip is defined as a set of directly connected trips of the statuses for hire,
on call, and arrived without any standstill periods in between. Moreover, to ensure that
a customer was found after a search trip, an engaged trip must have directly followed
after these trips. All trips neither classified as search or engaged trip were not further
taken into account.

Table 3.2: Statistics of search and engaged trips of the HFD

Unit Search trips Engaged trips
Number - 90,899 137,072

Average distance km 3.6 10.6
Average duration min 10.8 17.6
Average revenue SGD - 14.1

Table 3.2 contains some statistics of the extracted trips. The number of engaged
trips is higher than the number of search trips due to instant pickup trips. Although
taxis are actively searching for passengers by driving around, the distance of engaged
trips was on average 2.9 times higher than that of search trips. This reflects the high
demand for taxis in Singapore. The average revenue per engaged trip was 14.1 SGD.

Figure 3.5 shows the spatial-temporal frequency of origins and destinations of en-
gaged trips. Each map represents on a different time interval, whereby each time interval
covers one hour with the displayed time being exactly in the middle of the time interval
(e.g. the 3:00 map shows trips between 2:30 and 3:30). The colour of each area is
subject to the difference of the number of originating and arriving engaged trips. It is
red if more trips started than arrived (surplus of origins) and blue if the opposite is true
(surplus of destinations). In case the number of starting and arriving trips is equal, the
colour is white. The bigger the difference, the darker the colour.

Map (a) shows the origin-destination map at 3:00, where the majority of trips started
from the CBD in the south of Singapore (origin - red) and went to outer - mainly
residential areas (destination - blue). During that time it is likely that taxis came back
to the CBD without a passenger on board once they finished a trip farther away.

In contrast, at 8:00 (b) taxis came from outer areas to the CBD and the airport.
Based on the analysis of shift change locations of all taxis, it is assumed that most of
the drivers lived in the areas which had the highest surplus of starting trips. Most likely,
they were starting their shift at that time and went to the CBD or airport since the
customers’ travel demand to these areas was very high.
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Figure 3.5: Origin-destination map of engaged trips for different times of the day

Later at 13:00 (c) most of the areas’ colours are bright, which means that the number
of starting and arriving trips was roughly equal in each area. During that time there is
no specific direction of the customers’ travel demand visible - most taxis were searching
in the same area for the next customer where they dropped the last one.

In the evening at 19:00 (d) the colours of most areas were inverted compared to the
8:00 map, it seems that many people who went to the CBD or airport in the morning
came back home at that time.

These maps show that the taxis’ driving patterns are dependent on time and space.
These effects need to be taken into account in order to simulate driving profiles as
realistic as possible.

3.3.2 Mileage and revenue estimation
Regarding the HFD, the driving distances were calculated by integrating the recorded
speed with respect to time. Although all trips were extracted from the HFD, it was also
necessary to have mileage and revenue estimations of the LFD in order to extract shift
schedules and to validate the driving profile simulation model in Chapter 5.8.

One possibility to estimate the driving distance of the LFD would be to map-match
all data points to the street network and calculate the length of shortest paths connecting
these points. However, this would be extremely time consuming as the LFD contains a
total mileage of many million km.

Hence, a computationally more efficient approach was chosen. Therefore, the whole
recording area was divided into squares with a side length of 780m and each data point
was assigned to one square with respect to its location (see Figure 3.6). The driving
distance ddrive from one data point in cell i to the consecutive point in cell j was
estimated with respect to the euclidean distance deuclidean between these points:

ddrive = aijdeuclidean + bij (3.2)
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Figure 3.6: Driving distance estimation

As it is not possible to drive directly from square i to j, the parameter bij takes the
street network’s topology into account. The data points’ location within the squares is
taken into account by aij . To obtain the parameters aij and bij for each combination of
origin square i and destination square j, 1.4 million data point pairs with a time difference
of three minutes each were extracted from the HFD. Since the driving distance between
data points of the HFD is known, the parameters aij and bij were fitted for each set of
data point pairs.

Since no revenue data was available for the LFD, the revenue of each trip had to be
estimated as well. Taxi fares in Singapore consist of a flag down fare which has to be
paid at the start of each trip plus duration and distance dependent fares. Furthermore,
a surcharge factor is multiplied to the basic fare if the trip took place in the late night or
during peak hours (LTA, 2017a). First of all, the revenue of non engaged trips was set
to 0 SGD. The engaged trips’ revenue r was estimated with respect to the trip’s driving
distance ddrive, duration ∆t, and the time of the day t. The surcharge factor is taken
into account by the function fs (t):

r = (kdddrive + kt∆t+ k0) · fs (t) (3.3)

Again, the HFD was used to fit the parameter kd, kt, and k0. Thereby, it was
considered that the data set included different vehicle types for which different fares
applied (SMRT, 2015). The fitted parameter values are listed in Table 3.3.

Table 3.3: Revenue estimation parameter

Vehicle type kd [SGD/km] kt [SGD/min] k0 [SGD]
Chevrolet Epica 0.71 0.15 1.92
Toyota Prius 0.76 0.14 1.87

The mileage and revenue of all taxis of the LFD were estimated. The resulting
distributions of daily mileage (a) and revenue (b) per taxi are shown in Figure 3.7.

Both distributions show a wide spread between the least and the most active taxis.
On average, the daily mileage of Prius taxis was 365 km which was higher than the
average daily mileage of Epica taxis of 342 km. It is suspected that this was due to
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Figure 3.7: Distribution of average daily mileage (a) and revenue (b) per taxi

the lower fuel consumption (Chevrolet, 2009; Toyota, 2015) and the higher rental fee
(SMRT, 2015) of the Prius compared to the Epica. This makes Prius taxis economically
more profitable for higher daily mileage. There was a significant increase in the propor-
tion of taxis having a daily mileage between 200 - 250 km and those between 250 and
300 km. That can be explained by the LTA’s taxi availability standard3 (LTA, 2016a)
which regulated the percentage of taxis which have to meet a daily mileage of at least
250 km.

Figure 3.7(b) shows the average daily revenue distribution. The average revenue of
the Prius taxis was with 318 SGD higher than that of Epica taxis which was 289 SGD.
This difference was caused by the higher average mileage of Prius taxis and the different
fare schemes that favours the Prius as well (SMRT, 2015).

These distributions illustrate the heterogeneity of taxi driving profiles very well. It
is essential to simulate taxis with different shift schedules to reproduce this variety of
driving profiles.

3.3.3 Map-matching
In order to extract traffic statistics, all data points of the HFD were matched to the
street network of Singapore. Therefore, all sections of the street network were assigned
with an unique ID and each data point was tagged with the ID of the section which the
taxi traversed when it was recorded.

For this task, the ST (Spatial-Temporal) map-matching algorithm was applied (Lou
et al., 2009). This algorithm takes spatial and temporal (speed) information of the data
points and the street network’s topology into account. A detailed description on how
this algorithm was applied to the HFD can be found in (Moecker, 2014).

In order to reduce the computation time, only every 60th data point (one point per
minute) was matched to the street network. The sections of the remaining data points
were assigned with respect the shortest path connecting matched data points.

3this standard was valid during the data recording but was abolished on 1.1.2017
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The transition probability Ptotal that data point pi matches to section csi was cal-
culated with respect to the matching of the previous data point pi−1 to section cti−1 by
following product:

Ptotal
(
cti−1 → csi

)
= Ppoint (pi, csi ) · Ppath

(
cti−1 → csi

)
· Pspeed

(
cti−1 → csi

)
(3.4)

Thereby, following aspects were taken into account:

point: Projected distance of data point pi to section csi . The lower the distance, the
higher the probability to match pi to csi .

path: Length of shortest path on street network from section cti−1 to section csi . The
shorter the length the higher the probability. This aspect ensures that the matched
sections are closely connected with each other.

speed: Similarity between expected speed per section4 on the path from cti−1 to csi and
the average speed from pi−1 to pi. This feature ensures that suitable sections are
selected with respect to the recorded speed. This is important if there are two
parallel roads close to each other with different speed limits (e.g. express-way and
residential street).

Figure 3.8: Map matching graph with candidate section and transition probabilities (Lou
et al., 2009)

Transition probabilities Ptotal were calculated for the three nearest sections of each
data point. Next, a graph with all candidate sections and transition probabilities was
created (see Figure 3.8). Based on that graph the combination of candidate sections
with the highest total transition probability was selected.

3.4 Traffic statistics
The map-matched driving profiles of the HFD allow to extract time dependent speed
related statistics of street types, roads, and street network sections. These statistics were
used in Chapter 4 to estimate the energy consumption for given paths and in Chapter 5
to simulate travel times.

4this speed was either derived from recorded trajectories or speed band sensor data (LTA, 2014a)
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3.4.1 Choice of street types
Due to the map-matching of all data points it can be easily analysed which street types
were chosen by the taxi drivers.

Figure 3.9: Usage share of street types with respect to driving distance (a) and driving
duration (b)

Figure 3.9 shows how often each street type was used with respect to driving distance
(a) and driving duration (b). The most commonly used street type with respect to driving
distance ismotorway (equivalent to express-ways) with 38%, additionally, motorway links
which are connecting other streets with express-ways or express-ways with each other
contributed another 9%. Hence, 47% of the total mileage was recorded on express-way
related street types. The shares of other street types decreased with their size: starting
with primary and secondary roads to the small residential and service roads. Although
unclassified roads were the fifth most common street type in terms of length, their usage
share with respect to driving distance was only 1.9%. Thus, the issue of not knowing
the type if these streets is neglectable.

Regarding the usage share with respect to the driving duration (b), the share of
express-way related roads decreased from 47% to 22% whereby the share of smaller roads
increased significantly. In case of service roads, the share changed from 2% with respect
to driving distance to 9% with respect to driving duration. The reason for these changes
is that roads of different type were traversed with very different speeds. Motorway was
with 72 km/h on average the street type with by far the highest speed whereby primary
roads had a value of 26 km/h and service roads had the lowest average speed of 7 km/h.
The average speed on express-ways during peak hours5 was according to (LTA, 2014c)
64.1 km/h which matches very well with the extracted value of 62.6 km/h for these time
windows.

Since the comparison of street types and average speeds is sound, it can be assumed
that first, the street type classification is logical and second, that the map-matching
algorithm produced reasonable results.

3.4.2 Speed profiles
The average speed over all street types throughout the day was 29.8 km/h, to analyse
the taxis’ speed in more detail, the average speed with respect to the time of the day is

58:00 - 9:00 and 18:00 - 19:00
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shown by Figure 3.10.

Figure 3.10: Average speed profile with respect to time of the day

The highest speed was reached at 6:15 with 37.6 km/h while the lowest speed was
recorded with 25.7 km/h during the evening peak at 18:45.

Interestingly, the average speed during the morning peak is higher than during the
day, e.g. the speed reduced from 30.7 km/h to 27.9 km/h between 8:00 and 13:00. This
can be explained by the usage of express-ways: at 8:00 18.8% of all active taxis drove
on express-ways while this percentage dropped to 13.5% at 13:00. This behaviour could
be a result of the travel patterns discussed by Figure 3.5 where at 8:00 many taxis drove
from outer areas to the CBD or airport and had disproportionate long engaged trips
of 11.9 km on average. Later, at 13:00 the average engaged trip distance dropped to
9.5 km which may affected the share of taxis using express-ways.

During the evening peak hour at 19:00 only 15.5% of all active taxis used express-
ways, which could have been a result of relatively short engaged trips of 9.9 km on
average. Additionally, due to the high traffic volume at that time, the average speed
dropped to the lowest value throughout the day.

Another interesting aspect of the speed profile is the deep and narrow valley at
5:45 where the average speed dropped and increased by more than 4 km/h within one
hour. A separation of the speed profiles by the trips’ statuses revealed that the speed of
engaged trips did not drop at that time. An explanation why the speed of the other trips
dropped could be that many taxi drivers started their shift at that time (see Figure 3.2)
and therefore had to drive through small streets with low speed until they reached major
roads to search for their first customer.

In order to take different traffic situations into account for the following analysis, four
time dependent speed clusters (named as low, medium, high, and very high speed) were
derived from the speed profile. The time windows of the speed clusters were designed
in the way that approximately the same number of recorded data points was covered
by each cluster. As a result, the validity of the generated statistics of each cluster was
comparable.

The speed clusters are represented by the red line in Figure 3.10. It shows that e.g.
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the very high speed cluster covers the time periods from 3:23 until 7:38 and 22:08 until
2:23. The total time window duration of this cluster is the longest as it covers almost
the whole night when the fewest number of data points was recorded as the smallest
share of the taxi fleet was active at that time. The time windows of all speed clusters
are listed in Appendix B.

In order to analyse the driving profiles in greater detail, pass-through speeds for each
street network section were extracted. Pass-through speeds are defined as the average
speed of consecutive data points which were matched to one section. For each event
when a taxi drove through a section, another pass-through speed was calculated.

Figure 3.11: Inverse cumulative frequency distribution of pass-through speeds for sec-
tions of type primary and all speed clusters

The inverse cumulative frequency distribution of pass-through speeds for sections
of the type primary is shown by Figure 3.11. These distributions were created for each
speed cluster separately and additionally for all clusters combined (represented by “All”).
The diagram shows e.g. that the pass-through speed of the very high speed cluster was
with a probability of 80% lower than 43.7 km/h.

Singapore has a speed limit of 50 km/h on all roads except express-ways (LTA,
2017b). This limit was exceeded by 10.9% of all pass-throughs of the very high speed
cluster while due to the higher traffic volume during the low speed cluster, this limit was
only exceeded in 4.2% of all cases. The probability of pass-through speeds of 0 km/h
ranged from 0.7% to 0.9%. Obviously, these values are not sensible and must have
originated from either recording or map-matching errors.

In order to make these distributions easier to handle, the parameters a to e were
fitted to estimate the pass through speed v with respect to the probability p for each
speed cluster individually (the upper index α refers to the speed cluster):

vα (p) = aα · p− bα · (exp (−cα · p)− 1) + dα · (exp (eα · p)− 1) (3.5)

This function is designed to be greater than zero for every probability higher than
zero. Thus, the discussed inaccuracy of 0 km/h speeds found in the data is not repro-
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duced by the fit function.
If at least 30 pass-throughs could be extracted, the parameters of this function were

fitted for each section, all sections with the same way ID, and all sections of the same
street type individually. The resulting fit parameters are listed in Appendix C. In the
next chapter, these functions are used to obtain the pass-through speed per section with
respect to a random number between zero and one.

3.4.3 Acceleration
Additionally to the speed distributions, accelerations were analysed with respect to the
pass-through speed for each section, way, and street type for all speed clusters. Fig-
ure 3.12 shows the extracted accelerations of all sections of type primary.

Figure 3.12: Fit of acceleration with respect to pass-through speed of all primary sections

The diagram distinguishes between positive and negative accelerations: positive ac-
celerations must have been at least 0.2m/s2 and negative accelerations equal or smaller
-0.2m/s2. All values between these thresholds were considered as no acceleration and
excluded.

The reason for choosing 0.2m/s2 was that the speed was recorded in intervals of
1 km/h with a frequency of one value per second. Hence, the lowest measurable accel-
eration was 0.28m/s2. As the speed profile was smoothed during the pre-processing,
the threshold was set a little below this value.

The figure contains more than one million data points (grey dots), which makes it
very difficult to identify any trend in their distribution. Therefore, mean values over
intervals of 1 km/h were calculated and displayed by the blue dots6. It can be seen
that the positive acceleration increased fast at very low speeds, reached its maximum of
1.1m/s2 at 16 km/h and decreased slowly with higher speeds. The negative acceleration
profile is almost exactly mirrored to the positive accelerations.

The reason for having low accelerations at low speeds could be that drivers gradually
press the acceleration pedal when starting from standstill. Later, when the driver reaches

6these dots are only used as reference, the parameters were fitted to the original data (grey dots)
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the targeted speed he or she slowly lifts off the pedal in order not to overshoot the
targeted speed.

Again, to handle the acceleration profiles easier, the parameters a to c of following
function were fitted to the positive and negative acceleration data separately with respect
to the pass-through speed v̄:

v̇α (v̄) = aα (exp (−bα · v̄)− exp (−cα · v̄)) (3.6)

This approach of fitting the acceleration profiles with respect to the pass-through
speed was also applied in (Kraschl-Hirschmann and Fellendorf, 2012; Moecker, 2014).
The difference to this work is that their fits were not individually made for time win-
dows reflecting different traffic conditions (speed-clusters). Furthermore, (Kraschl-
Hirschmann and Fellendorf, 2012) used a linear fit function which significantly over-
estimated accelerations at low speeds. (Moecker, 2014) used equation 3.6 and added
the term d·exp

(
− 1
v̄

)
. On the one hand, the higher variance of the fit function increased

the chance to achieve lower estimation errors, on the other hand higher variance always
bares the risk that the algorithm which optimises the fit parameter gets stuck at a local
optimum which is significantly worse than the global optimum. As this function was
fitted to thousands of data sets it was not possible to check whether the results of each
fit were reasonable. Therefore, a simpler and more reliable function was chosen in this
work. The fitted parameters for acceleration and deceleration are listed in Appendix C.

3.4.4 Driving shares
In order to analyse the vehicles’ driving status, all data points were classified to four
categories with respect to their speed v and acceleration v̇:

Idle: v = 0

Acceleration: v > 0 ∧ v̇ > 0.2 m
s2

Deceleration: v > 0 ∧ v̇ < −0.2 m
s2

Cruise: v > 0 ∧ −0.2 m
s2 ≤ v̇ ≤0.2 m

s2

Based on that, driving shares were defined as the ratio of the number of data points clas-
sified to one category to the total number of data points of one pass-through (Kraschl-
Hirschmann and Fellendorf, 2012).

Figure 3.13 shows the four driving shares of all primary sections with respect to the
pass-through speed. Again, due to the high number of data points, mean values for
speed intervals of 1 km/h are shown by the blue dots.

Logically, the idle share (a) was very high at low speeds and decreased monotonously
with respect to speed. Nevertheless, the idle share at a pass-through speeds of 60 km/h
was still 2.5%. This can be explained by the high range of section lengths: while the
average length of one section is 132m, 3.8% of all sections were longer than 500m.
Thus, at these long sections it is possible to reach a high average speed while having a
short stop in between.

Due to the high value of the idle share at low speeds, all other shares were small and
increased with higher speeds. The acceleration and deceleration share curves were very
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Figure 3.13: Driving shares of sections of street type primary with respect to pass-
through speed

similar. Both shares decreased slightly at speeds above 60 km/h while the cruise share
(c) increased further.

Following fit functions were defined to estimate the shares with respect to the pass-
through speed v̄ (acc refers to acceleration, dec to deceleration, the upper index α refers
to the speed-cluster):

fαidle (v̄) = exp
(
−
(
aαidle ·

√
v̄ + bαidle · v̄2

))
(3.7)

fαacc (v̄) =aαacc (exp (−bαacc · v̄)− exp (−cαacc · v̄)) (3.8)
fαdec (v̄) =aαdec (exp (−bαdec · v̄)− exp (−cαdec · v̄)) (3.9)

fαcruise (v̄) =1− (fαidle (v̄) + fαacc (v̄) + fαdec (v̄)) (3.10)

In contrast to (Kraschl-Hirschmann and Fellendorf, 2012; Moecker, 2014), these
definitions ensure that the driving shares are normalised:

fαidle (v̄) + fαacc (v̄) + fαdec (v̄) + fαcruise (v̄) = 1 (3.11)

The parameters of all share functions were fitted in parallel, meaning a function was
created which output was a four-column matrix whereby each column corresponded to
one type of share. The total error of the fit was calculated by comparing the result of
the fit function with the driving shares extracted from the data. This approach ensured
that all driving share fits were close to the data. In contrast, if one share function was
fitted at a time it would have been expectable that the first fitted functions correlated
very well to the real data whereby the last share function had significant deviations. The
results of these fits are given in Appendix C.

Following, in Chapter 4.1.3 it will be explained how the fitted acceleration and share
functions were used to estimate the vehicles’ energy consumption with respect to a given
route.



Chapter 4

Vehicle energy model

Due to the limited range of electric vehicles it is essential to precisely estimate the
vehicle’s battery energy level and therewith the remaining range. Therefore, this chapter
introduces the energy models which are integrated into the driving profile simulation
model. First, in Chapter 4.1 an energy consumption model is presented which is used
to estimate the required battery’s energy flow in order to execute a trip. Next, in
Chapter 4.2 a charging model is introduced which estimates how much energy is re-
charged with respect to the battery energy level, charging power, and charging time.

4.1 Energy consumption model
The energy consumption model is used to estimate how much energy would be discharged
from the battery to execute a trip with respect to vehicle specific parameters. This model
is capable of estimating the energy consumption with respect to a given speed profile
(speed-based) and a given route with pass-through speeds per street network section
(route-based). The nomenclature of this section is given in Table 4.1.

Table 4.1: Nomenclature of energy consumption model

Symbol Unit Description
A N dynamometer coefficient
B Ns/m dynamometer coefficient
C Ns2/m2 dynamometer coefficient
Ebat Ws battery discharge energy
ηBat - battery efficiency
ηConv - converter efficiency
ηInv - inverter efficiency
ηMotor - motor efficiency
ηTrans - transmission efficiency
ηWheel−Bat - efficiency wheel to battery
facc - acceleration share
fcruise - cruise share

37
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Symbol Unit Description
fdec - deceleration share
fidle - idle share
g m/s2 gravitational acceleration
ḣ m/s derivation of altitude profile
km - rotational inertial factor
l m section length
mvehicle kg weight of vehicle
P̄ W average power
P0 W standstill power
PAC W air conditioning power
Pacc W acceleration power
Paero W power of aerodynamic drag
Paux W auxiliary consumer power
Pbat W battery power
Pcruise W power in cruise state
Pdec W power in deceleration state
Pdrive W power to drive vehicle
Pgrad W gradient resistance power
Pidle W power in idle state
PInv W inverter power
Proad W road load power
Proll W power of rolling resistance
t s time
v m/s speed
v̄ m/s pass-through speed
v̇ m/s2 acceleration
v̇acc m/s2 average positive acceleration
v̇dec m/s2 average negative acceleration

4.1.1 Model and parameter
The applied vehicle model to simulate the energy consumption is depicted in Figure 4.1.

In order to drive the vehicle, the battery’s discharge current is inverted from DC
to AC by the inverter. Next, the electric motor transforms the electrical power to
mechanical power which flows through the transmission to the wheels to overcome the
driving resistances. The design of electric vehicles allows regenerative braking meaning
that while braking kinetic energy can be transformed by the motor to electric energy
which can be used to supply auxiliary consumers and recharge the battery. The inverter
also supplies the air conditioning system directly with AC current, whereby the converter
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Figure 4.1: Power flow diagram of electric vehicle

transforms the current to DC (at a much lower voltage than the battery’s voltage) to
supply all auxiliary consumers (infotainment, lights, control units, ...).

The electric power consumption of the air conditioning system PAC of EVA in Singa-
pore was estimated to 810W in (Reuter et al., 2014), whereby the the average power
consumption of all auxiliary consumers Paux was assumed to be 700W. The driving
resistance power with respect to the vehicle’s speed v and acceleration v̇ is calculated
by (Simpson, 2005):

Pdrive (v, v̇) = Paero (v) + Proll (v) + Pacc (v, v̇) + Pgrade (v) (4.1)

The road load power combines the aerodynamic drag Paero and the rolling resistance
Proll and is calculated with following formula (Giannelli et al., 2005):

Proad (v) = Paero (v) + Proll (v) =
(
A+B · v + C · v2

)
v (4.2)

The parameter A, B, and C are dynamometer coefficients which were measured
for each vehicle except EVA by (EPA, 2016). In case of EVA the coefficients were
calculated with respect to its frontal area (2.8m2), drag resistance coefficient (0.31),
total weight (1636 kg), and rolling resistance coefficient (0.008). All coefficients are
listed in Table 4.2.

As the rolling resistance is predominantly speed independent whereby the drag res-
istance depends on the squared speed, the coefficient A is representative for the rolling
resistance and C for the drag resistance. The coefficient B was fitted to improve the
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Table 4.2: Dynamometer coefficients (EPA, 2016)

Vehicle A [N] B [Ns/m] C [Ns2/m2]
BYD e6 270.3 6.588 0.4443
EVAa 128.4 0 0.5317

Kia Soul EV 101.4 3.265 0.4860
Nissan Leaf SV 133.1 0.7563 0.4886

Tesla Model S 70D 161.2 1.897 0.3887

acoefficients estimated

simulation of road loads on a dynamometer and can be understood as a mixture of rolling
and drag resistance. According to this interpretation, the BYD e6 has the highest rolling
resistance which can be explained by its high weight of 2,495 kg and the Tesla Model S
has the lowest drag resistance which is due to its low frontal area (2.3m2) and drag
coefficient (0.24) (Sherman, 2014).

The required power to accelerate the vehicle at speed v with acceleration v̇ is cal-
culated by (Simpson, 2005):

Pacc (v, v̇) = kmmvehicle · v · v̇ (4.3)

Thereby mvehicle is the weight of the vehicle and km is a factor which accounts the
rotational inertia of the powertrain and the wheels. This factor was estimated for the
Nissan Leaf to 1.066 with respect to a wheel radius of 31.5 cm (Hayes and Davis, 2014)
and a total moment of inertia of 10 kgm2 (Hayes et al., 2011).

The gradient resistance Pgrade is calculated with respect to derivation of the altitude
by time ḣ (g is the gravitational acceleration):

Pgrade
(
ḣ
)

= mvehicle · g · ḣ (4.4)

To assess the impact of the gradient resistance on the total energy consumption,
65,476 km of taxi driving profiles were matched to an elevation map of Singapore
(Moecker, 2014). The inclusion of the gradient resistance increased the total energy
consumption by only 0.9%.

Reasons why the impact of the gradient resistance was so low are that Singapore has
moderate elevation changes and that taxis predominantly start and end their shift at
the same location so that the resulting elevation change throughout the shift is neutral.

Due to its low impact it was decided to neglect the gradient resistance in the context
of Singapore. However, in case of cities with higher elevation changes this decision must
be carefully assessed.

Apart from estimating the power to drive the vehicle, the efficiencies of all com-
ponents of Figure 4.1 are taken into account as well. Among others, the components’
efficiencies depend on the power output. However, for simplicity all efficiencies of this
model were assumed to be constant. As it is very difficult to get specific values for
each vehicle type, only values for the Nissan Leaf were selected and applied to all other
vehicle types. Table 4.3 lists all chosen efficiencies.
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Table 4.3: Efficiencies of components

Component Symbol Efficiency Citation
Battery ηBat 97.1% (Genovese et al., 2015)
Converter ηConv 98% (Hayes et al., 2011)
Inverter ηInv 98% (Hayes et al., 2011)
Motor ηMotor 95% (Hayes et al., 2011)

Transmission ηTrans 97% (Hayes et al., 2011)

4.1.2 Speed-based approach
The purpose of the speed-based approach is to estimate how much energy needs to
be discharged from the battery to follow a given speed profile v (t) and its derivative,
the acceleration profile v̇ (t). First, it is calculated how much power would be required
to overcome the driving resistance of equation 4.1. Next, all component efficiencies
are taken into account to compute how much power would be needed to discharge
the battery in order to supply the inverter. Hereby, the power consumption of the air
conditioning system and all auxiliaries are included as well. During regenerative braking
(Pdrive (v (t) , v̇ (t)) < 0), it is calculated how much power would flow from the motor
to the inverter to supply other consumers and recharge the battery.

The total efficiency from the wheel to the battery is:

ηWheel−Bat = ηTrans · ηMotor · ηInv (4.5)

The power flow from the inverter to the air conditioning system and the auxiliary
consumers is:

P0 = PAC + Paux
ηConv

(4.6)

If power is required to drive the vehicle (Pdrive (v (t) , v̇ (t)) ≥ 0), the input power
to the inverter is:

PInv (v (t) , v̇ (t)) = Pdrive (v (t) , v̇ (t))
ηWheel−Bat

+ P0
ηInv

(4.7)

Otherwise, the power flow from the battery to the inverter is:

PInv (v (t) , v̇ (t)) = ηWheel−Bat · Pdrive (v (t) , v̇ (t)) + P0
ηInv

(4.8)

To calculate the battery power it must be distinguished if the battery is discharged
(PInv (t) ≥ 0) or charged (PInv (t) < 0). In case of discharging the power output must
be divided by the root of the battery efficiency, while during charging the power input
is multiplied by the root of the battery efficiency.

Pbat (v (t) , v̇ (t)) =


PInv(v(t),v̇(t))√

ηBat
if PInv (v (t) , v̇ (t)) ≥ 0

√
ηBat · PInv (v (t) , v̇ (t)) otherwise

(4.9)
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The battery efficiency is defined over one charging and discharging cycle, as only
either one or the other is taken into account by equation 4.9, the battery efficiency’s
square root is taken. Finally, the total energy consumption of the whole speed profile is
calculated by integrating the battery power:

Ebat =
∫
Pbat (v (t) , v̇ (t)) dt (4.10)

To validate this model, the energy consumption was simulated for two driving cycles:
the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Test
Driving Schedule (HWFET) (EPA, 2017). The simulation results were compared with
the measured values from (EPA, 2016). Air conditioning was not used during these
measurements, therefore PAC was set to zero. Table 4.4 gives an overview of the results
(measured values are shown in brackets):

Table 4.4: Energy consumption of driving cycles: simulated (measured)

BYD e6 Nissan Leaf SV
Energy consumption HWFET [Wh/km] 219 (225) 141 (145)
Deviation from measurements HWFET -2.7% -2.8%
Energy consumption UDDS [Wh/km] 189 (234) 118 (119)
Deviation from measurements UDDS -19.2% -0.8%

The in (EPA, 2016) measured energy consumption of the Kia Soul and Tesla Model S
was higher than 800Wh/km, which is unreasonable for electric cars. Thus, the simula-
tion results of these vehicles could not be validated.

The simulation results of the Nissan Leaf matched very well with the measurements
for both driving cycles. In case of the BYD e6, the simulated energy consumption
for the HWFET was similar to the measured value, whereby the simulation model sig-
nificantly underestimated the consumption of the UDDS compared to the measured
value. It is notable that the measured energy consumption of the BYD was higher for
the urban UDDS driving cycle (234Wh/km) than for the highway-based HWFET cycle
(225Wh/km) whereby the opposite trend appeared for the Nissan Leaf. Electric vehicles
are expected to be more energy efficient on urban driving cycles as lower speeds cause
lower driving resistances and regenerative braking is especially beneficial at stop-and-go
traffic conditions.

Nevertheless, it is difficult to assess whether this difference was caused by a meas-
urement error or if the BYD e6 is because of technical reasons less efficient at urban
driving cycles. However, since the deviation of all other values is low, it can be presumed
that the speed-based simulation model is capable of reproducing the energy consumption
with acceptable accuracy.

To analyse the energy demand of all vehicles with respect to driving profiles of
taxis in Singapore, the simulation model was applied to all speed profiles of the High
Frequency Data set (HFD). The simulated average energy consumption per vehicle is
listed in Table 4.5.

In contrast to the UDDS and HWFET cycle, air conditioning was included in the
simulation of HFD trips to generate more realistic results. As a consequence, the energy
consumption of the Nissan Leaf and BYD e6 was significantly higher than compared to
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Table 4.5: Simulated energy consumption on Singapore driving profiles

Vehicle Energy consumption [Wh/km]
BYD e6 236
EVA 160

Kia Soul EV 164
Nissan Leaf SV 162

Tesla Model S 70D 173

the UDDS cycle. The results also show that the vehicles with the lowest weights (EVA:
1,636 kg, Kia Soul: 1,644 kg, Nissan Leaf: 1,701 kg) had the lowest energy consumption.
The BYD e6 had clearly the highest energy consumption which was partly caused by its
high weight of 2,495 kg. However, comparing its energy consumption with that of the
2,286 kg Tesla Model S suggests that this is not the only reason why the BYD e6 performs
considerably worse. Its appreciably higher dynamometer coefficient A (Table 4.2) must
also be a result of a significantly higher rolling resistance.

4.1.3 Route-based approach
The route-based energy estimation is used to quantify the vehicle’s energy consumption
with respect to a set of street network sections and the pass-through speed v̄ of each
section. Thereby, the energy consumption of the route is calculated by cumulating the
energy consumption of each section. The energy per section is calculated with respect
to the average power P̄ (v̄) to pass-through the section and the section’s length l:

Ebat = P̄ (v̄) l
v̄

(4.11)

The average power consists of a weighted sum of the required power per driving
share (Kraschl-Hirschmann and Fellendorf, 2012) (driving shares were introduced in
Chapter 3.4.4):

P̄ (v̄) = fidle (v̄) ·Pidle (v̄)+fcruise (v̄) ·Pcruise (v̄)+facc (v̄) ·Pacc (v̄)+fdec (v̄) ·Pdec (v̄)
(4.12)

The share functions are defined by equations 3.7 - 3.10 whereby the fit parameter
of these functions were selected with respect to the section’s street type and the speed-
cluster (Chapter 3.4.2) associated with the time of the day when the section was passed
through. It would be possible to make a more detailed selection of the fit parameters
with respect to the section’s way ID or even choose parameters which were indipendnetly
fitted for each section. However, in order to limit the complexity of this estimation model
it was decided to work on the street type level.

The power per driving share is calculated with respect to equation 4.9:



CHAPTER 4. VEHICLE ENERGY MODEL 44

Pidle (v̄) = Pbat (0, 0) (4.13)
Pcruise (v̄) = Pbat (v̄, 0) (4.14)
Pacc (v̄) = Pbat (v̄, v̇acc) (4.15)
Pdec (v̄) = Pbat (v̄, v̇dec) (4.16)

With the idea that during idle the vehicle is not moving, hence speed and acceleration
is zero so that only the air conditioning and the auxiliary consumers withdraw power from
the battery. During cruise, the vehicle moves with constant speed so that the acceleration
power is zero. In case of the acceleration and deceleration share, it is assumed that the
vehicle accelerates with the constant acceleration v̇acc respectively v̇dec. The values of
these accelerations are calculated via equation 3.6. The fit parameters of this function
were again selected with respect to the section’s street type and speed-cluster.

This approach was validated by simulating the energy consumption of each vehicle
type for all trips of the HFD with respect to the map-matched sections of each trip.
Thereby, the simulated energy consumption of EVA was 150Wh/km which was 6.3%
lower than the simulated energy consumption by the speed-based approach. The root
mean square error of the energy consumption per trip was 25Wh/km.

One reason for the underestimation of the average energy consumption is that it is
assumed that the vehicle drives with constant speed through each section. This leads
to an underestimation of the road load power (equation 4.2) as it includes square and
cubic speed terms.

Apart from that, when comparing the results of these models, it must be kept in
mind, that even if the route-based approach is applied with the exact pass-through
speed derived from the speed profile, it uses average accelerations and driving shares of
all pass-throughs which were recorded at any section of the same street type. Thus, as
these statistics deviate from the speed profile which was simulated by the speed-based
approach, the estimated energy consumption deviates as well.

In order to reduce the estimation error, the correction factors of Table 4.6 were added
to the vehicle’s energy consumption. The standard deviation error of EVA was reduced
from 25Wh/km to 22Wh/km by applying the correction factor.

Table 4.6: Route-base energy consumption correction factors

Vehicle Correction [Wh/km]
BYD e6 21.9
EVA 10.2

Kia Soul EV 11.2
Nissan Leaf SV 11.4

Tesla Model S 70D 18.3

Apart from the application in this work, this approach could also be applied to
estimate emissions of conventional vehicles with respect to the extracted traffic statistics.
Instead of estimating the battery’s discharge power, it would be necessary to estimate
how much torque the internal combustion engine would have to deliver at which rotation
speed. The rotation speed could be derived from the vehicle’s speed and transmission
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ratio. Engine maps could be applied to estimate emissions with respect to torque and
rotation speed.

4.2 Charging model
The charging model is used to estimate how much energy can be recharged within a
given charging duration and how long it takes to reach a certain charging level. Thereby,
battery characteristics are taken into account. The nomenclature of this section is given
by Table 4.7.

Table 4.7: Nomenclature of charging model

Symbol Unit Description
α - open circuit voltage parameter
E J battery energy

Emax J maximum battery energy
e J energy of cell

emax J maximum cell energy
I A charging current
ki V open circuit voltage parameter
Np - number of parallel cell series
Ns - number of cells in one series
Ntotal - number of cells
P W charging power

Pmax W maximum charging power
Q As charge of battery

Qmax As maximum charge of battery
q As charge of cell

qmax As maximum charge of cell
R Ω battery resistance

SOC - state of charge
SOCCPend - SOC when CP charging ends

t s time
u V cell voltage

Umax V maximum battery voltage
Ut V terminal voltage
Uoc V battery open circuit voltage
uoc V cell open circuit voltage
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4.2.1 Charging curve
As an example, Figure 4.2 shows the simulated voltage, current, and charging power of
a 50 kWh battery with respect to time. This charging profile can be separated in two
parts: constant power (CP) and constant voltage (CV) charging (Chan, 2000).

Figure 4.2: Example of battery pack charging curve

The first 16 minutes the battery was charged with a constant power of 160 kW. As
the battery’s open circuit voltage (OCV) increases with higher State of Charge (SOC),
the terminal voltage supplied by the charger was increased as well. The OCV is the
battery’s voltage which would be measured if the battery was disconnected from any
circuit - no current flows in or out of the battery.

The CP phase ended when the maximum battery pack voltage of 450V was reached.
A further increase of the terminal voltage would harm the battery, thus as of this point
the terminal voltage was kept constant - CV charging started. As the SOC still increases
and therewith the OCV, the difference between the terminal voltage and the battery’s
OCV became smaller. A smaller voltage difference results in lower charging current and
further, in a decrease of the charging power.

The consequence of this characteristic is that a constant charging power can only
be presumed before the terminal voltage reaches the battery pack’s maximum voltage.
Thereafter, it must be considered that the charging power decreases gradually. To
reproduce this characteristic, the introduced charging model is capable of simulating the
battery’s energy content with respect to time for CP and CV charging.

4.2.2 Model and parameter
The used battery pack model to simulate the charging process is depicted in Figure 4.3.
The battery pack consists of Np parallel series of battery cells whereby each series
contains Ns cells. Battery cells are represented by resistances. It is assumed, that all
cells have the same SOC at any time. The battery pack is recharged by the charger
which supplies a current I with a terminal voltage Ut.
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Ut

I

Figure 4.3: Simplified battery pack model

As this model is applied to simulate the charging of batteries with different maximum
energy content Emax, the first step is to define the battery pack design - total number
of cells, number of series in parallel and number of cells per series. Therefore, the
energy content emax of one cell is calculated (lower case variables are associated with
cells whereby variables on battery pack level have capital letters). The OCV of a Li-ion
battery cell is estimated with following formula (Chen and Rincon-Mora, 2006):

uoc (SOC (t)) =
3∑
i=0

ki · SOC (t)i + k4 · exp (α · SOC (t)) (4.17)

The parameter values are listed in Table 4.8.

Table 4.8: Open circuit voltage parameter (Chen and Rincon-Mora, 2006)

Symbol Unit Value
k0 V 3.685
k1 V 0.2156
k2 V -0.1178
k3 V 0.3201
k4 V -1.031
α - -35

The SOC is defined as the ratio of the stored charge q over the maximum charge
qmax of one cell (which is assumed to be 40Ah):

SOC (t) = q (t)
qmax

(4.18)

Thus, equation 4.17 can also be written as:

uoc (q) =
3∑
i=0

ki ·
(

q

qmax

)i
+ k4 · exp

(
α · q

qmax

)
(4.19)
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The amount of energy e (q) which is stored in a battery cell can be calculated with
respect to the OCV and the charge q of the cell:

e (q) =
∫ q

0
uoc

(
q′
)

dq′ (4.20)

⇐⇒ e (q) =
3∑
i=0

1
i+ 1ki

qi+1

qimax
+ 1
α
k4qmax

(
exp

(
α

q

qmax

)
− 1

)
(4.21)

Thus, the maximum amount of energy which can be stored in one cell is:

emax = e (qmax) = qmax

( 3∑
i=0

1
i+ 1ki + 1

α
k4 (exp (α)− 1)

)
(4.22)

Therefore, the total number of cells can be calculated by:

Ntotal = Emax
emax

(4.23)

Next, Np and Ns must be calculated. Hereby, it is assumed that the battery pack
is designed for a maximum voltage Umax of 450V. As the voltage of a battery pack
is defined by the sum of the voltage of all cells in series, Ns and Np are calculated as
follows:

Ns = Umax
u (SOC = 1) (4.24)

Np =
⌈
Ntotal

Ns

⌉
(4.25)

As a battery pack with a non-integer number of parallel series does not make sense,
Np is rounded up to the next higher integer. Therefore, Ns must be adjusted:

Ns = Ntotal

Np
(4.26)

In case of Ns it is for simplicity reasons neglected that it is a non-integer number
since Ns is much higher than Np due to the low maximum cell voltage of 4.1 V compared
to the maximum pack voltage of 450V. Thus, the battery pack’s OCV is:

Uoc (SOC) = Nsuoc (SOC) (4.27)

4.2.3 Charging process
Next, it is derived how the total amount of energy E (t) changes with respect to time
during CP charging. Therefore, equations 4.23, 4.21, and 4.18 are combined:

E (t) = Ntotal · e (t) = Ntotal · e (q (t)) = Ntotal · e (qmax · SOC (t)) (4.28)

Hence, to calculate E (t) it is necessary to know how the SOC changes with respect
to time. Therefore, it is used that current is the derivative of charge with respect to
time:
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I (SOC (t)) = dQ (t)
dt = Qmax

dSOC (t)
dt (4.29)

The battery pack’s maximum charge Qmax depends on the number of cell series in
parallel Np and the maximum charge of one cell qmax:

Qmax = Np · qmax (4.30)

The charging current is derived from the equations for the terminal voltage Ut (SOC)
and the charging power P (SOC) (Marra et al., 2012):

Ut (SOC (t)) = Uoc (SOC (t)) +R · I (SOC (t)) (4.31)
P (SOC (t)) = Ut (SOC (t)) · I (SOC (t)) (4.32)

where R is the total resistance of the battery pack. Combining equations 4.31 and
4.32 leads to:

P (SOC (t)) = (Uoc (SOC (t)) +R · I (SOC (t))) · I (SOC (t)) (4.33)

⇒ I (SOC (t)) = −Uoc (SOC (t)) +
√
U2
oc (SOC (t)) + 4 ·R · P (SOC (t))

2 ·R (4.34)

as the charging power P during CP charging is constant, its dependency on the SOC
can be removed:

I (SOC (t)) = −Uoc (SOC (t)) +
√
U2
oc (SOC (t)) + 4 ·R · P

2 ·R (4.35)

The resistance R is quantified by taking into account that CP charging ends once
the terminal voltage reaches to maximum battery pack voltage Uoc (SOC = 1), thereby
the considered charging power is the maximum power Pmax the battery pack is designed
to be charged with:

Uoc (SOC = 1) = Uoc (SOCCP end) +R · I (SOCCP end) (4.36)

by inserting equation 4.32 follows:

R = Uoc (SOC = 1) · Uoc (SOC = 1)− Uoc (SOCCP end)
Pmax

(4.37)

Most car manufacturers quantify the fast charging capability of their vehicle by giving
the charging duration until a SOC of 80% is reached. Therefore, SOCCP end is set to
this value. By inserting equation 4.35 and 4.30 into 4.29, results in following differential
equation:

dSOC (t)
dt = −Uoc (SOC (t)) +

√
U2
oc (SOC (t)) + 4 ·R · P

2 ·Np · qmax ·R
(4.38)

which is a first order non-linear differential equation. This equation was numeric-
ally solved with the explicit Runge-Kutta (4,5) algorithm (Dormand and Prince, 1980;
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Shampine and Reichelt, 1997). The battery’s energy content during CP charging was
then calculated via equation 4.28.

During CV charging, the terminal voltage (equation 4.31) is set to the battery’s
maximum voltage Uoc (SOC = 1). Hence, the charging current is:

I (SOC (t)) = Uoc (SOC = 1)− Uoc (SOC (t))
R

(4.39)

Thus, the differential equation for the SOC is:

dSOC (t)
dt = Uoc (SOC = 1)− Uoc (SOC (t))

Np · qmax ·R
(4.40)

and was again solved with the Runge-Kutta (4,5) algorithm.

Figure 4.4: Charging energy with respect to time

The calculated battery and recharge energy with respect to time for a 50 kWh battery
and a charging power of 160 kW during CP charging is shown in Figure 4.4. “Battery
energy” refers to the amount of energy which was stored in the battery, whereby “re-
charge energy” is the the energy output of the charger. The difference between these
lines is caused by the battery resistance.

The simulated charging process started with a completely empty battery, during
CP charging, the amount of energy increased linearly. This phase ended after 16min
when the terminal voltage reached its maximum and CV charging started. During CV
charging, the charging power was continuously reduced which flattened the curves.

This charging model was integrated in the driving profile simulation (Chapter 5). In
order to improve the computation time, it was avoided to solve the differential equations
4.38 and 4.40 for each simulated charging event. Instead, lookup-tables were created
for the calculated recharge energy curves. The lookup-tables used linear interpolation
to estimate the amount of recharged energy with respect to the battery energy content
and the charging time as well as the required charging time with respect to a targeted
energy amount at the end of the charging process.



Chapter 5

Driving profile simulation

This chapter introduces the driving profile simulation model (Sellmair and Schelo, 2018).
With respect to the statistics derived in Chapter 3, this model is capable of reproducing
driving profiles of taxi drivers with conventional vehicles. Furthermore, the integrated
charging behaviour model allows to simulate electric taxis subject to the taxis’ vehicle
type and the charging infrastructure design. Based on the simulation results, the charging
demand of an electric taxi fleet is derived and used as an essential input for the charging
infrastructure optimisation presented in Chapter 7.

This chapter is structured as follows: First Chapter 5.1 gives a literature review
over approaches to simulate driving profiles of electric taxis. The basic concept of the
agent-based approach which was chosen for this work is introduced in Chapter 5.2.

All actions which the agents can execute are explained in Chapter 5.3. Next,
Chapter 5.4 and Chapter 5.5 present the shift schedule pool and the trip generator.
The shift schedule pool assigns shift schedules to the agents in order to ensure that
their activity patterns correlate with that of real taxis while the trip generator assigns
trips to the agents which they have to execute next. Following, Chapter 5.6 introduces
the concept of the agent memory which individually records key values of all actions
each agent executed. The behaviour models, which decide which action the agents have
to execute next are explained in Chapter 5.7.

The chapter concludes with a validation for the simulation of conventional taxis
in Chapter 5.8 and a discussion of case studies to highlight certain properties of the
simulation model in Chapter 5.9.

5.1 Literature review
There are several papers which introduced agent-based electric taxi simulation models
already. All these papers followed a demand-based approach, which means that the
demand for taxis was used as input and an agent-based model was applied to simulate
driving profiles of electric taxis supplying that demand. The demand was either derived
from real data or synthesised and the taxi agents were travelling on a street network
which was either taken from an existing city or synthesised as well. The mentioned papers
mainly differ with regards to the introduced dispatch strategies, scenario definitions, and
the criteria to assess the performance of an electric taxi fleet.

In (Lee et al., 2014), taxis were ordered to return to a charging facility after each
engaged trip to recharge the battery and wait for the next job. The assignment of

51
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the charging facility depended on the taxi’s location, battery energy level, and expected
demand at the charging facility. The simulated scenario was based on the currently
existing charging infrastructure in Jeju city. The authors analysed how often electric
taxis would have to recharge for the given scenario.

The strategy, that taxis had to return to taxi stands for recharging was also applied in
(Bischoff and Maciejewski, 2014). However, in their implementation taxis only needed
to return if there was no current customer request or the battery energy level was
too low. Customer requests were matched to the nearest waiting taxi with sufficient
battery energy level. The paper presented scenarios with different numbers of charging
stations, different dispatching strategies, and different demand. The customer waiting
time, number of taxis which were simultaneously charging and the taxis’ mileage of these
scenarios was analysed.

Apart from electric taxis, (Jung et al., 2012) also investigated the concept of taxi
sharing. Hence, their proposed dispatching algorithm did not only include the scheduling
of customer requests and charging events but also the altering of routes in order to serve
different customer requests by the same taxi at the same time. They analysed the number
of completed customer requests, average customer waiting time, and taxi mileage with
respect to different charging types (battery swapping and fast charging). Furthermore,
the effect of different share detour ratios were analysed. This ratio defines the distance
that a taxi is allowed to extend its initial route to pick up another group of customers.

The dispatching strategy in (Lu et al., 2012) took the battery energy level, expected
demand, and availability of charging stations at the requested destination into account
to match customer requests with available taxis. This strategy was compared with
a random matching of requests with taxis. Furthermore, battery swapping and fast
charging concepts were considered in this approach as well. The authors assessed the
performance of electric taxis via waiting time per charging event and number of executed
trips.

In contrast to the above mentioned papers, (Gacias and Meunier, 2015) not only
took booking requests (customers send a request with pickup and drop off location) into
account, but also street hailings (customers flag down taxis passing by). The introduced
dispatch strategy combined the scheduling of all customer trips with the recharging of
taxis. Moreover, different charging station placement methods were presented and their
performance with respect to the number of executed trips, number of fulfilled bookings,
percentage of available taxis, and percentage of taxis which were waiting to be charged
was assessed.

An advantage of demand-based approaches is that it is easy to asses if the same
number of electric taxis is able to serve the demand as conventional taxis or how many
more electric taxis would be required. Furthermore, by analysing customer waiting times,
it is also possible to quantify the effect of electric taxis on the customers’ experience and
satisfaction. Moreover, it is possible to quantify these criteria for a changing demand in
the future.

However, one of the biggest challenges of the demand-based approach is that it
is very difficult to accurately quantify the spatial-temporal demand for taxis. Hereby,
demand generated by bookings as well as street hailings must be taken into consideration.
The booking demand is recorded by taxi operators or third party taxi booking service
providers. However, booking requests of a whole city are typically divided among several
competitors, which makes it difficult to get access to the complete data set.
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The street hailing demand can be extracted from taxi driving profiles. Unfortunately,
this data set only contains the demand that was met, customers who waited for taxis
until they resigned and took another mode of transport would not be included (the street
hailing demand in Gacias and Meunier (2015) was synthesised and not derived from real
data).

Another aspect the introduced approaches did not take into account is respecting
driver individual activity patterns. Instead, it was assumed that taxis are active through-
out the whole day or that the whole fleet follows the same activity pattern. Considering
individual activity patterns is especially important when taxi drivers are self-employed
and are free to decide when to work. This accounts for Singapore.

5.2 Approach and model design
In this thesis, the chosen approach to simulate driving profiles of electric taxi agents
is a supply-based approach. Here, the basic idea is to reproduce the driving profiles of
conventional taxis as close as possible and to make changes only when the simulated
agent needs to recharge. The statistical background of this model consists of engaged
trips, search trips, and shift schedules which were extracted in Chapter 3.

All these extracted trips and shift schedules represent the behaviour of taxi drivers
with conventional vehicles. To model an electric taxi fleet, the following hypothesis
was defined: drivers of electric taxis mimic the behaviour of conventional taxi drivers as
close as possible. Meaning, they start and end their shifts at the same time, and have
breaks at the same time of the day and location with equal duration as conventional
taxi drivers. Additionally, their search strategies to find the next customer are identical.
Their behaviour only deviates from that of conventional taxi drivers when their vehicle’s
battery energy level is low and they have to extend their breaks or add breaks to recharge
the battery.

Based on this hypothesis, an agent-based simulation model was designed in a two-
step process: First, a conventional taxi model was developed which was then calibrated
and validated based on the recorded data. In the second step, the model was expanded
with electric vehicle models, a charging infrastructure, and a charging behaviour model.

This simulation is a discrete event simulation, meaning that agents are executing
actions one at a time. As these actions have different durations, each agent has a
different simulation time while running a scenario. The simulation time is the time
which progresses within the simulated scenario, it must not be confused with the time
to perform the computational process.

A high-level representation of the model’s architecture and processes can be seen
in Figure 5.1. The controller handles the overall sequence of all simulation steps from
initialisation to execution until termination. During the initialisation, each agent gets
a set of shift schedules which exclusively originated from the driving profiles of one
recorded taxi. The first schedule to be executed is randomly selected from that set. The
initial spatio-temporal state of each agent is then set according to the location and time
information taken from the respective shift schedule. This initial state of the physical
world is then altered in an iterative process.

This process is illustrated by the following layers that are handled in sequence:

Physical layer: The physical layer describes the current state of the physical world in
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Figure 5.1: Model design (Sellmair and Schelo, 2018)

the model for each agent and charging station. It includes the street network
(introduced in Chapter 2.5) where the location of each agent and charging station
is represented by the corresponding street network node ID1. Furthermore, this
layer consists of the vehicle energy model (Chapter 4).

Mental layer: At the mental layer, information from the physical layer is taken into
account for the decision process that defines the next action. Based on its standstill
behaviour model the agent decides whether or not it should take a scheduled break
or make a shift change. The charging behaviour model decides when and where to
charge the vehicle’s battery by taking into account the agent’s experience stored
in the agent memory.

Execution layer: At the execution layer all actions are executed by changing the current
state of the physical layer. Therefore, the agent handler selects one agent at
a time and hands it over to the mobility simulation for the next action. The

1in reality charging stations cannot be placed at intersections, for simplicity this fact is neglected
and it is assumed that the effect of placing charging stations at street segments instead is not significant
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characteristic that during the simulation each agent has a different simulation
time becomes important whenever agents are interacting with each other. The
only interaction between agents in this model occurs when agents queue to use a
charging station. In order to calculate how long each agent has to wait until it
can use a charging station, it must be known what all other agents did at that
time. To have that information, the agent handler always chooses the agent with
the lowest simulation time to be handled next.

The simulation is terminated by the controller once each agent’s simulation time ex-
ceeded the defined simulation duration. Due to the random assignment of trips and shift
schedules, several simulated days are required until the average values of the simulation
results converge. The convergence also depends on the number of simulated taxis - the
more taxis are simulated, the fewer days are necessary. Simulation durations of 8 to 60
days have proven to sufficiently reduce statistical fluctuations.

The definition of the simulated scenarios and all executed actions are recorded in
log files and imported to a database. The design of this database is introduced in
Appendix D. The model’s class diagram is presented in Appendix E.

In contrast to the demand-based approach, the data requirement of the supply-
based approach is less ambitious since only tracking data, including the taxi’s status of
a representative sample of the whole taxi fleet is required. The assignment of recorded
trips with respect to time and space automatically takes real traffic conditions into
account. Furthermore, the vehicle energy model (Chapter 4) is applied to make realistic
energy consumption estimations of the agents’ trips. Additionally, it is possible to predict
revenue of electric taxis by summing up the recorded revenue of all executed trips.

5.3 Actions
The agent handler selects the next agent which has to execute an action with respect to
the agent’s simulation time. Which action this agent executes is decided by the agent’s
behaviour models. An overview of all actions is given in Figure 5.2. Flow diagrams
describing the functional design of each action are presented in Appendix F.

Change 
Action

Active
Scheduled 

Break
Shift Change

Out of 
Charge

Charging 
Break

Figure 5.2: Actions agents can execute

Change Action: Change action is a transition action which is called after every other
action. During this action the standstill and charging behaviour model decide
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which action must be executed next. This decision is made with respect to the
current time, the shift schedule, and the battery’s state of energy (SOE). If the next
action contains a standstill period (which is the case for the actions: scheduled
break, charging break, shift change, and out of charge) a trip is generated and
executed to the respective location.

Active: After change action, active is the most frequently executed action. This action
reproduces the taxi driver’s procedure of searching for a customer and transporting
him or her to the requested destination. Therefore, search and engaged trips are
sampled by the trip generator with respect to the agent’s simulation time and
location. These trips are executed if the battery’s SOE is sufficient, otherwise the
agent switches back to change action directly.

Scheduled Break: During the scheduled break action, the agent is executing breaks
which are included in the shift schedule. If the charging behaviour model requires
the agent to recharge during the break, the agent would have to queue in case all
charging stations are in use at the time of arrival. Thus, due to waiting times and
the following charging process the agent may have to exceed the scheduled break
duration.

Charging Break: In contrast, the charging break action is exclusively used to recharge
the battery. The agent exits this action once its battery has reached the SOE
required by the charging behaviour model.

Shift Change: Other than the break actions, for shift change the agent must come
to the location which is defined in the shift schedule. During the shift change
action the agent waits until the shift change duration is over and gets a new
shift schedule2 randomly assigned by the shift schedule pool with respect to the
time and location. If there is a charging station at the shift change location, the
battery is recharged as well (charging during the shift change is denoted as home
charging).

Out of Charge: This action handles the case if the agent ran out of energy and cannot
reach any charging station. In this case, the agent is moved to the closest charging
station and has to wait there without charging until a time penalty of two hours
is over. This penalty takes the loss of time caused by towing the car into account.
The charging behaviour model was designed to minimise the occurrence of this
case. Among the analysed scenarios of this work, more than 1,700 simulation days
on average were necessary until this case occurred once per taxi. Although this
case occurred very rarely it is important to handle it, otherwise the simulation
model could be stuck in an infinite loop.

There are two ways of charging: public charging and home charging. Public charging
is executed at scheduled breaks and charging breaks whereby all charging stations are
accessible by every agent. This causes waiting times if all charging stations are in use
when an agent arrives. Due to the short duration of these breaks, only charging stations
with at least 40 kW charging power are considered for public charging.

2the new shift schedule must have been derived from the same recorded taxi as the previous schedule
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Home charging is an additional option which can only be made during shift changes.
In this case it is assumed that one charging station is installed at each agent’s most
common shift change location. Each charging station is considered as private and can
only be used by one specific agent. Since shift changes are much longer than breaks,
the charging power of these stations is set to 6 kW in order to reduce costs.

The actions are designed to mimic the behaviour of real taxi drivers in great detail.
The sampling of search trips during the active action allows to reproduce the drivers’
search strategies. Furthermore, as the trips are sampled with respect to the agent’s sim-
ulation time and location, the temporal-spatial demand for taxis is indirectly respected
as well. For example, if the agent is currently in an area with low demand, it is very likely
that the sampled search trip will be longer than average. Moreover, since the agents are
following the sampled trips’ speed profiles, real traffic conditions are taken into account
as well.

Another important aspect is that the actions are designed to respect real drivers’
activity patterns by following the shift schedules. Thus, agents will have breaks and shift
changes at the same time and place as the real taxi driver from whose driving profiles
the shift schedule was derived from. As a result, the pattern that the lowest share of
the taxi fleet is active in the night while during peak hours the highest share of the fleet
is active (compare Figure 3.2) is reproduced by the simulation as well.

The design of this model allows a fair comparison between conventional and electric
taxis. Electric taxi agents have to follow exactly the same shift schedules as conventional
taxis. Hence, key values like average mileage or revenue per day of electric taxis cannot
exceed those of conventional taxis. Additionally, electric taxi agents have to respect the
constraint of not running out of charge. Therefore, charging events have to be included
in scheduled breaks and (if home charging is enabled) in shift changes. If these events
cannot be executed within the scheduled time or if the agent has to include additional
charging breaks, it will loose time. The same accounts for additional detours electric
taxi agents may have to make to reach the next charging station.

Thus, simulated driving profiles of electric taxis are very similar to those of conven-
tional taxis as long as detours, waiting times for available charging stations, and charging
times are low. The stronger the impact of these factors becomes, the more electric taxi
driving profiles will deviate and the lower their revenue will be.

5.4 Shift schedule pool
All shift schedules which originated from the same taxi of the recorded data set were
combined to one shift schedule set. At the initialisation of the simulation the shift
schedule pool assigns shift schedule sets to agents whereby each set can only be assigned
to one agent. The first shift schedule which the agent has to follow is randomly sampled
from this set. Whenever the agent completes its shift schedule, the shift schedule pool
assigns another schedule from the agent’s shift schedule set. Thereby, the new shift
schedule must fulfil following conditions:

Temporal condition: The end of the shift change of the previous shift must not be
further apart than 30min from the start of the new shift.

Spatial condition: The start location of the new shift must not be more than 200m
(driving distance on street network) away from the end location of the previous
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shift.

Shifts which fulfil both conditions are considered as connected. The temporal condition
is essential to ensure that the shift change durations are respected, e.g. it does not
make sense to connect a shift which starts at 18:00 to a shift which shift change ended
at 5:00. Additionally, it is also important to take spatial considerations into account,
e.g. it could have happened that the driver brought the car to service and collected
it afterwards. Assuming that the standstill time was longer than two hours, this event
would have been considered as shift change. It is expectable that the following shift was
different than a shift starting from the driver’s home. Therefore, these two shifts should
be executed in this order, which is most likely ensured by respecting the temporal and
spatial condition.

To apply these conditions it must first be ensured that there is at least one shift
connected to another and it must be avoided that only a subset of the whole set of shift
schedules can be used. This problem is illustrated by a simplified shift schedule set in
Figure 5.3.

1 2 3 4 5 6 7

Figure 5.3: Connected shift schedule set

Each shift is represented by one block whereby the arrows show which shifts are
connected with each other. As all shifts were recorded in sequence, one shift is always
connected with its consecutive shift. Additionally, it is also possible that shifts are
connected with other shifts, e.g. this is the case for shift 3 and shift 1.

By checking the shifts’ connections it is notable that shift 7 is not connected with
any other shift. Hence, if the agent executed this shift schedule it would not be possible
to assign any following shift schedule. In order to rule this case out, shift 7 would be
removed from the shift schedule set.

Another problem of this shift schedule set is that once shift 5 was selected, the
algorithm could only assign the subset of shift 5 and shift 6, all other shifts are not
reachable any more. To prevent this case, shift 5 and 6 would have been removed from
the shift schedule set as well. The criteria for removing subsets is that shifts are removed
as long as there is no sequence of shifts connecting the last shift of the set with the
set’s first shift. Thus, shift 4 would not be removed since shift 1 can be reached via
shift 2 and shift 3.

An important aspect when removing shifts from the set is that the representativeness
of the remaining set must not be affected. Hence, this approach is only viable if only a
small percentage of all shifts is removed.

Furthermore, it was required that after the removal, each shift schedule set must
contain at least ten shift schedules. This criteria was not fulfilled by 24 taxis so that the
maximum number of taxis which can be simulated was reduced to 2,949. In total there
were 159,805 shifts extracted from these taxis, whereby after the removal 149,960 shifts
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remained. Which means that a moderate share of 6.2% of all shifts was removed. It is
assumed that this reduction did not harm the representativeness.

The reason why only a small percentage of shifts had to be removed is that the shifts
are well connected with each other. As an example, Figure 5.4 shows the connectivity
matrix of one shift schedule set consisting of 52 shifts in total.

Figure 5.4: Shift connectivity matrix

Each row of this matrix represents one shift, if column j of row i is black then shift
i is connected with shift j. The average number of connections per shift was 11.3. The
diagonal from the bottom left to the top right shows that consecutive shifts are always
connected with each other. Since shift 52 was connected with shift 1, there was at
least one sequence of shifts connecting each shift with any other shift. Hence, it is not
possible that the agent gets stuck into a subset of shifts.

After the pre-processing of the shift schedule sets, another important question is
how to make a representative selection of these sets if fewer than the maximum number
of taxis shall be simulated. Since there is a big variance in the average daily mileage of
the recorded taxis (compare Figure 3.7) a random selection could especially for a small
number of agents mean that key values of this subset could significantly differ from the
average over the whole fleet. To handle this issue, each shift schedule set got features
which were calculated by averaging the following values over all shifts:

– shift duration a1

– number of shifts per day a2

– break duration a3

– number of breaks per day a4

The average values of these features over the whole shift schedule set are listed in
Table 5.1.
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Table 5.1: Averages and standard deviation of features over all shift schedule sets

Feature Average Standard deviation
Shift duration [min] 309 132

Number of shifts per day 2.33 0.767
Break duration [min] 28.5 6.74

Number of breaks per day 4.45 2.35

A sample of shift schedule sets is characterised by the average µ1−4 and standard
deviation σ1−4 over each shift schedule set’s features a1−4. These values are com-
pared with the averages µ̄1−4 and standard deviations σ̄1−4 over all shift schedule sets.
Following formula is used to quantify the overall deviation δ:

δ =
4∑
i=1

(
µi
µ̄i
− 1

)2
+

4∑
i=1

(
σi
σ̄i
− 1

)2
(5.1)

To start the selection of sets, δ was calculated for each pair of shift schedule sets,
while the pair with the lowest δ was selected. Next, every combination of the selected
pair with any other shift schedule set was evaluated and the shift schedule set with the
lowest resulting δ was added to the selection. This procedure was repeated until all shift
schedule sets were added. The shift schedule pool uses this order of shift schedule sets
to assign sets to a given number of agents.

A comparison between the selected shift schedule sets and the whole shift schedule
set regarding the differences of averages (µi − µ̄i) and standard deviations (σi − σ̄i) for
10, 100, and 1,000 selected sets is shown in Table 5.2.

Table 5.2: Difference of average and standard deviation (STD) between selected shift
schedule sets and all shift schedule sets

Number of sets 10 100 1,000
Average shift duration [min] 10.10 0.50 0.04

Average shifts per day 32.89 · 10−3 6.74 · 10−3 −0.09 · 10−3

Average break duration [min] −57.15 · 10−3 74.12 · 10−3 1.94 · 10−3

Average breaks per day 52.11 · 10−3 7.83 · 10−3 1.58 · 10−3

STD shift duration [min] -2.81 -0.02 -0.06
STD shifts per day 7.58 · 10−3 −0.73 · 10−3 −0.17 · 10−3

STD break duration [min] −105.6 · 10−3 2.60 · 10−3 0.09 · 10−3

STD breaks per day −24.52 · 10−3 −7.87 · 10−3 0.66 · 10−3

As expected, the differences decreased with the number of selected sets. For 10 sets
the relative difference per feature was between -2.1% and 3.3%, whereby the differences
for 1,000 sets were less than ±0.1%. The relative differences of each feature among a
selection of shift schedule sets is around even, which means that no feature is consider-
able worse represented than others. Taking into account that 10 sets are only 0.3% of
the whole set of shift schedules, the found differences are moderate. Hence, it can be



CHAPTER 5. DRIVING PROFILE SIMULATION 61

expected that also a small number of agents can represent the variety of all taxi driving
profiles on an acceptable level.

5.5 Trip generator
The trip generator has two tasks: it has to synthesise trips from an origin to a destination
street network node and it has to sample search and engaged trips from the High
Frequency Data set (HFD) (introduced in Chapter 3.1). Approximately 81% of the
agents’ simulated mileage origins from sampled trips.

Most of the search trips and all engaged trips are sampled. The sampling of trips
has the advantage that the agents are following exactly the same route (set of street
network sections) and speed profiles of a real taxi. However, if the agent has to arrive at
a specific destination, which is the case to execute scheduled break, charging break, and
shift change actions, it is very unlikely that a recorded trip can be found which started
at the agent’s current location and ended at the required destination. For this purpose
trips are synthesised.

5.5.1 Trip synthetisation
The required input to synthesise trips is the time when the trip starts and the origin’s
and destination’s street network node ID. The A* algorithm (Moeller, 2014) is used
to find the fastest route connecting these nodes. To assign the trip’s duration, pass-
through speeds are randomly sampled with respect to speed distributions (Chapter 3.4.2
equation 3.5) associated to the sections’ street type and the speed-cluster chosen with
respect to the trips’ start time. The speed distribution functions allow to generate an
average speed value for each section with respect to a random number r between zero
and one (the higher the number the higher the speed).

The two most obvious options to generate r are:

Option 1: generate a random number for each section individually

Option 2: generate one random number which is applied for all sections

The main criteria to assess which of these options is better applicable is whether the
driving through one section can be seen as an independent event or if the pass-through
speed depends on speeds which occurred at previous sections. Since the average length
of one section is 132m there must be a correlation between the speeds of two consecutive
sections, e.g. if the vehicle drove with very low speed of 10 km/h through one section it
could not reach a pass-through speed of 80 km/h at the following section. Thus, using
independent random numbers for each section would result in unreasonable high speed
fluctuations.

Moreover, it must be kept in mind that a trip with the length of 10 km consists of
76 sections on average. Hence, 76 random numbers would be generated to simulate the
trip’s average speed. Due to the law of great numbers it must be expected that high and
low pass-through speeds will balance out so that the average speed of all synthesised
trips will be very similar. This does not agree with the observed speed distribution of
the recorded trips.
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On the other hand, Option 2 means that if a low random number was generated the
agent drives through each section with disproportionately low speed3. Low values of r
could be associated with traffic jams, however it is unlikely that a vehicle got stuck in
a traffic jam at each street it passed through. Therefore, Option 2 is also not an ideal
solution.

Nevertheless, it is chosen in this work, as it is considered to be more realistic than
Option 1. In order to avoid that the agent drove with unreasonable low or high speed
through each section, the range of r was reduced to be between 0.33 and 0.93. This
means that the lowest speed which can be assigned as pass-through speed must not be
lower than the 33rd percentile of all recorded speeds of the respective sections’ street
type and the highest possible speed must not exceed the 93rd percentile.

To validate the speed assignment, 10,000 trips were randomly sampled from the
HFD. The routes and the time of the day of these trips were given to the trip generator
as input to apply the introduced method of assigning pass-through speeds to each
section. Due to the random speed assignment, it cannot be expected that the resulting
average speed of each trip would be similar to the original trip. However, in order to
simulate realistic driving behaviours, it is necessary to reproduce similar distributions of
the average speeds per trip. A comparison of these distributions is depicted in Figure 5.5.

Figure 5.5: Distribution of recorded and simulated average speed per trip

The average speed of the recorded trips was 27.1 km/h with a standard deviation of
15.8 km/h. The range of the random variable r (0.33 to 0.93) was adjusted in order to
reproduce this distribution. The resulting average speed distribution of the simulated
trips had an average value of 26.6 km/h and a standard deviation of 16.5 km/h.

Interestingly, the range of r was asymmetrically reduced - 33% of the lowest speeds
were neglected while only 7% of the highest speed values cannot be chosen. A reason
for that could be that the derived speed distributions overestimated the probability of
low speeds. It was discussed in Chapter 3.4.2 that 0.7 to 0.9% of the extracted pass-

3as speed distribution functions are selected with respect to the sections’ street type not necessarily
every section would be passed through with the same speed
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through speeds had a value of 0 km/h. Possibly, low speeds greater than zero were also
overrepresented in the data which could have caused the overestimation of low speeds
by the fitted speed distribution functions. A reason for the overrepresentation of low
speeds could be measurement and map-matching errors.

The trip generator’s synthesised trips are given to the route-based energy consump-
tion model (Chapter 4.1.3) to estimate the required amount of energy to execute these
trips with an electric vehicle.

5.5.2 Trip sampling
The procedure of generating search and engaged trips during the active action is shown
in Figure 5.6.

Select Instant 
Pickup Trip

Previous 
Action Active?

Yes
Instant 

Pickup Trip after 
last Trip?

Yes

Sample Search and 
Engaged Trip

Sample Search Trip 
Distance

No

Sample Engaged 
Trip

Synthesise Search 
Trip

No

Figure 5.6: Generation of trips within active action

First it is checked whether the last action 4 was active or if an action with a standstill
period (scheduled break, charging break, or shift change) was executed. If the last action
was active, it is further checked if an instant pickup trip is connected to the last executed
engaged trip. Instant pickup trips are engaged trips which immediately followed after
another engaged trip without a search trip in between (10.6% of all engaged trips are
instant pickup trips). If there is an instant pickup trip, this trip is assigned to the agent
as the next engaged trip and no search trip is generated. It is important to handle this
case, otherwise the agents would always have to execute a search trip and loose more
time for searching than real taxis. Consequently, their generated revenue would be less.

If no instant pickup trip is connected to the last engaged trip, a search trip which
is not farther away than 200m (driving distance on street network) from the agent’s
location is sampled with respect to the current time of day. The sampling of the engaged
trip is done in the same way, whereby its start node must not be farther away than
200m from the end node of the sampled search trip. If necessary, trips are synthesised
to connect the agent with the search trip and the search trip with the engaged trip.

4excluding change action which is called after each other action
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If the previous action was not active, a search trip is sampled in the same way as
above. The driving distance of this trip is denoted as dST . In contrast to the previous
method, this trip will not be assigned to the agent. Instead, the driving distance dk from
the agent’s current location to the start location of any engaged trip k is calculated.
The difference of the driving distance to reach the start location and the sampled search
distance dST is calculated for each engaged trip. All engaged trips which difference is
below the tolerance δ of 250m are selected:

|dk − dST | ≤ δ (5.2)

If no engaged trip is found, δ is doubled as long as at least one trip is found. In case
that more than one engaged trip is found, one among these trips is sampled with respect
to the time of the day. Finally, the assigned search trip is synthesised by connecting the
agent’s location with the start node of the sampled engaged trip.

The difference between method 1 of sampling a search trip (after active action)
and method 2 of synthesising a search trip (after a standstill action) is that method 1
assigns search trips that are more realistic as they were derived from real data and
that the computation time is lower. However, the variety of selectable engaged trips is
larger when applying method 2. As agents usually have standstill periods at a relatively
small number of locations, this drawback could become critical and may cause agents
to repeat the same sequence of trips many times. Thus, less realistic trips and higher
computation time is accepted by applying method 2 after standstill periods, while the
benefits of method 1 are exploited after active actions. The energy consumption of all
sampled trips is estimated via the speed-based energy model introduced in Chapter 4.1.2.

A test scenario was defined and simulated in order to analyse whether the trip
generator is capable of sampling a big variety of different trips instead of frequently
assigning the same sequence of trips. This scenario consisted of 200 agents which all
had to make their shift change at the same location. Hence, every agent started its
shift on the same street network node. To assess the variety of generated trips, it was
evaluated how many different engaged trips were sampled at the kth trip of each shift.
The results are illustrated in Figure 5.7.

The number of unique trips is shown by the blue dots while the red dots represent
how many shifts consisted of at least k engaged trips. As each shift contained at least
one engaged trip, this value is shown by the red dot for the first trip. Each shift had a
duration of several hours, hence the number of shifts remained almost constant for the
next seven trips. Afterwards, more and more agents reached the end of the scheduled
shift duration and consequently did not execute any further trips. Thus the number of
shifts decreased rapidly between 7 and 20 trips. The highest number of trips per shift
was 31.

In total 751 different engaged trips were sampled at the first trip of all shifts (blue
dot). Which is quite a high number considering that each agent started from exactly
the same location and that a strict spatial constraint was applied for the sampling. The
number of unique trips increased to 3,322 and 6,463 for the second, respectively third
trip of each shift and reached its maximum of 9,065 for the sixth trip. Afterwards, the
number of unique trips decreased which was caused by the decreased number of shifts.

Nevertheless, the percentage of unique trips at the kth trip of each shift (purple
dots) still increased thereafter and eventually reached 100%, meaning that at this point
every sampled trip was different. The decrease of the percentage from the 23rd until
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Figure 5.7: Number and percentage of unique engaged trips for kth trip of shift

the 29th trip was most likely caused by the low number of remaining shifts when even
a small number of agents executing the same sequence of trips had a significant effect
on the overall percentage.

A very important aspect which can be derived from these curves is that after the first
time when the sampling of search trips (method 1) was applied to generate the second
trip of each shift, the number of unique trips increased by a factor of 4.4. Assuming
that all of the first 751 trips ended at different locations this means that from each
location on average 4.4 different trips were sampled. As a result, the number of unique
trips was increased by 2,571 to 3,322 which was a significant increase in the variety of
trips. However, if method 1 would have been applied to sample the first trip of the
shift, only four to five different trips would have been selected. Even if this number was
multiplied each time for the following trips of the shift, the variety of trips would still
have been much lower than for the analysed scenario. Thus, applying method 2 after
each standstill period is vital to reach a high variety of sampled trips.

As the results of this simulation model are later used to derive the taxis’ charging
demand and based on that to optimise the placement of charging stations it is very
important to reproduce a high variety of driving profiles. Otherwise, the charging demand
would be too heterogeneous. That would result in placing too many charging stations
at charging demand hot spots while underestimating the required number of charging
stations in other areas.

To simulate the charging demand for the infrastructure optimisation, each agent will
get a unique set of shift schedules (Chapter 5.4). Thus, the variety of simulated trips will
be significantly higher than at the scenario visualised by Figure 5.7 as almost each agent
will start its shift at a different location. Nevertheless, the synthesising of search trips
after standstill periods (method 2) still remains important since many agents will have
scheduled breaks or charging breaks at a small number of locations which are equipped
with charging stations.
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5.6 Agent memory
The agent’s behaviour models have to make several estimation-based decisions. Humans
would make those decisions based on their experience. The idea of the agent memory is
to collect a set of average values which are derived from previously executed actions that
are accessible by the behaviour models to make experience-based estimations. Hereby,
each agent has individual memory values which are exclusively derived from its own
executed actions. Every time the agent executed another action, its memory values are
updated. The agent memory is a set of the following average values:

– duration of active action ∆tMActive

– driving distance to shift change dMsc , scheduled break dMsb , and charging break dMcb
location

– charging power PMc

– waiting time for available charging station wMj and number of charging events nMj
at location j

– speed vM

– energy consumption ηM

The active action duration, driving distances to standstill locations and the speed are
important for the standstill behaviour model to decide if the agent has enough time left to
execute another active action before the next scheduled break or shift change action. To
accurately plan recharging, the charging behaviour model relies on the average charging
power, the waiting time per charging location, and the vehicle’s energy consumption.

Hereby, the waiting time per charging location is especially interesting, as it is used
to select charging locations. Locations with high waiting times can be rejected even if
they are closer to the agent’s current location. As each agent has its individual memory,
previous waiting times influence their decision, which results in preferring or avoiding
certain charging locations. This is comparable with the behaviour of humans who prefer
locations where they made good experiences while avoiding others.

Due to the stochastic nature of charging events, the waiting time at a specific
location fluctuates very strongly, e.g. if the agent arrives shortly before a group of other
agents that want to recharge at the same location, the waiting time of this agent would
be significantly lower as if it arrived after that group. Thus, the waiting time estimation
with respect to the memorised values must be carefully handled especially when only a
small number of charging events was executed so far.

In case that no charging event was recorded at location j, the estimated waiting time
wEj at this location is set to the average over all charging locations i :

wEj = w̄M =
∑
i n

M
i w

M
i∑

i n
M
i

(5.3)

In case no waiting time was recorded yet, it is assumed that the waiting time at
each location is zero. If fewer than k events were recorded at location j, the estimated
waiting time is calculated by a weighted sum of the waiting time at this location wMj
and the average waiting time over all locations w̄:
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wEj =


nM

j ·w
M
j +(k−nM

j )w̄M

k if nMj < k

wMj otherwise
(5.4)

This method allows to damp the fluctuations of the memorised waiting times when
few information for this location is available while more and more weight is put to this
value with an increased amount of information.

To evaluate which effect different values of k have on the agent’s charging location
choice, three test scenario with different values of k (1, 3, and 5) and a simulation
duration of 31 days were simulated. If k is one, no weighted sum is calculated and the
memory value is exclusively used after the first charging event at the respective location.
The scenarios consisted of 200 agents and four charging locations. How often each
agent chose one of these locations for recharging is shown by Figure 5.8.

Figure 5.8: Number of charging events per agent at one charging location

The blue bars represent the scenario with k=1. Here, it can be seen that 53 out of
200 agents had no or only one charging event at the chosen charging location. As it is
very unlikely that agents never chose this location it is expected that these 53 agents
had exactly one charging event at this location where they had to wait very long for an
available charging station. As a result, the stored waiting time in the agent’s memory
was very high so that these agents never chose this location again. Moreover, eight
agents had more than 65 charging events at the same location while only two agents
for k=3 (red bars) and no agent for k=5 (yellow bars) exceeded this number. Hence, it
seems that in case of k=1 there were agents which almost exclusively chose one location
and rejected all others most likely because their memory value for all other locations was
much higher than for the analysed location. Choosing one location exclusively means
that the agents will have to accept high detours. It is very unlikely that electric taxi
drivers would behave in this way. Thus, k=1 is no reasonable choice.

The distributions for k=3 and k=5 are similar. In order to decide for one parameter
value it must be taken into account that the higher k is, the longer it would take until
the agents exclusively rely on location specific memory waiting time. As a consequence
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it could take longer until a convergence of the agent behaviour is reached which in
turn could also increase the necessary simulation duration. Thus, k=3 was chosen to
estimate the waiting time at charging locations.

5.7 Behaviour models
All of the agent’s decisions are made by the standstill or charging behaviour model. The
standstill behaviour model decides with respect to the agent’s shift schedule when and
where scheduled breaks and shift changes have to be made. This model ensures that
the agent’s activity patterns correlate with that of real taxi drivers.

Due to limitations in range and charging time, agents with electric vehicles may not
be able to follow the same activity patterns as conventional taxi drivers. Therefore, the
charging behaviour model has to ensure that the agent is not running out of energy by
deciding when and where it has to recharge the battery. Since this has a higher priority
than respecting the agent’s shift schedule, the charging behaviour model can overrule
decisions of the standstill behaviour model. The fewer decisions are overruled, the more
similar the agent will behave like a taxi driver with a conventional vehicle.

The nomenclature of this section is given by Table 5.3.

5.7.1 Standstill behaviour
Each time change action is executed, the standstill behaviour model must decide if the
agent continues with an active action or if it should stop to execute a scheduled break
or a shift change action. Furthermore, when a scheduled break action must be done,
the standstill behaviour model selects the location as well.

First of all, the model decides if a shift change action shall be made. Therefore,
the current time t and the scheduled end time of the shift tsc are required. If the
agent exceeded the end of the shift already (t > tsc), the next action is shift change.
Otherwise, the shift end time is projected for the case that the agent is driving to the
shift change location immediately (equation 5.5) and for the case that the agent executes
another active action and drives to the shift change location afterwards (equation 5.6):

t1 = t+ dMsc
vM

(5.5)

t2 = t1 + ∆tMActive (5.6)

The next action will be shift change if t1 is closer to the scheduled shift change time
than t2:

|tsc − t1| < |tsc − t2| (5.7)

If this condition is not fulfilled, no shift change action will be executed and it will
be checked if the next action shall be scheduled break. Therefore, the same method
as for shift change is used, whereby tsc is replaced by the scheduled time of the next
break and dMsc is replaced by the memorised driving distance to a scheduled break dMsb .
The standstill behaviour model decides to execute another active action if neither shift
change nor scheduled break actions are required.
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Table 5.3: Nomenclature of behaviour models

Symbol Unit Description
dj km driving distance to location j
dmin km minimum remaining range
dsb km scheduled driving distance to break
dMsb km driving distance to break in memory
dMsc km driving distance to shift change in memory

∆tMActive h duration of active action in memory
∆tbreaki h scheduled duration of ith break

e kWh current battery energy
eCi kWh recharge energy at ith break
edrivei kWh driving energy between i-1th and ith break
etargeti kWh energy target of ith break
ηM kWh/km energy consumption in memory
lA - location of agent
lsb - location of scheduled break
nb - number of breaks
PM kW charging power in memory
Pj kW charging power at location j
Tj h total time of break action at location j
t h current time
ti h scheduled time of ith break
tsc h scheduled shift change time
vM km/h speed in memory
w̄M h average waiting time in memory
wMj h waiting time at location j in memory

In the case that the scheduled break action must be executed, the standstill behaviour
model also decides at which location this break must be made (in case of shift change
the location is already defined in the shift schedule). Thereby, the driving distance to
the break location dsb and, if available,5 the standstill location lsb defined in the shift
schedule are taken into account.

The problem of modelling the break location choice of agents is that the agents
have to choose their break location from a different start location than the taxi driver
of whom the shift schedule was derived from. Hence, if agents had to strictly select
the break locations in the shift schedule, their average driving distance to breaks would
be too high. Therefore, the scheduled location and the driving distance are taken into
account when selecting break locations. To do so, two tolerances (δ1 and δ2) are used
to decide at which location a scheduled break shall be made. First, it is checked if lsb is

5standstill locations are defined in the shift schedule if the driver of whom the schedule was derived
from stopped at an individual standstill cluster (Chapter 3.2.3)
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defined in the shift schedule and if the driving distance from the agent’s current location
lA to that location does not exceed dsb by more than δ1:

distance (lA, lsb)− dsb ≤ δ1 (5.8)

If this is fulfilled, the scheduled break has to be executed at location lsb. In any other
case (either lsb is not defined or the tolerance is exceeded), it is checked if any other
location of the agent’s individual standstill cluster lsc (Chapter 3.2.3) can be reached
within the tolerance δ2:

|distance (lA, lsc)− dsb| ≤ δ2 (5.9)

In that case, the location lsc which distance from the agent’s current location is
closest to dsb will be selected. Finally, if no location is found, the location with a driving
distance closest to dsb among the individual standstill clusters of all agents is selected.

In order to set the tolerances δ1 and δ2, two criteria have to be taken into account:
first, the share of breaks executed at the agents’ specific individual standstill clusters
must be similar to that extracted from the recorded data of real taxi drivers and second,
the agents’ driving distances to break locations must match the recorded data as well.
The values which satisfied these criteria the best were: δ1 = 8.0 km and δ2 = 1.5 km.

In order to assess how the criteria were fulfilled with respect to the parameter choice,
a simulation with all 2,949 agents over five simulation days was run. The simulated
agents made 35.3% of all breaks at their individual standstill clusters while the share
extracted from the taxi driving profiles was 36.2%. The simulated and recorded distri-
butions of driving distances to clustered, respectively non-clustered break locations is
depicted by Figure 5.9.

Figure 5.9: Recorded and simulated driving distance to clustered (a) and non-clustered
(b) break locations

The recorded average driving distance to clustered break locations was with 8.6 km
higher than the distance to non-clustered location which was 5.3 km. This observation
makes sense as it can be expected that taxi drivers accept longer driving distances
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to reach a place they probably like and therefore visit more frequently. The simulation
results matched the recorded data very well with an average driving distance to clustered
break locations of 9.5 km and 4.6 km to non-clustered locations.

Also the recorded and simulated driving distance distributions shown in Figure 5.9
(a) and (b) fit in general well together. However, there is one significant deviation
between the recorded and simulated frequency of driving distance to clustered break
locations below 1 km (19.9% and 6.7%). The high percentage of the recorded data
gives an indication that drivers do not only decide to have a break with respect to the
time but also take their current position into account. Meaning that if they finish an
engaged trip nearby a location which they prefer, they have a break at that location
although it is out of their usual rhythm of having breaks.

Since the introduced standstill behaviour model takes only temporal conditions into
account to decide when a break shall be made, the described behaviour cannot be
reproduced with this approach. Certainly, a more complex model would be required
to consider temporal and spatial conditions. However, as the other distributions and
average values match very well for the implemented model, it was decided to hold on
this model.

5.7.2 Charging behaviour
The aim of the charging behaviour model is to alter the activity patterns defined in the
shift schedules as little as possible while ensuring that the agent’s vehicle is not running
out of energy. Therefore, scheduled breaks are used to recharge as much energy as
possible and charging breaks shall only be made when unavoidable. At the beginning
of each shift, a charging schedule is created which contains the amount of energy that
can be recharged during each break i. The recharge energy is calculated as follows:

eCi =


(
∆tbreaki − w̄M

)
PM if ∆tbreaki > w̄M

0 otherwise
(5.10)

where ∆tbreaki is the duration of break i defined in the shift schedule. The average
waiting time over all charging locations w̄M is derived from the agent memory. Based
on the estimated driving energy edrivei between two standstill periods, the amount of
remaining battery energy at the beginning of each break, ei is estimated (e0 is the
battery energy at the start of the shift):

edrivei =
(
ti −

(
ti−1 + ∆tbreaki−1

))
· vM · ηM (5.11)

ei = ei−1 + eCi−1 − edrivei (5.12)

here, ti is the time when break i is scheduled. If these energy levels are sufficient to
maintain a minimum range dmin at the beginning of each standstill period the charging
schedule is finalised:

ei ≥
dmin
ηM

∀i (5.13)

During the shift, the minimum range is set to 35 km which should be sufficient to
reach a charging station from any location in Singapore. At the end of the shift before
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the shift change, a remaining range of at least 80 km is required. The increasing of this
limit avoids that the agent would have to make a charging break right at the beginning
of the following shift.

If equation 5.13 is not fulfilled, the break durations can be extended so that the
battery can be charged until the fast charging limit is reached. The fast charging limit
is defined as the amount of energy when constant power charging ends and the charging
power has to be reduced (Chapter 4.2.1). It is not considered to recharge the battery
beyond this point as the charging power would gradually decrease and the agent would
loose disproportionally more time to fully charge the battery. If the extension of breaks is
still not sufficient to ensure the minimum range before each standstill period, additional
charging breaks are added to the shift schedule and the charging schedule.

Finally, energy targets etargeti that must be reached at the end of each break (nb
being the total number of breaks) are calculated:

etargetnb
= dmin

ηM
+ edrivenb

(5.14)

etargeti = etargeti+1 + edrivei − eCi+1 (5.15)

To illustrate how a charging schedule is generated, Figure 5.10 shows a simplified
example of a shift with one scheduled break.

Scheduled Break

Shift Start Shift End

R
an

ge
R
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Fast charging Limit

Min Range

Charging Break

Energy 
Targets

Figure 5.10: Charging schedule generation

The x-axis represents the time from the start of the shift until the end of the shift,
while the y-axis represents the remaining range of the agent’s vehicle. The lower dashed
line depicts the minimum range during the shift (35 km) which must never be undercut
and the upper dashed line represents the range corresponding to the fast charging limit.
The charging behaviour model must not define any energy targets which would exceed
this limit. Furthermore, it must ensure that a minimum range of 80 km is available at
the end of the shift. The dark blue box represents the only scheduled break of this shift.

The first attempt to create the charging schedule is to assume that the agent exclus-
ively uses the scheduled break to recharge the battery. How the vehicle’s range would
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evolve in this case is shown by the orange line, whenever the vehicle is driving, the range
decreases while during the scheduled break it first remains constant which is caused by
waiting for an available charging station and increases once the charging started. The
graph shows that the vehicle’s remaining range would fall below the minimum range
before the scheduled break and before the end of the shift. Hence, it is not possible to
execute this shift without any modifications.

Due to the low remaining range of the vehicle at the beginning of the shift in
this example, a charging break must be included in order to reach the scheduled break
thereafter. It is planned that the charging break starts when the remaining range reaches
the minimum range. After including the waiting time w̄M the battery is charged until
the remaining range is sufficient to reach the beginning of the scheduled break. The
corresponding amount of energy of this range is defined as energy target.

The recharged energy at the scheduled break is not sufficient to maintain the required
minimum range of 80 km at the end of the shift. Therefore, it is assumed that the
scheduled break was extended so that the range after the charging event would fulfil
this requirement. Subject to this range the second energy target is defined. It is
important to notice that the duration of the scheduled break in the shift schedule will
not be changed although it is expected that the defined energy target will not be met
within the scheduled time. The reason for this is that at the beginning of the shift it
cannot be expected for certain that the scheduled break will have to be extended, e.g.
if no waiting occurred the energy target would be met.

During the simulation, the energy targets are used to calculate if and how much
energy must be recharged at each break with respect to the current SOE. As the charging
schedules are only created based on average values derived from the agent memory, the
simulated SOE will differ from the projections. To overcome these inaccuracies, the
charging schedule is updated after each break.

Furthermore, it must be considered that agents must not interrupt active actions
and therefore are not able to make a scheduled break or charging break at the exact
scheduled time. Hence, the required recharge energy must be adjusted accordingly. For
example if the agent executes the next break earlier than scheduled, it must reach a
higher SOE as the driving duration after the break will be longer. Therefore, the recharge
energy of an agent reaching the ith break with battery energy e at time t is calculated
as follows:

eC = etargeti + (ti − t) vMηM − e (5.16)

A negative recharge energy eC means that charging is not required at the respective
break. In that case, the charging behaviour model would not change the location choice
of the standstill behaviour model, and a charging break would be skipped. Otherwise,
the charging behaviour model checks with respect to the selected location’s average
waiting time and charging power if it is possible to recharge the required energy within
the scheduled break duration ∆tbreaki . If that is possible, no amendments are made. If
not, the charging behaviour model selects the charging location j which promises the
shortest total time Tj with respect to the driving distance dj from the current location,
the memorised waiting times wMj , and the charging power Pj :

Tj = dj
vM

+ wMj + eC

Pj
(5.17)
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The implemented charging behaviour model is only one of many possible approaches.
An introduction and evaluation of different strategies based on this work’s driving profile
simulation model can be found in (Czypulovski, 2017). The analysed charging strategies
were modified in three ways compared to this work’s approach:

information level: additional information regarding the availability of charging stations
was included in the agent’s decision process

charge full: the required recharge energy of the energy targets was set to the fast
charging limit for all charging events

charging breaks only: all scheduled breaks were skipped and the agents made only
charging breaks when running low on energy

The results showed that the information level could only increase the average revenue by
1% compared to this work’s charging strategy. Adding the charge full method caused an
increase of 5% in total. Combining all three modification resulted in a revenue increase
of 16%.

The analysed scenarios of this study were different to that discussed in this thesis.
First, all agents of this study had to follow the same set of shift schedules, meaning that
they had to charge at the same time in the base line scenario and second, the number
of charging stations per taxi was lower than what this thesis found out to be ideal.

As a result waiting times were significantly higher in this study which increased the
importance of a more sophisticated charging strategy. Thus, it is expected that if these
charging strategies were applied on this thesis’ scenarios, the gain in revenue would be
smaller. Moreover, these strategies would require that the drivers had to change their
habits while this thesis focuses on analysing a system in which the drivers would have
to change their behaviour as little as possible.

5.8 Validation
As no data regarding driving profiles of electric taxis was available, this model was
validated with respect to driving profiles of 2,949 conventional taxis extracted from the
LFD. The driving profiles of each of these taxis were simulated over a period of 31 days
and compared with the recorded data. Therefore, the vehicles’ energy consumption was
set to zero6 and the charging behaviour model was disabled.

The simulated distribution of daily mileage (a) and revenue (b) per taxi are compared
with the recorded data in Figure 5.11.

The recorded and simulated distributions are similar: The average recorded daily
mileage was 346 km with a standard deviation of 145 km, while the simulated mileage
was 335 km with a standard deviation of 138 km. The average recorded daily revenue was
294 SGD with a standard deviation of 134 SGD and the simulated revenue was 292 SGD
with a standard deviation of 133 SGD. Hence, the average deviation between recorded
data and simulation results was 3.2% in terms of mileage and 0.7% regarding revenue.

The biggest deviation between recorded and simulated mileage was in the range of
200 to 250 km per day. Here, the recorded frequency was 7.2% whereby the simulated
value was 9.7%. The reason for this gap is that at the time of the data recording there

6the refuelling of conventional vehicles was neglected
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Figure 5.11: Distribution of recorded and simulated daily mileage (a) and revenue (b)

was a regulation in Singapore which required the majority of a taxi fleet to drive at least
250 km a day (LTA, 2016a). Thus, taxi drivers who did not meet this mark at the end
of the day would have extended their shift until the requirement was met. That also
explains the steep jump of the recorded frequency to 15.2% within the 250 to 300 km per
day range. The shift schedule pool assigns shift schedules randomly without imposing
a minimum daily mileage limit on the agents. As a result, more agents failed to meet
this requirement.

A comparison of daily average values and standard deviations (in brackets) of more
distribution is listed in Table 5.4.

Table 5.4: Comparison of recorded and simulated daily averages and (standard devi-
ations)

Unit Recorded Simulated Difference
Daily mileage km 346 (145) 335 (137) -10.3 (-7.7)
Daily revenue SGD 294 (134) 292 (133) -1.7 (-1.5)

Daily driving duration h 11.8 (4.6) 11.7 (4.45) -0.10 (-0.19)
Daily break duration h 1.57 (1.26) 1.47 (1.22) -0.100 (-0.037)

Daily number of breaks - 3.33 (2.22) 3.00 (2.09) -0.324 (-0.132)
Daily shift change duration h 10.5 (4.97) 10.8 (4.84) +0.27 (-0.13)
Daily shift change number - 1.76 (0.82) 1.70 (0.82) -0.056 (+0.007)

The average and standard deviations of the simulation results deviate by less than
10% between the recorded data and the simulation results among all distributions. The
highest deviations was found for the average number of breaks per day which was 9.7%
lower than the recorded value. As a consequence, the simulated average duration of all
breaks within one day was with 6.4% also lower. In contrast, the simulated shift change
duration was 2.6% above the reference value. Thus, it seems that the simulation skipped
a few breaks which were shorter than average and instead slightly extended shift changes.



CHAPTER 5. DRIVING PROFILE SIMULATION 76

This observation can be very well explained by the implementation of the standstill
behaviour model which first checks if a shift change is scheduled and considers breaks
only when this is not the case. Hence, it is possible that scheduled breaks may not be
executed and instead the agent could make a shift change earlier than scheduled. It is
more likely that rather shorter than longer scheduled breaks are affected since the time
difference between the start of a long break and the end of the shift is higher. This
would explain why the relative deviation regarding the break duration (6.4%) was lower
than the deviation in the number of breaks (9.7%).

As all deviations are relatively low, it can be expected that the simulation model is
capable of reproducing driving profiles of conventional taxis with high accuracy. Nev-
ertheless, it must be kept in mind that no validation regarding electric taxis could be
made. Thus, it is not possible to quantify how well the assumptions made for the char-
ging behaviour model would reflect the actual usage of electric vehicles by taxi drivers.
Therefore, the uncertainty of simulating this use case is clearly higher than for the case
of conventional taxis.

5.9 Case studies
The purpose of this section is to discuss characteristics of the introduced driving profile
simulation model by analysing simulation results of different scenarios. The charging
infrastructures (power, placement, and number of charging stations) of these scenarios
were chosen in order to highlight certain features of the model. Therefore, predominantly
infrastructures with fewer than the ideal number of charging stations were defined.
A discussion of simulation results for optimised charging infrastructures will follow in
Chapter 8.

One of the most important features of this model is that due to the design of
the behaviour models, agents with electric vehicles will act similar to conventional taxi
drivers as long as limitations regarding detours to charging stations, waiting times, and
charging times are negligible. The more these factors affect the agents the more their
driving profiles will diverge from that of conventional taxis.

In order to investigate this effect, a charging infrastructure (40 charging stations of
160 kW charging power and 6 kW charging station at each agents’ shift change location
(home charging)) was chosen which allowed a small number of agents with EVA vehicles
to follow the same driving profiles as conventional vehicles. To analyse the effect of wait-
ing times, the number of agents was increased step by step until the maximum number
of agents (2,949) was reached while the charging infrastructure remained unchanged for
each simulated scenario. To quantify the similarity of the driving profiles, the simulated
revenues of conventional and electric taxis were compared. Revenue is considered to be
a better indicator than mileage since if electric taxis have to make detours to reach the
next charging station, their total mileage could be the same than that of conventional
taxis while the revenue would decrease due to the lower amount of time electric taxis
can search for and transport customers. The results of this experiment or depicted in
Figure 5.12.

The dashed line shows the simulated revenue of conventional taxis. The revenue
was not constant with respect to the number of taxis since each agent got assigned to a
different shift schedule set (Chapter 5.4). Due to the high charging power and the low
average waiting time per charging event of 1.1min for 300 taxis, the agents with electric
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Figure 5.12: Average revenue per day and taxi and waiting time of conventional and
EVA vehicles with respect to the number of simulated taxis

vehicles lost almost no time compared to conventional taxi agents which allowed them
to reach nearly equal revenues.

In case of 1,200 taxis, the average waiting time increased to 6.9min which caused a
revenue decrease of 2.3 SGD per day compared to conventional taxis. After this point,
waiting times increased rapidly which significantly reduced achievable revenue. For 2,949
taxis the average waiting time per charging event reached 31.2min which resulted in a
massive revenue decrease of 36.4 SGD per day.

Although it was not possible to validate the charging behaviour model, it can be
expected that as long as the effect of electric vehicle specific constraining factors such
as charging times, waiting times, and detours are small, the simulation results should be
reasonable. The simulation results for optimised charging infrastructures presented in
Chapter 8.3 showed as an example that the Nissan Leaf could reach on average 93% of
conventional taxis’ mileage. Thus, the effect of the electric vehicle constraining factors is
moderate and as a consequence it can be expected that the developed simulation model
is a good basis to be used to optimise the charging infrastructure for electric taxis.

In order to analyse the effect of different charging infrastructure designs on the
agents’ driving profiles, two charging infrastructures with 40 charging stations each and
a charging power of 40 kW were chosen. For the first charging infrastructure, all charging
stations were located at one place which was also the shift change location of all agents.
The other charging infrastructure had 25 charging stations at the shift change location
while the remaining 15 charging stations were equally distributed among three other
locations. In contrast to the previous example, all agents were assigned to the same
shift schedule set and as a consequence had their shift changes and breaks at the same
time of the day. The BYD e6 was chosen as simulated vehicle. The simulation results
of these scenarios are shown in Figure 5.13.

The upper diagram (a) shows the generated daily revenue with respect to the num-
ber of simulated vehicles. Again, the revenue per taxi decreases since more and more
agents had to share the same number of charging stations. In contrast to the previous
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Figure 5.13: Revenue per day and taxi (a), waiting time and charging station utilisation
(b) for charging infrastructures with one and four charging locations (CL)

example even a small number of only 20 agents could not reach the simulated revenue
of conventional taxis which was primarily caused by significantly longer charging times
as the charging power was only 40 kW.

The revenue curves show that for 20 taxis the charging infrastructure with four
charging locations (CL) allows to generate 12.0 SGD per day and taxi more than the
infrastructure with only one CL. The gap between these infrastructures became smaller
with higher number of taxis and diminished at 80 taxis. Afterwards, agents using the
charging infrastructure with only one CL generated more revenue and exceeded the
others by 22.8 SGD per taxi and day in case of 200 agents.

The reason why only one CL allows to generate more revenue than four CL at
higher numbers of taxis is that the average waiting time per charging event increased
slower for one CL than for four CL (diagram (b)). This condition remained even though
the charging station utilisation was slightly higher for one CL. This observation can be
explained by the probability of getting an available charging station at a specific location,
which is the higher the more charging stations (possibilities) are available.

Lower waiting times allow agents to drive longer which results in higher mileage and
a higher energy demand. As this additional amount of energy must be recharged at
charging stations, their utilisation is higher than in case of four CL. For less than 80
taxis almost no waiting times occurred, hence charging stations utilisations and mileage
were the same for both charging infrastructures. Therefore, the difference in revenue can
be explained by shorter detours agents had to make when having the choice to choose
one out of four locations.

Regarding the optimisation of the number of charging stations, this example shows
that reducing detours by distributing the same number of charging stations among more
locations is only an efficient measure as long as the charging station utilisation is low.
The higher the utilisation, the better it is to have a smaller number of charging locations.
This means that in order to reduce detours and increase revenue more charging stations
in total and therewith higher infrastructure investment costs must be accepted.
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These two effects are balanced by the infrastructure optimisation algorithm intro-
duced in Chapter 7. The results presented in Chapter 8.3 showed that from an econom-
ical point of view it is best to install a high number of charging stations which utilisation
ranged only between 16 and 32%. The high infrastructure costs were compensated by
small detour and waiting time costs.

To understand the effect of waiting times on detours to charging stations in more
detail, waiting times and driving distances were extracted from the previous example for
each of the four charging locations individually and are depicted in Figure 5.14.

Figure 5.14: Waiting times (a) at and driving distances (b) to each charging location
with respect to the number of taxis

Charging location A (CL A) was located in the middle of Singapore, was equipped
with 25 charging stations, and had to be used as shift change location for all agents.
These charging stations could also be used to recharge during the shift change. The
other charging locations (B, C, and D) were equipped with five charging stations each,
whereby CL B was located near the airport in the east of the island, CL C was in the
south close to the Central Business District (CBD) and CL D was placed in the north
of Singapore.

Due to its proximity to the CBD where the density of taxis is the highest, CL C
was chosen more frequently than CL B and CL D. As a consequence, the waiting times
increased at this location more rapidly than at any other location. Since all agents had
to choose CL A to recharge during shift changes, the majority of all charging events
appeared at this location. Nevertheless, due to the high number of charging stations,
waiting times appeared only once the number of taxis increased to 80.

The lower diagram (b) shows the average driving distance of agents from the point
when they decided to drive to a charging location until they arrived. The driving distances
to CL A were the longest since agents had to come to this location for shift change
regardless of their current location. In contrast, CL C had the lowest driving distances
since many agent chose this location when they were in the CBD.

The driving distances to the charging locations B-D increased with respect to the
number of taxis. This was caused by the increase of waiting time at each location.
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Agents record their individual waiting times at each charging location and choose the
location which promises the shortest combination of driving and waiting time. Due
to statistical fluctuations of waiting times it is likely that each agent experienced sig-
nificantly different waiting times and therefore selects not always the closest charging
location. The more waiting times increase on average the stronger this effect becomes
and the further detours to charging locations increase.

This example shows that apart from their direct effect, waiting times can also bias
the taxi drivers’ decisions and further downgrade the efficiency of a taxi fleet. Thus, in
cases with very high waiting times it could be better not to include memorised waiting
times in the decision to select the next charging location.

However, the application of the agent memory concept can also be beneficial.
Without their memory, agents would always choose the closest charging location re-
gardless of the demand and the number of charging stations. As a result, charging
locations near hotspots like the airport could become overloaded while other locations
slightly farther away may be ignored by the agents. In this example the agent memory
would be very helpful to balance the charging demand among these locations.



Chapter 6

Economic model

This chapter introduces two economic models which are used to parametrise the objective
function of the charging infrastructure optimisation in Chapter 7 and to quantify the
economic potential of electric taxis including charging infrastructure costs in Chapter 8.
Therefore, a Total Cost of Ownership (TCO) approach was chosen which covers the
whole costs of a product from acquisition to operation until the product’s end-of-life
(EoL).

The TCO models of taxis and charging stations are presented in Chapter 6.1 and 6.2.
The derivation of cost factors for the optimisation objective function and the calculation
of the taxi’s profit is explained in Chapter 6.3.

6.1 TCO of taxis
The model presented in (Kochhan, 2017) was used in this thesis to calculate the TCO
of taxis in Singapore. Unless declared otherwise, all parameter values were taken from
this source as well. The TCO is calculated with respect to three main components:

– Acquisition costs

– Operation costs

– End-of-life value

The following sections explain these components in more detail.

6.1.1 Acquisition costs
The acquisition costs include the vehicle’s purchasing price and all registration fees to
operate a vehicle as taxi in Singapore. The vehicle’s Open Market Value (OMV) is used
as basis for the tax calculation. The OMV can be understood as the vehicle’s value
when it arrives in Singapore. Since no electric vehicles are so far registered in Singapore,
there are no official OMVs for the vehicles analysed in this thesis. To estimate the OMV
of these vehicles, a regression model was built to estimate the OMV of conventional
vehicles with respect to their price in other countries. This regression model was applied
to estimate the OMV of the electric vehicles with respect to their price in the respective
country. As EVA is not on the market, its OMV was derived by balancing costs of
electric vehicle and conventional vehicle components on basis of the price of a comparable
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conventional vehicle (Kochhan et al., 2014). Table 6.1 lists the OMVs of all vehicles
analysed in this thesis:

Table 6.1: OMV of vehicle types in Singapore (Kochhan et al., 2014; Kochhan, 2017)

Vehicle Type OMV [SGD] Battery Capacity [kWh]
BYD e6 47,000 61.4
EVA 50,982 50

Kia Soul EV 33,087 27
Nissan Leaf SV 35,253 30

Tesla Model S 70D 93,809 70
Toyota Prius 35,683 1.3a

abattery is only used to buffer electrical energy during driving and cannot be charged externally

Comparing the OMV with the vehicles’ battery capacity shows that these values
are correlated with each other - the higher the battery capacity the more expensive the
vehicle. This underlines that the battery is one of the main cost factors of an electric
vehicle. However, the high price difference of the Tesla Model S to all other vehicles is
not only caused by its high battery capacity but is also attributed to the fact that this
vehicle is more luxurious than the others.

With respect to the OMV, goods and service tax (GST) of 7% (Inland Revenue
Authority of Singapore, 2017) and excise duty (ED) of 20% (Singapore Customs, 2017)
have to be paid. Furthermore, an Additional Registration Fee (ARF) must be paid
which accounts to 100% of the OMV for the first 20,000 SGD of the OMV, 140%
for the following 30,000 SGD and 180% for the remaining OMV exceeding 50,000 SGD
(LTA, 2017c).

In order to promote low-emission vehicles, a Carbon Emission-Based Vehicle Scheme
(CEVS) grants rebates to vehicles with low emissions and imposes surcharges on high
emission vehicles. The highest rebate for taxis is 45,000 SGD if the vehicle’s CO2 emis-
sions are not higher than 95 g/km (LTA, 2015a).

To register a private vehicle in Singapore, a ten years valid Certificate of Entitlement
(COE) must be obtained via a bidding system. Between the years 2013 to 2015 the
average price of a COE ranged between 62,195 and 77,703 SGD. Taxis are only allowed
to be operated for eight years, thus only 80% of the price of a private vehicle’s COE
needs to be paid in this case.

6.1.2 Operation costs
In Singapore, vehicles are not allowed to be operated longer than eight years as taxis.
The total operation costs for this period consist of following factors:

– Operating taxes

– Energy costs (fuel or electricity)

– Service and maintenance costs
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– Insurance costs

– Parking costs

– Battery replacement costs (electric and hybrid vehicles only)

In contrast to (Kochhan, 2017), charging infrastructure costs are not included in this
calculation. This cost factor is estimated separately in Chapter 6.2.

The operating taxes contain taxes for using streets in the Central Business District
(CBD) which are automatically charged via an Electronic Road Pricing (ERP) system
whenever a vehicle enters this area. Furthermore, a general road tax must be paid which
accounts for taxis to 1,020 SGD per year (LTA, 2017c).

Electric taxis’ energy costs are calculated with respect to the simulated energy de-
mand (Chapter 4.1) and a charging station efficiency of 92.6% (Genovese et al., 2015).
The applied electricity tariff is 0.24 SGD/kWh which is assumed to increase by an annual
rate of 2%.

Service and maintenance costs include all costs (except replacing the battery) which
are required to keep the vehicle in perfect working condition. The costs for electric
vehicles are set to 0.044 SGD/km.

The vehicle insurance costs were set to 12,000 SGD per year for each vehicle type.
Typically, it is not allowed to park along roads in Singapore. Therefore, taxi drivers

have to use car parks and pay for the usage. According to a taxi driver survey, the
average annual parking costs are 789 SGD.

Due to the high mileage of taxis it cannot be expected that the battery will last
throughout the whole vehicle operation period. The battery is one of the most expensive
component of the vehicle which makes this cost factor an important part of the operation
costs. It is expected that a battery must be exchanged after 2,000 cycles1. With respect
to the vehicle’s battery capacity and energy consumption it is calculated after which
mileage a replacement is required. The costs of the new battery are calculated with
respect to the projected battery price at the time of replacement and the vehicle’s
battery capacity.

6.1.3 End-of-life value
The EoL value is the vehicle’s value at the end of its operation period. Usually, this
value is positive so that the TCO is reduced by the EoL value. This value includes tax
returns as well as the residual value of the vehicle and its battery.

Tax returns are applied for the ARF and CEVS. When the vehicle is deregistered just
before the end of the eighth year of usage 60% of the ARF are returned (LTA, 2017c).
As the CEVS grants rebates to low emission vehicles, a part of these rebates would have
to be returned after eight years as well.

The residual value of the battery is estimated with respect to the ratio of executed
discharge cycles and the maximum number of charging cycles (2,000). While the residual
value of the vehicle is assumed to be 1,000 SGD for each vehicle type.

1one cycle is defined by fully discharging and charging the battery
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6.1.4 Cost comparison of vehicle types
Figure 6.1 compares the TCO values of all electric vehicles with that of the Toyota Prius
which is operated as taxi in Singapore. For this example, the average daily mileage
was set to the average mileage of the whole taxi fleet, which is 335 km. The TCO was
cumulated over an operation period from 2017 until 20252.

Figure 6.1: TCO by cost category for all vehicle types

The respective left bar of each vehicle type represents the sum of all acquisition and
operation costs, the middle bar the cost reduction by the EoL, and the right bar the
resulting TCO of each vehicle. The list price contains the OMV, GST, and ED plus
a retailer margin of 7,500 SGD for each vehicle, while the acquisition taxes include the
COE, ARF, and CEVS.

The results show that the Kia Soul EV was the vehicle with the lowest TCO of
320,674 SGD, while the Tesla Model S was most expensive with 436,560 SGD. The
Toyota Prius which is used as reference vehicle had total costs of 376,976 SGD and
was therewith more expensive than all other electric vehicles except the Tesla Model S.
The acquisition of the Tesla Model S was significantly more expensive than for all other
vehicles due to its much higher OMV and the therewith coupled taxes. Although the
returned amount of these taxes included in the EoL value is considerably higher, the
TCO remained the highest at the end.

The main advantage of electric vehicles over conventional vehicles in terms of costs
is their higher energy efficiency which results in significantly lower energy costs, e.g. the
energy costs of the Toyota Prius are 150% higher than that of the Kia Soul. Taking
into account that the Prius is a fuel efficient vehicle with an average consumption of
5.3 l/100km it is expectable that non-hybrid vehicles have even higher energy costs.

How the TCO of these vehicles evolved with respect to the average daily mileage is
shown by Figure 6.2.

Due to the mileage dependent energy and maintenance costs, all TCO curves con-
stantly increased with higher mileage. There were some mileages where the slope of

2the results differ with respect to the year of usage as the TCO model applies different prices with
respect to the year
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Figure 6.2: TCO with respect to daily mileage

the costs of electric vehicles increased. Theses were the critical points when one more
replacement battery was required throughout the whole period of operation.

The costs of the Kia Soul and Nissan Leaf were the lowest for any daily mileage.
Since both vehicles had almost identical OMVs and energy consumptions, their costs
curves were hardly distinguishable. Due to their lower energy costs, the BYD e6 and
EVA undercut the costs of the Toyota Prius at a daily mileage of 90 respectively 110 km.
These values are far below the average mileage of taxis which means that almost each
BYD or EVA taxi could be more cost efficiently operated than a conventional vehicle.

This diagram also underlines the importance of the vehicle’s energy consumption:
EVA had a higher TCO value than the BYD e6 at very low mileage. However, due to
its high energy efficiency, it undercut the costs of the BYD e6 at 130 km per day and
was by 54,300 SGD cheaper at an average mileage of 600 km per day.

Although most electric taxis had lower TCO values than conventional taxis, it must
be kept in mind that charging infrastructure costs were not included in this calculation.
Furthermore, due to their limitation in range and charging time, electric taxis will gen-
erate less revenue than conventional taxis. A comprehensive analysis taking all theses
aspects into account follows in Chapter 8.4.

6.2 TCO of charging stations
The TCO of charging stations consist of three components:

– Installation costs

– Equipment costs

– Operational costs

The installation costs include all costs associated with setting up a charging station and
connecting it to the electricity grid. These costs strongly depend on the required power
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and the location where the charging station shall be set up, e.g. an important factor is
how far the charging station will be away from the connecting point to the grid and how
much effort it takes to lay the cables. Detailed information of the electricity grid would
be required to accurately estimate these costs. For simplicity reasons this information
was not used in this thesis, thus it must be expected that the generalised costs may
significantly deviate from the actual costs at specific locations.

Beside the charging power, equipment costs also depend on the station’s current
output type (AC or DC) and whether the charging station shall be publicly accessible. DC
charging stations are significantly more expensive than AC charging stations due to the
integrated transformer which converts AC current from the grid to DC current to charge
the battery directly. Public charging stations need to be protected against vandalism
and have to have an integrated billing system which makes them more expensive than
private charging stations. In this thesis, all charging stations which can be used during
the shift are considered as public charging stations, while charging stations used during
the shift change (home charging) are private charging stations.

The operational costs include costs for renting the space where the charging sta-
tion is installed, maintenance costs to keep it in perfect working condition, as well as
costs related to the billing system (i.a. communication, contract management, and IT)
(Nationale Platform Elektromobilitaet, 2015).

Table 6.2 summarises costs extracted from a literature research.

Table 6.2: Costs of charging stations (Thoma, 2014; Schroeder and Traber, 2012;
ERI@N, 2016; Nationale Platform Elektromobilitaet, 2015)

Power [kW] (type) Equipment [SGD] Installation [SGD] Operation [SGD/a]
6.6 (AC) 1,319 16,200 1,128
43 (AC) 13,414 27,300 -
50 (DC) 39,715 30,000 3,383
100 (DC) 58,769 - -
250 (DC) 90,226 - -

It was not possible to find a set of cost values for all charging stations which are
considered in this thesis. Therefore, regression models were created to estimate these
costs.

The equipment costs ceq of DC charging stations and installations costs cins of all
charging stations were estimated by a constant factor and a factor proportional to the
output power P :

ceq (P ) = aeq + beq · P (6.1)
cins (P ) = ains + bins · P (6.2)

The fitted parameter values are listed in Table 6.3.
Regarding the operation costs per year cop it was assumed that these are proportional

to the equipment costs:

cop (eeq) = aop + bop · ceq (6.3)
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Table 6.3: Fitted parameter for charging station equipment and installation costs

Cost type a [SGD] b [SGD/kW]
Equipment (eq) 30,548 243
Installation (ins) 14,085 314

Here, the fitted parameter values were: aop = 1, 015 SGD/a and bop = 0.0787 1/a.
The total operating costs cop total over the whole period of operation ∆top of 15 years

(Engholm et al., 2013) with an interest rate i of 3% (Kochhan, 2017) are calculated as
follows:

cop total =
∆top∑
y=1

cop

( 1
1 + i

)y−1
(6.4)

An overview of all cost components and the TCO for a use duration of 15 years for
all charging stations used in this thesis is given by Table 6.4.

Table 6.4: TCO of charging stations in SGD

Charging Power [kW] (type) Equipment Installation Operation TCO
6.6 (AC) 1,319 15,967 14,480 31,766
40 (AC) 13,424 26,633 26,802 66,848
40 (DC) 40,355 26,633 54,145 121,033
50 (DC) 42,682 29,770 56,617 129,068
60 (DC) 45,108 32,906 59,090 137,104
100 (DC) 54,815 45,454 68,978 169,247
120 (DC) 59,668 51,728 73,923 185,319
160 (DC) 69,375 64,275 83,811 217,462

The table shows that the higher the charging station’s power output is the higher
the TCO becomes. However, comparing 40 and 160 kW DC charging stations shows
that although 160 kW charging stations could recharge four times more vehicles at the
same time, their TCO is only 80% higher. Thus, it can be expected that these charging
stations are more cost efficient.

However, an important aspect which must be considered is how these charging
stations are utilised. First, it cannot be expected that directly after one vehicle leaves
the charging station another vehicle starts a new charging process. Moreover, it must
be considered that the higher the charging power is the shorter the time to fully charge
the battery will be. Thus, the chance that a vehicle reaches the end of the charging
process and unnecessarily blocks the charging station until the driver ends the break
and continues driving increases with the charging power. These two aspects downgrade
the economic potential of expensive charging stations with high power. The driving
profile simulation model (Chapter 5) takes these aspects into account so that a realistic
comparison of charging infrastructures with different charging power can be made in
Chapter 8.4.
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The comparison of 40 kW charging stations with AC or DC current output shows
that the equipment costs of AC charging stations are due to their simpler design by
26,931 SGD cheaper than DC charging stations with the same power output. Moreover,
as operational costs were estimated with respect to the equipment costs, AC charging
stations have a significant cost advantage in this category as well. Overall, the TCO of
DC charging stations was 81% higher than that of AC charging stations.

Although this comparison clearly favours AC charging stations, it must be kept in
mind that in order to utilise these charging stations, the vehicle internal onboard charger
must be capable of transforming the supplied current to DC. To save costs, space, and
weight, most electric vehicles are only equipped with onboard chargers with a maximum
power of 6 kW. In contrast, the BYD e6 is capable of using AC charging power of up to
40 kW. Therefore, AC charging stations are considered for this vehicle while the analysed
charging infrastructures of all other vehicles consist of more powerful and expensive DC
charging station.

An overall economic assessment where charging infrastructure costs are balanced
with the costs caused by the loss of time due to charging follows in Chapter 8.4.

6.3 Cost factors and profit
The charging infrastructure optimisation presented in Chapter 7 optimises the place-
ment and number of charging stations by minimising waiting time, detour, and charging
infrastructure costs. Following cost factors are derived in order to quantify the effect of
each of these cost categories on the overall costs:

Waiting time cost factor (Cw): Due to waiting for an available charging station the
driver looses time to search for and serve the next customer. This factor is used
to quantify the lost amount of revenue with respect to the drivers’ waiting time.

Detour cost factor (Cd): Costs caused by detours the driver has to make in order to
reach a charging location. This factor quantifies the loss of revenue with respect
to the driving distance to charging locations.

Charging station cost factor (Cc): TCO of one charging station per day.

The waiting time and detour cost factors are calculated with respect to the vehicle’s
TCO and the taxi’s average daily mileage m̄, revenue r̄, energy consumption η̄, and
driving duration ∆t̄drive. These values are obtained from a simulation run with the
respective vehicle, while the TCO model (Chapter 6.1) is applied to calculate the vehicle’s
mileage dependent costs (maintenance costs, energy costs, and battery replacement
costs) Cv (m̄, η̄) in SGD per km with respect to the mileage and energy consumption.
Therefore, the waiting time cost factor is calculated by:

Cw = r̄

∆t̄drive
− Cv (m̄, η̄) m̄

∆t̄drive
(6.5)

The first term of equation 6.5 takes the loss of revenue due to waiting into account
while the second term deducts driving costs which do not apply when the vehicle is
stationary. In contrast, since the taxi is also moving when driving detours to charging
locations, only the loss of revenue is considered for the detour cost factor :
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Cd = r̄

m̄
(6.6)

To set the cost factors for each vehicle type, driving profile simulations were run with
the maximum number of agents and an unlimited number of charging stations at each
candidate charging location. The derived charging demand of these scenarios were used
as input for the first charging infrastructure optimisation step (Chapter 7.6.1). Table 6.5
lists the cost factors which were calculated based on the simulation results.

Table 6.5: Waiting time and detour costs factors of all vehicle types

Vehicle type Cw [SGD/min] Cd [SGD/km]
BYD e6 0.331 0.870
EVA 0.361 0.873

Kia Soul 0.344 0.868
Nissan Leaf SV 0.349 0.869

Tesla Model S 70D 0.356 0.874

Since all scenarios were simulated with the same charging infrastructure, detours to
charging locations were similar for each vehicle type. Moreover, since the same fares
were applied for each vehicle type it is expectable that the ratio of the average revenue
per day to the daily mileage or driving duration is similar for each vehicle type. As a
result, the variance of the detour cost factor is very low among all vehicles.

In contrast, the variance regarding the waiting time cost factor is significantly higher
as specific vehicle costs are included in this factor. EVA is the vehicle with the best
energy efficiency and therewith the lowest mileage dependent costs which is reflected by
the highest waiting time cost factor. In contrast, the BYD e6 has the highest energy
consumption and consequently the lowest waiting time costs.

The charging station cost factors Cc are simply calculated by dividing the TCO of
each charging station by the number of days of operation.

In Chapter 8.4, the economic profit is assessed per taxi and day. Thereby, vehicle and
charging infrastructure costs are balanced with the taxi’s revenue. Following formula is
used to calculate the profit per taxi with respect to the simulated revenue, mileage and
energy consumption:

p (r̄, m̄, η̄) = r̄ − TCOv (m̄, η̄)
∆top

− ns
nET

Cc (6.7)

Thereby, the vehicle’s TCO is calculated by calling the function TCOv (m̄, η̄) and
∆top is the operation duration of the vehicle in days. It is assumed that the charging
infrastructure costs are equally distributed among all taxis, hence Cc is multiplied by the
total number of charging stations ns and divided by the total number of taxis nET . If
home charging is considered, the TCO of one 6.6 kW charging station which is 5.80 SGD
per day is additionally deducted from the taxi’s profit.



Chapter 7

Infrastructure Optimisation

This chapter describes the developed method to optimise the placement and number of
charging stations with respect to the charging power, number of taxis, and vehicle type.
First, the charging infrastructure concept to be optimised is introduced in Chapter 7.1.
Criteria to assess the quality of charging infrastructure optimisation methods are derived
in Chapter 7.2. Following, Chapter 7.3 gives a classified literature review and discusses
the matching of each approach with the optimisation criteria. In Chapter 7.4 the op-
timisation approach of this work is introduced. Since the estimation of waiting times
with respect to the charging demand and the number of charging stations is a very
important detail of the introduced approach, Chapter 7.5 covers this aspect. Finally,
the mathematical formulation of the charging infrastructure optimisation is presented in
Chapter 7.6.

7.1 Infrastructure concept
Private vehicles in Singapore have an average annual mileage of 17,500 km (LTA, 2015b).
Assuming that they are used six days a week, the average daily mileage is 41 km, that
translates to a daily driving time of 68 minutes at an average speed of 36.1 km/h.
Hence, one charging event per vehicle with low charging power is sufficient to cover the
users’ mobility patterns. Therefore, low power charging stations could be placed at the
workplace or at home to ensure sufficient energy supply.

Although the average mileage of private vehicles is much lower than that of taxis,
it must be kept in mind that due to their much higher number of 536,882 compared to
28,736 taxis, their contribution to the total mileage driven by vehicles is 40.8%, whereas
taxis contribute only 16.2% (LTA, 2015b). Therefore, charging concepts which require
higher investment costs like battery swapping or dynamic inductive charging could be
considered for private cars whereas taxis alone might not utilise these infrastructure
concepts sufficiently to compensate the high investment costs.

As taxis have much higher mileage and much shorter standstill times, several short
charging events per day are required to supply the vehicles’ energy demand. In order to
make charging as convenient as possible it would be ideal to enable drivers to recharge
their car during breaks. Therefore, charging stations with high power shall be placed at
the taxi drivers’ most common standstill locations (the selection of candidate charging
locations was described in Chapter 3.2). Since drivers use many different locations, the
most suitable locations have to be identified for the placement of charging stations.

90
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7.2 Optimisation criteria
In this section eleven criteria are derived which should be taken into account in order to
optimise a charging infrastructure with respect to the specific needs of electric taxis:

real taxi driving profiles: It is most important to extract statistics from real world taxi
driving profiles in order to derive charging infrastructure design requirements.

temporal-spatial charging demand : As the density of taxis in a city varies with time
and space the charging demand does so as well. It must be taken into account
whether enough charging stations are available to supply not only the average but
also the peak charging demand.

SOE dependent charging demand : Apart from the temporal-spatial variance of the
charging demand, the vehicles’ state of energy (SOE) has another important effect
on the charging demand, e.g. if taxis had the possibility to recharge during shift
changes, their charging demand at the beginning of the shift would be significantly
lower.

re-routing: Due to the limited number of charging locations and high mileage, electric
taxis will not be able to follow the same trajectories as conventional taxis. There-
fore, it must be taken into account that electric taxis have to alter their routes in
order recharge the battery. Additional mileage and lost of time shall be considered
in order to find the ideal charging location choice.

street network: The accessibility of charging locations is an important aspect in order
to reduce detours. Therefore, the calculation of driving distances shall be based
on a real street network and not be estimated with the Euclidian or Manhattan
distance.

individual driving patterns: Driving patterns of different taxis vary a lot in terms of
working hours, mileage, and choice of standstill locations. Hence, it is necessary
to consider a variety of individual driving patterns instead of one single pattern
which all taxis are following.

discrete charging locations: It is very helpful to get a coordinate for each charging
location instead of identifying the number of charging stations per area. Consid-
ering areas does not allow to determine among how many charging locations the
optimised number of charging stations shall be assigned to.

economic assessment: To justify the installation of additional charging stations in
order to reduce waiting times or detours, it is essential to balance the charging
infrastructure costs with the waiting time and detour costs of taxis. Therefore,
the objective function shall minimise the total costs of these three aspects.

number of charging stations: For the overall economic assessment it is important to
know how many charging stations are ideal for a given number of electric taxis.
Hence, the total number of charging stations shall be a result and not a constraint
of the optimisation.
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waiting time: In order to economically optimise the number of charging stations, the
opportunity costs of waiting times shall be balanced with the charging station
costs. Hence, the effect of charging station utilisation on waiting times should be
respected in the optimisation.

assessment solution quality: Another important aspect is whether it is possible to as-
sess the closeness of the found solution to the global optimum. There are standard
solvers for linear problems which ensure that the global optimum is found. In con-
trast, heuristics like greedy or genetic algorithm may only find a local optimum
which could be far away from the global optimum. Therefore, linear problems or
analytical models are favourable in this context.

7.3 Literature review
Many different approaches have been applied to optimise the placement of charging
stations for electric taxis. All approaches are introduced and classified in this section.
Following, an overview on which optimisation criteria is met by which approach is given.
Appendix G complements this section by giving more details on the reviewed approaches.

7.3.1 Flow-capturing model
The ideal placement of charging or refuelling facilities from the consumers’ perspective
would be if these facilities were placed along the users’ driving paths so that they would
not need to alter their routes at all. The flow-capturing model is an approach to optimise
the placement of facilities in order to maximise the served refuelling or charging demand
along given travel paths (Hodgson, 1990). Based on this model, e.g. (Kuby and Lim,
2005; Hwang et al., 2017; de Vries and Duijzer, 2017) optimised the locations of refuelling
stations for alternative-fuel vehicles. Furthermore, this model was also applied to locate
fast charging stations for private electric vehicles in (Chung and Kwon, 2015; Cruz-
Zambrano et al., 2013; Jiang et al., 2012; Wu and Sioshansi, 2017). When applying this
approach for electric vehicles it must be kept in mind that their recharging times are
significantly longer than refuelling times of conventional or hydrogen vehicles. Hence,
even if consumers do not have to make any detours to reach a charging station, it could
be very inconvenient for them to interrupt their planned trip for a long recharging stop.
An innovative approach to overcome this problem could be the use of dynamic inductive
charging which allows to recharge the battery while driving. A method to optimise the
placement of this charging infrastructure with the flow-capturing model is presented in
(Riemann et al., 2015). However, due to its high investment costs, this technology
would require a higher number of users than only taxis.

The only application of the flow-capturing model to optimise a charging infrastruc-
ture for electric taxis is presented in (Shahraki et al., 2015). The authors extracted
trajectories of 11,880 taxis from GPS data and formulated a mixed-integer linear prob-
lem to assigned charging stations near standstill locations by maximising the vehicles’
mileage. Hereby, it was assumed that a taxi is charged if its standstill location was no
farther than one mile away from a charging station. The maximum number of charging
locations was defined as a constraint. The selected locations had no capacity limitation,
meaning that an unlimited number of vehicles could recharge at each location at the
same time.
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7.3.2 P-median problem
The objective of the p-median problem is to locate a given number of facilities in order
to minimise the total travel distances or travel times from all demand points to the
nearest facility (ReVelle and Swain, 1970).

In (Li et al., 2015) a bi-level optimisation heuristic was presented which first selected
regions where charging stations shall be placed and optimised the number of charging
stations for each selected region in the second step. The input of the optimisation were
origins of real electric taxi trips to charging stations. A p-median problem was formulated
to minimise the total travel distance from all origins to charging stations. After selecting
a set of charging locations, the number of charging stations per location was optimised.
Hereby, the total number of charging stations was defined and the charging station
utilisation at each location was minimised with a greedy algorithm.

7.3.3 Maximum covering problem
The maximum covering problem optimises the location of a given number of facilities
in order to maximise the demand which is covered by at least one facility. The demand
was defined by points with weights and is considered as covered if it is not farther than
a maximum distance away from a facility (Church and ReVelle, 1974).

In (Gacias and Meunier, 2015) origin/destination pairs of the taxi customer travel
demand was synthesised. There were three options analysed to locate the charging
demand : either at the trip’s origin, the trip’s destination, or to both. The weight of
each trip’s charging demand was defined by the ratio of the trip’s energy consumption
over the charging power. The objective was to maximise the charging demand which
was covered by a given number of facilities within a defined distance βclose. A constraint
required that the total charging demand had to be covered within the distance βfar.

The charging demand points in (Asamer et al., 2016) were extracted from origins
and destinations of recorded taxi trips. Hereby, the demand of each trip was equally
weighted. Hexagons with a diameter of 1 km were defined to cover the whole area of
recorded data. Each hexagon was assigned with the total number of covered origin and
destination points. The objective was to select a defined number of hexagons which
covered the highest charging demand. Thereby, for each selected hexagon the demand
of directly neighbouring hexagons was considered as covered as well.

The potential state of charge (SOC) of an electric taxi fleet was estimated based
on recorded trips of conventional taxis in (Ko et al., 2017). Every time when the SOC
dropped below 10% a demand point was created. The optimisation objective was to
place a defined number of charging stations to cover the maximum number of demand
points. Thereby, the maximum distance between demand points and charging stations
to consider demand as covered was varied from 0.5 to 5 km. A greedy algorithm was
applied to solve this problem.

7.3.4 Analytical model
An analytical model to optimise the density of charging stations was presented in (Ahn
and Yeo, 2015). Therefore, the whole data recording area was divided into cells with
a length between 0.5 and 4 km. The charging demand of each cell was assumed to be
proportional to the number of taxis which passed through the cell within a given time.
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The length of detours drivers would have to make in order to reach a charging station
was estimated with respect to the cell’s charging station density (number of charging
stations over cell area). Waiting times until a charging station could be used were
estimated with respect to the ratio of the total recharging time of all vehicles λ over the
service rate of all charging stations µ. Thereby, it was assumed that waiting times were
zero if λ ≤ µ. A formula, including waiting time costs, detour costs, charging station
and charging location costs with respect to the density of charging stations was derived.
The optimal charging station density per cell was found by computing the root of the
formula’s derivative.

7.3.5 Simulation-based heuristic
An approach is considered as simulation-based heuristic if a simulation model is used
to evaluate the objective function and a metaheuristic (e.g. evolutional algorithm) is
iteratively applied to find a local optimum.

This approach was applied in (Sellmair and Hamacher, 2014) to optimise the place-
ment of inductive charging stations at taxi stands. This charging concept allowed drivers
to combine their waiting time for the next customer with recharging the battery. There-
fore, an event-based model was developed which simulates driving profiles of electric
taxis by sampling trips and waiting times with respect to the taxi stand where the sim-
ulated taxi waits for the next customer. A greedy algorithm was applied to identify how
many charging stations per taxi stand were necessary in order to maximise the economic
profit per taxi. Therefore, vehicle costs and charging infrastructure costs were subtracted
from the estimated taxi’s revenue.

Trajectories of conventional taxis were used in (Han et al., 2016) to simulate the
SOC of electric taxis. Whenever the SOC dropped below 15%, the simulated taxi left
its historic trajectory, drove to the nearest charging station, charged the battery, and
rejoined the historic trajectory at the same place where it left. An evolutionary algorithm
was applied to minimise charging infrastructure, waiting time, and detour costs by placing
a maximum number of charging stations. Constraints were defined to limit the maximum
driving distance to charging stations, the maximum waiting time, and the number of
charging stations per location. As in (Ahn and Yeo, 2015), waiting times were estimated
to be zero if λ ≤ µ.

In (Tu et al., 2016) an event-based simulation model was introduced which assigned
recorded engaged trips to simulated electric taxis with respect to time and location.
Whenever the taxis’ SOC was not sufficient to execute the next trip, they had to select
the nearest charging location to recharge the battery. If all charging stations at this
location were occupied the taxis had to wait until the next station was available. A
genetic algorithm was applied to optimise the placement of a maximum number of
charging stations in order to maximise the taxis’ mileage and minimise their waiting
times.

7.3.6 Multiple server location problem
The aim of the multiple server location problem is to optimise the placement of a given
number of servers on a network in order to minimise travel times to the servers and
waiting times until a server is available (Berman and Drezner, 2007).
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A bi-level simulation-optimisation model to optimise the placement of charging sta-
tions was presented in (Jung et al., 2014). Therefore, a model was developed to simulate
the charging demand which was defined as the set of all origins of trips when the simu-
lated taxis went to charging stations. The charging demand was given as input to the
multiple server location problem to minimise travel times and waiting times. The char-
ging duration of each event was randomly sampled from a normal distribution and the
waiting time for an available charging station was estimated by the following formula:

Wk (λ, k) = λ

(kµ− λ)2
(
ak + λ

kµ−λ

) + 1
µ

(7.1)

with

a1 = 1; ai = 1 + µ

λ
(i− 1) ai−1 (7.2)

where k is the number of charging stations, µ is the service rate of each charging
station, and λ is the arrival rate. The optimisation constraints were that each charging
demand point must be allocated to the nearest charging station and that the total
number of charging stations was limited. A greedy algorithm was applied to find the
ideal charging station placement. This algorithm was only applicable when the total
number of charging stations is much higher than the number of candidate locations
where charging stations could be placed.

Another approach to apply the multiple server location problem was presented in
(Yang et al., 2017). The authors analysed driving profiles of taxis and divided the
recording area into cells. Each cell was assigned with the number of standstill events.
The number of charging stations per cell was optimised by minimising the charging
infrastructure costs while limiting the rate of rejected charging events to 5 - 25%. A
charging event was considered as rejected if all charging stations and parking slots at a
location were occupied.

7.3.7 Matching of optimisation criteria
Table 7.1 shows which of the discussed approaches meets the criteria described in
Chapter 7.2.

All approaches, except Gacias and Meunier (2015) based their analysis on real taxi
data sets. The only approach that took individual driving patterns into account is
(Shahraki et al., 2015) where it was assumed that electric taxis would strictly follow
the same trajectories as conventional taxis. Due to that restriction, re-routing or delays
caused by occupied charging stations were not taken into consideration.

The table also shows that simulation-based heuristics are the approaches which sat-
isfy the most of the defined criteria. By using agent-based simulations it would be
possible to take even more criteria into account like individual driving patterns. How-
ever, the main drawback of these approaches is that only heuristics can be applied to
minimise the objective function which makes an assessment of the quality of the found
solution very difficult.

In contrast, the analytic model introduced in (Ahn and Yeo, 2015) has the advantage
that the global optimum can be found by calculating the root of the objective function’s
derivative. However, for this approach it is very difficult to include more complex features
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like temporal-spatial charging demand, individual driving patterns, or discrete charging
locations.

The only other class of approaches which includes waiting times and therefore allows
to respect economic considerations is the multiple server location problem. In this con-
text, (Jung et al., 2014) presented a method to include the majority of the optimisation
criteria and (Yang et al., 2017) formulated a mixed integer linear program to optimise
the charging infrastructure.

7.4 Approach
The aim of this work is to introduce an approach which satisfies all optimisation criteria
of Chapter 7.2. Therefore, as well as in (Jung et al., 2014), a bi-level simulation-
optimisation multiple server location problem is formulated. The simulation part is
executed by the simulation model introduced in Chapter 5.

In contrast to (Jung et al., 2014), the objective function includes detour costs, wait-
ing time costs, and charging infrastructure costs. This formulation allows to optimise
the number of charging stations instead of setting this number as constraint. In order to
take temporal effects into account, the charging demand is discretisised into time inter-
vals. Waiting times are estimated with respect to the charging demand per location and
the number of charging stations. To formulate a linear program, a different estimation
of waiting times than the recursive equation 7.1 is derived in the next section.

Figure 7.1 depicts the optimisation procedure. The input of the optimisation is the
number and vehicle type of the electric taxis as well as the charging station’s power (all
charging stations must have the same power).

The first step of the optimisation is to simulate the driving profiles of electric taxis
with an unlimited number of charging stations at each candidate charging location
(Chapter 3.2.3). This scenario allows to analyse when and where taxis would recharge
in the absence of any disturbing influences like waiting times or long detours to reach a
charging station. This is important as the agents have individual memories (Chapter 5.6)
that record waiting times at each charging location and causes them to adjust their
charging strategy accordingly. The charging demand which is defined by the origin of
trips (represented by street network nodes) to charging stations and the duration how
long a charging station has been used is extracted from the simulation results.

In the next step, a mixed integer linear program is used to select all locations where
charging stations shall be placed. Therefore, the allocation of the charging demand
to candidate charging locations and the number of charging stations per location are
optimised by minimising the costs of detours and the charging infrastructure. Waiting
time costs are excluded from the objective function as a constraint requires zero waiting
times. All candidate charging locations without any charging stations are dismissed for
the rest of the procedure.

Afterwards, a second simulation is executed with unlimited number of charging sta-
tions at each of the selected charging locations. In contrast to the first run, the charging
demand is directly extracted for each charging location. Hence, the agents’ charging
location choice is considered as fixed and no re-routing is taken into account in this
step. The reason for simulating the charging demand again instead of using the op-
timised charging demand allocation is that agents have individual preferences regarding
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Figure 7.1: Optimisation approach

the charging location choice (see definition of shift schedules in Chapter 3.2.4) and may
deviate from the optimised choice.

Next, the number of charging stations per location is optimised. Since the demand is
already allocated to charging locations, the number of charging stations can be optimised
for each location independently. Thus waiting times can be estimated with respect to
the demand and the number of charging stations. The objective is to balance the waiting
time costs with charging infrastructure costs.

As the allocated charging demand of the first optimisation step to select charging
locations is different from the simulated charging demand of the previous step, the
initial choice of charging locations may not be ideal any more. Therefore, the next step
updates the location choice by checking if it is economically more efficient to remove a
charging location A and allocating the charging demand to another location B. Hereby
the agents’ travelling costs from location A to B and the costs of additional charging
stations at location B are considered.

If no location was removed, the optimisation is completed and the number of charging
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stations per location are returned. Otherwise, another simulation is executed with the
updated charging locations and the number of charging stations is optimised based on
the simulated charging demand. Thereafter the optimisation is completed.

7.5 Waiting time estimation
In this section a formula is derived to estimate the waiting time of a taxi for the next
available charging station at location j and time t with respect to the charging demand
Λjt and the number of charging stations sj . The charging demand Λjt is defined
as the total use duration of charging stations at location j and time interval t. The
nomenclature of this section is given by Table 7.2.

Table 7.2: Nomenclature of waiting time estimation

Symbol Unit Description
ai - waiting time sub function
alini - linear waiting time sub function
aquadi - quadratic waiting time sub function
αi - waiting time parameter
∆t min duration of time interval
ε - adjustment parameter
j - charging location

Λjt min charging demand at location j and time t
Λ̄jt min weighted charging demand at location j and time t
mi min slope of waiting time straight
sj - number of charging stations at location j
s′j - adjusted number of charging stations at location j
t - time interval
ujt - charging station utilisation at location j and time t
W min waiting time
wk - weight of time interval k

As agents have to queue at charging locations until a charging station is available
the waiting time of time interval t depends not only on the current charging demand
Λjt but also on the demand of previous time interval (t − 1, t − 2, t − 3). Hence, a
weighted sum of the charging demand over these time intervals is calculated:

Λ̄jt =
3∑

k=0
wkΛjt−k (7.3)

while the weights wk are normalised:

w0 = 1−
3∑

k=1
wk with wk ≥ 0 ∀k (7.4)
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Waiting times W
(
ujt, s

′
j

)
are either estimated as zero or by linear equations with

respect to the charging station utilisation ujt:

ujt = Λ̄jt
s′j∆t

(7.5)

where ∆t is the duration of a time interval (the used time intervals have a duration
of one hour):

W
(
ujt, s

′
j

)
=


0 if ujt ≤ a1

(
s′j

)
(
ujt − a1

(
s′j

))
m1 if a1

(
s′j

)
< ujt ≤ a2

(
s′j

)
(
a2
(
s′j

)
− a1

(
s′j

))
m1 +

(
ujt − a2

(
s′j

))
m2 otherwise

(7.6)
s′j is defined as:

s′j = sj + ε (7.7)

to avoid division by zero if no charging stations are assigned to location j. The
parameter ε is set to 10−10 in order to estimate very high waiting times if the charging
station utilisation is greater than zero while sj is zero.

The functions a1 and a2 are used to decide which equation shall be evaluated with
respect to the charging station utilisation and number of charging stations. Two different
formulations are used for these functions:

alin1

(
s′j

)
= α2 + α3

s′j
(7.8)

alin2

(
s′j

)
= α5 + α6

s′j
(7.9)

and

aquad1

(
s′j

)
= α1s

′
j + α2 + α3

s′j
(7.10)

aquad2

(
s′j

)
= α4s

′
j + α5 + α6

s′j
(7.11)

In contrast to aquad1 , the definition of alin1 allows to derive a linear condition when
waiting times are zero:

Λ̄jt
s′j∆t

≤ α2 + α3
s′j

(7.12)

⇔ α2s
′
j + α3 −

Λ̄jt
∆t ≥ 0 (7.13)

On the other hand, the additional parameters α1 and α4 in aquad1 and aquad2 enable a
more precise estimation.

The driving profile simulation model was used to simulate 109,393 charging events in
total at charging locations with 1, 2, 4, 9, 16, and 40 charging stations in order to fit the



CHAPTER 7. INFRASTRUCTURE OPTIMISATION 101

parameters w1,2,3, α1,2..6, and m1,2 for the linear conditions (7.8, 7.9) and the quadratic
conditions (7.10, 7.11) separately. Due to the higher degree of freedom, the root mean
square error of the waiting time fit with the quadratic condition is with 7.55min slightly
lower than the error of the fit with the linear condition which is 7.57min.

Figure 7.2: Fit of waiting time with respect to the charging station utilisation and the
number of charging stations with linear condition (a) and quadratic condition (b)

Figure 7.2(a) shows the results of the fit with linear condition and Figure 7.2(b) with
quadratic condition. The waiting time with respect to the charging station utilisation
of the simulated charging events are represented by the grey dots. The high variance of
waiting times at equal charging station utilisations is caused by the stochastic nature of
arriving taxis at charging locations. High waiting times occur when taxis arrive at almost
the same time and the latter arriving taxi has to wait until the first taxi finished the
charging process. In contrast, the waiting time would be zero if the second taxi arrives
at the time when the first taxi leaves the charging location. In both cases the charging
demand would be the same. This explains the relatively high root mean square error of
both fits.

The coloured dots depict the average waiting time of all charging events within an
charging station utilisation interval of ±0.025 for different number of charging stations
per location. Comparing these dots with the fitted functions represented by the coloured
lines shows that average waiting times are very well estimated over a wide range of
charging station utilisation and number of charging stations.

The average waiting time remains zero until a certain charging station utilisation is
reached. The critical utilisation when waiting times start to increase strongly depends on
the number of charging stations. The more charging stations are installed at a location
the higher the critical charging station utilisation. This characteristic is very important
as the optimisation algorithm can increase the utilisation while having zero waiting time
costs until the critical utilisation is reached. The waiting time estimation is capable of
reproducing these critical points very accurately.

The main difference between using linear or quadratic conditions becomes apparent
in case of high numbers of charging stations. Here, for the linear condition the estimated
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waiting times for 9, 16, or 40 charging stations are almost equal, whereby the quadratic
condition differentiates these cases significantly better.

The fitted parameter values for the linear conditions (7.8, 7.9) and quadratic condi-
tions (7.10, 7.11) are listed in Table 7.3.

Table 7.3: Waiting time fit parameter values

Parameter Unit Value for linear condition Value for quadratic condition
w1 - 0.533 0.525
w2 - 0.211 0.211
w3 - 0.0379 0.0409
α1 - - 5.97· 10−3

α2 - 0.676 0.604
α3 - -0.468 -0.387
α4 - - 2.36 · 10−14

α5 - 0.885 0.860
α6 - -0.222 -0.203
m1 min 17.6 17.9
m2 min 50.0 49.4

The parameter values of the fit with linear respectively quadratic condition are very
similar (highest relative deviation is 21%). The values of the weights w1,2,3 are decreasing
with the time difference of the corresponding time interval to the time interval for which
the waiting time is estimated. Which makes sense as charging events which occurred
long time before must have a smaller effect than resent events. As w3 is less than 5%,
a consideration of more than four time intervals (including interval t) is not expected to
improve the estimation further. Interestingly, the charging demand at time interval t−1
has an even bigger effect than the charging demand at the time interval t for which the
waiting time is estimated. This is can be explained as due to queuing, all events of t−1
can affect taxis at time interval t, whereby a taxi which arrives at the end of interval t
cannot affect the waiting time of another taxi which arrived earlier.

The main difference between both fits is caused by the parameter α1, whereby the
very low values of α4 has hardly any effect. Another important aspect regarding the
optimisation is that since α1 is positive, it is not possible to formulate a convex constraint
to require zero waiting times with the quadratic condition:

α1s
′2
j + α2s

′
j + α3 −

Λ̄jt
∆t ≥ 0 (7.14)

7.6 Optimisation problem
This section contains the mathematical formulation of the charging location optimisa-
tion, the optimisation of the number of charging stations per location, and the algorithm
to reallocate charging demand. The nomenclature of this section is given by Table 7.4.
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Table 7.4: Nomenclature of optimisation problem

Symbol Unit Description
αk - waiting time estimation parameter
Cc SGD charging station costs
Cd SGD/km driving distance costs
Cw SGD/min waiting time costs
cAB SGD driving costs from location A to B
dij km driving distance from cluster i to location j
∆t min time interval duration
i - cluster
j - charging location
lj - selection of charging location j
Λjt min charging demand at location j and time t
λit min charging demand of cluster i at time t
λ̄it min scaled charging demand of cluster i at time t
Nj - total number of charging events at location j
nday - number of simulated days
nETsim - number of simulated taxis
nETopt - number of taxis to optimise infrastructure for
nit - number of charging events of cluster i at time t
n̄it - scaled number of charging events of cluster i at time t
sj - number of charging stations at location j
t - time interval
W min waiting time
Yij - charging demand allocation of cluster i to location j

7.6.1 Charging location optimisation
The most important requirement of the optimisation is to take the spatial-temporal
charging demand of electric taxis into account. In order to find out from which location
and at what time taxis start trips to charging stations and how long charging stations are
used, a simulation is run with unlimited number of charging stations at each candidate
charging location.

The origins of all trips leading to charging stations are represented by street network
node IDs (Chapter 2.5). The charging location optimisation has to allocate the charging
demand of each trip to a charging location. Since the used street network has in total
45,364 nodes, a huge number of decision variables would be required to do so. In order
to significantly reduce that number, the k-means++ algorithm (Arthur and Vassilvitskii,
2007) is used to combine all nodes to 900 clusters with respect to the node’s geographical
location. Each cluster is represented by the node which is closest to the cluster’s centroid.
These nodes are denoted as cluster centre nodes. All remaining nodes are matched to
their closest cluster centre node, whereby the driving distance on the street network is
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taken into account. Figure 7.3 shows a map of all clustered nodes, the colours are used
to distinguish the clusters (not each cluster has an unique colour).

Figure 7.3: Clustered street network nodes

The total simulation duration is divided into time intervals with a duration of one
hour. All trips originating from the same cluster i within the same time interval t are
merged to one set. For each set the total duration of all following charging events λit
is calculated. The average use duration over all time intervals which correspond to the
same time of the day (t, t+24, t+48, ...) is scaled with respect to the number of taxis
nETopt for which the charging infrastructure shall be optimised:

λ̄it = nETopt
nETsimnday

nday−1∑
k=0

λit+24k ∀t = 1, 2, .., 24 (7.15)

The same is done for the number of charging events:

n̄it = nETopt
nETsimnday

nday−1∑
k=0

nit+24k ∀t = 1, 2, .., 24 (7.16)

The number of simulated taxis nETsim is 2,949 which is the total number of shift
schedule sets (Chapter 5.4), the number of simulation days nday is set to 30. The
scaling with respect to the number of optimised taxis allows to generate an average
charging demand which reflects the driving profiles of all taxis although the number of
taxis for which the infrastructure shall be optimised can be different. With this approach
a solution is found which should work well for many different selections of shift schedule
sets. At the same time however, the found solution will not be ideal for a specific
selection of shift schedule sets. Apart from that, the scaling also enables to optimise a
charging infrastructure for more than the maximum number of agents.

In order to obtain the charging demand per charging location j and time interval t
Λjt, the charging demand of each cluster i must be allocated to one or several candidate
charging locations. Therefore, the allocation matrix Yij is used:
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Λjt =
∑
i

Yij λ̄it (7.17)

whereby: ∑
j

Yij = 1 ∀j (7.18)

and

Yij ≥ 0 ∀i, j (7.19)

The binary decision variable lj describes if charging stations shall be placed at loc-
ation j. Thus, the number of charging stations at location sj have to fulfil following
condition:

lj ≤ sj ≤ ljnETopt ∀j (7.20)

This condition requires the number of charging stations to be zero if no charging
stations shall be placed at location j and that at least one charging station must be
placed in case that lj is equal one. Hence, sj cannot get any value between zero and
one. Therefore, sj can be a continuous number as only the selection of charging locations
but not the number of charging stations is a required input for the next optimisation
step.

The decision variables of this problem are Yij , lj , and sj . As Yij allocates 900
clusters to 291 candidate charging locations, the complexity of this problem is relatively
high, which makes it important in terms of calculation time and solution quality to use
a linear formulation. Therefore, the waiting time costs which would be evaluated with
the non-linear function 7.6 are not included in the objective function. In order to respect
capacity limitations nevertheless, the condition:

α2s
′
j + α3lj −

Λ̄jt
∆t ≥ 0 ∀j, t (7.21)

is derived from equation 7.13 to require zero waiting time at all charging locations.
Since α3 is negative, it is multiplied by lj in order to allow sj to be zero if no charging
demand is allocated to charging location j (Λ̄jt = 0).

The objective function includes the travelling costs from all cluster centre nodes i
to all charging locations j during all time intervals t:

Cd
∑
i

∑
j

∑
t

Yijdijn̄it (7.22)

and the charging infrastructure costs:

Cc
∑
j

sj (7.23)

where Cd is the detour cost factor, Cc the charging station cost factor (Chapter 6.3),
and dij is the driving distance from cluster i to charging location j.

The complete optimisation problem is formulated as:
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min Cd
∑
i

∑
j

∑
t

Yijdijn̄it + Cc
∑
j

sj (7.24)

subject to:

∑
j

Yij = 1 ∀j (7.25)

Yij ≥ 0 ∀i, j (7.26)
lj ∈ {0, 1} (7.27)

lj ≤ sj ≤ ljnETopt ∀j (7.28)

α2s
′
j + α3lj −

Λ̄jt
∆t ≥ 0 ∀j, t (7.29)

whereby Yij , lj , and sj are the decision variables. This problem was solved by
applying the solver of (Gurobi Optimization, Inc., 2016).

7.6.2 Charging station optimisation
Due to the constraint of having no waiting times at all (equation 7.13), the number
of charging stations is overestimated by the previous step. Therefore, in this step the
number of charging stations is optimised with respect to the waiting time costs.

Again, a simulation is run with unlimited number of charging stations at the charging
locations which were selected in the previous step. The reason for simulating the driving
profiles again is that due to the minimising of travelling costs at the previous step, taxis
are most likely allocated to the closest charging location although the driver might have
preferred a different location farther away. As the drivers’ preferences are respected by
the agents’ behaviour model (Chapter 5.7), another simulation run generates a more
realistic charging demand for the reduced number of charging locations.

The used output of this simulation run is the charging demand : λjt and the number
of charging events njt at each charging location j and time interval t. In contrast to
equations 7.15 and 7.16, the scaled charging demand Λjt and scaled number of charging
events n̄jt are not averaged over time intervals which corresponded to the same time of
the day:

Λjt = nETopt
nETsim

λjt (7.30)

n̄jt = nETopt
nETsim

njt (7.31)

The reason for averaging the demand for the location optimisation but not for the
charging station optimisation is that the waiting times are constraint to zero for the
location optimisation. Due to this constraint, the design of the optimised charging
infrastructure strongly depends on the highest charging demand at one time interval.
In order to avoid that only the highest peak throughout the whole simulation duration
would define the charging infrastructure design, the charging demand is smoothed by
averaging the simulated demand over all days.
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Due to the inclusion of waiting times in the objective function of this optimisation
step, the highest charging demand peak affects the total costs, however it does not
force the optimisation to place an inappropriately high number of charging stations only
to avoid waiting times. Therefore, the solution at this step is more cost efficient and
a reduction of the charging demand variability due to averaging over all days is not
necessary.

The total waiting time costs are:

Cw
∑
j

∑
t

n̄jtW
(
ujt, s

′
j

)
(7.32)

whereby the charging station utilisation ujt is calculated with equation 7.3 and 7.5
with respect to Λjt. To improve the accuracy of the waiting time estimation, the
quadratic conditions 7.10 and 7.11 are used in W

(
ujt, s

′
j

)
. The waiting time costs

factor Cw (Chapter 6.3) quantifies the drivers’ loss of revenue caused by waiting.
The charging infrastructure costs are calculated with equation 7.23 and are multiplied

by the number of simulated days as the waiting time costs are also cumulated over the
whole simulation duration. As the number of charging stations is used as output of this
step, sj must be an integer.

Hence, the formulation of this optimisation problem is:

min Cw
∑
j

∑
t

n̄jtW
(
ujt, s

′
j

)
+ ndayCc

∑
j

sj (7.33)

subject to:

sj ∈ N0 ∀j (7.34)

In contrast to the objective function 7.24, this formulation does not include the
allocation matrix Yij . Thus, all objective equations are uncoupled and can be optimised
separately.

Therefore, the lowest number of charging stations with zero waiting time smax is
calculated by rounding up the root of equation 7.14 to the next integer. The ideal
number of charging stations is found by evaluating equation 7.33 with each value of sj
between zero and smax and selecting the value with the lowest costs.

7.6.3 Charging demand reallocation
In contrast to the first optimisation step, waiting times are allowed to occur for the
optimised charging infrastructure of the second step. Thus, the total number of charging
stations gets reduced and a more cost efficient solution is found. According to the
waiting time estimation (Figure 7.2), a lower number of charging stations means that
the charging demand per charging station must be reduced to keep waiting times at the
same level. In other words: the efficiency of a charging location decreases by reducing
the number of charging stations. Hence, the question is whether the optimised selection
of charging locations at the first step is still ideal after reducing the number of charging
stations or if the number of charging locations should be reduced as well.

Therefore, this step is used to check if it is economically better to remove charging
locations and to reallocate the charging demand of the removed locations to other
locations nearby. In order to assess if the reallocation of charging demand from location
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A to location B is beneficial, charging station costs, travelling costs of all taxis from
location A to B, and the change of waiting time costs is taken into account. The
reallocation is checked for every pair of charging locations.

To optimise the new number of charging stations at location B s∗B, the charging
demand at location A ΛAt is added to the demand at B ΛBt:

Λ∗Bt = ΛAt + ΛBt (7.35)

The objective function 7.33 is minimised with the above method to find s∗B with
respect to the new charging demand Λ∗Bt. The driving costs from A to B are:

cAB = Cd
∑
t

n̄AtdAB (7.36)

where dAB is the driving distance from A to B on the street network.
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Figure 7.4: Algorithm to reallocate charging demand among charging locations (CL)

The costs before the reallocation are:

cbefore = Cw
∑
t

(n̄AtW (uAt, sA) + n̄BtW (uBt, sB)) + ndayCc (sA + sB) (7.37)

and after:
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cafter = cAB + Cw
∑
t

(n̄At + n̄Bt)W (u∗Bt, s∗B) + ndayCcs
∗
B (7.38)

If cafter is smaller than cbefore, charging location A is removed and s∗B charging
stations are placed at location B. Otherwise the charging infrastructure is not changed.
It can be expected that the change of waiting times after the reallocation is marginal,
which means that reallocations are mostly done if the total number of charging stations
can be reduced.

A flow chart of the reallocation algorithm is depicted in Figure 7.4. First, all charging
locations are sorted by the total number of charging events over all time intervals t:

Nj =
∑
t

n̄jt (7.39)

Next, the charging locations are selected in the sorted order starting with the smallest
number of charging events. The reason for following this order is that a reallocation
of the charging demand of location A to location B could be possible as well as a
reallocation from B to A. Due to the travelling costs it is always better to reallocate
charging demand from the location with the smaller number of charging events to the
location with the higher number. Therefore, the algorithm selects charging locations in
ascending order.

After the reallocation of all charging locations was considered, the algorithm starts
a new iteration if the demand of any location was reallocated at the this iteration. This
procedure is repeated as long as no reallocation was made within one iteration.



Chapter 8

Results

This chapter discusses the results of the infrastructure optimisation and presents the
analysis of the simulated taxi driving profiles for these infrastructures. First, Chapter 8.1
introduces the analysed scenarios. The results of the infrastructure optimisation of these
scenarios are presented in Chapter 8.2. The simulated driving profiles are analysed in
Chapter 8.3, whereby an economic assessment is done in Chapter 8.4.

8.1 Scenario definition
The designed scenarios consist of two groups:

Group I concerns charging infrastructure expansion scenarios where it is analysed
how to expand a charging infrastructure for 50 taxis up to the maximal fleet size of
2,949 taxis. Thereby, it is ensured that charging stations of an optimised scenario with a
lower number of taxis must remain at the same place at all following scenarios. Hence,
the condition:

sjk ≤ sjk+n ∀j, n ≥ 1 (8.1)

must be fulfilled, whereby sjk is the number of charging stations at location j after
the kth step of increasing the number of taxis. This condition is ensured by including the
number of charging stations of the previous iteration in the constraint equation 7.20.

Moreover, the possibility of home charging is analysed in this scenario group as well.
Home charging means, that additionally to the public charging stations, an AC charging
station with a charging power of 6.6 kW is placed at the most frequent shift change
location of each agent and is used to charge the battery whenever the agent is having
a shift change at that location.

Scenario group II is designed to analyse the effect of different battery capacities
and public charging power on the infrastructure design, the driving profiles, and the
economics of electric taxis. In order to produce representative results, these parameters
were varied for one vehicle type. EVA was chosen for this purpose as it is the vehicle
with the best known technical parameters. The selected charging power was 40, 50, 60,
100, 120, and 160 kW1 and the analysed battery capacities ranged from 30 to 100 kWh.
Combinations with low battery capacity (< 50 kWh) and high charging power (> 60 kW)

1these are the maximum charging power of each analysed vehicle in this thesis (120 kW is the output
power of Tesla’s superchargers)

110
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may not be realisable today due to technical limitations. Nonetheless, they were analysed
in this study to investigate if these settings could make sense from an economical point
of view.

In order to make a fair comparison between configurations with different battery
capacities, the batteries’ weight difference was taken into account. As EVA’s 50 kWh
battery has a weight of 500 kg (Bender et al., 2014), it is assumed that the battery weight
changes by 10 kg per kWh. With respect to the adjusted weight, the vehicle’s energy
consumption was updated by simulating all trips with all considered battery capacities.
The adjusted energy consumptions and ranges of the analysed vehicle configurations
were taken into account by the driving profile simulation model introduced in Chapter 5.

Furthermore, changing the battery capacity also affects the vehicles’ economics.
Therefore, EVA’s Open Market Values (OMV) was adjusted by 391 SGD/kWh (Kochhan,
2017) with respect to the selected battery capacity. The effect of the OMV on the total
costs is especially important in the context of taxis in Singapore as the payable Additional
Registration Fee (ARF) ranges from 100 to 180% of the OMV (Chapter 6.1).

All chosen scenario configurations of group I and II are summarised in Table 8.1.

Table 8.1: Scenario definition

Group Vehicle type Battery
capacity [kWh]

Charging
power [kW]

Number of
taxis

Home
charging

I BYD e6 61.4 40 50 - 2,949 yes / no
I EVA 50 160 50 - 2,949 yes / no
I Kia Soul 27 100 50 - 2,949 yes / no
I Nissan Leaf 30 50 50 - 2,949 yes / no
I Tesla Model S 70 60 50 - 2,949 yes / no
II EVA 30 - 100 40 - 160 2,949 no

8.2 Infrastructure design
This section discusses the results of the infrastructure optimisation for different vehicle
types (group I) and vehicle configurations (group II) regarding the number and placement
of charging stations.

Figure 8.1 shows the optimised numbers of charging stations and locations for a
taxi fleet of 2,949 taxis for different vehicle types without (a) and with home charging
(b). Obviously, the charging power had a big effect on the results. In case of no home
charging, EVA required 278 charging stations with 160 kW power whereby for the same
fleet size of BYD e6 taxis 2.7 times more 40 kW charging stations were ideal. The main
reason for this difference is that the charging times increase with lower charging power
which means that a higher number of charging stations is necessary to supply the same
number of vehicles. Furthermore, it can be seen that there is a correlation between the
number of charging stations and the number of charging locations. The more charging
stations were required, the more charging locations were chosen.

Other aspects which also caused a difference in the numbers of charging stations
were that 40 kW charging stations are significantly cheaper which allowed to install
more charging stations in order to reduce waiting times and detours (Chapter 6.2).
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Figure 8.1: Optimised number of charging stations and locations for different vehicle
types without home charging (a) and with home charging (b)

Furthermore, it must be kept in mind that BYD’s energy consumption is higher than
EVA’s, which increased the total energy demand and therewith required more charging
stations.

If home charging was available, the number of public charging stations was signi-
ficantly reduced for all vehicle types. Recharging during shift changes even with low
charging power means that taxis started their shift with a higher State of Energy (SOE)
which reduced the charging demand during the shift and in turn the number of charging
stations.

There was a big difference regarding the ratio of reduced charging stations among
the different vehicle types. The highest reduction was achieved for the Tesla Model S
with 46% whereby the number of charging stations got only reduced by 14% for the Kia
Soul. The reason for these big differences is that the Tesla Model S has with 70 kWh
the highest battery capacity whereby the Soul’s battery size is the smallest with 27 kWh.
Thus, Tesla taxis could recharge much more energy during shift changes which reduced
their charging demand during the shift disproportionally compared to the other vehicle
types.

The number of charging stations (a) and the number of charging locations (b) with
respect to the number of taxis for all vehicle types without home charging is depicted
in Figure 8.2. The number of charging stations increased linearly with the number of
taxis, whereby the increase of the number of charging locations became smaller with
higher number of taxis. Hence, more and more charging stations were placed at the
same locations.

The optimisation method prioritised the reduction of detour costs first by placing
charging stations at many different locations. However, the more locations were chosen,
the smaller the effect on detours became. Therefore, at higher numbers of taxis, waiting
time costs were reduced by increasing the number of charging stations per location.

This switch of priorities appeared at around 500 taxis. Thus, this number seems
to be a critical fleet size for which a cost efficient charging infrastructure network can



CHAPTER 8. RESULTS 113

Figure 8.2: Number of charging stations (a) and charging locations (b) with respect to
the taxi fleet size without home charging

be provided. For bigger fleets, the ratio of charging stations per taxi and therewith the
infrastructure costs per taxi did not considerably improve.

Figure 8.3: Number of charging stations with respect to battery capacity and charging
power

Figure 8.3 shows the optimised numbers of charging stations for scenario group II.
As well as for group I, the number of charging stations decreased with the charging
power. The number of charging stations was reduced by 11.8% on average when the
charging power got increased from 40 to 50 kW. Another increase of the charging power
by 10 kW reduced the number of charging stations by only 8.8% on average. Thus, the
efficiency of the charging infrastructure can be significantly improved by increasing the
charging power to at least 50 kW.

Regarding the battery capacity, there are two effects which influence the ideal num-
ber of charging stations. On the one hand, a higher battery capacity allows the agents
to recharge more energy during their breaks, which improves the charging station util-
isation and therewith reduces the required number of charging stations. On the other
hand, higher battery capacities increase the vehicle’s weight and therewith the energy
consumption and charging demand which would require a higher number of charging
stations. The results show that the number of charging stations was reduced with in-
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creasing battery capacity. Hence, the first effect dominates the latter. However, there
was a turnaround in case of high battery capacities and low charging power (≤60 kW).
For these scenarios the number of charging stations was slightly increased by 1% when
the battery capacity was increased from 80 to 100 kWh. The reason why this turnaround
occurred at high battery capacities and low charging power is that the break duration of
many charging events were not long enough to fully recharge a 80 kWh battery. Hence,
there was no benefit in having an even bigger battery in these scenarios.

Figure 8.4: Charging station map for 2,949 EVA taxis and 160 kW charging power
without home charging

A map with all optimised charging locations for 2,949 EVA taxis with 160 kW char-
ging stations is depicted in Figure 8.4. The colour of the dots corresponds to the
number of charging stations. Candidate charging locations (Chapter 3.2.3) which were
not chosen for the placement of charging stations are represented by grey dots.

The map shows a homogeneous distribution of charging locations over the whole
island (excluding areas with very low population density in the west and the middle of
the island). However, charging locations at the city centre in the south of the island
have higher numbers of charging stations (up to twelve) than charging locations at outer
areas. This is mainly caused by the fact that the Central Business District (CBD) is the
area with the highest density of taxis. The location with the highest number of charging
stations outside the CBD is the airport in the very east with eleven charging stations.

A very interesting aspect is, that the lowest number of charging stations per location
is two - no location has only one charging station. Certainly, this was caused by the
waiting time estimation which disproportionally reduced waiting times if more than one
charging station is located at the same place.

A detailed analysis of the optimised selection of charging locations showed that
mainly locations were chosen with big car parks which are close to shopping malls or
food centres. Thus, this selection should be convenient for the drivers as it would allow
them to combine their lunch or dinner breaks with the recharging of their vehicle.

The optimised locations of other vehicle types were very similar to the shown charging
infrastructure. The main difference was that more charging stations were placed at
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mainly the same locations.

8.3 Driving profile analysis
All optimised charging infrastructures were given as input to the driving profile simulation
model in order to analyse the charging behaviour of taxis and to quantify what mileage
and revenue electric taxis can achieve.

First of all, the simulation results were used to compare the waiting times estimated
by the optimisation method with the simulated waiting times. The optimised waiting
time per eventW

(
ujt, s

′
j

)
was calculated with respect to the optimised number of char-

ging stations sj , the number of charging events n̄jt, and the charging station utilisation
ujt per charging location j and time interval t (see Chapter 7.6.1):
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)
∑
j

∑
t n̄jt

(8.2)

The variables n̄jt and ujt were obtained from a simulation run which was executed
during the optimisation with the maximum fleet size of nETsim = 2, 949. To adjust
the charging demand to the number of taxis for which the infrastructure had to be
optimised (nETopt), the charging demand was scaled via equation 7.15. Thus, the
resulting infrastructure should work well for various selections of shift schedule sets
(Chapter 5.4) but is not ideal for one specific choice of shift schedule sets.

In order to evaluate the difference, another optimisation was executed based on an
unscaled demand, meaning that the number of simulated taxis was set to the number
of taxis for which the charging infrastructure had to be optimised ( nETsim = nETopt).

Figure 8.5: Optimised and simulated waiting time per charging event for EVA with
scaled and unscaled charging demand without home charging

The optimised and simulated waiting times of these different approaches are shown
in Figure 8.5 with respect to the fleet size. The simulated waiting times were calculated
by averaging the waiting times of all charging events.
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The simulated and optimised waiting times based on scaled demand deviated by
2.3min for 50 taxis and converged to the same value for 2,949 taxis. The reason
why the deviation decreased with higher number of taxis is that the scaled charging
demand became more and more similar to the charging demand of the simulated taxis
by increasing the number of taxis. Hence, the optimisation could adjust the infrastructure
more accurately to the charging requirement of the simulated taxis and therewith reduce
waiting times.

In contrast, the unscaled charging demand was derived from exactly the same shift
schedule sets which were simulated after the optimisation. As a result, the deviation
between optimised and simulated waiting times was smaller for all fleet sizes. These
small deviations show that the introduced waiting time estimation in Chapter 7.5 is very
accurate. However, as the infrastructures resulting from unscaled demand optimisations
are especially tailored to a specific selection of shift schedule sets, it can be expected
that it would fit considerably worse to any other selection. Therefore, in order to have a
more stable solutions, all analysed charging infrastructures of this chapter were optimised
with the scaled charging demand.

Apart from that, another important aspect which can be drawn from this diagram
is that the average waiting time per charging event is very low - for 2,949 taxis it was
only 0.9min on average. Hence, from an economical point of view it is best to minimise
waiting time costs to a very small amount by investing a high amount of money into a
well-developed charging infrastructure. Moreover, the low waiting times also justify the
chosen optimisation approach where waiting times were constraint to zero at the first
step.

Figure 8.6: Charging station utilisation (a) and waiting time per day (b) with respect to
the number of taxis without home charging

Figure 8.6 shows the average charging station utilisation (a) and the average waiting
time per taxi and day (b) with respect to the number of taxis.

A charging station was considered as utilised when a vehicle was connected with
it, this included the time when the battery was charged as well as the time when the
charging process was finished until the agent continued its shift. Although the charging
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infrastructures were optimised for different vehicle types with different charging demand
and for charging stations with various charging power and costs, the charging station
utilisation was for each scenario almost identical. For only 50 taxis it ranged between
16 and 19% and reached 31 to 32% for the whole fleet of 2,949 taxis. The utilisation
did not significantly increase once a number of 500 taxis was reached.

Although the charging station utilisation increased with respect to the taxi fleet size,
the average waiting times per day were decreased from 7 - 15min for 50 taxis down to
1 - 2min for 2,949 taxis. This was due to the increased number of charging stations per
location which allowed to utilise the charging stations more efficiently.

The Kia Soul was the taxi with the highest simulated waiting times, which was
mainly caused by its configuration of high charging power (100 kW) and low battery
capacity (27 kWh). Due to this combination, only a relatively small proportion of the
break durations could be used to recharge the battery as the maximum charge level was
reached very soon. Therefore, more charging events per shift were required which meant
that agents had to queue more often and therewith increased the total waiting time.
Due to the high costs of 100 kW charging stations, increasing the number of charging
stations in order to reduce waiting times was not cost efficient.

Figure 8.7: Charging and use duration of charging stations per taxi and day

In order to analyse in more detail how charging stations were used by agents with
different vehicle configurations, Figure 8.7 shows the daily charging duration (a) and use
duration (b) of EVA taxis with different battery capacity and charging power.

The charging duration decreased with higher charging power and increased with
respect to the battery capacity due to the higher energy consumption. In contrast, the
use duration, which is the time a vehicle was connected with a charging station became
smaller when the battery capacity was increased. The reason for this is that in case of
lower battery capacities, more charging events are necessary, which increases the chance
that the battery got fully charged before the agent ended the break and continued its
shift.

Due to these effects, the best ratio of charging duration to use duration is almost
100% for vehicles with 100 kWh battery capacity and 40 kW charging power, whereby the
other extreme configuration with 30 kWh battery capacity and 160 kW charging power
had the worst ratio of only 37%. The later case means that with a probability of 63%
a charging station was blocked by a taxi which was not charged any more.

Although configurations of low charging power and high battery capacity allowed the
best utilisation of charging stations during charging events, these configurations are not
ideal from an economic point of view. First of all, low charging power would force the
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agents to expand their breaks in order to recharge enough energy before the next break.
Hence, less time would be left for driving to gain revenue. Furthermore, bigger batteries
also increase the vehicle costs and therefore downgrade the economic potential.

A holistic evaluation of these aspects from an economic point of view follows in
Chapter 8.4.

Figure 8.8: Charging load per region with respect to time for 2,949 EVA taxis without
home charging

The cumulated charging load of all 2,949 EVA taxis with a charging power of 160 kW
with respect to the time and region where charging events occurred is depicted in Fig-
ure 8.8.

It shows that the simulated charging load ranged from 2.7MW at 4:45 to 13.1MW
at 10:30. The main reason why the charging load reached its maximum at this time
is that a high percentage of all taxi drivers are having breaks at that time. Which is
most likely because the morning rush hour ends at that time and the demand for taxis is
comparably low. A similar pattern occurred after the evening peak hour at 20:30 when
the charging load reached another peak of 9.6MW. The lowest load at 4:45 can be
explained by the fact that the lowest percentage of the taxi fleet is active at that time.

The disaggregation of the charging load into regions shows that by far the highest
charging load throughout the day occurred in the central region which also includes the
CBD. This is plausible as the spatial density of taxis is the highest in this region. The
highest load with 7.9MW appeared at 10:30 as well which contributed 60% of the total
load. Interestingly, the evening peak at 20:30 is much smoother and contributed only
45% of the total load. This can be explained by the taxi travelling demand: in the
morning, many customers take a taxi to go from an outer region to the central region
which results in a disproportional high density of taxis in that region after the morning
peak hours (Chapter 3.3). In contrast, at the evening a high percentage of customers
wants to go back to an outer region which reduces the taxi density in the central region
and therewith the charging demand at that time.

The implemented charging behaviour model (Chapter 5.7) which is designed to
recharge as much energy as possible during breaks had a big effect on the simulated
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load curves. More intelligent strategies which take the temporal and spatial utilisation
of charging stations into account could cause significantly different load curves.

These strategies could be favourable from the drivers’ as well as a charging infra-
structure provider’s point of view. Drivers could adjust their charging pattern in order to
minimise waiting times, which would result in a smoother load curve with lower peaks.
Lower peak loads favour an infrastructure provider as a smaller number of charging
stations would be required to keep waiting times at an acceptable level.

A discussion of these results in the context of electrifying the road transport of
Singapore can be found in (Massier et al., 2017).

Figure 8.9: Mileage (a) and revenue (b) per day with respect to the number of taxis
without home charging

Figure 8.9 shows the simulated mileage (a) and revenue (b) of all analysed vehicle
types with respect to the number of taxis. The mileage and revenue of conventional
taxis is represented by the dashed line. These values slightly varied with respect to the
number of taxis as different sets of shift schedules were chosen for each number of taxis.
In order to make the results comparable with electric taxis, exactly the same sets were
chosen for each vehicle type.

When comparing the mileage and revenue values it must be kept in mind that these
are averages over all taxis of the whole fleet. This means that in order to reach the
same average values of conventional taxis, electric taxis would even have to reproduce
driving profiles of the busiest taxis which reach around 650 km per day on average.

The simulated mileage and revenue of electric taxis increased slightly from 50 to
300 taxis and saturated afterwards. The lower values for 50 taxis were mainly caused
by higher waiting times. EVA is the vehicle type which reached almost exactly the
same values as conventional taxis. The biggest gap occurred for BYD e6 taxis which
daily mileage and revenue were 35 km respectively 30 SGD per day lower than that of
conventional taxis. Since the BYD has an even higher battery capacity than EVA, the
performance gap must have been caused by its higher energy consumption and lower
charging power.
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8.4 Economic analysis
In this section, the optimised charging infrastructures and driving patterns are analysed
from an economic point of view. Therefore, charging infrastructure costs, vehicle costs,
and revenue are balanced in order to evaluate the potential profit with respect to different
infrastructure concepts, vehicle types, and vehicle configurations. The profit calculation
is explained in Chapter 6.3.

All revenue, costs, and profit values are given per day. Hereby, it should be kept in
mind that even small differences of e.g. 2 SGD per day and taxi are significant. A taxi
driver in Singapore has an average income of 2,076 SGD per month (Kochhan, 2017).
Earning 2 SGD more per day would cumulate to 730 SGD per year which is the income
of 10.5 days. Considering that most taxi drivers are working seven days a week having
this amount of additional spare time would be very attractive to them.

A taxi operator with 3,000 taxis that could save 2 SGD per day and taxi would gain
2.2 million SGD per year. If this amount would be invested in the charging infrastructure,
255 additional charging stations with 50 kW charging power could be installed.

Figure 8.10: Infrastructure costs (a) and profit (b) per taxi and day without home
charging

Figure 8.10 shows the charging infrastructure costs (a) and the profit (b) per taxi
and day with respect to the number of taxis.

The charging infrastructure costs decreased with the number of taxis until a sat-
uration at around 500 taxis was reached. This is due to the fact that the charging
infrastructure costs are proportional to the number of charging stations and that the
optimisation decreased the number of charging stations per taxi for bigger fleet sizes.

The infrastructure costs for the maximum fleet size of 2,949 taxis were the highest
for the Kia Soul with 5.1 SGD per day which is attributed to the high waiting times which
were described in Figure 8.6(b). The optimisation counteracted these waiting times by
placing more charging stations which increased the infrastructure costs. In contrast,
despite requiring the highest number of charging stations (752), the infrastructure costs
for BYD e6 taxis were the lowest with 3.1 SGD per day which is possible due to the
low costs of 40 kW AC charging stations (Chapter 6.2). The investment costs to install
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the optimised charging infrastructures for 2,949 taxis ranged from 30 to 49 million SGD
with respect to the vehicle type.

The taxis’ profit was calculated by subtracting the vehicle and infrastructure costs
from the revenue (Figure 8.9(b)), the drivers’ labour costs are not included in this
calculation. To compare the results with today’s operating taxis, the estimated profit of
Toyota Prius taxis is depicted by the dashed line.

The estimated profit of the Nissan Leaf, Kia Soul, and EVA ranged from 161 to
169 SGD per day for the maximum fleet size. Although the Nissan Leaf and Kia Soul had
lower revenue and higher infrastructure costs, their profit was very close to EVA’s. This
can be explained by their estimated OMV which is with 35,253 respectively 33,087 SGD
significantly lower than EVA’s 50,982 SGD. Due to the ARF, this price difference becomes
especially important in the context of Singapore (Chapter 6.1).

Apart from that, the estimated profit of BYD e6 and Tesla Model S taxis is 32
respectively 38 SGD per day lower than EVA’s. In case of the BYD e6 this was caused
by its significantly lower revenue and in case of the Tesla Model S by its much higher
OMV of 93,809 SGD which massively increases the vehicle costs.

Figure 8.11: Difference in economic key values per taxi and day between charging infra-
structures without and with home charging for 2,949 taxis

A comparison between charging infrastructures with and without home charging
regarding vehicle costs, infrastructure costs, revenue, and profit is shown in Figure 8.11.
The values for optimised infrastructures with home charging were subtracted from these
without home charging. Hence, positive differences mean that the value without home
charging is higher.

The yellow bars represent the difference in the Total Costs of Ownership (TCO) of the
private charging infrastructure which is zero in case of no home charging and include the
costs of one 6.6 kW charging station per taxi in case of home charging. Since the costs of
one of these charging stations were estimated to 5.80 SGD per day, the overall charging
infrastructure costs were significantly increased by this option. However, as agents had
the chance to recharge the battery during shift changes, the charging demand at public
charging stations was reduced and therewith their required number and costs. The
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public charging infrastructure savings (red bars) ranged from 0.7 to 1.6 SGD per day
and taxi.

Moreover, home charging also allowed agents of all vehicle types (except EVA) to
reach higher mileage and revenue. Due to the higher mileage, the vehicle costs increased
by 0.4 to 2.6 SGD per day, while the revenue increased by 4.7 to 13.1 SGD per day. The
reason why EVA’s mileage and revenue almost remained the same is that its onboard
charger is only designed for 3.3 kW (Bender et al., 2014), hence it benefited much less
from home charging than all other vehicle types.

Balancing all costs with the revenue changes showed that home charging could
significantly increase the profit of BYD e6 taxis by up to 5.6 SGD per day, while Nissan
Leaf, Kia Soul, and Tesla Model S taxis would generate almost the same profit (±0.9 SGD
per day). Due to EVA’s onboard charging limitation, taxis of this type would generate
3.6 SGD per day less profit with home charging.

The reason why home charging only significantly improved the profitability of BYD
e6 taxis is that agents of this vehicle would have to expand their usual breaks significantly
due to the higher energy consumption and lower public charging power of 40 kW. Thus,
home charging reduced the charging time during shifts considerably which would give
the agents more time to generate revenue.

Considering that home charging would require to place one charging station at each
driver’s home which causes significant effort and higher investment costs, this option is
only favourable if the overall profit can be increased. This was only the case for BYD
e6 taxis.

Figure 8.12: Vehicle costs (a), infrastructure costs (b), revenue (c), profit (d) per taxi
and day with respect to battery capacity and charging power

An overview of economic key figures with respect to the taxis’ battery capacity and
charging power for 2,949 EVA taxis without home charging is depicted by Figure 8.12.
Part (a) shows the vehicle costs per day, (b) the charging infrastructure costs per taxi
and day, the simulated revenue per day is shown in (c), and (d) depicts the profit per
day.

The vehicle costs increased with respect to the battery capacity due to increased
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battery costs and with respect to the charging power as the mileage and therewith the
energy costs increased.

The costs per taxi to use the charging infrastructure (excluding energy costs) ranged
between 2.68 and 5.10 SGD per day. Hence, although the optimised charging station
utilisation was with 29 to 33% relatively low, the charging infrastructure costs per taxi
amounted only 2.0 to 4.5% of the vehicle costs. As the number of charging stations
decreased with higher battery capacities (see Figure 8.3), the infrastructure costs de-
creased as well. Between taxis with 30 and 100 kWh batteries, these costs decreased by
47% for 160 kW charging stations.

Interestingly, the charging power with the lowest infrastructure costs increased with
the battery capacity. For 30 kWh batteries, the lowest costs were 4.19 SGD per day for
50 kW charging power, whereby in case of 60 kWh the lowest costs were 3.10 SGD per
day for 160 kW charging stations. This is because there is an intercept in the charging
station costs estimation which reduces the costs per kW with increasing charging power.
Hence, charging stations with high power are more cost efficient. However, as discussed
by Figure 8.7, the ratio of charging duration over total use duration increased with
respect to the battery capacity and decreased with the charging power. Thus, for small
battery sizes, the latter effect outweighs the first, whereas its influence decreases with
higher battery capacities which led to lower infrastructure costs for higher charging
power.

Figure 8.12(c) shows that electric taxis with a battery capacity of at least 40 kWh and
charging power of at least 100 kW could reach almost the same revenue as conventional
taxis (292 SGD per day). The most significant revenue increase of 4.8 SGD per day
appeared when the charging power was increased from 40 to 50 kW. Whereby, another
increase to 60 kW caused a smaller revenue increase of only 2.8 SGD per day.

The profit per taxi and day in (d) was calculated by deducting the vehicle and
infrastructure costs from the revenue. It shows that the highest profit was reached for
a battery capacity of 50 kWh and a charging power of 160 kW. Nevertheless, the profit
with a charging power of 100 kW and the same battery capacity was only 0.8 SGD per
day lower. Taken into account that the battery would deteriorate faster with higher
charging power (Trippe et al., 2014), this configuration should have a higher practical
relevance. Comparing other battery capacities shows that an increase from 100 kW to
160 kW charging power had in general very little effect on the revenue.

While taxis with 40 or 50 kWh batteries had very similar profit, the profit decreased
for 60 kWh or higher battery capacities. This is due to the ARF which is 180% for the
OMV exceeding an amount of 50,000 SGD (Chapter 6.1). As EVA’s OMV was estimated
to 50,982 SGD for a battery capacity of 50 kWh, every increase in battery costs is taxed
with 180%. This significantly downgrades the economic potential of configurations with
higher battery capacities.



Chapter 9

Summary and discussion

This chapter finalises this thesis. Chapter 9.1 summarises the approach and the main
findings of this thesis. Following, Chapter 9.2 discusses its main uncertainties while
Chapter 9.3 suggests extensions of the presented approach to reduce these uncertainties.
Finally, Chapter 9.4 presents the conclusion of this thesis.

9.1 Summary
This thesis proposed a method to optimise a charging infrastructure for electric taxis and
applied this method in the context of Singapore. Thereby, the ideal number of charging
stations per location is optimised by minimising waiting time and detour costs of electric
taxi drivers as well as charging infrastructure costs. To optimise the charging infrastruc-
ture, a bi-level simulation-optimisation approach was chosen. Therefore, an agent-based
driving profile simulation model was developed to estimate the taxis’ charging demand.

In order to simulate driving profiles of electric taxis, a detailed understanding of the
driving patterns of conventional taxis is essential. To gain this knowledge, two data sets
were analysed. The first data set consists of 50 taxis which were equipped with GPS
loggers that recorded the taxis’ location and speed with a frequency of one data point
per second over a period of six months. Additionally this data set was synchronised
with the taxis’ status and revenue. Due to the high recording frequency, this data set
is denoted as High Frequency Data set (HFD). The second data set, denoted as Low
Frequency Date set (LFD) contains status and location information of 2,973 taxis over a
period of one month with an average recording frequency of one data point every three
minutes.

The taxi drivers’ activity pattern are described by shift schedules which were derived
from the LFD. Shift schedules contain the information when and where a driver started
and ended his or her shift as well as when, where, and how long drivers interrupted their
shift to have breaks. In total, 149,960 shift schedules were extracted. Furthermore,
a density clustering algorithm was applied on all breaks and shift change locations to
identify the drivers’ most frequently chosen locations. In order to ensure that drivers
can combine their breaks with recharging the vehicle’s battery, the infrastructure optim-
isation is constraint to place charging stations at only these locations.

In order to get more detailed insights into the drivers’ behaviour, in total 227,971
search and engaged trips were extracted from the HFD. Due to the high recording
frequency, these trips contain detailed information about the taxis’ route choices and
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driving speeds. To emulate the driving behaviour of the simulated agents, these trips
are assigned to the agents with respect to their location and time. Thereby, not only
real traffic conditions but also the demand for taxis is considered by sampling recorded
trips. For example, if the agent is currently in an area with low demand it is likely that
a long search trip will be assigned to it next.

Furthermore, all data points of the HFD were map-matched to Singapore’s street
network. On basis of street network segments which directly connect two intersections
with each other, statistics regarding the distribution of pass-through speeds, accelera-
tions, and driving shares were created.

Due to their limited range and long charging times, it is very important to accurately
simulate the energy consumption and charging process of electric vehicles. Therefore,
a speed-based approach was proposed which estimates the energy consumption with
respect to a given speed profile extracted from the recorded data. The simulated energy
consumption of this model deviated by less than 3% from the measured consumption of
the Nissan Leaf.

Moreover, a route-based approach was proposed which utilises the extracted traffic
statistics. This model estimates the energy consumption with respect to a selected
route and the pass-through speeds of each street segment. Compared to the speed-
based model, this approach requires much less detailed information, in turn its root
mean square error is approximately 14% higher than that of the speed-based approach.
This model is applied in the driving profile simulation whenever agents have to drive to
a specific location and the sampling of recorded trips is not possible.

The agent-based driving profile simulation model was built on a supply-based ap-
proach. Meaning that it uses the recorded driving profiles of conventional taxis as input
and reproduces them unless the agents need to recharge the battery. Therefore, a stand-
still behaviour model and a charging behaviour model was implemented to simulate the
agent’s behaviour. The standstill behaviour model is responsible that the agent fol-
lows the activity pattern described by the shift schedule which is assigned to the agent.
Hence, it decides when and where the agent has to make a break or shift change.

The charging behaviour model has to ensure that the agent never runs out of en-
ergy. Therefore, it decides when and where the agent has to recharge which amount
of energy. Since maintaining a minimum range at any time has a higher priority than
respecting the shift schedule, the charging behaviour model may overrule the standstill
behaviour model. The more critical electric vehicle specific restrictions regarding range
and charging time become, the more often the charging behaviour model overrules the
standstill behaviour model and the stronger electric taxi driving profiles diverge from
that of conventional taxis.

Due to the lack of data regarding electric taxi driving profiles, the driving profile
model could not be directly validated for electric taxis. However, conventional taxis
were simulated by ignoring the vehicle’s energy consumption and disabling the charging
behaviour model. The comparison of the simulation results with the recorded data
showed that the introduced model is capable of accurately reproducing driving profiles
of conventional taxis, i.a. the average simulated mileage diverged by less than 3% from
the recorded mileage.

Furthermore, a case study showed that for a specific charging infrastructure which
allows short detours, charging times, and waiting times, the simulated electric taxis
reached almost equal revenue as conventional taxis. However, by increasing the number
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of agents utilising this infrastructure, the simulated revenue monotonically decreased.
Thus, the intended divergence of the simulated driving profiles of electric taxis due to
increasing obstacles is well illustrated by this case study.

In order to assess the overall economic potential of electric taxis including infra-
structure costs, Total Cost of Ownership (TCO) models for taxis (Kochhan, 2017) and
charging stations were used. Comparing the TCO of electric taxis with conventional
taxis showed that all vehicles considered in this thesis (excluding Tesla Model S) have
lower total costs than the Toyota Prius which is commonly used as taxi in Singapore
today. Thereby, the main advantage of electric vehicles are their energy costs which
are up to 60% lower than that of the Toyota Prius. Vehicle individual cost parameter
were derived from the TCO models to parametrise the objective function of the charging
infrastructure optimisation.

The infrastructure optimisation is formulated as a multiple server allocation problem
and decides how many charging station shall be placed at each candidate charging
location in order to minimise the taxis’ detour and waiting time costs as well as the
charging infrastructure costs. The optimisation is done in three steps while at the
beginning of each step a simulation is executed to extract the taxis’ spatial-temporal
charging demand which is described by the required use duration of charging stations.

First, among the pre-defined candidate charging locations a subset of locations is
chosen where charging stations shall be placed. Therefore, the allocation of the char-
ging demand to each charging location is optimised at the same time. The problem
is formulated as a mixed-integer linear program which minimises detour and charging
infrastructure costs. Waiting times are considered by a linear constraint which requires
a sufficient number of charging stations to ensure zero waiting time.

After the selection of charging locations, another simulation is run in order to quantify
the time dependent charging demand at each selected charging location. As no charging
demand allocation is required in this step, the ideal number of charging stations can
be optimised for each location independently. Therefore, a non-linear objective function
including waiting time costs is used.

The optimisation results showed that the optimised charging infrastructures ensured
average waiting times of less than 2.1min per charging event. Hence, it is expected that
although constraining the waiting times to zero at the first optimisation step, the selec-
tion of locations should have been already close to the global optimum. Nevertheless, a
charging demand reallocation step is executed to check if the resulting increase of de-
tour costs by removing charging locations, can be overcompensated by an overall lower
number of charging stations and therewith lower infrastructure costs. If charging loca-
tions are removed, the second optimisation step is repeated, otherwise the optimisation
is finished.

The optimised number of charging stations for 2,949 taxis ranged from 278 for EVA
to 752 for BYD e6 taxis. The main reason for this wide spread is that EVA taxis are
considered to be charged with 160 kW while BYD e6 taxis had a charging power of only
40 kW. Regarding the chosen locations it was found out that a homogeneously dense
network of charging locations is ideal. Spatial differences are mainly reflected by the
number of charging stations per location: near the city centre and at the airport were
the charging locations with the highest number of charging stations (up to 12 for EVA
taxis) while charging locations in outer regions had only two to four charging stations.

Furthermore, infrastructure extension scenarios were analysed. Within these scen-
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arios first a charging infrastructure for a small number of taxis was optimised and after-
wards extensions of this infrastructure were optimised for an increasing number of taxis.
These scenarios showed in general that for small fleet sizes of 50 taxis disproportionately
high numbers of charging stations were selected so that the average charging station
utilisation ranged between 16 and 19%. The charging station utilisation increased with
higher numbers of taxis while its slope continuously decreased. Apparently, at approx-
imately 500 taxis, this ratio saturated. The charging infrastructure investment costs for
a fleet of 2,949 taxis ranged for different vehicle types between 30 and 49 million SGD.

Simulations were run for all optimised charging infrastructures to analyse the taxis’
driving profiles and their economic potential for different vehicle types and fleet sizes.
The average mileage and revenue of electric taxis significantly increased between 50
and 300 taxis and saturated thereafter. EVA taxis reached almost the same values of
conventional taxis while BYD e6 taxis had the highest mileage and revenue deviation of
35 km and 30 SGD less per day and taxi. These differences were mainly caused by their
higher energy consumption and lower charging power.

The economic profit per taxi is calculated by balancing the taxis’ revenue with vehicle
costs and charging infrastructure costs. Due to the lower achievable revenue, the es-
timated profit per day of BYD taxis was 32 SGD below that of Toyota Prius taxis. The
estimated profit of Tesla Model S taxis was even 38 SGD per day lower than that of
the Prius. However, this difference was caused by the Tesla’s higher price which has
due to the high registration taxes in Singapore a very strong impact on the total costs.
The difference of the profit of EVA, Kia Soul, and Nissan Leaf taxis to the Toyota Prius
ranged between 1 SGD less and 7 SGD more per day whereby EVA was the taxi with the
highest profit. Although the simulated revenue of EVA taxis was up to 17 SGD per day
higher than that of the Kia Soul and Nissan Leaf, its economic profit was diminished by
the higher purchasing price and the therewith related higher taxes.

To understand the effect of the vehicle’s battery capacity and charging power on
the taxis driving profiles and ultimately on the achievable profit, multiple infrastructures
were optimised for vehicles with different battery capacities and charging stations of
different power. Simulations were run to evaluate the taxis’ driving profiles and potential
profit. The results showed that taxis of a battery capacity of 50 kWh and a charging
power of 100 kW would have the best economic potential. This configuration allows
to closely reproduce the same driving profiles of conventional taxis. Hence, higher
battery capacities or charging power would unnecessarily increase vehicle or charging
infrastructure costs.

9.2 Main Uncertainties
From an economic point of view, lower energy costs are the main advantage of electric
taxis over conventional taxis. Hence, the comparison of these vehicle concepts is highly
sensitive on fuel and electricity prices. Since especially the oil price fluctuates strongly
and the estimated economic potential of conventional and electric taxis was found to
be roughly equal, future changes in the energy prices could cause significant differences
among these concepts.

An aspect which is important in the context of Singapore is that so far no electric
vehicles are on the market. Therefore, there are no official values for their Open Market
Value (OMV). The OMV was used as basis for the calculation of the vehicle acquisition
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taxes. As these taxes considerably exceed 100% of the OMV, the vehicle’s total costs
are very sensitive with respect to the OMV. In this thesis the OMV is estimated on
basis of a price comparison between conventional vehicles in other country and their
OMV in Singapore and the price of electric vehicles in the respective countries. These
estimations may significantly deviate from the OMV of electric vehicles once they are
available on the Singaporean market.

Another important cost factor are the charging station installation costs. In this
thesis it was assumed that these costs solely depend on the charging station’s power,
whereby cost reductions due to installing several charging stations at the same place or
location specific considerations (e.g. cable length to grid connection point) were neg-
lected for reasons of simplicity. If cost reductions for several stations at the same location
were considered the optimised total number of charging locations would have been smal-
ler. Furthermore, it is expectable that the inclusion of location specific consideration
would have caused a different selection of charging locations.

Apart from cost uncertainties, a further source of uncertainty is the battery ageing.
The applied vehicle TCO model only considers mileage related battery ageing while the
effect of the charging power is not taken into account. As a wide range of different
charging powers from 40 kW to 160 kW was analysed in this thesis it must be expected
that batteries charged with higher power will degrade considerably faster. As a result,
these vehicles would require more battery replacements which as a consequence down-
grades their economic competitiveness. Taking this into account, it is expectable that
EVA’s economic advantage over the Kia Soul and Nissan Leaf would become smaller
and may vanish completely. Furthermore, the recommended vehicle configuration of a
50 kWh battery and 100 kW charging power may need to be adjusted towards higher
battery capacity and lower charging power.

The implemented charging behaviour is based on the assumption that drivers would
stick to the same activity patterns (shift schedules) as if they used a conventional
vehicle and combine their breaks by recharging the battery. This assumption could not
be proofed due to the lack of electric taxi driving profile data. Hence, it is certainly
possible that electric taxi drivers would alter their activity patterns in order to recharge
their vehicle at different times and locations. These changes affect their driving profiles
and achievable revenue, which in turn have an effect on the economic competitiveness of
electric taxis. Furthermore, a different charging demand would result from these changes
which impose other requirements on the charging infrastructure and as a consequence
lead to a different charging infrastructure design.

Last but not least, it must be kept in mind that the implemented driving profile
simulation model is calibrated to reproduce today’s taxi driving profiles. An evolution of
these driving profiles induced by i.a. changing customer travel demand, urban planning
alterations, or regulation changes are not taken into consideration. In the context of
Singapore there is a number of aspects which either today or in future will influence the
taxi business i.a.:

– Regulation changes on the taxi availability standard (LTA, 2016a)

– Competition by private hire car drivers (Cheng, 2017)

– Launch of autonomous taxis (The Online Citizen, 2017)

– Extension of Mass Rapid Transit (MRT) network (LTA, 2013a)
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– Setting up a second Central Business District (CBD) (The Straits Times, 2017)

It is expected that all these aspects will have an effect on the economic competitiveness
of electric taxis and the ideal charging infrastructure design.

9.3 Future Work
The introduced driving profile simulation model is capable of producing load curves for
each charging location individually. These load curves could be given as input to a
power flow simulation model (Ciechanowicz et al., 2017) in order to evaluate the effect
of charging an electric taxi fleet on the power grid. The results of this simulation could
be used to derive constraints regarding location individual maximum number of charging
stations. These constraints in turn could be integrated in the charging infrastructure
optimisation in order the ensure the grid stability of the found solution.

Moreover, it is also possible to extract time dependent charging and discharging
currents of the vehicle’s battery and the battery’s State Of Charge (SOC) from the
simulation results. These curves could be given as input to a battery ageing model
(Trippe et al., 2014) in order to evaluate the effect of the chosen charging power on
the battery degradation. The results could be forwarded to the vehicle TCO model to
balance charging time costs with battery replacement costs.

A significant improvement of the proposed driving profile simulation model would
be to calibrate and validate the charging behaviour model. Therefore, driving profiles
of electric taxi drivers are indispensable. There is an electric taxi test bed running
in Singapore already (Lim, 2016). However, in contrast to all other Singaporean taxi
drivers, the participating drivers of this test are employed by a company and have to
follow pre-defined shift schedules. Thus, data from this test would not allow to analyse
how self-employed drivers who are free to choose when and how long they want to work
would alter their driving profiles when using an electric vehicle.

In order to get better insights on how taxi drivers would adapt their behaviour, it
would be very helpful to first record and analyse their driving profiles while using a
conventional vehicle. Afterwards, their usage of an electric vehicle shall be recorded
as well. Thereby, it is important to not only track the driving profiles but also the
battery’s SOC in order to get the chance to analyse which of the driver’s decisions were
triggered by the SOC and how much energy the driver recharged at charging events. The
comparison of conventional and electric taxi driving profiles would allow to i.a. extract
how drivers would change their activity patterns, when and where they prefer to recharge
the battery, and at which remaining range they decide to recharge the battery.

The implemented supply-based approach of the driving profile simulation model is
restricted to reproduce the taxi customer demand at the time of the data recording.
Thus, future developments mentioned in the previous section cannot be taken into
account with this approach. In order to study the implications of these developments
on electric taxis a more general demand-based approach would be necessary.

Therefore, the commuters’ travelling demand would have to be given as input to
the taxi simulation model which had to simulate how the taxi driver agents serve this
demand. Thereby, search strategies of taxi agents to find the next customer would
have to be implemented while the assignment of recorded trips is not possible any
more. As a consequence, the simulation model would become more complex. Therefore,
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computational performance challenges may have to be tackled when integrating this
model in the charging infrastructure optimisation.

The taxi commuter travel demand could be generated by a multi-modal simulation
model like MATSim (Horni et al., 2016). Thereby, plenty of aspects like demographic
changes, urban planning alterations, and transportation network extensions can be re-
flected in the generated demand for taxis. Ideally, the taxi simulation model could be
integrated in a multi-modal simulation to feedback commuter waiting times, travel dura-
tions, and costs so that the travel mode choice of the simulated commuter agents could
be iteratively adjusted with respect to the quality of the taxi service.

9.4 Conclusion
The simulation results showed that electric vehicles which are already available on the
market have the potential of covering 95%1 of the mileage of today’s conventional
taxis in Singapore. Therefore, a charging infrastructure which is especially designed
for this application is essential. An economically ideal operation is only possible if
enough charging stations are available to reduce average waiting times below two minutes
per charging event. Although the consequence of this requirement is that the average
charging station utilisation would be less than 32%, the therewith related infrastructure
costs can be overcompensated by the additional revenue electric taxi drivers can achieve.

Electric taxi drivers can cover a high share of the conventional taxis’ mileage while
following the same activity patterns of conventional taxi drivers. Breaks can be made
at the same time and with the same duration and no additional working time would be
required. Thus, if a suitable charging infrastructure is available, it is expectable that
electric taxi drivers would not have to experience significant inconveniences caused by
range limitations or long charging times. A pure electric taxi fleet in Singapore (27,534
taxis) could save 694,000 tons of CO2 emissions per year (electricity production related
emissions included) compared to an entirely diesel fuelled fleet and 150,000 tons per
year compared to a fleet exclusively consisting of hybrid vehicles.

By taking achievable revenue as well as vehicle and charging infrastructure costs
into account, today’s electric vehicles would enable taxi drivers to generate the almost
identical profit as conventional taxi drivers. Thereby, the lower achievable revenue of
electric taxis would be compensated by up to 60% lower energy costs. Nevertheless, it
must be kept in mind that the investment costs for a charging infrastructure designed
for 2,949 taxis ranges between 30 and 49 million SGD. Hence, there is a considerable
risk of investment which could not be justified by a higher profitability of today’s electric
vehicles.

However, a new generation of electric vehicles will be soon or is already available
on the market. Most relevant for the use case of taxis would be the Chevrolet Bolt
(Chevrolet, 2017), Tesla Model 3 (Tesla, 2017a) and the next generation Nissan Leaf
(Nissan, 2017b). These vehicles offer higher range and charging power for comparable
prices to the vehicles analysed in this thesis.

Although taxi driving profiles impose due to their high mileage and short standstill
times challenging requirements on electric vehicles, it is expectable that the overall
economic potential of these vehicle models will surpass that of conventional vehicles.

1simulation result of Kia Soul taxis with a charging infrastructure optimised for 600 taxis
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Due to that progress and higher production figures which are related to lower prices,
mass market electric vehicles have a higher potential to prevail in this use case than
custom designed vehicles with significantly lower production figures.

Even though battery prices are anticipated to fall further, the purchasing prices of
electric vehicles are not expected to fall below conventional vehicle prices before 2025
(Wu et al., 2015). This means in the context of Singapore that higher registration taxes
would have be to be paid for electric vehicles due to the Additional Registration Fee
(ARF) which amounts to at least 100% of the vehicle’s Open Market Value (OMV).
Furthermore, the scheme of the ARF significantly affects the competitiveness of electric
taxis which are more expensive due to higher battery capacities. However, the simulation
results showed that vehicles with higher battery capacities could utilise the charging
infrastructure more efficiently and therewith save up to 47% of charging infrastructure
costs.

There is a Carbon Emission-Based Vehicle Scheme (CEVS) in Singapore which grants
incentives to low-emission vehicles. However, the lowest tier granting the highest incent-
ives is 95 gCO2/km (LTA, 2015a) which can also be undercut by hybrid vehicles. Further
tax incentives for electric vehicles could be justified by their additional CO2 saving poten-
tial compared to hybrid vehicles. Therefore, one option could be to exclude an amount
relative to the vehicle’s battery capacity from the ARF calculation. Thereby, the eco-
nomic competitiveness of electric taxis with high battery capacities would not be affected
and charging infrastructure costs could be saved.
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Glossary

acceleration
profile

derivative of speed profile with respect to time

acceleration share share of speed profile when vehicle accelerated

action event of the driving profile simulation which is executed by an
agent

active action action during which the agent searches for the next customer
and transports her or him to the requested destination

additional
registration fee
(ARF)

fee to register a vehicle which is calculated with respect to the
vehicle’s OMV

agent handler module of driving profile simulation model which manages all
agents

agent memory feature of each agent which records values derived from
previously executed actions of this particular agent

battery swapping concept which enables the exchanging of a vehicle’s discharged
battery by a fully charged battery

break short standstill periods during a shift when the driver has a rest

break location location where a break event took place

break set set of all breaks which occurred during one shift

candidate
charging location

location were charging stations can be installed

certificate of
entitlement
(COE)

certificate of entitlement to register a vehicle in Singapore,
obtained by a bidding system

change action transition action where the agent’s behaviour models decide
which action shall be executed next

charging
behaviour model

model which decides when, where, and how much energy the
agent has to recharge
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charging break additional stop agents have to make to recharge the battery

charging break
action

action when agent executes a charging break

charging demand required use duration of charging stations to sufficiently supply
electric vehicles with energy

charging location location where charging stations are installed

charging schedule schedule containing energy targets amount of rechargeable
energy of each scheduled break and charging break

charging station equipment to recharge the battery of an electric vehicle, each
charging station can only recharge one vehicle at a time

charging station
cost factor

TCO of one charging station per day

cluster centre
node

street network node which is closest to the cluster’s centroid

common standstill
cluster

cluster of standstill events which were derived from all taxis

constant power
(CP) charging

charging the battery with constant power

constant voltage
(CV) charging

charging the battery with constant voltage

controller unit which manages the driving profile simulation including
initialisation, execution, termination, and logging of results

cruise share share of speed profile when vehicle drove with constant speed

deceleration share share of speed profile when vehicle decelerated

detour cost factor factor to quantify loss of revenue due to driving detours to
charging locations

driving share share of a driving status (e.g. idle) during a pass-through of a
street network section

dynamic inductive
charging

contactless charging of the vehicle’s battery while driving

energy target amount of energy which must be stored in the battery after a
scheduled or charging break

engaged trip trip while the taxi is serving a customer

execution layer layer of the driving profile simulation in which actions are
executed by updating the physical layer
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fast charging limit amount of energy when CP charging ends and the charging
power has to be reduced

high frequency
data (HFD)

data set build on logger, status, and revenue data set

home charging use of a private charging station during shift change

idle share share of speed profile when vehicle was stationary

individual
standstill cluster

cluster of standstill period locations which were derived from one
taxi

instant pickup trip engaged trip which immediately followed after another engaged
trip without a search trip or standstill period in between

logger data set data set containing location and speed extracted from GPS
loggers which were installed in the taxis

low frequency
data (LFD)

data set based on the status data set

mental layer layer of the driving profile simulation in which agents decide
what to do next

open circuit
voltage

voltage of a battery which is not connected with any electric
circuit

open market value
(OMV)

value of a vehicle assessed by Singapore customs before taxation

out of charge
action

action which reproduces the event when the agent cannot reach
any charging location due to insufficient SOE

pass-through
speed

average speed of consecutive data points when the taxi drove
through one street network section

physical layer layer of the driving profile simulation which describes the current
situation, e.g. location of agents, topology of street network,
utilisation of charging stations

private charging use of a a charging station which is accessible by only one taxi

public charging use of a charging station which is accessible by any taxi

regenerative
braking

conversion of kinetic energy to electric energy while braking to
supply vehicle internal consumers or recharge the battery

revenue data set data set containing the start time of engaged trips and the fare
which was charged at the end of the trip

route set of all street network sections of one trip

scheduled break break included in shift schedule which agents make to emulate
the taxi driver’s rests, recharging during these breaks is possible
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scheduled break
action

action when the agent executes a scheduled break

search trip trip while the taxi was searching for the next customer

shift period when taxi driver is working (including breaks in between)

shift change long standstill period between two shifts

shift change
action

action when agent executes a shift change

shift change
location

location where shift change took place

shift schedule data set describing the drivers activity during one shift including
start time, end time, and break set

shift schedule set set of all shift schedules which were derived from the driving
profiles of the same taxi

shift schedule
pool

module of driving profile simulation which assigns shift schedules
to agents

simulation time time within a simulated scenario (each agent has a different
simulation time)

speed cluster set of time windows during which the taxis’ average speed was
similar

speed profile set of consecutive speed values equally distributed with respect
to time

standstill action all actions which execute standstill periods (scheduled break,
charging break, and shift change action)

standstill
behaviour model

model which decides when, where, and how long agents have to
make scheduled breaks or shift changes

standstill location location where a standstill period took place

standstill period time period when the taxi stopped for at least five minutes

state of charge
(SOC)

charging level of the battery

state of energy
(SOE)

energy level of the battery

static inductive
charging

contactless charging of the vehicle’s battery while the vehicle is
stationary

status data set data set containing the taxi’s status and location

street network
node

intersection connecting at least two different streets
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street network
section

street segments directly connecting two street network nodes

street network
way

set of street network sections which belong to the same street

terminal voltage voltage applied by the charger to recharge the battery

total cost of
ownership (TCO)

total costs of a product including acquisition costs, installation
costs (if applicable), operating costs, and end of life costs

trip generator module of driving profile simulation which either samples trips or
synthesises trips

waiting time cost
factor

factor to quantify loss of revenue due to waiting for an available
charging station



Acronyms

AC Alternating Current

ARF Additional Registration Fee

CBD Central Business District

CEP Circular Error Distribution

CEVS Carbon Emission-based Vehicle Scheme

CFRP Carbon Fibre Reinforced Polymer

CL Charging Location

CO2 Carbon dioxide

COE Certificate Of Entitlement

CP Constant Power

CREATE Campus for Research Excellence And Technological Enterprise

CS Charging Station

CV Constant Voltage

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DC Direct Current

ED Excise Duty

EoL End of Life

ERP Electronic Road Pricing

EUR Euro

FK Foreign Key

GPS Global Positioning System

GST Goods and Service Tax

HFD High Frequency Data

HWFET HighWay Fuel Economy Test driving schedule
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LFD Low Frequency Data

Li Lithium

LTA Land Transport Authority

MDT Mobile Data Terminal

MRT Mass Rapid Transit

OCV Open Circuit Voltage

OMV Open Market Value

OSM Open Street Map

PK Primary Key

RMSE Root Mean Square Error

SGD Singapore Dollar

SOC State Of Charge

SOE State Of Energy

ST Spatial-Temporal

STC Soon To Clear

STD Standard Deviation

TCO Total Cost of Ownership

TUM Technical University of Munich

UDDS Urban Dynamometer Driving Schedule

USD United States Dollar
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Appendix A

OSM street type description

Table A.1 contains all street type descriptions from (Open Street Map, 2017b) (street
types are denoted as “highway” by OSM).

Table A.1: OSM street type description (Open Street Map,
2017b)

Street type Description

motorway
A restricted access major divided highway, normally with 2 or
more running lanes plus emergency hard shoulder. Equivalent
to the Freeway, Autobahn, etc..

trunk The most important roads in a country’s system that aren’t
motorways. (Need not necessarily be a divided highway.)

primary The next most important roads in a country’s system. (Often
link larger towns.)

secondary The next most important roads in a country’s system. (Often
link towns.)

tertiary The next most important roads in a country’s system. (Often
link smaller towns and villages)

unclassified

The least most important through roads in a country’s system
– i.e. minor roads of a lower classification than tertiary, but
which serve a purpose other than access to properties. Often
link villages and hamlets. (The word ’unclassified’ is a
historical artefact of the UK road system and does not mean
that the classification is unknown; you can use highway=road
for that.)

residential Roads which serve as an access to housing, without function
of connecting settlements. Often lined with housing.

service

For access roads to, or within an industrial estate, camp site,
business park, car park etc. Can be used in conjunction with
service=* to indicate the type of usage and with access=* to
indicate who can use it and in what circumstances.

156



APPENDIX A. OSM STREET TYPE DESCRIPTION 157

Street type Description

motorway link
The link roads (sliproads/ramps) leading to/from a motorway
from/to a motorway or lower class highway. Normally with
the same motorway restrictions.

trunk link The link roads (sliproads/ramps) leading to/from a trunk
road from/to a trunk road or lower class highway.

primary link The link roads (sliproads/ramps) leading to/from a primary
road from/to a primary road or lower class highway.

secondary link The link roads (sliproads/ramps) leading to/from a secondary
road from/to a secondary road or lower class highway.

tertiary link The link roads (sliproads/ramps) leading to/from a tertiary
road from/to a tertiary road or lower class highway.



Appendix B

Speed clusters

Table B.1 contains the time windows of the speed clusters derived in Chapter 3.4.2.

Table B.1: Time windows of speed clusters

Cluster Start time End time

Low Speed
11:07:30 12:22:30
13:37:30 14:52:30
17:37:30 19:52:30

Medium Speed

10:07:30 11:07:30
12:22:30 13:37:30
14:52:30 16:07:30
16:37:30 17:37:30
19:52:30 20:22:30

High Speed

2:22:30 3:22:30
7:37:30 10:07:30
16:07:30 16:37:30
20:22:30 22:07:30

Very High Speed
3:22:30 7:37:30
22:07:30 0:00:00
0:00:00 2:22:30
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Appendix C

Fit parameter

This appendix contains all fit parameter values which were fitted to the recorded driving
profiles in order to describe the traffic statistics in Singapore (Chapter 3.4). These
fits were made for all street types (Chapter 2.5) and speed clusters (Chapter 3.4.2)
individually. Each speed cluster defines a set of time windows (Appendix B) when the
vehicles’ average speed was about equal. In total four clusters were defined:

– Low Speed

– Medium Speed

– High Speed

– Very High Speed

With respect to these clusters, time dependent traffic conditions were taken into account.
Furthermore, there is one general category (All) which is time independent and contains
all recorded data points.

The first set of parameters was fitted to describe the taxis’ speed distribution while
passing through a street network section, these speeds v̄ are denoted as pass through
speeds:

v (p) = a · p− b · (exp (−c · p)− 1) + d · (exp (e · p)− 1) (C.1)

This function returns the pass-through speed with respect to a given quantile p, e.g.
if p is 0.7 then in 70% of all passes through a section of this street type the average
speed was lower than v (0.7). The parameters a, b, and d have the unit km/h while c
and e have no unit, the root mean square error (RMSE) of each fit is given in the unit
of km/h. All fitted parameter values are listed in Table C.1.

Table C.1: Fit parameter of speed distribution

Street type Speed cluster RMSE a b c d e
LIVING STREET All 3.820 3.820 50.191 0.258 0.863 0.060
LIVING STREET Low Speed 2.157 2.157 5.819 0.031 0.105 7.731
LIVING STREET Medium Speed 2.901 2.901 14.502 0.017 0.346 8.016
LIVING STREET High Speed 3.306 3.306 17.159 0.023 0.007 13.158

159



APPENDIX C. FIT PARAMETER 160

Street type Speed cluster RMSE a b c d e
LIVING STREET Very High Speed 4.610 4.610 47.369 2.285 0.138 0.303
MOTORWAY All 1.468 1.468 31.224 58.532 12.759 0.000
MOTORWAY Low Speed 1.384 1.384 31.252 54.470 11.347 0.000
MOTORWAY Medium Speed 1.497 1.497 28.858 57.746 13.510 0.000
MOTORWAY High Speed 1.195 1.195 30.563 57.653 12.485 0.000
MOTORWAY Very High Speed 1.987 1.987 28.456 66.714 14.290 0.000

MOTORWAY LINK All 0.798 0.798 35.467 33.084 7.189 0.000
MOTORWAY LINK Low Speed 0.670 0.670 36.192 29.493 6.771 0.000
MOTORWAY LINK Medium Speed 0.663 0.663 33.993 32.255 7.626 0.000
MOTORWAY LINK High Speed 0.668 0.668 36.396 31.438 7.279 0.000
MOTORWAY LINK Very High Speed 1.118 1.118 32.603 39.826 7.492 0.000

PRIMARY All 1.068 1.068 36.279 8.223 13.644 0.000
PRIMARY Low Speed 1.062 1.062 32.866 7.020 13.271 0.000
PRIMARY Medium Speed 1.034 1.034 33.369 8.177 12.986 0.000
PRIMARY High Speed 1.015 1.015 34.557 9.012 14.441 0.000
PRIMARY Very High Speed 1.094 1.094 38.647 12.214 10.857 0.000

PRIMARY LINK All 0.721 0.721 0.002 55.976 1.633 0.002
PRIMARY LINK Low Speed 0.503 0.503 0.000 57.816 1.404 0.002
PRIMARY LINK Medium Speed 0.420 0.420 0.002 55.681 1.543 0.002
PRIMARY LINK High Speed 0.531 0.531 0.002 55.614 1.625 0.002
PRIMARY LINK Very High Speed 0.793 0.793 0.302 45.290 2.867 0.019
RESIDENTIAL All 1.131 1.131 25.639 3.951 2.161 0.000
RESIDENTIAL Low Speed 1.169 1.169 24.352 3.504 1.758 0.000
RESIDENTIAL Medium Speed 1.117 1.117 24.850 3.642 1.880 0.000
RESIDENTIAL High Speed 1.021 1.021 25.791 3.933 2.462 0.000
RESIDENTIAL Very High Speed 1.184 1.184 27.406 4.549 2.908 0.000
SECONDARY All 0.994 0.994 33.716 5.598 9.769 0.000
SECONDARY Low Speed 0.896 0.896 31.779 4.342 10.881 0.000
SECONDARY Medium Speed 0.917 0.917 32.941 4.805 11.312 0.000
SECONDARY High Speed 0.909 0.909 34.045 5.347 13.459 0.000
SECONDARY Very High Speed 1.454 1.454 35.653 7.032 9.495 0.000

SECONDARY LINK All 1.185 1.185 48.554 3.759 1.044 0.001
SECONDARY LINK Low Speed 1.194 1.194 44.259 0.167 0.005 0.006
SECONDARY LINK Medium Speed 1.222 1.222 43.576 11.219 0.435 0.005
SECONDARY LINK High Speed 1.016 1.016 44.034 16.469 0.490 0.001
SECONDARY LINK Very High Speed 4.437 4.437 40.746 11.060 1.658 0.002

SERVICE All 1.177 1.177 19.344 0.000 0.007 0.001
SERVICE Low Speed 1.133 1.133 17.852 0.000 0.006 0.000
SERVICE Medium Speed 1.169 1.169 18.516 0.000 0.006 0.001
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Street type Speed cluster RMSE a b c d e
SERVICE High Speed 1.229 1.229 19.346 0.000 0.007 0.001
SERVICE Very High Speed 1.298 1.298 21.776 0.018 0.005 0.001
TERTIARY All 0.545 0.545 36.983 4.303 7.490 0.001
TERTIARY Low Speed 0.457 0.457 32.954 4.437 5.676 0.001
TERTIARY Medium Speed 0.491 0.491 33.312 5.173 6.083 0.002
TERTIARY High Speed 0.633 0.633 35.864 4.603 8.727 0.001
TERTIARY Very High Speed 0.545 0.545 38.057 7.462 5.287 0.000

TERTIARY LINK All 0.969 0.969 42.840 0.013 0.001 0.000
TERTIARY LINK Low Speed 1.412 1.412 37.312 0.011 0.000 0.000
TERTIARY LINK Medium Speed 0.919 0.919 41.329 0.012 0.001 0.000
TERTIARY LINK High Speed 1.158 1.158 41.964 0.012 0.000 0.000
TERTIARY LINK Very High Speed 1.781 1.781 49.438 2.886 0.425 0.000

TRACK All 2.925 2.925 23.337 1.652 5.895 0.784
TRACK Low Speed 3.456 3.456 2.384 0.000 0.763 6.515
TRACK Medium Speed 2.117 2.117 0.000 0.106 4.300 3.832
TRACK High Speed 2.855 2.855 22.515 0.000 0.008 0.484
TRACK Very High Speed 3.406 3.406 37.327 0.035 0.482 1.066
TRUNK All 0.689 0.689 33.333 40.000 4.564 0.000
TRUNK Low Speed 0.557 0.557 31.723 39.225 3.613 0.000
TRUNK Medium Speed 0.503 0.503 32.869 37.281 4.843 0.000
TRUNK High Speed 0.567 0.567 35.263 37.851 4.388 0.000
TRUNK Very High Speed 1.145 1.145 34.014 43.942 6.711 0.000

TRUNK LINK All 0.729 0.729 59.923 12.352 10.974 0.000
TRUNK LINK Low Speed 0.756 0.756 56.522 10.271 10.091 0.000
TRUNK LINK Medium Speed 0.914 0.914 57.314 11.676 11.227 0.000
TRUNK LINK High Speed 0.574 0.574 62.436 10.626 11.205 0.000
TRUNK LINK Very High Speed 1.668 1.668 55.699 19.634 10.004 0.000
UNCLASSIFIED All 1.054 1.054 24.241 7.895 1.166 0.104
UNCLASSIFIED Low Speed 0.875 0.875 29.700 0.499 0.013 0.079
UNCLASSIFIED Medium Speed 0.808 0.808 32.195 0.748 0.013 0.075
UNCLASSIFIED High Speed 0.817 0.817 33.746 4.253 0.028 0.041
UNCLASSIFIED Very High Speed 1.445 1.445 8.790 74.647 0.351 0.174

The average acceleration and deceleration v̇ was estimated with respect to the pass-
through speed v̄ (Chapter 3.4.3):

v̇ (v̄) = a (exp (−b · v̄)− exp (−c · v̄)) (C.2)

Thereby, the acceleration fit was made for all recorded values of v̇ ≥ 0.2m/s2 while
decelerations were defined as v̇ ≤ −0.2m/s2. Parameter a has the unit m/s2 while
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b and c are in h/km. The parameter values of the average accelerations are listed in
Table C.2 while the results of the deceleration fit are given in Table C.3.

Table C.2: Fit parameter of average acceleration

Street type Speed cluster RMSE a b c
LIVING STREET All 0.383 0.383 0.639 -0.002
LIVING STREET Low Speed 0.350 0.350 0.579 -0.005
LIVING STREET Medium Speed 0.357 0.357 0.597 -0.002
LIVING STREET High Speed 0.383 0.383 0.670 -0.001
LIVING STREET Very High Speed 0.415 0.415 0.701 0.000
MOTORWAY All 0.260 0.260 0.627 0.006
MOTORWAY Low Speed 0.259 0.259 0.624 0.006
MOTORWAY Medium Speed 0.263 0.263 0.650 0.007
MOTORWAY High Speed 0.275 0.275 0.662 0.007
MOTORWAY Very High Speed 0.276 0.276 0.657 0.007

MOTORWAY LINK All 0.382 0.382 0.904 0.010
MOTORWAY LINK Low Speed 0.369 0.369 0.892 0.010
MOTORWAY LINK Medium Speed 0.379 0.379 0.959 0.011
MOTORWAY LINK High Speed 0.385 0.385 0.944 0.011
MOTORWAY LINK Very High Speed 0.393 0.393 1.028 0.012

PRIMARY All 0.447 0.447 1.230 0.015
PRIMARY Low Speed 0.434 0.434 1.140 0.014
PRIMARY Medium Speed 0.443 0.443 1.229 0.016
PRIMARY High Speed 0.444 0.444 1.242 0.016
PRIMARY Very High Speed 0.446 0.446 1.408 0.017

PRIMARY LINK All 0.487 0.487 1.104 0.010
PRIMARY LINK Low Speed 0.466 0.466 1.051 0.009
PRIMARY LINK Medium Speed 0.473 0.473 1.084 0.010
PRIMARY LINK High Speed 0.470 0.470 1.087 0.010
PRIMARY LINK Very High Speed 0.482 0.482 1.185 0.011
RESIDENTIAL All 0.444 0.444 0.851 0.006
RESIDENTIAL Low Speed 0.433 0.433 0.806 0.005
RESIDENTIAL Medium Speed 0.438 0.438 0.822 0.005
RESIDENTIAL High Speed 0.442 0.442 0.841 0.006
RESIDENTIAL Very High Speed 0.442 0.442 0.847 0.006
SECONDARY All 0.470 0.470 1.144 0.013
SECONDARY Low Speed 0.457 0.457 1.038 0.012
SECONDARY Medium Speed 0.467 0.467 1.103 0.013
SECONDARY High Speed 0.470 0.470 1.154 0.014
SECONDARY Very High Speed 0.466 0.466 1.196 0.014
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Street type Speed cluster RMSE a b c
SECONDARY LINK All 0.465 0.465 0.932 0.005
SECONDARY LINK Low Speed 0.451 0.451 0.889 0.004
SECONDARY LINK Medium Speed 0.463 0.463 0.920 0.004
SECONDARY LINK High Speed 0.467 0.467 0.937 0.005
SECONDARY LINK Very High Speed 0.482 0.482 1.021 0.007

SERVICE All 0.412 0.412 0.718 0.003
SERVICE Low Speed 0.400 0.400 0.687 0.002
SERVICE Medium Speed 0.435 0.435 0.736 0.003
SERVICE High Speed 0.419 0.419 0.744 0.004
SERVICE Very High Speed 0.396 0.396 0.701 0.003
TERTIARY All 0.466 0.466 1.121 0.013
TERTIARY Low Speed 0.463 0.463 1.063 0.012
TERTIARY Medium Speed 0.470 0.470 1.077 0.012
TERTIARY High Speed 0.470 0.470 1.107 0.012
TERTIARY Very High Speed 0.468 0.468 1.139 0.013

TERTIARY LINK All 0.461 0.461 0.895 0.005
TERTIARY LINK Low Speed 0.452 0.452 0.890 0.006
TERTIARY LINK Medium Speed 0.454 0.454 0.869 0.005
TERTIARY LINK High Speed 0.459 0.459 0.912 0.006
TERTIARY LINK Very High Speed 0.480 0.480 0.934 0.006

TRACK All 0.441 0.441 0.811 0.005
TRACK Low Speed 0.441 0.441 0.815 0.005
TRACK Medium Speed 0.413 0.413 0.777 0.006
TRACK High Speed 0.437 0.437 0.775 0.004
TRACK Very High Speed 0.471 0.471 1.010 0.008
TRUNK All 0.355 0.355 1.132 0.015
TRUNK Low Speed 0.358 0.358 1.064 0.014
TRUNK Medium Speed 0.364 0.364 1.270 0.017
TRUNK High Speed 0.362 0.362 1.043 0.013
TRUNK Very High Speed 0.370 0.370 1.454 0.018

TRUNK LINK All 0.438 0.438 1.137 0.013
TRUNK LINK Low Speed 0.429 0.429 1.009 0.011
TRUNK LINK Medium Speed 0.430 0.430 1.159 0.014
TRUNK LINK High Speed 0.433 0.433 1.113 0.012
TRUNK LINK Very High Speed 0.453 0.453 1.420 0.016
UNCLASSIFIED All 0.411 0.411 0.833 0.008
UNCLASSIFIED Low Speed 0.405 0.405 0.800 0.007
UNCLASSIFIED Medium Speed 0.405 0.405 0.823 0.008
UNCLASSIFIED High Speed 0.418 0.418 0.861 0.008
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Street type Speed cluster RMSE a b c
UNCLASSIFIED Very High Speed 0.430 0.430 0.849 0.008

Table C.3: Fit parameter of average deceleration

Street type Speed cluster RMSE a b c
LIVING STREET All 0.453 0.453 0.568 1.638
LIVING STREET Low Speed 0.391 0.391 0.531 1.954
LIVING STREET Medium Speed 0.360 0.360 0.504 2.709
LIVING STREET High Speed 0.388 0.388 0.583 1.687
LIVING STREET Very High Speed 0.556 0.556 0.646 1.008
MOTORWAY All 0.272 0.272 0.698 1.084
MOTORWAY Low Speed 0.278 0.278 0.687 1.042
MOTORWAY Medium Speed 0.282 0.282 0.727 0.662
MOTORWAY High Speed 0.284 0.284 0.712 1.053
MOTORWAY Very High Speed 0.264 0.264 0.705 0.633

MOTORWAY LINK All 0.424 0.424 1.060 0.313
MOTORWAY LINK Low Speed 0.422 0.422 1.020 0.294
MOTORWAY LINK Medium Speed 0.429 0.429 1.113 0.293
MOTORWAY LINK High Speed 0.429 0.429 1.041 0.317
MOTORWAY LINK Very High Speed 0.437 0.437 1.155 0.242

PRIMARY All 0.481 0.481 1.236 0.256
PRIMARY Low Speed 0.465 0.465 1.125 0.316
PRIMARY Medium Speed 0.473 0.473 1.208 0.280
PRIMARY High Speed 0.486 0.486 1.261 0.258
PRIMARY Very High Speed 0.513 0.513 1.462 0.212

PRIMARY LINK All 0.502 0.502 1.021 0.453
PRIMARY LINK Low Speed 0.481 0.481 0.974 0.494
PRIMARY LINK Medium Speed 0.485 0.485 1.007 0.473
PRIMARY LINK High Speed 0.502 0.502 1.038 0.456
PRIMARY LINK Very High Speed 0.543 0.543 1.158 0.385
RESIDENTIAL All 0.461 0.461 0.807 0.750
RESIDENTIAL Low Speed 0.439 0.439 0.767 0.865
RESIDENTIAL Medium Speed 0.452 0.452 0.786 0.790
RESIDENTIAL High Speed 0.461 0.461 0.810 0.748
RESIDENTIAL Very High Speed 0.476 0.476 0.814 0.739
SECONDARY All 0.489 0.489 1.047 0.351
SECONDARY Low Speed 0.469 0.469 0.950 0.476
SECONDARY Medium Speed 0.480 0.480 1.036 0.368
SECONDARY High Speed 0.492 0.492 1.094 0.347
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Street type Speed cluster RMSE a b c
SECONDARY Very High Speed 0.520 0.520 1.155 0.309

SECONDARY LINK All 0.483 0.483 0.898 0.547
SECONDARY LINK Low Speed 0.472 0.472 0.868 0.589
SECONDARY LINK Medium Speed 0.473 0.473 0.897 0.556
SECONDARY LINK High Speed 0.479 0.479 0.909 0.507
SECONDARY LINK Very High Speed 0.513 0.513 0.950 0.546

SERVICE All 0.400 0.400 0.624 0.958
SERVICE Low Speed 0.380 0.380 0.602 0.925
SERVICE Medium Speed 0.412 0.412 0.657 0.975
SERVICE High Speed 0.413 0.413 0.650 0.985
SERVICE Very High Speed 0.395 0.395 0.596 1.063
TERTIARY All 0.489 0.489 1.096 0.337
TERTIARY Low Speed 0.475 0.475 1.038 0.386
TERTIARY Medium Speed 0.485 0.485 1.052 0.388
TERTIARY High Speed 0.492 0.492 1.086 0.366
TERTIARY Very High Speed 0.515 0.515 1.116 0.338

TERTIARY LINK All 0.474 0.474 0.872 0.586
TERTIARY LINK Low Speed 0.452 0.452 0.830 0.675
TERTIARY LINK Medium Speed 0.459 0.459 0.897 0.544
TERTIARY LINK High Speed 0.474 0.474 0.881 0.560
TERTIARY LINK Very High Speed 0.513 0.513 0.916 0.536

TRACK All 0.457 0.457 0.772 0.723
TRACK Low Speed 0.460 0.460 0.728 0.801
TRACK Medium Speed 0.456 0.456 0.769 0.883
TRACK High Speed 0.445 0.445 0.766 0.690
TRACK Very High Speed 0.479 0.479 0.841 0.615
TRUNK All 0.425 0.425 1.398 0.211
TRUNK Low Speed 0.411 0.411 1.190 0.268
TRUNK Medium Speed 0.408 0.408 1.451 0.225
TRUNK High Speed 0.415 0.415 1.156 0.289
TRUNK Very High Speed 0.439 0.439 1.888 0.153

TRUNK LINK All 0.478 0.478 1.169 0.295
TRUNK LINK Low Speed 0.461 0.461 1.049 0.316
TRUNK LINK Medium Speed 0.471 0.471 1.164 0.378
TRUNK LINK High Speed 0.476 0.476 1.141 0.322
TRUNK LINK Very High Speed 0.500 0.500 1.488 0.197
UNCLASSIFIED All 0.436 0.436 0.805 0.710
UNCLASSIFIED Low Speed 0.426 0.426 0.778 0.768
UNCLASSIFIED Medium Speed 0.429 0.429 0.799 0.719
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Street type Speed cluster RMSE a b c
UNCLASSIFIED High Speed 0.440 0.440 0.825 0.704
UNCLASSIFIED Very High Speed 0.471 0.471 0.828 0.713

Driving shares describe the probability of a driving status with respect to the pass-
through speed v̄ (Chapter 3.4.4):

Idle: v = 0

Acceleration: v > 0 ∧ v̇ > 0.2 m
s2

Deceleration: v > 0 ∧ v̇ < −0.2 m
s2

Cruise: v > 0 ∧ −0.2 m
s2 ≤ v̇ ≤0.2 m

s2

Following fit functions were used to describe these shares:

fidle (v̄) = exp
(
−
(
aidle ·

√
v̄ + bidle · v̄2

))
(C.3)

facc (v̄) =aacc (exp (−bacc · v̄)− exp (−cacc · v̄)) (C.4)
fdec (v̄) =adec (exp (−bdec · v̄)− exp (−cdec · v̄)) (C.5)
fcruise (v̄) = 1− (fidle (v̄) + facc (v̄) + fdec (v̄)) (C.6)

Table C.4 lists the units of all fit parameter.

Table C.4: Units of driving share fit parameter

Parameter Unit

aidle

√
h
km

bidle
(
h
km

)2

aacc -
bacc

h
km

cacc
h
km

adec -
bdec

h
km

cdec
h
km

The fitted idle share parameter values are given in Table C.5, acceleration share
parameter in Table C.6 and deceleration share parameter in Table C.7. There were no
parameter fitted for the cruise share as this share is calculated with respect to the other
shares.

Table C.5: Fit parameter of idle share

Street type Speed cluster RMSE aidle bidle

LIVING STREET All 0.220 0.220 0.513



APPENDIX C. FIT PARAMETER 167

Street type Speed cluster RMSE aidle bidle

LIVING STREET Low Speed 0.215 0.215 0.507
LIVING STREET Medium Speed 0.201 0.201 0.509
LIVING STREET High Speed 0.206 0.206 0.500
LIVING STREET Very High Speed 0.235 0.235 0.513
MOTORWAY All 0.109 0.109 0.427
MOTORWAY Low Speed 0.108 0.108 0.439
MOTORWAY Medium Speed 0.108 0.108 0.452
MOTORWAY High Speed 0.108 0.108 0.435
MOTORWAY Very High Speed 0.110 0.110 0.367

MOTORWAY LINK All 0.130 0.130 0.265
MOTORWAY LINK Low Speed 0.129 0.129 0.265
MOTORWAY LINK Medium Speed 0.129 0.129 0.265
MOTORWAY LINK High Speed 0.131 0.131 0.265
MOTORWAY LINK Very High Speed 0.131 0.131 0.265

PRIMARY All 0.118 0.118 0.240
PRIMARY Low Speed 0.119 0.119 0.247
PRIMARY Medium Speed 0.117 0.117 0.242
PRIMARY High Speed 0.116 0.116 0.235
PRIMARY Very High Speed 0.119 0.119 0.229

PRIMARY LINK All 0.231 0.231 0.302
PRIMARY LINK Low Speed 0.230 0.230 0.302
PRIMARY LINK Medium Speed 0.229 0.229 0.302
PRIMARY LINK High Speed 0.231 0.231 0.302
PRIMARY LINK Very High Speed 0.232 0.232 0.302
RESIDENTIAL All 0.147 0.147 0.287
RESIDENTIAL Low Speed 0.145 0.145 0.287
RESIDENTIAL Medium Speed 0.147 0.147 0.287
RESIDENTIAL High Speed 0.147 0.147 0.287
RESIDENTIAL Very High Speed 0.149 0.149 0.287
SECONDARY All 0.140 0.140 0.267
SECONDARY Low Speed 0.139 0.139 0.267
SECONDARY Medium Speed 0.139 0.139 0.267
SECONDARY High Speed 0.140 0.140 0.267
SECONDARY Very High Speed 0.140 0.140 0.267

SECONDARY LINK All 0.240 0.240 0.330
SECONDARY LINK Low Speed 0.237 0.237 0.330
SECONDARY LINK Medium Speed 0.238 0.238 0.330
SECONDARY LINK High Speed 0.243 0.243 0.330
SECONDARY LINK Very High Speed 0.243 0.243 0.330
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Street type Speed cluster RMSE aidle bidle

SERVICE All 0.177 0.177 0.333
SERVICE Low Speed 0.175 0.175 0.336
SERVICE Medium Speed 0.175 0.175 0.335
SERVICE High Speed 0.180 0.180 0.332
SERVICE Very High Speed 0.177 0.177 0.317
TERTIARY All 0.177 0.177 0.287
TERTIARY Low Speed 0.173 0.173 0.287
TERTIARY Medium Speed 0.177 0.177 0.287
TERTIARY High Speed 0.178 0.178 0.287
TERTIARY Very High Speed 0.178 0.178 0.287

TERTIARY LINK All 0.216 0.216 0.319
TERTIARY LINK Low Speed 0.214 0.214 0.319
TERTIARY LINK Medium Speed 0.212 0.212 0.319
TERTIARY LINK High Speed 0.220 0.220 0.319
TERTIARY LINK Very High Speed 0.216 0.216 0.319

TRACK All 0.234 0.234 0.555
TRACK Low Speed 0.233 0.233 0.565
TRACK Medium Speed 0.233 0.233 0.568
TRACK High Speed 0.217 0.217 0.505
TRACK Very High Speed 0.249 0.249 0.701
TRUNK All 0.171 0.171 0.329
TRUNK Low Speed 0.172 0.172 0.343
TRUNK Medium Speed 0.169 0.169 0.331
TRUNK High Speed 0.171 0.171 0.329
TRUNK Very High Speed 0.170 0.170 0.298

TRUNK LINK All 0.191 0.191 0.297
TRUNK LINK Low Speed 0.189 0.189 0.297
TRUNK LINK Medium Speed 0.189 0.189 0.297
TRUNK LINK High Speed 0.191 0.191 0.297
TRUNK LINK Very High Speed 0.196 0.196 0.297
UNCLASSIFIED All 0.188 0.188 0.308
UNCLASSIFIED Low Speed 0.184 0.184 0.308
UNCLASSIFIED Medium Speed 0.185 0.185 0.308
UNCLASSIFIED High Speed 0.191 0.191 0.308
UNCLASSIFIED Very High Speed 0.193 0.193 0.308
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Table C.6: Fit parameter of acceleration share

Street type Speed cluster RMSE aacc bacc cacc

LIVING STREET All 0.220 0.220 0.193 0.015
LIVING STREET Low Speed 0.215 0.215 0.227 0.017
LIVING STREET Medium Speed 0.201 0.201 0.245 0.021
LIVING STREET High Speed 0.206 0.206 0.268 0.025
LIVING STREET Very High Speed 0.235 0.235 0.196 0.011
MOTORWAY All 0.109 0.109 0.392 0.008
MOTORWAY Low Speed 0.108 0.108 0.392 0.008
MOTORWAY Medium Speed 0.108 0.108 0.373 0.007
MOTORWAY High Speed 0.108 0.108 0.397 0.008
MOTORWAY Very High Speed 0.110 0.110 0.325 0.007

MOTORWAY LINK All 0.130 0.130 0.422 0.005
MOTORWAY LINK Low Speed 0.129 0.129 0.423 0.005
MOTORWAY LINK Medium Speed 0.129 0.129 0.423 0.005
MOTORWAY LINK High Speed 0.131 0.131 0.423 0.005
MOTORWAY LINK Very High Speed 0.131 0.131 0.423 0.004

PRIMARY All 0.118 0.118 0.492 0.009
PRIMARY Low Speed 0.119 0.119 0.458 0.008
PRIMARY Medium Speed 0.117 0.117 0.497 0.010
PRIMARY High Speed 0.116 0.116 0.520 0.010
PRIMARY Very High Speed 0.119 0.119 0.553 0.010

PRIMARY LINK All 0.231 0.231 41.756 0.026
PRIMARY LINK Low Speed 0.230 0.230 103.006 0.026
PRIMARY LINK Medium Speed 0.229 0.229 86.756 0.026
PRIMARY LINK High Speed 0.231 0.231 118.631 0.026
PRIMARY LINK Very High Speed 0.232 0.232 127.909 0.026
RESIDENTIAL All 0.147 0.147 20.361 0.028
RESIDENTIAL Low Speed 0.145 0.145 40.517 0.028
RESIDENTIAL Medium Speed 0.147 0.147 62.549 0.029
RESIDENTIAL High Speed 0.147 0.147 62.861 0.028
RESIDENTIAL Very High Speed 0.149 0.149 64.424 0.028
SECONDARY All 0.140 0.140 18.187 0.026
SECONDARY Low Speed 0.139 0.139 51.000 0.026
SECONDARY Medium Speed 0.139 0.139 53.812 0.026
SECONDARY High Speed 0.140 0.140 52.718 0.026
SECONDARY Very High Speed 0.140 0.140 33.968 0.026

SECONDARY LINK All 0.240 0.240 20.726 0.039
SECONDARY LINK Low Speed 0.237 0.237 37.288 0.040
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Street type Speed cluster RMSE aacc bacc cacc

SECONDARY LINK Medium Speed 0.238 0.238 51.976 0.040
SECONDARY LINK High Speed 0.243 0.243 29.320 0.040
SECONDARY LINK Very High Speed 0.243 0.243 84.788 0.040

SERVICE All 0.177 0.177 1.688 0.026
SERVICE Low Speed 0.175 0.175 5.468 0.033
SERVICE Medium Speed 0.175 0.175 5.111 0.032
SERVICE High Speed 0.180 0.180 2.384 0.029
SERVICE Very High Speed 0.177 0.177 0.793 0.016
TERTIARY All 0.177 0.177 49.834 0.031
TERTIARY Low Speed 0.173 0.173 139.850 0.031
TERTIARY Medium Speed 0.177 0.177 185.347 0.031
TERTIARY High Speed 0.178 0.178 87.334 0.031
TERTIARY Very High Speed 0.178 0.178 156.084 0.031

TERTIARY LINK All 0.216 0.216 70.638 0.031
TERTIARY LINK Low Speed 0.214 0.214 204.295 0.031
TERTIARY LINK Medium Speed 0.212 0.212 91.263 0.031
TERTIARY LINK High Speed 0.220 0.220 135.638 0.031
TERTIARY LINK Very High Speed 0.216 0.216 93.763 0.031

TRACK All 0.234 0.234 0.822 0.016
TRACK Low Speed 0.233 0.233 1.737 0.018
TRACK Medium Speed 0.233 0.233 11.466 0.030
TRACK High Speed 0.217 0.217 12.328 0.032
TRACK Very High Speed 0.249 0.249 0.396 0.008
TRUNK All 0.171 0.171 0.476 0.009
TRUNK Low Speed 0.172 0.172 0.588 0.013
TRUNK Medium Speed 0.169 0.169 0.449 0.008
TRUNK High Speed 0.171 0.171 0.430 0.008
TRUNK Very High Speed 0.170 0.170 0.520 0.011

TRUNK LINK All 0.191 0.191 18.866 0.025
TRUNK LINK Low Speed 0.189 0.189 78.554 0.026
TRUNK LINK Medium Speed 0.189 0.189 28.397 0.026
TRUNK LINK High Speed 0.191 0.191 25.897 0.026
TRUNK LINK Very High Speed 0.196 0.196 49.491 0.026
UNCLASSIFIED All 0.188 0.188 40.721 0.038
UNCLASSIFIED Low Speed 0.184 0.184 101.346 0.038
UNCLASSIFIED Medium Speed 0.185 0.185 93.221 0.038
UNCLASSIFIED High Speed 0.191 0.191 66.971 0.038
UNCLASSIFIED Very High Speed 0.193 0.193 45.096 0.038
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Table C.7: Fit parameter of deceleration share

Street type Speed cluster STD adec bdec cdec

LIVING STREET All 0.220 0.220 0.593 0.029
LIVING STREET Low Speed 0.215 0.215 0.802 0.035
LIVING STREET Medium Speed 0.201 0.201 68.056 0.068
LIVING STREET High Speed 0.206 0.206 0.844 0.038
LIVING STREET Very High Speed 0.235 0.235 0.597 0.026
MOTORWAY All 0.109 0.109 0.300 0.005
MOTORWAY Low Speed 0.108 0.108 0.294 0.005
MOTORWAY Medium Speed 0.108 0.108 0.282 0.004
MOTORWAY High Speed 0.108 0.108 0.308 0.005
MOTORWAY Very High Speed 0.110 0.110 0.266 0.004

MOTORWAY LINK All 0.130 0.130 10.385 0.024
MOTORWAY LINK Low Speed 0.129 0.129 61.948 0.024
MOTORWAY LINK Medium Speed 0.129 0.129 31.010 0.024
MOTORWAY LINK High Speed 0.131 0.131 30.385 0.024
MOTORWAY LINK Very High Speed 0.131 0.131 50.073 0.024

PRIMARY All 0.118 0.118 0.483 0.010
PRIMARY Low Speed 0.119 0.119 0.508 0.012
PRIMARY Medium Speed 0.117 0.117 0.487 0.011
PRIMARY High Speed 0.116 0.116 0.497 0.011
PRIMARY Very High Speed 0.119 0.119 0.607 0.013

PRIMARY LINK All 0.231 0.231 0.412 0.011
PRIMARY LINK Low Speed 0.230 0.230 0.412 0.011
PRIMARY LINK Medium Speed 0.229 0.229 0.412 0.011
PRIMARY LINK High Speed 0.231 0.231 0.412 0.011
PRIMARY LINK Very High Speed 0.232 0.232 0.412 0.011
RESIDENTIAL All 0.147 0.147 0.565 0.013
RESIDENTIAL Low Speed 0.145 0.145 0.565 0.013
RESIDENTIAL Medium Speed 0.147 0.147 0.565 0.013
RESIDENTIAL High Speed 0.147 0.147 0.565 0.013
RESIDENTIAL Very High Speed 0.149 0.149 0.565 0.013
SECONDARY All 0.140 0.140 0.572 0.013
SECONDARY Low Speed 0.139 0.139 0.572 0.013
SECONDARY Medium Speed 0.139 0.139 0.572 0.013
SECONDARY High Speed 0.140 0.140 0.572 0.013
SECONDARY Very High Speed 0.140 0.140 0.572 0.013

SECONDARY LINK All 0.240 0.240 0.602 0.017
SECONDARY LINK Low Speed 0.237 0.237 0.602 0.018
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Street type Speed cluster STD adec bdec cdec

SECONDARY LINK Medium Speed 0.238 0.238 0.602 0.018
SECONDARY LINK High Speed 0.243 0.243 0.602 0.018
SECONDARY LINK Very High Speed 0.243 0.243 0.603 0.017

SERVICE All 0.177 0.177 0.634 0.019
SERVICE Low Speed 0.175 0.175 0.690 0.022
SERVICE Medium Speed 0.175 0.175 0.620 0.019
SERVICE High Speed 0.180 0.180 0.646 0.020
SERVICE Very High Speed 0.177 0.177 1.108 0.025
TERTIARY All 0.177 0.177 0.547 0.016
TERTIARY Low Speed 0.173 0.173 0.547 0.016
TERTIARY Medium Speed 0.177 0.177 0.547 0.016
TERTIARY High Speed 0.178 0.178 0.547 0.016
TERTIARY Very High Speed 0.178 0.178 0.547 0.016

TERTIARY LINK All 0.216 0.216 0.822 0.018
TERTIARY LINK Low Speed 0.214 0.214 0.822 0.018
TERTIARY LINK Medium Speed 0.212 0.212 0.822 0.018
TERTIARY LINK High Speed 0.220 0.220 0.822 0.018
TERTIARY LINK Very High Speed 0.216 0.216 0.822 0.018

TRACK All 0.234 0.234 0.373 0.010
TRACK Low Speed 0.233 0.233 0.406 0.014
TRACK Medium Speed 0.233 0.233 0.287 0.004
TRACK High Speed 0.217 0.217 0.466 0.014
TRACK Very High Speed 0.249 0.249 0.495 0.015
TRUNK All 0.171 0.171 0.387 0.009
TRUNK Low Speed 0.172 0.172 0.415 0.010
TRUNK Medium Speed 0.169 0.169 0.439 0.011
TRUNK High Speed 0.171 0.171 0.376 0.008
TRUNK Very High Speed 0.170 0.170 0.350 0.007

TRUNK LINK All 0.191 0.191 0.626 0.013
TRUNK LINK Low Speed 0.189 0.189 0.626 0.013
TRUNK LINK Medium Speed 0.189 0.189 0.627 0.013
TRUNK LINK High Speed 0.191 0.191 0.626 0.013
TRUNK LINK Very High Speed 0.196 0.196 0.627 0.013
UNCLASSIFIED All 0.188 0.188 0.747 0.020
UNCLASSIFIED Low Speed 0.184 0.184 0.747 0.020
UNCLASSIFIED Medium Speed 0.185 0.185 0.747 0.020
UNCLASSIFIED High Speed 0.191 0.191 0.747 0.020
UNCLASSIFIED Very High Speed 0.193 0.193 0.747 0.020



Appendix D

Database design

In order to create one consistent data source and to make the data handling more
convenient, all recorded data as well as the data output of the driving profile simulation
model (Chapter 5) was stored in custom designed databases. This appendix presents
the design of these databases.

Each database consists of several tables which are related via primary keys (PK) and
foreign keys (FK). The Figures D.1, D.2, and D.3 show the design of the developed
databases. Every block of these diagrams represents one table. Thereby, the top row
contains the table name, the following row the name of the table’s PK while below the
names of the table’s columns are listed. To link tables with each other these columns
contain FKs which refer to PKs of other tables. As en example, in Figure D.1 the
DataPoint table is linked with the Trip table via the key idTrip, hence all entries of
the DataPoint table with the same idTrip value belong to one trip while the Trip table
contains additional information of the trip. The arrows of the diagram illustrate which
tables are linked to each other.

The design of the database containing the High Frequency Data set (HFD), intro-
duced in Chapter 3.1, is presented by Figure D.1. This database contains all recorded
data points which were aggregated to trips, shifts, and vehicles. The database also
contains the OSM street network (Chapter 2.5) and links each data point to the section
it was map-matched to. The fit parameters (Chapter 3.4) derived from these statistics
are included as well. Moreover, data points are also matched to spatial areas denoted
as SubZone, PlanningArea, and Region.

This database contains all search and engaged trips (Chapter 3.3.1) which were used
by the simulation model and the energy consumption of each vehicle type simulated
with the speed-based approach (Chapter 4.1.2). The results of a survey conducted by
(Kochhan, 2017) are included as well.

The design of the database for the Low Frequency Data set (LFD) is depicted by
Figure D.2. As well as the HFD database, its recorded data points are aggregated to
trips, shifts, and vehicles. Furthermore, this database contains an assignment of all
standstill periods to common and individual standstill clusters (Chapter 3.2.3). In order
to avoid redundant data, some tables of this database are related to tables of the HFD
database. The respective HFD tables are represented by blocks with grey background.

The results of the driving profile simulation are stored in another database. The
design of this database is shown in Figure D.3. This database contains the definition of
the simulated scenarios - namely the used vehicle type of each agent and the placement
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Shift

PK idShift

FK1 idVehicle

Trip

PK idTrip

FK1 idShift
FK2 idStatusTaxiData
 duration [h]
 distance [km]
 revenue [SGD]

DataPoint

PK idDataPoint

FK1 idTrip
FK3 idStandstillPeriod
FK2 idSubZoneTaxiData
 datetime
 location

StandstillPeriod

PK idStandstillPeriod

FK1 idStandstillTypeTaxiData
FK2 idTripBefore
 idTripAfter
 duration [h]

Vehicle

PK idVehicle

 licensePlate
FK1 idVehicleTypeTaxiData
FK2 idHomeSubZoneTaxiData

VehicleType

PK idVehicleType

 idTaxiType
 name

Status

PK idStatus

 name

SubZone

PK idSubZone

 idPlanningArea
 polygon
 name

StandstillType

PK idStandstillType

 name

StandstillCluster

PK idStandstillCluster

FK1 idStandstillPeriod
FK2 idCluster

ClusterType

PK idClusterType

 name

Node

PK idNode

 location
 idOSM
 idSubZone

Cluster

PK idCluster

FK1 idNodeTaxiData
FK2 idClusterType

Figure D.2: Design of LFD database

and power of charging stations. In order to be able to reproduce the simulated results,
the database contains the revision numbers of each code and data file which was used
to run the simulation. The code and data files are organised in a repository which allows
to trace back changes with respect to the revision number. The random seed of the
simulation run and all parameter values are stored as well.

In contrast to the other databases, the simulation database does not contain data
points but has sections of the agents’ route choices as lowest level of information. These
sections are aggregated to trips, shifts, and vehicles. Furthermore, the vehicle’s State
of Energy (SOE) is recorded at the start and the end of each trip. Every simulated
charging process is recorded and linked to the agent’s standstill period and the charging
location where it took place.

Again, in order to avoid redundant data, tables of this database are related to tables
of the HFD and LFD database.
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Appendix E

Simulation model classes

This appendix introduces the class structure of the object-oriented driving profile simu-
lation model (Chapter 5).

Each class is represented by one block which is further separated into three boxes.
The top box contains the name of the class, the middle box lists all public properties of
the class and the bottom box lists all public methods of the class. The solid lines show
which object of one class constructs objects of other classes. Thereby, the diagram’s
upper object always constructs objects below, e.g. in Figure E.1 the Controller constructs
the SampleGenerator. Dashed lines indicate which objects are an input to construct
another object, e.g. in the same diagram, a ControllerSettings object is required to
construct the Controller. Solid lines with an arrow at the end show relations of base
and sub classes, e.g. in Figure E.2 the VehicleBasicImpl class is a subclass of the
VehicleAbstract class. Base classes define properties and methods which must be defined
in each of its sub classes.

The Controller is the top class of the simulation model which triggers the initialisation
of all other classes. All classes which are closely linked to the Controller are depicted in
Figure E.1.

First of all, in order to construct a Controller object, the ControllerSettings object
must be constructed. This object contains all settings of the Controller like i.a. where the
simulation results shall be saved or how much information shall be displayed during the
simulation. After the initialisation of the Controller a Scenario object is created which
handles all information of the physical world, i.a. the street network or the placement of
charging stations. In order to execute the simulation, MobSim is constructed by giving
the Scenario object as input. MobSim further constructs the ActionHandler and the
AgentHandler. During the simulation, the AgentHandler selects the agent which is next
to execute an action and hands it over to the ActionHandler which executes the next
action for this agent.

Once each agent has exceeded the defined simulation duration, the AgentHandler
terminates the simulation. Afterwards, the Controller creates and saves a ScenarioRes-
ults object which includes the main simulation results, the path to all log files and the
definition of the scenario.

All objects which initialisation is triggered by the Scenario object are shown in Fig-
ure E.2.

The ScenarioDefinition object is required as input in order to construct the Scenario
object. ScenarioDefinition contains all information about the scenario which was sim-

177
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+Controller()
+getParameters()
+getVersion()
+run()
+killDueToError()
+getSimulationEndTime()
+getSettings()
+updateSettings()

+scenario : Scenario
+mobsim : MobSim
+sampleGenerator : SampleGenerator
+log : log4m
+exportHandler
-settings : ControllerSettings

Controller

+Scenario()
+getParameters()
+getVersion()
+createScenario()
+getAllBEVAgents()

+scenarioDefinition : ScenarioDefinition
+agentFactory : AgentFactory
+chargingLocationFactory : ChargingLocationFactory
+agents : TaxiDriverAgent
+chargingLocations : ChargingLocation
+streetNetwork : StreetNetwork
+shiftSchedulePool : ShiftSchedulePool
-log : log4m

Scenario

+SampleGenerator()
+getParameters()
+getVersion()
+setSeed()
+resetSeed()
+sampleOne()

+seed

SampleGenerator

+getLogger()
+testSpeed()
+setFilename()
+setCommandWindowLevel()
+setLogLevel()
+trace()
+debug()
+info()
+warn()
+error()
+fatal()
+isInfoUsed()

+fullpath
+commandWindowLevel
+logLevel

log4m

+MobSim()
+getParameters()
+getVersion()
+runMobSim()

+agentHandler : AgentHandler
+actionHandler : ActionHandler
-controller : Controller
-scenario : Scenario
-log : log4m

MobSim

+AgentHandler()
+getParameters()
+getVersion()
+getNextAgent()
+allAgentsHandled()
+updateAgentSimTimeList()
+resetAgentHandler()

-scenario : Scenario
-log : log4m

AgentHandler

+ActionHandler()
+getParameters()
+getVersion()
+handleNextActionForAgent()

+actions : ActionAbstract
+tripGenerator : TripGenerator
+standstillExecuter : StandstillExecuter
+tripExecuter : TripExecuter
+chargingHandler
-log : log4m

ActionHandler

+ControllerSettings()
+checkIfSettingsAreValid()

+showInfoInitialisation
+logInfoInitialisation
+showInfoSimulation
+logInfoSimulation
+dirInitialisationLog
+dirSimulationLog
+logSimulationResults
+logTripRoute
+createResultsSummary
+showResultsSummary
+showSimulationTime_min
+estimateEndTimeSimulation
+debugMode
+nWorker

ControllerSettings

1

1

1

1

1

1

1

1

1

1

1

1

+ScenarioResults()
+plotHistograms()
+plotAverageValuesVsDay()
+displayAverageValues()
+showAllResults()

+scenarioDefinition : ScenarioDefinition
+agentInfo
+agentStatistics
+directory

ScenarioResults

1

1

1

1

1

Figure E.1: Controller related classes

ulated, i.e. simulation duration, number of agents, or the agents’ vehicle type. Based
on this information, object factories construct all ChargingLocation and Agent objects.
Each Agent gets a Vehicle, ChargingBehaviourModel (Chapter 5.7.2), StandstillBeha-
viourModel (Chapter 5.7.1), EstimationModel, and TaxiAgentMemory (Chapter 5.6)
object assigned.

The objects which are constructed by the ActionHandler to execute the simulation
are shown in Figure E.3.
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+Scenario()
+getParameters()
+getVersion()
+createScenario()
+getAllBEVAgents()

Scenario

+scenarioDefinition : ScenarioDefinition
+agentFactory : AgentFactory
+chargingLocationFactory : ChargingLocationFactory
+agents : TaxiDriverAgent
+chargingLocations : ChargingLocation
+streetNetwork : StreetNetwork
+shiftSchedulePool : ShiftSchedulePool
-log : log4m

+RevenueHandler()
+getParameters()
+getVersion()
+assignFlagDownFareByVehicleId()
+calculateTripRevenue()

RevenueHandler

-log : log4m

+TaxiDriverAgent()
+getParameters()
+getVersion()
+isTripExecutable()
+assignNewShiftSchedule()
+getCurrentDaytimeInMinutes()
+getIdString()

TaxiDriverAgent

+vehicle : VehicleAbstract
+standstillBehaviourModel : StandstillBehaviourModel
+chargingBehaviourModel
+estimationModel : EstimationModel
+memory : TaxiAgentMemory
+id
+basedOnIdVehicle
+nextAction
+previousAction
+currentTime_min
+currentLocation_nodeId
+nextPause
+nextChargingBreak
+instantPickupSimulationTripId
+rejectedTripsCounter
+lastTripId
+chargingAvailability

+ShiftSchedulePool()
+getParameters()
+getVersion()
+assignFirstHistoricShiftScheduleToAgent()
+assignFirstSynthesisedShiftScheduleToAgent()
+selectAndAssignNewShiftScheduleToAgent()
+plotStatistics()
+resetCounter()

ShiftSchedulePool

+standstillLocations
+statistics
-sampleGenerator : SampleGenerator
-streetNetwork : StreetNetwork
-log : log4m

+StreetNetwork()
+getParameters()
+getVersion()
+addSection()
+calculate1NormDistanceBetweenNodes()
+calculate1NormDistanceFromNode2allStandstillLocation()
+getRouteForSectionIds()
+addStandstillNode2streetNetwork()
+getClosestNodeToCoordinate()

StreetNetwork

+sections
+missingSections
+nodeClose2Node
+nodesAroundNode
+nodeCoordinates
+nodeConnected
+nodeStandstill

+PauseBehaviourModel()
+getParameters()
+getVersion()
+isPauseOrShiftChangeScheduled()
+setPauseAsExecuted()
+getNextPause()
+skipPause()
+isChargingBreakScheduled()

StandstillBehaviourModel

-agent : TaxiDriverAgent
+shiftScheduleTarget
+standstillLocationAgent
+homeLocation

+EstimationModel()
+getParameters()
+getVersion()
+estimateActiveActionDuration()
+estimateDuration2shiftChange()
+estimateDuration2shiftChangeAfterActive()
+estimateDuration2chargingBreak()
+estimateDrivingDurationFromNode2Node()
+estimateDrivingDurationForDistance()
+estimateWaitingDurationCharging()
+estimateWaitingDurationChargingLocation()
+estimateDrivingDurationFromNode2allStandstillLocation()
+estimateDrivingDistanceFromNode2Node()
+estimateDrivingDistanceFromNode2allStandstillLocation()
+estimateRemainingRange()
+estimateEnergyByDrivingDuration()
+estimateEnergyConsumption()
+estimateDrivingEnergyFromNode2Node()
+estimateActiveActionEnergy()

EstimationModel

-agent : TaxiDriverAgent
-agentMemory : TaxiAgentMemory
-streetNetwork : StreetNetwork

+TaxiAgentMemory()
+getParameters()
+getVersion()
+getAverageWaitingDurationCharging()

TaxiAgentMemory

+activeActionDuration_min
+avgDistance2shiftChange_km
+avgDistance2pause_km
+avgDistance2ChargingBreak_km
+avgEfficientPublicChargingPower_kW
+avgChargingStationUseDuration_min
+waitingDuration
+mileagePerDay_km
+drivingDurationPerDay_min
+energyConsumptionPerDay_kWh
+revenuePerDay_SGD

+AgentFactory()
+getParameters()
+getVersion()
+createAgents()
+resetCounter()

AgentFactory

+vehicleFactory : VehicleFactory
+revenueHandler : RevenueHandler
-shiftSchedulePool : ShiftSchedulePool
-streetNetwork : StreetNetwork
-log : log4m

1

+VehicleFactory()
+getParameters()
+getVersion()
+initialiseVehicleObjectOfType()
+resetCounter()

VehicleFactory

+batteryFactory
-log : log4m

1

1

1

1

+ChargingLocationFactory()
+getParameters()
+getVersion()
+createPublicAndPrivateChargingLocations()
+resetCounter()

ChargingLocationFactory

-scenario : Scenario
-log : log4m

1

1

+ChargingLocation()
+getParameters()
+getVersion()
+chargeAgentsVehicle()
+getNextPossibleStartTimeForCharging()
+chargeAgent()
+getNumberWaitingVehicle()

ChargingLocation

+id
+isPublic
+location_nodeId
+powerOutput_kW
+nChargingStation
+chargingSchedule
-waitingTimeEnd_min
-statistics

1

*

1

1
1

+BEVehicleBasicImpl()
+getParameters()
+getVersion()
+estimateCurrentMaxRange()

BEVehicleBasicImpl

+battery

1

*

VehicleAbstract

+id
+isBEV
+vehicleTypeName
+vehicleParameters
+flagDownFare_SGD

+VehicleBasicImpl()
+getParameters()
+getVersion()

VehicleBasicImpl

1

*

1

+BatteryFactory()
+getParameters()
+getVersion()
+assignBattery()
+reset()

BatteryFactory

-log : log4m

1

+BatteryModel()
+getParameters()
+getVersion()
+discharge()
+charge()
+resetBatteryEnergy()

BatteryModel

+usableEnergy_kWh
+parameter

1

*

+ChargingBehaviourModelConservative()
+getParameters()
+getVersion()
+assignChargingLocations()
+useChargingStationAfterFullCharge()
+createChargingSchedule()
+isScheduledChargingBreakRequired()
+isChargingBreakRequired()
+scheduleChargingBreakBeforeShiftChange()
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Figure E.2: Scenario related classes
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Figure E.3: ActionHandler related classes

First of all, one object for each action introduced in Chapter 5.2 is created. To
execute the actions, ChargingHandler, TripExecuter, StandstillExecuter, and TripGen-
erator (Chapter 5.5) objects are constructed. Thereby, the TripGenerator creates Trip
objects which are handed over to the TripExecuter which executes these trip for the
selected agent.

To create Trip objects, the TripGenerator uses following objects:

TripDataPool sample recorded engaged or search trips (Chapter 5.5.2)
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Router generate route to synthesise trip

FitFunctionHandler obtain traffic statistics of selected route (Chapter 3.4)

TravelTimeHandler assign pass-through speed to each section of the route (Chapter 5.5.1)

TripEnergyHandler assign energy consumption to sampled or synthesised trip (Chapter 4.1)



Appendix F

Functional design of actions

This appendix describes the functional design of all actions (Chapter 5.3) of the driving
profile simulation model.

Therefore, flow diagrams for each action are presented. Each flow diagram starts
with a block naming the respective action and ends with the name of the action which
has to be executed next. All other blocks describe steps and decisions which have to
be made in between. The blocks’ colours refer to the class which has to execute the
respective step or decision. Figure F.1 shows the chosen colour code.

Agent

Charging Handler Standstill Executer

Charging 
Behaviour Model

Shift Schedule Pool Trip Executer

Standstill 
Behaviour Model

Trip Generator

Figure F.1: Classes

Following classes are required to execute the actions:

Agent makes estimations based on its memory values (Chapter 5.6) and makes decisions
with respect to the vehicles status, i.a. the battery’s State of Energy (SOE)

Standstill behaviour model decides when and where the agent has to make breaks or
shift changes (Chapter 5.7.1)

Charging behaviour model decides when and where the agent has to recharge how
much energy (Chapter 5.7.2)
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Trip generator assigns recorded or synthesised trips to the agents (Chapter 5.5)

Shift schedule pool assigns shift schedules to agents (Chapter 5.4)

Trip executer executes trips which were assigned to the agents by updating the agents’
time, location, and SOE

Charging handler assigns agents to charging stations and triggers the charging process

Standstill executer simulates standstill periods of agents’ by updating their time

The integration of these classes into the simulation model is described by Appendix E.
The flow diagrams of following actions, are depicted:

Change action: Figure F.2

Active action: Figure F.3

Scheduled break action: Figure F.4

Charging break action: Figure F.5

Shift change action: Figure F.6

Out of charge action: Figure F.7
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Change Action
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Charging Location
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Scheduled Break
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required?

Select Charging 
Location

Active
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Charging Location
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Yes

No

No

Yes

Yes No

Yes

No

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

Figure F.2: Flow diagram of change action
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Execute Search 
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Trip

Sample Engaged 
Trip

Engaged Trip 
executable?

Yes No

NoYes
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Yes

For Hire On Call

Yes

No

Yes

No

Figure F.3: Flow diagram of active action
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Figure F.4: Flow diagram of scheduled break action
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Charging Break

Get Waiting Duration 
for Charging Station

Waiting Duration = 0?

Estimate Waiting 
Duration

Calculate 
recharge Energy

Charging 
required?

Wait until Standstill 
Duration is over

Wait until Charging 
Station available

Charge to reach 
Energy Target

Change Action

Skip Scheduled Break 
if necessary

Waiting Time = 0?
Calculate Standstill 

Duration

Calculate 
recharge Energy

No

Yes

NoYes

No

Yes

Figure F.5: Flow diagram of charging break action
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Shift Change

Sample & assign 
next Shift Schedule

Calculate Shift 
Change Duration

Home Charging 
possible?

Wait until End of 
Shift Change

Change Action

Charge Battery until 
end of Shift Change

Yes

No

Figure F.6: Flow diagram of shift change action

Out of Charge

Wait until Penalty 
is over

Set SOE to 0

Change Action

Figure F.7: Flow diagram of out of charge action



Appendix G

Infrastructure optimisation
approaches

This appendix is an extension of the literature review on charging infrastructure optim-
isation methods presented in Chapter 7.3. Table G.1 summarises the classification of the
approaches. Furthermore, it lists the data background, the optimisation problem type,
the applied method to solve the problem and the used street network for which the char-
ging infrastructure was optimised. Moreover, Table G.2 contains the input, objective,
constraint, and output of each optimisation approach.
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