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Abstract 

In 2004, a group of international experts met in the workshop “OR2020” in order to discuss the concept 
and requirements of the “operating room of the future”. Today, almost ¾ of the projected timeframe 
later, especially in the area of surgical robotics many of the postulated necessities have already been 
achieved. Other areas though, like surgical workflow analysis, have proven to still pose open problems, 
some of which will be addressed in this thesis. 
The operating room (OR) of the future requires smart and context aware devices with the ability to 
actively support the OR team, especially the head surgeon. Context awareness requires machine-
accessible knowledge of the situation and the events happening in and around the OR. Therefore, it is 
necessary to automatically analyze, detect, and understand the surgical workflow. Several methods are 
presented and compared for this purpose. 
Since not all events happening throughout a surgery equally influence the intraoperative work, they need 
to be filtered by their relevance for smart support systems. To achieve this, the concept of event impact 
factors is introduced, which can be calculated based on signals available in the OR. These can then be 
used to rank all events happening during the intervention, and therefore determine key events in a 
surgery, filter sensor data by importance, and even quantitatively compare very different approaches to 
the same surgery. 
Finally, the surgeon needs to be able to control the plethora of novel devices as directly as possible. While 
indirect control is already widely available in today’s ORs (e.g. through voice recognition systems or 
unsterile nurses), these levels of indirection mainly introduce delays and obstacles and ultimately 
discourage usage of advanced device functions. Through automated knowledge of the surgical context, 
expected upcoming phases, and relevant data, it is possible to develop a dynamic, unified user interface, 
which is small enough to be sterile and available directly to the surgeon, while still presenting relevant 
information and control elements throughout the full intervention. 
This field has recently been established as a building block of the newly defined area of Surgical Data 
Science, to better represent the wide range of applications. This work is among the first theses in this 
newly defined research area. 
 
 





Zusammenfassung 

Im Jahr 2004 hat sich eine Gruppe internationaler Experten zum Workshop „OR2020“ getroffen, um das 
Konzept und die Voraussetzungen eines „Operationssaals der Zukunft“ zu diskutieren. Heute, fast ¾ des 
erwarteten Zeitraums später, wurden viele der geforderten Ziele erreicht, besonders im Bereich klinischer 
Robotik. Andere Bereiche, wie die chirurgische Workflowanalyse, stellen weiterhin offene Probleme dar, 
von denen einige in dieser Arbeit angesprochen werden. 
Der Operationssaal (OP) der Zukunft erfordert intelligente und kontextsensitive Geräte mit der Fähigkeit, 
das OP Team aktiv zu unterstützen, insbesondere den behandelnden Chefarzt. Kontextsensitivität 
benötigt maschinenverfügbares Wissen über die Situation und Ereignisse im OP oder dessen Umfeld. 
Deshalb ist es nötig, den chirurgischen Workflow automatisiert zu analysieren, zu erkennen und zu 
verstehen. Verschiedene Methoden, um dieses Ziel zu erreichen, werden vorgestellt und verglichen. 
Da nicht alle Ereignisse innerhalb einer Operation die chirurgische Arbeit gleichermaßen beeinflussen, 
müssen sie nach ihrer Relevanz für intelligente Assistenzsysteme gefiltert werden. Um das zu erreichen, 
wird das Konzept von „Ereignisbedeutungsfaktoren“ vorgestellt, welche über intraoperativ verfügbare 
Signale berechnet werden können. Diese können dann genutzt werden, um alle Ereignisse eines Eingriffs 
einzuordnen, um darauf aufbauend Schlüsselereignisse zu erkennen, Messwerte nach ihrer Wichtigkeit zu 
filtern, oder um verschiedene Herangehensweisen an denselben Eingriff quantitativ zu vergleichen. 
Abschließend sollte der Chirurg in der Lage sein, eine Reihe an neuartigen Geräten möglichst direkt zu 
bedienen. Indirekte Bedienkonzepte sind in heutigen OPs zwar weit verbreitet (bspw. über 
Spracherkennungssysteme oder unsterile OP Assistenten), derartig indirekte Mechanismen haben aber 
größtenteils Verzögerungen und andere Hindernisse zur Folge, und schrecken letztlich nur von der 
Verwendung fortgeschrittener Gerätefunktionen ab. Durch automatisiertes Wissen über den 
chirurgischen Kontext, erwartete Folgephasen und relevante Daten ist es möglich, eine dynamische und 
vereinheitlichte Benutzerschnittstelle zu entwickeln, die klein genug ist, um steril direkt dem Chirurgen 
zur Verfügung gestellt zu werden, dabei aber alle benötigten Informationen und Bedienelemente 
während des kompletten Eingriffs anzuzeigen. 
Dieses Forschungsfeld wurde kürzlich als Baustein des neudefinierten Bereichs der „Surgical Data 
Science“ etabliert, um die breiten Anwendungsmöglichkeiten besser darstellen zu können. Diese Arbeit ist 
eine der ersten Dissertationen in diesem neudefinierten Forschungszweig. 
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1 Introduction 
The average standard of living in the civilized world has been increasing with the level of available 

knowledge and technology. Important aspects of this general progress are advances in medicine, both in 

the discovery of drugs as well as in the development of new treatment techniques. Surgery has historically 

been a key element in the treatment of medical conditions throughout almost all of human civilization [97, 

131]. Yet as the surgical routines have recently become highly technological and sophisticated, it has also 

become one of the most expensive elements, so it is naturally of high interest for research. As such, 

impactful publications and specialized workshops regularly try to identify and discuss future trends and 

requirements for further growth. 

One of these workshops was the “OR2020: Operating Room of the Future”, held in Ellicott City, MD, USA in 

2004, organized be Cleary et al. [33, 34]. Clinical and technical improvements required for improved surgical 

care were discussed in different areas, including surgical informatics, systems integration, and operational 

workflow. Many of the proposed changes have become reality by now, such as improved surgical robotics, 

better integration of diagnostics into the operating room (OR) and connected, integrated OR suites. Several 

other features, however, like advanced “plug and play” interoperability of devices in the OR, smart tracking 

of equipment and patient records, and technical standards for defined surgical workflows are still open 

issues for research and development. 

In the following years, Lemke et al. [13, 88–90, 92] refined these discussions and formulated a common 

“Therapy Imaging and Model Management System” (TIMMS) for use in the operating theatre (see also 

Figure 1). According to these works, many issues in the OR (like inappropriate data display, poor scheduling 

of patients, staff, and equipment, or delays due to extensive or late setup of requested devices) can be 

related to a lack of situational awareness, real-time access to peri-operative information, and standardized 

interfaces and protocols between surgical devices. To facilitate a seamless data transfer in order to solve 

these problems, the TIMMS is suggested as communication platform between different surgical “engines” 

(such as an imaging engine, a modelling engine, and a workflow and knowledge management engine) and 

their associated data repositories. The TIMMS also has access to additional, independent repositories for 

various models, e.g. implants, anatomical structures, intervention workflows, and evidence- and case-based 

medical data. The system must be designed in a highly modular way, so that individual repositories or 

engines can easily be exchanged or omitted. Therefore, it is mandatory for all components to communicate 

in a uniform manner. Due to its widespread use in medicine, an extension of the DICOM standard is 

recommended for use as “lingua franca” inside the OR, specifically the work of DICOM WG 24 “DICOM in 

Figure 1: Simplified representation of a TIMMS. 
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Surgery”. Some new aspects have already been introduced and standardized (implant models in PG 131, 

surface models in PG 132, and implant planning in PG 134), yet many sections still require such 

standardization. The later works [13, 90] as well as some related publications [13, 69] also describe a digital 

patient model (DPM) in detail as the core concept of modern, personalized medicine. This model is a flexible 

congregation of relevant data, from relatively low-level information (including static data such as genetic 

or anatomical information, or constantly changing data like pulse and respiration) to higher-level 

information (like environmental and nutritional factors, or interventional data). The model then describes 

a high-dimensional structure, linking various entries to related records and different properties. Another 

attempt to solve this issue, even in a way already viable for commercial applications, is the initiative 

“Integrating the Healthcare Enterprise” (IHE)1, specifically with its surgery domain, which was discussed 

since 2011 [29] and founded officially in 2015. Their focus lies on defining integration profiles to enable 

standardized communication and data exchange across different organizations (such as hospitals in 

different cities and countries) and manufacturers. 

Another influential workshop, called “Surgical Data Science”, was held in 2016 in Heidelberg, Germany, 

organized by Maier-Hein, Speidel, and Jannin [101, 102, 169]. Extrapolating from the history of surgery, 

three key clinical applications for the future of surgery were identified during this workshop: decision 

support systems, context-aware assistance, and surgical training. The first two concepts build on the 

assumption that all perioperative data is available within a surgical network, in order to either provide all 

required information to the surgeon to aid in clinical decisions, or automatically trigger actions based on 

contextual cues. The latter takes advantage of the developed patient and procedure models, to simulate a 

wide variety of interventions and their possible emergency situations for more thorough training 

opportunities for surgeons. Similarly to the TIMMS approach, a major prerequisite for this is a common 

communication network. The key applications can even be compared to modernized and more compressed 

variations of the engines and repositories of a TIMMS. Following a similar motivation was a recent issue of 

“Innovative Surgical Sciences”, focused completely on the future of surgery, also referred to as “Surgery 

4.0” [42, 79, 108, 157, 169]. The important parts for this are again identified to be interoperability, 

availability of information, and smart devices, able to support the human decision-making process, or to 

come to simple decisions themselves. 

Additionally to the presented TIMMS and patient model mentioned above, Lemke et al. [90] also gives a 

bird’s-eye view of the maturity level evolution of the digital operating room (DOR), starting at the situation 

around 2005 and leading to the expected development until 2025. As per that work, we are currently 

between maturity levels 2 and 3, with the beginning of model- and workflow-guided interventions, 

connected (yet still no “smart”) display walls, and growing (yet no full) support for DICOM in surgery. Higher 

levels are characterized by knowledge management, vendor independent interoperability throughout the 

whole hospital, and patient-specific models (level 4) and surgical cockpit systems, intelligent medical data 

mining and real-time access, and context aware robotic assistance systems (level 5). Many of these points 

will be taken into account in this thesis, to hopefully aid the progress of the DOR and further follow the 

predicted development curve. The chapters 2 and 3 will introduce methods to automatically detect the 

progress of the surgical workflow and rank events happening inside the OR respectively. Both aspects can 

be used to analyze the situation in the OR at any point and provide an infrastructure for context aware 

systems. Chapter 4 will then describe a unified surgical display as central data presentation and control unit. 

This display builds on the previously established workflow analysis methods in order to provide a smart hub 

for the surgeon, providing a further step towards the implementation of a full TIMMS. 

 

 
1 https://www.ihe.net 

https://www.ihe.net/
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2 Detection of Surgical Phases 
In a modern operating room, many simple and highly predictable actions still have to be triggered manually, 

such as switching the lights during a shift of focus from the monitors directly to the surgical site during the 

extraction phase of a minimally invasive intervention. This seems counter-intuitive for a highly developed 

environment such as the OR, considering that many aspects in the industrial and even private sector already 

provide sophisticated levels of automation. Industrial manufacturing has known the technique of process 

modelling for years by now, where the environment, such as a factory building, is tailored to a specific 

problem, so that a predefined, well-known workflow can be executed as easily and efficiently as possible. 

This concept cannot be simply transferred to the medical domain, however, as the surgical environment, 

which is given by each patient’s individual anatomy, condition, and the specifics of their disease, is not 

necessarily fully known before and cannot be sculpted to fit a given approach. So a theoretically ideal 

workflow has to be adapted to this varying environment. And while this theoretical workflow is rarely 

explicitly defined, surgeons, nurses, and other members of the OR team each build their own mental model 

of each surgery based on formal knowledge and their experiences. This allows a well-practiced team to 

anticipate and prepare upcoming common tasks for a smooth overall procedure, while new and 

inexperienced team members, without said internal model, can actually delay and hinder the intervention 

in the worst case. 

Some current approaches to mitigate this problem include input by voice commands in order to give the 

head surgeon more direct control over peripheral devices (and therefore avoiding the reliance on other 

team members’ ability to anticipate needed actions). Alternatively some devices already offer slightly 

workflow-oriented user interface (UI) designs, to guide inexperienced users as well as reduce orientation 

time and possible error sources. Nonetheless, these options exist so far only as solitary and highly limited 

solutions for few devices, without a common basis or higher understanding of the surgical context. 

A key foundation for even partial automation in the OR is digitally accessible situational understanding and 

context awareness. Similarly to the mental models of experienced surgeons and nurses, context aware 

devices need to be able to refer to some variation of an explicit or implicit model. Depending on the 

available data and the intended application, these models and their requirements can vary greatly. A few 

of the core differences between major methods include the temporal resolution (from the surgery as a 

whole unit on the coarse end, through phases and activities down to single movement gestures on the fine 

separation) and the observed input data (e.g. from a limitation to only specific sensors, to information about 

the used instruments or affected anatomy, to detailed kinematic readings from robotic systems or different 

video sequences). The nomenclature about these aspects has not yet come to a unified understanding 

among the involved research community, but a good review about these distinctive approaches is available 

from Lalys et al. [83]. 

One approach to provide an explicit model is the manual annotation of every individual action performed 

by the surgeon. This list of actions is considered a simple model of the specific, record intervention. Applying 

the general idea of business process modeling [121, 122], this individual model is also known as “individual 

surgical process model” (iSPM). By collecting several such models of the same intervention type, a “general 

surgical process model” (gSPM) can be calculated from the set of differing iSPMs [96, 118–120]. On basis of 

the gSPM it is possible to identify common sequences, which are shared among most or all observed 

procedures, as well as the sequences, where it is most likely to see high variability. SPMs have been found 

to be very robust against missing data [95], and approaches exist to transfer them to other structures [49]. 

Recently, more concepts from the area of business process modeling have also been converted to the 

surgical domain [28, 117], yet gSPMs so far remain the basis for many different applications, including the 

prediction of the remaining surgery time or upcoming instrument usage [43–48, 103]. The usage of such 
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models can be extended to further situations, like flexible training simulations or the evaluation of young 

surgeons’ dexterity and training progress. An attempt to standardize these models by fitting them to 

existing ontologies, or extending known ontologies to this novel area, has been discussed already quite 

early [66, 91]. The general idea behind the standardization is a more hierarchical description of the 

individual or generalized models, to allow for slight changes in the intervention, without the need to extend 

the model. Therefore, current, workflow related ontologies define the scalpel for example as a “cutting 

tool”, which is itself a subcategory of a “sharp tool”, and so forth. Also, the patient’s affected anatomy can 

be described this way in any desired level of detail, starting from the general region of the patient’s body, 

to each individual organ and their vessels and ducts, down to the individual cells, and theoretically even the 

intracellular components. Different already existing ontologies have been proposed as basis for an 

extension [17, 73, 76, 77, 111, 115, 116], with the recent development of the “LapOntoSPM” ontology, 

which extends other, surgical ontologies specifically with the goal to standardize the description of surgical 

process models [52, 72, 74]. 

A different approach of surgical workflow analysis tries to minimize the manual annotation costs, by 

omitting the explicit model and extracting workflow information directly from automatically collected 

sensor data. These sometimes very rudimentary sensors are processed through various machine learning 

methods to directly retrieve higher level information, such as the surgical phase or performed activities. A 

wide range of methods are built on the collection of different external sensors, with a strong focus on 

instrument usage data. Attaching RFID tags to surgical instruments to detect their usage is a common 

approach [80, 81], yet several diverse approaches exist on how to extract workflow information from such 

instrument usage data, often employing dynamic time warping (DTW) [3, 125, 126] or hidden Markov 

models (HMM) [19–21, 25, 127], but a wide variety of methods exists [24, 154, 155]. Also other sensors 

than instrument usage are suitable for workflow detection, such as tracking the staff location or movement 

[2, 12, 105, 113] or recording simple system states and events [41, 104]. Even just predicting surgery 

difficulty from preoperative data can support numerous applications [26, 144]. Many methods are based 

instead on the analysis of intraoperative videos, either recorded from external cameras or, due to its 

general availability in minimally-invasive surgery, from laparoscopic cameras. When analyzing the surgical 

workflow from external cameras, often 3D information is collected through depth cameras or by 

reconstructing depth information from multiple cameras. These video streams are then classified using 

different machine learning algorithms [93, 112, 165], with a large number of methods using HMMs at least 

for post-processing, due to their ability to preserve temporal information [14, 128, 163, 164]. Occasionally 

also more exotic modalities like thermographic cameras are deployed [168]. Using external cameras usually 

allows to segment the process into coarser temporal segments, including the preparation and post-

processing of the room, equipment, and patient. Examining the laparoscopic video of minimally-invasive 

surgery allows a more finely grained segmentation into gestures, activities, or phases, but the approach is 

limited to the core part of the surgery (from entry of the camera into the patient’s body to its exit), and is 

unsurprisingly unsuitable for open surgery. HMMs are also a common choice to use or include in the analysis 

of laparoscopic videos [39, 84, 85, 98, 127, 170], although this problem has motivated many different 

solutions, too [18, 58, 86, 132, 173]. Recently, also so called deep learning approaches have influenced 

many research areas, including surgical workflow analysis [22, 94, 156, 167]. An interesting approach to 

combine the usually very reliable results of instrument-based workflow detection with the easy availability 

of laparoscopic videos tries to identify and occasionally track the surgical instruments in the video images. 

In some cases additional hardware is used to aid the detection, such as colored markers on the instrument 

shafts [23], marker rings on the instrument grips for trocar-mounted cameras [162], or scales and infrared 

cameras [53, 54]. Other approaches directly identify the instruments from mono or stereo cameras [4, 5], 

or by emulating acceleration data of instruments from visual cues [138]. Recently, with the broader 

adoption of surgical robotics, the kinematic data of the robotic effectors (often in conjunction with the 

corresponding video) have also become a valuable source for workflow detection [40, 86, 173, 175]. A 
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further review about the various methods and input modalities used for sensor-based context recognition 

is also available from Pernek et al. [130]. 

In this chapter, different approaches to detect the surgical workflow based on various low-level signal inputs, 

without the prior collection or definition of explicit models, will be presented and compared. This will 

include their respective advantages and disadvantages, as well as their recognition performance, given 

different available input data. 

2.1 Methods 
Several methods have been applied with the aim to recognize surgical phases from recorded data 

automatically. These methods, from the areas of dynamic programming and machine learning, will be 

presented and shortly explained in the following sections. Their respective advantages and disadvantages 

in regard to surgical phase detection will also be briefly listed. 

2.1.1 Dynamic Time Warping 
Dynamic time warping [70, 142] is a method to match two related signal series onto each other, 

compensating for different timing by locally stretching or squeezing the signals to get a best fit between 

them based on a distance metric. In order to do this, a cumulative distance matrix is calculated by applying 

a recursive function in a dynamic programming fashion on this matrix. 

2.1.1.1 Warping Path Calculation 
Given two time series 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚} and 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑛}, create a matrix of size 𝑚 × 𝑛: 𝐷𝑇𝑊 ∈

ℝ𝑚×𝑛. As the data series do not have to be of the same length, the matrix will not necessarily be square. 

For every value 𝑝𝑥,𝑦 ∈ 𝐷𝑇𝑊 first the difference 𝑑(𝑎𝑥, 𝑏𝑦) between the corresponding feature points of 

both sequences is calculated based on a chosen distance metric (e.g. the Euclidian distance). Then the value 

of 𝑝𝑥,𝑦 is given by adding the distance 𝑑(𝑎𝑥 , 𝑏𝑦) to the minimal value of the three neighboring values in the 

direction of the origin. Assume a value of 0 for values outside the matrix (e.g. 𝑝0,0 = 0). 

𝑝𝑥,𝑦 = 𝑑(𝑎𝑥, 𝑏𝑦) + min⁡(𝑝𝑥−1,𝑦 , 𝑝𝑥−1,𝑦−1, 𝑝𝑥,𝑦−1) 

After recursively filling the whole DTW matrix, the warp path ℎ(𝑡)  representing best correspondence 

between both series is achieved by backtracking the “trench” of smallest values (Figure 2), starting at the 

final corner of the matrix 𝑝𝑚,𝑛. Every point on this path matches two points of the series, while every point 

Figure 2: Visualization of a filled DTW matrix for matching two workflow sequences. Green pixels 
represent small values. A trench of smallest values is clearly visible in the center. 
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of each series will be mapped to at least one point of the other series. If both series already match perfectly, 

this path will be the diagonal line across the square matrix. Otherwise, every deviation from the diagonal 

indicates that both series are running at different speeds and need to be adjusted to each other. 

2.1.1.2 Average Warping Path and Sequence 
With DTW it is normally only possible to match exactly two sequences to each other. In order to be able to 

use the method on several sequences, it is possible to calculate an average, semi-probabilistic sequence 

based on a collection of sequences through DTW as shown by Ahmadi et al. [3]. In this approach, first one 

sequence of a collection of sequences is chosen as reference 𝑆𝑟𝑒𝑓 ∈ {𝑆1, … 𝑆𝑘}. This selection can be done 

arbitrarily, though it is advantageous for the calculation to choose the sequence with median length. Every 

other sequence is mapped to the selected reference sequence to get 𝑘 − 1 warping paths. An intermediary 

warp path ℎ𝑐 is calculated by interpolating and averaging all obtained individual warp paths ℎ𝑖. This warp 

path ℎ𝑐 matches the reference sequence to a common, average timing. Then shift functions are calculated 

for every sequence by concatenating the inverse of the common warp path with their respective individual 

warp paths: 𝑢𝑖(𝑡) = ℎ𝑖(ℎ𝑐
−1(𝑡)). Finally, all sequences can be matched onto a common, average timeline. 

The feature values at each time step of the new timeline are calculated as averages of all mapped features. 

In case of binary input signals, the averaged output feature will therefore have continuous value, which can 

be interpreted as approximate probabilities of the given feature being active during any specific time in the 

sequence. 

Surgical phases of a newly recorded surgery can be detected by matching a sequence of a known and fully 

labeled surgery onto the new sequence and transferring the labels for each time step. In order to prevent 

bias from a single surgery, the best approach is to collect and label several different surgery sequences, and 

match them to a single, average sequence as shown above. Then this average sequence with matching 

labels can be used for further labeling of new sequences. 

2.1.1.3 Strengths and Weaknesses 
The DTW method is easy to apply, as there are no parameters required by the method. The only possible 

variation is in the choice of the utilized distance metric, while the Euclidian distance is suitable for most 

cases. It is of course also possible to specialize the recognition by selecting one of several distance metrics 

based on previous classification as done in [126]. In that work, the distance functions strongly focus on only 

few feature elements and are exchanged based on the detected phase, to optimize the detection of phase 

transitions. 

Since DTW does not actually calculate predictions based on the observed data, but matches series as a total, 

it is also very robust against noise and outliers. On the other hand, the DTW algorithm is not generally 

parallelizable due to its recursive nature. The basic DTW algorithm requires full access to both time series 

in order to complete the calculation and find a suitable warp path, so an online application is not possible. 

Newer publications suggest adoptions of the original DTW though, to allow for partial mappings and 

thereby online applications. Tormene et al. [161] describe an open-ended DTW variant, which is capable of 

matching a prefix of arbitrary length of a sequence to a full, known reference sequence, while in [8] an 

unbounded DTW is presented, which is able to match segments of sequences independently of their 

position in the target sequence. 

A systematic disadvantage of DTW is the fact that it can only match sequences onto each other. Therefore, 

a new sequence can only be described as well as the best fitting ground truth sequence, a true out-of-order 

labeling of phases is not possible. In addition, a change or reordering of activities within a phase can break 

the matching, which will also influence the matching of all further samples in the sequence. 
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2.1.2 Hidden Markov Models 
A hidden Markov-model as explained in [133] is a network of N distinct states. A system described by this 

model can be in only one state at any given time, and can change states only between regular, discrete time 

steps. The transition between states is governed by transition probabilities, with all outgoing transition 

probabilities 𝑎𝑖𝑗 for a given state i (including the loop to itself 𝑎𝑖𝑖) summing up to 1. For every discrete time 

step, a single observation of a set of known, possible observations is recorded for the system. The 

probabilities of each observation can be different for every state. 

2.1.2.1 Model Description 
The model can be described as 𝜆 = (𝑁,𝑀, 𝐴, 𝐵, 𝜋). 𝑁 is the number of possible states 𝑆𝑛. 𝑀 is the number 

of possible observations in the set of all possible observations 𝑉, |𝑉| = 𝑀 . 𝐴 ∈ ℝ𝑁×𝑁  describes the 

transition probability matrix, with 𝑎𝑖𝑗 ∈ 𝐴 being the transition probability from state i to state j and Σ𝑗𝑎𝑖𝑗 =

1. The observation probability of observation k in state j is given by 𝐵⁡ = ⁡ {𝑏𝑗(𝑘)}. Finally 𝜋 is the initial 

state distribution among all states for time step 1. When comparing several possible HMMs for a given 

scenario, it is common to only describe the models as 𝜆 = (𝐴, 𝐵, 𝜋), as the states and possible observations 

are usually given by the problem definition and are not part of the optimization. 

In an ergodic HMM all transition probabilities between all states are non-zero, so every state can be reached 

at any time. As this does not accurately model the surgical modus operandi, it is more common for workflow 

analysis to restrict the network to so-called left-to-right models (Figure 3). In these HMMs, states can be 

arranged in a temporal order, and no transition is allowed to go backwards along the model. Therefore, the 

initial state distribution 𝜋 is 1 for a single starting state 𝑆1 and 0 for all other states, and the transition 

probabilities are 0 for all transitions to earlier states, so 𝑎𝑖𝑗 = 0, 𝑗 < 𝑖. Several parallel “tracks” are possible, 

though, including transitions between the tracks, as long as no loops within the system occur. 

2.1.2.2 Calculations in Surgical HMMs 
Three main questions arise when working with HMMs: What is the probability 𝑃(𝑂|𝜆)  of a known 

observation sequence 𝑂 = 𝑂1𝑂2𝑂3…𝑂𝑇 given a specific model 𝜆 = (𝐴, 𝐵, 𝜋)? What is the most likely path 

through the states of a given model 𝜆 with a given observation sequence O? And how can a model 𝜆 be 

optimized in order to maximize the observation probability 𝑃(𝑂|𝜆)? For all of these questions, efficient 

algorithms exist (e.g. the forward-backward-procedure, the Viterbi-algorithm and the Baum-Welch method 

respectively [133, 172]), though for surgical process modeling, some parameters can simply be obtained by 

careful examination of the available data. 

For surgical interventions a sequence of phases is often apparent or can easily be deducted from monitoring 

few exemplary surgeries. These phases can in most cases be interpreted directly as states of a left-to-right 

HMM, in their respective temporal order [20]. The observation space depends on the recorded features 

(see 2.2) but is predefined and known. The transition probabilities can be approximated through the 

recorded training data. The probability 𝑎𝑖𝑗 to switch from a phase i to another phase j is the number of 

recorded phase switches in this direction divided by the total number of time steps spent in phase i over all 

recorded datasets. As this ratio depends strongly on the definition of a time step, it is best to either choose 

a sufficiently large time step, or to also take all neighboring time steps within a certain “transition window” 

1 2 3 4 
… 

Figure 3: A schematic view of a left-to-right HMM. In every state, the model can either stay in the 
current state or move to exactly the next state. 
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into account. The window or step size should be chosen in a way that a phase detection within the defined 

timeframe is still meaningful for the studied surgery, e.g. 3-10 seconds for instrument prediction or 1 

minute for documentation purposes. The transition probability to stay in the current phase, 𝑎𝑖𝑖, is then 

calculated as the complement probability to all outgoing transitions of the phase. The observation 

probabilities B can again be calculated by simply counting each observation per phase over all recorded 

surgeries and divide them by the total time steps spent per phase. The initial state distribution 𝜋 is defined 

to be 1 for the first state, which is the first surgical phase, as for every left-to-right HMM. 

2.1.2.3 Strengths and Weaknesses 
A strong advantage of (left-to-right) HMMs, which made them very popular for surgical workflow analysis, 

is their strictly model-driven approach. Domain knowledge about the studied surgeries can be fed directly 

into the model through the definition of the states and their transition order. The current phase of an 

ongoing surgery can analogously be identified by calculating the most likely path through the trained model, 

given the collected observation sequence, and simply reporting the phase corresponding to the final state 

reached. On the other hand, this explicit model definition can be a problem in case of severe changes in the 

surgical workflow, to a degree where the trained model does not fit the observations anymore. In such a 

case, some states would be skipped completely. 

2.1.3 Support Vector Machines 
Support vector machines (SVMs) [30] are a very common and popular machine learning algorithm for 

classification into two classes. This classification is achieved by defining an optimal hyperplane, separating 

the positive and negative data points with maximal margin, through selected support vectors. 

2.1.3.1 Calculations and nonlinearity 
Given multidimensional input training data {𝑥1, … , 𝑥𝑛}, 𝑥 ∈ ℝ𝑑  and their respective ground truth labels 

{𝑦1, … 𝑦𝑛}, 𝑦 ∈ {−1,1}, a SVM finds an optimal hyperplane 𝑤𝑥 + 𝑏 = 0, which can separate the two classes 

of the training data. The optimization of the parameters w and b tries to maximize the margin between the 

two classes by selecting suitable support vectors in each class, and define the hyperplane to be equidistant 

from all support vectors (Figure 4). 

While the hyperplane according to the definition above would only support linearly separable classes, it is 

possible through a “kernel trick” to theoretically transfer test and training data into a higher dimensional 

space, while doing all related calculations through kernel functions in the original space. This way a linear 

hyperplane in a higher dimension is calculated, which results in a nonlinear separation surface in the original 

data space. 

Figure 4: Schematic example of a hyperplane dividing samples of two classes. 
The corresponding support vectors are highlighted. 
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2.1.3.2 Multiclass classification 
SVMs are defined to only separate two classes from each other, though there are several approaches to 

extend them to multiclass problems. A first approach is to train a separate SVM for every class, to separate 

between the class (e.g. via label 1) and “everything else” (e.g. as label -1) [30]. The final classification 

decision is based on the highest positive margin score of all classifiers. A different approach trains classifiers 

for every pair of classes, to distinguish between them [41]. Then all classifiers vote for a class, and the 

majority decides the final classification. In this approach, more classifiers need to be trained and evaluated, 

though the results are more robust. 

2.1.3.3 Strengths and Weaknesses 
Support Vector Machines are by now widely known and well established, which grants them the de facto 

status of a gold standard in machine learning. Additionally, and in contrast to other machine learning 

methods, SVMs have a mathematical proof of obtaining a global, optimal solution for the given training 

data [30]. 

SVMs can be extended to regression problems, too, and as shown above, several options exist to extend 

SVMs to multiclass problems, though they always require additional training or calculations. Due to the 

definition of a hyperplane, the classification of SVMs tends to have “hard” differentiation between classes. 

An estimation of a confidence score is only indirectly possible through calculating the distance from an 

examined sample to the separating hyperplane. 

2.1.4 Random Forests 
Random forests [27, 35] are generally an ensemble of independent, randomized decision trees. Incoming 

data are routed to different branches in the nodes of each tree until they reach a terminal leaf node. Each 

sample is then classified based on a majority vote of the leaf nodes it reached in all trees. 

2.1.4.1 Deterministic and Randomized Decision trees 
Each decision tree is a binary tree structure, consisting of at least a root node, where each node is either a 

terminal leaf or branches into two child nodes recursively. For each incoming data point, every node, 

starting with the root, checks a simple condition (e.g. a specific variable value against a fixed threshold). 

Based on the check, the sample is sent to a different child node (e.g. if the specified variable value is less 

than the given threshold, the sample is passed on to the left child node, otherwise it moves to the right 

child node). This procedure is repeated over multiple layers throughout the whole tree, until a terminal leaf 

node is reached. All samples, which were passed through the tree, are classified according to the leaf node 

they reached. 

The most important element for a successful decision of the tree is a good choice of the splitting function 

in each node. In order to achieve this, decision trees need to be trained with fully labeled training data, 

which consist of observable features and ground truth labels, assigning each sample correctly to the 

available classes. In deterministic decision trees, all data are tested against all available features with 

optimized thresholds, and the feature, which achieved the best split, is chosen as parameter for the decision 

criteria for the given node. Then all data is split into the two subgroups according to the newly defined split 

function, and passed on to the next child nodes, where the process is repeated on the smaller, split data 

set. This is repeated until either a predefined, maximal tree depth is reached, or until no splitting function 

can be found anymore, which could provide a “meaningful split” of the data (see 2.1.4.3). Finally, for each 

leaf node a classification label is chosen based on a majority voting of all labeled samples that reached this 

node. Alternatively, a histogram over the labels reaching the leaf node during training can be created to 

provide further information, such as confidence in the classification or other (less likely, yet possible) 

classifications. 
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This process takes all available training data and all available features into account in each node. Due to the 

fully informed definition of the splitting functions, this method is also prone to overfit the provided data 

during the training process, which deteriorates the robustness and generality of the approach. While 

different approaches exist to handle this problem after training (e.g. pruning of decision trees), a better 

approach is to minimize the risk of overfitting beforehand. Random forests try to avoid risk this by 

abstaining from using a fully informed training process but creating multiple decision trees in parallel to 

maintain classification performance. 

The training process for decision trees is deterministic, so multiple generated trees would end up with the 

exact same layout and splitting functions in every node. For randomized decision trees, each tree is only 

presented with a different, randomly chosen subset of all available input data (so called “bagging”), so that 

each individual tree receives a different training set. Also, not all features are compared for each node, but 

again only a randomly chosen subset of all possible features are taken into consideration in each node for 

choosing the best split. In a related approach for “extremely randomized trees” [51] even the thresholds to 

compare each feature against are defined randomly, within the value ranges of each feature in the bagged 

training set. 

2.1.4.2 Random Decision Forests 
The aim of random forests is to provide better robustness and generalization than single, deterministic 

decision trees. This is achieved by introducing randomness into the training process and calculating an 

averaged output. Therefore, not only a single tree is trained and used for classification, but a large number 

of them. Due to the randomness of the training process, each tree will develop a different structure, with 

different split functions in each node and differently distributed leaf nodes. For classification all incoming 

data are given to all trees in parallel, they traverse the trees in different patterns, and they end up in 

different leaf nodes (Figure 5). Every tree therefore has a separate classification for each input sample. All 

individual trees participate with their respective output in a majority voting for the final classification of the 

input data. The majority voting of multiple trees can easily overcome low-confidence misclassifications of 

few trees with a larger number of correct classifications and thus improves robustness against overfitting. 

As added analytical benefit a degree of confidence on a classification can be achieved by calculating the 

ratio of votes for the classification output to the total number of votes. For example, a classification with 

95 votes for class A in a forest with 100 trees has a 95% confidence, while a vote for another input with 60 

votes for class B only has 60% confidence. 

2.1.4.3 Information Gain as Splitting Function 
When choosing one of several possible splitting functions, a clear criterion for defining the “best” candidate 

is required. Commonly the information gain based on Shannon’s entropy is used, where generally splits are 

preferred that strongly support the differentiation between classes. 

Figure 5: Schematic example of a random forest. A sample can traverse different paths in different trees during classification, the reached 
leaf nodes then vote for a class based on the training samples, which reached the same leaf. 
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During training, before applying any splitting function, the Shannon entropy H [148] is calculated for the 

dataset that reached the current node: 

𝐻(𝑆) = −∑𝑝(𝑐) log2 𝑝(𝑐)

𝑐∈𝐶

, 

where 𝑝(𝑥)  is the probability, that a random sample of the set S in this node is of class x, which is 

approximated by the ratio of training samples labeled with x to the total number of samples. 

Candidates for splitting functions are created by randomly choosing a subset of available features (or ad 

hoc generating a predefined number of features where possible) with appropriate thresholds. These 

thresholds can also be chosen randomly within reasonable boundaries [51]. Then an available splitting 

function candidate is applied to all samples, the entropy for both resulting subgroups 𝑆𝑙  and 𝑆𝑟  are 

determined, and their weighted average (based on the number of data points in each subgroup) is 

calculated. The difference between the prior entropy and the calculated posterior entropy is calculated. 

This represents the information gain 𝐼 for the tested candidate: 

𝐼 = 𝐻(𝑆) − (
|𝑆𝑙|

|𝑆|
𝐻(𝑆𝑙) +

|𝑆𝑟|

|𝑆|
𝐻(𝑆𝑟)) 

This is done for all splitting function candidates. The splitting function candidate with the largest 

information gain is chosen as splitting function for the given node. 

Additionally, a minimal required information gain can be defined to further split the node. If no splitting 

function candidate can reach the required information gain, the node is declared a leaf node, and the 

classification output of the node is based on the majority of class labels of samples that reached the node. 

2.1.4.4 Strengths and Weaknesses 
Due to the distribution of the classification of a sample to multiple trees, random forests are able to 

generalize well over provided training data and achieve good robustness against outliers and atypical data. 

In addition, the voting mechanism among trees and the basic tree structure with classification histograms 

in the leaf nodes make random forests inherently well suited for multi-class classification problems. While 

other classification methods usually rely on a “one vs. all” approach by training separate, independent 

classifiers per class on the same training data, random forests naturally handle multiple possible classes 

well within the same structure. A suitable number of classes is not strictly limited by, but related to the 

maximum tree depth, which in turn should be limited to prevent overfitting. Additionally, the independent 

nature of the method makes it trivially easy to implement it in a highly parallel fashion, taking full advantage 

of modern computing hardware of both CPUs and GPUs [149]. 

Compared to deterministic decision trees another advantage of random forests is the fact that they do not 

need to evaluate all available features during training or testing. Depending on the examined dataset, there 

could be millions of possible features present, which would make the training process tedious and slow, or 

it could even be impossible to calculate all available features beforehand, as they can be defined 

dynamically through few data-independent parameters. A popular example is image segmentation and 

pixel classification within given images [4, 36]. Here a very simple feature is used, the difference between 

brightness values of two pixels in the neighborhood of the examined pixel. For high-resolution images there 

can easily be millions of pixels (e.g. HD video with a resolution of 1920x1080 pixels has just over 2 million 

pixels per frame to evaluate), the difference between two pixels squares this feature space (to over 4 billion 

possible combinations on HD video frames). Exhaustively evaluating all these combinations for every single 

dataset in every node of every tree is not feasible with limited training time and storage memory. The 

randomized training phase of random trees on the other hand can easily be adopted to generate a specific 
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number of random features based on this general idea, so that the feature space presented to each 

individual node during training has a fixed, predefined, and easily manageable size. 

Random forests are not limited to classification, as they can also be extended to handle regression problems. 

In this case the terminal nodes not only store a single class label or a discrete histogram over class labels, 

but an averaged function prediction based on the training samples reaching each node. The final regression 

output is calculated as the average over all individual tree outputs. 

Finally, there are different approaches to use fully trained random forests to aid in analyzing the base data 

and the importance of the calculated features for the trained problem. One approach by Breiman [27] 

calculates the relative feature importance of all used features in a dataset. To achieve this, first the final 

classification error of a fully trained forest needs to be calculated on a separate validation set. Then the 

samples of the validation set are manipulated in a way that all values of an examined feature 𝐹𝑖  are 

permutated throughout all samples, and this manipulated dataset is classified again by the trained forest. 

The difference between the original classification error and the error on the manipulated dataset indicates 

the importance of feature 𝐹𝑖  for the classification. Another possibility used by [36] is to backtrack the 

correctly classified samples from the leaf nodes they ended up in to the root nodes of all trees, and keep 

track of all evaluated features and their values along the way. This allows getting a general idea, which 

features and feature values are used most often in the forest to determine each class label. 

A characteristic of random forests, which can be seen as both advantage as well as disadvantage, is the fact 

that random forests cannot be supplied with explicitly defined models. While this avoids the need to define 

a model, especially in situations, where the underlying model of obtained data is unknown, it is also not 

possible to easily feed model-based knowledge into a random forest without significant changes to the 

structure or classification workflow, or by embedding this knowledge into elaborate artificial features. On 

a similar aspect, random forests are also not well suited for situations, where a large-scale exploration of 

the feature-space is possible and desired. 

The proper design of provided features can have a major impact on the classification quality. In complex 

situations, all non-linear relationships between collected data (e.g. local neighborhood information or 

temporal dependencies) must be calculated through predefined meta-features. While other models are 

possible, most random forests use linear splitting functions even for non-linear problems, which leads to 

the classification behaving as piecewise, linear approximation. Although due to the large number of 

involved trees, the averaged results can usually provide relatively smooth decision boundaries in most cases. 

2.1.5 Convolutional Neural Networks 
Artificial Neural Networks (ANN) are among the oldest machine learning methods under research [109, 137], 

and after some period of little scientific attention have developed to be very powerful tools in recent years, 

winning recognition challenges of various topics with wide margins. 

2.1.5.1 Neurons and Multilayer Networks 
The basic building block of a neural network are called neurons (both in the artificial ones described here 

as well as in the biological original, which inspired the method). A neuron has a number of input signals 𝑥𝑖, 

for which it calculates the weighted sum, evaluates an activation function 𝑓 for this sum, and provides the 

function value as output. Usually every single neuron has a constant bias 𝑏 as one of its inputs: 

�⃗� → 𝑓 (∑𝑊𝑖𝑥𝑖
𝑖

+ 𝑏) 

Several activation functions have been suggested over time, with the sigmoid function 𝑓(𝑥) =
1

1+𝑒−𝑥
 and 

the hyperbolic tangent function 𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 among the most popular due to their proximity 
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to the biological processes. Recently, however, the very simple rectified linear unit (ReLU) 𝑓(𝑥) =

max(0, 𝑥) is gaining popularity, since it is very easy and fast to compute without deteriorating the overall 

classification results. 

In order to obtain several output values, different neurons can be used in parallel on the same input values 

and using the same activation function, though with individual weights and biases. This layout is referred 

to as a neuron layer. While a single neuron layer can already be trained to correctly predict simple, linearly 

separable problems [109], most modern approaches use networks of several layers. In this setup, all 

outputs of the neurons of a layer 𝐿𝑖 are connected as inputs to all neurons of the following layer 𝐿𝑖+1. The 

actual input data presented to the network is treated as “input layer” 𝐿1, the output of the last layer 

denotes the final network output, while all layers in between are called hidden layers (Figure 6). The bias 

terms are defined for each neuron individually, while weights are defined separately between all neurons 

of two neighboring layers. 

2.1.5.2 Feed Forward and Backpropagation 
Calculations are done in a trained neural network by feeding the data forward through each layer until the 

output layer is reached. Since no two neurons in the same layer depend on each other, each layer can be 

computed in one step, usually implemented as simple matrix multiplication. 

Training is done on neural networks through the backpropagation algorithm. A training example is given to 

the network and the output based on current parameters is calculated. The difference between the desired 

and the actual output is calculated and multiplied by the derivative of the activation function, evaluated on 

the same values as during forward calculation. The ReLU activation function is again very easy to compute, 

as its derivative is always 1 for any positive values and 0 otherwise2. This difference score is propagated 

backwards through the network, by calculating the weighted sum of all outputs per node with the same 

weights as for the forward step and multiplying by the derived activation function per neuron. Finally, all 

weights and biases are modified by the partial derivatives in each neuron, weighted by a factor representing 

the learning rate. 

2.1.5.3 Convolutional and Pooling Layers 
High resolution images with millions of color pixels can be used directly as input for neural networks, though 

building a fully connected network directly based on such a large input layer would either result in too many 

parameters to be feasibly trained or poor prediction accuracy. Therefore, the concept of convolutional 

layers has been introduced [87]. When taking full images as input, the first few layers are usually trained to 

 
2 Technically the derivative of the ReLU function is undefined at 𝑥 = 0, though the probability of the output value 
actually equaling 0 is very low, which makes this an acceptable implementation. 

Figure 6: Example of an artificial neural network with 4 input nodes, 
two hidden layers of 5 nodes each, and 3 output nodes. 
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convolve the image with varying kernels of increasing size, while the overall resolution gets down sampled 

through pooling layers. 

Contrary to regular neuron layers, not all neurons in a convolutional layer take all outputs of the previous 

layer into account, but only the outputs of a small patch of spatially connected neurons. Other neurons with 

identical patches are repeated in order to cover the whole output of the previous layer. These patches can, 

but do not have to overlap between neighboring neurons. The input weights of all corresponding patches 

are shared and applied to all patches alike. A convolutional layer consists of multiple of these sets of 

corresponding neurons, with weights shared within each set, but independent from the weights of other 

sets. These patch weights evolve during training to match simple image features in the early layers (like 

edges or textures), up to human-recognizable structures in later layers (such as wheels, doors, or faces, 

depending on the training set). 

In order to reduce the dimensionality of the data, and therefore the number of parameters requiring 

training, commonly “pooling” layers are introduced after convolutional layers. These pooling layers choose 

only a single value within a small patch of neighboring input values, usually the maximal or average value. 

This value is then output without further calculations and independently of any parameters, so pooling 

layers are not subject to changes during training. By alternating between convolutional and pooling layers 

of increasing patch size, it is possible to reduce the size of the input data. This allows for larger, more 

complex and more numerous kernels to be trained, while keeping the memory footprint and training effort 

on a reasonable scale. 

2.1.5.4 Deep Networks and Memory Units 
The increase of powerful and accessible hardware, the development of highly parallel computing on GP-

GPUs, as well as the public availability of large-scale annotated datasets (like [67, 156]) have made it 

possible to significantly increase the number of layers and neurons in neural networks. This evolution to 

“deep networks” not only made highly performant networks possible, but also enabled the design and 

application of highly intricate architectures, including “long short-term memory” (LSTM) units [64]. One 

LSTM unit consists of several cells and a storage vector. The values stored in the vector are provided as 

additional input to the cells within the same unit. The cells are trained as before, though their outputs are 

used to trigger different behaviors, such as “forgetting” or overwriting certain parts of the storage vector, 

as well as calculating a combined output for the LSTM unit as a whole. The application of these LSTM units 

allows networks to better handle sequential and time-variant data, such as texts and video data. 

2.1.5.5 Strengths and Weaknesses 
As modern, deep ANNs have a very large number of free parameters, they usually require relatively large 

datasets for training, which in turn can lead to training times in the magnitude of weeks, even on powerful 

hardware. Developing completely new network architectures or calculation units is therefore due to 

practical restrictions mainly limited to institutions with access to large server farms. 

Aside from the easily visualizable convolutional layers, it is nearly impossible to analyze the internal 

workings of a neural network, or trace back decisions to their key contributing features. While it is certainly 

possible to connect the output of individual neurons to corresponding input data, this is not feasible on a 

larger scale, and the chances of identifying a simple activation pattern for a single neuron are slim. 

Therefore, the network has to be treated mainly as a black box. 

Classifications can still rely on few visual cues when the training set has some unknown bias towards certain 

images. After training it is often possible to carefully craft images, which can be very obvious synthetic 

patterns to a human observer, while the network will identify a trained class in them with high confidence 
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[123]. These generated images can afterwards be used, though, to improve the training set and prevent the 

network from only relying on simple, unstable patterns in the future. 

Most other machine learning approaches require or implicitly assume some kind of feature extraction to 

be part of the preprocessing of the raw input data. The design and choice of these features is left to the 

user, though the quality of prediction can depend heavily on a proper selection of features. Neural networks 

not only train a classification based on features, as part of their training on raw data they develop their own 

optimal features naturally, which is most apparent in the convolutional layers of CNNs. This might be a 

major reason for the classification strength of neural networks, which currently outperform all other 

approaches on public challenges, usually even by a significant margin. 

2.2 Surgical Data 
All experiments on the recognition of surgical phases have been carried out on anonymized medical data, 

recorded during real surgeries on various patients. In the following sections the surgical intervention chosen 

for all experiments, the laparoscopic cholecystectomy will be explained first, followed by a description of 

the different signals, which were recorded during the surgeries, as well as the annotation of the data. 

2.2.1 Surgical Intervention: Laparoscopic Cholecystectomy 
The Laparoscopic Cholecystectomy (a minimally invasive removal of the gallbladder) is a well-suited and 

popular study target in the field of surgical workflow detection [3, 72, 81, 104, 126, 155, 167]. The number 

of phases and instruments used during this intervention is easily manageable and does not vary too much 

even across different hospitals. The workflow is mainly linear in the ideal case, though some simple loops 

and possible exchanges in the order of later phases introduce all challenges relevant for a flexible and robust 

modeling and detection approach. It is a highly standardized intervention, performed regularly all over the 

world, with a typical runtime of about 35 minutes, though individual cases can take anywhere from 20 up 

to 90 minutes. Due to these characteristics, and in order to be able to better compare results, this 

intervention type was used as basis for all experiments in this work. Some sample views are shown in Figure 

7. 

This surgery is done under general anesthesia, and without taking the preparation or closure of the patient 

into account, the core of the surgery can be divided into eight phases [156]. The first phase of trocar 

placement starts with inflating the abdominal cavity with an inert gas, so that a sufficient working space 

can be established. Trocars are thin metal tubes with a valve, through which laparoscopic instruments can 

be inserted into the body easily and without losing the intra-abdominal pressure. The first trocar is inserted 

blindly after inflation has finished, and the laparoscopic camera is inserted for the first time to assess the 

surgical site and check for additional, unexpected findings. Three further trocars are then inserted under 

observation through the camera. Additional trocars may be inserted if complex anatomical structures (e.g. 

an exceptionally large liver) require additional tools. 

After all trocars have been placed, the preparation phase begins. In this usually very short phase, the 

surgeon approaches the gallbladder and occasionally prepares the surgery, e.g. by detaching tissue 

obstructing the further approach. Then the preparation of Calot’s triangle begins. This area, connecting the 

Figure 7: Three screenshots from a laparoscopic cholecystectomy, during the preparation phase (left), the clipping and cutting phase 
(middle), and towards the end of the gallbladder dissection (right). 
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gallbladder to the digestive tract, consists usually of the cystic artery and the cystic duct, surrounded by 

connective tissue, though in some cases both vessels can be grown together, or a second artery runs as 

separate vessel in parallel. In this phase, the connective tissue needs to be removed to expose all vessels. 

In the next phase, each vessel is sealed off through the placement of three clips and separated by cutting 

between the clips. Most clips used are made of a biodegradable plastic, so they can be reabsorbed by the 

body over time, though for larger vessels stronger metallic clips can be used. The cut is done between the 

placed clips so that two clips remain in the body for a safe seal of the vessel, and one clip is removed later 

with the gallbladder, to prevent leakage. 

In the next phase, the gallbladder has to be detached from the liver bed. In most cases the connective tissue, 

which attaches the gallbladder to the liver bed, is separated by coagulating the tissue with high-frequency 

monopolar electric current. The detached gallbladder is packaged in a plastic retraction sac in the next 

phase. This prevents bile liquid from spilling into the abdominal cavity on accidental injuries and eases the 

later removal of the gallbladder. After the packaging of the gallbladder, the liver, liver bed, detached cystic 

pathways, and the surrounding tissue are rinsed and checked in the hemostasis phase. If any bleedings are 

detected, the tissue is coagulated to stop the bleeding and close minor wounds. Finally, in the last phase of 

the surgery the gallbladder is retracted from the body. This usually happens by pulling the retraction sac 

closely to a trocar and removing the bag with the trocar from the body, though in some cases, especially 

when large gallstones are present, the surgeon needs to remove the gallbladder partially. While the 

retraction sac is pulled out of the body as far as possible, the content of the retraction sac is carefully cut 

into smaller pieces, liquids are drawn from the bag, and the volume is gradually reduced until the whole 

bag can be retrieved. 

The order of these phases is not necessarily fixed, and the transitions can be fuzzy. If significant bleedings 

occur at any point during the surgery, a short hemostasis is introduced to stop the bleeding and clean the 

wound immediately, regardless of the currently ideal phase. During preparation of the surgical site or 

Calot’s triangle, it can become evident that additional tools are needed, so another trocar may be inserted 

after the initial trocar placement phase. An enlarged and inflamed gallbladder is at a high risk of rupturing 

during the detachment phase, so the retraction sac may be introduced to partially package the gallbladder 

very early and minimize the risk of spillage in case of an injury to the gall bladder. The gallbladder may also 

be removed prior to the final hemostasis phase. 

Other phase definitions are undeniably possible and have been used even during some experiments, though 

the differences between common phase definitions on this surgery are minor, and it is often possible to 

specify a transformation from other phase definitions to the one given here, or vice versa. 

2.2.2 Instrument and Sensor Data 
As it has been shown already very early [3, 77, 80], detecting the surgical workflow can be done with high 

confidence if reliable data about the intra-operative instrument usage are available. Several sensors have 

been developed and deployed in a hospital OR in order to automatically collect such minimal signals in real-

time. 

2.2.2.1 Laparoscopic Instruments 
The laparoscopic instruments used during the examined intervention are a liver retractor, alligator forceps, 

PE (or biopsy) forceps, scissors, clip applicator (used with either biodegradable plastic clips or more robust 

metal clips), irrigation rod, and suction rod (Figure 8). Most of these metallic tools can be attached to the 

high frequency current generator in order to apply monopolar cutting or coagulation current. Some other, 

non-laparoscopic instruments are also used, mainly scalpels and needles for preparation of the minimally 

invasive procedure and sutures for wound closure afterwards, though they are not tracked or used for any 

further analysis. 
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Several approaches exist in order to detect which instruments are in use at any given time. Many of them 

rely on visual cues from the laparoscopic or external cameras, which will be discussed in section 2.2.3. 

Purely sensor-based methods usually attach some non-intrusive markers to the instrument, such as RFID 

tags [81]. These can be read out from readers included into the trocars, though these trocars are rarely 

used due to their high costs and minimal immediate advantages. Alternatively, the instrument table can be 

equipped with large RFID antennas. This way it is not immediately possible to recognize the instruments 

currently in use in the patient, though by knowing which of all available instruments are stored on the table, 

it is trivial to extract that information. The disadvantage of this indirect method lies in the fact that 

experienced scrub nurses tend to predict the next required instrument and prepare it ahead of time, which 

also removes it from the detected pool of instruments on the table. The signals of the RFID tags are 

unfortunately not necessarily very robust, and the common usage of metals in the OR and interference 

from other devices can disrupt the detection quality of the RFID antennas, which can lead to highly noisy 

data. 

2.2.2.2 Other sensors 
Other easily deployable sensors can also be used to detect relevant states during the surgery without 

interfering with the intervention itself or the devices, and without the need for an accessible data interface 

on devices. By attaching the corresponding bags to weight sensors, it is possible to indirectly measure the 

amount of irrigation water and vacuumed fluids. The intra-abdominal pressure can be drawn from the 

insufflation device through an additional pressure sensor, the tilt of the surgical table can be determined 

Figure 8: Each line represents a single binary signal over the course of a surgery, active when the line is elevated, and inactive otherwise. 
From top to bottom: metal clip, suction rod, irrigation rod, scissors, clipping tool, PE forceps, alligator forceps, table light, room light, HF 
cutting, and HF coagulating. 

Figure 9: Recorded analog sensors over the time of one surgery. Top row: Irrigation weight (blue) and suction weight (orange). Bottom 
row: Intraabdominal pressure (blue) and table inclination (orange). 
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with a rotational sensor (Figure 9). With light-sensing diodes attached to the rim, the status of room and 

surgical lights can be detected reliably. Additionally, by carefully placing such diodes onto the control lights 

indicating active usage, it is also easily possible to detect the active modes of the HF generator. Some of 

these signals are digitally available for some devices or systems (e.g. light status or insufflator pressure), 

though many closed systems still require external sensing. External sensors also occasionally have the 

advantage of measuring the actual current state instead of the planned target state, which can provide 

additional information, as will be described in 2.3.1.1. 

2.2.3 Laparoscopic Video 
The most critical tool during a minimally invasive surgery are naturally the laparoscopic optics, providing 

the surgeon with the required field of view and lighting of the surgical site and therefore enabling minimally 

invasive procedures. In a modern OR, a camera is attached to the optics, so the situs can be viewed in a 

more ergonomic posture and by all members of the OR team through one or several monitors. Specific 

optics and cameras, which provide stereo vision and thereby natural depth perception, have become 

available for laparoscopic interventions, though they are not yet widely adopted. 

In most ORs, the camera is operated by the assistant surgeon, though camera control is a field where many 

lightweight robots are available, which can reduce the necessary surgical team, without the costs, 

complexity and infrastructure constraints of a full robotic suite. When controlling the camera, the operator 

must pay attention to the required field of view (e.g. centering the image on specific anatomical structures), 

the distance from the site, and a level image horizon. The main risk during camera operation is getting 

liquids like blood or water onto the lenses, which partially or fully obscures the view and usually requires 

immediate rinsing of the lenses. 

The video signal of the laparoscopic camera can easily be recorded and digitized without interfering with 

the remaining system. Due to its ubiquitous usage and accessibility, analysis of the surgical video is the most 

common approach in the field of surgical data science [14, 18, 23, 58, 83]. 

2.2.4 Data Synchronization and Annotation 
All recorded data was synchronized, and each synchronized recording was manually annotated. All sensor 

data was recorded on a single server, so each incoming event was stored with a common timestamp. 

Different frequencies of various sensors were synchronized by creating a combined measurement for all 

recorded channels with the highest used frequency and repeating known values for channels with lower 

frequency. Synchronization between sensor and video data was done by filming the current system time of 

the recording server with all involved cameras. This way, an offset between the video time and the server 

clock can be calculated for several frames and averaged, to calculate the offset between each video file and 

the sensor data. Videos were recorded with a framerate of 25 frames per second, and recorded sensor data 

was adjusted to match the laparoscopic video frames as closely as possible afterwards, by choosing the 

closest sensor data frame to each video frame, dropping sensor data in between, or interpolating missing 

sensor data for unmatched video frames. 

An expert, either a surgeon or medical engineer with thorough understanding of both the intervention and 

surgical workflow detection, manually annotated each synchronized surgery. The annotation always 

assigned a single-phase label (see phase definitions in 2.2.1) to each frame. Depending on the experiment 

(see the subsections in 2.3), additionally a ground truth label for each available instrument was given (if no 

RFID information was available). 
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2.3 Experiments and Results 
Different experiments have been conducted, applying the methods described in 2.1 on various subsets of 

the available data mentioned in 2.2. An important distinction should be made between methods using only 

non-video data, those employing video data only, and methods using both data in combination. 

2.3.1 Using Instrument and Sensor Data 
The following experiments were designed so that the employed methods only relied on sensor data and did 

not take any visual information from laparoscopic or external video into account. Most of the utilized data 

are either already digitally available through medical devices (though not necessarily openly accessible at 

present), or can easily be collected through simple, unobtrusive sensors. 

2.3.1.1 Random Forest on Instrument and Sensor Data 
Random forests (see 2.1.4) have been used in [155] in order to detect the current of seven surgical phases 

based on instrument usage and minimal sensor data. For this experiment, a forest size of 50 was chosen 

due to its good balance between performance and speed. Best results were achieved with a maximal tree 

depth of 4 nodes, while in each node 4 out of 16 features were randomly selected to choose the best split. 

The data used for this experiment consisted of 12 binary and 4 analog signals, recorded as time series 

throughout the duration of four full cholecystectomy (see 2.2.1), with approximately 60000 samples over 

all four series. Of the binary signals 8 were indicating instrument usage, 2 documented the status of the HF 

generator modes (coagulating or cutting), and the remaining 2 gave the status of different light sources 

(table light and room light). The weight of both the irrigation and the suction bags were recorded as analog 

signal, as well as the intra-abdominal pressure and the measured inclination of the surgical table. 

Instrument usage was detected automatically through sterile RFID chips attached to the handles of the 

laparoscopic instruments and antennas at the instrument table (see also 2.2.2) [81]. Unfortunately, due to 

severe interferences caused by the multitude of different metallic objects in the OR, the detection was 

exposed to a high level of noise, which led to a very low signal-to-noise ratio (SNR) for the instrument signals 

(Figure 10). 

Each entry of the time series was labeled with the name of the surgical phase, in which it took place, though 

in this experiment the phases were defined slightly different. Compared to the phase definitions in 2.2.1, 

the trocar placement and preparation phases were merged, the gallbladder packaging and retraction 

phases were always done together and therefore merged, and a new, final drainage and trocar removal 

phase was introduced, resulting in 7 phases. Since not all phases are of equal length and longer phases are 

at risk of dominating the dataset and introducing unwanted bias, the samples from shorter phases were 

artificially boosted by duplicating them in the training set. The experiment was evaluated in a leave-one-

surgery-out cross validation, so the forest was trained on 3 datasets and evaluated on the 4th, repeating the 
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Figure 10: Detected instrument usage signals under heavy noise. The left image shows a theoretically ideal signal progress, the right image 
an extreme case of the actually recorded data. 
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process so that every surgery was used for evaluation once. Results were calculated by averaging the 

outcome of all four trials. 

The classifier achieved an overall accuracy over all phases of 68.8% and an average Jaccard index of 58.6%. 

Class specific results are shown in Table 1 and Figure 11. The phases “trocar placement”, “gallbladder 

retrieval”, and “drainage and closing” had the most successful detection rates with Jaccard indices of over 

97% each, while the phases “gallbladder detaching”, “hemostasis”, and “clipping and cutting” are the 

hardest to reliably detect, with Jaccard indices of 11%, 18%, and 26% respectively. It should be noted, that 

this is caused in part by the fact that bleedings can happen during any phase, so activities to stop the 

bleeding, which are otherwise typical for the hemostasis phase, can occur at any time. Detaching the 

gallbladder is also an activity, which is prone to cause minor bleedings of the liver bed, so significant parts 

of the phase “gallbladder detaching” can produce the same signals (and therefore classification) as the 

hemostasis phase. 

 

Table 1: Confusion matrix of all classified phases after detection with random forests. 

 
Trocar pl. Prep. Clipping Det. gb. Retr. gb. Stop bl. Drainage 

Trocar pl. 0,995 0,000 0,005 0,000 0,000 0,000 0,000 

Preparation 0,000 0,794 0,093 0,016 0,000 0,098 0,000 

Clipping 0,000 0,361 0,405 0,013 0,000 0,221 0,000 

Detaching gb. 0,000 0,293 0,201 0,113 0,006 0,387 0,000 

Retrieving gb. 0,000 0,000 0,002 0,000 0,997 0,000 0,001 

Stop bleeding 0,000 0,012 0,105 0,001 0,047 0,835 0,000 

Drainage 0,000 0,000 0,000 0,000 0,000 0,001 0,999 

 

Figure 11: Visualization of four recorded surgeries. Each bar represents one recording, the different lengths are caused by the varying 
length of the interventions. The top half of each bar denotes the manually annotated phase labels through colors, the bottom half 
shows the detected phases for each frame. 
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A strength of random forests is their ability to allow for in-depth analysis of the data after training the 

system, like calculating the relative importance of each signal to determine the most and least 

discriminative for the given task (see 2.1.4.4 for details). As can be seen in Figure 12, the most influential 

signals were the intra-abdominal CO2 pressure, the weight of the suction bag, the surgical lamp status, and 

the table inclination. Both an unused signal as well as a newly introduced random, binary control variable 

were reliably ranked the lease discriminative. On the other hand, other signals like the usage of the 

laparoscopic scissors or the clipping device, which tend to be strong indicators for human observers, were 

also practically excluded from classification, very likely due to the severe noise described above. However, 

some of the sensor noise in the analog signals are caused by unintended, yet clearly identifiable external 

sources, such as the surgeons leaning on the surgical table or performing rapid movements. These 

movements can shake the surgical table, which can be picked up by sensors measuring the exact table tilt, 

as well as the weight sensors of the fluid bags, as these are often attached to the table. This kind of side-

channel information can be used by machine learning systems, hence the high ranking of signals such as 

the table inclination, which would otherwise only provide very limited information. 

2.3.1.2 Random Forest and HMM on Raw and Filtered Instrument and Sensor 
Data 

Several related trials were done and compared for this experiment [154] using random forests (2.1.4) and 

HMMs (2.1.2). The results of 2.3.1.1 were successfully recreated with a larger dataset first, then the effects 

of denoising and data augmentation were examined. Finally, HMMs were introduced for their strong 

modeling capabilities, both directly on the raw data, as well as in combination with the output of the 

random forest. 

Two datasets were used for this experiment. The first dataset consists of sensor and instrument usage data, 

as well as laparoscopic video, for 5 laparoscopic cholecystectomy surgeries, annotated with phases by 

medical experts. This is the same dataset and phase definition as used in 2.3.1.1, though one additional 

surgery has been recorded in the same way after the work of [155]. This dataset is also used later in 2.3.2.1, 

utilizing the video information. The second dataset consists of sensor and instrument data, recorded in the 

same manner as the first dataset, of 18 additional surgeries, all annotated by a medical expert, although 

without the video information. The phase definition of the second dataset was more verbose, including 

short intermediary phases, which explicitly signaled the completion of the previous phase. For consistency 

and comparability with other results, these phases have been merged with their respective predecessors 

Figure 12: Relative feature importance after training the random forest. Many instruments, such as scissors and clip, only achieve very 
low importance due to high noise, which makes their signals unreliable. 
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(e.g. “Finished preparation” was merged into “Preparation”). The signals used in this experiment are the 

same 12 binary and 4 analog sensor signals as described above, with the addition of the elapsed time (in 

seconds) since the start of the recording. 

In an attempt to compensate for noise in the recorded data, the recorded analog signals have been 

smoothed with a sliding window median filter of size 120. Additionally, the pure noise signal (obtained by 

subtracting the smoothed signal from the original) is also retained as new feature, as the occurrence of 

noise can be related to external influences, as described above (see Figure 13). Since median filtering does 

not improve noisy binary signals, another approach was to augment the binary signals with additional, time-

dependent features. Two additional features are calculated per binary signal. The first feature is the 

cumulative sum of the feature over time, providing a linear and steep increase during usage, and shallow, 

non-linear increases otherwise due to noise. As second feature, the sum of rising edges is calculated over 

time, displaying plateaus during continuous usage or noise-free periods of inactivity, and a non-linear 

increase otherwise. 

The optimal parameters for the random forest were determined through an exhaustive parameter sweep. 

Therefore, the forest was set up to contain 80 trees with a maximal depth of 9 nodes, presenting 8 randomly 

selected features to each node during training. Impact on training and evaluation speed was also taken into 

consideration during parameter optimization, although it did not influence the final choice, as all possible 

parameter combinations were determined to be unambiguously real-time capable. The classification results 

are evaluated through a leave-one-surgery-out cross validation. 

The first experiment practically recreated previous work by applying the random forest on the raw input 

data, achieving an accuracy of 69.9% and 70.1% respectively on the first and second dataset, and an average 

Jaccard index of 60.0% and 57.1% respectively. The minor improvement can be attributed to the larger 

datasets and optimized parameters. Splitting the analog signals of the dataset into a noise-reduced signal 

and the pure noise signal as described above increases the accuracy on the first dataset slightly to 72.0% 

and the average Jaccard index to 62.8%. Additionally, providing the time-dependent features on binary 

signals described above has several ramifications. The overall accuracy changes on the two datasets to 64% 

and 71.5% each, the average Jaccard index changes to 65.3% and 60.3% on the first and second dataset 

respectively. This diverging development can be traced back to the fact that the classifications are generally 

“smoother”, with less rapid changes between neighboring frames, however the short phase “Clipping” has 

been completely skipped in many tested surgeries. 

Since the random forest classifier works on individual frames only, without taking context into account 

(aside from the augmented, cumulative features), a main reason for the suboptimal performance are 

“jittering” classifications. Due to their inherent modeling capabilities, a left-to-right HMM was used for 

classification. In a baseline experiment, where the HMM was trained directly on the raw datasets, the 

system achieved an accuracy over all phases of 41.8% on the first and 48.1% on the second dataset. The 

average Jaccard index in these cases were 32.8% and 30.3% each. It is important to note, that during this 

experiment, many phases were skipped, and the last phase was never reached in many cases. Similar results 

were obtained when using the filtered datasets, while the augmented dataset decreased the performance 

on the first, smaller dataset, as the HMM tends to fall into a specific state, from which it will never leave. 

Figure 13: The original, noisy table inclination signal (left), the signal after applying a median filter (middle), and the extracted, pure noise 
signal (right). 
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The two methods can be combined by classifying the input data with a random forest first, and then use 

the classifier output as observations in the HMM (Figure 14). The training data has to be split in 3 parts in 

this case, with the first part used as training for the random forest, the second part being used to evaluate 

the random forest classifier and train the HMM, and the third part for evaluation of the complete system. 

Calculating the confusion matrix of the random forest classifier can directly be used as initialization for the 

emission matrix of the HMM. The combination of these very different methods provides improved results, 

as the random forest classification prevents the HMM from skipping or overrating phases, while the learned 

HMM filters the output and provides a smooth final classification. Due to the large amount of required 

training data, this experiment could only be done on the second, larger dataset. The accuracy of the 

combined approach on the raw dataset was 80.8%, with noise-reduced signals 82.4%, and with time-

dependent features 74.5%. The average Jaccard index on the filtered signals was 71.1%. 

2.3.1.3 SVM, HMM and Conditional Random Fields on Full and Reduced Sensor 
Data 

In the work in [41], three related methods to detect phases were compared. A system of regular one-vs-

one SVMs with majority voting (2.1.3.2), distinguishing between two classes each, was used as baseline for 

comparison. The second method also employed an SVM first, but fed the calculated SVM scores as 

observations into a succeeding HMM (2.1.2). Finally, the third method similarly used an SVM on the signals 

and feeding the obtained scores as features into a linear-chain conditional random field (CRF). A CRF [82, 

158] can be seen as a special case of HMM, but while a HMM systematically tries to model both the 

observation probabilities and the states simultaneously, a CRF focuses on modeling only the states, given 

the observations. 

The dataset for this experiment consisted of the same binary and analog signals described above, recorded 

for 42 fully annotated surgeries. In a second trial, the same setup was used, though the data only consisted 

of the analog signals and the light and HF generator states, while the instrument usage data was removed. 

This restriction aims to only use sensors, which can be easily deployed and therefore can be used with 

higher probability in other ORs and hospitals. Each signal of the raw sensor input is augmented in several 

ways before being presented to the classifier. In an attempt to better identify temporal relationships, the 

mean, standard deviation, and slopes of linear fits are calculated over varying sliding windows. Four 

different window sizes of 4, 16, 64 and 256 seconds were used for each metric. Every feature window was 

defined to end at the current timeframe to avoid using future information, in order to ensure the online 

capability of the method. Additionally, every feature value was copied from the past to the current sample 

(using the same periods as for the windowed features) to further enable the detection of temporal 

relationships. 

When using the full dataset (including instrument usage information) the overall accuracies for the three 

methods are 75.9% for the plain SVM, 73.1% for the combination with HMM and 74.4% for the combination 

GT 

RF 

RF+ 
HMM 

Figure 14: Results of two surgeries (left and right) after classification with the combined RF+HMM approach. The top row shows the 
manually annotated ground truth, the middle row the preliminary classification as provided by the random forest, and the bottom row 
depicts the final classification after refinement by the HMM. 
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with CRF. The average Jaccard indices are 61.5%, 58.2%, and 59.0% respectively. As this outcome shows, 

the additional applications of HMM or CRF do not generally improve performance. The results on the 

reduced dataset (without instrument data) are highly comparable, with an accuracy of 73.9% for the SVM, 

69.6% for the combination with HMM, and 70.4% for the combination with CRF. The respective average 

Jaccard indices for the three methods on this trial are 58.9%, 50.6%, and 53.9% each. This shows again that 

no method dominates the others, though reducing the number of available features by focusing on easily 

deployable sensors only also does not decrease performance to a large degree, while greatly increasing the 

theoretical availability of the data. 

2.3.2 Using Surgical Video 
These experiments were aimed utilizing the laparoscopic video, which is by the very concept of minimally 

invasive surgery always available and easy to access digitally. The raw image data is more challenging to 

work with, though while they can be augmented by additional sensor data, the goal is to achieve acceptable 

results without the need for more sensors. 

2.3.2.1 Random Forest on Video and Combined Data 
The work described in 2.3.1.2 and [154] was also extended to utilize the laparoscopic videos available in the 

dataset. The random forest was trained and evaluated on image features extracted from the video frames, 

on rescaled video frames directly, and on the combination of the available sensor data with the extracted 

video features. The same parameters were used for the random forest as in the other experiments without 

video information. The dataset of 5 surgeries, the recorded sensors, and the employed phase definition 

used for these experiments are the same as described above as “first dataset”. The sensor data has not 

been filtered or augmented in this case. The source videos have been recorded with an image resolution of 

352x240 pixel, though due to the legacy recording device, different recordings have black bars of varying 

sizes at the image borders. To ensure a consistent dataset, the videos have been manually preprocessed by 

cropping the borders and resizing the resulting frames non-proportionally to a size of 64x64 pixel. 

Three different kinds of image features are calculated for each video frame. For all three color channels of 

both the RGB and HSV representation each, the average pixel value is calculated and used as first feature. 

As second feature, a bag-of-words (BoW) is created, counting the number of SIFT features [99] detected in 

equally sized image regions. SIFT key points detected exactly at the image border were ignored in this case. 

Finally, a HOG descriptor [37] is calculated for each frame and included in the feature vector. The free 

parameters of the individual image features were again optimized sequentially with a parameter sweep 

after initial guesses. A grid of 5x5 regions was chosen as base for the BoW, with a SIFT threshold of 0.01. 

The overlapping cell size used for the HOG was set to 24x24 pixel, with 5 bins used for the histogram. For 

another experiment, the images were down sampled to a size of either 16x16 or 8x8 pixel, split into the 

individual RGB color channels, and transformed into single vectors each. Then the three vectors were 

concatenated and used directly as image representation, without further feature calculation. 

Training the random forest on only the calculated image features for each video frame does not yield 

reliable results. The accuracy over all phases was 38.8%, the best and worst Jaccard index achieved per 

phase is 29.7% and 5.5% respectively, with an average of 20.4%. Using only the pixel data from the down 

sampled images produces worse results with an accuracy of only 28.0%. Finally, a random forest was trained 

with both the extracted image features and the corresponding, unfiltered sensor data. An accuracy of 65.1% 

and an average Jaccard of 49.8% were reached. While this is a clear improvement compared to using only 

video features, it does not reach the performance of focusing only on the sensor data. 

2.3.2.2 Deep Convolutional Networks on Video Data 
The following experiments used deep convolutional networks (as generally described in 2.1.5) on the 

laparoscopic video stream in order to detect various low-level signals, such as the number, type or location 
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of laparoscopic instruments [153]. No immediate workflow phase detection was done with this approach. 

However, the methods presented here can be used to improve or even replace other sensors for instrument 

detection, and as was already shown in [3], reliable information about used laparoscopic instruments can 

be used directly to accurately estimate the current surgical phase. 

The convolutional network VGG-16 [150] was used here, specifically the architectural setup labeled “D” in 

the original work. This network consists of a total of 13 convolutional layers and 3 fully connected layers, 

including the output layer. The convolutional layers in this network only utilize small convolutional filters of 

size 3x3, though larger filter regions can be achieved implicitly by concatenating several convolutional layers 

directly, without pooling layers in between. This approach has the advantage of introducing additional non-

linearities to the convolution, while also reducing the number of parameters compared to a single layer 

with larger filter size. The convolutional layers are pre-trained on common image classification datasets, 

while the training and optimization on the laparoscopic data is done only on the final, fully connected layers. 

The output layer has been resized from originally 1000 output nodes to 3 or 4, to fit the severely reduced 

classification requirements of these trials. The input images are taken from every 5th frame from the 

laparoscopic video, downsampled to 224x224 pixel and normalized to a mean brightness value of 0. 

The first classification task is to detect the number of surgical instrument visible in the image, in order to 

support other instrument detection methods. A dataset of 10 recorded surgical videos was split into three 

parts, containing images with none, one, or two visible instruments each. The correct number was detected 

in 71.5% of all cases. Another similar experiment was performed to detect the presence or absence of 

smoke from the HF coagulation device or excessive bleeding from injuries. Again, a dataset was created by 

splitting video frames into three categories for smoke, blood or none. The accuracy in this case was close 

to 100%, as this very simple classification mainly depends on very prominent, global color changes (see 

Figure 15). The absence of both blood and smoke was trained with regular laparoscopic images from inside 

the body, while external views (e.g. before the first cut or after removing the camera from the body again) 

were not part of the training set. However, anecdotal evidence suggest that these images can also be 

correctly identified, as none of the three trained classes received high confidence scores when presented 

with a sample image taken outside the body. As more challenging task, the network was trained to not only 

detect the presence of instruments in general, but to also detect the type of instrument. For this setup, 

images with visible instrument were selected and categorized if they showed either the PE forceps, the 

irrigation rod, the clip applicator, or the laparoscopic scissors (see 2.2.2.1). On this approach, an accuracy 

of 73.0% was achieved. 

Detecting the instruments not only by presence, but generating bounding boxes around them, can create 

more meaningful data (e.g. to estimate the interaction between tools and anatomy in future work). For this 

purpose the VGG was embedded into the Faster R-CNN framework [134]. This introduces an additional 

region proposal network (RPN) to suggest possible target objects, while the VGG is then used to predict 

Figure 15: Examplary frames of different classes: blood (left), smoke (middle), and regular (right). The aspect ratio of these images is 
distorted to achieve a square input as required by the classification framework. 
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their corresponding classes. Through an alternating 4-step training process between the RPN and the VGG, 

their convolutional layers can be shared, which improves the detection of objects fitting the trained 

categories and drastically reduces classification time. For this experiment, three diverse classes were 

defined for the gallbladder, surgical clips, and the retrieval bag. A total of 1324 images showing any of the 

mentioned objects were selected and annotated by drawing bounding boxes around the corresponding 

objects. The network achieved an overall accuracy of 81.8%, while the gallbladder detection scored highest 

with 99.8%, and the clip detection scored lowest with 75.5% accuracy. The main source of misclassifications 

were multiple, overlapping bounding boxes detected for the same object. 

2.3.3 M2CAI 2016 Challenge 
The advance of deep neural network structures in different fields of image classification have also led to a 

widespread application of this technique to the medical domain. It is mainly used for variations of 

instrument or anatomy detection, however inspired by the popular tradition of the computer vision 

community, in 2016 Nicolas Padoy, Andru Twinanda, and Ralf Stauder organized the combined workshop 

and challenges on Modeling and Monitoring of Computer Assisted Interventions (M2CAI)3. As part of this 

workshop, two related challenges were offered on two separate datasets, but both of manually annotated 

laparoscopic videos of cholecystectomies. One challenge was about the automatic detection and 

identification of surgical instruments in the given videos, while the other was aimed at correctly segmenting 

the videos into the surgical phases. The focus of this section is on the latter, workflow recognition challenge. 

The dataset of the workflow detection challenge consists of 41 laparoscopic videos, collected in two 

hospitals in Strasbourg and Munich, as described in [156, 167]. The videos were manually annotated into 

the same eight phases as described in 2.2.1. In order to keep the challenge close to possible clinical 

applications, all submissions were required to perform an online analysis of the data, meaning that for any 

given frame of a video, knowledge about all previous frames could be taken into account, but no following 

frames may influence the classification. On the other hand, a classification was considered correct, if it 

matched a ground truth label within a 10 second window, since phase transitions can often not be clearly 

related to single points in time. 

A total of five teams participated in this challenge, of which 3 teams employed variations of deep neural 

networks directly, while a fourth team used a CNN as feature preprocessing for random forests. Only one 

team did utilize machine learning techniques other than neural networks. During the challenge, only the 

labels for a subset of 27 training videos were given to the participants, while their classification results on 

the remaining 14 testing videos were compared to the ground truth by the organizers. The Jaccard index 

was calculated for each phase and each team, and the average of the Jaccard indices for each team defined 

their final score4. 

The submission by Sahu et al. uses a multi-step classification process [141]. First, a pre-trained AlexNet CNN 

with adjusted fully connected layers is used for feature generation. The output of this network is then used 

as input to a random forest classifier, of which the output is fitted to a time series cluster by Gaussian 

distributions. Finally, this time series prediction and the initial phase estimates are refined to the final phase 

prediction by a group of random forests, of which each forest is trained to specifically identify only a single 

phase. This setup could reach a mean Jaccard of 45.0. 

The contribution of Dergachyova et al. was based on an earlier work in [39]. In this approach, first a generic 

model is built from the observed phase transitions of the annotations. Then different image features are 

calculated for each video frame, which are used together with the extracted models to train an AdaBoost 

 
3 For more information visit http://camma.u-strasbg.fr/m2cai2016/. 
4 An updated ranking on this dataset can be found at http://camma.u-strasbg.fr/result-list-m2cai16-workflow. 

http://camma.u-strasbg.fr/m2cai2016/
http://camma.u-strasbg.fr/result-list-m2cai16-workflow
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classifier. As last stage, a generative Hidden semi-Markov Model is trained on the AdaBoost response 

signatures to conserve the temporal relationship between phases. As only submission without any usage of 

deep learning methods, they achieved a mean Jaccard of 51.5. 

Twinanda et al. also base their contribution on the AlexNet architecture [166]. For the workflow detection 

challenge, the outputs of the second to last layer of this network are taken as input features for a multi-

class SVM to calculate preliminary phase assignments. These are refined through a hierarchical HMM for 

the final classification. This architecture (called PhaseNet-m2cai16 with HMM in the describing paper) 

reached a mean Jaccard of 64.1 in the challenge, yet other, improved versions are also presented with mean 

Jaccard indices up to 69.8. 

The team of Cadene et al. placed second with their two-step approach [31]. In a first step, they evaluated 

several pre-trained CNN architectures on their capabilities to correctly assign video frames from the surgical 

videos to their corresponding phases. Then as temporal smoothing, they average the classification output 

over the last 15 frames. They achieved a mean Jaccard of 71.9 during the challenge, yet they also improved 

their approach afterwards and can reach a Jaccard of 81.6 by using a HMM in the second step instead of 

the simple averaging. 

The winning submission by Jin et al. uses LSTM units to create a recurrent CNN capable of capturing the 

temporal relation of phases without major post-processing [68]. The first layers of the network are based 

on a pre-trained ResNet-50 [60]. Again skipping the final layer, the obtained features were fed into an LSTM 

block to consider temporal information. As only post-processing, medically impossible phase transitions 

(e.g. trocar placement after dissection or gallbladder retraction before gallbladder packaging) were filtered 

out afterwards. With this approach they managed to reach a mean Jaccard score of 78.2. 

2.4 Discussion 
Several possible technologies for surgical workflow detection were briefly introduced in this chapter. By 

highlighting their respective strengths and weaknesses, it became apparent, that no universal “best” 

method exists. Due to their comparable performance, all techniques can reasonably be applied to this task. 

However, the diverse capabilities and secondary features of the different approaches can provide valuable 

advantages or additional insight to specific challenges. Most of the presented methods can work on 

incomplete data and are therefore in principle able to provide online classifications during a running surgery. 

Additionally, most procedures can classify a given data sample in real time, while others require more 

calculation time. Yet given the loose time constraints for practical workflow applications in ORs of up to a 

minute, all methods are capable of providing a result within acceptable response times. The decision, which 

method to apply to any given task, therefore has to be made based on availability of data and required 

secondary objectives. 

DTW requires relatively high quality, low-dimensional data, although the fact that phases are not detected 

through classification, but by warping the examined surgery path to a known, average sequence, 

interpolation between phase transitions can be done with higher confidence, and one can gain insights into 

the processes at a higher resolution than the originally recorded phases. Of all methods presented here, 

only HMMs actually produce an explicit model. This to some degree requires domain knowledge to set up 

labels and transitions in a meaningful way, the resulting model can however immediately be used for 

further applications. Random forests do not provide any extractable model on the other hand, although 

they can handle even noisy data very well. On account of their selection of suitable splitting functions, it is 

very easy to calculate the most impactful elements of the provided data, which can support a deeper 

understanding of the underlying processes or suggest areas for further exploration. CNNs finally provide a 

strong advantage when handling video streams, as they currently clearly outperform other methods in this 
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area, even without the need for manual parameter optimization, despite their substantial training and 

classification times. 

While phase detection is theoretically possible based solely on instrument information, this information is 

difficult to obtain automatically and in sufficient quality within the OR. For safety reasons only unobtrusive 

sensors can be employed, which are prone to external noise or interference from other instruments. Such 

signal noise can pose a problem to all approaches, which led to the random forests even effectively ignoring 

many instrument signals. Although it was still possible to get good results with only the remaining sensors, 

a major finding of these experiments was the concept of using simple, physical sensors where possible, as 

one might collect unexpected but valuable side-channel information. 

A data source alternative to simple sensors attached to instruments is the surgical video. This approach is 

inherently advantageous, as no additional preparations need to be done, since the camera stream is a 

necessary core element in laparoscopic surgery and therefore by definition always available. Analysis of this 

video stream is not trivial, though, but recent advances in the field of computer vision, object recognition, 

and scene understanding can be applied to intra-operative images as well. The successful application of 

deep learning methods to simple tool detection and immediate phase detection have been shown here, 

together with a short summary of the M2CAI 2016 challenge results. Many further aspects however, such 

as the detection of anatomical structures and a more fine-grained instrument detection still provide 

interesting future research areas. 
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3 Event Impact Factors 
The operating theatre is a very complex environment. Different afflictions require different interventions, 

each with their own planned workflow. Several people are involved, performing these interventions slightly 

differently based on their training, experience, or team composition. Various instruments, tools, and 

devices are being applied, which will also change based on availability of resources or new technological 

developments. Additionally to all performed actions in the OR, outside events can influence the situation. 

While all these variabilities can make identification of key elements highly challenging, each gesture can 

signal important changes, such as phase transitions or emergencies. The signaling effect of an individual 

gesture can vary greatly with its context, however. As an example, the act of the scrub nurse offering a new 

pair of surgical gloves to the surgeon is a completely normal step within the standardized preparation 

procedure during the very beginning of a surgery, before the first incision is made. Although if this event 

happens at a later stage, during a more critical surgical phase, the same gesture can reveal a severe problem 

and indicate a high risk of infection for both the surgeon and the patient if the surgeon’s hand was 

accidentally cut. Therefore, it should be obvious that leaving out such contextual information only risks 

masking important cues. 

As such events outside the regular surgery pattern can directly and indirectly through increased stress levels 

affect the outcome of the intervention and even the safety of the patient, it is critically important to be able 

to recognize and correctly evaluate such situations. Not surprisingly, several articles have been published 

to date, discussing the assessment of distractions [61, 146] and other stressful events [9, 10, 147] in the 

operating room. 

Identification and analysis of such events requires considerable manual effort, yet does not guarantee to 

produce reliable results. At best, one can hope to produce a look-up-table for previously observed, specific 

situations, while in the worst-case crucial but non-obvious elements might be ignored. Due to large number 

of people involved, surgical phases under study, and instruments in use, an exhaustive prediction of all 

possible combinations is practically not feasible either. A method is required, through which as many 

contextual cues as possible can be expressed in numerical terms. These terms can then mathematically be 

combined in an approach to calculate their relative importance. 

One application where such detailed analysis is necessary is the evaluation of novel medical devices. 

Manufacturers of surgical devices reasonably want to test their new products in real ORs to collect valuable 

feedback from the operating team. As the OR is a very expensive environment, the goal is often to extract 

as much information from as few surgeries as possible. Identifying relevant feedback from a small sample 

group can be problematic however, since outside factors, such as changing team composition and varying 

affinity for technology, greatly vary and influence the collected data. Based on the work already published 

in [124], this chapter will introduce methods to handle the mathematically related group decision-making 

problem and adapt it to ranking the different events occurring inside the OR, so we can compare the 

proverbial “apples and oranges”. 

3.1 Method 
In an attempt to model the relationships within the OR, [16, 90] introduce the idea of viewing everything in 

the OR from different perspectives. Especially the OR domain model by Bigdelou et al. uses three different 

views, for the acting human role, the used device or function, and the temporal workflow phase. Then 

mapping tables are defined between each pair of views and manually filled with observed interactions (e.g. 

a nurse handling surgical gloves in the preparation phase of an intervention would be counted for the 

mapping pairs “nurse – gloves”, for “gloves – preparation”, and for “preparation – nurse” each). 
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The method introduced here is based on this idea, although an arbitrary, but larger number of simple “view” 

functions will be employed to numerically evaluate each event. Each resulting value is then normalized and 

combined to a single factor, using the methods of group decision-making introduced below. 

3.1.1 The Group Decision-Making (GDM) Problem 
In the area of operational research, the term group decision making (GDM) or multiperson decision-making 

(MPDM) describes the problem of reaching a common decision among a group of people. From a list of 

alternatives, the “best” option needs to be found for the group as a whole. The term “best” is intentionally 

not defined here, as involved people have their own, personal opinion on what this should mean. Therefore, 

it is assumed that every group member ranks all possible options differently according to their preferences. 

When buying a car for example, people factor initial costs, mileage, brand name, test reports, color, 

available extras etc. with different weights. The goal of GDM is to quantify these individual rankings, 

normalize them to a common scale, and combine them to reach a consensus that best matches all personal 

priorities. 

This field has been under research for several decades by now [11, 139]. A major application of GDM are 

consensus systems for communities [6, 7, 160], although the concept of supporting decisions among several 

people has also been applied to the medical sector [129, 174]. The approach used here has been adapted 

mostly from the works of Herrera et al. [63] and Herrera-Viedma et al. [62]. An important parameter of the 

presented method is the choice of similarity measures and combining operators. As we will focus our efforts 

on the adaptation to a different solution, the most basic operators have been utilized here. Detailed 

descriptions and comparisons of other options are given in [32, 106]. 

A GDM in this subject is defined as a decision situation, for which a group of people (often referred to as 

experts) provides information, which provide the base to choose one or several options among a set of 

possible solution alternatives to a given question [63, 139]. Usually this preference information can be given 

in any of these three types of preference structures: preference ordering, utility function, or preference 

relation. As the simplest option, in the preference ordering all possible alternatives are arranged in a list 

from best to worst. No additional information is given, so it is not possible to differentiate varying gaps of 

confidence between neighboring positions or define ties of equal rank. Utility functions assess each 

alternative based on an external value, such as physical qualities or monetary value. As such, they may not 

always be available, yet they can provide more finely granulated insight and tend to be more objective. 

Preference relations finally provide the most detailed information, as all alternatives are directly compared 

pairwise. While this method is the most elaborate to collect, it even allows for intransitive relations for 

some alternatives. 

Different experts can use different preference structures on the same topic, so all collected information has 

to be unified, before it can be combined for the selection process. Since preference relations can store the 

most information, a viable approach is to convert both the preference orderings and the utility functions to 

this format [63]. The details of these methods are explained in the coming sections, when they will be 

applied to the ranking of surgical events. Then the different individual preference relations can be 

aggregated to a single collective preference relation exploiting the multiplicative nature of the relations. 

Additionally, it is possible to influence the outcome by employing fuzzy logic operators during this step, 

such as “most” or “as many as possible”, to apply different relative weights to each value. The second step 

in the selection process is the exploitation, where the collective preference relation is converted to various 

choice degrees, again supporting fuzzy operators. Two possible choice degrees are the multiplicative 

quantifier guided dominance degree (MQGDD) and the multiplicative quantifier guided non-dominance 

degree (MQGNDD). Given the provided expert feedback and chosen fuzzy majority quantifiers, the MQGDD 

calculates how much a given alternative dominates all other alternatives, while the MQGNDD calculates for 
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each alternative the degree, that it is not dominated by others. The best alternatives to choose for the 

group as a whole are the ones with highest values in both choice degrees. 

3.1.2 Adjustments and Application to Surgical Data Science 
When applying the ideas described above to the ranking of surgical events, the mathematics will be used 

to evaluate practically every gesture throughout an intervention by multiple aspects and combine them to 

a combined factor. This allows us to number the relative importance of each activity and compare them 

based on this factor. 

As described in more detail below, it is important to introduce new terminology for the calculation of impact 

factors to prevent confusion with similar sounding, yet different concepts of GDM. It is critical to note here, 

that the goal of this method is to combine several weak functions to a stronger score, and not to make a 

consensual medical decision of any kind within the OR. 

3.1.2.1 Surgical Events 
The surgical event e can be defined according to the requirements of the conducted experiment. A 

rudimentary approach is to consider every gesture performed by every person inside the OR. As this can be 

difficult to record and handle, it may be reasonable to limit the definition to only include specific surgical 

areas, phases, or persons. A suitable approach for evaluation of a prototypical medical device can also be 

the limitation to only take feedback and comments for the tested device into account [16]. Investigating 

distractions inside the OR for type, source, and possible impact on patient security is also a topic of major 

research interest [61, 146]. Each instance of an identified distraction can be taken as event to further help 

analyzing the impact of these distractions. A comparison and detailed explanations of how the elements of 

other works can be matched to surgical events are given in [124]. 

Every surgery can be seen as a set of events. 

𝐸 = {𝑒1, … , 𝑒𝑛} 

Each event5 itself is a tuple of various components, based on different views. 

𝑒 = (𝑐1, … , 𝑐𝑙) 

Therefore, the components of an event can represent diverse aspects of the OR, for example the involved 

person (e.g. the surgeon or a nurse), a relative or absolute time component (e.g. during the dissection 

phase), the utilized instrument or device feature (e.g. ultrasound imaging or laparoscopic scissors), or the 

affected anatomical structure (e.g. gallbladder). Other components are imaginable, depending on the 

performed experiment. 

3.1.2.2 Component Characteristic Functions 
Components of events are usually rather generic, text-based annotations, which cannot be directly used for 

further calculations. Hence, functions need to be defined, in order to assign numerical values to each event 

based on the various components. Each function usually only evaluates a single characteristic of each 

component (e.g. the age or the years of experience of a person for such a component), although multiple 

components can be taken into account. Conversely, every component should be taken into account by some 

function, and multiple functions can and should be defined per component, evaluating different 

characteristics. 

 
5 From a purely mathematical perspective, the events defined here correspond to the alternatives in GDM, as 
numerical values will be assigned to them for further calculations. 
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We will define three different types of component characteristic functions (CCF) with varying degrees of 

discrimination power and required collection effort6: ordering, rating, and pairwise comparison. 

The CCF-Ordering (CCF-O) defines a strict total ordering over all events based on a specific characteristic. In 

this case, an assigned value of 1 defines the “best” result. For the remaining events, values increase by 1 

each, in decreasing order according to the examined characteristic. The performed experiment should 

define the meaning of “best”, which can denote e.g. fastest, cheapest, safest, or other relevant meanings. 

This type of CCF is best suited for quickly obtainable feedback (for example through surveys with multiple 

domain experts), as a large range of possible options can be arranged quickly. On the other hand, this 

structure provides the least information, as it is by definition not possible to denote equal importance or 

relative distances in importance between different events. This constraint, although, has no mathematical 

background, as the further calculations explained below can also be done for multiple possibilities with the 

same order, assuming the remaining variables are handled carefully, in order not to lose their expected 

relations. Such a (non-strict) total ordering is still more limited than other CCF options, so if equality 

between events is expected or even desirable, a better suited rating (see below) can likely be defined. 

A function of type CCF-Rating (CCF-R) assigns a utility value to each event. This can convey more information 

than a CCF-O, is both ties and varying distances can easily be defined between events. CCF-Rs may not 

always be feasible, although if possible, they usually are the most straightforward and objective to collect. 

Physical measurements are common ways to obtain CCF-Rs, e.g. age, time, costs, pressure, power 

consumption, and others. Higher values must indicate more relevance. The values need not be normalized 

or bounded, yet they must never be exactly 0 to facilitate later conversion; practically a suitable ε value 

should always be possible instead of 0. 

Finally, a CCF-Pairwise comparison (CCF-P) is the most elaborate and discriminative form to evaluate event 

characteristics, by comparing all possible pairs of events individually. This theoretically even allows for 

intransitive relations, where superiority of an event 𝑒𝑎  over 𝑒𝑏 , and of 𝑒𝑏  over 𝑒𝑐 , does not necessarily 

imply the superiority of 𝑒𝑎 over 𝑒𝑐. A major advantage of this property is the ability to handle missing data. 

In such cases, every compared pair of events, where at least for one event an examined characteristic is 

missing or otherwise cannot be evaluated, is rated with the neutral value of 1. Then an event 𝑒𝑎  with 

missing data can have comparison values of 1 with other events 𝑒𝑏 and 𝑒𝑐 each, while these compare to 

each other with any possible value. This approach does not violate any constraints and requires no obscure 

placeholder values. CCF-Ps are stored as a unitriangular matrix 𝑃 ⊂ ℝ𝑛×𝑛, where a historically defined [140] 

value range of 𝑚𝑎𝑏 ∈ [1; 9]  defines varying degrees of dominance of event 𝑒𝑎  over 𝑒𝑏 , while the 

multiplicative reciprocals 𝑚𝑎𝑏 ∈ [
1

1
;
1

9
] define the opposite. A value of 𝑚𝑎𝑏 = 1 signifies equal importance 

between these events. 

3.1.2.3 Component Characteristic Matrix 
For further calculations, all these types of CCF need to be converted to a common structure. To this end, 

we define the component characteristic matrix (CCM). While a CCF can be defined independently from 

recorded events, the CCM always requires a known set of events, as each entry of the CCM depicts a 

comparison between two events. A CCM is a diagonally symmetrical matrix 𝑀 ⊂ ℝ𝑛×𝑛 with multiplicative 

reciprocal elements, so that 𝑚𝑖𝑗 ⋅ 𝑚𝑗𝑖 = 1. As before, a value 𝑚𝑖𝑗 > 1 indicates that event 𝑒𝑖 has higher 

relative importance than event 𝑒𝑗, according to the examined characteristic. A value 𝑚𝑖𝑗 < 1 signifies the 

opposite, and 𝑚𝑖𝑗 = 1  shows, that both events are equal based on this characteristic. Similar to the 

definition of CCF-P, the values of a CCM are bound to [
1

9
; 9]. 

 
6 CCFs correspond to the preference structures an expert would give in GDM; the three variations here are taken 
from [63] and adjusted to our approach. 
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In order to best capture the information carried by the ordering of a CCF-O, every value 𝑚𝑖𝑗  of the 

corresponding CCM should depend on the difference of ordering of both compared events 𝑜(𝑖) − 𝑜(𝑗), so 

that larger differences between the ordering of two events are represented analogously by larger 

differences in the resulting importance value. In order to preserve this relationship between orderings, yet 

still match them onto the allowed value range for CCMs, we first need to invert and normalize the ordering 

values to substitute values: 

𝑠𝑖 =
𝑛 − 𝑜(𝑖)

𝑛 − 1
 

These substitute values range from 0 for the event ordered in last place, to 1 for the highest ranked event. 

The obtained difference scale 𝑠𝑖 − 𝑠𝑗 now has to be fitted to the constraints for the values of a CCM, such 

as value range and multiplicative reciprocity. As shown in [63], among the functions fulfilling these 

constraints are exponential functions, so the simplest transfer function from CCF-O to CCM is given by: 

𝑚𝑖𝑗 = 𝑓(𝑜(𝑖), 𝑜(𝑗)) = 9𝑠𝑖−𝑠𝑗 

These formulae still produce valid results, even if multiple events are assigned to the same order, contrary 

to the original assumption of a strict total ordering. In the case of equally ordered events, one must pay 

attention to replace the number 𝑛 of all events with the number 𝑛’ of all unique order positions in the 

formula above. 

The utility values of a CCF-R also need to be converted, in order to form a CCM. The definition of a CCF-R is 

not bounded, so a prior normalization of the related utility values may not always be possible. Since the 

values of the CCM are always based on the compared impact between two events, A reasonable approach 

for the conversion is to set the two relevant utility values in relation to each other. The ratio between these 

values is an apparent solution for this, and as proven in [63], belongs to a family of functions suitable for 

this situation. Therefore, possible conversion functions from CCF-R to CCM are given below, with the trivial 

value of 𝑧 = 1 being a valid solution: 

𝑚𝑖𝑗 = ℎ (𝑢(𝑒𝑖), 𝑢(𝑒𝑗)) = (
𝑢(𝑒𝑖)

𝑢(𝑒𝑗)
)

𝑧

, 𝑧 > 0 

It is apparent, that this ratio can easily exceed the defined value range of CCMs, even if the utility values 

were normalized before. Hence after calculating the preliminary values of the CCM, these need to be 

transformed to fit the defined range of [
1

9
; 9], while maintaining the reciprocity of the values and the 

consistency of the original rating. Let the values of the CCM after conversion be within [
1

𝑎
; 𝑎]. As shown in 

[62], all values 𝑚𝑖𝑗 ∈ 𝐶𝐶𝑀 can now be normalized through the following function: 

𝑛𝑜𝑟𝑚(𝑥) = 𝑥
1

log9 𝑎 

Lastly, the CCF-P can be converted to a CCM in a straightforward way. Since the CCF-P is already defined as 

triangular matrix in the proper value range, only the remaining 0 values of the matrix need to be filled, 

following the multiplicative reciprocal property: 

𝑚𝑖𝑗 =
1

𝑚𝑗𝑖
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3.1.2.4 Event Impact Factor Calculation 
After obtaining all separate CCMs {𝑀1, … ,𝑀𝑟}, they must be combined to a single structure for the final 

calculation7. To this end, the different CCMs can be merged to a collective component characteristic matrix 

(CCCM) 𝑀𝑐. Suitable functions for combining each matrix value in this step are the arithmetic or geometric 

mean. It is possible, however, to use the more generalized form of ordered weighted arithmetic (OWA) or 

geometric (OWG) operators with custom weighting vectors [63, 106]. In this work, we will apply the 

geometric mean as special case of an OWG: 

𝑚𝑖𝑗
𝑐 = 𝜙𝐺(𝑚𝑖𝑗

1 , … ,𝑚𝑖𝑗
𝑟 ) =∏(𝑚𝑖𝑗

𝑘 )
1
𝑟

𝑟

𝑘=1

 

The newly created CCCM represents the combined comparisons between all pairs of events, taking all 

considered characteristics into account. Now all comparison values for each event can be combined, in 

order to achieve a single rating, depicting the importance of each event over all others. Similarly to the 

CCCM, different operators can be applied here. Here we will again use the geometric mean. 

𝐼𝑖 =
1

2
⋅ (1 + log9 𝜙

𝐺(𝑚𝑖𝑗
𝑐 , 𝑗 = 1,… , 𝑛)) 

The vector 𝐼 contains the event impact factors (EIF) for all examined surgical events8, where higher values 

indicate more importance or a larger surgical impact. This value allows measuring and comparing the impact 

each event had on the total surgery. It is clear, that the choice of characteristics and the related CCFs 

considerably influence the outcome of the EIF calculation. If all CCFs are based e.g. on costs and time, then 

the EIF indicates combinations of these, without taking patient safety or outcome into account. Great care 

has to be taken when defining an experiment, so that all intended aspects are represented properly in the 

employed CCF. 

3.2 Data and Experiments 
For compatibility and reusability of the data, this method was evaluated on newly recorded surgeries 

comparable to those in 2.2. Specifically the surgery type for these experiments was chosen to be the same 

with laparoscopic cholecystectomies. The laparoscopic video of each surgery was also recorded and 

synchronized with the other recorded signals. The video data was not used directly to generate 

measurements or CCFs, but instead was used for manual segmentation into workflow phases, annotation 

of used instruments, and ground truth annotation with an accuracy of 1 second each (see also 3.2.3). 

3.2.1 Pupil and Heart Rate Measurements 
The eye-tracking headset “Pupil” [71] was used to track the motions of a single eye of the head surgeon 

during surgery. While the headset is capable of recording the surrounding environment and calculating the 

gaze point after calibration through a second camera, this functionality was not used in this work. Using the 

 
7 The first part of this calculation, creating the CCCM, matches the aggregation step in classical GDM, while the 
latter part, the computation of the EIF, resembles the exploitation step. 
8 The EIF vector corresponds to the MQGDD as calculated in GDM. Another similar vector, called MQGNDD, is 
usually calculated and combined with the MQGDD in GDM to retrieve the top alternatives. However, here we 
are not interested in only the top results, but a numerical value for all events, therefore it is not necessary to 
calculate the second vector. 
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provided SDK functions the relative 2D position of the pupil as well as its diameter in pixel space were 

recorded with a frequency of 30 Hz (Figure 16). After the experiments, these data were processed to 

calculate derived values. One derived value was a simple median calculation of the pupil size over a sliding 

window of previously recorded frames. Another value was the movement distance between frames, 

summed up over the same sliding window of past frames. For the experiments in this work, a sliding window 

of 120 seconds was chosen, to filter out noisy signals and stay in the same temporal order of magnitude as 

other included signals. 

In order to record heart and breathing rates, the wireless Zephyr BioHarness data acquisition system was 

used (BIOPAC Systems, Inc., 42 Aero Camio, Goleta, CA, USA). Due to available hardware, up to three 

members of the surgical team could be equipped with a sensor, which transferred the recorded data via 

Bluetooth to the recording PC. Other than heart and breathing rate, the harness also measured and 

recorded posture as angle (in degrees) between the torso and vertically up, where negative values denote 

leaning forward. All measurements were sampled with a frequency of 1 Hz, and a sliding median over the 

previous frames was calculated. The same window size of 120 seconds was chosen as above. 

The data of the heart rate monitors as well as the eye-tracking headset were recorded on the same laptop 

computer, so that the recorded timestamps for both systems are identical (up to data transmission and 

processing delays). The system clock of this recording PC was regularly synchronized via wireless network 

connection with the recording server of the OR, which received and stored the signal data described in the 

last section. This ensures synchronous timestamps for all recorded data up to our intended accuracy of 

1 second. 

3.2.2 Definition of CCFs 
The CCFs defined for this experiment all aim to highlight possible risks inside the OR, therefore leading to 

an EIF vector that focuses on patient safety. These CCFs can be grouped by the frequency, with which their 

values are expected to change. 

The four fastest-changing CCFs are based on the sliding window calculations of the heart rate and eye 

tracking data described above. The first two functions are rating functions, using the median heart rate of 

the main surgeon and the assistant surgeon respectively as utility value (named CCF-R HR surgeon and CCF-R 

HR assistant each). The other two functions also perform ratings, based on the median pupil size and the eye 

movement of the acting person, as depicted above, for CCF-R pupil size and CCF-R pupil movement. While the sliding 

window of these functions is 120 seconds, they can be calculated at any point in time, so their values can 

change each second. The functions utilizing the pupil data can for obvious reasons only be evaluated on 

events linked to the surgeon wearing the eye-tracking headset. Therefore, a second evaluation layer is 

Figure 16: View from the eye tracking headset into the eye. The pupil movement as well as its size in 
pixel coordinates are extracted from the video stream and used for further calculations. 



52 

added for these functions to handle the missing data in other events. As first step, the CCF-Rs are evaluated 

on all suitable events only and converted to CCMs. Then a CCF-P is defined for each previous CCF-R as proxy 

function and used during the actual congregation. When either CCF-P is evaluated for events, which both 

provide pupil data, the corresponding value of the originally derived CCMs is taken. For comparisons, which 

include events without pupil data, always the neutral value of 1 is used. This is possible due to the 

intransitive nature of CCF-Ps explained in 3.1.2.2. 

A single function has been defined on the characteristic of the used instruments. As some instruments are 

used only briefly, while others can be used for several minutes continuously, the value of this function also 

changes approximately every few minutes. Every instrument used during the observed surgery type was 

graded by a medical expert with regards to the likelihood of causing unintentional injuries, subdivided into 

three grades of “severe”, “medium”, and “low”. Since multiple instruments are expected to receive equal 

labels, a rating function seems the likely choice, with utility values of 1 through 3 in increasing severity. 

Rating functions however take the difference of the utility values into account, which provides no actual 

meaning for such constructed values. Therefore, this situation provides the rare opportunity to define a 

CCF-O using a non-strict total ordering. The CCF-O instrument assigns the rank 1 to instruments labeled 

“severe”, a rank of 2 to instruments with a “medium” risk of injury, and rank 3 to the remaining instruments 

of “low” risk. Additionally, the rank of “no risk” with value 4 is introduced for situations, where no 

instrument is in use. Since this does not represent a strict ordering anymore, the substitute values defined 

in 3.1.2.3 must not be calculated using the total number of events 𝑛, but the number of unique ordering 

ranks, in this case 𝑛𝑖𝑛𝑠𝑡.
′ = 4. The available instruments as well as their respective risk assessment are given 

in Table 2. 

Table 2: All available instruments and their relative risk levels. A level of 1 denotes a high risk of accidental injury to the patient, while a 
level of 3 indicates a very low risk of injury. The value 4 (no risk at all) is reserved for cases, in which no instruments are present. 

Instrument Trocar Liver rod Alligator 
forceps 

Biopsy forceps 
(PE) 

Clip applicator 

Risk level 1 2 2 2 2 

Instrument Scissors Irrigation rod Electrified 
suction rod 

Retraction bag None 

Risk level 1 3 2 3 4 

 

Two further functions were based on the workflow phase, in which the event occurred. The first function 

CCF-R phase duration is a simple rating function, using the average length of each workflow phase (in seconds) 

as utility value for the characteristic. The second CCF-O phase risk is once more based on a simple survey of a 

medical expert, who was asked to arrange all workflow phases again by the risk of involuntary injuries to 

the patient. As the workflow phases are more differentiated, equal ranks are less likely, so this function 

specifies a strict total order. Table 3 repeats all distinct workflow phases and gives their respective average 

durations and the risk valuation by the expert. 
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Table 3: All surgical phases for this intervention type, in their typical temporal order. The risk rank assigns a strict ordering, where the 
phase of rank 1 has the highest risk for patient injuries, while the phase with rank 8 has the lowest risk. 

Phase Risk rank Average duration (s) 

Trocar placement 2 155 

Preparation 8 28 

Calot’s triangle 1 563 

Clipping & Cutting 3 404 

Gallbladder dissection 5 569 

Hemostasis 4 449 

Gallbladder packaging 6 84 

Gallbladder retraction 7 372 

 

Finally, a few functions were created on characteristics, which do not change during surgery, but can be 

helpful to compare events across different patients and surgical teams. One ordering function evaluates 

the staff members’ experience level (divided into 5 levels from novice to expert), while two other functions 

rate events based on the utility functions calculating the patient’s body-mass-index (BMI) in 
𝑘𝑔

𝑚2 and age in 

years, respectively. Table 4 shows these key values for all four patients in this study, as well as the team 

composition during each intervention. 

Table 4: Patient characteristics for all recorded surgeries. 

Surgery Patient’s BMI (kg/m²) Patient’s age (years) 

#1 31,2 40 

#2 25 56 

#3 19 41 

 

3.2.3 Experimental setup 
For this experiment, 3 surgeries have been recorded as described above. Based on the recorded 

laparoscopic video, each surgery was manually segmented into surgical steps. This denotes a finer 

granularity than the separation into phases, as done for the work in chapter 2 (see also [83]). Each step was 

defined around a single intention, such as “clipping the artery” or “dissecting tissue”, and therefore changed 

mainly with the usage of different tools. These steps had a more flexible organization with more switches 

and repetitions, as they do not have a relatively accurate structure like workflow phases. Each step was 

declared an event, and the EIF for all events per surgery were calculated using the previously described 

CCFs. 

Independently from the EIF calculation, a medical expert reviewed the surgical videos and identified as 

many “critical” steps for each surgery as they felt necessary. The expert was free to decide what they 

deemed as “critical”, although the general focus was on patient outcome and safety. The expert was a junior 

surgeon, who was not performing any of the recorded surgeries personally, but knows the procedure and 

the surgeons involved very well. 
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After the EIF calculation was finalized, its results were discussed with the medical expert again to evaluate 

the results. The expert was asked to comment on the EIF ranking, specifically with regard to the questions 

if the EIF ranking is reasonable and of any medical value, and can the events with highest EIF plausibly be 

considered critical situations. 

3.3 Results 
For the three recorded surgeries, the main and assistant surgeons were monitored with the heartrate belt, 

and during two surgeries the pupils of the assistant surgeon were tracked. Two different main and assistant 

surgeons each performed the interventions in mixed composition. During two recordings, the main surgeon 

left the OR early to leave the simpler last steps purely to the assistant, so incomplete datasets had to be 

handled. The procedures took between 19 and 66 minutes, as they were of very contrasting difficulties. All 

patients were female and aged between 40 and 56. 

Table 5: The five highest ranked events per surgery and their respective EIF. 

Surgery 1 EIF Surgery 2 EIF Surgery 3 EIF 

Dissecting Calot’s triangle 0,589 Setting Trocar 4 0,609 Clipping cystic duct 0,587 

Cutting cystic duct 0,587 Setting Trocar 3 0,608 Dissecting Calot’s 
triangle (II) 

0,573 

Final dissection of 
gallbladder 

0,560 Setting Trocar 2 0,595 Cutting cystic duct 0,570 

Final hemostasis 0,551 Dissecting Calot’s 
triangle 

0,556 Hemostasis 0,569 

Gallbladder dissection 0,549 Cutting cystic duct 0,544 Dissecting Calot’s 
triangle (I) 

0,554 
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3.3.1 EIF Calculation for Surgical Events 
All 3 surgeries were manually segmented into a total of 71 surgical steps with an average length and 

standard deviation of 116𝑠 ± 172𝑠 per step, which were used as events for further calculations. For each 

step, all suitable CCFs were evaluated (i.e. the CCFs based on pupil data could not be evaluated on one 

surgery). The values were converted to CCMs by comparison with all other events of the same surgery, and 

in case of CCF-Rs also normalized to fill the expected value range. The CCMs were then unified to EIF vectors 

according to the methods shown in 3.1.2. The resulting EIF of the top events per surgery are shown in Table 

5. The lowest value of the EIF varied between 0.37 and 0.4 over all surgeries, while the highest value was in 

the range of 0.59 and 0.61. The largest difference in EIF within the same recording was in surgery 3, where 

the EIF stretched from 0.37 to 0.59. A plot of the EIF value distribution, sorted in descending order per 

surgery, is given in Figure 17. The most impactful events had an EIF of 0.55 or above. 

3.3.2 Clinical Interpretation of Highest-Ranking Events 
The tissue dissection during the preparation of Calot’s triangle can be seen consistently within the 5 highest 

factored events of all surgeries, even if the dissection is split up as in one case. The last cutting or dissection 

steps during the “clipping and cutting” phase and the “gallbladder dissection” also tend to gain high impact 

factors. 

As an interesting effect, during the shortest and likely easiest surgery, the placement of the three trocars is 

ranked highest, while these events are spread in the middle value range for the other interventions. This is 

likely caused by two cumulative reasons. First is the fact that trocar placement is among the few activities 

which leave relatively large injuries during minimally-invasive surgery, probably providing a substantial 

static basis for impact factor calculation. Secondly, since all other steps in this specific surgery could be 

finished quickly without any interruptions, the relative impact of these events was estimated to be relatively 

low, which indirectly supported the trocar placement steps. 
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Figure 17: Events of all surgeries, sorted by their EIF in descending order. 
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A medical expert confirmed those findings and interpretations to be valid, as the cutting actions and the 

preparation of Calot’s triangle are generally the most critical parts of a surgery, especially with regards to 

patient safety. The special case of the highly rated trocar placement steps was also estimated to relate to 

the otherwise highly unproblematic progress of the intervention, as trocar placement has a rather fixed 

difficulty compared to other aspects of this type of surgery. 

3.3.3 Reliability of EIF Ranking across Multiple Surgeries 
Figure 18 shows the EIF of all steps of each surgery in their regular temporal order. Since the procedures 

were of different length, they have a different number of steps associated with them. For clarity, the events 

in the figure were spaced equally within overlapping workflow phases. Therefore, the shorter surgery 2 has 

fewer data points, yet corresponding steps of all surgeries match as well as possible. With this rough 

alignment, clear patterns become evident. The preparation step (after trocar placement) is always rated 

with low factors, since the surgical site is only checked, and often no instruments are present. Then a region 

of high impact events occurs, as the next steps involve the dissection and cutting of tissue, which poses the 

highest risk for the patient. The events during the second half of the intervention are ranked lower again, 

with a few distinct spikes for the final hemostasis, during which the surgeon checks for bleedings and 

injuries and, if necessary, seals them through coagulation. Based on the coarse events and CCFs used in this 

experiment, it is already possible to read the general progression of the surgery from the calculated impact 

factors. 

Some distinctive jumps in EIF values can be seen for some situations, as highlighted by green circles in Figure 

18. These jumps could be detected automatically and be used for some applications, such as automated 

reporting. The IHE defined several integration profiles, of which some could benefit from this kind of 

information. While suitable profiles currently only exist in the domain of Radiology [65], the integration 

profiles of “Key Image Note”, “Evidence Documents”, or “Standardized Operational Log of Events” seem 

most fitting when extended to the domain of Surgery or adopted by similar, surgery-focused integration 

Figure 18: EIF of observed events in their temporal order. Events for shorter surgeries (esp. surgery 2) have been spread out to match 
events of the same workflow phase over all surgeries. A few key events have been labeled for better orientation. Green circles highlight 
events possibly suitable for automatic triggering of further actions (see below). 
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profiles. In these profiles, images or other datapoints of particular interest are highlighted for later 

reference (similar to bookmarks). Key events identified in this manner through jumps in EIF can be of high 

importance regardless of regular workflow, even and especially events happening outside their usual 

context. 

3.4 Discussion 
In this chapter, concepts from group decision making within the field of operational research have been 

adopted to a completely novel method of surgical data science, allowing to quantitatively evaluate the 

impact of single events on the surgery. This methodology is to the best of our knowledge the first to solve 

such a problem in the context of surgical workflow analysis. 

The core idea of this method is to carefully define events within the OR, which fit the intended experiments. 

Then all occurrences of these events are recorded and compared to each other through an arbitrarily large 

number of helper functions. All these comparisons are compiled into the EIF vector, assigning a single 

relevance factor to each event. Due to the variety of available function types and their corresponding 

transformations, a wide variety of characteristics can be evaluated per event, and even missing data can be 

handled naturally in the last combination step. 

As this is the first adaptation of these methods to the surgical domain, unsurprisingly many open questions 

remain. Examining the influence of individual CCFs on the overall calculation is a likely next step. This may 

help better understand how the final EIF depends on the individual CCFs and may aid in identifying suitable 

characteristics to exploit for future experiments. Also, the effect of different parameters, both in the 

definition of CCFs and during the compilation of the EIF, offers room for optimization. During the 

experiments in this thesis, all parameters have been chosen to be the simplest values, which are acceptable 

in their respective formulae (e.g. 0 or 1). This includes the usage of aggregation operators. In both possible 

situations, the geometric mean has been used in this work, while other publications in the original area of 

GDM employ many different functions at this step of the calculation, up to fuzzy logic quantifiers. These are 

expected to emphasize some expert opinions or filter out others, depending on the magnitude or popularity 

of the opinion. Yet as the meaning behind the functions is radically changed in EIF calculation, the 

consequences of including such advanced quantifiers is difficult to predict. 

Finally, other applications of EIF calculation in the surgical domain should be explored. This requires suitable 

definitions of events, their characteristics, and appropriate measurements and evaluation functions. Such 

future inputs should take a general applicability into account. While the surgeons and OR staff affected by 

the data collection for these experiments were themselves interested in the results and therefore very 

obliging and cooperative, some privacy concerns were encountered on occasion. The monitoring of 

surgeons’ vital signals introduces a new level of surveillance, which could justifiably be mistrusted, yet the 

possible alternatives or benefits of this are better discussed separately. 

 

 





4 Unified Surgical Display 

59 

4 Unified Surgical Display 
In the last chapters, several approaches were presented to automatically detect what is happening inside 

the OR, and how important each of these steps are. Although these methods lay important groundwork, 

no application field has been thoroughly analyzed yet to understand how to utilize this knowledge. Some 

peripheral ideas have already been given, such as the evaluation of dexterity of young surgeons or a usage 

analysis for medical devices, which can be implemented by themselves as isolated systems. In contrast to 

this, a general solution to make workflow and context awareness available and useable throughout all of 

the OR and OR management will be described in this chapter. 

A modern OR provides a plethora of advanced medical devices to the surgical team. These devices are 

usually either not connected to a data network, or only to a closed, proprietary network, so outside access 

to the data is by default not possible. Some approaches have already been made to evaluate the feasibility 

of streaming the video data to external displays [143, 159], or even to collect and store any kind of recorded 

data in a structured manner [135]. A national collaboration effort of the German government and several 

involved research centers [110] recently also came to the conclusion, that improved networking and 

interoperability is necessary for the future development of the surgical environment. 

Most intraoperative devices are usually equipped with their own, separate controls (like keyboards), 

adjustable monitors, and a device-specific, highly specialized user interface. Yet due to sterility constraints, 

most of these devices cannot be placed in close proximity to the patient and surgeon. Consequently, in a 

surgery where multiple devices should be used, their placement is often arbitrarily decided based on 

available space, accessibility to other areas of the OR, and a safe margin to the actual operating table. Some 

manufacturers try to mitigate this issue through stand-, wall-, or ceiling-mounted monitors, yet these still 

tend to be rather large and can still obstruct the view of the surgeon or other staff members. This results in 

the situation that the surgeon has to switch their focus often far from the surgical site to access required 

information, despite the well-known negative impact this can have on the surgeon’s performance [56]. Early 

experiments in better placement of medical data displays had promising results [151], even though only 

prerecorded, static imaging data was used. 

A different method to handle the problem of display placement is the approach to avoid a group of classical 

displays completely. Some groups are working on providing audible cues instead of the common visual ones 

[1, 57], while many researchers already work with the technique of context-aware displays, very often in 

conjunction with augmented reality overlays [75, 78, 114]. A few groups also so far developed attempts at 

smart, unified surgical displays. An early work by Meyer et al. [107] collected various data from a diverse 

set of medical devices from multiple vendors, and ranked them by the number of staff members in the OR, 

which depend on either data stream. Then a central display shows relevant data in a divided interface. 

Information, which is relevant for at least two staff members throughout the whole surgery, is shown in a 

static pane, while information, which is only required during certain phases of the full process, is presented 

in a dynamically advancing pane. The prioritization of each possible data stream as well as the layout of the 

interface were done manually and prior to deployment in the OR. The state of the display changes 

automatically based on detected cues from manual data reporting or patient tracking data. No workflow 

modeling or automatic detection is done in this approach. Another, more theoretical approach by Schreiber 

et al. [145] already incorporates input from a workflow detection engine to adjust the displayed data to the 

surgical context, although the prioritization of different data streams is still taken from manual labels in an 

external database. This system allows for different layouts of a single screen, or a combined layout 

distributed over multiple screens of arbitrary sizes, yet the specific layout for each setup still has to be 

predefined manually by arranging several categorized areas (e.g. “essential”, “alert”, “navigation” etc.) 

among the combined screen space. 
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In a typical OR, the surgeon also does not have direct access to the controls of the available medical devices. 

Therefore, they have to resort to indirect methods, such as using long pointer sticks, explaining their 

intentions and the required device interactions to unsterile assistants, or leaving the sterile field themselves. 

Neither of these options are popular among surgeons as they disrupt their concentration, so all of them are 

only rarely used practically. Thus, many advanced features of the medical devices remain unused and many 

settings unchanged from the default, simply for efficiency and convenience reasons. This is a well-known 

problem, so many articles have been published, trying to provide alternative input methods to medical 

devices. Gesture recognition is a method used very often in research [15, 55, 59, 100], yet since surgeons 

usually require both hands on instruments at most times, the practical adoption of gesturing controls is still 

very low. Speech recognition systems able to interpret simple voice commands are already commercially 

available, yet usually still very limited. Also, their reaction times are usually much slower than that of human 

assistants, as besides the technical difficulties, these systems have no knowledge of the surgical context 

and cannot anticipate upcoming requests. Recent research [108] takes advantage of advanced, modern 

speech understanding systems, so the range of possible commands increases. Other works already try to 

incorporate surgical state into context-aware control mechanisms for robotic assistants [38] or connected 

OR devices in general [136]. 

As already said above, workflow intelligence can be included in many medical devices as separate, 

standalone system, and some device manufacturers have started to do this, although so far in a highly 

limited, often purely passive manner by grouping interface elements according to medical phases. As of yet, 

no generic, manufacturer-agnostic networking between surgical devices exists beyond the standardized 

access to the hospital’s Picture Archiving and Communication System (PACS). This originates partly from 

legal constraints and protection of proprietary systems, even though cross-system networking could offer 

a wide variety of data for workflow recognition, which in turn could provide situational context information 

beneficial for most medical devices. This can also be seen as a first step towards a fully implemented TIMMS 

as described in [90]. An early, preliminary implementation of the work presented in this chapter has already 

been shown in a workshop [152]. 

A unified surgical display can act as central information hub, connecting all devices, and imparting both 

workflow knowledge and a central interface to them. Therefore, in order to link the devices in an OR in a 

meaningful way, this chapter will introduce “one display to connect them all and in the workflow bind them.” 

4.1 Operating Room Setup 
A cooperation as described above has many technical, organizational, and legal requirements to its 

networking. The technical aspects include providing sufficient bandwidth and latency for different medical 

scenarios, while preventing or resisting interference with other signals. The legal constraints should cover 

the protection of the patient’s data both from eavesdropping and outside manipulation, as well as allow 

for traceable and verifiable communication protocols between devices. Finally, the organizational 

properties involve the intelligent collection, filtering, distribution, and display of data and other, related 

signals. 

Most technical challenges in the fields of networking, encryption, and authentication can be considered 

solved with regards to this application. Highly efficient data transfer options exist, both wired (such as IEEE 

802.3 Ethernet) and wireless (like different variants of IEEE 802.11 Wi-Fi, or the expected “5G” mobile 

broadband networking), which usually even include options for robust communication and data recovery. 

Additionally, a wide variety of cryptographic methods enables authentication and protects data integrity 

via encryption and digital signatures. 

A significant legal obstacle is the availability of open control interfaces and the responsibility for resulting 

actions. In many jurisdictions, the original manufacturer currently remains responsible for malfunctions of 
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their devices, even if the control signals were to come from an independent, external source. This situation 

naturally deters device manufacturers from offering such external interfaces at present. While projects like 

the German OR.NET [110] converge on this issue, it is mainly a task for political representatives to work on 

relevant laws and regulations. 

This section is focused solely on the organizational aspects mentioned above. Here the unified display itself 

will be presented together with a possible topological network setup, as well as requirements to collecting 

data from different sources and feeding control signals back to connected devices. 

4.1.1 Unified Display Hardware 
The unified display itself can be a regular, modern tablet PC. The needed networking capabilities are 

therefore in most cases already fulfilled. Sufficient battery run time can ease the setup per patient, although 

power supply can be provided along mounting points. To comply with the sterility requirements inside the 

OR, the whole display can easily be covered with sterile draping. Most capacitive and resistive touch 

interfaces continue to work even under several layers of sterile foil and surgical gloves, so no additional 

input devices (like mice, keyboards, or styli) will be necessary. The display can be mounted via adjustable 

arm directly on the patient’s bed, as close to the surgeon’s field of view on the surgical site as possible. This 

allows the surgeon to focus mainly on the surgical tasks, without the need to move and shift focus to 

external monitors when looking up relevant information. The core idea behind this concept is the close 

proximity to the main area of interaction, comparable to how navigational systems in a car cockpit are 

positioned near to the driver’s main view. 

The tablet runs a specialized, custom software, which focuses on natural user experience and high usability 

[171]. This goal should be achieved mainly by reduction to the relevant minimum through context-aware 

selection and filtering of information and possible interface elements, as described in detail in the sections 

4.2 and 4.3. 

4.1.2 Networking Requirements 
Collaboration between different devices in the OR, especially with a central interface, naturally requires a 

communication network between all intraoperatively used devices and sensors. The specifics of the actual 

network topology for this (e.g. ring or star shaped) are not as relevant, as long as parallel, bidirectional 

communication among an arbitrary number of clients is possible. A star-shaped network with the unified 

display as central hub is theoretically sufficient, yet highly impractical. It is very likely that other devices also 

need to communicate with each other or external systems, like an image viewer, which needs to be able to 

access the hospital PACS, or the workflow detection (see chapter 2) and EIF calculation (chapter 3), which 

will likely run on separate servers. 

The various possible aspects of a unified display also have very different timing constraints. As phase and 

event transitions usually take several seconds, workflow analysis and EIF calculation can be done already 

with relatively slow communication, as their results do not need to be updated that frequently. Switching 

of general device states (e.g. lights, or the settings of imaging devices) also do not have strict real-time 

requirements, although for reasons of proper usability they should come in effect within approximately a 

second. However, since commands typically can be represented in comparably small data packages, fast 

transmissions and negligible delays should be expected. Direct and continuous control of devices (such as 

the HF generator for electrical coagulation, or surgical robots) on the other hand must happen in real-time. 

Input lag and latencies in the control of such devices can lead to a negative feedback loop and dangerous 

oversteering, which can cause severe injuries. Finally, the streaming of image sources to the central display 

makes high demands on bandwidth and video encoders. Depending on the modality, the imaging data 

should be able to be streamed to the display without noticeable delay, especially if the imaging device is 

used for navigational purposes and part of a hand-eye-coordinated feedback loop. 
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As mentioned in the last section, the unified display itself is technically a regular tablet PC, and as such 

already equipped with networking adapters (in most cases wirelessly, but wired connections are also often 

possible). Additional control servers, such as for the calculation of workflow information or for logging 

purposes, also should provide built-in, regular networking connectors. Similarly, future medical devices are 

likely to offer networking interfaces, assuming that proper standards and regulations have been established. 

All devices of a current integrated OR, where available, are already connected through proprietary 

communication buses. This network could theoretically be utilized though a translating device, which is able 

to connect to both the regular OR network and the bus system of the integrated OR. As already mentioned 

above, the main obstacle to this are not technical, but legal issues. Lastly, legacy devices usually do not have 

available data connections. Nonetheless, in every case these devices have some form of keyboard-like input 

and a monitor as output, which are often connected internally through standard plugs. Therefore, it is 

possible to capture the video output, encode it, and feed it into the network through appropriate additional 

hardware. 

4.1.3 Data Aggregation 
All connected devices in the OR network should follow the basic publisher-subscriber design pattern [50]. 

Imaging devices, sensors, and other instruments, which can provide data, implement the publisher interface, 

while devices like the unified display, which can receive and process data, subscribe to these data sources. 

Data should only be sent, if at least one subscriber is listening to updates, to prevent unnecessary 

congestion of the network and allow for maximal transfer rates. It is likely that some sensors will be active 

throughout the full surgery, as their data can be used to detect workflow changes or surgical events. Other 

data, especially with a high bandwidth load, are only observed as needed, e.g. when the video stream of an 

imaging device is shown only during a specific phase. In order to allow devices of multiple vendors to 

communicate with each other, a common standard is required. The working group “DICOM in Surgery” [89] 

can provide such a standardization as shared communication base.  

Modern devices can directly provide suitable measurements and vital signs to the network, possibly 

through a translation tool, which converts between proprietary protocols and the shared network. On the 

other hand, frame grabbers can capture the image output of legacy devices (as mentioned above, see also 

Figure 19) and provide the image stream directly to the network. During this step, additional post-

processing can be performed on the recorded signal. Numerical measurements, which are printed to the 

screen as text, can be extracted via text recognition. Furthermore, the device can be extended by added 

Figure 19: Overlays can enhance the usability of legacy devices, as additional functions (both 
in software and through other devices) can directly be called. 
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image processing functionality, such as contrast enhancement, color correction, object recognition, or if 

possible supplementary calibration and measurements. 

4.1.4 Control Channels 
The unified display offers a prime opportunity for interactive controls in the OR due to its location close to 

the surgical site and easy accessibility to the surgeon. To facilitate this, devices can provide interfaces and 

an abstract control definition, which will be described in further detail in section 4.34.2.2. This definition 

essentially only lists basic interaction concepts like switches or numerical range inputs, without any 

layouting information, such as positions or sizes. These specifications can then be used to generate user 

interfaces suitable to the display size and current situation as described below. Additionally, to these 

interaction elements, also controls for detailed device parameters can be listed. Control signals and 

appropriate parameters for these commands can be received by the devices through secured interfaces 

(comparable to the concept of web services) available to the OR internal network. The unified display can 

then collect such definitions in order to send signals back to the devices, both from UI interaction from the 

surgical team, as well as predefined commands, which can be triggered automatically by workflow 

transitions or other detected events. Legacy devices, which cannot offer such interfaces themselves, can be 

included into the network through translational tools again. Typically, legacy devices provide some sort of 

keyboard and mouse input, which can be emulated by software and sent to the device as gestures, 

simulating the input of a regular human operator [100]. 

4.2 Information Selection 
To prevent mistakes, the surgeon should be able to focus on the patient as much as possible. Additional 

data is often necessary and important for certain steps of a procedure, but they are not needed 

continuously throughout the full operation. In most cases, specific data (like imaging sources or 

preoperative scans) are only relevant during few steps of the surgery. 

Current information systems provide large monitor walls, mounted on the walls or ceiling, with all available 

data displayed at the same time, arranged next to each other. While the arrangement and selection of 

shown elements is generally customizable, the manual effort to do this is typically not made, especially by 

the surgeons who are supposed to benefit from it afterwards. Therefore, the task of locating and extracting 

the wanted information from this massive collection of data poses a substantial cognitive load to the 

surgeon. This becomes more crucial if the surgeon requires atypical information, of which they do not know 

the position and need to search for it on the screen first. 

Through the contextual knowledge of workflow detection and the importance weighting of impact factor 

calculation the unified display can estimate the most important elements to display at any given time during 

the surgery. For safety reasons, the surgeon should obviously always have the possibility to switch to any 

available view at all times, although even this fallback option can benefit from the context knowledge by 

presenting other options in order of their estimated impact on the current situation. This general idea can 

not only be applied to displayed data, but as well to interaction elements, as not all commands are equally 

relevant throughout the surgery either. Any type of interaction with members of the staff as in [16] are 

generally suitable for this kind of presentation. 

4.2.1 Display of Most Relevant Data Source 
To enable a context specific display of only appropriate information, the unified display has to collect a list 

of all available sources in the OR network first. All data sources and their modalities should be identified 

through unique names or ID numbers. Then a ranking can be applied based on the EIF calculation presented 

in chapter 3. 
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Among the characteristics included for each event (see 3.1.2.1), the ones regarding tools and devices are 

key for this approach. First, a virtual event is created for each device and, where applicable, each supported 

mode. The related devices and their possible settings are considered as tool components. The currently 

detected workflow phase is taken for the timing component, while the main person using the display (e.g. 

the head surgeon, see also 4.3) is used for the human role aspect. Other views are filled as needed with 

either constant values, or other reasonable values extracted from the current surgical situation where 

possible. During the procedure, only those CCFs are evaluated, which assign a value based to some degree 

on the collected imaging sources. Therefore CCFs, which only consider the device, will always provide a 

constant factor. When staff or patient data, which does not change within one surgery, is also taken into 

account, these functions will provide a constant factor during the current surgery, but this factor changes 

between different patients. A dynamic factor during the surgery is delivered by CCFs, which also take 

changing aspects such as the workflow phase into account. Lastly, these CCFs are combined according to 

the regular EIF algorithm. The final EIF ranking of the virtual events resembles the ranking, with which each 

related image source should be displayed at any given time. 

4.2.2 Context-Specific Interactive Control Elements 
As mentioned in 4.1.4, the unified display discovers network attached devices and collects the definition of 

their available commands and input elements. These elements are defined in an abstract way as either of 

the following: 

• Triggers, which send a single, parameterless signal to the device; comparable to regular buttons. 

• Switches, which have two states (usually “on” and “off”) and send a single signal with state 

information to the device when changed; can be represented either as switchable button, 

checkbox, switch, or single selection of two options. 

• Value ranges, which can take any numerical value between two limits, and send a signal with 

according value parameter to the device for every change in the value; can be visualized as slider, 

dial, numeric value input, or single selection list of consecutive integer values if the value range 

permits. 

Additionally, a passive value display can be declared, e.g. to display the actual value next to a slider defining 

a nominal value. All elements contain an identifier and a textual label for presentation. Several Control 

elements can be assembled together into logical groups (e.g. table control, or ultrasound Doppler settings) 

and possibly organized within workflow phases or target roles. No layouting data of any kind, like positions 

of sizes, are stored, neither in absolute screen space, nor in relation to each other. The final rendering of 

the chosen elements is done with regards to the available screen size and described in the next section. 

The ranking of possible elements is done analogously to the selection of data sources shown in 4.2.1, yet 

with the focus of CCFs on general devices providing input channels. If such a level of detail is available 

through the CCFs, the ranking of UI elements can be done down to each logical control group individually, 

otherwise the devices can be ranked as whole, and the shown controls for high ranking devices are selected 

according to the assigned workflow phases. For this aspect of the unified display it is more important to 

calculate a correct ranking compared to a single best selection, as several controls or control groups can be 

displayed at the same time. 

4.3 Dynamic User Interface Generation 
The results of the ranking and selection process of sources and UI elements depend fully on the chosen 

CCFs and the parameters provided to them. Therefore, it is a reasonable approach to not only change the 

parameters between devices and over time, but also take advantage of changing parameters in other views 
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on the OR environment, such as the staff role. This allows for specialized displays for all members of the 

surgical team. 

The general method dynamically generates specialized user interfaces for the unified display based on the 

abstract control information provided by connected devices, after all elements have been ranked. Most 

control elements can be represented by a variety of interaction elements (see above), so the choice for a 

specific visualization should follow the best usability option for a given device and input mode. The sizing 

of all elements as well as the layout in rows and columns depend on the available screen size, display 

orientation, and the number of selected controls to show (Figure 20). Larger screens generally allow for 

more elements, while keeping the physical size of each element within reasonable bounds, suitable for 

touch interaction. Image sources, on the other hand, must have a high priority, as these sources cannot be 

easily scaled down without loss of information or precision. Consequently, when shown, image sources 

move other elements to the rim of the screen and thus limit the number of interaction elements further. 

All elements within a logical group, as well as the groups themselves can be arranged mainly in rows or 

columns, depending on the screen orientation. 

4.3.1 Large Display for Main Surgeon 
The most screen real estate on displays intended for the main surgeon should be dedicated to available 

imaging sources. Regular displays for these data already exist in ORs, yet the key advantage of a unified 

display for the main surgeon, even if only the same data is presented, lies in the close proximity of the 

provided data to the actual surgical site. As added benefit, some space for UI elements can be provided to 

the side of the imaging data, yet it should be limited to very few, important options, to prevent cluttering 

the screen and distracting the surgeon. Also, since surgeons should be able to fully focus on the patient and 

tend to continuously use both hands to control instruments, placing regularly used commands (e.g. HF 

coagulation and cutting) on the surgical display would rather hinder than support surgeons. Control 

elements mainly used for changing settings related to the shown image source are best suited in this case. 

Parameter changes for image modalities usually require both experience and technical understanding of 

the underlying imaging technique. Furthermore, it can be difficult to explain visualization preferences to 

external assistants, so the ability to change them personally and according to the patient situation can 

accelerate or sometimes even enable the customization process. 

4.3.2 Auxiliary Displays for Assistants and Nurses 
Large enough displays can be provided also to assistant surgeons, so that they can better relate the shown 

image sources to the performed actions during their training. Assistant surgeons can be provided with 

Figure 20: Different generated views of the same UI elements. Differences are in the orientation (landscape on the left, 
portrait on the right) and the consumed screen estate. 
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different and more commonly used control commands than the head surgeon, as they are more likely to 

have the manual capacity to operate the display controls during the procedure. This will promote assistants 

to take more control of the parameters of used devices, which is not being done at all in most cases 

currently (Figure 21). 

Smaller screens are in most cases sufficient for nurses. At most, they use live video streams to follow the 

progress of the surgery and prepare future requests, no medical decisions are made by them. Additional 

overlays can display workflow information and predictions about upcoming tasks to support nurses in 

training. General state changes within the operating theatre, such as changes in lighting, are currently done 

by the non-sterile nurse, although they are also responsible for documenting the procedure and refilling 

heavily used supplies, often for multiple ORs. To prevent waiting times and conflicts, such controls can be 

given on a display to the sterile scrub nurse. 

4.4 Discussion 
The unified surgical display presented in this chapter is an approach to combine the methods of surgical 

workflow analysis and event impact factor calculation, in order to change the way information is conveyed 

inside the OR, and attempting to implement a TIMMS [92]. The basis for this is a data transfer network 

between all devices in the OR. As mentioned before, this requires changes in the current laws governing 

medical devices, to allow for such connections without burdening some few manufacturers with all related 

legal risks. Then a communication protocol can be defined for device discovery, which immediately enables 

the data collection required for surgical workflow detection. Both the detected workflow knowledge and 

the available sensor data can be utilized to calculate event impact factors in real-time, through which 

displayed data and control elements can be chosen. All this facilitates a central, surgical interface, tailored 

to each intervention, each patient, and each member of the surgical staff. 

The advantages of such a unified display are manifold. A minor improvement to the situation in the 

operating theatre is the enhanced usability of presented data, due to the better placement, closer to the 

actual surgical situs. As this only requires passive data collection, this can already be employed in a modern 

OR, given that all active devices at least offer a regular monitor output. When feedback channels are 

possible, directly providing control elements to the surgical team through the unified display can also 

increase the usage of secondary device features. These non-critical functions and parameters are often 

ignored, as their additional benefit does not yet outweigh the costs of using them through assistants or 

separate control interfaces. When they can be operated directly by the head or assistant surgeon, this 

interaction cost drops, and the available functions are more likely to be exploited. Finally, such a central 

display enables completely new interventions with heavy usage of different devices. These would not be 

feasible so far, as simply the space in an OR prevents arranging too many appliances around the patient and 

the team, especially in a way, which would allow the surgeons to reach their control panels and manipulate 

Figure 21: UI generated for a small, handheld device. OR assistants usually do not require direct access to imaging 
data, access to functions relevant to their tasks, such as documentation is sufficient. 
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the tools in a sterile way. With the controls and data display combined into the unified display, the majority 

of devices can be placed further away, with only their active elements (such as sensors or robotic effectors) 

requiring access to the patient. 

The unified surgical display is intended to build the infrastructure of smart operating rooms in the long term. 

Through the common network, protocols, and central interface, it allows even for small and independent 

developers to add value to the OR. As certification is already a required part of joining the network 

communication, the safety and integrity of the surgical environment can be perpetuated, and in the event 

of mistaken commands, these can be traced back to the originating element. Manufacturers will also be 

able to design light, “headless” devices, only focused on their medical functions, as all inputs and outputs 

will be handled through the unified display. Even pure software applications can capture available data, 

offer their functions to the network, and display their results centrally. This allows hospitals to maintain 

more flexible, modular operating rooms, which can also offer higher functionality and more specialization, 

down to patient-specific and individual procedures, even enabling personalized single-use tools. 
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5 Conclusions 
The future of surgery is a field inspiring many research groups, and this thesis hopefully contributed to its 

advancement. Chapter 2 presented and compared several methods to automatically detect surgical 

workflow. While some immediate applications can be derived from the recognized workflow information, 

its main goal is to provide an infrastructure for context awareness inside the OR, so that multiple tasks on 

different devices can be automated. In chapter 3, a first approach was described to rank events in the OR 

according to their relative importance. This provides meaningful additional situational knowledge besides 

the purely temporal data obtained from workflow analysis. Finally, chapter 4 combines these aspects into 

a novel, central data and control hub, the unified surgical display. By accessing all available data in the OR 

and selecting and presenting only the contextually most relevant information, this can already be seen as a 

next step towards implementing a TIMMS [92] in the operating theatre. 

Surgical data science is just developing as a research area, and still lacks adoption by numerous device 

manufacturers in the medical domain. Most data used in research so far is either collected by manually 

taking notes, through additional sensors, or by accessing specific research data ports, unavailable on devices 

in regular medical use. An important step towards the next technological maturity level [90] of the digital 

operating room is the standardization and opening of intra-operative device communication to allow for 

general and vendor-independent interoperability. The surgery domain of the IHE initiative [29] is working 

on integration profiles to solve this issue, and the broad support by numerous industrial partners can be 

seen as indicator for its successful future adaptation. 

Following the expected further evolution of surgery [102], a future surgeon is able to take considerably 

more information into account for each individual case than before due to the better integration of devices 

and databases and automatic compilation by smart, digital assistance systems. Contrary to some 

expectations, this does not only benefit the prestigious and highly technological model-ORs of few, selected 

hospitals. As many achievements in this domain are mainly software solutions, these methods can equally 

well support extreme and remote medical situations, such as in developing countries or on space stations. 

A health worker with a solid medical basis, but without specialized knowledge will still be able to perform 

some rudimentary interventions, as software assistance on top of a sufficient database can provide step-

by-step instructions. While a truly automated surgeon still lies more within the realm of science-fiction, 

surgery in countless adaptations can profit from applied surgical data science, such as presented in this 

thesis. 
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6 List of Abbreviations 
ANN Artificial Neural Network 

BMI Body Mass Index 

BoW Bag-of-words 

CCCM Collective Component Characteristic Matrix 

CCF Component Characteristic Function 

CCF-O CCF-Ordering 

CCF-P CCF-Pairwise comparison 

CCF-R CCF-Rating 

CCM Component Characteristic Matrix 

CNN Convolutional Neural Networks 

CPU Central Processing Unit 

CRF Conditional Random Field 

DICOM Digital Imaging and Communications in Medicine 

DOR Digital Operating Room 

DPM Digital Patient Model 

DTW Dynamic Time Warping 

EIF Event Impact Factors 

GDM Group Decision Making 

GP-GPU General Purpose GPU 

GPU Graphics Processing Unit 

HMM Hidden Markov Model 

HOG Histogram of Oriented Gradients 

HSV Hue, Saturation, Value color space 

IEEE Institute of Electrical and Electronics Engineers 

IHE Integrating the Healthcare Enterprise initiative 

LSTM Long Short-Term Memory 

M2CAI Modeling and Monitoring of Computer Assisted Interventions 

MPDM Multiperson Decision Making 

MQGDD Multiplicative Quantifier-Guided Dominance Degree 

MQGNDD Multiplicative Quantifier-Guided Non-Dominance Degree 

OR Operating Room 
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OWA Ordered Weighted Arithmetic operator 

OWG Ordered Weighted Geometric operator 

PACS Picture Archiving and Communication System 

RFID Radio-Frequency Identification 

RGB Red, Green, Blue color space 

RPN Region Proposal Network 

SDK Software Development Kit 

SDS Surgical Data Science 

SIFT Scale-Invariant Feature Transform 

SNR Signal-to-Noise Ratio 

SPM Surgical Process Model 

SVM Support Vector Machine 

TIMMS Therapy Imaging and Model Management System 

UI User Interface 
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