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Abstract—This paper addresses vertical dynamics comfort in
Highly Automated Driving (HAD). Based on the assumption that
a reduction of vertical acceleration inputs will result in increased
passenger comfort, we develop an approach to minimize the
effect of road surface anomalies on HAD users. We propose
a participative method to identify, process and distribute road
quality data using a plurality of vehicles exchanging information
with a central server. By activating automated responses to
warn about, avoid or counteract the appearance of any type of
discomfort prompted by vertical vibrations, we strive to increase
the maturity of HAD technology.

I. INTRODUCTION

The accelerating development of self-driving vehicles has
triggered the progressive transition from active, full-time per-
formance by a driver towards completely automated systems in
charge of the entire driving task, with no human action needed.
Market players have set milestones to achieve higher degrees
of vehicle automation that will gradually delegate responsi-
bilities from the driver to the vehicle [1]. Higher automation
levels will lead to safety, environmental and economic benefits,
such as a drop in accident rates, lower emissions, and less
traffic congestion. It will also result in greater quality of life
by shortening traveling time and allowing passengers to carry
out other activities, such as working, relaxing or accessing
entertainment [2].

The present study will develop within a context of Highly
Automated Driving (HAD). Although its technology is not
implementation-ready as of today, HAD is planned to be
the first degree of automation where the driver delegates
responsibility for motion control and environment supervision
to the vehicle. Although drivers must be ready to actively
intervene in the event of a conflictive situation, HAD will
allow drivers to deviate from attentive roadway and traffic
monitoring and enable them to engage in parallel activities
that are not related to the driving task itself [1].

Given that the driver is no longer in charge of driving
and may visually fixate still objects within the vehicle, his
propensity to motion sickness and other negative symptoms
will increase. This occurrence may be accentuated by vertical
accelerations resulting from bad road surface quality (e.g.
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bumpy roads, and singularities like potholes or speed bumps),
generating dissatisfaction with HAD. The existing solutions,
such as different driving modes, will not meet the new comfort
requirements imposed by HAD. Based on the assumption that
a reduction of vertical vibration inputs will enhance passenger
comfort, we predict that processing road surface quality to
improve vertical comfort will help to increase maturity of
HAD technology.

In this paper, we present a participative methodology that
maximizes vertical dynamics comfort by monitoring vertical
accelerations, using a plurality of vehicles exchanging infor-
mation with a central server. The recorded data, followed by
the aggregated, off-board analysis of the information gathered
by different vehicles, provides comfort-relevant and period-
ically updated information on road surface quality. Hence,
when a vehicle covers a HAD route that has been monitored
before, the system will use the available data to activate
automated responses to warn about, avoid or counteract the
appearance of any type of discomfort prompted by vertical
vibrations. Possible responses could include alternative routes
with better surface conditions, automatic speed and drivetrain
adaptions or driver notifications. Although the methodology
developed increases the technology maturity of HAD, it is not
a necessary feature for successful HAD completion. Comfort-
maximizing vehicle responses will only take place as long as
they are compatible with passenger and third-party safety.

The contributions of this paper are:

e The design of an end-to-end approach to process road

surface quality data for comfort maximization in HAD

o The development of adequate and automatic vehicle re-

sponses to minimize the effect of vertical accelerations

o The theoretic evaluation of the method to assess the

robustness of the system

Related work is reviewed in Section II. Section III presents
the designed method to identify and minimize the effect of
road anomalies on passenger comfort. Section IV assesses the
weaknesses of the system, and proposes solutions increase its
performance. The paper is concluded in Section V.

II. RELATED WORK

There are multiple methods that record and interpret the
vehicle environment, most of which focus on passenger safety
or road maintenance and employ on-board monitoring devices.



Based on the time point of detection, monitoring can be
divided into ex-ante and ex-post methods. Ex-ante methods
detect events in their environment before reaching them (e.g.
camera-based and laser methods). Ex-post refers to empiri-
cally measuring information by physically tackling an event.
Although the first recording vehicle does not benefit from
the collected information, other vehicles may anticipate said
events if warned (e.g. monitoring a slippery curve). Although
ex-ante technology is indispensable for environment recogni-
tion in HAD, its reliability is still insufficient for road surface
anomaly detection, leading to its disposal for our approach.

The pothole patrol [3] is an ex-post method that strictly
monitors potholes using an external accelerometer. It pairs
measured acceleration values with their corresponding location
to identify potholes geographically. Related events such as
speed bumps are discarded using machine learning algorithms.

Similar ex-post systems use smartphone accelerometers to
monitor events encountered. Mednis et al. [4] developed a
smartphone-based pothole detection system that associates
acceleration measures with the GPS position. After statistical
analysis, it classifies potholes into different types and bundles.
Astarita et al. [5] also used smartphones to monitor and
locate any type of road anomaly. Statistical off-board analysis
categorizes detected events by means of severity based on their
impulse, obtained from raw acceleration data.
SmartRoadSense [6] introduced an informative crowdsourcing
approach to monitor road quality using a mobile app. After
measuring accelerations and processing the aggregated data,
average road quality clusters are plotted on a map interface.

However, and despite the demonstrated efficiency of smart-
phones, built-in accelerometers have been chosen as monitor-
ing hardware for the method on the following grounds:

¢ Smartphones may require reorientation algorithms given
their random orientation in vehicles

« False accelerations will be measured if users operate a
monitoring smartphone

o Measuring with smartphones requires the active engage-
ment of users (e.g. run the necessary applications)

o Not all drivers own a smartphone

In HAD, the vehicle is responsible for motion control. Thus,
its head unit (HU) should at some point receive information to
activate an automated reponse. The following works, although
not devised for HAD, includes the HU as a processing unit:

Google [7] designed a crowdsourcing approach to monitor
road quality from multiple vehicles. The HU correlates the
geographic position with the road quality indicators (RQIs)
resulting from on-board vertical vibration recordings. The
location-based information from all vehicles is then forwarded
to a central server, where it is contrasted with stored historic
data. Average values for RQIs in every location are continu-
ously updated upon reception of new data.

Chen et al. [8] developed a road condition real-time warning
device to notify the driver ahead of exceptional road condi-
tions of any kind. Participating vehicles detect critical values
surpassing predefined thresholds and send them to a back end

for central analysis. The back end aggregates and contrasts
the information from all vehicles, and organizes the data in
a downloadable location database that notifies drivers about
known critical events ahead.

General Motors [9] also studied participative sensing of
events and conditions with a plurality of vehicles acting as data
collection as well as advisory-receiving units. If a monitored
magnitude surpasses a predefined threshold, the corresponding
safety metrics are calculated and sent to a central server
along with the event location. When a vehicle approaches a
safety-relevant event stored in the server, it issues a driver
notification to warn about the upcoming event. Events may
include accidents, traffic congestion, potholes or icy patches.

Several authors study the crowdsourcing of road quality
data followed by central processing for posterior decentralized
distribution. The application fields are passenger safety, road
maintenance, and informative notifications. No related work
evaluates the effect of road surface on vertical comfort, and
no studies consider high automation contexts, thus preventing
the development of automated responses to minimize the effect
of vertical motion.

This leads to the refinement of the contributions of the
approach proposed in this paper:

o The application of road quality monitoring to a HAD

environment, including:

- Motion control authorization, i.e. automated dynamic
responses without the intervention of a human driver

- The hierarchical integration and compatibility with
other systems and algorithms required for HAD

- The compliance with new standards imposed by HAD

o The focus on vertical comfort as the key customer fea-
ture, i.e. the minimization of events prompting undesired
vertical accelerations affecting the passengers

o A description of all subsystems and algorithms required

o The consideration of any type of road surface anomaly,
including benevolent events such as rail crossings or
speed bumps

« Adequate task allocation between the involved entities

o The minimization of hardware and software resources

« The use of the aggregated and organized information to
activate an appropriate automatic response for the specific
event confronted

III. APPROACH

The designed ex-post system is composed of two entities:
o A plurality of participating vehicles
« One central server or back end
Both entities communicate bidirectionally, i.e. every vehicle
receives and sends data from/to the central server, but vehicles
do not communicate with each other. The method developed
includes on-board (vehicle) and off-board (back end) process-
ing steps. It can be divided into four parts (see Fig. 1):
A) Continuous Measuring
B) RQI Calculation, Interpolation and Coding
C) Data Analysis
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Fig. 1. Process flow of the methodology. Steps A and B are also named Vehicle Levels 1

D) Updating, Organizing, Storage and Distribution

A. Continuous Measuring

As seen in Section II, vertical accelerations are an indicator
of road surface quality, and built-in accelerometers constitute
the best solution as monitoring devices. Since the aim is
to increase passenger comfort, it is important to measure
accelerations as close to the passengers as possible. Thus, the
optimal positioning accelerometers would be underneath or
within vehicle seats, which have the least relative motion with
respect to passengers. Accelerometers have a measurement
frequency of 100-400Hz. Considering that the maximum speed
planned for HAD is 130km/h [10], the monitoring accuracy
can be determined with the following calculation:

~ 130km  1h  1000m 1s

A . ) =5
* h o 3600s

o 400 ~ 0,09m = 9cm (1)

Given that anomalies are usually greater than 9cm, and that
they are perceived twice (front and rear axes) by multiple
vehicles, the probability of false negatives can be neglected.

As mentioned in Section II, a positioning system is
necessary to geographically locate monitored events. GPS
receivers have an update frequency of 1-5Hz and provide
additional information such as time of recording (¢), vehicle
velocity (v) and heading (h) aside from delivering vehicle
position. Given the tolerances of the GPS system, the
measured position may not match a position on the vehicle
cartography software and locate the vehicle outside of its
actual track. It is therefore necessary to align GPS and map
coordinates (see Fig. 1).

Pinpointing the exact position of an anomaly within a
road, including affected lane(s) or position within lane,
can be determined by high-precision maps. In this case,
the GPS is complemented by camera-based measurements
of the distances from the vehicle to the outer edges of the road.

and 2. Steps C and D correspond to Back End Levels 1 and 2.

B. RQI Calculation, Interpolation and Coding

Vertical accelerations are not sufficient to recognize a
comfort-critical location, but they provide raw data for the cal-
culation of comfort-relevant parameters, also known as Road
Quality Indicators (RQIs). RQIs are quantitative acceleration-
based parameters that determine whether a location is critical
(comfort-compromising) or not by comparing it to threshold
values obtained from empirical comfort studies. A location
will be considered critical as soon as one RQI surpasses its
associated threshold. Despite the lack of studies to determine
RQIs and thresholds for vertical comfort, the present method
will rely on longitudinal and lateral comfort RQIs.

Given a series of raw vertical acceleration measurements
throughout time, we consider the following RQIs:

« T, the average acceleration value

e A = pmazr — Amin, the amplitude of the function

o T, the period of the function
The measurement frequency of GPS receivers is lower than
the acceleration measurements (1-5Hz vs. 100-400Hz). This
leads to the generation of location windows with multiple ac-
celeration measurements when pairing (interpolating) location
characteristics and RQIs (see B in Fig. 1). In order to code the
pairing, a data record f with the following format is generated:

f = (j7f7 Amal‘7T7 Tmam7Tminat7U7hak7s) (2)

with

o j being the location in (latitude; longitude) coordinates

o T, Apmazs T's Tnazs Tmin being RQIs for location j

« ¢ being the recording time, considering that RQIs are a
dynamic variable over time

« v being the vehicle speed, considering that RQIs vary
depending on the instantaneous speed of the vehicle

o h being the heading of the vehicle in bidirectional roads

o k, s being vehicle (k) and sensor (s) identification codes



l. n=1;m=1

For every period of time p: NO Generate g)inLD | e
and add f to (P
queue

location
in LD with
n#0?

location

ocaio Add fto g()in LD

N

(critical)

n=1;m=m+1

1
1
' [
: y o tithin no Il Location Next Queue I
; YES tolerances? mem+1 Database Element
i V. I For all g(j) with
! Update g(j) with f: I | lastt-entryolder
: YES new ps and os — Make copy of LD 1 | thant, delete
y  searchinLD for comparison n=n+1;m=m+1 i ! 1 ALL f data records
................................................................. - : | =
! n=
. YES V. m=m+1 ' | 4
J ! I Send LD to
(non-critical) VL. . bormimimim e i~ 7| | Level2and
n=0;m=
Generate g(j) in LD I update LD

9(j): LD-location entry included all stored information on j
LD : Location Database including all known locations

p: mean value of measures
o: standard deviation

n: number of critical observations for location j
m: number of total observations for location j

Fig. 2. Structure of Back End Level 1 (BEL1)

Data records resulting from data interpolation enter a filter-
ing algorithm: if any of the RQIs in a data record f surpasses
its associated threshold value, the corresponding location is
labeled as critical and the data record f is sent to the back
end via mobile network. Otherwise, if all RQIs are within their
thresholds (non-critical location), the only value delivered to
the back end are the location coordinates j.

C. Data Analysis (BELI)

As depicted in Fig. 1, the back end is divided into two parts:
Back End Level 1 (BEL1) and Back End Level 2 (BEL2).

Fig. 2 shows that the inputs for BEL 1 correspond to the
outputs of the filtering algorithm in B: data records (f) for
critical locations, and location coordinates (j) for non-critical
locations. With them, BEL1 carries out four main operations:

« Registering new location entries

o Updating values for existing location entries
« Deleting outdated critical location entries

o Counting how often a location is monitored

The product of BELL1 is the Location Database (LD). The LD
stores all information on all known locations in individual,
location-specific entries: g(j). A location is known when it has
been monitored by a vehicle, and may or may not be critical.
In order to distinguish between critical and non-critical, all
known locations have two counters:

e The number of critical observations (72)
e The total number of observations (m)

Unknown locations are not included in the LD.

For every known non-critical location (n = 0, m > 0), the
LD contains a counter with the number of critical observations
equal to zero as well as the total number of observations.

For every known location labeled as critical (n > 0, m > n),

the LD contains the n and m counters, and a normal distribu-
tion for every RQI, with their mean values (x) and standard
deviations (o). It also gathers all individual RQI measurements
of critical locations, and their associated v, ¢, k and s.

There are six possible processing paths (cases I to VI,
written in blue in Fig. 2) in BEL 1. Cases I to IV correspond to
the data analysis of critical locations, whereas Cases V and VI
process locations where no anomalies have been monitored.
The inputs are processed in a first-in-first-out queue, i.e.
chronologically upon reception. The inputs are compared to
the available LD information in order to direct them to the
appropriate case.

Case I corresponds to a scenario where an anomaly is
detected in a location j that has never been monitored before.
In other words, the first time a monitoring vehicle records
information on a location, it obtains critical data for that
location. In this case, the algorithm generates a new LD entry,
9(j), where it adds the information contained in the vector f
received. It initializes the counters n = 1 and m = 1.

In Case II, a known location that is stored as non-critical is
labeled as critical for the first time. The algorithm is in charge
of adding f to the existing LD entry g(j), labeling the location
as critical with n = 1 and increasing the m counter by 1.

Case III discards all incoming f that deliver inconsistent
data with the stored RQI distributions, i.e. outside a confidence
interval of y+«o. Inconsistent values may be delivered by de-
fective sensors or may be the result exceptional circumstances
(e.g. temporary obstacles). It increases the m-counter by 1.

Case IV processes cases within the confidence interval
described above. It updates existing critical g(j) with the new
f. It adds all information in the data record to the lists in
g(j) and recalculates its statistical parameters. According to
the counter logic, it increases both counters by 1.



Cases V and VI correspond to locations classified as non-
critical when monitored. If a location is already in the LD,
it updates the amount of total observations (Case V). If the
location is not in the LD (Case VI), it generates a g(j) entry
for j and initializes both counters.

Every end of a time period p, a copy of LD is made. In
the LD copy, all critical g(j) whose last ¢-element is older
than %;;,,, are reset. This is done in order to delete outdated
information in the LD. The cause of outdated information may
be road works or the removal of temporary obstacles leading
to the disappearance of anomalies.

After deleting outdated locations, the copy of LD is sent to
BEL2, and the LD copy replaces the previous LD in BELI.

D. Updating, Organizing, Storage and Distribution
The structure of BEL2 is divided into two main blocks:
« Block 1, central data processing for all vehicles, taking
place once for every time period p

« Block 2, the on-demand, vehicle-specific data processing,
taking place once for every vehicle request (see Fig. 3)

BLOCK 1: Central Data Processing for All Vehicles (once for everytime periodp)
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BLOCK 2: Vehicle-Specific Central Data Processing (once for everyvehicle request)

Fig. 3. Structure of BEL2

The LD copy received form BELI is subjected to a two-
step clustering algorithm that bundles locations based on their
position and their criticality. In the first step, adjacent critical
locations are grouped to form clusters, and so are adjacent
non-critical locations. Regarding critical clusters, longer road
sections with bad surface conditions form bigger clusters
with more locations than small road singularities, whose
clusters may count with as little as one location. The second
clustering step simplifies the clusters by omitting small, non-
critical clusters surrounded by larger critical segments. It also
adds accuracy by adding critical clusters within other critical
clusters, for exceptionally severe singularities.

The output of the clustering algorithms is called Clustered
LD. It includes a list of clusters that contain their correspond-
ing locations with the same ¢(j) format as in the LD.

The Clustered LD then enters the Cluster-based Response
Decision Algorithm. This algorithm is in charge of associating
an appropriate automatic response to every cluster, starting
from the standard driving configuration. The standard driving
configuration of a given road segment is the setting that the
car will adopt in non-critical situations. This configuration is
based on the speed limits and recommendations for the road
segment in question, as well as on the dynamic constraints
from other systems with higher priority rank (see Fig. 4).

The standard driving configuration will also be the setting
for unknown locations and for locations that have been labeled
as critical a negligible amount of times in comparison to its
total amount of observations (leading to the conclusion that
the critical observations are not representative of the actual
state of the road), i.e. locations with a low n/m ratio.

The suitable response for a critical cluster is a series of mod-
ifications with respect to the standard driving configuration,
selected from a predefined array of responses that includes:

« Speed adaptions of a certain percentage

o Driving mode changes and drivetrain adaptions

o Offering the most comfortable route: the one with the

smallest amount, size and intensity of critical clusters

« Any combination of two or more responses listed above

« Maintaining the standard driving configuration
The association of a cluster to an adequate response is based on
three criteria (see Fig. 4): the standard driving configuration
for the analyzed road segment, the RQI magnitudes of the
locations in the cluster, and the n/m ratio. A successful pairing
will be made possible by machine learning, using comfort-
oriented training sets of participants rating their comfort
perception in a plurality of driving scenarios. Algorithms are
then trained by comparing user feedback to the acceleration
patterns recorded, enabling the system to predict the optimal
response to a road anomaly given an acceleration pattern.

The clusters and their assigned responses are stored in the
Cluster-Response Database (CR).

speed limits a R 1
speed recommendations S!and‘ard d".‘”"g esponse
dynamic constraints of other configuration Response 2
systems with higher priority
rank
Response 3
x Cluster-Response
Quantitative RQI Dat(a:l;;se
magnitudes (CR)
Clustered LD
n/m ratio Response X

Fig. 4. Structure of the Cluster-based Response Decision Algorithm

When willing to cover a route with HAD, the driver enters
the desired route in the HU. The vehicle then requests infor-
mation on the concerned locations to the CR, and, whenever
available, downloads the cluster containing the location and
its associated response via mobile networkl (see Fig. 3).

The pairing cluster-response for all requested locations is
stored in a downloadable package called Route Data (RD).



The RD is specific for every vehicle request and can only
be downloaded after scanning all requested locations in the
CR. As soon as the RD has been downloaded and all other
systems required for HAD completion are ready, the vehicle
will be allowed to start the drive. The vehicle will be able
to activate all comfort-maximizing responses without needing
further connectivity to the back end.

When a drive is finished or aborted, the RD is deleted in
order to avoid on-board data accumulation. A new, updated
version of the route will need to be downloaded again if the
driver wishes to resume it or cover it one more time.

IV. EVALUATION

The purpose of this section is to assess the robustness of the
system by identifying its weaknesses and proposing solutions
to overcome them. Robustness will lead to increased accuracy
and reliability, resulting in higher overall performance.

A. Comfort Studies

Section IIT highlights the necessity to carry out empirical
studies to provide scientific evidence on how vertical dynamics
affect comfort in HAD. They should include:

o The determination of acceleration-based parameters that

are indicators of vertical comfort: RQIs.

¢ The quantification of thresholds for every RQI to distin-
guish comfortable from uncomfortable phenomena. Given
the subjective nature of comfort, they should represent as
many users as possible.

o The design of experiments and machine-learning training
sets to determine RQIs and thresholds. In order to con-
sider the entire susceptibility spectrum and assess a wide
range of driving situations, said studies should include:

— The comfort ratings of a large number of participants
— As much situational data as possible: Different events
at different speeds, with different vehicles, etc.

B. Machine Learning

At higher speeds, road surface events trigger higher ac-
celeration measurements [11]. Thus, vehicles monitoring at
different speeds can lead to inaccurate or incorrect location
labeling. As studied by Eriksson et al. [3] the use of machine
learning can help assess the criticality of a road anomaly re-
gardless of the speed. Appropriately trained machine learning
algorithms should recognize acceleration patterns for a variety
of driving situations involving different singularities, different
speeds and different vehicles, and be able to evaluate loca-
tion characteristics regardless of the circumstances. Machine
learning algorithms will interpret the acceleration patterns and
changes resulting from a road anomaly, and should ideally be
based on the training sets developed in the comfort studies.

Given the variations in their construction, two different
monitoring vehicles will measure different accelerations when
driving over the same event at the same speed, leading again to
wrong location labeling. By using training data from different
source vehicles, machine algorithms should establish correc-
tion factors to properly interpret the incoming data delivered
by different vehicles.

C. Definition of a Standard Architecture

Depending on their architecture, any given vehicle may
include different monitoring hardware placed in different po-
sitions of the vehicle, again leading to measurement discrep-
ancies. To avoid data loss when connectivity is interrupted,
vehicles should also include a buffer to store information
temporally, until connectivity is re-established.

The definition of a standard architecture where all participat-
ing vehicles comply with multiple hardware (geometric) and
software (electronic) requirements will neutralize the varia-
tions due to sensor type and placement, and provide a common
framework for all on-board processing steps. It will also
increase the scalability of the approach because no hardware
and software modifications will be required depending on the
specific constraints of different models.

D. Adequacy of Vehicle Responses to the Events Tackled

Vehicles may react to critical clusters in a way that does not
improve comfort. If the system does not associate the correct
response to a critical cluster and all prior steps of the method-
ology are operating correctly, the problem may reside in the
Cluster-based Response Decision Algorithm not interpreting
the trained patterns properly. If this were the case, all machine
learning algorithms should undergo supervision, including the
training sets to identify RQIs and their thresholds.

Using the standard driving configuration may also be haz-
ardous when tackling severe anomalies in unknown locations.
The shock provided by unexpected singularities at higher
speeds may not only constitute an uncomfortable event, but
also compromise passenger safety.

This type of situations will require the presence of safety
algorithms outranking the system presented in this work and
imposing a safety response over that of the system. If any
system in charge of guaranteeing safety requests an action
that contradicts a planned response of the methodology at any
moment, the response of the methodology will be canceled in
the interest of passenger or third party safety.

The parallel systems and algorithms operating for optimal
completion of HAD will require a hierarchy in case two or
more algorithms request contradictory action.

E. Algorithm Hierarchy for HAD

HAD will operate numerous systems simultaneously. Said
systems may be in charge of passenger safety, passenger
comfort, providing informative digital services, etc. Vehicles
will combine their own detection sensors with back end
information (including maps and digital services) to identify
their surroundings and extract information of relevance from
them [12]. Some examples of HAD systems include:

« Safety systems in charge of real-time environment sens-

ing and interpretation.

« Safety systems in charge of real-time driver sensing

o Informative systems (back-end-based) to alert the driver

about temporary events of importance

o Comfort-maximizing systems, such as the methodology

developed in this study



o Systems in charge of environmental and economic effi-
ciency

Motion control may be influenced indirectly by several
systems simultaneously, and in given scenarios some systems
may request contradictory or incompatible action. In this
case, the HAD driving function will need to process all the
commands received from systems and prioritize some based
on the environment of the vehicle

Although the methodology developed increases vertical
comfort for HAD, and consequently increments the maturity
of HAD technology, it is not a necessary feature for the suc-
cessful HAD completion. HAD will be completed successfully
when the safe transportation of passengers from a starting
point to a desired destination is achieved. Hence, HAD will
always prioritize passenger and third-party safety as well as
conflictive or uncertain scenarios that could potentially result
in safety-compromising situations over comfort. Comfort-
maximizing vehicle responses will only take place as long
as they are compatible with safety-related motion control and
do not interfere with any potentially hazardous situations.

V. CONCLUSION

This paper studied vertical dynamics comfort in Highly
Automated Driving (HAD). Based on the assumption that
a reduction of vertical vibration inputs result in increased
passenger comfort, we designed a participative approach to
identify and minimize the effect of road anomalies on passen-
gers by activating automated vehicle responses. The study was
complemented by a robustness evaluation to assess method
weaknesses and increase system performance.

To the best of our knowledge, the proposed method is
the first to address vertical comfort in HAD. This leads to
unprecedented considerations with respect to existing work,
such as motion control permission, the neutralization of road
anomalies by means of automated vehicle responses, or new
comfort standards.

The achievement of HAD will not guarantee the adoption
of the technology as long as the driver cannot pleasantly
benefit from the free time during traveling. We believe that the
operation of a method of such characteristics will constitute
a fundamental factor for market acceptance of HAD. We also
think that the modular structure of methodology developed
allows adjustments without any significant repercussion on
prior or posterior steps. Changing monitoring sensors, RQIs
and thresholds, algorithm structures or vehicle responses will
not demand modifications at other stages.

The system designed offers good scalability opportunities.
It can grow along with the gradual adoption of HAD, starting
monitoring in highways regionally, and progressively expand-
ing to other types of roads and geographic areas. The complex-
ity of acceleration-based RQIs may also increase along with
the geographic growth based on the lessons learned and the
situational data accumulation in earlier implementation stages.

The machine learning algorithms incorporated also con-
stitute scalable subsystems: higher participation rates will
refine event pattern recognition, threshold quantification and

response associations, improving system performance.
Regarding future work, and based on the findings of Section
IV, three aspects remain open for further development:

1) The conduction of comfort studies to determine RQIs and
their thresholds, and the recording of as many driving
situations as possible.

2) The development of machine learning algorithms to cor-
rectly interpret different situations. Supervised learning
using a large amount of known road events as training
examples should enable algorithms to successfully clas-
sify all types of events.

3) Method extensions to longitudinal and lateral comfort,
since automated trajectory planning may lead to disrup-
tive longitudinal and lateral motion.
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