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Eigenspectra optoacoustic tomography achieves
quantitative blood oxygenation imaging deep in
tissues
Stratis Tzoumas1,2,*, Antonio Nunes1,*,w, Ivan Olefir1, Stefan Stangl3, Panagiotis Symvoulidis1,2, Sarah Glasl1,2,

Christine Bayer3, Gabriele Multhoff3,4 & Vasilis Ntziachristos1,2

Light propagating in tissue attains a spectrum that varies with location due to wavelength-

dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption

has limited the quantification accuracy of optical and optoacoustic spectroscopic methods,

and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal

for the assessment of oxygenation in physiological processes and disease. Here we describe

light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic

tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate

blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and

animal measurements and spatially resolve sO2 in muscle and tumours, validating our

measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement

over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue

pathophysiology.
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T
he assessment of tissue oxygenation is crucial for under-
standing tissue physiology and characterizing a multitude
of conditions, including cardiovascular disease, diabetes,

cancer hypoxia1 or metabolism. Today, measurements of the
partial pressure of oxygen in tissue (pO2) and hypoxia
measurements remain challenging and often rely on invasive
methods that may change the tissue physiology, such as single-
point needle polarography or immunohistochemistry2. Non-
invasive imaging methods have been also considered,
underscoring the importance of assessing pO2, but come with
limitations. Positron emission tomography or single-photon
emission computed tomography assess cell hypoxia through the
administration of radioactive tracers2, but are often not well
suited for quantifying pO2, suffer from low-spatial resolution
and are unable to provide longitudinal or dynamic-imaging
capabilities. Electron paramagnetic resonance imaging3 can
measure tissue pO2, but is not widely used and offers limited
spatial and temporal resolution. Imaging methods using tracers
may be further limited by restricted tracer bio-distribution, in
particular to hypoxic areas. Tracer-free modalities have also been
researched, in particular blood-oxygen-level dependent MRI4,
which however primarily assesses only deoxygenated
haemoglobin and, therefore, presents challenges in quantifying
oxygenation and blood volume5.

Measurement of blood oxygen saturation levels (sO2) is a vital
tissue physiology measurement and can provide an alternative
way to infer pO2 and hypoxia. Arterial sO2 is widely assessed by
the pulse oximeter, but this technology cannot be applied to
measurements other than arterial blood. Optical microscopy
methods like phosphorescence quenching microscopy6 or
optoacoustic (photoacoustic) microscopy7 can visualize
oxygenation in blood vessels and capillaries but are restricted to
superficial (o1 mm depth) measurements. Diffuse optical
methods received significant attention in the last two decades
for sensing and imaging oxy- and deoxygenated haemoglobin
deeper in tissue8. Despite recent progress9, diffuse optical
methods are inherently limited in spatial resolution and
accuracy, due to photon scattering. Owing to the high
heterogeneity of blood sO2 in tissue, the values reported by
diffuse optical methods are often hard to interpret.

Multispectral optoacoustic tomography (MSOT) detects the
spectra of oxygenated and deoxygenated haemoglobin in high
resolution deep within tissues, since signal detection and image
reconstruction are not significantly affected by photon
scattering10,11. Despite the principal MSOT suitability for non-
invasive imaging of blood oxygenation, accuracy remains limited
by the dependence of light fluence on depth and light colour.
Unless explicitly accounted for, the wavelength-dependent light
fluence attenuation with depth alters the spectral features detected
and results in inaccurate estimates of blood sO2

12,13. Despite at
least two decades of research in optical imaging, the problem of
light fluence correction has not been conclusively solved. To date,
this problem has been primarily studied from an optical property
quantification point of view13,14. However, it is not possible today
to accurately image tissue optical properties in vivo, in high
resolution, and compute light fluence13. Therefore, quantitative
sO2 measurement deep in tissue in vivo remains an unmet
challenge. Conventional spectral optoacoustic methods15,16

typically ignore the effects of light fluence and employ linear
spectral fitting with the spectra of oxy- and deoxy-haemoglobin
for estimating sO2 (linear unmixing), a common simplification
that can introduce substantial errors in deep tissue.

In this work, we found that the spectral patterns of light fluence
expected within the tissue can be modelled as an affine function
of a few reference base spectra, independently of the specific
distribution of tissue optical properties or the depth of the

observation. We show how this principle can be employed to
solve the spectral corruption problem without knowledge of the
tissue optical properties, and significantly increase the accuracy of
spectral optoacoustic methods. The proposed method, termed
eigenspectra Multispectral Optoacoustic Tomography (eMSOT),
can provide quantitative estimation of blood sO2 in deep tissue.
We demonstrate the superior performance of the method
with 42,000 simulations, phantom measurements and in vivo
controlled experiments. Then, using eMSOT, we image oxygen
gradients in the skeletal muscle in vivo, previously only accessible
through invasive methods. Furthermore, we show the application
of eMSOT in quantifying blood oxygenation gradients in tumours
during tumour growth or O2 challenge, and relate label-free non-
invasive eMSOT readings to tumour hypoxia; demonstrating the
ability to measure quantitatively the perfusion hypoxia level in
tumours, as confirmed with invasive histological gold standards.

Results
eMSOT concept and application. A new concept of treating light
fluence in diffusive media/tissues is introduced, based on the
observation that the light fluence spectrum at different locations
in tissue is the result of a cumulative light absorption operation by
tissue chromophores, such as haemoglobin. We, therefore,
hypothesized that there exists a small number of base spectra that
can be combined to predict any fluence spectrum present in
tissue; therefore, avoiding the unattainable task of knowing the
distribution of tissue optical properties at high resolution. To
prove this hypothesis, we first applied principal component
analysis (PCA) on 1,470 light fluence spectral patterns, which
were computed by simulating light propagation in tissues at
21 different (uniform) oxygenation states of haemoglobin and
70 different discrete depths (Methods). PCA analysis yielded four
significant base spectra, that is, a mean light fluence spectrum
(Fig. 1a) and three fluence Eigenspectra (Fig. 1b–d). PCA was
used due to its optimality in modelling the spectral variability of
light fluence in a linear manner (see Methods). We found that
the selection of three Eigenspectra offers a simple model with
relatively high-modelling accuracy (Fig. 1e).

We then postulated that light fluence spectra in arbitrary and
non-uniform tissues can be modelled as a superposition of the
mean fluence spectrum (FM) and the three Eigenspectra (Fi(l),
i¼ 1..3) multiplied by appropriate scalars m1, m2 and m3, termed
Eigenfluence parameters. To validate this hypothesis we computed
the light fluence in 4500 simulated tissue structures of
different and non-uniform optical properties and haemoglobin
oxygenation values (Supplementary Note 1). For each pixel,
we fitted the simulated light fluence spectrum to the Eigenspectra
model and derived the Eigenfluence parameters (m1, m2, m3) and a
fitting residual value. The residual value represents the error
of the Eigenspectra model in matching the simulated data and
typically assumed values below 1% (see Supplementary Note 1,
Supplementary Fig. 1), indicating that three Eigenspectra can
accurately model all simulated fluence spectra generated in tissues
of arbitrary structure. We further observed that the values of m2

vary primarily with tissue depth while the values of m1, m3 also
depend on the average levels of background blood sO2 (see Fig. 1f–
h). Intuitively, this indicates that the second Eigenspectrum F2(l) is
mainly associated with the modifications of the light fluence
spectrum due to depth and the average optical properties of the
surrounding tissue, while the first Eigenspectrum F1(l) is also
associated with the ‘spectral shape’ of light fluence that relates to the
average oxygenation of the surrounding tissue. Localized measure-
ments of light fluence spectra obtained in vivo and post mortem
corroborated these observations (Supplementary Fig. 2).

Following these observations, we propose eigenspectra MSOT
(eMSOT), based on three eigenspectra F1(l), F2(l), F3(l), as a
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method that formulates the blood sO2 estimation problem as a
nonlinear spectral unmixing problem (see Methods), that is:

P r; lð Þ ¼ F0 r; lð Þ c0HbO2
rð ÞeHbO2 lð Þþ c0Hb rð ÞeHb lð Þ

� �
; ð1Þ

where P(r,l) is the multispectral optoacoustic image intensity
obtained at a position r and wavelength l, eHbO2ðlÞ and eHb(l) are
the wavelength-dependent molar extinction coefficients of
oxygenated and deoxygenated haemoglobin, c0HbO2

rð Þ and c0Hb(r)
are the relative concentrations of oxygenated and deoxygenated
haemoglobin (proportional to the actual ones with regard to a
common scaling factor, see Methods), and F0(r,l)¼FM(l)þ
m1(r)F1(l)þm2(r)F2(l)þm3(r)F3(l). Equation (1) defines a
nonlinear inversion problem, requiring measurements at 5
wavelengths or more for recovering the five unknowns, that is,
c0HbO2

rð Þ, c0Hb(r), m1(r), m2(r), m3(r) and is solved as a constrained
optimization problem (see Methods, Supplementary Note 2,
Supplementary Fig. 3). Since the light fluence varies smoothly in
tissue, we only compute the Eigenfluence parameters on a coarse
grid subsampling the region of interest (Fig. 1i), for computa-
tional efficiency. Then, cubic interpolation is employed to
compute the Eigenfluence parameters in each pixel within the

convex hull of the grid (Fig. 1j) and calculate a fluence spectrum
F0(r,l) for each pixel using these parameters. Equation (1) is
then solved for c0HbO2

rð Þ and c0Hb(r), and sO2 is computed (see
Methods).

The performance of eMSOT was validated using simulated
data obtained from a light propagation model (finite element
solution of the diffusion equation) applied on 42,000 randomly
created maps of different optical properties, simulating different
tissue physiological states (Supplementary Note 3). Figure 1k
depicts a representative example of a simulated blood sO2 map
and visually showcases the differences between the eMSOT sO2

image (middle), the sO2 image obtained using linear unmixing
(left), and the original sO2 simulated image (right). eMSOT
offered significantly lower sO2 estimation error with depth,
compared with the linear fitting method (Fig. 1l). A substantially
improved sO2 estimation accuracy was observed using eMSOT
over linear unmixing when we analysed the complete simulation
data set (Fig. 1m). In particular, for imaging tissue depths of
45 mm eMSOT offered a 3–8-fold sO2 estimation improvement
over linear unmixing (Supplementary Fig. 4n). A thorough
validation of eMSOT performance across different data sets,
optical properties and grid densities is presented in

0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

5
10
15
20
25
30
35

500
1,000

1,500
2,000

l
0

sO20% 100 % Distance from
surface (cm)

LS fitting

0.05 –0.050.15 0.01 –0.04

a

Wavelength (nm)
700 900

0.18

0.25

�M(�) �1(�)

b c d

e f g h

m1 m2 m3j

i

k

�
M

(�
) 

va
lu

es
(a

.u
.)

Wavelength (nm)
700 900

–0.5

0.3

�
1(

�)
 v

al
ue

s
(a

.u
.)

�2(�)

Wavelength (nm)
700 900

–0.3

0.6

�
2(

�)
 v

al
ue

s
(a

.u
.)

�3(�)

Wavelength (nm)
700 900

–0.4

0.4

�
3(

�)
 v

al
ue

s
(a

.u
.)

 

 
0.4

  

1 –0.5

D
ep

th
 (

cm
)

0

1

0

0% 100%
Background

oxygenation levels

D
ep

th
 (

cm
)

D
ep

th
 (

cm
)

1

0

0% 100%
Background

oxygenation levels

0% 100%
Background

oxygenation levels

2

3
4 5

L2
 e

rr
or

0

0.04

Model
dimensionality

m1 m2 m3

m
1 

va
lu

e 
(a

.u
.)

0.06

–0.1

m
2 

va
lu

e 
(a

.u
.)

0.14

–0.06

m
3 

va
lu

e 
(a

.u
.)

eMSOT

m

Distinct simulations

sO
2 

es
t. 

er
ro

r 
(%

)

sO
2 

es
t. 

er
ro

r 
(%

)

eMSOT
Lin. Umx.

m
1
 values (a.u.) m

2
 values (a.u.) m3 values (a.u.)

Figure 1 | eMSOT concept and application. (a–d) The Eigenspectra model composed of a mean fluence spectrum FM(l) (a) and the three fluence

Eigenspectra F1(l), F2(l) and F3(l), (b–d), respectively, as derived by applying PCA on a selected training data set of light fluence spectra (Methods).

(e) Statistics of the L2 norm error of the Eigenspectra model on the training data set for different model dimensionalities. Error bar denotes s.d. (f–h) Values

of the parameters m1, m2 and m3 as a function of tissue depth (y axis) and sO2 (x axis). The values have been obtained after fitting the light fluence spectra

of the training data set (see Methods) to the Eigenspectra model. (i) Application of a circular grid (red points) for eMSOT inversion on an area of a

simulated MSOT image. (j) After eMSOT inversion the model parameters m1, m2 and m3 are estimated for all grid points and maps of m1, m2 and m3 are

produced for the convex hull of the grid by means of cubic interpolation. These maps are used to spectrally correct the original MSOT image. (k) Blood sO2

estimation using linear unmixing (left), eMSOT (middle) and Gold standard sO2 (right) of the selected region. (l) sO2 estimation error of the analysed area

sorted per depth in the case of linear unmixing (red points) and eMSOT (blue points). (m) Mean sO2 error of linear unmixing (red) and eMSOT (blue)

corresponding to 42,000 simulations of random structures and optical properties (see Supplementary Note 3).
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Supplementary Note 3, Supplementary Tables 1 and 2, and
Supplementary Fig. 4.

For experimentally assessing the accuracy of eMSOT, we
performed a series of blood phantom experiments that suggest an
up to 10-fold more reliable sO2 estimation derived by eMSOT, as
compared with conventional linear unmixing (Supplementary
Note 4, Supplementary Fig. 5). In addition, controlled mouse
measurements (n¼ 4) were performed in vivo, under gas
anaesthesia, by rectally inserting capillary tubes containing blood
at 100 and 0% sO2 levels (Methods). The mice were imaged in the
lower abdominal area under 100% O2 and 20% O2 breathing
conditions (Fig. 2a). Figure 2a presents the eMSOT grid applied
on the images processed (left column), the sO2 maps obtained
with linear unmixing (middle column) and with eMSOT (right
column). The spectral fitting of linear unmixing (left) and
eMSOT (right) corresponding to a pixel in the area of the
capillary tube (yellow arrows in a) are presented in Fig. 2b along
with the estimated sO2 values. In the controlled in vivo
experiments, the mean linear unmixing error ranged from 16 to
35% while eMSOT offered a mean sO2 error ranging from 1 to
4%, indicating an order of magnitude improved accuracy (Fig. 2c).

Imaging blood oxygenation gradients in muscle and tumour.
Blood oxygenation and oxygen exchange in the microcirculation
have been traditionally studied through invasive, single-point
polarography or microscopy measurements in vessels and
capillaries of the skeletal muscle17. Research for macroscopic
methods that could non-invasively resolve muscle oxygenation
was broadly pursued in the past two decades by considering near-
infrared spectroscopy and diffuse optical tomography, which,
however can only report bulk tissue sO2 values18,19. In a next set
of experiments we, therefore, studied whether eMSOT could
non-invasively quantify the oxygenation gradient in the skeletal
muscle, and we compared this performance to conventional
spectral optoacoustic methods. eMSOT was applied in the area of
the hindlimb muscle of mice undergoing an O2 challenge as
described in Supplementary Note 5 (n¼ 6 animal experiments);
three of the mice were then killed with an overdose of CO2, the
latter binding to haemoglobin and deoxygenating blood.

eMSOT applied in the hindlimb muscle area (grid shown in
Fig. 3a) resolved oxygenation gradients as a function of breathing
conditions in vivo (Fig. 3 b,c) and post mortem after CO2

breathing (Fig. 3d). The post-mortem deoxygenated muscle served
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Figure 2 | Comparison of eMSOT sO2 estimation accuracy over conventional spectral optoacoustic method. (a) eMSOT application in the case of in vivo

controlled experiments under 100% O2 (a upper row) and 20% O2 (a lower row) breathing. Capillary tubes containing blood of 100% sO2 (upper row) and

0% sO2 (lower row) were inserted within tissue (arrows). Scale bar, 1 cm. (b) Spectral fitting and sO2 estimation in the insertion area (yellow arrows in a)

using linear unmixing (left column) and eMSOT (right column). The blue curves correspond to P(r,l) (left column) and PeMSOT(r,l) (right column)

while the red curves correspond to clu
HbO2

rð ÞeHbO2
ðlÞþ cHb

lu (r)eHb(l) (left column; the term lu refers to linear unmixing) and c0eMSOT
HbO2

rð ÞeHbO2
ðlÞ

þ c’Hb
eMSOT(r)eHb(l) (right column). (c) sO2 estimation error using eMSOT (blue) and linear unmixing (red) in all four animal experiment repetitions

m1–m4. Two values are reported for each experiment corresponding to a 100% sO2 insertion (left) and 0% sO2 insertion (right). Statistics are derived from

all pixels in a region of interest (ROI) corresponding to the insertion area for each data set. The boxes include 25–75% and the error bars 9–91% of the data.

The mean value is denoted with the plus symbol.
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herein as a control experiment and was also analysed with linear
unmixing for comparison (Fig. 3e). In the post-mortem case,
linear unmixing overestimated the sO2 as a function of tissue
depth (Fig. 3e) and yielded large errors in matching the tissue
spectra (Fig. 3f—upper row). Conversely, eMSOT offered sO2

measurements in agreement with the expected physiological
states (Fig. 3b–d) and consistently low-fitting residuals
(Fig. 3f—lower row, Supplementary Fig. 6). Figure 3d–f
demonstrates the prominent effects of spectral corruption with
depth that impair the accuracy of conventional spectral
optoacoustic methods, but are tackled by eMSOT. The estimated
blood sO2 values corresponding to a deep tissue area (yellow
rectangle in Fig. 3b) are tabulated in Fig. 3g for eMSOT and linear
unmixing, and depict that the latter demonstrated unrealistically
small sO2 changes between the normoxic in vivo and anoxic
post-mortem (after CO2 breathing) states.

In addition to physiological tissue features, MSOT also
reveals tissue morphology. MSOT images at a single wavelength
(900 nm) captured prominent vascular structures likely
corresponding to femoral vessels or their branches (Fig. 3h) with
implicitly co-registered eMSOT blood oxygenation images
(Fig. 3i). This hybrid mode enables the study of physiology at
specific tissue areas. We selected to study blood oxygenation
measurements at a region of interest around large vessels (ROI-1;
Fig. 3h) and a region of interest within the muscle presenting no
prominent vascular structures (ROI-2; Fig. 3h) for the 100% O2,
20% O2 and CO2 breathing conditions. Average tissue sO2 was
typically measured at 60–70% saturation under medical air
breathing and at 70–80% saturation under 100% O2 breathing
near large vessels (Fig. 3j). Average tissue blood oxygenation away
from large vessels (ROI-2) was estimated consistently lower,
at 35–50% saturation under normal breathing conditions, and
45–60% saturation under 100% O2 breathing (Fig. 3k).

The low blood saturation values in tissue (35–50%) cannot be
explained by considering arterial and venous blood saturation.
However, previous studies based on direct microscopy
measurements in vessels and capillaries through polarography,
haemoglobin spectrophotometry and phosphorescence quench-
ing microscopy have revealed similar oxygenation gradient in the
skeletal muscle17 with haemoglobin saturation in the femoral
artery found to range between 87 and 99% sO2

17,20, while rapidly
dropping down to 50–60% sO2 in smaller arterioles20,21. The
average oxygen saturation in venules and veins has been found to
range between 45% and 60% sO2 under normal breathing
conditions, reaching up to 70% at 100% O2 breathing21,22.
Average capillary blood oxygenation has been estimated at 40%
sO2 with a large standard deviation22, often reported lower, at an
average, than venular oxygenation17. Therefore, the eMSOT
values measured at ROI-1 possibly relate to a weighted average of
arterial/arteriolar and venous/venular sO2 in the skeletal muscle,
while the values measured at ROI-2, which anatomically
presents no prominent vasculature, relate more to capillary sO2

measurements.
The improved accuracy observed in eMSOT over previous

approaches and general agreement with invasive tissue measure-
ments prompted the further study of perfusion hypoxia emerging
from the incomplete delivery of oxygenated haemoglobin in tissue
areas. We hypothesized that measurements of blood saturation
could be employed as a measure of tissue hypoxia, assuming
natural haemoglobin presence in hypoxic areas. To examine this
hypothesis, we applied eMSOT to measure blood oxygenation in
4T1 solid tumours orthotopically implanted in the mammary pad
of eight mice (Methods, Supplementary Note 6). MSOT revealed
the tumour anatomy and eMSOT exposed tumour heterogeneity,
which was found consistent to anatomical features identified
through cryoslice colour photography and haematoxil and eosin
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staining (Supplementary Note 6, Supplementary Fig. 7c–g).
Furthermore, imaging tumours at different time-points revealed
the progression of hypoxia during tumour growth (Fig. 4a,b). The
spread of hypoxia, that is, the percentage of the hypoxic area (area
presenting sO2 values below a threshold which varied from 50 to
25% sO2) over the total tumour area also increased during tumour
progression (Fig. 4c). Following the in vivo measurements we
harvested the tumour tissue and related the non-invasive eMSOT
findings to the histological assessment of tumour hypoxia (see
Supplementary Note 6 and Supplementary Fig. 7). Tumour tissue
was stained by Hoechst 33342 (ref. 23) (indicating perfusion) and
Pimonidazole24 (indicating cell hypoxia). The results indicated
close correspondence between the hypoxic areas detected by
eMSOT using haemoglobin as a hypoxia sensor (Fig. 4b) and the
histology slices (Fig. 4d). We found that eMSOT could not only
quantitatively distinguish between high- and low-hypoxia levels in
the tumours, but the spatial sO2 maps further presented
congruence with the spatial appearance of hypoxia spread and
reduced perfusion seen in the histology slices (Fig. 4e–g). A
quantitative congruence analysis is shown in Supplementary
Figure 7. Finally, clear differences were also observed between
the hypoxic tumour and healthy tissue response to an O2 breathing
challenge (Fig. 4h; Supplementary Fig. 8), with areas in the core of
the tumour presenting a limited response to such external stimuli,
likely due to the presence of non-functional vasculature.

Discussion
Spectral corruption has so far limited the potential of optical and
optoacoustic methods to offer accurate, quantitative assessment
of sO2 deep inside tissues. Conventional computational methods
in optical imaging propose to invert a light transport operator to

recover tissue optical properties (absorption and scattering)13;
then use these properties for calculating tissue physiological
parameters. However, the very-high numerical complexity and
ill-posed nature of the inversion problem has not allowed so far
accurate, high-resolution sO2 imaging. We hereby followed an
alternative approach that describes the spectral features of light
fluence as a combination of spectral base functions. Using this
principle, we formulated the sO2 quantification problem as a
nonlinear spectral unmixing problem that does not require
knowledge of tissue optical properties or the inversion of a light
transport operator. Effectively, eMSOT converts sO2 imaging
from a problem that is spatially dependent on light propagation
and optical properties, as common in traditional optical methods,
to a problem solved in the spectral domain. Therefore, sO2 can be
directly quantified without estimating tissue optical properties.

eMSOT requires theoretically at least five excitation wave-
lengths for resolving spectral domain parameters and the relative
oxygenated and deoxygenated haemoglobin concentrations. We
hereby utilized 21 wavelengths for ensuring high accuracy. The
recent evolution of video-rate MSOT imaging systems, based on
fast tuning optical parametric oscillator lasers25, allows the
practical implementation of the method. Modern MSOT systems
offer five wavelength scans at 20 Hz or better. Therefore eMSOT
is a technology that optimally interfaces to a new generation of
fast and handheld spectral optoacoustic systems26.

The method developed demonstrated quantitative, non-
invasive blood oxygenation images in phantoms and tissues
in vivo (muscle and tumour) in high resolution, showing good
correlation with the expected physiological state or the histolo-
gically observed spatial distribution of perfusion and hypoxia.
eMSOT measures blood oxygenation. We hypothesized that a
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Figure 4 | eMSOT measurements of tissue blood oxygenation in tumour. (a,b) sO2 maps of a 4T1 tumour implanted in the mammary pad at day 6

(a) and day 10 (b) after cell inoculation. Dashed lines represent a segmentation of the tumour area. Scale bar, 1 cm. (c) Bar-plot presenting the percentage

of the total tumour area containing sO2 values lower than a specific sO2 threshold (x axis). Blue bars correspond to the tumour imaged at day 6 and red

bars correspond to the tumour imaged at day 10, presented in (a,b). (d) Merged Hoechst 33342, CD 31 and Pimonidazole staining of the tumour presented

in (b). Scale bar, 2 mm. (e,g) Examples of a highly perfused (upper row) and a low perfused (lower row) tumour analysed with eMSOT for sO2 estimation

(e) Hoechst 33342 staining (f) and merged with Pimonidazole staining (g). Tumour areas presenting lower sO2 values in eMSOT measurements also

showed lower Hoechst 33342 signal intensity, representing reduced perfusion in these areas. Scale bar, 2 mm. ((h) left) sO2 maps of a tumour under an

O2–CO2 challenge. Scale bar, 1 cm. The computed sO2 values and the eMSOT spectral fit of points 1 and 2 (arrows) are presented in ((h) right) for the three

breathing conditions. The blue curves correspond to PeMSOT(r,l) while the red curves correspond to c0eMSOT
HbO2

rð ÞeHbO2
ðlÞþ c’Hb

eMSOT(r)eHb(l).
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correlation exists to tissue oxygenation and hypoxia measure-
ments by assuming a wide presence of haemoglobin in tissues.
We demonstrated congruence (Supplementary Note 6) between
traditional invasive histological assays resolving tissue hypoxia
and eMSOT analysis. Importantly, not only average values are
resolved, but there is a close spatial correspondence between
hypoxia patterns resolved by eMSOT non-invasively and
histological analysis (Fig. 4, Supplementary Fig. 7).

High-resolution non-invasive imaging of blood oxygenation
across entire tissues and tumours offers novel abilities in studying
physiological and pathological conditions. This goal has been
pursued for decades with near-infrared methods, but the strong
effects of photon scattering and photon diffusion on the signals
detected limited imaging resolution and often impeded accurate
quantification27. Optoacoustic imaging improves the resolution
achieved, over diffuse optical imaging methods but its sO2

estimation accuracy has been limited so far by depth-dependent
fluence attenuation and spectral corruption effects. We showed
that conventional spectral optoacoustic methods employing linear
unmixing can significantly misestimate blood oxygen saturation
values in several cases, including simulations and controlled
animal measurements. eMSOT was tested on a vast data set
consisting of 42,000 tissue simulations and was consistently
found to provide from a comparable to substantially better sO2

estimation accuracy over linear unmixing. (Supplementary
Note 3). The large number of simulations was necessary to
validate eMSOT, which presents a non-convex optimization
problem. eMSOT was further tested on tissue mimicking blood
phantoms (Supplementary Note 4) and controlled in vivo
experiments (Fig. 2, Supplementary Note 5). In all cases tested,
eMSOT offered from comparable to significantly more accurate
performance over conventional spectral optoacoustic methods.

A particular challenge in this study was the confirmation of the
eMSOT values obtained in vivo. Polarography measurements are
invasive, disrupt the local microenvironment and do not allow to
recover spatial information. Nuclear methods using tracers are not
well suited for longitudinal studies and utilize tracers that need to
distribute in hypoxia areas, that is, areas with problematic supply.
Therefore, the results may not directly compare to eMSOT, even
though such study is planned as a next step. Blood-oxygen-level
dependent MRI only resolves the effects of deoxygenated haemo-
globin but cannot observe oxygenated haemoglobin. For this reason,
we selected to utilize traditional histology methods, using cryoslicing,
which allows to maintain spatial orientation so that eMSOT and
histological results could be compared not only in terms of quantity
but also in regard to the spatial appearance.

eMSOT proposes a solution to a fundamental challenge in
optical and optoacoustic imaging. In the absence of established
and reliable methods that can image blood oxygenation, it may be
that eMSOT becomes the gold standard method in blood sO2

studies. Its congruence with tissue hypoxia may also allow a broad
application in tissue and cancer hypoxia studies. Nevertheless
eMSOT performs optimally when applied on well-reconstructed
parts of optoacoustic images (Supplementary Note 5). For this
reason, it was selectively applied herein to the part of the image
that is within the optimal sensitivity field of the detector
employed. An eMSOT advantage is that it is insensitive to
scaling factors such as the Grüneisen coefficient or the spatial
sensitivity field of the imaging system (Methods). However, due
to its scale invariance eMSOT only allows for quantifying blood
sO2 and not absolute blood volume, a goal that will be
interrogated in future studies. Next steps further include the
eMSOT validation with a larger pool of tissue physiology
interrogations spanning from cancer, cardiovascular and diabetes
research, relation of physiological phenotypes to metabolic and
‘-omic’ outputs and in clinical application.

Methods
Animal preparation and handling. All procedures involving animal experiments
were approved by the Government of Upper Bavaria. For the preparation of
orthotopic 4T1 tumour models, 8-week-old, adult female, athymic, Nude-Foxn1
mice (Harlan, Germany) were orthotopically inoculated in the mammary pad with
cell suspensions (0.5 million 4T1 cells (CRL-2539)). Animals (n¼ 8) were imaged
in vivo using MSOT after the tumours reached a suitable size. All imaging
procedures were performed under anaesthesia using 1.8% isoflurane. In the O2

challenge experiment, the mouse was initially breathing 100% O2 and in the
following medical air (20% O2). During the O2 Challenge, the mice were stabilized
for a period of 10 min under each breathing condition before MSOT acquisition.
For controlled mouse measurements (n¼ 4), MSOT acquisition was performed on
mice under gas anaesthesia and breathing 100% O2 or 20% O2 by rectally inserting
a capillary tube containing pig blood at 100 or 0% sO2 oxygenation levels. Mice
were killed during MSOT imaging with an overdose of CO2 or after MSOT
acquisition by a ketamine/xylazine overdose. In the following the mice were stored
at � 80 �C for further analysis.

4T1 cell line was acquired from American type culture collection (ATCC-CRL-
2539, #5068892). The cells were authenticated by the Americal type culture
collection (ATCC) by several analysis tests: post-freeze viability, morphology,
mycoplasma contamination, post-freeze cell growth, interspecies determination;
bacteria and fungal contamination. Additional mycoplasma contamination tests
were also performed. For the animal studies no randomization, blinding or
statistical methods were performed.

MSOT imaging. Optoacoustic imaging was performed using a real-time whole-body
mouse imaging scanner, MSOT In Vision 256-TF (iThera-Medical GmbH, Munich,
Germany). The system utilizes a cylindrically focused 256-element transducer array at
5 MHz central frequency covering an angle of 270 degrees. The system acquires cross-
sectional (transverse) images through the animal. The animals are placed onto a thin-
clear polyethylene membrane. The membrane separates the animals from a water
bath, which is maintained at 34 �C and is used for acoustic coupling and maintaining
animal temperature while imaging. Image acquisition speed is at 10 Hz28. Imaging
was performed at 21 wavelengths from 700 to 900 nm with a step size of 10 nm, and at
20 consecutive slices with a step size of 0.5 mm. Image reconstruction was performed
using a model-based inversion algorithm29,30 with a non-negativity constraint
imposed during inversion and with Tikhonov regularization.

eMSOT method and sO2 maps. All optoacoustic images P(r,l) obtained over
excitation wavelength l were calibrated to correct for the intensity of laser power
per pulse, and for the absorption of water surrounding the tissue. With HbO2 and
Hb being the main tissue absorbers in the near-infrared, multispectral optoacoustic
images can be related to the concentrations of oxy- and deoxy-haemoglobin
through equation (2).

P r; lð Þ ¼ C rð Þ FðrÞk k2
F r; lð Þ
FðrÞk k2

cHbO2 rð ÞeHbO2 lð Þþ cHb rð ÞeHb lð Þð Þ: ð2Þ

In equation (2), F(r,l) is the space and wavelength-dependent optical fluence,
C(r) is a spatially varying scaling factor corresponding to the effects of the system’s
spatial sensitivity field and the Grüneisen coefficient, eHbO2 ðlÞ and eHb(l)
are the wavelength-dependent molar extinction coefficients of oxygenated
and deoxygenated haemoglobin, while cHbO2 rð Þ and cHb(r) the associated
concentrations at a position r. U(r) is a vector corresponding to the light fluence
spectrum at position r, and ||U(r)||2 is its norm across all excitation wavelengths at
a position r. We define F0(r,l)¼F(r,l)/||U(r)||2, which corresponds to the
normalized wavelength dependence of light fluence at a specific position (that is,
normalized spectrum of light fluence).

The space-only dependent factors C(r) and ||U(r)||2 do not affect the estimation
of blood sO2, which is calculated as a ratio once the relative concentrations of HbO2

and Hb are known. We define c0HbO2
rð Þ¼C0(r)cHbO2 rð Þ and c0Hb(r)¼C0(r)cHb(r),

respectively, where C0(r)¼C(r)||U(r)||2 is a common, space-only dependent
scaling factor. Using this notation, equation (2) can be transformed into
equation (1). Given c0HbO2

rð Þ and c0Hb(r), sO2 can be computed as in:

sO2 rð Þ ¼
c0

HbO2
rð Þ

c0HbO2
rð Þþ c0Hb rð Þ : ð3Þ

For the accurate quantitative extraction of the relative concentrations c0HbO2
rð Þ

and c0Hb(r), accounting for, or estimating the wavelength dependence of the light
fluence F0(r,l) is further required.

The Eigenspectra model. eMSOT is based on the observation that the spectral
patterns of light fluence present in tissue can be modelled as an affine function of
only a few base spectra, independently of tissue depth and the specific distribution
of optical properties of the tissue imaged. This hypothesis stems from the notion
that the spectrum of light fluence is the result of the cumulative light absorption by
haemoglobin; thus the spectrum of light fluence will always be related to the spectra
of haemoglobin in a complex nonlinear manner. This complex relation can be
linearized using a data-driven approach, that is, through the application of PCA on
a selected set of light fluence spectra.
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The wavelength dependence of the light fluence was herein modelled as a
superposition of a mean fluence spectrum FM(l) and a linear combination of a
number of light fluence Eigenspectra Fi(l). This model was derived by applying
PCA on a training data set comprised of a set of light-fluence spectral patterns.
Briefly, a training data set was formed through the creation of multispectral light
fluence simulations using the 1D analytical solution of the diffusion equation for
infinite media. A set of light-fluence spectral patterns Fz,ox(l) were computed for
high physiological tissue optical properties (ma¼ 0.3 cm� 1, ms

0 ¼ 10 cm� 1), tissue
depths ranging from z¼ 0 to z¼ 1 cm with a step size of 0.143 mm (70 discrete
depths in total) and for 21 different uniform background blood sO2 levels (ox E
{0%, 5%, 10, y, 100%}). The so computed set of light fluence spectra Fz,ox(l) was
normalized (F’z,ox(l)¼Fz,ox(l)/||Uz,ox||2) and used in the following as training
data in the context of PCA in order to create an affine, 3-dimensional model
consisting of a mean fluence spectrum FM(l) and three Eigenspectra Fi(l). PCA
was used for offering a minimum square error property in capturing the spectral
variability of the simulated light fluence spectra, in a linear manner. Three
components were selected for providing a relatively simple model while also
offering a small model error with respect to the training data set (Fig. 1e).
The wavelength dependence of the light fluence F0(r,l) at any arbitrary tissue
position r can thus be modelled as a superposition of the mean fluence spectrum
and three fluence Eigenspectra multiplied by appropriate scalar parameters
m1(r), m2(r) and m3(r), (hereby referred to as Eigenfluence parameters) as per
equation (4):

F0 r; lð Þ ¼ FM lð Þþm1 rð ÞF1 lð Þþm2 rð ÞF2 lð Þþm3 rð ÞF3 lð Þ ð4Þ
The so created 3-dimensional affine forward model of the wavelength

dependence of light fluence was tested with regard to light-fluence spectral patterns
produced in completely heterogeneous media with varying and randomly
distributed optical properties and oxygenation values and demonstrated high
accuracy (Supplementary Fig. 1). The forward model was further tested through
in vivo and ex vivo light fluence measurements, obtained from controlled
experiments (Supplementary Fig. 2).

Through simulations, it was observed that the values of the m2 Eigenfluence
parameter relate primarily to tissue depth and the average tissue optical properties.
This trend was observed both in the case of tissue simulations with uniform optical
properties (Fig. 1g), as well as in complex and randomly created tissue simulations
described in Supplementary Note 1, 3. Conversely, the values of the Eigenfluence
parameters m1 and m3 relate both to tissue depth, as well as to tissue background
oxygenation. Specifically both m1 and m3 present a trend of increasing absolute
values with depth and a sign that relates to background blood sO2. These
observations were confirmed with in vivo and ex vivo light fluence measurement
experiments (Supplementary Note 1).

Model inversion. Using the Eigenspectra model of light fluence, the blood sO2

quantification problem at a position r formulates as the problem of estimating
c0HbO2

rð Þ and c0Hb(r) by minimizing f(r; m1(r), m2(r), m3(r), c0HbO2
rð Þ, c0Hb(r)),

for brevity noted f(r), defined according to equation (5):

f rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l

P r; lð Þ� FM lð Þþ
X3

i¼1

miðrÞFiðlÞ
 !

c0HbO2
rð ÞeHbO2 lð Þþ c0Hb rð ÞeHb lð Þ

� � !2
vuut

ð5Þ
A solution for the five unknowns (namely the three light fluence model

parameters, m1y3(r) and the relative blood concentrations c0HbO2
rð Þ and c0Hb(r))

can be obtained using a nonlinear optimization algorithm and at least five
excitation wavelengths. The relative blood concentrations c0HbO2

rð Þ and c0Hb(r)
are proportional to the actual ones (cHbO2 rð Þ and cHb(r)) with regard to a
common scaling factor. However, as stated before, this fact does not affect the
computation of sO2.

The minimization problem defined by equation (5) is ill-posed and may
converge to a wrong solution unless properly constrained. For achieving inversion
stability and accurate sO2 estimation results, the cost function f of equation (5) is
simultaneously minimized in a set of grid points placed in the image domain
(Fig. 1i), where three-independent constraints are further imposed to the
Eigenfluence parameters. These constraints correspond to the relation of the
Eigenfluence parameters between neighbour grid points and to the allowed search
space for the Eigenfluence parameters:

(i) Since the values of the second Eigenfluence parameter m2 present a
consistent trend of reduction with tissue depth observed both in the case of
uniform tissue simulations (see Fig. 1g), as well as in simulations with
random structures, m2 is constrained to obtain smaller values in the case of
grid points placed deeper into tissue.

(ii) As the light fluence spectrum is bound to vary smoothly in space due to the
nature of diffuse light propagation, large variations of the Eigenfluence
parameters m1, and m3 between neighbour pixels are penalized. This spatial
smoothness constraint is achieved through the incorporation of appropriate
regularization parameters ai to the cost function for constraining the
variation of the model parameters (see equation (6)). The values of the
regularization parameters were selected using cross-validation on simulated
data sets (Supplementary Note 2).

(iii) Since the values of m1 and m3 are strongly dependent on background blood
sO2, an initial less accurate estimation of tissue sO2 can be effectively used to
reduce the total search space to a constrained relevant sub-space. The limits
of search space for the Eigenfluence parameters m1 and m3 corresponding to
each grid point are identified in a preprocessing step as analytically described
in Supplementary Note 2.

Assuming a polar grid of P arcs (arcs are enumerated with the enumeration
initiating from tissue surface) and L radial lines (see Supplementary Fig. 3b) with a
total of PL points at positions rp,l, and let the vector mi ¼ [mi(r1,1), mi(r1,2),y,
mi(r1,L), mi(r2,1),y, mi(rp,l),y,mi(rP,L)]T correspond to the values of the
Eigenfluence parameter i (i¼ 1, 3) over all such points, the new inverse problem is
defined as the minimization of cost function fgrid defined in equation (6) under the
constraints defined in equation (7).

fgrid ¼
X

p;l

f rp;l
� �

þ a1 Wm1k k2 þ a3 Wm3k k2 ð6Þ

Tmin
2 om2 rp;l

� �
oTmax

2 ; 8p; l;

m2 rpþ 1;l
� �

om2 rp;l
� �

;m2 rpþ 1;lþ 1
� �

om2 rp;l
� �

;m2 rpþ 1;l� 1
� �

om2 rp;l
� �

; 8p; l;

Tmin
i rp;l
� �

omi rp;l
� �

oTmax
i rp;l
� �

; 8p; l; i ¼ 1; 3;

c0HbO2
rp;l
� �

� 0;8p; l;

c0Hb rp;l
� �

� 0; 8p; l;

ð7Þ
In equation (6), the term a1 Wm1k k2 þ a3 Wm3k k2implements the spatial

smoothness constraints imposed on m1(rp,l) and m3(rp,l). The matrix W describes a
connectivity graph defined on the grid of points assumed (Supplementary Fig. 3b)
and its structure and function are analytically described in Supplementary Note 2.
In equation (7) Tmin

2 and Tmax
2 are the search-space limits for m2(rp,l), which are

constant for all grid points and correspond to the maximum and minimum values
of m2 on the training data set (Fig. 1g). Tmin

i rp;l
� �

and Tmax
i rp;l
� �

, with i¼ 1,3 are
the search-space limits for m1(rp,l) and m3(rp,l), which are computed per grid point
in a preprocessing step as described in Supplementary Note 2. The inverse problem
defined by equations (6) and (7) was hereby solved through the utilization of the
sequential quadratic programming algorithm of MATLAB toolbox.

Fluence correction and sO2 quantification. The minimization of cost function fgrid

(equation (6)) under the constraints of equation (7) yields an estimate of mi(rp,l) for
each Eigenfluence parameter i and each grid point rp,l. The Eigenfluence
parameters in the convex hull of the grid are in the following estimated by means of
cubic interpolation. We note that due to the nature of diffuse light propagation, the
Eigenfluence parameters are expected to vary smoothly in tissue and thus their
interpolation is not expected to introduce large errors in the result (see
Supplementary Note 3 and Supplementary Table 2). The wavelength dependence of
light fluence is computed for each pixel within the convex hull of the grid as in
F0(r,l)¼FM(l)þm1(r)F1(l)þm2(r)F2(l)þm3(r)F3(l), where Fi(l) is the ith
fluence Eigenspectrum. Finally, a spectrally corrected eMSOT image is obtained
after dividing the original image P(r,l) with the normalized wavelength-dependent
light fluence F0(r,l) at each position r and wavelength l, i.e., PeMSOT(r,l)¼ P(r,l)/
F0(r,l). The relative concentrations of HbO2 and Hb (c0eMSOT

HbO2
rð Þ, c0Hb

eMSOT(r)) are
computed for each pixel of PeMSOT(r,l) image independently through non-negative
constrained least squares fitting with the spectra of oxygenated and deoxygenated
haemoglobin. Thus, the eMSOT blood sO2 maps retain the original resolution of
the MSOT imaging system.

We note that both the Eigenspectra model and the inversion scheme were
hereby optimized for the application of small-animal imaging. The Eigenspectra
model was trained for a maximum depth of 1 cm and the inversion scheme was
designed with respect to the same tissue depth and optical properties within the
physiological range (Supplementary Note 2, 3).

Linear unmixing. Under the simplifying assumption that the light fluence attains a
flat spectrum irrespective of the tissue position F(r,l)¼F(r) and by assuming
haemoglobin as the major absorber in tissue, optoacoustic spectra can be modelled
as a linear combination of the spectra of oxy- and deoxy-haemoglobin. The term
linear unmixing refers hereby to the computation of the relative concentrations of
HbO2 and Hb (clu

HbO2
rð Þ, cHb

lu (r)) and subsequently blood sO2, through non-negative
constrained least squares fitting of the original image P(r,l) with the spectra of Hb
and HbO2.

Blood phantom preparation. For validating the accuracy of eMSOT in quanti-
fying blood oxygenation in deep tissue, we prepared tissue mimicking phantoms,
containing blood at known oxygenations levels. Specifically, for simulating tissue
background, 2-cm-diameter cylindrical solid phantoms were created by using 1.5%
Agarose Type I, Sigma-Aldrich (solidifying in o37�), 2% intralipid and 3–5%
freshly extracted pig blood diluted in NaCl. Different blood oxygenation levels were
achieved by diluting oxygen in whole blood (oxygenation process) or by mixing the
blood with different amounts of sodium dithionite (Na2O4S2) (deoxygenation
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process)31. The blood oxygenation levels were monitored using a Bloodgas
Analyser (Eschweiler Gmbh & Co. KG, Kiel Germany).

Cryoslicing colour imaging and haematoxylin and eosin staining of tumours.
After MSOT acquisition, a subset of the mice bearing 4T1 mammarian tumours
(n¼ 4) were killed and examined for tumour and tissue anatomy. Mice were
embedded in an optimal cutting temperature compound (Sakura Finetek Europe
BV, Zoeterwonde, NL) and frozen at � 80 �C. In the following, the mice
were sliced at an orientation similar to the one of MSOT imaging and colour
photographs were recorded. The cryoslicing imaging system is based on a cryotome
(CM 1,950, Leica Microsystems, Wetzlar, Germany), fitted with CCD-based
detection camera. During this process, 10 mm slices throughout the whole tumour
volume were collected for further histological analysis.

Several slides per tumour were subjected to haematoxylin and eosin staining
and imaging. The slides containing 10 mm cryosections were first pre-fixed in 4%
paraformaldehyde (PFA) (Santa Cruz Biotechnology Inc., Dallas, Texas, USA).
Then, they were rinsed with distilled water and incubated 30 s with Haemotoxylin
acide by Meyer (Carl Roth, Karlsruhe, Germany) to stain the cell nuclei. The slides
were then rinsed in tap water again before incubation for 1 s in Eosin G (Carl Roth,
Karlsruhe, Germany) to stain cellular cytoplasm. After rinsing in distilled water, the
slides were dehydrated in 70%, 94% and 100% ethanol and incubated for 5 min in
Xylene (Carl Roth, Karlsruhe, Germany) before being cover slipped with
Rotimount (Carl Roth, Karlsruhe, Germany) cover media. Representative slides
were observed using Zeiss Axio Imager M2 microscope with AxioCam 105 colour,
and pictures were then processed using a motorized stitching Zen Imaging
Software (Carl Zeiss Microscopes GmbH, Jena, Germany).

Pimonidazole staining of tumour tissues. A subset of the tumour-bearing
mice (n¼ 4) was examined for functional characteristics of the tumours by
Pimonidazole histological staining. The hypoxia marker Pimonidazole
(Hypoxyprobe, catalogue #HP6-100 kit, Burlington, MA, USA) was injected
intraperitonially at 100 mg/kg body weight in a volume of 0.1 ml saline E1.5 h
before tumour excision, and the perfusion marker Hoechst 33342 (Sigma,
Deisenhofen, Germany) was administered intravenous at 15 mg/kg body weight in
a volume of 0.1 ml saline 1 min before the tumour-bearing mice were killed. The
tumours were excised immediately after the animals were killed. The orientation of
the tumours with respect to the mouse body was retained. Eight micrometers
cryosections were sliced throughout the tumour. The cryosections were fixed in
cold (4 �C) acetone, air dried and rehydrated in PBS before staining. Pimonidazole
was stained with the FITC-labelled anti-Pimonidazole antibody (Hypoxyprobe,
Burlington, MA, USA) diluted 1:50 in primary antibody diluent (PAD, Serotec,
Oxford, UK) by incubating for 1 h at 37 �C in the dark.

Code and data availability. The code and all relevant data of this work will be
made available upon request.
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