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Abstract

This work focuses on studying the initiation and development of atherosclerosis from
a mechanobiological perspective. The topic is of great interest due to the significant
pressure it puts on health and monetary systems. It has been identified as the
underlying cause of approximately 50% of all deaths in the western world. The disease
is categorized as an inflammatory response of human immune system and is often
associated with hypercholesterolemia, hypertension, obesity, and infection. Even
though the onset is not fully understood, it is well established that atherosclerosis
predominately occurs in regions of disturbed flow. Moreover, it is evident that
excessive adhesion of leukocyte to endothelium is an important step at the beginning
of a long chain of events leading to atherosclerosis.

With that realization, this thesis aims to provide a framework to study the
transportation of leukocytes in large arteries and their near-wall dynamics. This
framework has to be capable of overcoming a number of difficulties. Firstly, hemody-
namics of large arteries exhibits complex three-dimensional features, e.g. secondary
vortex formations, that are highly time-dependent in body’s pulsatile flow environ-
ment. These features are unique in each human based on their specific anatomy.
The developed framework should be able to model such complex pulsatile flow
in patient-specific arterial geometry. Secondly, accurate modeling of leukocyte
transportation in bulk and near-wall region of large arteries is quite challenging as
reaching a meaningful trade off between accuracy and computational cost is by no
means easy. Time scales that govern motion of leukocytes in bulk and near walls
are so different that it is impossible to represent both domains with one model.
This framework should provide domain-specific modeling to accommodate accurate
capturing of key features such as near-wall concentration of leukocytes and their
interaction with endothelium. Finally, establishing a link between flow parameters
and surface biology is difficult. While numerous experiments have pointed out
certain dependencies, variety of flow features and their influence on the complex cell
adhesion process is by far not fully understood. This framework should provide a
flexible model to, given sufficient experimental data, reproduce and model adhesion
kinetics.

To address these issues, a multiscale model based on the Lagrangian particle
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Abstract

model, smoothed particle hydrodynamics, is developed. SPH is very capable of
handling complex flow structures. arbitrary geometries, and time-dependent flow
boundaries. Moreover, it is straightforward to extend it for e.g. a non-Newtonian
model for blood. The framework utilizes a hybrid definition of the domain where
SPH particles are used to model both the flow and concentration of leukocytes in
bulk. However, to address the issue of unfeasible computational costs, the near-
endothelium transportation of leukocytes is modeled by a specific Lagrangian particle
tracking model based on Basset-Boussinesq-Oseen equation. This representation
is coupled with bulk concentrations at an interface sufficiently distanced from the
endothelium. As a result, while regions in vicinity of walls enjoy great resolution of
discrete cells, the overall cost of simulations is kept low. Lastly, a stochastic binding
model is used to incorporate leukocyte-endothelium adhesion dynamics. This model
couples flow variables with small-scale bond formation properties.

Initially, the multiscale model was tested without the stochastic model to validate
the approach and measure the gain it brings in computational effort. Results showed
very good agreement with those of a validation application at a much lower particle
count. In particular, for a two-dimensional setup of a backward-facing step, it
was shown that the multiscale model consistently provided a computational gain
factor of 42. In the next step, the framework was tested against experimental cell
adhesion data in a three-dimensional axisymmetric sudden-expansion geometry. The
stochastic cell adhesion parameters were tuned to reproduce experimental results in
one setup, and the framework was tested to produce results of other setups. In both
stationary and pulsatile flow, wall adhesion profiles matched with good accuracy
with the experiment. Overall, the framework showed great capability and potential
to model complex flow and adapt to specific cell-receptor kinetics via adhesion
model parameters.
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1 Introduction

Study of cellular events in living organisms, and underlying molecular processes
of the living tissue, is an active area of research in several disciplines. Together,
these processes form the chain of events leading to more sophisticated biological
responses. In case of living organism’s defense mechanisms, these responses are
categorized as immune responses that have one goal, to protect the organism against
diseases. Nevertheless, a number of such responses translate into diseases themselves.
Atherosclerosis, the underlying cause of about 50% of deaths in the western world
(Lusis, 2000), is a well-known example.

1.1 Motivation: progression and development of
atherosclerosis

Atherosclerosis is an inflammatory response of body’s immune system (Ross, 1993,
Packard and Libby, 2008, Moore et al., 2013). It is characterized by progressive
narrowing and hardening of medium in large arteries, eventually leading to ischaemia
of the heart, brain, or extremities, resulting in infarction (Ross, 1999). Despite
extensive investigations, the precise mechanisms involved in atherosclerosis, par-
ticularly in its early stages, are highly disputed. However, it has become evident
that atherosclerosis is an inflammatory disease involving a complex manifestation of
cellular processes that occur over years and decades (Libby et al., 2002, Ross, 1999).

It is believed that atherosclerosis is initiated by a number of known risk factors,
such as high blood cholesterol, hypertension, obesity and more recently infection.
Sites of atherosclerosis are very focal in nature occurring predominately in regions
of disturbed flow, where nitric oxide production is reduced (Libby et al., 2002).
These regions of the endothelial surface are able to over express vascular adhesion
molecules, such as VCAM-1, that bind leukocytes and mononuclear cells to the
surface. This adhesion to the surface is thought to be one of the initiating events in
the formation of atherosclerosis (Ross, 1993).

The expression is thought to be caused by the presence of modified low density
lipoproteins (LDL) in the arterial intima Steinberg (1997). Following attachment
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to the endothelium, monocytes migrate into the sub-endothelial space via inter-
endothelial spaces where they differentiate into macrophages. This is a normal
part of our body’s inflammatory response to fight infections. Within the intima,
the macrophages release monocyte-chemoattractive protein-1 (MCP-1) Crowther
(2005), Libby et al. (2002), which recruits further leukocytes into the sub-endothelial
space. Furthermore, the activated macrophages also secrete cytokines that promote
migration and proliferation of smooth muscle cells (SMC) from the media into the
intima. Within the intima, LDLs undergo oxidation due to prolonged exposure to
reactive oxygen species. Oxygenated LDL (oxLDL) is very atherogenic, promoting
further expression of adhesion molecules, and is very chemotactic for macrophages
(Crowther, 2005). Macrophages express scavenger receptors along their outer
membrane and these recognize oxLDL. This uptake of the oxLDL by macrophages
results in reduced mobilization. These lipid-laden macrophages are known as foam
cells. The accumulation of foam cells and leukocytes within the intima leads
to the formation of fatty streaks, which appear as yellow discolorations on the
luminal surface Hegele (1996). The proliferating SMC, from macrophage activation,
secrete extracellular matrix (ECM) proteins leading to the formation of a fibrous
cap. Fibrous plaque is characterized by relatively high mechanical strength and is
actually a defense mechanism that prevents further thickening and protruding of
the plaque via remodeling of the fatty tissue. After prolonged periods the foam cells
may die leaving a necrotic core.

It is well established that atherosclerosis is not evenly distributed throughout the
human vasculature, but tends to be site specific, occurring preferentially on the
lateral wall of bifurcations and inner and outer walls of arterial bends Asakura and
Karino (1990), Fox et al. (1982), Gimbrone et al. (2000), Zarins et al. (1983). This
was identified from experimental studies using arteries excised from humans during
autopsy and the similarity between all of these studies was the type of hemodynamic
environment. For example, in the study by Zarins et al. (1983), histological sections
were taken of the excised arteries and the blood flow was modeled using laser-Doppler
anemometry in a scale model. Flow characteristics were then statically correlated
to intimal thickness. A major finding was that intimal thickening is associated
with low wall shear stresses (WSS), flow separation and non-axially aligned velocity
profiles, whilst areas subjected to moderately high WSS and where the flow is axially
aligned were not affected. The natural progression of this study was to implement an
unsteady (oscillatory) flow field due to cardiac flow waveform. This was performed
by Ku et al. (1985) who found a positive correlation between oscillatory WSS and
intimal wall thickening in a same scale model of the carotid bifurcation. Further
studies agreed with the above findings, using arteries excised from other regions of
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the body, firmly establishing a relationship between disturbed hemodynamics and
atherosclerosis. The above suggests that arterial geometry, hence the hemodynamic
environment, is a major factor in the localization of atherosclerosis and development
of atherosclerosis. Despite establishment of this correlation, it has been reported
that hemodynamic environment alone is far from enough in predicting early stages
of the disease (Steinman et al., 2003).

Consequently, this work aims to study early stags of atherosclerosis with respect
to small particle binding. To that end, a simulation framework is sought to model
transport of leukocytes in large arteries, their near-wall dynamics, and particularly
their binding dynamics on the arterial wall. Eventually, a clear understanding of
the interplay between hemodynamics and leukocyte adhesion, and its role in onset
of atherosclerosis is expected.

1.2 Challenges in modeling of arterial flow

Atherosclerosis is clinically silent before reaching its intermediate progression stages,
often taking years to decades. On top of that, the disease could reach advanced stages,
associated with formation of atherosclerotic plaque and narrowing of lumen, without
being detected and treated accordingly. Such slow progression makes it difficult to
fully understand influential factors in onset of the disease. Nevertheless, prolific
adhesion of leukocytes, due to a dysfunctional endothelium, has been identified as a
key event in initiation of atherosclerosis (Ross, 1993). Therefore, near-wall dynamics
of leukocytes is the main subject of interest in this work.

This conclusion is strongly supported in literature. It has been widely established
that atherosclerosis is not evenly distributed throughout the vasculature, rather it
is localized to very specific sites suggesting a role for hemodynamics in its initiation
(Caro et al., 1971, Nerem and Cornhill, 1980, Glagov et al., 1988, Asakura and
Karino, 1990). Additionally, it has been noted that WBCs, specifically monocytes,
bind preferentially under flow conditions characteristic of these above-mentioned
sites (Pritchard et al., 1995, Skilbeck et al., 2001, Chiu et al., 2003, Hinds et al.,
2001, McKinney et al., 2006, Rouleau et al., 2010). This binding is coupled with an
increased expression of adhesion molecules, such as ICAM-1 and E-selectin, as has
been observed in a number of in-vitro experiments (Hinds et al., 2001, Chiu et al.,
2003, McKinney et al., 2006, Rouleau et al., 2010). Furthermore, the studies of
(Pritchard et al., 1995, Hinds et al., 2001) and (Chiu et al., 2003) all noted differences
in their experimental results when cells were biologically inactive, thus concluding
that it is important to consider both the hemodynamics and the biological activity
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of the wall. Elucidating this tentative link between disturbed hemodynamics and
the initiation of atherosclerosis remains and on-going challenge.

To address the problem, the first question that comes to mind is the manner
by which leukocytes are transported in blood. The least would to be to consider
typical characteristic of human hemodynamics in large arteries. It has been shown
by several studies (Ku et al., 1985, Ku, 1997, Zarins et al., 1983, Botnar et al., 2000,
Thomas et al., 2005, Urquiza et al., 2006, Sazonov et al., 2011, Holdsworth et al.,
1999) that the flow of blood in such arteries exhibit complex three-dimensional
features. Separated flow, secondary vortex patterns, recirculating regions, etc. are a
few of such features. Flow pulsatility of human hemodynamics must be considered
too as it can completely alter flow regime within one pulse. Moreover, adaptivity of
arterial wall to external factors such as temperature, activity, stress, etc. adds a
new dimension to the complexity of the problem. In short, movement of leukocytes
requires understanding the complex flow of blood (Chiu and Chien, 2011).

Considering the blood as a suspension of cells in plasma, movement and concen-
tration of leukocytes could be heavily influenced by how they interact with other
cells. For example, red blood cells have been shown to change the distribution of
platelets and leukocyte (Eckstein and Belgacem, 1991, Karino and Goldsmith, 1977,
Goldsmith and Spain, 1984) and force them toward the wall (Melder et al., 1991,
Munn et al., 1996). Once close enough to the endothelium, WBC-EC interactions,
manifesting in complex adhesion forces, gain significance. Quite expectedly, different
cell types show specific adhesion behavior. Therefore, it appears that, as complex
large artery hemodynamics is, it is not sufficient in studying the near-wall dynamics
of leukocyte (Steinman et al., 2003). To address this issue, this work aims to provide
a mechanobiological modeling framework that combines flow conditions with cell
adhesion kinetics. In particular, the following challenges have to be addressed.

The first challenge is accurate simulation of the flow of blood in the entire arterial
domain. While accurate modeling of fairly complex flow patterns is feasible with
a reasonable effort, it is equally important to resolve near-wall flow features with
very high accuracy (Hanzlik et al., 2008). Even though flow in extreme vicinities
of the endothelium might not be as complex as in bulk, its accuracy substantially
affects the accuracy of near-wall cell interactions such as rolling and adhesion. Due
to extremely long initiation time scales of atherosclerosis, achieving acceptable
accuracy in the entire domain with reasonable computational effort is especially
challenging in this work.

Secondly, modeling leukocyte transport is either unfeasibly expensive or inaccurate.
One approach is to use an Eulerian representation of leukocytes, e.g. in form of a
concentration field. This approach was used in Lyczkowski et al. (2009) to model non-
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uniform distribution of monocytes in flow. While their approach was not expensive,
results were not particularly accurate. Alternatively, a Lagrangian approach could
be employed to represent leukocytes as discrete particles in flow. The advantage of
this method is its flexibility in predicting highly non-uniform distribution patterns,
as it follows the nature of leukocyte in blood very closely. However, considering the
number of particles needed to achieve accurate deposition results in large arteries,
this approach is not an option. It was observed that, based on typical leukocyte
concentration in blood and the characteristic size of large arteries, reaching a fully
converged deposition profile requires inclusion of hundreds of millions of particles in
a simulation (Gholami et al., 2014).

The last challenge is establishing a proper link between flow conditions and
near-wall behavior of leukocytes. WBC adhesion represents a balance between the
strength of adhesive bonds on the one hand and hemodynamic forces on the other.
Therefore, near wall hemodynamic forces have a dual effect on the adhesion of WBCs
(and other small blood-borne molecules). First, transport to and away from the
surface of these small molecules is driven by local hemodynamic forces and residence
time (Longest et al., 2003). Second, they adhere to the endothelium depending on
the balance between local hemodynamic forces and the kinetics of association and
dissociation(Rinker et al., 2001); this can be considered a stochastic process (Zhu,
2000). The latter is further complicated in the vasculature due to the ability of the
endothelium to adapt its phenotype, signaling and gene expression according to the
prevailing hemodynamic environment (Gimbrone Jr et al., 1997, Nerem et al., 1998,
Chiu et al., 2009), thus hemodynamics and adhesive bond strength is interrelated.
Understanding the intricate connection between hemodynamics and adhesion of
WBC is an unresolved issue.

The complex interplay of unsteady flow, three-dimensional flow features, adhesion
kinetics, etc. obstructs development of a clear cause and effect relation. For
examples, it is shown that unsteady flow affects biological environment (Hsiai et al.,
2003), however, it is not known if and how these conclusions can be extended to all
cell types (Steinman et al., 2003, Lyczkowski et al., 2009). Previously a number of
models have attempted to elucidate the separate role of disturbed haemodynamics
and molecular adhesion to the endothelium. A variety of approaches have been
proposed to achieve this goal (see for example (Rinker et al., 2001), (Comerford
and David, 2008), and (Hossain et al., 2014)); although these models have different
areas of interest the over-arching goal is to elucidate the role of haemodynamics and
cellular /molecular adhesion and the association with the initiation of atherosclerosis.
Furthermore, lack of experimental data, obtained in similar flow conditions, prohibits
sufficient validation of existing cell adhesion models when used in conjugation with
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a macroscopic flow model.

To overcome these challenges, a multiscale modeling framework is developed based
on a Lagrangian particle solver. It allows easy manipulation of arterial geometry
or adopting complex models for blood, as a non-Newtonian fluid. Dynamics of
leukocytes is modeled through introduction of tracer particles to the computational
field. As mentioned, typical spatio-temporal scales governing the problem are
so distinct that it is computationally not feasible to simulate cell-endothelium
interactions with conventional methods. Therefore, a dual continuous-discrete
definition of leukocyte field is introduced to couple bulk-wall quantities is an
extremely efficient manner. The discrete representation of the field is restricted
to vicinities of wall to save computational work yet enable accurate and flexible
near-wall modeling of leukocytes. WBC-EC interactions are simulated using a
stochastic adhesion model that provide a link between hydrodynamics forces and
adhesion kinetics. Finally, inflow/outflow boundary conditions are implemented for
realistic replication of pulsatile blood flow.

1.3 Numerical modeling of atherosclerosis
progression

Previously in literature a number of studies have considered the transport of
leukocytes and other small blood borne particles in arterial geometries related to
atherosclerosis Kunov et al. (1996), Tambasco et al. (2002), Buchanan et al. (2003)
as well as intimal hyperplasia of a distal anastomosis Longest and Kleinstreuer
(2003), Longest et al. (2004). Kunov et al. Kunov et al. (1996) studied particle
transport in a 2D stenosis. Their method assumed Lagrangian volumes to have
a uniform concentration of particles. This approach was primarily motivated
by the fact that the platelet concentration in blood is unrealistically high from
computational perspective. In this study, they also introduced the concept of
"volumetric residence time". Tambasco et al. Tambasco et al. (2002) modelled
small particles, such as platelets, using the same method as Kunov et al. (1996), in
a stenosed carotid bifurcation. They reported that impractically fine meshes are
required to capture complex geometric features in the near wall region using particle
methods. Furthermore, particle trajectories were very sensitive to the resolution
of the underlying velocity field, hence care must be taken when interpreting the
outcomes as quantitative. Buchanan et al. Buchanan et al. (2003) performed
transient particle dynamics in a model of the rabbit abdominal aorta. In this
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method the particle transport equations for a dilute suspension of spherical particles
were solved based on a precomputed velocity field. They determined that monocyte
adhesion (calculated as the number of particles adjacent to a specific area of the wall)
correlated with lesion development measured in cholesterol-fed rabbits and also with
a number of traditional hemodynamics parameters. In Longest and Kleinstreuer
(2003), Longest et al. (2004) the transport of micro-particles (in particular platelets)
in an idealised and realistic end-end anastomosis were investigated. Although these
are related to a surgical procedure the development of the diseased area will be
similar processes. They determined high residence time in areas associated with
intimal hyperplasia.

The aforementioned studies have highlighted the importance of Lagrangian simu-
lations in studying particle deposition patterns in the initiation and development
of atherosclerosis. However it has been also highlighted that the methods used are
computationally expensive when considering transient flows in complex geometries.
Smoothed Particle Hydrodynamics (SPH) is a popular Lagrangian method that
has proven to be capable of handling such problems very suitably. It was originally
developed for modeling compressible flow problems in astrophysics Gingold and
Monaghan (1977), Lucy (1977), but later its applications were extended to a variety
of engineering problems amongst which are: non-Newtonian fluids, free-surface
flows, multiphase problems, micro/biofluidics, fluid-solid interaction, modeling solid
material, etc. Recent developments and applications of SPH are reviewed in Mon-
aghan (2012), Liu and Liu (2010). More specifically, SPH has been used by several
groups to simulate blood flow and related applications. In a recent work, Shahriari
et al. Shahriari et al. (2012) used SPH to model hemodynamics of heart’s left
ventricle with pulsatile inlet velocity. Similarly, Sinnott et al. Sinnott et al. (2006)
investigated blood flow in realistic carotid artery bifurcation. Capillary flow and
deformation of red blood cells in micro vessels were studied in Hosseini and Feng
(2009), Tanaka and Takano (2004). Effect of blood properties, specifically hemat-
ocrit, on hemodynamics of microcirculation was studied in Tsubota et al. (2006).
Authors of Miiller et al. (2004a,b) used SPH to simulate interaction of fluid with
solids and free surfaces with applications in virtual surgery simulators. Furthermore,
Hieber et al. Hieber et al. (2004) extended the application of SPH in biomedical
problems to study mechanical behavior of human organs.

In the present study we develop an advanced multiscale SPH approach that
allows particle methods for hemodynamic simulations to be achieved in a tractable
manner. As an example, Longest et al. Longest et al. (2004) uses a maximum
of 500000 tracers in full domain in a realistic femoral anastomosis geometry to
reach convergence. Considering the normal concentration of leukocytes in blood, ca.
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10*/mm?3, and typical size of large vessels, a fully converged near-wall profile requires
computation of trajectories for hundreds of millions of tracers which is about 1000
times more. In contrast, we reduce the number of tracers through specific tracking
of leukocytes only in close vicinity of walls. Even though this problem is extremely
demanding, our approach brings substantial reduction of computation work.

1.4 Outline of the thesis

In chapter 2, the flow modeling component of the framework, using smoothed
particle hydrodynamics method, is discussed. In particular, it is explained how
this model brings flexibility to model the complex hemodynamics in large arteries
while keeping the computational requirements manageable. In chapter 3, a full
multiscale flow model is explained. In particular, the Lagrangian particle tracking
is discussed to understand terms of the original formulation can be omitted to
save computational work in the vicinity of walls. In chapter 4, kinetic modeling of
short-range interactions of leukocytes with endothelium is outlined. The stochastic
adhesion model used in this work is discussed in relation with other modeling
approaches. Finally, in chapter 5, general purpose inflow and outflow boundary
conditions for SPH are discussed. These conditions are required to make realistic
pulsatile environment in patient-specific arterial geometries possible. Finally, all
findings and conclusions of this work are briefly reviewed and discussed in chapter 6.




2 Smoothed particle
hydrodynamics

As discussed in section 1.3, particle methods represent a valuable tool to simulate
such complex problems as those represented by particulate flow of blood through
a cardiovascular network. This is because of the unique properties of particle
methods which allow for a Lagrangian description of material transport. However,
a direct representation of blood in terms of real-sized blood cells suspended in a
Newtonian plasma is feasible only on very small spatial/temporal scales. The large
scale separation existing between biological components (order of pm) and typical
vessel size in the macrovascular network (order of cm) prevents the use of mesoscopic
particle methods (i.e. DPD (Hoogerbrugge and Koelman, 1992)).

A Dbetter strategy when dealing with flow in a macrovascular network is to
keep the continuum viewpoint and couple it with a discrete representation of the
leukocytes as test particles rather than real cells. This can be done by adopting
a macroscopic particle method based on the Lagrangian solution of a suitable
set of partial differential equations and by taking into account the distribution of
microscopic cells by considering point-size test tracers moving in a macroscopically
evaluated flow field. As a result, in this work an approach based on Smoothed
Particle Hydrodynamics (SPH) ((Liu and Liu, 2003, 2010, Monaghan, 1992)) is
used. SPH was originally developed for modeling compressible flows in astrophysics
(Lucy, 1977, Gingold and Monaghan, 1977) and later applied to many fluid dynamics
applications. It has also been used to model hemodynamics (Sinnott et al., 2006,
Shahriari, 2011, Hosseini and Feng, 2009, Tanaka and Takano, 2004, Tsubota et al.,
2006, Miller et al., 2004a, Hieber et al., 2004). SPH’s capability to handle extremely
complex flow conditions suites this nature of work very well.

2.1 General formulation

SPH uses a weighted interpolation to determine the values of a function f, and its
derivative, at any point r in space. The weighting function is called the smoothing
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kernel and is denoted by W. Hence, the integral form of the interpolant could be
written as

()= [ FEHW = n)dr, (2.1)

where (f (r)) is an approximation to f(r), and h is the smoothing length of the
kernel. There are infinite number of possible kernel functions. However, in practice,
any kernel function have to satisfy two conditions. Firstly, as the smoothing length
goes to zero, the kernel function must tend to the delta function, i.e.

lm W (r—r1',h) =0(r—1'). (2.2)

h—0

Following Eq. 2.1, this condition gives:

lim(f (1)) = f (1) (2.3)
Secondly, the kernel should be normalized to give exact result for a constant
function:

/W (r— 1 B)dr =1. (2.4)

Additionally, for the sake of computational efficiency, kernel functions are typically
chosen to vanish after a finite distance. This property is called compact support.

Several types of kernel function can be found in the literature (Monaghan, 2012, Liu
and Liu, 2003, 2010, Dehnen and Aly, 2012, Springel, 2010, Fulk and Quinn, 1996).
Piece-wise continuous splines are the most common (Schonberg, 1946, Monaghan
and Lattanzio, 1985). This type of kernel function has compact support and could
be defined to be high-order derivative continuous (Monaghan, 2005).

2.1.1 Discrete formulation

The continuous integral interpolant, Eq. 2.1, could be written in the discrete form
as the sum of function values over a discrete set of points, SPH particles. Assuming
the summation over a finite number of particles, N, we have:

(f@) =D f)W(r—r;h) V. (2.5)

V;, the discrete equivalent of dr’, is the finite volume associated with particle j,
hence:

Vj = mj/,Oj, (26)

10
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where m; and p; are mass and density of particle j, respectively. As long as the
kernel is continuous, Eq. 2.5 allows a continuous interpolation of function f using
its value at a finite number of disordered particles. In the same way, one could
evaluate the derivatives of f using Eq. 2.5:

V(f () =3 f () VIV (r — x5, 1) V; (2.7)

in which the kernel function is assumed to be differentiable. The significance of
Eq. 2.7 is in that it uses only function values at discrete points, f (r;) to calculate
the derivative. However, this method is, by far, not the most suitable way to
calculate derivatives. One could see the even though it uses an exact derivative
of an analytical function, it does not vanish if f is constant. In order to improve
the accuracy, there are several methods to evaluate function derivatives in SPH
(Monaghan, 2005).

Finally, it must be noted that the discrete formulation, Eq. 2.5, provides an ap-
proximation in comparison with the integral interpolant. Obviously, with increasing
the number of particles within the kernel range, the associated error would decrease.

2.2 Lagrangian hydrodynamic modeling

Using the definitions provided in the previous section, we now move to determine
the SPH formulation of the governing equations of our system. We first assume
that full Navier-Stokes equations to fit our specific application. To describe the
haemodynamics of large arteries, we assume that the blood in the bulk to be a
continuous phase. Therefore, our system is governed by the isothermal Navier-

Stokes equations which, written in a Lagrangian framework, have the following form
(Batchelor, 1967)

dp

= —pV- 2.
dv Vp

—_ YO F 2.
p S tFte (2.9)

where p, v, p, g, and F are, material density, velocity, pressure, body force, and
viscous force, respectively. Note that the convective term, v - Vv is absent in Eq. 2.9
as it only appears in an Eulerian representation.

Considering the range of velocities in major arteries of human body (Botnar
et al., 2000, Gallo et al., 2012, Holdsworth et al., 1999, Ku, 1997, Ku et al., 1985),

11



2 Smoothed particle hydrodynamics

incompressibility is an absolutely suitable assumption. The equation of state for a
nearly incompressible fluid relating pressure to density, as given by Batchelor (1967)
and Monaghan (1994), can be written as

p=po l(p’;)v— 1], (2.10)

where pg, v and p are parameters chosen based on a scale analysis (Monaghan,
1994, Morris et al., 1997) such that density variations are smaller than a prescribed
value. Specifically, density variation |0p|/p is quadratically proportional to the Mach
number,

5 2

lorl . (2.11)

p Cs
where ¢, is the speed of sound. According to Eq. 2.11, choosing a large-enough
speed of sound ensures validity of the nearly incompressible assumption.

Furthermore, viscous forces for a Newtonian flow F reduce to
F = vV?v, (2.12)

where v = n/p is the fluid kinematic viscosity and 7n is the dynamic viscosity.
Application of more complex equations describing the dynamics of non-Newtonian
or viscoelastic fluids would be a valid consideration. Such behavior has already
been studied in the framework of SPH (Ellero and Tanner, 2005, Vazquez-Quesada
and Ellero, 2012). However, as haemodynamics of large macro-vessels can be quite
accurately modeled by the standard Navier-Stokes equations with constant viscosity
(Ethier and Simmons, 2007), we will use the Newtonian viscosity model, as in
Eq. 2.12, in this work.

Following Eqs. 2.5 and 2.7, Eqs. 2.8-2.9 can be discretized using SPH, which
allow evaluation of fluid quantities at any point in space (Monaghan, 1992). Eq. 2.8,
namely conservation of mass, is automatically satisfied if particle density is evaluated
as (see Espanol and Revenga (2003))

d; = Z]/Vij7 (2.13)
j

where d; = 1/V; is the number density associated to SPH fluid particle i and
Wij = W([r; =], ).
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2.2 Lagrangian hydrodynamic modeling

Application of the SPH approximation to Eq. 2.9 produces the following equations
for the particle positions and momenta (Espanol and Revenga, 2003, Vazquez-
Quesada et al., 2009)

r; =vy,

. Di by / VVZIJ Vij
i = = =+ = | W.e;+2 — i 2.14
mv Z(d?—i_d?) z]eJ+ nzj:didjrij_'_g ( )

J

where

! p—
W =

r=rij

Due to anti-symmetry under particle index exchange of the binary force contribution
within the sums, Eq. 2.14 conserves automatically the total momentum (Ellero and
Adams, 2011). Note that it is straighforward to write a generalized form of Eq. 2.14
to use a non-Newtonian viscosity model, a relevant assumption for cardiovascular
flows (Ellero and Tanner, 2005, Ellero et al., 2002).

In order to implement time integration of Eq. 2.14, a time step is chosen based
on three criteria:

dten = 0.25h/c,
dtyise. = 0.125h% /v,

dlforce = \V h/frnax7

where f™* is the maximal force per unit of mass acting on an SPH particle. The
final time step would be the minimum of these time steps:

dtSPH = min (dtcﬁa dtvisc.a dtforce) . (215)

This equation points out that speed of sound should be chosen carefully as an
arbitrarily large ¢, results in an excessively small time step. As a last remark, to
update the positions and velocities of the SPH fluid particles, a modified explicit
velocity Verlet algorithm is used (Bian et al., 2012, Groot and Warren, 1997). This
scheme uses a velocity prediction step before integration positions.

13



2 Smoothed particle hydrodynamics

2.3 Bulk diffusion

While small tracers are in the bulk, away from walls, their motion is modeled as
a continuous phase. This approach has the advantage that by definition of a bulk
concentration field C' (r, t), tracers are automatically carried by our Lagrangian SPH
particles. Hence, tracer concentration for SPH particle ¢ would be

Clri, t) = Ni/ Vi, (2.16)

with NV; being the number of tracers associated to the fluid particle ¢ and V; = 1/d;
the fluid particle volume. Note that N; could correspond to any distribution of
tracers in the bulk. This makes it possible to impose a non-trivial distribution at
the boundaries or as initial condition.

The SPH concentration field, defined in Eq. 2.16, satisfies exactly

oC

— +(v-V)C=0. (2.17)

ot
In reality, we need to consider diffusion of tracer concentration due to the erratic
motion of white blood cells induced by red blood cells (Goldsmith and Karino, 1977,
Longest, 2002). Such behavior results in introduction of a diffusion coefficient, D,

in Eq. 2.17:

aaf + (v-V)C = DV*C, (2.18)

Incorporation of the diffusion term in Eq. 2.18 into the equations of motion for
the SPH particles can be performed in two ways.

2.3.1 Smoothed dissipative particle dynamics

The SPH formulation presented in this chapter does not consider thermal fluctuations.
This prevents SPH to be applicable in mesoscopic problems. On the other end of
the spectrum, we have dissipative particle dynamics (DPD) (Hoogerbrugge and
Koelman, 1992, Espanol and Warren, 1995, Groot and Warren, 1997) where thermal
fluctuations are taken into account but does not provide a direct way to specify
transport properties. Additionally, DPD lacks a well-defined physical scale and does
not allow use of arbitrary equations of state.

Smoothed Dissipative Particle Dynamics method (SDPD), proposed by Espanol
and Revenga (2003), combines SPH and DPD to overcome the shortcomings men-
tioned above (Vazquez-Quesada et al., 2009, Hu and Adams, 2006a). SDPD adds
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2.3 Bulk diffusion

random momentum fluctuations to the standard SPH equations in a thermodynam-
ically consistent way. In this way, it adds a random force term to the momentum
equation, Eq. 2.14, on top of pressure and viscous forces. As a result, the diffusive
behavior is implicitly incorporated into the momentum equations through this
stochastic. In the current context, this random term takes this form:

kpTu WY —
md\NIi:Zl—S id; U] dW; - e;j, (2.19)

j "ij

where kp is the Boltzmann constant, 7' temperature, and dW,; is the traceless
symmetric part of a matrix of independent increments of a Wiener process. The
corresponding diffusion coefficient can be selected by matching the desired properties
of the dispersed phase (Gholami et al., 2014). Using the analytical expression for
the self-diffusion coefficient of SDPD (Litvinov et al., 2009), diffusion coefficient can
be specified a priori as input parameter.

2.3.2 SPH discretization

In a different approach, one could discretize Eq. 2.18 and explicitly solve for tracer
concentration as a SPH variable. This approach is motivated by the work done
by Ellero et al. (2003). In that work dumbbells are created in each fluid particle
to study polymer diffusivity. The number of dumbbells is treated as an additional
variable that undergoes thermal fluctuations. A detailed derivation of the SPH
discretization of the advection-diffusion equation could be found in Appendix E
of Ellero et al. (2003). In case of the current study, the SPH discretization of the
transport equation, Eq. 2.18, yields:

— N,d,), (2.20)

dd 7“”

where N; is the number of tracers carrled by SPH particle . Similar to the previous
approach, the overall number of tracers is conserved throughout the simulation.
We have tried both of this methods in this work. The first approach, as demon-
strated in Gholami et al. (2014), delivers good results and is straightforward to
use. However, we later used the second approach as its suits the requirements
of this study better (Gholami et al., 2015). Modeling of tracers’ bulk diffusion
using the second approach had the advantage that each SPH particle carries a
meaningful tracer concentration at each time. In addition to the flexibility it brings
in comparison to the first approach, this property could be desirable when the
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2 Smoothed particle hydrodynamics

wall undergoes structural changes, as a result of tracer accumulation, during the
course of the simulation (Gholami et al., 2015). As studying the progression of an
atherosclerotic plaque would require dealing with wall remodeling in later stages,
the second approach, SPH discretization of advection-diffusion equation, is very
fitting to current and future requirements of this work.

2.4 Kernel function

As mentioned earlier, piece-wise continuous splines are the most common family
of kernels. However, there are several other kernel types. For example, a simple
Gaussian kernel is stable and infinitely differentiable; however, it has no compact
support. Such a kernel requires calculation of contributions of every particle in
the simulation. This characteristic severely limits the use of this kernel in large
applications with many particles. piece-wise continuous spline kernels provide a
reasonable mix of smoothing properties and computational efficiency. Let’s have a
quick look at two common spline kernels: 2D normalized form of cubic spline,

10 1= 3(r/n)*+3(r/h)° 0<r/h<1
W(r,h):ﬂ i(2—r/h)3 1<r/h<2
0 r/h>2,

and quintic spline,

(3—r/h)° —6(2—7r/h)’+15(1 —r/h)° 0<r/h<1

7T JB=r/h)’ =6(2—r/h) 1<r/h<?2

W h) =282 \ 3= r/n)° 2<r/h<3
0 r/h > 3.

Fig. 2.1 shows a comparison of these two kernels. The quintic spline has four
continuous derivatives, while the cubic spline has two. Smoother kernels provide
better stability as stability properties of SPH depends strongly on the second
derivative. For example, (Morris et al., 1997) showed that cubic spline kernel
produces significant noise in pressure and velocity fields for low Reynolds number
simulations. However, they showed that while quintic spline kernel remains stable,
it is approximately twice as expensive as the cubic spline kernel.

In the current work, both cubic spline and quintic spline kernels were employed.
Even though in many cases the difference between these two kernels was reduced to
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Figure 2.1: Comparison of cubic spline and quintic spline kernels - quintic spline is
smoother, i.e. its first four derivatives are continuous, while cubic spline
has two.

higher computational costs of the latter, quintic spline kernel still was chosen as
the default kernel in many simulations. Due to its more stable nature, the quintic
kernel seemed a more suiting choice for arterial flow where pressure waves in form
of pulses drive the flow.

2.5 Numerical verification

Before moving on to the rest of the work, a number of well-established cases were
tested with the implementation of the SPH to verify the validity of the code. In
particular, flow in a lid-driven cavity, Couette flow, and Poiseuille flow were examined.
Since capabilities of SPH in accurately simulating the flow for these case is already
established, see (Morris et al., 1997, Ellero et al., 2002), this section focuses on a
scenario that is relevant for the rest of the work.

For this purpose, a backward-facing step (BFS) geometry is used. This geometry
is simple but the flow over BFS features fairly complex patterns such as sudden
expansion and recirculation zone. Additionally, these flow features are highly relevant
for the application targeted in this work. For example, a sudden expansion and
subsequent recirculation zone are common in atherosclerosis-prone sites such as
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2 Smoothed particle hydrodynamics

aneurysms and carotid artery bifurcation. A 2D BFS geometry similar to that of
(Issa, 2005) is tested. The computational domain, shown in Fig.2.2a has a length
of 122.4 mm and height of 10.1 mm. Two steps, one at inlet and one at outlet,
are introduced. Each step has a length of 16.3 mm and height of 4.9 mm. To
validate the flow, velocity profiles at four sections along the domain are compared to
Fluent simulations from (Issa, 2005). These four sections, P1 to P4, are positioned
at 4.9 mm, 18.13 mm, 20.09 mm, and 49.98 mm from the inlet. Flow Reynolds
number, based on mean bulk velocity at inlet and twice the inlet height, is 100
which corresponds to a mean bulk velocity of 0.14 m/s.

As shown in Fig.2.2, velocity profiles in all four section show very good agreement
with the reference solution. As mentioned earlier, the results of the SPH code is
already verified using other well-known benchmark cases. However, in this work,
it is particularly important that complex features such as recirculation zone are
modeled accurately. It will be shown later than the problem of particle tracking is
extremely sensitive to flow conditions. Presence of flow separation only makes the
situation more critical. With this in mind, we move on to the next chapter where
the challenge of modeling the discrete phase is discussed.
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(a) Backward-facing step geometry
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Figure 2.2: Comparison of the velocity profiles at different sections of the channel
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3 Multiscale low modeling

Among several numerical studies that have considered the transport of WBCs
and other small blood borne particles in arterial geometries, a Lagrangian particle
tracking (LPT) seems to be the standard approach (Kunov et al., 1996, Tambasco
et al., 2002, Buchanan et al., 2003, Longest and Kleinstreuer, 2003, Longest et al.,
2004). This is justified by the fact that the number of leukocytes in blood is normally
much lower than that of red blood cells (less than 1% of whole blood compared to
the 45% hematocrit) Alberts et al. (2002), so they have negligible influence on the
dynamics of blood and can be reasonably described as passive tracers. Utilizing
a standard LPT approach, trajectories of leukocytes are calculated by integrating
equations of motion of the form:

Xp = Uy

~—~
w
—_

w = £, 3.2)

where x;, ug, and fj, are position, velocity, and force per unit mass of the tracer
k =1, .., Niracer, respectively. The acting force (fy) is evaluated using the information
from the fluid flow. From the knowledge of the tracers distribution, an average
concentration field both in the bulk and in the near-wall region can be computed
Longest et al. (2004). This standard approach is straightforward to implement in
connection with a given discretization of the flow field, but it is computationally
very expensive for the specific application targeted in this work. Indeed, when
only information on the near-wall WBC concentration is required (which is the
case relevant to atherosclerosis), it is inefficient to track WBC motion over the
entire fluid domain. Moreover, a very large number of tracers must be considered in
order to achieve a statistically relevant ensemble in the interesting near-wall region
(typically a layer of few leukocyte diameters thickness) which is much smaller than
the entire bulk control volume in macroscopic vessels. This drawback of standard
LPT approaches leads to a prohibitively large number of tracers to be simulated
with consequent computational bottleneck (Gholami et al., 2013, 2014).

In order to solve this problem, our proposed method is based on a splitting of the
domain into two regions: the bulk flow and the near-wall region. Modeling solid
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3 Multiscale flow modeling

tracers in the bulk is based on a continuum approach and is done via advection/dif-
fusion of a concentration field C' (r,t) by using a Lagrangian fluid solver, namely
Smoothed Particle Hydrodynamics (SPH) (Lucy, 1977, Gingold and Monaghan,
1977). Transport of such small tracers in flow conditions relevant in this work
are characterized by very small Stokes number (St;, = 7,U/d < 1) and usually a
very large Péclet number (Pe = Ud/D > 1). In this limit, diffusion is negligible
and passive tracers follow similar pathlines as fluid particles in the bulk. As a
consequence, their dynamics can be modeled on a continuum basis by using a bulk
concentration field C' (r,¢). Thanks to the Lagrangian property of SPH, advection
is implicitly modeled in such a way that the number of passive tracers within every
SPH fluid particle can be considered to be constant during the flow. This allows to
define a tracer concentration carried by each SPH particle similar to Eq. 2.16. Two
approaches in continuous modeling of the tracers was discussed in Sec. 2.3. Those
approaches cover the bulk dynamics of passive tracers.

On the other hand, in the near-wall region, discrete tracers are created allowing
the application of a standard LPT only in a small portion of the domain. Separate
treatment of tracers in each near-wall sub-domain is necessary in order to incorporate
lubrication effects as well adhesive forces for which no-closed continuum equation
for C' (r,t) is available. Finally, continuum/bulk and discrete/near-wall solutions
are coupled at the interface between the two domains enforcing conservation of
mass. Since the particle tracking is limited to WBCs only in the near-wall region,
our approach brings considerable speed-up to the simulation of WBC circulation.
In this chapter, near-wall dynamics of tracers and the coupling scheme that brings
the proposed multiscale method together are discussed.

3.1 Discrete phase: Lagrangian particle tracking

Transport of WBCs in blood is governed by significantly smaller time scales (7, =
ppdf)/l&u) compared to that of the bulk blood flow (7410y = d/U), with p, and d,
being tracers density and diameter, d the diameter of the artery, and U the flow
velocity. As a result, our method adapts a discrete definition of tracers only in the
near-wall region where, due to the complex tracer-wall interactions, a continuum
description based on evolution equations for a concentration field is infeasible.
Furthermore, it is straightforward to extend this approach to situations where
realistic wall interaction models are considered, such as wall adhesive forces to
represent the binding of leukocytes to the endothelial layer.

22



3.1 Discrete phase: Lagrangian particle tracking

3.1.1 Basset-Boussinesq-Oseen equation

The role of flow parameters in onset and progression of many vascular diseases
is extensively studies. Additionally, the transport of blood cells, as the normal
mechanism to e.g. move oxygen and nutrition, trigger inflammatory response, and
activate platelets, has received considerable attention. Among the studies that
approach these problem from computationally, application of Lagrangian particle
tracking (LPT) is modeling the transport of blood-borne particles is very common
(Gholami et al., 2012).

For example, Kunov et al. (1996) used LPT to study platelet residence time
in arterial geometries. Their work was motivated by the fact that activation of
platelets could be triggered by hydrodynamics of flow, and in turn could lead
to secondary side effects. Tambasco et al. (2002) investigated the accuracy of
quantitative parameters, e.g. deposition patterns, residence time, that depend
on particle trajectories. Their study addressed the issue that, for a calculating
a sufficiently accurate path-dependent parameter, the resolution of the computed
fluid field should be known in advance. In a different work, Buchanan et al. (2003)
investigated formation of atherosclerotic lesion in a model abdominal aorta. They
particularly focused on deposition patterns of monocytes in their model geometry
as an initiating step in lesion formation. In addition to deposition, they used LPT
to study other path-dependent fields such as wall shear stress (WSS), wall shear
stress gradient (WSSG), and oscillatory shear index (OSI). Very similar works have
been done that use LPT to compute particle trajectories and qualify particle for
deposition (Longest and Kleinstreuer, 2003, Longest et al., 2004).

In all of the mentioned studies, the overall process could be broken down to three
steps. First step is calculating the flow field. This step is mostly done a priori using
a CFD package. There is virtually no restrictions on the methods by which the
flow is simulated. In certain cases, experimental results could be used instead of the
simulation. The second step is to track particles. Particle seeding specifies the sites
where particles are released in the domain. Afterwards, the trajectories are computed
using a form of the LPT. The final step is qualifying certain localities depending on
the computed trajectories and the kind of phenomenon under investigation.

It is interesting to note that many studies pointed out extreme sensitivity of
wall parameters that are computed from particle trajectories (Barton, 1995, Kunov
et al., 1996, Tambasco et al., 2002). The inaccuracies could be associated with
three factors. Firstly, the resolution of the underlying flow field. Tambasco et al.
(2002), Barton (1996) showed how individual trajectories could differ significantly
with small changes in flow field. Secondly, the equations by which the trajectories
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3 Multiscale flow modeling

are computed. A full form of the equation used to model the motion of small solid
spherical particle is called Basset-Boussinesq-Oseen (BBO). To save computational
effort, many studies consider a reduced BBO as not all terms are always significant.
Therefore, the simplified equation must be carefully validated to avoid inaccuracies.
The third factor is the discretization and solution of the adapted BBO equation.
The first and last factors are practical issues that could be tackled by careful choice
of numerical settings. Therefore, for the rest of this section, the focus would be on
the BBO equation in relation with particle dynamics in large arteries.

The Basset-Boussinesq-Oseen equation specifies unsteady motion of small particles
in flow. The current form is the result of several extensions on the original work
Maxey and Riley (1983), Saffman (1965). For the sake of completeness, the BBO
equation follows with a small description of each term. For a detailed discussion on
each term and their derivation under different flow conditions a number of references
are available Clift et al. (1978), Maxey and Riley (1983), Ounis and Ahmadi (1990).

du
= (my—my) g (3.4)
+ Dy (3.5)
my Dt .
myd(v—u)
o Ca (3.6)
+ 6mpa (v —u) Cqy (3.7)
v (12
+ 2mpra®v'? (v — u) x—" CignCs (3.8)
td(v—u) dt*
2
+ 6mpa /O T ey e (3.9)
0.1344
Ch,=212— ———
Ac® 4 0.12
Ca =1+ 0.15Re™%
0.52
Ch=0484 ——
h (Ac+1)°
o v
c— Y P
%24 ’d(v—u) ’

dt
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3.1 Discrete phase: Lagrangian particle tracking

As shown, BBO defines the motion of a spherical particle with radius a, velocity
u, and mass m, as a function of Reynolds number Re, displaced fluid mass my,
velocity v, density ps, and viscosity p. In this formulation of BBO, the buoyancy
term, Eq. 3.4, denotes forces due to differences in density of the particle and the
carrying fluid in presence of gravity. The pressure term, Eq. 3.5, takes into account
the difference in the motion of the fluid if the particle was not present. As shown
by its sign, it is in the direction of the fluid motion. The virtual mass, Eq. 3.6,
specifies deceleration of the particle due to acceleration of the surrounding fluid.
Drag force is denoted by Eq. 3.7. Drag is the important force acting on the particle
due to viscosity of the fluid. In this formulation Stokes drag is modified according
to Clift et al. (1978) to account to wake behind particles in larger Reynolds numbers
(Barton, 1995). Saffman lift, Eq. 3.8 derived by Saffman (1965), accounts for the lift
force on the particle due to velocity gradient across it. This term becomes significant
in regions of high shear stress, e.g. in vicinity of walls. Finally, the Basset force,
Eq. 3.9, defines the extra drag due to formation of a boundary layer around the
particle. According to Barton (1995), this term is often ignored in computational
studies.

3.1.2 Near-wall particle tracking

A standard LPT scheme is used to model dynamics of discrete tracers in the near
wall regions. Within the SPH fluid iteration step dtsp,, equations of motion for each
tracer k are integrated with an appropriately smaller time step dt in the range of 7,:

= £y grag + Trtuvr + frpige + ficous (3.10)
X = Uy, (3.11)

where f;, 4,44 is the Stokes drag acting on the leukocyte, £ ;5 and £ ;¢ are wall
drag modifications, and fj, ., is a stochastic force which takes into account collisions
with red blood cells.

Integration of position x; and velocity uy is performed using a first-order Euler
scheme:

xpt = x} + dtu, (3.12)
uptt = uy + dif), (3.13)

where n denotes the discrete sub-iteration time and dt is the integration time step.
In our case, dt < 7, < dtgpy for stable integration. As the feedback arrow implies in
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3 Multiscale flow modeling

Fig. (3.5), force calculation and integration steps are repeated enough times to reach
the next SPH time step. Intermediate steps guarantee stability of the numerical
scheme. Increased time steps can be achieved, for example, by using second-order
improved Euler predictor-corrector methods coupled with adaptive time step size
Longest et al. (2004). However, accurate calculation of near-wall trajectories is only
possible by application of extremely small time step sizes. The stability issue is
automatically solved as a result of such choice. As these issues have been overcome
by a first-order Euler scheme, using a high-order tracking scheme does not seem to
be worthwhile for this problem.

Force calculation

Explicit form for the forces acting on the tracer particles in Eq. (3.11) follow from
Longest et al. (2004). The Stokes drag for the k-th tracer is

1
fr.drag = py (Vi — ), (3.14)

p

where vy is the local SPH fluid velocity interpolated on the tracer position xy.
In the limit of Re, = p,Ud, /it < 1 near wall drag modification fy ;- is derived
by Cox and Brenner (1967), Goldman et al. (1967a,b), Loth (2000):

fotunr = [<<vk ~w) ) (hjf ) a4 (- £) (1) e] . @19)

P o 1

in which b, is wall-normal distance and a, tracer’s radius. Also, i and t denote
wall-normal and wall-tangential unit vectors, respectively.

Saffman lift Saffman (1965) is dependent on the surrounding flow shear. Therefore,
it increases in the near-wall region where tracer-wall separation is in the order of
tracer radius. As a tracer approaches solid wall in the limit, Saffman lift increases
to an extent that separates the tracer from the wall Longest (2002). Hence, this
term is derived assuming a tracer-wall separation in the order of tracer radius,

friipe = 75 d luz i (p, W)] n, (3.16)

p ap Us

where m,, is tracers’ mass and us wall-tangent slip-velocity,

us = (uy — vy) - t. (3.17)
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3.1 Discrete phase: Lagrangian particle tracking

u-t

Defining x = a,/h,, A = Ya,/us, and ¥ ~ S the value of integral I for a sphere
reads:

b
I (p, 7%) = [1.7631 +0.3561k — 1.1837K% + 0.845163/-@3}
ap U
3.24139
- { +2.6760 + 0.8248k — 0.4616x%| A
K

+ [1.8081 + 0.8796x — 1.9009x2 + 0.98149/13] A% (3.18)

which is an approximation to the numerical integration of asymptotic results from
Cherukat and McLaughlin (1994).

Dispersional effects induced by the RBCs on leukocyte k are represented by a
random force fj, .o;;. This force can be taken into account by applying a random
displacement, Ax;, produced by fj ., during one time step dt and are generated
randomly according to the following Gaussian probability distribution,

—A a2
Tk ) : (3.19)

1
—————exp
21/7TDpAt <4DpAt

where oo = x,y, z denotes the Cartesian component and D, is the effective dispersion
coefficient. Generated displacements are then superimposed on tracer positions.

In case of simplification of BBO, it is important to carefully consider validity of
the reduced model. Eq. (3.10) in full form is discussed in extent in Maxey and Riley
(1983). Compared to the full form presented above, virtual mass, pressure, and
Basset terms are neglected. A thorough investigation of the relative significance
of each term in a laminar flow over a backward-facing step is performed in Barton
(1995). According to their findings, after drag and gravity, the pressure term becomes
important for neutrally buoyant tracers, and the Saffman lift is significant near
walls. The pressure term is, however, not in the same order as the other terms, since
Eq. (3.10) is applied only at distances very close to walls.

p(Axy, At) =

3.1.3 LPT verification

In order to validate the final implementation of near-wall Lagrangian tracking,
a pure LPT code is developed that uses exactly same routines for integration of
tracers. This component initially fills the entire domain with tracers and does not
integrate the base flow but reads it as a pre-computed input. To test the code,
streamlines and tracer trajectories in a backward-facing step geometry with Re=400,

27



3 Multiscale flow modeling
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(a) Barton (1995) (b) SPH flow field

Figure 3.1: streamlines from 10 starting positions - Re=400

from Barton (1995), are presented in Figures 3.1 and 3.2. 3.1a and 3.1b show a good
agreement; however, some dissimilarities are apparent. One must take this difference
between velocity fields into account when comparing tracer trajectories. 3.2a shows
trajectories of 10 tracers starting from the entrance of the channel. Figure 3.2b
shows trajectories from the same starting position using SPH base flow and Barton’s
particle tracking. Therefore, these pathlines demonstrate the differences between
base flows in SPH and Barton (1995), as mentioned before. In 3.2¢, trajectories
are calculated according to Longest et al. (2004). The only difference is that the
deposition mechanism is still present, meaning that a particles deposits if its wall
distance is less than or equal to its radius. Finally, in Figure 3.2d the deposition
mechanism is left out and particles are free to move even at distances very close to
the wall. Apart from the differences between base flows, which is not the concern
here, trajectories seem to match very accurately.

3.2 Particle-tracer coupling

In this section we describe in detail the coupling between the solutions for the
leukocyte concentrations obtained from the continuum phase and from the discrete
phase. Solutions must be coupled together at the interface between the two domains
enforcing conservation of mass. Several continuum-particle hybrid coupling methods
have been developed during the past two decades Koumoutsakos (2005), Delgado-
Buscalioni and Coveney (2003), De Fabritiis et al. (2006), Fedosov and Karniadakis

28



3.2 Particle-tracer coupling
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walls, and near-wall deposition to walls

Figure 3.2: tracer trajectories from 10 starting positions - Re=400, Stk=0.01
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Figure 3.3: Near-wall configuration - red circles denote SPH particles, blue ones are
tracers. Near-wall interface and wall are shown with dash-dot and solid
lines, respectively.

(2009), many of which have received significant attention. In this work we aim
for a two-way coupling scheme that strictly conserves tracers’ mass. Our coupling
scheme is based on communication of tracer concentration data at the near-wall
interface. The interface, shown with dash-dot line in Fig. (3.3), is normally within a
few tracer diameters from the wall. This distance is the range that tracers start to
feel the presence of the wall Loth (2000), thus experience different dynamics than
in the bulk. Therefore, a specific particle tracking for tracers is performed in the
near-wall region. Conservation of tracer mass is guaranteed through definition of an
integer-valued tracer count field on SPH fluid particles. This definition allows an
efficient straightforward coupling scheme described in the following (according to
Fig. (3.5)):

1. Initialization

Each SPH particle i is assigned an integer number of tracers N! . . This
number indicates how many tracers SPH particle ¢ is carrying. Initialization
can be performed at any time, therefore, it allows full control over introduction
of tracers to the domain: seeding from multiple sources, arbitrary time/space-
dependent injection, etc. Taking advantage of our Lagrangian framework, it
is also easy to link initialization of tracers to domain boundary conditions.
Uniform seeding from inlet is carried out by resetting N!_____ to an initial value
at inlet, hence a uniform concentration. Inhomogeneities in concentration
develop from coupling with flow. As a result, realistic cases such as margination
of leukocytes Fedosov et al. (2012) could be handled through assignment of

higher WBC concentrations in the vicinity of wall boundaries.
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3.2 Particle-tracer coupling

2. Extraction

As already discussed, actual tracers are only created in the near-wall region.

Therefore, if SPH particle i enters the near-wall region N{___ . new tracers
are extracted from it, as shown in Fig. (3.4a). These new tracers are created
in the near-wall region according to a desired distribution. The distribution
function is chosen with respect to SPH resolution and tracer size in order to
obtain a physical continuous change in near-wall tracer concentration along
the wall. Velocities are initialized according to the position of new tracers
relative to wall. Total tracer mass is conserved as the total number of tracers,
i.e. total number of tracers in the near-wall region Nipacer plus the number of
tracers carried by SPH particles Y- N} stays the same before and after

extraction:

racer?’

L 7
fv&racer T fvéracer _F fv£racer
N! =0.

tracer
3. Discrete Phase Integration
LPT is performed for tracers in the near-wall region. Time step size is small
enough to guarantee stability of the integration scheme.

4. Insertion

A tracer that leaves the near-wall region should be deleted and inserted back
into a nearby SPH particle as in Fig. (3.4b). The SPH particle that receives
the tracer does not have to necessarily be the nearest particle. In fact, it
is chosen according to a random distribution function based on the inverse
particle-tracer distance. Therefore, artificial jumps of tracer count on a SPH
particle compared to its neighboring particles, due to the discrete nature the
coupling scheme, is smoothed out. Indeed, mass is preserved:

fv;racer = jvkracer -1
Néracer = Ngracer + 1'

Computational cost of a full LPT simulation with sufficiently large number of
tracers is overwhelming Longest et al. (2004). The particle-tracer coupling method
proposed in this work considerably reduces this cost while staying dynamic and
well-tuned for a range of realistic vascular setups. More details will be discussed in
the results section.
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3 Multiscale flow modeling
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(a) Extraction - as a SPH particle which carries 10 tracers enters the
near-wall region, 10 new traces are randomly created around it and

the SPH particle is assigned zero tracers.
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(b) Insertion - as a tracer leaves the near-wall region, it is inserted into
a nearby SPH particle. The SPH particle is assigned an additional

tracer.

Figure 3.4: Fundamental operations at interface for particle-tracer coupling - solid
line represents wall, dash-dot line near-wall interface. Red circles repre-
sent SPH particles and blue circles tracer particles.

32



3.2 Particle-tracer coupling

3.2.1 Code structure and algorithmic complexity

The overall structure of the numerical scheme is presented in Fig. (3.5). Time
integration loop starts after the initialization steps for both SPH particles and
tracers. The first step in each loop is to solve the base flow by integrating the
SPH equations of motion, Eq. (2.14). Skipping details of SPH integration, tracer
modeling steps, marked with a dashed block, take place in the following order:

1. Particle-Tracer Coupling - Extraction: quantities are communicated from SPH
particles approaching the near-wall region to tracers.

2. Force Calculation: according to local flow field, forces acting on each tracer
are calculated.

3. Integration: position and velocity of tracers are integrated. At the end of this
step tracers are re-distributed in the domain according to their new position.
Decomposition is implemented using the external PPM library Sbalzarini et al.
(2006).

4. Particle-Tracer Coupling - Insertion: post-integration quantities are commu-
nicated from tracers to particles (two-way coupling).

An additional remark on the computational complexity of these operations is in
order. Complexity of standard SPH, using optimization techniques such as a linked
list cell method, is O (Ngpn * M), with M being average number of SPH particles in a
searching cell. As for tracers, initialization of tracer concentration is linear with the
number of fluid particles O (Nspn). It is performed along with initialization of other
SPH quantities and therefore does not cause additional costs. Also, for cases such
as injection from an inlet and time/space-dependent concentration, re-initialization
takes place with imposition of boundary conditions for SPH particles, hence no costs.
Extraction of tracers requires locating fluid particles relative to walls, which means
that a linear operation in Ngp, is required to calculate the wall distance for each
SPH particle. This step can be performed within the usual SPH force calculation.
The force calculation for tracers requires the fluid velocity at each tracer po-
sition. Complexity of this operation should be O (Ngpn X Niracer) wWithout and
O (M X Niracer) with cell list. Considering that Niracer > Ngpn, this process will

dominate the complexity of the method. To overcome this, SPH velocity is inter-
ng—1

polated to the near-wall interface grid with Ni,, = O (Nsp’fld ) points, ng being
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Figure 3.5: Flowchart of the Coupling code - steps regarding the coupling of tracers
are marked with the dashed block.

number of dimensions, therefore O (M x Niy) operations. Assuming a linear veloc-
ity profile in the near-wall region, velocities at tracer position are determined with
O (Niracer) Operations. This assumption is safely valid due to the small width of
the near-wall region relative to SPH resolution.

Finally, insertion needs assignment of probabilities to M SPH particles within
the cutoff radius of every tracer which leaves the near-wall region. Considering
resolution of SPH particles compared to the width of the near-wall region, M is
small. As the number of tracers that leave the near wall region within each iteration
is an order of magnitude smaller than Ny ,cer, it is safe to conclude that the insertion
cost is far less than O (Nizacer)-

34



3.3 Deposition patterns with multiscale model

0.1224 (m)

0.0052 (m) 0.0326 (m)
0.0049 (m)

Figure 3.6: Backward-facing step geometry used for comparing results. Lengths are
presented in meters.

3.3 Deposition patterns with multiscale model

In this section, deposition patterns from the particle-tracer multiscale model are
discussed. For this purpose, a backward-facing step (BFS) geometry is used. The
channel, as shown in Fig. (3.6), is defined based on the BFS geometry in Karino and
Goldsmith (1977). The top and bottom walls are treated as no-slip and a periodic
boundary condition for fluid particles is applied on the left and right boundaries.
Dimensions of the domain are summarized in Table 3.1. Length of the channel is
chosen large enough to reach a fully developed flow before the second step.

Table 3.1: BFS geometry

BFS geometry
length of the channel 0.1224 (m)
entry height of the channel | 0.0052 (m)
length of each step 0.0326 (m)
height of each step 0.0049 (m)

Fluid parameters are summarized in Table 3.2. For simplicity, the carrying fluid is
assumed to have similar parameters as water. Application of blood as carrying fluid
with a viscosity only four times larger than water would certainly not affect results
qualitatively. Flow Reynolds number is chosen to be 23, the average Reynolds
number in the sudden expansion geometry of Karino and Goldsmith (1977). It
is based on twice the height of the inlet and the velocity at the middle of the
inlet channel. With these parameters, stability conditions on the SPH time step
prescribes dtspn = 2.13e-3 (s). Tracers are assumed neutrally buoyant, and radius is
in the same range as WBCs. The resulting momentum response time, 7, =1.12e-5
(s), is taken to be the time step size for tracer integration.

Additionally, a diffusion coefficient is selected to match the effective dispersion of
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3 Multiscale flow modeling

Table 3.2: flow and tracer parameters

flow parameters
density 1000 (kg/m?)
viscosity 0.001 (Pa - s)
timestep size ~ 2.13e-3 (s)
tracer parameters
radius 7.1e-6 (m)
density 1000 (kg/m?)
diffusion coeft. 1.5e-9 (m?/s)
momentum response time | ~ 1.12e-5 (s)
timestep size ~ 1.12e-5 (s)

Figure 3.7: Flow streamlines over the backward-facing step geometry for Re = 23.

WBCs (see subsec. 3.3.2).

Although the backward-facing step is geometrically simple, it has the advantage
that it incorporates several complex flow features observed in vivo such as flow
expansion, detachment, attachment and a recirculation zone (see Fig. (3.7)) and
therefore it represents the ideal case for clean comparisons.

3.3.1 Validation code

Results of the particle-tracer coupling scheme are validated using a second code
developed specifically for this purpose. The Validation code is implemented in
Fortran and fully parallelized using MPI. It uses snapshots of velocity field, obtained
by ANSYS Fluent, as input to integrate tracer trajectories over the entire fluid
domain. Different modes of initialization and boundary conditions are available.
The Validation code has been mainly developed to solve some numerical issues faced
by available commercial packages such as ANSYS CFX. A comparison of run times
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3.3 Deposition patterns with multiscale model

between a similar Fortran code and CFX4.4 particle tracking algorithms for tracking
of 500000 particles revealed that the former needs about 45 hours to complete
while the latter take about 2000 hours Longest et al. (2004). We also tried to
simulate similar scenarios with ANSYS Fluent, but the same difficulties were faced.
Moreover, the in-house validation code uses an identical particle tracking routine,
thus decoupling the comparison outcome from potential discrepancies between
tracking models. In any case, the particle trajectories from the Validation code were
compared to those presented in Barton (1995), and the results matched closely.

Fig. 3.8 demonstrate how concentration field evolves over time. Note that the
concentration field is initially zero everywhere in the domain.

3.3.2 Diffusion coefficient

The diffusive behavior of the tracers in both simulation methods, SPH with particle-
tracer coupling and Validation, are investigated by calculating the mean squared
displacement (MSD) defined by:

MSD(t) = ((x(t) — r(0))*), (3.20)

where () denotes averaging over all particles. For the Validation code, at zero
flow velocity, an ensemble of 100 tracer particles evolve according to f.,; only and
undergo a random walk process characterized by a diffusion coefficient D, = 1.5 x
107%m?/s in 2D. The simulation performs 10000 steps with dt = 1.12 x 1073s. The
calculated diffusion coefficient from the mean square displacement data, Fig. (3.9a),
is 1.5 x 1079m? /s and matches the input parameter. Displacement steps are limited
to 1000.

In the SPH simulation with incorporated momentum fluctuations, choosing
dt = 4.53 x 10733, a similar diffusion coefficient for the fluid particles is achieved
by taking kpT.;; = 1.9 x 107 2m?kg/s* in Eq. (2.19). The resulting diffusion
coefficient, Fig. (3.9b), equals 1.5 x 1079 In this case, in addition to limiting the
maximum number of displacement steps to 1000, those with less than 100 steps are
not considered in fitting. This is to avoid the ballistic regime and reach the diffusive
regime which defined D.

3.3.3 Particle deposition

Excessive adhesion and deposition of leukocytes are thought to be relevant in the
initiation of atherosclerosis. Exact conditions under which such abnormal deposition
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Figure 3.8: Evolution of concentration field for flow over the backward-facing step
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(a) Validation code - Only displacements with a maximum of 1000 steps are
considered. The slope of line divided by 4 x dt(= 4.48 x 10~3) rounds to
1.5 x 1079
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time (number of steps)

(b) SDPD code - Only displacements with a maximum of 1000 and a minimum
of 100 steps are considered. The slope of line divided by 4 x dt(=
1.812 x 1072) rounds to 1.5 x 1077,

Figure 3.9: Mean square displacement vs. time
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3 Multiscale flow modeling

takes place is not yet completely understood, but likely involves some sort of
dysfunction of the endothelium in specific regions of the vasculature. However,
it is still possible to define a deposition criterion for tracers based purely on the
hemodynamics in the vicinity of the wall. Our criterion is based on wall normal
distance. We assume that the probability of deposition is zero if a tracer is not
located within a minimum distance from the wall. This distance is chosen to be one
tracer diameter from the wall (center to wall). It should be noted that since this
work is concerned with the disease in its early stages, the formation of macroscopic
plaques, which takes years, does not need to be taken into account. Furthermore,
plaque formation is a complex biological process occurring in the intima of the
arterial wall, which is far more complex than simple accumulation and build up of
leukocytes.

Since we work with discrete tracers in the near-wall region, the deposition criterion
can be easily adapted according to specific requirements; for example, a deposition
probability can be prescribed for tracers within the deposition range and Monte-
Carlo acceptance-rejection methods can be used. A local elevation in deposition
probability, for example, can then be imposed to model atherosclerotic lesions. This
will be discussed in more detail in Sec. 3.5.

3.3.4 Near-wall deposition profile

Instantaneous deposition profile of tracers along walls is presented and compared
between the coupling and validation codes in Fig. (3.10). At the inlet, tracers are
uniformly injected into the domain. The number of tracers is controlled through
definition of a tracer number parameter N/ _ . which defines the local tracer
concentration. In case of the coupling code, this parameter defines the initial
number of tracers carried by every SPH particle and, depending on the desired
initial conditions, can be in general not constant. In the validation code, the same
number of tracers is enforced by regulating the injection rate at the inlet.
Deposition profile shows two maxima (Fig. (3.10b)). Both peaks occur at sites of
low wall shear stress; the first at the separation point slightly under the edge of the
step and the second at the reattachment point. The first peak is considerably larger
in size compared to the second. This is due to the downward flow at the edge of the
step which strongly pushes tracers toward the wall. Furthermore, due to the large
wall shear stress gradients around the separation point, this peak is very sharp. It
is, therefore, extremely difficult to reproduce identical deposition profiles around
this point. Comparison of profiles reveals that our method successfully captures the
position and size of this peak. Moving towards the corner, results show qualitative
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Figure 3.10: Wall shear stress (top) and tracer deposition profile (bottom) along
walls in the BF'S geometry - Tracer deposition is compared between
coupling and validation codes. Z represents wall-tangential coordinate
starting from the edge of the step at inlet.

agreement; however, the validation code predicts a sharper drop after the separation
point (Fig. (3.10b) subplot).

Increasing from zero at the corner, the deposition profile experiences a second
peak around the reattachment point where wall shear stress is again close to zero.
After this point, tracers tend to deposit less due to increasing wall shear stress.
Even though the wall shear stress is zero at the corner, no deposition takes place.
This is because tracers injected from the inlet have a very low chance of reaching
the corner.

Considering the noisy nature of the solution, results show close agreement. The
noise could be eliminated by averaging deposition profiles over time. However, snap-
shot data feature information on statistical accuracy of results which demonstrate
the quality of near-wall profiles. This is particularly important in case of unsteady
problems where time averaging is not an option. Hence, we present instantaneous
wall quantity profiles in this work. Slight discrepancies are observed in the recircula-
tion zone along the bottom wall which reflect sensitivity of solutions to the presence
of a sharp edge (ill-conditioned problem); this however would not occur in realistic
arterial geometries. Also, it is known that particle trajectories, and quantities
derived from particle trajectories, are very sensitive to velocity field Tambasco et al.
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Figure 3.11: Comparison of wall deposition profiles for the validation code with high
and low resolution for velocity field.

(2002), Prakash and Ethier (2001). We reached a similar conclusion by running
the validation code with different velocity field resolutions (see Fig. (3.11)). Even
though the velocity field is converged at a resolution as low as 201 x 32 grid points,
the corresponding wall deposition profile is considerably different than converged
profiles. This highlights the importance of full convergence in the velocity field for
the accurate determination of deposition profiles. In the same manner, convergence
of deposition profiles in number of SPH particles is demonstrated for the coupling
code in Fig. (3.12). One should notice that the overall number of tracers is kept
the same in results presented in Figs. (3.11) and (3.12), therefore, profiles are not
smoother in higher resolutions of velocity field.

Convergence behavior of the coupling and validation codes in number of tracers
is presented in Figs. (3.13) and (3.14), respectively. Near-wall deposition profiles
converge to smoother curves as the resolution increases. A more quantitative
investigation is carried out by defining the norm of the deposition residual as:

1 Nint 1 Navg _ 9
<Ndep> = \J Nime Zz::l Navg nz::l (Nélep(z) - Ndep<2)) ) (3.21)

where Ng, (2) is the number of deposited tracers at interface cell z at iteration n.

Nine is the number of interface cells (same as interface grid), Navg is the number of
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Figure 3.12: Comparison of wall deposition profiles for the coupling code with high
and low resolution for velocity field.

iterations used for averaging, and Ndep(z) is the average deposition count:

avg

Ndep Z dep (3.22)

ann 1

Monitoring (Ngep) over time, Figs. (3.13b) and (3.14b), reveals that higher tracer
resolutions are associated with smaller residuals.

3.4 Computational gain

Computational gain of the coupling method over the validation method is investi-
gated by comparing the number of tracers simulated in each scenario (Fig. (3.15)).
In order to have statistically comparable results, both strategies (coupling and
validation) are run long enough to reach approximately the same number of tracers
at the steady-state in the near-wall region. Evolution of near-wall tracer count over
time is presented in Fig. (3.16). In both cases, the number of tracers increase from
the initial value of zero and reaches steady state at around the same time. At each
resolution, both methods end up with approximately the same number of tracers
along walls at steady state (Near-Wall Count column in Table 3.3). Near-wall tracer
count is averaged over time to account for differences in the convergence behavior
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Figure 3.13: Convergence behavior of coupling code at different resolutions.
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Figure 3.14: Convergence behavior of validation code at different resolutions.
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of the two approaches. The gain factor is determined by dividing the total number
of tracers in the domain (Total Count column in Table 3.3) and correcting the
result by the near-wall count ratio. As shown in Table 3.3, at each resolution the
validation code requires at least 47 times more tracers to reach the same number of
tracers in the near-wall region at steady state.

Figure 3.15: Near-wall region in the presented BFS geometry. Validation code
computes trajectories of tracers anywhere in the domain (circle 1).
However, exchange of concentration quantity at the interface makes
elimination of tracers in the bulk possible. Therefore, Coupling code
deals with tracer trajectories only in the near-wall region (circle 2).

Gain factor is independent of the resolution. Since the number of fluid particles is
normally prescribed by physical constraints and accuracy goals of the application, a
resolution-dependent gain factor would not be desirable. Hence, the coupling method
does not restrict degrees of freedom of the problem to deliver the promised speedup.
Instead, the gaining factor depends only on the ratio between the physical volumes
representing the near-wall region and the vessel control volume. Obviously, in case
of three-dimensional macroscopic vessels, this gaining factor can be substantially
larger.
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Figure 3.16: Evolution of near-wall tracer count over time at different resolutions.

Table 3.3: Time-averaged tracer count for each code at different resolutions

Resolution | Method | Total Count | Near-Wall Count | Gain Factor

5 coupling 806 106 ~ 49
validation 32034 85 ~
coupling 3292 418 N

20 validation 128730 349 e
coupling 6424 847 -

40 validation 256571 722 AT
coupling 16156 2103 N

1001 lidation | 641238 1765 AT

3.5 Local lesion

In real applications, the deposition mechanism is closely related to surface properties
of both the particles and the walls. Variations in these attributes could, in a complex
way, lead to abnormal alterations in deposition pattern and adhesive properties of
the wall. As an example, in initiating stages of atherosclerosis, excessive adhesion of
WBCs to the endothelium occurs as a results of upregulation of adhesive molecules
in certain sites (endothelial dysfunction). In order to examine capabilities of the
coupling method in delivering correct results in nontrivial cases, wall deposition
rates have been manipulated in specific locations. Normally, tracers, providing
they are close enough, have an identical chance of deposition at any site in the
domain. In this case, we model formation of a lesion at a certain region by assigning
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3.5 Local lesion

a higher chance of deposition to tracers in that vicinity i.e. we are assuming that
the endothelium in this location has become dysfunctional. The lesion site is chosen
to be of low hydrodynamic significance, meaning that we intentionally take a region
with a low deposition value.

For the deposition profiles presented in Fig. (3.17) a 30% chance of deposition is
set all over the domain with a continuous increase to hit 100% chance at Z = 0.042.
As expected, both methods show a second peak at the maximum deposition position.
The new peak is as large as the one at the reattachment point, however they form for
different reasons. Increased deposition of tracers at the reattachment point is purely
due to hydrodynamics; fluid flow towards the wall and low wall shear stress causes
a large number of tracers to deposit. On the other hand, the second peak appears
because of abnormal wall adhesive properties i.e. the wall biological response has
altered. It is important to notice that even though the lesion site is “disadvantaged”
because of being downstream of the reattachment point, it recruits same population
of tracers. This stresses the potential importance of a realistic adhesion model since
pure hydrodynamics would not be sufficient to predict wall deposition profile in
real case abnormalities. As already mentioned, realistic probabilistic model for cell
adhesion can be implemented based on Monte-Carlo acceptance-rejection methods
and can be straightforwardly adapted to our approach.
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Figure 3.17: Comparison of deposition profiles in presence and absence of wall
abnormalities - coupling and validation results match closely.
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4 Kinetic adhesion modeling

It is well established that studying pathogenesis of arterial diseases, or any near-wall
dynamics of blood cells for that matter, cannot be accurately carried out without
considering chemical interactions among cells. Such chemical reactions manifest
in form of several chemical bonds, which are essentially a stable attracting force
between cells. Since these adhesive forces were, and still are, difficult to measure
or quantify, many computational studies on cell dynamics settled for using simple
models such as formulating a force-distance relationship.

Looking more closely into the dynamics of a pair of adhered cells, the adhesion
could be the result of any number of bonds formed between pairs of receptor-ligand
molecules on the surface of the cells. In addition to that, experimental studies
suggest that formation of a single bond is a significant event in determining whether
two cells adhere. Hence, cell adhesion should be viewed as a stochastic process
(Hanzlik et al., 2008).

Reaction kinetics has been used extensively in biology to describe formation
of bonds between receptor-ligand molecules (Bell et al., 1984, Evans and Ritchie,
1997, Zhu, 2000). Consequently, this concept is extended to study cell dynamics
in the framework of larger simulations. The idea is to use reaction kinetics to
relate binding affinity to the applied force acting on the cell (Tees and Goetz, 2003).
There is considerable evidence to justify this choice. Particularly, underlying specific
molecular interactions are short-ranged and the size of resulting bonds are typically
an order of magnitude smaller than those of the adhering cells. Moreover, different
adhesion molecules are involved at different stages of formation of a bond (Hammer
and Apte, 1992). Thus, an overly simple adhesion criterion, e.g. based on cell-cell
separation distance, does not capture the realistic receptor-ligand adhesion behavior.

In this chapter, development of kinetic cell adhesion models is reviewed and
specific formulation in small systems, that fit the current work, are presented. The
chapter is closed by studying result of cell adhesion is a stenosed sudden expansion
model.
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4.1 Modeling of kinetic cell adhesion

One of the first major studies to develop a modeling framework for cell adhesion and
receptor-ligand bond formation is performed by Bell (Bell, 1978). Bell’s model used
chemical reaction kinetics to describe the relation between bond dissociation rates to
the force applied on each bond. The use of reaction kinetics in modeling cell adhesion
is motivated by the fact that the Brownian motion of molecules becomes significant
in their interaction range (Zhu, 2000). Hence, the fate of pair of receptor-ligand
molecules that are in close vicinity of each other cannot be determined solely based
on their separation distance. Same applies to breakage of an existing bond.
Several future works were based on Bell (1978). Bell et al. (1984) expanded his
work to take the competition between the formation of specific bonds and nonspecific
repulsion due to electrostatic forces into account. Evans (Evans, 1985) developed a
theoretical framework based on Bell’s model to describe the membrane-membrane
adhesion and separation behavior. Such a model would be used to compute adhesion
forces between a biomembrane and a substrate. In a separate work, Dembo et al.
(1988), Dembo (1994) expanded Evans (1985) by adding molecular bond kinetics
to their tape-peeling theory to compute adhesion forces between the membranes.
Furthermore, Hammer and Lauffenburger (1987) developed a dynamical model to
predict the conditions under which cell-surface adhesion takes place in a shear flow.
Their prediction were restricted to determining whether cell arrest happens after an
initial collision. However, their model evolved into the Adhesion Dynamics method
used in a number of studies to predict conditions for no adhesion, rolling adhesion,
and firm adhesion (Hammer and Apte, 1992, Zhang et al., 2004, King et al., 2005).

4.1.1 Modeling approach

It was not until 1990 that probabilistic theory for kinetics was applied to cell
adhesion (Zhu, 2000). Cozens-Roberts et al. (1990a) used a probabilistic description
of receptor-ligand binding to describe a homogeneous population of pairs with
different binding states. Similar to Hammer and Lauffenburger (1987), they assumed
an exponential reverse kinetic rate and a constant forward rate. In contrast, Evans
et al. (1991) proposed a power law for reverse kinetic rate. Hammer and Apte (1992)
adopted a Monte Carlo (MC) approach to be able to easily combine the chemical
kinetics with other macroscopic physical properties of the system.

An alternative to the MC approach (Hammer and Apte, 1992, Tees et al., 1993,
Chen and Springer, 1999, Longest et al., 2004, Jadhav et al., 2005) is to obtain
adhesion probabilities by solving the master equations (Zhu, 2000). One of the first
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4.1 Modeling of kinetic cell adhesion

attempts in this direction was the work of Kaplanski et al. (1993) who obtained a
numerical solution to the master equations for systems with less than ten bonds.
Additionally, there has been a number of studies that obtained closed-form solutions
of the master equations corresponding to different systems (Piper et al., 1998, Chesla
et al., 1998, Long et al., 1999, Zhu, 2000).

4.1.2 Experimental work

Regardless of the method, all studies that use Bell’s model need to confirm their
findings based on experimental data.(Merkel et al., 1999, Li et al., 1999, Dustin et al.,
1996, Pierres et al., 1995, Kaplanski et al.,; 1993). In the framework of atherosclerosis
progression, Rouleau et al. (2010) studied adhesion of neutrophils to endothelial cells
in an asymmetric stenosis geometry. Charoenphol et al. (2010) experimented on
polymer particle adhesion to the inflamed endothelium. They studied the influence
of particle size, presence of RBCs, and shear rate on particle adhesion. Hsiai et al.
(2003) investigated monocyte-endothelium binding kinetics in an arterial bifurcation
with oscillatory flow. An important finding of their study was establishing an
association between the oscillatory flow and up-regulation of adhesion molecules
that mediates monocyte-EC binding. Hinds et al. (2001) examined the effect of wall
shear stress on U937 monocyte-like cells in an E-selectin-coated vertical model with
stenosis and sudden expansion. Alon et al. (1997) investigated differences in rolling
speed of leukocytes in L-selectin compared to E- and P-selectins by studying the
dissociation of transient bonds for them.

An important finding of a number of these studies, that investigated properties
of single bonds, (Florin et al., 1994, Alon et al., 1995, Piper et al., 1998, Chesla
et al., 1998) was that a single bond, even when the rate of formation and breakage
of bond is high, is a significant event in determining the fate of adhesion. Therefore,
adhesion of two molecules is considered a stochastic phenomenon. Bell model
parameters obtained from these studies could be used to create state diagrams
regarding adhesion and rolling of leukocytes (Chang et al., 2000).

4.1.3 Parameter study

It should be noted that, in many cases, presence of convection in addition to
diffusion makes prediction of kinetic rates more difficult (Zhu, 2000). This could
specifically affect formation of the first bond, when convection brings interacting
molecules closer (Chang and Hammer, 1999), and dissolution of the last, when
convection moves them apart (Piper et al., 1998). As an example, Rinker et al.
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(2001) investigated the effect of force, i.e. shear value, and contact time, i.e. inverse
of shear rate, on monocyte endothelial adhesion. They obtained an enhanced rate
of bond formation by increasing shear value at a fixed contact time. Experiments of
Skilbeck et al. (2001, 2004) emphasized this point further that flow disturbances
affects the adhesion of leukocytes. They performed experiments in a backward-facing
step geometry to see how leukocyte binding reacts to disturbed flow and came to
the conclusion that flow disturbance in regions with high WSS enhances leukocyte
adhesion. Moreover, Zhu et al. (2008) identified two mechanisms that influence
leukocyte adhesion in L-selectin-ligand interactions based on experimental data:
(a) transport-dependent acceleration of bond formation and (b) force-dependent
deceleration of bond dissociation.

Furthermore, as already stated, it has been shown by several groups that the
adhesive behavior of cell could be influenced by a number of factors. To mention a
few, concentration and proximity of rolling cells on rolling velocity was examined
by King and Hammer (2001b). They also proposed a hydrodynamic recruitment
mechanism in which cells from bulk are pulled toward the surface due to already-
attached cells (King and Hammer, 2001a). As a result of their platelets adhesion
modeling, Vasin et al. (2003) concluded that diffusion coefficient does not play a
role in the adhesion of the platelets to the surface. The role of particle size on
adhesion is studied by several groups (Worth Longest and Kleinstreuer, 2003, Jeong
et al., 2013). The effects of disturbed flow on attachment of leukocytes to vessel
walls were investigated by Skilbeck et al. (2001, 2004). Decuzzi and Ferrari (2008,
2006) studied adhesion of non-spherical nanoparticles to diseased vascular cells.
Flow pulsatility and cell deformability have been reported to affect the adhesion
(Dong et al., 1999, Khismatullin and Truskey, 2005, Khismatullin, 2009). Moreover,
influence of receptor/ligand density, cell microvilli extension, and several other
factors have been studied in a number of other studies (Moore et al., 1995, Norman
et al., 1995, Shao et al., 1998, Park et al., 2002, Ramachandran et al., 2004, Chen
et al., 2007, Sundd et al., 2011).

4.1.4 Simulation coupling

There has been several studies where the adhesion model is used in framework of a
full simulation to investigate coupling of flow and adhesion parameters. Lei et al.
(1996) used a convective-diffusion equation to study the transport of low density
lipoproteins (LDLs) across the endothelium. Munn et al. (1996) investigated the
role of RBCs on adhesion behavior of leukocytes. They found out the adhesion of
WBCs could be affected by RBCs through (a) RBC forces on WBCs when near wall,
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4.1 Modeling of kinetic cell adhesion

(b) changes in spatial distribution of WBCs in bulk, and (c) collision with RBCs.
Sun et al. (2003), Sun and Munn (2005) came to a similar conclusion regarding the
role of RBCs on leukocyte capture to the vessel wall. They used a two-dimensional
lattice Boltzmann approach. Barber et al. (1998) studies U937 cell adhesion to
human umbilical vein endothelial cells in a sudden expansion geometry featuring
recirculating flow. Chapman and Cokelet (1998) studied the effect of Newtonian low-
Reynolds flow passing over multiple adherent leukocytes in a cylindrical vessel with
postcapillary size. Dong et al. (1999) used finite element to study the deformation
and adhesion of leukocytes to endothelial cells.

David et al. (2001) studied deposition of platelets in stagnation point flow by
controlling shear rate. Comparing results with experiments data from Affeld et al.
(1995), they found that a WSS-dependent reaction rate at the wall gives closer
agreement with the experiment results. Worth Longest and Kleinstreuer (2003)
studied monocyte and platelet deposition in the tubular geometry from Hinds et al.
(2001). They used a discrete particle model (DPM) approach with the fluid as
continuum and spherical particles as the discrete phase. For cell adhesion, a first-
order forward reaction rate was applied. They managed to get close local agreements
with the experiment. However, due to the nature of their Euler-Lagrange scheme,
they were limited to relatively small number of particles. In a related work, Longest
et al. (2004) used the MC approach to qualify cells for adhesion in their study of
monocyte transportation in a femoral anastomosis. Similar to Worth Longest and
Kleinstreuer (2003), they used the Euler-Lagrange approach, but treated the plasma
and RBCs as a non-Newtonian fluid.

Haun and Hammer (2008) performed both experiments and computational analysis
studying the influence of molecule density and steady flow rate on adhesion of
antibody-coated nanoparticles to intracellular adhesion molecule (ICAM-1) substrate.
Lyczkowski et al. (2009) developed an Euler-Euler non-Newtonian multiphase
approach to analyze adhesion of U937 monocyte-like human cells to an E-selectin-
coated stenosis geometry (Hinds et al., 2001). They used first-order reactions to
model attachment, rolling, and detachment of monocytes in vitro. Their coupled
multiphase scheme is able to predict non-uniform spatial distribution of flowing
monocytes, however, results were not particularly close to those of the experiment
(Hinds et al., 2001). Kim and Rhee (2011) investigated effect of time-varying shear
rate on the adhesion of antibody-coated nonparticles. Furthermore, they studied
the influence of kinetic constant, as a function of ligand/receptor density, particle
size, and flow shear force, on bond formation.

Using same methods to study cancer matastasis, Yan et al. (2012) investigated
the effect of WSS and its gradient on adhesion of tumor cells to curved microvessels
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4 Kinetic adhesion modeling

experimentally and computationally. For the numerical part, they used a lattice
Boltzmann approach and took bond association and dissociation into account. Jeong
et al. (2013) studied binding of nanoparticles arterial wall with the attachment
rate as a function of shear rate and particle size. In their study, particles showed a
positive correlation with the shear rate when smaller than 600nm and a negative
correlation when larger than 800nm. Hossain et al. (2014) investigated deposition of
spherical nanoparticles of three different sizes in a patient-specific arterial tree coated
with ICAM-1, VCAM-1 and E-selectin. They used a time-dependent inlet velocity
and the advection-diffusion equation to model the transport of particle within
blood. They concluded that particle adhesion is the result of complex interplay
between local WSS, receptor density, and particle distribution. Gholami et al. (2015)
used SPH to simulate transport and adhesion of U937 monocyte-like cells in the
E-selectin-coated stenosis geometry of Hinds et al. (2001). They overcame the
limitation of the Lagrangian scheme in terms of the number of particle using their
previous work (Gholami et al., 2014) that coupled bulk and near-wall quantities.
Initially, they calibrated association rate parameters from Piper et al. (1998) using
one set of the experimental data. Next they showed that deposition results could
be reproduced with good agreement for both steady and pulsatile flows.

4.2 Adhesion kinetics in small systems

It was mentioned in the previous section that several probabilistic and deterministic
kinetic models have been used in studying cell adhesion. However, it has been
observed in several experiments that the nature of bond formation between a pair of
receptor-ligand is stochastic (Cozens-Roberts et al., 1990b, Piper et al., 1998, Chesla
et al., 1998). This is especially important when considering small systems. One
way to model such random behavior is to solve the master equations for adhesion
probabilities.

In this section, these equations are presented for small systems (McQuarrie, 1963),
and solved to get a closed-form. To stays close to the scope of this work, let’s
consider adhesion of a cell to a surface, as shown in Fig. 4.1. As the cell approaches
the surface, receptors and ligands that cover the surface and exterior of cell have the
possibility to form bonds. However, even under strict controlling of the conditions,
the number of bonds that form and break follows a stochastic pattern. As a result,
the adhesion of the cell to the surface as a whole, is moderated by a random number
of bonds. The idea is to solve the master equations to obtain p,,, probability of
having n bonds between the cell and surface.
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Figure 4.1: Adhesion of a leukocyte to endothelium - In presence of blood flow,
a shear force is exerted on the cell. As the leukocyte approaches the
endothelium, the probability of formation of a bond between ligands and
receptors on their surfaces increase. It has been shown that formation
of even one bond is a significant event in determining whether the cell
adheres to the surface. Existing bonds could brake off due to the external
force acting on them from the flow.

Considering a one-step reversible system kinetic system where N, bonds are
produced from N, receptors and N; ligands, the rate of change of probability p,, is
defined as (Chesla et al., 1998):

dpn N k£n+l)
ﬁ:( +1) prnH
N, \™ Ny \N k;n+1) N, k%(«n)
- (Acmr - an) (Acmz - an) Pz +n bANb_l Pn (4.1)
Nr Ny Nl N; k(n)
+ {Acmr — ﬁb (TL — 1):| |:Acml — ﬁb (n — 1):| an—la

where n is the number of bonds between the cell and surface, A. contact area,
m, surface density of receptors, and my; surface density of ligands. k; and k, are
forward and reverse reaction rate constants, respectively. Moreover, the superscript
n implies that these reaction rate constants depend on the force acting on the
bond. This equation assumes the formation of breakage of bonds to be a Markovian
process, i.e. it has no memory of the past. It is worth mentioning that, in some
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studies, the breakage rate is reported to depend on force history (Marshall et al.,
2005). Additionally, Eq. 4.1 assumes uniform probability of bond formation for all
receptor-ligand pairs in the contact area, and uniform breakage probability for all
existing bonds (Piper et al., 1998).

As can be seen, the rate of change in p, is divided in three terms. The first and
last terms are probability influxes, hence positive. They both account for formation
of n bonds through either breakage of one bond in a system with n + 1 bonds, i.e.
first term, or addition of one bond to a system with n — 1 bonds, i.e. third term.
The second term represents two scenarios: breakage or formation of a bond in a
system with n bonds. In either case, the system ends up with more or fewer bonds,
hence the second terms has a negative sign.

To continue, Eq. 4.1 is written for a more specific case where a bond is formed
from strictly one pair of receptor-ligand, i.e. N, = N; = N, = 1:

dpn

dt (n + 1) k(n+1 Pn+1

— [(Acmy —n) (Aemy —n) =5— + nk(”| p, (4.2)

k,(”)
+ [Agm, — (n — D] [Aemy — (n — 1)] A%pn_l

Piper (1997) solved this equation in steady state using mathematical induction
to get a closed-form solution for the probability of having exactly n bonds, p,.
By normalizing the sum of all p, to unity, they obtained a closed-form for the
probability of having no bonds:

=[S e (] o

where My, = min (m,, m;). Appearance of my,, is justified by the fact that the
number of bonds is limited by the minimum of receptor and ligand population.

The term K, (f/m) in Eq. 4.3 is called the binding affinity and is defined as the
ratio of forward to reverse rate constants, i.e. K, (f/m) = k™ /k™. Piper et al.
(1998) proposed the following form:

AN af \’|
K, <m>_K2 1+C<mk3T>
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4.3 Cell adhesion in stenosed sudden expansion model

where K? is the ratio of association to dissociation rates in absence of force, kg
the Boltzmann constant, and T temperature. The model is characterized by four
parameters: a, b, ¢, and d. kgT/a serves as a reference scale for force term f.
Parameters b and ¢ are used to determine a power law (Evans et al., 1991) or
exponential law (Bell, 1978), and parameter d is associated with flexibility of formed
bonds. Even though the exponential law has proven sufficient in several cases, Piper
et al. (1998) showed advantages of the power law over the exponential law.

For the case presented in this work, it is assumed that the number available
receptors and ligands in the contact area exceeds the population of bonds by
far. Such an assumption allows to simplify the steady-state solution, Eq. 4.3, by
neglecting n compared to A.m, and A.my:

-1

po(f) = [1 + fﬂi, ﬁ m,mAK, (;i)] . (4.5)

n=1 *m=1

Hence, the probability of the cell having at least one bond is P, = 1 — pg. Replacing
in Eq. 4.5 gives:

P=1— l1 n i i, f[ mmAK, (7{;)] - (4.6)

n=1"" m=1

As mentioned, A.m,;, is much larger than the number of bonds. Therefore, the upper
limit of the sum in Eq. 4.6 is replaced by infinity. This allows to characterize the
adhesion behavior of the cells with five parameters: a, b, ¢, d, and K° (= m,m;A.K?).
For the simulations used in this work, a Monte Carlo acceptance-rejection method
is used to reproduce this distribution.

4.3 Cell adhesion in stenosed sudden expansion
model

In order to understand how cell adhesion, represented by Eq. 4.6, is introduced
to our multiscale coupling method, Fig. 4.2 should be considered. The bulk (gray
area) contains only SPH particles. SPH dynamics and bulk tracer concentration are
modeled as described in chapters 2 and 3. The near-wall region (blue area) is where
tracers are created. In our application its width is at least one order of magnitude
smaller than characteristic length of the bulk. Stokes forces, wall corrections, and
Brownian motion dominate tracer dynamics in this region. Numerical modeling of
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domain decomposition physical modelling

bulk SPH

Figure 4.2: Composition of physical and computational domain.

tracers is carried out by specific LPT, Eqgs. 3.10 to 3.13. The adhesion region (red
area) is where the tracers are so close to the surface that adhesion forces start to
become significant, i.e. cell-cell bond formation is likely. For tracers in this region,
probability of adhesion is evaluated using Eq. 4.6.

4.3.1 Adhesion probability and dislodging force

Capabilities of the adhesion model are demonstrated in the following where the
effect of inhomogeneous force on adhesion probability is shown for a simple steady
forcing. This gives an overview on the effect of the adhesion model parameters on
the overall deposition profiles and provides an initial guess for the optimal selection
of the tracers’ binding avidities. The dislodging force is calculated along the pathline
of a fluid element moving in the vicinity of wall in the 3D stenosed sudden expansion
geometry (see Fig. 4.3) using wall shear stress and wall distance (Fig. 4.4). This
geometry is used in this work to simulate near-wall cell dynamics and validate the
results against those of Hinds et al. (2001).

In the entrance region the force is approximately constant. As the geometry
contracts (z = —3) the dislodging force increases, due to flow acceleration, and
maximizes at the end of the contraction (z = —1). Through the throat of the
stenosis (—1 < z < 0), which is of constant diameter, there is a small decrease in
the force. At x = —1 the geometry expands, leading to a small jump in the force
that then immediately drops to approximately zero; flow separates from the wall.
Downstream of the expansion the force rises slightly due to retrograde flow. Finally
the force drops to almost zero at the location of flow attachment (z ~ 1.5). In
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Figure 4.3: Three-dimensional stenosed sudden expansion geometry. The figure is
taken from Hinds et al. (2001).

dislodging force
n
T

Figure 4.4: Dislodging force along a pathline in the vicinity of wall obtained from
flow simulation in the 3D stenosed sudden expansion geometry (Hinds
et al., 2001)
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Figure 4.5: Investigation of adhesion probability along the wall for the exponential
law - Adhesion probability for a particle moving along the wall-adjacent
pathline is shown in the vertical axis. K° ranges from 0.5 (the solid red
line) to 5.0.

Figs. 4.5 and 4.6 adhesion probability is plotted against streamwise coordinate for
several values of parameters a and b for an exponential and power law, respectively.
Furthermore, probabilities are evaluated for different values of K°(= m,m;A.K?)
in each subplot to fully cover the parameter space. Values of a are chosen according
to the range of values for force in Fig. 4.4. Parameter b is set to both 1, as in Bell
(1978), and 2, as in Dembo (1994). By setting ¢ to 1 the power law is switched on.
For simplicity, d is chosen similar to b.

As expected, probabilities decrease by increasing force in both models. As a
increases, i.e. range of force decreases, the probability drops for higher forces. b
and d both exaggerate the sensitivity to force. However, the power law offers more
control over the outcome of the model; compared to exponential law, it shows higher
sensitivity to force with similar parameters. In any case, upon utilizing this adhesion
model, both laws could be employed easily.

The detachment probability can be prescribed in a similar manner to allow
for adherent WBCs to detach from the endothelium. Model parameters can be
calibrated by fitting deposition profiles with available experimental results. For
example, a number of experimental setups ara available in the literature. Some
examples include: a steady gravity-driven flow of U937 cells in an E-selectin coated-
geometry (Hinds et al., 2001); neutrophil adhesion in an asymmetric stenosis model
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Figure 4.6: Investigation of adhesion probability along the wall for the power law
- Adhesion probability for a particle moving along the wall-adjacent
pathline is shown in the vertical axis. K° ranges from 0.5 (the solid red
line) to 5.0.

(Rouleau et al., 2010); adhesion of WBCs to vessel wall in 3D backward facing step
models has also been under focus (Skilbeck et al., 2004, Chiu et al., 2003); and
leukocyte adhesion in shear flow(Simon and Goldsmith, 2002).

As demonstrated, the stochastic biological adhesion model offers enough degrees of
freedom to reproduce realistic adhesion dynamics in a variety of problems introduced
in this section. For validation of the final model, we take advantage of parameter
estimation modeling to march the corresponding large parameter space.

4.3.2 Flow conditions

In this section simulation of the cell-dynamics in the in vitro setting presented
in Hinds et al. (2001) is discussed. This study provides sufficient data related to
residence time, adhesion and relative surface concentration of U937 cells flowing
through a stenosed axisymmetric sudden expansion (see details of geometry in Hinds
et al. (2001)). This geometry leads to spatially varying wall shear stress at the
surface and allows for the investigation of the relationship between haemodynamic
parameters and cell deposition. In the experimental model the surface of the model
was coated with E-selectin, in order to facilitate binding of U937 cells at higher
flowrates. E-selectin was chosen to replicate the mechanochemical environment in
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Table 4.1: Flow and tracer parameters.
Parameter Value
Density 1 (g/cm?)
Viscosity 0.008 (g/cm - s)
Timestep size = 1.024e-4 (s)

Figure 4.7: Cross section velocity field at Re = 100 in the three-dimensional stenosed
axisymmetric sudden expansion geometry used in Hinds et al. (2001) to
analyse U937 cell dynamics and deposition

regions prone to atherosclerosis.

The full three dimensional surface geometry has been created and imported as an
input file into our SPH code. From this point several flow scenarios are simulated in
order to estimate adhesion parameters and validate results against experiment data
of Hinds et al. (2001). In particular, we model two cases under steady conditions
(Reynolds numbers 100 and 140). Flow parameters for these cases are summarized
in Table 4.1.

Hydrodynamic simulations are run along with the multiscale coupling SPH
method to extract both the flow field and cell deposition. Fig. 4.7 shows a sketch of
the simulated geometry at Re = 100 together with a section indicating the local
magnitude of the fluid particle velocity in the expansion region. Convergence of the
local velocity profile as well as near-wall concentration profile was obtained.

Fig. 4.8 shows the composition of the physical / computational domain in presence
of SPH and tracer particles. As our multiscale SPH-tracer method prescribes, tracers
(black dots) exist in the vicinity of walls only. Note that due to a higher ratio in
3D between the entire volume occupied by the flow device and the small near-wall
surface layer, an increased speed-up of the novel multiscale SPH code can be achieved
compared to the values previously reported for the 2D BSF geometry in Gholami
et al. (2014).
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adhesion region
near-wall region
bulk

Figure 4.8: Demonstration of the tracer-particle coupling method - SPH particles
are depicted as spheres colored with velocity magnitudes. Tracers are
shown with black dots. It is clear that tracers are introduced close to
walls. The three computational regions can be clearly distinguished.

4.3.3 Wall adhesion profiles

In this section, wall adhesion profiles delivered by our multiscale coupling method
are presented and discussed. First, deposition profiles are obtained without using
the stochastic adhesion model. WBC deposition criterion in this set of simulations
is defined solely based on wall normal distance. After that, parameters of the
stochastic adhesion model are estimated and new deposition profiles are obtained
using that model. Differences betweens solutions and improvements resulted from
using the adhesion model will be discussed.

For the first simulation, we assumed constant homogeneous probability of deposi-
tion for a tracer located within a minimum distance from the wall. This distance
is chosen to be one tracer diameter from the wall. However, since we work with
discrete tracers in the near-wall region, the deposition criterion can be easily adapted
according to specific requirements; for example, a deposition probability can be pre-
scribed for tracers within the deposition range and Monte-Carlo acceptance-rejection
methods can be used. A local elevation in deposition probability, for example, has
been imposed in Gholami et al. (2014) to model plaque growth

It should be stressed that, at this stage, we obtain information about the local
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wall deposition profiles for cells interacting only hydrodynamically with the walls.
This is because cell-wall interactions have been validated in our code for lubrication,
lift and drag terms. Utilizing this approach, the adhesion profiles shown in Figs. 4.9
and 4.10 are obtained. After development of flow, tracers start to adhere to walls.
In the accelerating section they are pushed towards the surface, which enhances wall
adhesion significantly. In the stenosed section, tracers are directed away from walls,
thus adhesion rates experience a drop. However, with redevelopment of flow, normal
adhesion continues. After the sudden expansion, some of the tracers, over time, get
trapped in the recirculation region and start attaching to wall, which causes a peak
in adhesion profile.

Adhesion results are presented in a more quantitative way by circumferential
averaging the deposition data, see Fig. 4.9. As demonstrated in Gholami et al.
(2014), these results are hydrodynamically (in terms of SPH particle discretization)
and statistically (in terms of tracer count) converged. Moreover, we showed that our
method is able to extract deposition profiles with higher accuracy and much smaller
fluctuations in comparison to other methods, e.g. full domain LPT in Longest et al.
(2004).

It should be noted that even though adhesion profile obtained from our method is
consistent with hydrodynamical aspects of the problem, e.g. wall shear stress, it does
not agree with findings of the experiment. As an example, in the tapered section,
coupling results show enhancement of adhesion due to tracers being pushed towards
walls. However, in the experiment, due to high WSS, attachment of monocytes to
the walls is decreased. This highlights the important conclusion that simulation
of haemodynamics alone is not sufficient for such a complex problem, thus wall
adhesion dynamics of blood particles must be taken into account. Full reproduction
of the in witro results demands introduction of the stochastic biological adhesion
model which requires a modification of the probabilistic deposition strategy used in
Gholami et al. (2014).

The stochastic adhesion model is characterized by the five parameters of Eq. (4.4),
a, b, ¢, d, and K°(= m,mA.K?). Adhesion data presented in Fig. 4.9 is used
to estimate these parameters. We started the estimation process by adapting a
according to the range of forces exerted on tracers in the adhesion region. Secondly,
for the resulting range of a, K° and b were optimized. Therefore, the dimensions of
the optimization process is reduced. A semi-exhaustive search is then carried out
on the parameter space for the Re = 100 case to find a matching solution.

The resulting adhesion model (Table 4.2) was capable of closely reproducing the
experimental results for Re = 100 (see Fig. 4.11a). From this result, it is clear how
important a finely-tuned adhesion model is for accurate reproduction of in-vitro
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Figure 4.9: Comparison of simulation data with experiment at Re = 100. Top:
taper geometry outline. Middle: comparison of wall shear stress (WSS)
between our simulation of results of Hinds et al. (2001). Bottom: com-
parison of cell adhesion data.
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T =

0 5 10 15 20 25 30

Figure 4.10: Contours of pure hydrodynamics cell adhesion on walls of 3D taper
geometry.

Table 4.2: Parameters of the adhesion model based on Eq. (4.4).

Adhesion parameter Value
a 3.2224e-09 (cm)
b 10
c 0
d 1
K° 5.0

adhesion(compare Fig. 4.11a with Fig. 4.9). The rate of adhesion in the taper region
demonstrates a very close fit to the experiment. Consequently, now a larger number
of cells enter the sudden expansion region which has led to an accurate prediction
of adhesion peak in this region.

Fig. 4.11b presents a detailed comparison of simulation and experiment results
for Re = 140, where adhesion parameters come directly from the previous Re = 100
case, i.e. with no fine-tuning. The results are in very close agreement, which
demonstrates the accuracy and flexibility of our proposed method. A similar
analysis of the interplay between flow velocity and adhesion criterion could be made.
However, in this case the combination of effects results in a smaller peaks with less
margin. Three-dimensional deposition contours (see Fig. 4.11 bottom) confirm that
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Figure 4.11: Comparison of cell adhesion data between simulation and the experi-
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shear stress (top) is aligned with cell adhesion (middle) to emphasize
how non-uniform adhesion probabilities affect deposition behavior. At
the bottom, contours of cell adhesion on walls are presented.
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for the higher Reynolds number, flow velocity starts to dominate and cause a more
or less flat profile compared to the case with lower Reynolds number.

Before continuing, the significance of these results should be emphasized. As
pointed out earlier, there are several factors that make it extremely difficult to
produce accurate results in a problem like this. A number of features are incorporated
in our model that allows us to simulate accurate near-wall dynamics. Furthermore,
we have managed to maintain the accuracy while keeping the size of the problem
small. Lyczkowski et al. (2009) simulated the same problem using a multiphase
CFD model coupled with an adhesion model based on receptor-ligand binding. They
used ANSYS Fluent to simulate the blood as a non-Newtonian fluid and employed
extremely small mesh size (20 pm) close to walls which is the monocyte diameter used
in their simulations. Even though they managed to qualitatively demonstrate the
significance of a well-developed adhesion model on near-wall monocyte dynamics,
the accuracy of their results, Figs. 7 and 8 in Lyczkowski et al. (2009), is not
comparable to ours in this article.

For the results presented in this chapter, near-wall tracer counts ranging from
15,000 to 75,000 were used. Considering the size of the near-wall region and only
a uniform distribution of tracers over the total volume of the stenosed sudden
expansion geometry, these numbers would map to a lower limit approximation of
170,000 to 850,000 tracers in the whole domain matching the cell density of 5 x 10°
cells/ml used in Hinds et al. (2001) very closely. In reality, non-uniform distribution
of blood-borne particles yields much larger total cell counts. Comparing these cell
count estimations to similar works that use Lagrangian model, e.g. Worth Longest
and Kleinstreuer (2003) with 40,000 and Kim et al. (2006) with 12,000, reveals the
computational gain of our multiscale model. Additionally, due to a higher ratio in
3D between the entire volume occupied by the flow and the small near-wall surface
layer, a greater amount of computational work is saved compared to the 2D case.
Thus, an increased speed-up of the novel multiscale SPH code can be achieved
with respect to the values previously reported for the BSF geometry (presented in
Gholami et al. (2014)).

We will come back to this simulation in the next chapter where identical adhesion
parameters will be applied to a transient flow.
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Human vasculature features tremendous size and complexity. Exploring these
aspects of our vascular system has led to a better understanding of the underly-
ing mechanisms and uncovered many of its mysteries. These findings have been
translated into physical and mathematical models to make simulation of human
hemodynamics possible. Nevertheless, it has been established that our current
technology is far from sufficient to model this vast system of arteries, capillaries, and
veins as a whole (Grinberg et al., 2009). To that end, restricting the computational
domain to only regions of interest and employing proper inlet/outlet boundary
conditions to account for up-/downstream effects is a must.

5.1 Inflow/outflow treatment of arterial flow

Obtaining accurate quantification of parameters in the flow of blood is very vital
in understanding the overall behavior of our circulatory system. In case of any
cardiovascular disease, such a knowledge is the first step in deciding the course of
treatment or identifying the underlying pathogenesis (Taylor and Draney, 2004).
Of course, this concern is not limited to hemodynamics, but could be extended to
almost any flow simulation in human body.

One of the issues that appears to be common among many of biomedical engineer-
ing flow simulations, particularly in cardiovascular networks and bronchial trees, is
unknown or inaccurate flow measures at sections of interest. Such lack of knowledge
has often led to incorrect and unrealistic assumptions at boundaries, which in turn
affects simulation results dramatically (Soni and Thompson, 2012, Nowak et al.,
2003, Zhang et al., 2005).

Flow conditions could be particularly sensitive to the choice of boundary conditions
in flow partitioning and particle deposition in bifurcations. There are several
examples in the literature where the impact of boundary treatment is studied in
such scenarios, e.g. see (Yin et al., 2010, Wall and Rabczuk, 2008, Spilker et al.,
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2007, Luo et al., 2007, Formaggia et al., 2006, Sherwin et al., 2003). It is important
to note that findings of these studies, i.e. suitability of certain boundary treatment
methods, differ based on the application and flow specifications. Therefore, there is
no one solution.

In the context of arterial networks, Grinberg and Karniadakis (2008) divided
main outflow boundary approaches in four groups. Constant pressure approach is a
reasonable choice for steady and single-outlet unsteady simulations (see Soni and
Thompson (2012), Comerford et al. (2010), Walters and Luke (2010), Gemci et al.
(2008) However, applying same pressure for different outlets results in incorrect
splitting of flow since the resistance of downstream vasculature, i.e. outside the
domain of interest, is neglected. Resistance boundaries assume pressure and flow
rate are linearly dependent. In contract to the constant pressure approach, this
method could be applied to unsteady cases with multiple outlets, however, it is
more expensive (see Formaggia et al. (2006), Sherwin et al. (2003)). The third
approach is Windkessel model boundaries that are available for steady and unsteady
simulations. Similar to Resistance approach, this method could become unstable
due to close correlation between flow rate fluctuations and pressure oscillations
(Grinberg and Karniadakis, 2008, Ismail et al., 2013b). Finally, the impedance
boundary approach is based on analytically solving linearized flow equations in
a one-dimensional network of arteries (Olufsen, 1999, Grinberg et al., 2009) This
approach has been reported to be the most suitable to take downstream wave
reflection into account (Vignon-Clementel et al., 2006).

Besides these approaches, other methods have been developed and used to address
the outflow boundary condition problem. In a number of works, velocity or flow
rate have been applied at the outlet (see Werder et al. (2005), Nowak et al. (2003),
Calay et al. (2002). Coupling with model of reduced dimension has been used a
numerous studies Ismail et al. (2013a), Urquiza et al. (2006), Formaggia et al. (2007),
Malossi et al. (2011), Blanco et al. (2007). As an example, due to unknown pressure
conditions at outlet, Vignon-Clementel et al. (2006) used coupling of boundary
properties to a downstream reduced, i.e. lumped or 1D, model to simulate blood
flow in complex geometries. To circumvent impractically large computational costs,
the reduced-order model could be used to provide boundary conditions for a full
three-dimensional representation of the domain of interest. Finally, some work
has been dedicated to stabilization of existing boundary treatment methods. For
example, Moghadam et al. (2011) studied different approaches, namely adding
stabilization term, using normal velocities, and reconstructing velocity profile, to
control backflow divergence at outlets. The latter approach has been addressed in
other literature as well (Veneziani and Vergara, 2005, Formaggia et al., 2002).
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Regarding inlet conditions, prescribing flow rate or velocity has been the main
approach (Shahriari, 2011, Freitas and Schroder, 2008, Zhang and Kleinstreuer,
2002). In both steady and transient simulations, it is common to use fully-developed
velocity profiles, i.e. parabolic in steady or Womersley’s profiles in time-varying
simulations, as inlet condition (Sazonov et al., 2011, Soni and Thompson, 2012).
It should be noted that Womersley’s velocity profile should in general be treated
as an approximation Grinberg et al. (2009). However, Moyle et al. (2006) made
experiments to find out whether assuming fully developed axial flow at entrance
is valid for modeling realistic carotid bifurcations. They concluded that, accurate
reconstruction of geometry with a sufficient entrance length prevails over measuring
3D inlet velocity profile. Nonetheless, there are many other cases where this
conclusion does not hold, e.g. see Peterson and Plesniak (2006), Yang et al. (2006).
Alternatively, Neumann boundaries have been used as inlet conditions, see Xia et al.
(2010), Kim et al. (2009b). Instabilities associated with this type if inlet condition
are mentioned in Kim et al. (2009a).

In cases where more complex flow features, such as three-dimensional effects,
bifurcation, secondary flow profiles, etc. play a crucial role in the overall behavior of
the system, models similar to the aforementioned 1D-lumped coupled approaches are
unable to provide sufficient insight Vignon-Clementel et al. (2006). Consequently, in
the current work, a full three-dimensional modeling of the blood flow is carried out.
Considering this work focuses on major arteries, this choice is absolutely necessary
and computationally feasible.

Availability and implementation of these boundary condition should still be
addressed. In the context of particle methods, Lykov et al. (2015) mentioned two
issues regarding the open boundary treatment. Firstly, outlet low conditions is
mainly unknown, despite known inlet conditions in single phase flow (see also (Lei
et al., 2011)). Secondly, in more realistic scenarios such as mixture of blood cells,
even the inlet conditions are unknown or unfeasibly expensive to impose. As a
result, due to lack of knowledge and/or better models, periodic conditions have
been applied in several scenarios (Fedosov et al., 2012, 2011, Hossain et al., 2014),
while non-periodic conditions are less often utilized. For a more elaborate list of
such simulations, see Lykov et al. (2015)

5.1.1 SPH implementations

Regarding the state of the art in SPH, development of inflow and outflow boundary
conditions has received more attention only recently, but this area is yet to become
mature. Due to the meshfree nature of SPH, similar difficulties in defining open
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boundary treatment, as those mentioned previously, prevail. Shahriari et al. (2012)
associated challenges in developing proper inflow and outflow boundary condition
in SPH with two issues: insufficient kernel support for near-boundary particles, and
approximate representation of boundaries due to moving Lagrangian particles.

These issues have been addressed differently in the community. Khorasanizade
and Sousa (2016) summarized existing approaches into three main groups. Firstly,
application of the method of characteristics to model open boundaries. As an
example, Lastiwka et al. (2009) proposed a method based on this approach to model
non-reflecting boundaries. The second approach is introducing a buffer layer of
particles at the boundaries of the domain. Variations of this approach are used often,
e.g. in Flekkgy et al. (2005), Lykov et al. (2015), Gholami et al. (2015). The third
main approach is based on using semi-analytical methods to determine boundary
values Kulasegaram et al. (2004), Ferrand et al. (2013). Additionally, application
of other approaches, e.g. variable forces at boundaries, have been reported in the
literature Vignon-Clementel et al. (2006), Lei et al. (2011).

To conclude this section, relevant literature regarding application and development
of inflow /outflow boundary conditions in SPH is reviewed in the last decade. Sinnott
et al. (2006) simulated the pulsatile flow in a carotid artery bifurcation using SPH.
They imposed time-varying velocity profiles at the inlet to account for the pulsatility
of the flow. For outlet boundaries, they used a constant pressure, 10kPa at both
internal and external carotid arteries. However, they did not discussed simulation
stability and validity of their results. Lastiwka et al. (2009) proposed a SPH
characteristic-based non-reflecting boundary condition that allows imposition of
analytical inlet and outlet conditions at boundaries through definition of ghost
particles. Their development was, however, based on a uniform single-phase velocity
condition on straight boundaries. Hosseini and Feng (2011) proposed a pressure-
correction scheme to calculate accurate pressure close to open and wall boundaries.
Their approach showed good result for a number of standard cases. However,
admittedly, demonstration for more complex cases was missing.

In a related work, Lei et al. (2011) developed a time-dependent boundary treatment
in the context of Dissipative Particle Dynamics (DPD) for no-slip walls and fully-
developed outflow boundaries. They used a force-adaptive approach and showed
that their method performs well when velocity and pressure are in-phase. It is
also worth mentioned the review work by Sazonov et al. (2011) where a complete
modeling pipeline for simulation of hemodynamics in arterial networks is reviewed.
Particularly, they outlined a detailed process to generate inlet and outlet flow
conditions in patient-specific geometries. Their approach is based on calculating
Womersley’s profiles from known maximal velocity and flow rate at inlets and
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outlets.

Shahriari et al. (2012) used the buffer particle approach of model pulsatile
flow in two-dimensional left heart ventricle. They reported their outflow BC to
be not strictly non-reflecting but adequate for their 2D heart cavity simulation.
According to Vignon-Clementel et al. (2006), as wave reflection naturally occurs in
cardiovascular networks, no wave reflection boundaries are not necessarily a viable
option. Federico et al. (2012) used ghost particles to model inflow and outflow in a
2D open channel. Their results matched analytical solutions; however, similar to
many of the aforementioned studies, their simulations featured only one inlet and
one outlet.

Extending Ferrand et al. (2013), a semi-implicit open BC was proposed by
Kassiotis et al. (2013). They demonstrated suitability of their approach for complex
geometries. Similarly, Leroy et al. (2016) extended the unified semi-analytical
boundary condition technique to incompressible SPH (ISPH). They only showed
results for 2D dam break and circular 3D pipe flow.

Using ghost buffers for open boundaries seems to be explored more extensively
compared to other methods Hou et al. (2014), Dominguez et al.. Lykov et al. (2015)
developed a general framework inflow/outflow boundary treatment for multiphase
particle flow. They assumed a fully-developed profile at inlet and applied adaptive
forces at outlets to maintain mass flow. Particularly, they used a generation region
for ghost particles at inlets that interacts with the interior only in the forward
direction. Moreover, they showed results of 3D arterial flow with multiples inlets
and outlets. More recently, Khorasanizade and Sousa (2016) extended previous work
(Khorasanizade et al., 2012) and introduced inflow/outflow BCs for ISPH using
buffer regions. They successfully showed stability and accuracy of their approach in
modeling flow around square cube. Hirschler et al. (2016) also developed an open
boundary condition for ISPH that uses mirror particles for both open velocity and
open pressure boundaries. They demonstrated several cases such as the standard
flow around cylinder, flow acceleration due to pressure pulsation, and flow in a
porous network with multiple outlets.

5.2 Boundary treatment with ghost particles

It was mentioned in the previous section that handling open boundaries using ghost
particles is quite common in SPH. In many applications implementing such bound-
ary conditions was avoided by using periodic boundaries. Particular advantages
associated with periodic BCs, e.g. no extra particle treatment at boundaries and
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full kernel support at boundaries, justified their application in many studies. For
transient simulations, this approach was extended to use time-dependent body force
to match the time-dependent mass flow. However, when realistic arterial geometries
are considered, periodic treatment is not an option anymore. To that end, the ghost
particle approach extends the computational domain with a few layers of ghost SPH
particles to allow an more elaborate handling of the boundaries. This is shown in a
schematic of the carotid artery bifurcation, see Fig. 5.1, where inlet and two outlets
are extended.
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Figure 5.1: Ghost particles at inlet (blue) and outlet (red). Interior particles are
colored in gray. Average flow rate waveforms are shown above each ghost
boundary.

Generally, two mechanisms are required to implement such boundary conditions.
The first mechanism is responsible for imposing a condition in a boundary. It was
mentioned in the previous section that, in the context of cardiovascular flows, a
known condition could significantly differ based on the specifics of the application
under study. As the challenges in that regard are already discussed, it is assumed
here that information regarding physics of boundary, e.g. velocity profile, pressure
values, etc. are available. Consequently, the first mechanism prescribes known values
for particles in the buffer zone. Furthermore, it defines the kind of interactions
between ghost and real particles to impose the desired boundary condition in a stable
manner. A second mechanism must be employed to insert and remove particles
at inlets and outlets. Depending on the overall design of the boundary treatment,
this step could preserve particles’ mass on average or strictly at any moment. The
difference between the ghost particle methods proposed in literature is mainly how
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they implement these mechanisms.

Lastiwka et al. (2009) developed a non-reflecting boundary condition for SPH.
They introduced an inlet buffer larger than the support radius of the kernel function.
According to the method of characteristics for the subsonic flow, particle at inlet
need to values prescribed. Therefore, they suggest to set velocity explicitly and
extrapolate pressure (density) from only the interior particles. To account for
inaccuracies due to insufficient kernel for such extrapolation, they use reproducing
kernel particle method (Liu et al., 1995). When an inlet ghost particles enters the
real domain, a copy of it is created by shifting it position upstream of the inlet
buffer. At outlet, they suggest prescribing pressure or density and extrapolating
velocity. Outflow ghost particles are integrate according to SPH formulation until
the are removed.

Lei et al. (2011) proposed a DPD outflow condition by prescribing mass flow
at outlet, assuming velocity and pressure are in-phase in a fully developed flow.
To impose this condition, they introduced adaptive forces to maintain mass flow
and eliminate velocity differences in regions adjacent to the outlet. Particle leaving
the buffer region are then simply removed from the simulation. At inlet new
DPD particles, with prescribed velocities, are inserted randomly. They mentioned
random insertions position did not cause any large disturbances in their simulations.
Otherwise each new insertion must be carried out in a way to minimize the local
thermal disturbances.

Shahriari et al. (2012) used a regular grid of particles at inlet to simplify the
insertion problem. They imposed mass flow by inserting a new particles only after
one has left the domain through outlet. The new particle has a prescribed velocity,
but its pressure and density is computed by SPH. The downside is that the result
scheme is not non-reflecting. Additionally, they only showcased their work for
geometries with one inlet and one outlet with similar shapes. In a similar work by
by Federico et al. (2012), interaction between particles is one-way, i.e. only from
ghost to real particles. At inlet, they impose both velocity and pressure on a regular
grid of particles. Once a particle enter the outflow buffer, all its physical properties
with the exception of position are frozen.

Lykov et al. (2015) developed a general particle open boundary method for
cardiovascular networks. Assuming a fully developed flow at inlet, they introduced
two regions at the beginning and two at the end of the inlet buffer region to form
a periodic box (see Fig. 2 in (Lykov et al., 2015)). Consequently, used a particle
shifting scheme to impose the fully developed assumption. Similar to the previous
works, interaction between ghost and real particles is one-way. Their approach for
outflow boundary is similar to that of Lei et al. (2011). However, instead of adaptive
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force, they reflect back outflow ghost particle into the domain to maintain a density.
The probability of reflection is computed from target and current densities. If a
particle is not reflected, they are removed from the simulation.

More recently, Khorasanizade and Sousa (2016) developed inflow/outflow bound-
ary condition for incompressible SPH. At inlet, velocities are prescribed and pressure
in taken from interior SPH particles normal to the boundary. When an inlet ghost
particle enters the domain, a new inlet ghost particle is created by shifting the
position to the beginning of the inlet buffer. At the outlet, particle velocities are
frozen once a particle enters the outlet buffer; however, their pressure is still updated
in the same way inlet ghost particles are treated. Finally, to enforce mass flow
conservation, they added a time-dependent driving force based on the ratio of mass
flow at inlet and outlet. Consequently, they avoid explicit manipulation of particle
velocities which could cause instabilities.

5.3 Influence of pulsatility on cell adhesion

As mentioned in the previous chapter, we come back to the stenosed sudden
expansion model to study a time-dependent flow. For the transient case, appropriate
boundary conditions must be applied to the SPH particles for desirable results. Wall
boundary conditions are already well-established in SPH simulations and several
modifications are proposed to handle special cases. In this work, we use a standard
approach to model wall no-slip boundary condition by introducing frozen particles at
the boundaries. For the rest of this section, inflow and outflow boundary conditions
and the corresponding SPH handling will be discussed.

5.3.1 Time-dependent boundary conditions in sudden
expansion model

The three-dimensional stenosed sudden expansion geometry, presented in Fig. 4.3,
allows using a periodic boundary condition at the inlet and outlet for steady flow
cases. Therefore, when a particle leaves the domain, it is re-inserted from the other
end. The flow is driven by an external force that is regulated to enforce the desired
inlet Reynolds number. The advantage of this approach is that it requires no extra
treatment of SPH particles other than the normal calculation of density and pressure.
Specifically, domain periodicity results in uniform density for SPH particles at the
inlet and outlet, where incomplete kernel support typically requires additional work
to maintain accuracy. This approach was used for results presented in chapter 4.
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Figure 5.2: Introduction of inflow (blue) and outflow (red) ghost particles. SPH
particles in the interior domain are colored in grey. Width of the
ghost buffers is in the range of SPH cutoff distance. Average flow rate
waveforms are shown above each ghost boundary. Data is extracted
from the work of Lee et al. (2008).

Modeling unsteady flow is, however, not as straightforward. One approach would
be to use a time-dependent body force to simulate pulsatility of the flow. The
drawback of such an approach is that it cannot be extended to realistic cardiovascular
conditions. In such environments, the velocity profile over the inlet cross-section
is assumed to be fully developed flow i.e. Womersley flow. This is motivated by
a number of previous studies that have deemed this to influence the downstream
haemodynamics to a limited degree providing sufficient upstream length (Moyle et al.,
2006). As this is the case for the pulsatile flow in Hinds et al. (2001), we developed
suitable boundary conditions that can impose velocity profile at boundaries.

In the context of SPH, such inflow/outflow boundaries are typically handled by
introduction of buffer zones (ghost particles) at the inlet and outlet, respectively
(see Fig. 5.2). Each buffer zone extends the physical domain with a few layers of
SPH particles. This approach was outlined in the previous section.

For the inlet and outlet boundaries we utilize pulsatile waveform data presented
in literature and scale them to out geometry. This process is described in detail
in a review paper (Sazonov et al., 2011). Following this approach, velocity time
profiles can be independently computed and applied to each boundary. We start by
calculating complex velocity amplitudes by applying a FFT to the velocity waveform
data given in Hinds et al. (2001). Accurate resolution of the waveform requires a
sufficient number of harmonic components which could differ from case to case. Next,
all harmonic components are calculated by solving a boundary value problem on a
mesh at the boundary plane. The velocity profile at each time is represented by a
Fourier series and can now be computed using the normalized harmonic components
and the complex amplitudes.

An example of the final result is shown in Fig. 5.3. A sinusoidal wave over half
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Figure 5.3: Velocity profile evolution at a circular boundary for a sinusoidal waveform
is calculated using Womersley profiles. The impact of the Womersley
number on the instantaneous velocity profile is shown.

of its period is chosen as an example waveform. Velocity profiles over a circular
boundary are calculated at identical instances of time for different Womersley
numbers. It is clear that as the Womersley number increases, the lag between the
pressure gradient and the mean flow causes the profile to deviate from the Poiseuille
profile. This information is already enough for imposing the SPH pulsatile boundary
condition as described earlier.

Although the correct enforcement of inflow/outflow boundary conditions does not
pose any problem in practice, we should mention a difficulty which could arise in the
implementation mentioned above. Due to the intrinsically compressible nature of
SPH, traveling pressure waves generated within the domain (or physically realized at
the outflow) should be able to escape from the open boundaries without producing
artificial back scattering. This represents an open area of research within the particle-
methods community. Characteristic-based non-reflecting boundary conditions for
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5.3 Influence of pulsatility on cell adhesion

mesh-based methods have been recently implemented into the SPH framework
(Lastiwka et al., 2009) and mesoscopic particle methods (Delgado-Buscalioni and
Dejoan, 2008) showing good results. Modifications of our implementation of the
inflow /outflow boundary conditions to have a fully non-reflecting boundary condition
will follow these guidelines.

5.3.2 Cell adhesion pattern in sudden expansion model

It is now well established that in cardiovasular blood flow problems (as presented
here) a purely hydrodynamic analysis is not sufficient to accurately predict the
behavior of the system. Hence, a complete model must take into account the
interplay between cell transport and local wall interactions. As the results in chapter
4 suggest, the outcome could alter significantly by small changes in biomechanics of
the system. In order to explore this further, a case with pulsatile flow, using identical
adhesion parameters presented in Table 4.2, is simulated. The pulsatile velocity
waveform (Fig. 5.4a) is extracted from data presented in Hinds et al. (2001). The
flow is characterized by a Womersley number of about 3, which is typical of some
larger arteries such as Femoral and Carotid arteries. Similarly to the experiment,
the simulation is run for 20 cycles, and results are compared in Fig. 5.4b.

Firstly, Fig. 5.4a shows that the inflow /outflow boundary condition is performing
well. At the beginning of the simulation, a fraction of the pulse time is spent on
bringing SPH particles to the non-zero initial velocity over the entire domain. After
the initialization period, the solution follows the prescribed pulsatile profile very
closely. In Fig. 5.4b cell adhesion at the walls is compared after 20 cycles. Wall
profiles agree very well for most of the domain and stay within the bounds of the
experimental data for the region of interest. Pulsatility has caused the adhesion
profile to be noticeably flatter that the Re = 100 case. Considering that the average
Reynolds number in the pulsatile case is 107, this seeming discrepancy emphasizes
the pulsatile flow could be a crucial factor when studying cell adhesion.

Fig. 5.5 shows the three-dimensional evolution of cell adhesion over the course of
the simulation. After 5 cycles, the maximum adhesion occurs in the taper region
and is only around 7 cells/ mm?®. However, after 10 cycles the profiles are better
established and even some adhesion has taken place after the sudden expansion.
This trend goes on with the simulation, but it is clear that the adhesion front after
the sudden expansion advances very slowly, to the extent that by the end of 20
cycles it is just around 2 cells/ mm?.

Previously a number of groups have considered pulsatile flow through the present
geometry (Worth Longest and Kleinstreuer, 2003, Kim et al., 2006). In these studies
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mental data of Hinds et al. (2001) for pulsatile flow
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5.4 Towards patient-specific hemodynamics

an Eulerian-Lagrangian approach to was used to calculate secondary parameters;
near wall residence time (NWRT) and near-wall deposition probability (NWDP),
respectively. They are defined to incorporate factors that contribute to the likelihood
of particle deposition. After solving the flow field, these parameters are calculated
along the particle trajectories. Even though the actual deposition profiles, e.g.
Fig. 9 in Worth Longest and Kleinstreuer (2003), do not fit the experiment, these
secondary parameters are tuned to fit the cell adhesion profile, Fig. 5.4b. However,
it should be pointed out that we can accurately reproduce a physical quantity,
deposition rate, without changing the adhesion model, i.e. once we estimate the
adhesion parameters for the Re = 100 case, we do not adapt it any more. Hence,
Figs. 4.11b and 5.4b prove the ability of our model to capture the physiological
nature of the problem. On the contrary, same conclusion could not be made for
those articles. Instead of only tuning the adhesion model, they tune their results
to fit them to the experiment. Such an approach lacks a clear description of the
haemodynamics versus adhesion.

5.4 Towards patient-specific hemodynamics

Numerical modeling of arterial blood flow presents itself as a powerful and insightful
research tool allowing for the identification of numerous hemodynamic parameters,
that are impossible or complicated to measure in vivo. Additionally it allows for
the progression of in vitro studies by identifying pertinent parameters that require
in vivo testing thus allowing the disease initiation to be understood in more detail.

To that end, modeling the complex environment in arteries requires realistic artery
geometries. These geometries are obtained via segmentation of standard medical
images, such as Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI) data. In the next step, using segmentation software, the arterial lumen can
be identified and a realistic 3D reconstruction of the geometry can be produced.
An example result of utilizing such a procedure is indicated in Fig. 5.6, where
a carotid artery bifurcation surface is shown. Data is segmented from standard
CT data. Finally this geometry can be prepared for simulation by cutting outlets
perpendicular to the flow direction. This process is explained in detail in Sazonov
et al. (2011).

Surface data can be consequently used to model the transport of leukocytes
using the particle method explained earlier. The code is written in a generic
way to accommodate modeling of arbitrary geometry, similar to those in Fig. 5.6.
Additionally, it allows specifying inlet and outlet conditions by extending the
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Figure 5.5: Evolution of cell adhesion contours on walls of 3D taper geometry over
time
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I

Figure 5.6: Three-dimensional surface data of a carotid artery bifurcation shown
in six coordinate directions. Common carotid artery, internal carotid
artery, and external carotid artery are visible. Surface data is provided
by Sazonov and others, see Sazonov and Nithiarasu (2012), Sazonov
et al. (2017), Yeo et al. (2011).
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5 Inflow/outflow boundary conditions

computational domain beyond the supplied geometry. Looking at the larger picture,
this brings the developed framework to a realistic setting, i.e. a model of leukocyte
transport coupled to a cell adhesion model of the leukocyte-receptor interaction
kinetics at realistic endothelial surface.

In addition to patient-specific arterial geometries, delivering a truly realistic
model requires realistic inflow and outflow boundary conditions. In particular, the
vasculature represents a very large closed network and the modeling of only a small
part of the system can yield incorrect solutions, hence the effect of the downstream
vessels should be taken into account. Therefore, the ability to model multiple
inlet /outlet boundaries with physiological and time-varying pressure and velocity
conditions is crucial.

It was shown in the contest of SPH, such boundaries can be realized through the
use of inflow /outflow buffers filled with ghost particles outside the domain that are
created and removed as required. These particles interact with interior fluid particles
like normal particles. Flow initialization with SPH for a patient-specific arterial
geometry is shown is Fig. 5.7. Particularly, it is clear how inlet buffer particles are
initialized on a regular grid to enable imposition of inlet velocities. Similarly, outlet
buffers particles are interior particles that leave the domain. Their position is now
determined by the velocity condition imposed on them.

Difficulties in modeling these boundaries are already discussed. In particular, a
robust implementation of pulsatile flow in a geometry with multiple inlets and/or
outlets proved challenging. Due to the intrinsically compressible nature of SPH,
traveling pressure waves generated within the domain (or physically realized at
the outflow) that do not escape from the open boundaries produce artificial back
scattering. Proper implementation of such permeable non-reflecting boundary
conditions would be the next step in this project.

In completing a truly realistic patient-specific model, one additional remark should
be made. A relevant extension of the model would be to include the motion of the
arterial wall coupled with dynamics of blood flow. Complex rigid /deformable bound-
ary conditions are easily implemented in SPH. In blood flow in vivo, the effects of
arterial wall movements are expected to significantly impact the local hemodynamic
environment in the vicinity of the arterial wall. Hence this change in dynamics will
inherently change the binding properties of leukocytes. It is therefore necessary
consider the problem of fluid-structure interaction (FSI). Conventionally, structures
are mostly simulated in a Lagrangian framework whereas the Eulerian formulation
is preferred for the fluid flow. SPH has emerged as an alternative approach and
has been considered to simulate the problem of elastic plate deformation (Antoci
et al., 2007) and pulsatile flow through flexible walls (Farahani et al., 2009). The
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5.4 Towards patient-specific hemodynamics

Figure 5.7: Patient-specific modeling of blood flow using SPH. On left, tessellated
three-dimensional surface of the CAB is shown. Surface data can be
used to simulation flow in arbitrary geometries. On right, initialized
SPH domain to model flow in CAB is shown. Inlet and outlet particle
buffers extend the computational domain beyond those of the geometry.
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5 Inflow/outflow boundary conditions

solid material in both cases was modeled as a linear elastic solid. The advantage of
using SPH in these situations is that it permits to easily follows fluid-solid interface
without the need to perform remeshing or repeated interpolations. Moreover, it
allows using the same numerical framework to simulate both solid and fluid phases,
therefore eliminating the need for developing coupling schemes between two meth-
ods. This is realized by introducing two kind of particles (solid boundary particles
and fluid particles) whose properties evolve according to the same SPH equations
but with distinct closure relations for the stress tensor. The enforcement of the
continuity of the normal component of the velocity and normal stress requires the
computation of the position of the interface and normal direction which can be done
in a straightforward way by considering neighboring SPH solid particles (Antoci
et al., 2007) or, more generally, via SPH estimates of the gradient of a color function
(Hu and Adams, 2006b).

Taking a step back and abstracting the details, the developed framework can be
viewed as a black box solver that takes patient-specific input, i.e. geometry and
blood parameters, and quantifies initiation and progress of atherosclerosis through
modeling deposition patterns. By performing enough simulations and matching
with many more sets of experimental data, this goal is certainly within reach. This
was clearly demonstrated in the course of this work. However, atherosclerosis is
only one example where the role of hemodynamics and short-range cell interactions
is significant. As a result, the application of the framework could go beyond what
is discussed in this work. For example, circulating tumor cells (CTCs) undergo
very similar dynamics as white blood cells. Their size is roughly the same and they
share many adhesion properties. Detachment of a cell from tumor and entering into
the blood stream is an important stage in development and spreading of cancer.
Therefore, the ability to detect this event early to adapt the treatment could save
many lives. The problem is, due to low concentration of CTCs in blood, it is very
difficult to detect them in time before they spread. To develop devices that detect
low concentration of CTCs, this framework can allow plugging in of cell dynamics
similar to those of CTCs. This example is one of many very exciting areas of
research where this framework can be utilized.
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In this work, a multiscale SPH framework for modeling WBC transport in the near
region coupled with a stochastic adhesion method to capture realistic receptor-ligand
adhesion is developed. The framework comes with a number of key benefits, namely
accuracy and efficiency. Modeling the adhesion-deposition of cells in macroscopic
scales typically presents many difficulties. Firstly, transport phenomenon takes
place at considerably different temporal scales in the bulk and in the near-wall
region. Secondly, near-wall cell transport behavior is largely affected by low-range
adhesive forces between the cells and endothelium. Formation and dissolution of
bonds that exert such forces occur in scales dictated mainly by characteristics of
the receptor-ligand pair (rather than flow). Finally, even though there are several
mathematical frameworks that address cell adhesion in depth, there are no well-
established models that correlate physical quantities with model parameters. This
is partly due to lack of consistency between the experimental setups and partly due
to the complexity of the problem.

It was demonstrated that this framework is capable of addressing these two
issues. Firstly, a multiscale Lagrangian model based on SPH which uses a discrete
representation of cells only in the vicinity of walls was introduced. This approach
results in significant reduction in number of cells. In order to address the second
problem, adhesive forces through application of a Monte-Carlo acceptance-rejection
method was prescribed. Experimental studies suggest that formation of a single
bond is a significant event in determining the fate of the cell. Thus, existence of
discrete cells near walls allows very accurate treatment of each cell as a stochastic
process characterized by the type of cell. This approach allows for the development
of adhesion parameter sets for each cell-receptor pair and to utilized this information
in any simulation.

Moreover, it was demonstrated that this framework is capable of modeling a
complex physiological phenomenon such as the adhesion of U937 monocytic human
cell to an E-selectin coated geometry. In particular, it was shown that despite the
large spatial scales of the problem (e.g. cell adhesion only occurs in the vicinity
of the wall) we can accurately reproduce in-vitro results presented by Hinds et al.
(2001). Additionally, we reaffirmed that adhesion under pulsatile flow conditions is
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different from the equivalent Reynolds number steady flow adhesion.

Comparison of simulation results with experiment demonstrated that the frame-
work provides a good platform for the investigation of WBC (and other cells)
transport and adhesion under physiological flow conditions. Nevertheless an ad-
ditional mention must be made about the accuracy of the adhesion results. The
presented adhesion model offers several degrees of freedom to be able to match
adhesion behavior of each cell type as accurately as possible. Hence, multiple
parameter sets could give similar results for specific flow conditions. In order to
make sure the final model is truly representative of a adhesion behavior of a partic-
ular adhesion molecule and cell, in the present study E-selectin-U937, additional
experiments under different flow conditions, even in vivo animal models, are needed
to validate and refine the parameters. Additionally, with the computational gain
that the method delivers, it is possible to utilized our SPH framework in realistic
arterial geometries. This flexibility will allow different in vivo flow environments
to be assessed, in which natural geometric variations (see for example Thomas
et al. (2005)) may highlight important aspects of WBC adhesion due to altered
haemodynamics.

To close this chapter, published findings of this work are summarized in two
sections.

6.1 Multiscale particle model

In this section, a summary of the published article (Gholami et al., 2014) is presented.
This paper, titled A multiscale SPH particle model of the near-wall dynamics of
leukocytes in flow, is published in the peer-reviewed International Journal for
Numerical Methods in Biomedical Engineering '. It was submitted in January 2013
and accepted in July 2013. I was the first author 2.

The importance of WBC deposition patterns in the initiation of atherosclerosis
has been demonstrated be several studies. In this paper, transport of leukocytes in
large arteries is addressed with regard to large separation of spatio-temporal scales.
Such a difference is the outcome of transport mechanisms in bulk and near-wall
region being of different natures. While in bulk it is admissible to consider transport
of leukocytes as passive scalar concentrations, their near-wall dynamics is by far
more complex. In reality, it is virtually impossible to model transport of leukocytes
in large arteries in any time scale that is relevant for the problem at hand. To

'http://onlinelibrary.wiley.com /journal /10.1002/(ISSN)2040-7947
2doi: http://dx.doi.org/10.1002/cnm.2591
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6.1 Multiscale particle model

address this issue, a multiscale model based on Lagrangian particles of SPH is
proposed.

To simulate the complex near-wall dynamics of leukocytes, they are modeled as
discrete particles which undergo specific lubrication, and potentially cell adhesion,
forces. Such expression of leukocytes is however limited to regions in the vicinity
of arterial walls where these forces are of significance. As mentioned, their bulk
motion is tracked as a continuum passive concentration field. This arrangement
leads to considerable gains in computational effort required to accurately capture
long-term deposition patterns of WBCs in large arteries.

The bulk motion of leukocyte is modeled by advection/diffusion of a concentration
field mounted on SPH particles. It should be noted that even though leukocyte
Péclet number in large arteries is extremely large, on cell-size scale, their motion
is affected by RBC-induced random motions resulting in an increased effective
diffusion. Considering two possibilities to model this effective diffusion, i.e. treating
the concentration as an independent SPH variable or incorporating momentum
fluctuations for SPH particles, the second approach following the so-called smoothed
dissipative particle dynamics method (SDPD) is used.

In the near-wall region, a Lagrangian particle tracking approach is used to model
the motion of discrete tracers, representing leukocytes. Following finding of similar
studies, stokes drag, lubrication forces, Saffman lift, and a random RBC-collision
force are taken into account in this region. As accurate calculation of near-wall
trajectories is feasible only with very small time steps, a first-order Euler scheme
proved to be sufficient for avoiding trajectory instability. An intermediate study was
carried out to ensure all relevant forces are being considered in calculating particle
trajectories. Particle deposition is considered solely on the basis of wall distance.
For particles closer than a minimum distance, chosen to be one tracer diameter,
deposition probability of 1. Otherwise, probability of deposition is considered zero.
It is worth noting that this criterion is chosen to isolate influence of blood flow on
deposition pattern. In next steps, this condition needs to be modified to fit the
complex dynamics of cell-endothelium adhesion.

Finally, a particle-tracer coupling scheme is introduced to couple bulk and near-
wall solutions at the interface between the two domains. This scheme imposes
conservation of mass at the interface. In initialization, each SPH particle is assigned
a number of tracers based on local concentration. Therefore, a non-uniform bulk
concentration of leukocytes, e.g. due to margination effects, is straightforward to
impose. Through extraction, SPH particles entering the near-wall region convert
the tracers they carry to discrete particles controlled by the LPT scheme. The
reverse phenomenon is modeled in insertion steps where tracers that leave the
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near-wall region are inserted in a nearby SPH particle. Considering these steps, it
was demonstrated that the additional computation costs of this scheme is by far
less that performing a full domain LPT.

Results were compared for case of backward-facing step (BFS) with a reference
validation results that used full domain LPT. Despite the simplicity of the BFS
geometry, it incorporates interesting flow features, such as sudden expansion and
recirculating region, which are highly relevant for large arterial geometries like that
carotid artery bifurcation. It was clearly demonstrated that after correct evaluation
of the diffusion factor, result of the proposed method match those of the reference
code very closely. These result are in agreement with other studies in that particle
deposition is enhanced in regions of localized flow. Additionally, for the presented
case, a minimum computational gain factor of 47 was consistently observed for
different particles resolutions.

As a final demonstration of the capabilities of the proposed multiscale method, a
local lesion was simulated by increasing the chance of deposition in a locality that
otherwise has a low rate of deposition. This condition aims to model upregulation
of adhesion molecules in dyfunctional endothelium. Results of validation LPT and
the multiscale method consistently showed increased deposition rate at the lesion
site almost as high as the reattachment point. This points out to the conclusion
that studying leukocyte deposition purely based on hydrodynamics is not sufficient
for realistic scenarios.

6.2 Stochastic adhesion model

In this section, a summary of the published article (Gholami et al., 2015) is presented.
This paper, titled SPH simulations of WBC' adhesion to the endothelium: the role of
haemodynamics and endothelial binding kinetics, is published in the peer-reviewed
journal of Biomechanics and Modeling in Mechanobiology 3. It was submitted in
December 2014 and accepted in April 2015. I was the first author *.

In this paper, the extension of the multiscale Lagrangian particle solver to
physiologically realistic near-wall cell dynamics is presented. In particular, this work
approached the problem from three aspects. Firstly, extending the existing model
to three-dimensional cases to capture full flow effects. This steps is the prerequisite
of modeling patient-specific arterial geometries. Secondly, a stochastic cell adhesion
model was introduced to model realistic receptor-ligand adhesion behavior. It

3http://www.springer.com/engineering /mechanics/journal /10237
4doi: http://dx.doi.org/10.1007/s10237-015-0676-y
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was demonstrated in the previous work that even though hydrodynamics play an
important role in deposition of leukocytes, it is far from sufficient in accurately
predicting deposition patterns. The simple distance-based approach in the previous
work is replaced by a detailed probabilistic model capable of simulation complete cell
interactions in the vicinity of the endothelium. Finally, as influence of pulsatility is
mentioned in a number of studies, appropriate inflow/outflow boundary conditions
were implemented to capture effect of transient flow on leukocyte deposition.

As anticipated, one potential challenge when simulation in 3D is having to use
an unfeasibly large number of tracers in the domain. However, after running
preliminary convergence studies on simple three-dimensional models, it was clear
that the multiscale model is capable of keeping the overall tracer count in a reasonable
range while delivering descent accuracy. It was additionally decided to model bulk
diffusion of tracer by treating the bulk concentration as an independent SPH variable.
Even though the SDPD approach showed very good results in the previous work, the
additional flexibility that this approach bring was considered necessary. Hence, each
SPH particle carries a meaningful number of tracer at any time. This property is
preferred in events such as wall restructuring due to particle accumulation. Overall,
we considered this method more suiting for future extension of this work.

Experimental observations have shown that adhesion behavior of a cell is could
radically change by flow conditions. Moreover, different cells exhibit very different
adhesion characteristics. As a result, incorporating a proper model capable of
counting these effects into account was absolutely necessary. An advanced approach
in formulating binding affinity, i.e. ratio of bond formation to resolution, was adopted
that adds bond force as a parameter. The advantage of the chosen model is that
it allows simple to complex dependencies of biological parameters, flow conditions,
and bond force with a unified formulation. This advantage is demonstrated in detail
by studying parameter space of the binding affinity in the paper.

An important factor in implementing the adhesion model was a key observation
by a number of experimental studies that formation of a single bond, regardless
of current number of bonds, is a significant event in determining the adhesion of
cells. Therefore, the adhesion process must be considered a stochastic process in
small scales. As a result, a stochastic adhesion model, based on a Monte Carlo
(MC) acceptance-rejection method, replaced the simplistic distance-based deposition
criterion from the previous work. Based on this definition, the physical domain is
divided into three parts: the bulk modeled by SPH, near-wall region by LPT, and
adhesion region by MC.

To test the model, residence time distribution was studies for a concentration
of U937 cells flowing through a three-dimensional stenosed axisymmetric sudden
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expansion geometry. The inner surface of the model is coated with E-selectin
to facilitate binding of the U937 cells at higher flow rates. First of all, the flow
condition for two cases of Re = 100 and 140, was reproduced in SPH and wall
shear stress (WSS) profiles were matches at walls. To demonstrate deficiencies of
distance-based deposition, the Re = 100 case was tested without the new adhesion
model. Expectedly, results showed a meaningful difference compared to those of the
experiment.

Next, parameters of the stochastic adhesion model where tuned to reproduce
results of the case with Re = 100. After successfully reproducing wall adhesion
profiles for this case, adhesion parameters were applied to the case with Re = 140.
The success of this step was key to this approach. Since in the experimental
setup, used cell and corresponding coating where kept the same, the adhesion
parameters should be treated as properties of the receptor-ligand pair, and therefore,
kept identical to the first case. Result were in good agreement with those of the
experiment. Both cases show accurate result in regions close to the contraction
and sudden expansion, while slightly differ from the experimental data as we move
further downstream.

The final step was to repeat the test for a case with pulsatile flow to capture realistic
cardiovascular environment conditions. Transient fully-developed flow profiles were
used at inlet as sufficient upstream length was available in the geometry under
study. Inlet and outlet boundary condition were implemented using introducing
ghost particles in inlet and outlet buffers. While this approach does not provide a
perfectly non-reflecting condition at the boundaries, it is quite common in the SPH
field and has shown good results problems that are not too complicated. While
experimental data was not available to compare results quantitatively, a qualitative
inspection of results in shows good agreement with experimental observations.
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