
Multi-level Bézier extraction for hierarchical
local refinement of Isogeometric Analysis

Davide D’Angella ∗1,2, Stefan Kollmannsberger1, Ernst Rank1,2, and
Alessandro Reali2,3

1Chair for Computation in Engineering, Technische Universität München, Germany
2Institute for Advanced Study, Technische Universität München, Germany

3Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Pavia, Italy

Abstract

One of the main topics of research on Isogeometric Analysis is local refinement. Among
the various techniques currently studied and developed, one of the most appealing, re-
ferred to as hierarchical B-Splines, consists of defining a suitable set of basis functions
on different hierarchical levels. This strategy can also be improved, for example to re-
cover partition of unity, resorting to a truncation operation, giving rise to the so-called
truncated hierarchical B-Splines. Despite its conceptual simplicity, implementing the hi-
erarchical definition of shape functions into an existing code can be rather involved. In
this work we present a simple way to bring the hierarchical isogeometric concept closer
to a standard finite element formulation. Practically speaking, the hierarchy of functions
and knot spans is flattened into a sequence of elements being equipped with a standard
single-level basis. In fact, the proposed multi-level extraction is a generalization of the
classical Bézier extraction and analogously offers a standard element structure to the
hierarchical overlay of functions. Moreover, this approach is suitable for an extension
to non-linear problems and for a parallel implementation. The multi-level extraction is
presented as a general concept that can be applied to different kinds of refinements and
basis functions. Finally, few basic algorithms to compute the local multi-level extrac-
tion operator for knot insertion on spline spaces are outlined and compared, and some
numerical examples are presented.

Keywords: isogeometric analysis, local refinement, (truncated) hierarchical B-Splines,
Bézier extraction

∗davide.dangella@tum.de, Corresponding Author

Preprint submitted to Computer Methods in Applied Mechanics and Engineering
The final publication is available at doi.org/10.1016/j.cma.2017.08.017

doi.org/10.1016/j.cma.2017.08.017

1 Introduction

Isogeometric Analysis (IGA) [1, 2] is a powerful approach for the numerical analysis of
problems governed by partial differential equations (PDEs). Its aim is to bridge the gap
between geometry and simulation by performing finite element analysis using the same
functions that represent the geometry in Computer Aided Design (CAD). Classically,
these include tensor product B-Splines and Non-Uniform Rational B-Splines (NURBS).
Thanks to the high-regularity of the adopted basis functions, IGA has shown better
accuracy per-degree-of-freedom with respect to standard finite elements in many appli-
cations ranging from solids and structures (cf., e.g., [3, 4, 5, 6]) to fluids (cf., e.g., [7, 8])
and fluid-structure interaction (cf., e.g., [9, 10]), opening also the door to geometrically
flexible discretizations of higher-order PDEs in primal form (cf., e.g., [11, 12]).
Within this context, adaptivity has become a fundamental topic of research, as the

tensor product structure of B-Splines and NURBS precludes local refinement. Therefore,
different techniques are being currently developed, including T-Splines (see, e.g., [13,
14]), LR-Splines [15] and hierarchical B-Splines (HB) (see, e.g., [16, 17, 18]). HB are
based on the definition of a suitable set of basis functions on different hierarchical levels
and look like one of the most promising ways to effectively implement local refinement in
IGA. This strategy has been recently improved under the name of truncated hierarchical
B-Splines (T HB) [19, 20], with the aim to recover partition of unity and improve the
bandwidth granted by standard HB. Following its mathematical formulation, these
techniques can be implemented with ad-hoc algorithms (see, e.g., [21]). However, despite
its conceptual simplicity, implementing the hierarchical definition of shape functions into
an existing code can be rather involved.
In this work, we present a simple way to bring the hierarchical concept closer to a

standard finite element formulation. From the practical point of view, the hierarchy of
functions and knot spans is locally flattened into a sequence of elements being equipped
with a standard single-level basis. In fact, the proposed multi-level extraction is a
generalization of the classical Bézier extraction [22] and analogously offers a standard
element structure to the hierarchical overlay of functions. The proposed approach is
suitable for an extension to non-linear problems and for a parallel implementation. In
addition, the multi-level extraction is presented as a general concept that can be applied
to different kinds of refinements and basis functions.
In the literature, several works moving along analogous research lines can be found.

In [23] a similar approach is applied globally level-wise, where the active entries of
the system matrices are computed in a standard way for each level. Then, each level
system matrix is transformed and assembled to the hierarchical system. One advantage
of this approach is that no connectivity information is needed. However, for large and
parallel applications a local method is more efficient. Moreover, for non-linearities,
the solution or its derivatives have to be evaluated at each integration point. This is
naturally a local operation that would be less efficient when following a global strategy.
Another similar global approach can be found in [24], where the active entries of the
system matrices K l are computed for each level l, they are inserted in the diagonal of
a diagonal block matrix K and, finally, K is transformed in the hierarchical system.

2

The advantages and drawbacks are similar to the ones discussed for [23]. In [24, 25],
Bézier extraction is applied level-wise in a standard fashion, while we propose to apply
it just once per element, combined with the multi-level extraction. In this way we
extract at once all the hierarchical functions supporting the element. A very similar
framework is presented in [26, 27], but it is restricted to the overlay of uniform knot
vectors obtained by bisection, no knot repetition (in particular, no open-knot vector) is
permitted and the approach does not extend to truncated hierarchies. Moreover, the
method in [26] is developed with the restriction of [18], i.e., refinements on the boundary
are not allowed. Here, we consider more general refinements, truncated hierarchies,
knot repetitions, open-knot vectors and we provide alternative algorithms to produce
the extraction operators. Another closely related concept is outlined in [28, 29, 30],
but also here truncation is not considered and we conceptually separate the multi-level
extraction from the standard Bézier extraction, setting a more general independent
framework applicable to any sequence of nested space. In particular, we consider possibly
different target hierarchical spaces, i.e., T HB, and different standard functions, like
B-Splines, Bernstein or Lagrange polynomials. In addition, we present and compare
different algorithms to compute the multi-level extraction operator for knot insertion on
spline spaces.
The structure of the paper is as follows. Section 2 introduces the HB and T HB

refinement strategies together with associated fundamental concepts. Section 3 discusses
the multi-level extraction and its basic algorithms. Finally, Section 4 presents some
numerical experiments.

2 Preliminaries

In this section, we concisely discuss some preliminary concepts we will use throughout
the paper. In particular, we present B-Splines and NURBS, the idea of Bézier extraction,
as well as hierarchical splines.

2.1 B-Splines and NURBS

We herein briefly introduce the basic definitions and notations about B-Splines and
NURBS. For further details, readers are referred to [31, 1], and references therein.
A B-Spline basis function of degree p is generated starting from a non-decreasing

sequence of real numbers referred to as knot vector

Ξ = {ξ1, ..., ξm+p+1}

where m is the number of basis functions (equal to the number of the associated control
points). A univariate B-Spline basis function Ni,p (ξ) can be then constructed using the
following Cox-de Boor recursion formula: starting from p = 0, where

bi,0 (ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise

3

the basis functions for p > 0 are obtained from

bi,p (ξ) =
ξ − ξi

ξi+p − ξi
bi,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
bi+1,p−1 (ξ)

where the convention 0/0 = 0 is assumed. Given the multiplicity k of a knot, the
smoothness of the B-Spline basis is Cp−k at that location, while it is C∞ between knots.
In so-called open knot vectors, the first and the last knots have multiplicity k = p + 1
and the basis is interpolatory at the ends of its definition domain. A B-Spline curve can
be then constructed as the linear combination of the basis functions

C (ξ) =

m∑
i=1

bi,pPi

where the coefficients Pi ∈ Rds of the linear combination are the so-called control points,
being ds the dimension of the physical space. Multivariate B-Splines are generated
through the tensor product of univariate B-Splines. If dp denotes the dimension of the
parametric space, dp univariate knot vectors are needed:

Ξd =
{
ξd1 , ..., ξ

d
md+pd+1

}
where d = 1, ..., dp, pd is the polynomial degree in the parametric direction d, and md is
the associated number of basis functions. Denoting the univariate basis functions in each
parametric direction ξd by bdid,pd , the multivariate basis functions Bi,p (ξ) are obtained
as

Bi,p (ξ) =

dp∏
d=1

bdid,pd

(
ξd
)

where the multi-index i =
{
i1, ..., idp

}
denotes the position in the tensor product struc-

ture, p = {p1, ..., pd} indicates the polynomial degrees, and ξ =
{
ξ1, ..., ξdp

}
is the

vector of the parametric coordinates in each parametric direction d. B-Spline surfaces
and solids are obtained, for dp = 2 and dp = 3, respectively, from a linear combination
of multivariate B-Spline basis functions and control points as follows

S (ξ) =
∑
i

Bi,p (ξ)Pi

where the summation is extended to all combinations of the multi-index i.
NURBS basis functions in Rds are obtained from a projective transformation of their

B-Spline counterparts in Rds+1. Univariate NURBS basis functions ri,p (ξ) are given by

ri,p (ξ) =
bi,p (ξ)wi∑m
j=1 bj,p (ξ)wj

where bi,p are B-Spline basis functions and wi are the corresponding weights (i.e., the

4

(ds + 1)-th coordinates of the B-Spline control points in Rds+1). Finally, multivariate
NURBS basis functions are obtained as

Ri,p (ξ) =
Bi,p (ξ)wi∑
jBj,p (ξ)wj

and NURBS surfaces and solids are constructed as

S (ξ) =
∑
i

Ri,p (ξ)Pi.

In the following, when indicating B-Splines and NURBS, the degree p will be omitted
from the notation.

2.2 Bézier extraction

We now briefly introduce the idea of Bézier extraction [22]. Consider a knot vector Ξ
with associated B-Spline basis functions bi and a spline curve τ =

∑
iP ibi, defined by a

set of control points P i. The Bézier decomposition of τ into piecewise Bézier curves is
obtained by raising the multiplicity of each internal knot in Ξ to p. In this way, τ can
be represented in terms of Bernstein polynomials Bi, as τ =

∑
i P̄ iBi. The Bernstein

control points P̄ i can be computed as linear combination of the original control points
P i [22], which we can represent by the matrix operation

P̄ = C
>
P , (1)

where P = {Pi}, P̄ = {P̄i}. The matrix C
>
is called Bézier extraction operator [22].

Moreover, using Equation (1) and τ = b
>
P = B

>
P̄ , b = {bi}, B = {Bi}, we obtain

τ = b
>
P = B

>
P̄

= B
>
(C

>
P)

= (CB)
>
P .

The arbitrarity of P yields
b = CB. (2)

Equations (1) and (2) show that the Bézier extraction operator relates B-Splines with
the Bernstein basis of the Bézier decomposition and also the control points of a curve
with respect to each of these basis.

2.3 (Truncated) hierarchical B-Splines

In this section we introduce the hierarchical B-Spline basis HB and its truncated variant
T HB following closely [20, 24].

5

2.3.1 Overlay of univariate B-Splines

Let V 0 ⊂ V 1 ⊂ · · · ⊂ V N be a sequence of nested spaces of univariate splines defined on
a domain Ω. Each space V l, l = 0, . . . , N is spanned by the normalized B-Spline basis
Bl of degree p. Let Ξl = (ξl0, . . . , ξ

l
nl) be the knot vector composed of non-decreasing

real numbers defining the basis Bl. The nested nature of the spaces V l implies that also
the knot vectors are nested, i.e., any knot in Ξl occurs in Ξl+1 with at least the same
multiplicity, for l = 0 . . . N −1. We denote this by Ξl ⊂ Ξl+1. For example, see Figure 1,
where three nested knot vectors and their associated overlays of B-Spline functions are
shown. In particular, note that each knot in a level l is present in every knot vector of
level l∗ > l.
Following the isoparametric paradigm, our final aim is to identify a set of functions

N ⊂
⋃

l Bl to be used as basis functions for both analysis and geometry description. To
this end, within the tree-structure of knot spans, we define as elements E for the finite
element analysis a partition of Ω composed of knot spans of any level. More specifically,
let Ξ̂l = (ξ̂l0, . . . , ξ̂

l
n̂l) be the knot vector composed of non-decreasing knots of Ξl without

repetition, for some n̂l ∈ N, and let Ql =
{
Ql

i | Ql
i = (ξ̂li, ξ̂

l
i+1), i = 0, . . . , n̂l − 1

}
be the

set of open intervals constituting the non-empty knot spans of Ξl. The elements of the
multi-level mesh can be any partition E ⊂

⋃
l Ql of Ω. In particular,

• ∅ /∈ E ,
• ε ∈ E =⇒ ε ∈ Ql, for some 0 ≤ l ≤ N,
•

⋃
ε∈E

ε̄ = Ω,

• ε1 ∩ ε2 = ∅, ∀ε1, ε2 ∈ E , ε1 6= ε2.

Here, ε̄ denotes the closure of ε. Note that we do not consider as elements all the non-
empty spans of all levels, but a subset of them that partitions the domain. Moreover, let
E l = E∩Ql be the elements of level l, and let Ωl =

⋃
ε∈El ε̄ be their domain. Furthermore,

let Ωl
+ =

⋃N
l∗=l+1Ω

l be the refined domain with respect to level l and, analogously, let

Ωl
− =

⋃l−1
l∗=0Ω

l be the coarser domain. For example, Figure 2 shows a possible choice of
elements for the knots depicted in Figure 1, where we have

Ω0 = [−1, 0], Ω1 = [0, 0.25], Ω2 = [0.25, 1],

Ω0
+ = [0, 1], Ω1

+ = [0.25, 1], Ω2
+ = ∅,

Ω0
− = ∅, Ω1

− = [−1, 0], Ω2
− = [−1, 0.25].

Given a set of elements E , we still need to define a set of basis functions N ⊂
⋃

l Bl

suitable for analysis. To this end, we consider the set of functions with support on the
elements as the set of active functions Bl

a =
{
b |b ∈ Bl, supp(b) ∩ Ωl 6= ∅

}
⊂ Bl (see

Figure 2). Among these, a subset of linearly independent functions has to be chosen.

6

−1 −0.5 0 0.5 1
0

1

B0

−1 −0.5 0 0.5 1
0

1

B1

−1 −0.5 0 0.5 1
0

1

ξ

B2

Figure 1: Example of hierarchical B-Spline functions. The knots of each level are marked
by red crosses.

−1 −0.5 0 0.25 0.5 1
0

1 b00 b01 b02 b03 b04 b05

ε0 ε1

B0

−1 −0.5 0 0.25 0.5 1
0

1 b10 b16 b19

ε2 Q1
5

B1

−1 −0.5 0 0.25 0.5 1
0

1 b20 b210 b212 b217

ε3 ε4 ε5 ε6 ε7 ε8

B2

−1 −0.5 0 0.25 0.5 1
0

1

ε0 ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

HB

−1 −0.5 0 0.25 0.5 1
0

1

ε0 ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

ξ

T HB

Figure 2: Example of element mesh with associated HB- and T HB-Spline basis. The
elements are marked by the thick red lines on the horizontal axes. Bl

a is
composed of the colored and of the dotted functions. Bl

− is composed of the
dotted functions. Bl

+ is composed of the dashed functions. Bl
= is composed of

the solid non-gray functions. The solid gray functions are inactive.

7

Therefore, we partition Bl
a into

Bl
− =

{
b | b ∈ Bl

a, supp(b) ∩ Ωl
− 6= ∅

}
(overlap with coarser elements),

Bl
+ =

{
b | b ∈ Bl

a, supp(b) ∩ Ωl
+ 6= ∅

}
\ Bl

− (overlap with finer elements, but not with coarser),

Bl
= =

{
b | b ∈ Bl

a, supp(b) ⊂ Ωl
}

(overlap just with elements of level l),

as shown in Figure 2. Such a classification is analogous to the one provided in [24].
We are now ready to introduce the Hierarchical B-Splines Basis (HB) and the Trun-

cated Hierarchical B-Splines Basis (T HB).

2.3.2 Hierarchical B-Spline basis

The hierarchical B-Splines basis HB [32, 18] is defined by

HB =
⋃
l

HBl , (3)

HBl =
(
Bl
= ∪ Bl

+

)
.

Namely, HB is the set of B-Splines of each level l whose support covers just elements of
level l∗ ≥ l and at least one element of level l (See Figure 2). It was proven in [32] that
this set is composed of linearly independent functions.

2.3.3 Truncated hierarchical B-Splines basis

The truncated hierarchical B-Spline basis T HB [19] is very similar to HB, with the only
difference that the basis functions whose support overlaps finer elements are truncated,
as described in [19]. This generates a basis that spans the same space as HB [19], but is
composed of functions that

• have smaller support,
• form a partition of unity,
• have superior stability properties.

The above properties are all desirable in the context of numerical simulations. See [33]
for further details.
The truncation operation is based on the following definition.

Definition 2.1 (Truncation operator [19]) Let τ ∈ V l and let

τ =
∑

b∈Bl+1

cl+1
b (τ) b, cl+1

b ∈ R , (4)

be its representation with respect to the finer basis Bl+1 of V l+1. The truncation of τ

8

0 0.25 0.5 0.75
0

0.8

(a) b16 = 1
4b

2
10 +

3
4b

2
11 +

3
4b

2
12 +

1
4b

2
13.

0 0.25 0.5 0.75
0

0.8

(b) trunc(b16) =
1
4b

2
10 +

3
4b

2
11 + 0 b212 + 0 b213.

Figure 3: The function b16 of the example in Figure 2 (left, dashed blue) and its truncation
trunc(b16) (right, dashed blue) expressed in terms of the finer functions (from
left to right): b210, b

2
11, b

2
12, b

2
13 (dotted gray and solid orange).

with respect to the level l + 1 is defined as

truncl+1(τ) =
∑

b∈Bl+1,

supp(b)∩Ωl+1
− 6=∅

cl+1
b (τ) b.

Namely, the truncation takes the representation of τ in the finer basis and considers
just the contributions of the basis functions whose support overlaps coarser elements
(see an example in Figure 3). Note that Equation (4) is valid, as V l ⊂ V l+1.
Finally, we can define the recursive truncation operator as follows.

Definition 2.2 (Recursive truncation operator [34]) Let τ ∈ V l and let A ⊂
⋃

l Bl.
The recursive truncation of τ and A with respect to the level l + 1 is defined as

Truncl+1(τ) = truncN (truncN−1(. . . truncl+1(τ) . . .)) ,

T runcl+1(A) =
{
Truncl+1(a) |a ∈ A

}
.

The definition of the T HB basis is analogous to HB, with the difference that active
functions with support partly on finer elements will be truncated

T HB =
⋃
l

T HBl , (5)

T HBl = Bl
= ∪ Truncl+1(Bl

+)

= Truncl+1(HBl).

See the example in Figure 2.

9

3 Multi-level extraction operator

In this section we introduce the multi-level extraction operator and its variants. Before
discussing the operator in a general setting, we start with an example that shows the
key idea and its use in practical applications.

3.1 Basic concept

Consider the HB basis depicted in Figure 2 and the element ε3 = (0.25, 0.375) of level
2 marked by the gray overlay box. The basis functions in HB restricted to ε3 can be
all obtained by a linear combination of functions in B2 with support on ε3. Namely,
the element-local hierarchical basis of ε3 are a linear combination of the standard B-
Splines defined by the knot vector Ξ2 of level 2 . This is also depicted in Figure 4. This
turns out to hold for each element ε of level l: the element-local hierarchical basis can be
represented on ε as a linear combination of standard B-Spline functions Bl of level l. This
concept will be further explained later in the section. Note that the B-Spline basis is
taken of the same level as the element ε. As shown in Figure 4, this linear operation can
be represented by a matrix local to each element called multi-level extraction operator.
In a certain sense, such an operator flattens the multi-level hierarchy of functions into

a sequence of elements equipped with a single-level basis. Therefore, the multi-level
extraction operator offers a classical finite element point of view on the hierarchical
overlay of functions, that can simplify its implementation in an already existing finite
element software. This benefit will become even more apparent, when the multi-level
extraction is combined with the Bézier extraction [22], as shortly discussed in Section 3.7
and illustrated in Figure 4. Further advantages will be highlighted in Section 3.11.
Moreover, this tool can be defined not just for nested spline spaces produced by knot

insertion, as in Figure 2, but in a more general sense for every sequence of nested spaces
V 0 ⊂ V 1 ⊂ · · · ⊂ V N . In particular, different basis functions and different kind of re-
finements can be considered, e.g, (anisotropic) spline knot insertion, (anisotropic) spline
degree elevation, (anisotropic) C0-continuous linear polynomial and h-FEM refinement,
or (anisotropic) C0-continuous high-order polynomials and hp-FEM refinement (see, e.g.,
[35]).

3.2 Linear transformation between basis functions of nested spaces

In this section, we briefly discuss the relation between basis of nested spaces. This
concept represent the core idea underlying the multi-level extraction operator.
Since the spaces V 0 ⊂ V 1 ⊂ · · · ⊂ V N are nested, every basis function of V l1 can be

expressed as a linear combination of basis functions of V l2 for any l2 ≥ l1. In particular,
let Bl1 and Bl2 be any two bases for V l1 and V l2 , respectively. Let ml = dim(V l) and
let bl be the column vector of B-Splines composed of the ml functions in Bl in some
fixed order. Then, there exists a matrix Rl1,l2 of dimension ml1 ×ml2 , called refinement
operator, such that

bl1 = Rl1,l2bl2 . (6)

10

0.25 0.38
0

1

b212

b02

b03 b16

ε3

multi-level local basis

0.25 0.38
0

1
b210 b211 b212

ε3

standard B-splines

−1 0 1
0

1
B0 B1 B2

Bernstein polynomials


b02
∣∣
ε3

b03
∣∣
ε3

b16
∣∣
ε3

b212
∣∣
ε3

 =
1

16

[
3 1 0
12 12 10
4 12 12
0 0 16

]
︸ ︷︷ ︸

MLε3
multi-level extraction operator

·

b
2
10

∣∣
ε3

b211
∣∣
ε3

b212
∣∣
ε3



b
2
10

∣∣
ε3

b211
∣∣
ε3

b212
∣∣
ε3

 = Cε3︸︷︷︸
Bézier extraction

·

B0

B1

B2




b02
∣∣
ε3

b03
∣∣
ε3

b16
∣∣
ε3

b212
∣∣
ε3

 = MLε3 ·Cε3︸ ︷︷ ︸
multi-level Bézier extraction

·

B0

B1

B2



Figure 4: Basis functions of HB local to the element ε3 = (0.25, 0.375) of the example
in Figure 2,expressed as linear combination of standard functions in B2 with
support on ε3 or of Bernstein polynomials on the reference element.

Furthermore, given a spline τ ∈ V l1 , τ = bl1
>
P l1 for some coefficients P l1 . Again,

V l1 ⊂ V l2 implies that τ = bl2
>
P l2 for some coefficients P l2 and we can write

τ = bl2
>
P l2 = bl1

>
P l1 = bl2

>
Rl1,l2>P l1 .

The linear independence of bl2 yields the dual relation

P l2 = Rl1,l2>P l1 . (7)

Equations (6) and (7) generalize Equations (2) and (1), respectively.

3.3 The global multi-level extraction for HB and knot insertion

In this section, we introduce the concept of global multi-level extraction for the hierarchi-
cal basis N = HB associated to a sequence of nested spline spaces V 0 ⊂ V 1 ⊂ · · · ⊂ V N

11

of fixed degree p obtained by knot insertion. Let Bl be the B-Spline basis of V l. Then
Rl1,l2 of Equation (6) is known from the literature, e.g., see [36], and it will be referred
as the knot insertion operator. It can be computed by standard techniques, e.g., by the
Boehm’s algorithm or the Oslo algorithm [36].

The global multi-level extraction operator M glob
N is the linear operator that transforms

BN into the hierarchical basis N . From Equation (6), it is possible to associate each
row of Rl1,l2 to a function in Bl1 , and each column to a function in Bl2 . For example, in
the following picture we show the operator R0,2 for Figure 2, where the row and column
labels indicate the associated functions.

R0,2
=

1

16



16 12 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 9 11 10 6 3 1 0 0 0 0 0 0 0 0 0 0

0 0 1 3 6 10 12 12 10 6 3 1 0 0 0 0 0 0

0 0 0 0 0 0 1 3 6 10 12 12 10 6 3 1 0 0

0 0 0 0 0 0 0 0 0 0 1 3 6 10 11 9 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 12 16


b20 b21 b22 b23 b24 b25 b26 b27 b28 b29 b210 b211 b212 b213 b214 b215 b216 b217

b00
b01
b02
b03
b04
b05

B2

B0
HB0

Therefore, M glob
N can be simply obtained by joining the rows of the operators Rl,N ,

l = 0, . . . , N , associated to the basis functions in N . For instance, considering again the
example in Figure 2, we have:

R0,2
=

1

16

1612 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 9 11 10 6 3 1 0 0 0 0 0 0 0 0 0 0
0 0 1 3 6 10 12 12 10 6 3 1 0 0 0 0 0 0
0 0 0 0 0 0 1 3 6 10 12 12 10 6 3 1 0 0
0 0 0 0 0 0 0 0 0 0 1 3 6 10 11 9 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 12 16



R1,2
=

1

16


16 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 12 12 4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 12 12 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 12 12 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 12 12 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4 12 12 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 4 12 12 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 12 8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 16



R2,2
=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



Mglob
2 =

1

16


1612 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 9 11 10 6 3 1 0 0 0 0 0 0 0 0 0 0
0 0 1 3 6 10 12 12 10 6 3 1 0 0 0 0 0 0
0 0 0 0 0 0 1 3 6 10 12 12 10 6 3 1 0 0
0 0 0 0 0 0 0 0 0 0 4 12 12 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16


HB0

HB1

HB2

B2

R0,1
=

1

4

 4 2 0 0 0 0 0 0 0 0
0 2 3 1 0 0 0 0 0 0
0 0 1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1 0 0
0 0 0 0 0 0 1 3 2 0
0 0 0 0 0 0 0 0 2 4



R1,1
=


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



Mglob
1 =

1

4

[4 2 0 0 0 0 0 0 0 0
0 2 3 1 0 0 0 0 0 0
0 0 1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1 0 0
0 0 0 0 0 0 4 0 0 0

]
HB0

HB1

B1

The highlighted rows of R0,2 correspond to the functions HB0 = {b00, b01, b02, b03}, the
highlighted row of R1,2 is associated to HB1 = {b16}, and the highlighted rows of R2,2

correspond to HB2 = {b212, b213, . . . , b217}. Analogously, it is possible to define the operator

M glob
L that transforms BL into

⋃L
l=0N l, N l = Bl ∩N , i.e., into the basis functions of N

up to level L (see M glob
1 in the example above). This will be useful in the next section,

where to each element of level L is assigned a localization of the global operator M glob
L

of the same level.

12

3.4 The local multi-level extraction for HB and knot insertion

The global multi-level extraction operator M glob
L can then be localized to each element ε

of level L by simply selecting the columns associated to the functions in BL with support
on ε and the rows corresponding to the functions in N with support on ε. Note that the
multi-level extraction operator is always of the same level L as the element. Considering
again the example in Figure 2, we have:

Mglob
0 =

 11 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Mglob
1 =

1

4

[4 2 0 0 0 0 0 0 0 0
0 2 3 1 0 0 0 0 0 0
0 0 1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1 0 0
0 0 0 0 0 0 4 0 0 0

]

Mglob
2 =

1

16


1612 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 9 11 10 6 3 1 0 0 0 0 0 0 0 0 0 0
0 0 1 3 6 10 12 12 10 6 3 1 0 0 0 0 0 0
0 0 0 0 0 0 1 3 6 10 12 12 10 6 3 1 0 0
0 0 0 0 0 0 0 0 0 0 4 12 12 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0160 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0160
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 016



M loc
ε0 =

[
1 0 0
0 1 0
0 0 1

]
M loc

ε1 =
[
1 0 0
0 1 0
0 0 1

]
M loc

ε2 =
1

4

[
3 1 0
1 3 3
0 0 4

]
M loc

ε3 =
1

16

[
3 1 0
12 1210
4 1212
0 0 16

]

M loc
ε4 =

1

16

[1 0 0
12 10 6
12 12 4
0 16 0
0 0 16

]

M loc
ε5 =

1

16

[10 6 3
12 4 0
16 0 0
0 16 0
0 0 16

]

M loc
ε6 =

1

16

[6 3 1
4 0 0
16 0 0
0 16 0
0 0 16

]

M loc
ε7 =

1

16

[
3 1 0
16 0 0
0 16 0
0 0 16

]
M loc

ε8 =
1

16

[
1 0 0
16 0 0
0 16 0
0 0 16

]

Note that the operator M loc
ε3 is the same as the one previously shown in Figure 4. The

localization of the multi-level extraction operator is analogous to the localization of the
Bézier extraction operator in [22].

3.5 The multi-level extraction operator

In this section, we define more formally the concept of multi-level extraction operator
which was intuitively introduced in the previous sections. In the following, we denote
with #A the number of elements in a finite set A. We start with the two following
preliminary definitions:

Definition 3.1 (Restriction of a set of functions to a sub-domain) Given Ω ⊂
R, let A = {a0, . . . , am} be a set of functions ai : Ω → R. Given a sub-domain Q ⊂ Ω,
the restriction AQ of A to Q is

AQ = {a | a ∈ A, supp(a) ∩Q 6= ∅} .

Namely, it is the subset of functions with support on Q.

Definition 3.2 (Restrictions of a refinement operator) Let Ω ⊂ R. Let B0 ={
b00, . . . , b

0
m0

}
and B1 =

{
b10, . . . , b

1
m1

}
be sets of functions bli : Ω → R. Let bl =

13

(bl0, . . . , b
l
ml)

> be a column vector containing all the functions of Bl. Let R be a real
m0 ×m1 matrix such that

b0 = R0,1b1.

Then, given a set A0 ⊂ B0 we define the restriction RA0 of R to A0, as the #A0×m1

sub-matrix obtained by selecting the rows with indices r0, . . . , r#A0 such that b0ri ∈ A0 ,

0 ≤ i ≤ #A0. Namely, R0,1
A0 is the sub-matrix composed of rows associated to functions

in A0.

Moreover, given the sets A0 ⊂ B0, A1 ⊂ B1, we define the restriction R(A0,A1) of R
to A0 and A1, as the #A0×#A1 sub-matrix obtained by selecting the rows with indices
r0, . . . , r#A0 and columns with indices c0, . . . , c#A1 such that b0ri ∈ A0 and b1cj ∈ A1,

0 ≤ i ≤ #A0, 0 ≤ j ≤ #A1. Namely, R0,1
(A0,A1)

is the sub-matrix composed of rows

associated to functions of A0 and columns associated to functions of A1.

We are now ready to formally define the multi-level extraction operator as follows:

Definition 3.3 (The multi-level extraction operator) Let V 0 ⊂ V 1 ⊂ · · · ⊂ V N

be a sequence of nested subspaces defined on a domain Ω. Let Bl be a basis of V l and
bl a column vector of functions in Bl. Furthermore, let Rl1,l2 be the refinement operator
such that bl1 = Rl1,l2bl2, l2 ≥ l1. Given N ⊂

⋃
l Bl, e.g., N = HB or N = T HB, let

N l = N ∩ Bl be the functions in N of level l. Then, we define the global multi-level
extraction operator M glob

N as the matrix

M glob
N =


R0,N

N 0

...

RN,N
NN

 .

Furthermore, given an element ε ⊂ Ω and a level L, we define the local multi-level
extraction operator M loc

L,ε as

M loc
L,ε =


R0,L

ε
...

RL,L
ε

 ,

where Rl,L
ε = Rl,L(

N l
ε , BL

ε

). Namely M loc
L,ε is the sub-matrix obtained from M glob

L by selecting

rows and columns associated to functions with support on ε.

The global multi-level extraction operator M glob
L is simply obtained by joining the rows

of the operators Rl,N , l = 0, . . . , N , associated to the basis functions in N . It allows to
represent the target basis N for analysis, in terms of the classical functions of the finest
level. Indeed, denoting by nl the column vector of functions in N l sorted consistently

14

with Rl,N
N l , we can write

n =


n0

...

nN

 =


R0,N

N 0 bN

...

RN,N
NN bN

 =


R0,N

N 0

...

RN,N
NN

 bN = M glob
N bN .

Furthermore, for a 0 ≤ L ≤ N , it holds
n0

...

nL

 =


R0,L

N 0

...

RL,L
NL

 bL = M glob
L bL.

Denoting with V = spanN ⊂ V N the final solution space and with n the column vector
of functions in N , M glob

N provides the dual relation analogous to Equation (7). Indeed,
given a spline τ ∈ V , with τ = n>Pn for some coefficients Pn, τ can also be written

as τ = bN
>
P bN for some other coefficients P bN and it holds

τ = bN
>
P bN = n>Pn = bN

>
M glob

N

>
Pn.

Again, the linear independence of bN yields the dual relation

P bN = M glob
N

>
Pn. (8)

The local multi-level extraction operator associated to one element ε of level L is
simply obtained by extracting the smallest sub-operator that interests ε. It allows to
represent the local basis Nε in terms of the classical functions of the same level L as the
element. In particular, letting nε, n

l
ε and bLε be appropriate column vectors of functions

in Nε, N l
ε and BL

ε , respectively, we have

nε(x) =


n0
ε (x)
...

nL
ε (x)

 =


R0,L

ε bLε (x)
...

RL,L
ε bLε (x)

 =


R0,L

ε
...

RL,L
ε

 bLε (x) = M loc
L,ε bLε (x), ∀x ∈ ε. (9)

Note that the multi-level extraction operator is always of the same level L as the element.
The dual relation (8) holds also locally. In particular, τ ∈ V , τ(x) = nε(x)

>Pnε =

bLε (x)
>
P bLε

for x ∈ ε and some coefficients Pnε , P bLε
. As before, we obtain

P bLε
= M loc

L,ε
>
Pnε . (10)

Equation (10) can be used for translating degrees of freedom (for the solution descrip-
tion) or control points (for the geometry description) between the multi-level local basis
nε and the standard single-level basis bLε . A similar interpretation can be drawn for

15

Equation (8). The above relations generalize the local and global version of the proper-
ties of the Bézier extraction given in Equations (2) and (1) and in [22]. As examples,
see Figures 8 and 11.

3.6 The multi-level extraction for T HB and knot insertion

Following [19, 20], it can be deduced directly from Definitions 2.1 and 2.2 that the
refinement operators RT HB; l1,l2 , l2 ≥ l1, for the truncated basis can be obtained from
the standard knot insertion operators Rl,l+1 of consecutive levels

RT HB; l1,l2 =

{
I if l2 = l1,

trunc(Rl1,l1+1) ·RT HB; l1+1,l2 otherwise,[
trunc(Rl,l+1)

]
ij
=

{[
Rl,l+1

]
ij

if bj ∈ Bl+1 and supp(bj) ∩ Ωl+1
− 6= ∅,

0 otherwise,

where I is the identity matrix of size #Bl1 ×#Bl1.
The global and local multi-level extraction operator for the T HB is then obtained by

Definition 3.3 using the refinement operators RT HB; l1,l2 .

3.6.1 Local computation of the local multi-level extraction operator

Note that the local truncated operator RT HB; l1,l2
ε of an element ε can be constructed

directly from multiplication of the local truncated version of the operatorsRl,l+1 between
consecutive levels. Namely,

RT HB; l1,l2
ε =

{
I if l2 = l1,

trunc(Rl1,l1+1
Bε

) ·RT HB; l1+1,l2
ε otherwise,

(11)

[
trunc(Rl,l+1

Bε
)
]
ij
=


[
Rl,l+1

Bε

]
ij

if bj ∈ Bl+1
Bε

∩ Bl+1
− ,

0 otherwise,

Rl,l+1
Bε

= Rl,l+1(
Bl
Bε

,Bl+1
Bε

). (12)

Equation (12) indicates that Rl,l+1
Bε

is composed of rows and columns of Rl,l+1, that are
associated to functions supporting ε (see Definition 3.2). For example, considering again
ε3 in Figure 2, R1,2

Bε
and R0,1

Bε
can be seen directly as sub-matrices of the operators shown

in Section 3.3.:

R0,1
Bε

=
1

4

[
1 0 0
3 3 1
0 1 3

]
R1,2

Bε
=

1

4

[
3 1 0
1 3 3
0 0 1

]
trunc(R0,1

Bε
) =

1

4

[
1 0 0
3 0 0
0 0 0

]
trunc(R1,2

Bε
) =

1

4

[
3 1 0
1 3 0
0 0 0

]

16

The local refinement operators can be computed and the multi-level extraction operator
can be assembled the usual way

RT HB; 2,2
ε3 = I =

[
1 0 0
0 1 0
0 0 1

]
RT HB; 1,2

ε3 = trunc(R1,2
Bε

) =
1

16

[
12 4 0
4 12 0
0 0 0

]
RT HB; 0,2

ε3 = trunc(R0,1
Bε

) · trunc(R1,2
Bε

) =
1

16

[
3 1 0
9 3 0
0 0 0

] M loc
2,ε3=

1

16

[
3 1 0
9 3 0
4 12 0
0 0 16

]

Finally, the recursion in the definition 11 can be exploited to define an algorithm to
compute directly M loc

l,ε

1. M loc
0,ε = J0,

2. M loc
l+1,ε =

[
M loc

l,ε trunc(Rl,l+1
Bε

)

J l+1

]
, l = 0, . . . , N − 1

where N is the index of the biggest nested space (as in Section 3.5) and J l is a matrix
that selects the element active functions of level l. Namely, it has size #N l

ε ×#Bl
ε and

J l(i, j) = 1, if the j-th function in Bl
ε is the i-th function in N l

ε , otherwise J l(i, j) = 0.
Considering ε3, we obtain

J0 = [1 0 0
0 1 0] J1 = [0 1 0] J2 = [0 0 1]

M loc
0,ε = [1 0 0

0 1 0] M loc
1,ε =

1

4

[
1 0 0
3 0 0
0 4 0

]
M loc

2,ε =
1

16

[
3 1 0
9 3 0
4 12 0
0 0 16

]

The algorithm is the local version of the one presented in [23], showing that the same
algorithm can be used to build local operators. Finally, removing the truncation in
Equation (11) and in the algorithm allows to build the local operators for HB by means
of local computations.

3.6.2 Structure of the local multi-level extraction operator

Thanks to the truncation, it is straightforward to notice that M loc
L,ε will have (up to

re-ordering) a block structure

M loc
L,ε =

[
M loc

ε,± 0

0 I

]
M loc

ε,± = M loc(
Bl
ε∩Bl

+ , BL
ε ∩BL

−

)
that can be exploited for efficiency when using the operator in a computer implementa-
tion. In particular, the columns of M loc

ε,± are associated to functions in BL
ε ∩ BL

−, while

its rows to functions in Bl
ε ∩ Bl

+, according to Definition 2.1 and 3.2. Instead, I is as-
sociated to the active functions of level L, i.e., BL

ε ∩ T HBL. Practically, M loc
ε,± is the

only non-trivial matrix that must be considered in the multiplication when applying the

17

operator. Note that in general M loc
ε,± can be considerably both smaller size and denser

than M loc
L,ε, especially in higher-dimensions. However, this structure is unfortunately

lost once M loc
ε is combined with the Bézier extraction operator.

3.7 Multi-level Bézier extraction

The multi-level extraction operator can be combined directly with the Bézier extraction
operator [22], as depicted in Figure 4. This creates a direct map from a standard set
of reference basis functions equal for each element, to the multi-level local basis. As
a consequence, hierarchical refinements can be treated in a way that is very similar to
standard finite element implementations.
However, it should be noted that the hierarchical refinement introduces a non-constant

number of degrees of freedom per element. For example, consider ε0 (3 DOFs) and
ε4 (5 DOFs) in Figure 2. Therefore, although the multi-level Bézier extraction can
significantly ease the introduction of hierarchical refinement in standard finite element
implementations, the existing code should still allow for element matrices of non-constant
size. This requirement seems to be inherent to the method.

3.8 The multi-level extraction for (truncated) hierarchical NURBS

Once the multi-level extraction operator for (truncated) hierarchical B-Splines is defined,
following [22] it is possible to extend it to (truncated) hierarchical NURBS. Let n =
(n0, . . . , nm)> be a vector of B-Splines, possibly of different levels l, 0 ≤ l ≤ L. Let

bL = (b0, . . . , bt)
> be a set of fine B-Splines of level L, so that n = M glob

L bL. Then,
given the weights w = (w0, . . . , wm)>, and the diagonal matrix of weights

W =


w0

w1

. . .

wm


the associated NURBS r = (r0, . . . , rm)> can be written as

r =
Wn

n>w
=

WM glob
L bL

n>w
.

Analogously, defining the level-L weights wL = (M glob
L)>w allows to express a spline

S = P> · r in terms of the weights wL, the control points P L, and the functions bL of

18

level L as

S = P>WM glob
L bL

n>w
= (P L)>

W LbL

(bL)>wL

W L =


wL
0

wL
1

. . .

wL
t


P L = (W L)−1(M glob

L)>WP .

The above properties can be extended in the same way to local operators and to the
(local or global) multi-level Bézier extraction.

3.9 Extension to higher dimensional spaces

The discussion and definitions of the previous sections are valid also for multi-dimensional
spaces. In particular, for each level l, the functions blj ∈ Bl of the basis Bl can be sorted

in a fixed order (typically the tensor product order) into a vector bl. Then, the refine-
ment operator Rl1,l2 , such that bl1 = Rl1,l2bl2 , l2 ≥ l1, exists and can be used directly
in the definitions of Section 3.5 to compute the multi-level extraction operator.
In case of tensor product spaces with tensor-product order, the refinement operator

Rl1,l2 can be computed as Kronecker product of the univariate refinement operators.
Moreover, according to Section 3.5, just some rows of Rl1,l2 are needed. Therefore, the
Kronecker product can be limited to the necessary rows. This holds also for the element-
localizations Rl1,l2

ε . It is worth noting that the hierarchical basis N is, in general,
not of tensor product structure. Therefore, it is clear that there is no possibility of
applying the extraction operator to every single direction and constructing N by taking
the tensor product of unidimensional extracted functions. This is not even possible
for the basis local to one element. Such an optimization was possible with the standard
Bézier extraction [22], but it is not applicable directly in the multi-level setting. However,
it could be still possible to extract each direction singularly, and then compute just the
tensor product of univariate functions producing N .

3.10 Extension to other sequences of nested spaces

In general, the multi-level extraction operator can be constructed for every sequence of
nested spaces. Indeed let V 0 ⊂ V 1 ⊂ · · · ⊂ V N be a sequence of nested spaces with
basis B0, . . . ,BN , respectively, then, for each Bl1 ,Bl2 , such that l1 ≤ l2, there exists
the refinement operator Rl1,l2 , as described in Section 3.2. Given a suitable selection
of functions for analysis N ⊂

⋃
l Bl (as described, e.g., in Section 2.3.1), the associated

multi-level extraction operator can be defined following Section 3.5.
Here we assert the existence of the refinement operator R, however, its computation

depends on the particular refinement considered. In the previous sections the whole

19

−1 −0.5 0 0.75 1
0

1

ε0 ε1

B0

(p0=2)

−1 −0.5 0 0.75 1
0

1

ε2 ε3

B1

(p1=3)

−1 −0.5 0 0.75 1
0

1

ε0 ε1 ε2 ε3

ξ

N

Figure 5: Example of hierarchical B-Spline functions. The knots of each level are marked
by red crosses.

procedure was exemplified for knot insertion and the HB and T HB bases. In this case,
R can be computed by standard knot insertion techniques and Section 3.12 proposes a
few algorithms to compute directly the element-localized operators. The next section
shows a further example in the context of degree elevation.

3.10.1 The multi-level extraction for degree elevation

The refinement operator Rl1,l2 for degree elevation can be constructed using standard
degree elevation techniques (see, e.g., [31, 37]). For example, consider the B-Splines B0 =
{b00, . . . , b05} of degree p0 = 2 and B1 = {b10, . . . , b19} of degree p1 = 3 defined by the knot
vectors Ξ0 = [−1,−1,−1,−0.5, 0, 0.75, 1, 1, 1] and Ξ1 = [−1,−1,−1,−1,−0.5,−0.5, 0, 0, 0.75, 0.75, 1, 1, 1, 1],
respectively. The overlay of B-Splines is shown in Figure 5, together with a possible
choice for N (similar to Figure 4). For this example, the refinement operator R0,1 and

multi-level extraction operator M glob
1 are:

R0,1
=

1

60

6020 0 0 0 0 0 0 0 0
0 40 50 10 0 0 0 0 0 0
0 0 10 50 52 12 0 0 0 0
0 0 0 0 8 48 45 5 0 0
0 0 0 0 0 0 15 55 40 0
0 0 0 0 0 0 0 0 20 60


Mglob

1 =
1

60


6020 0 0 0 0 0 0 0 0
0 40 50 10 0 0 0 0 0 0
0 0 10 50 52 12 0 0 0 0
0 0 0 0 8 48 45 5 0 0
0 0 0 0 0 0 60 0 0 0
0 0 0 0 0 0 0 60 0 0
0 0 0 0 0 0 0 0 60 0
0 0 0 0 0 0 0 0 0 60



Finally, the local operators read as follows.

20

Mglob
1 =

1

60


6020 0 0 0 0 0 0 0 0
0 40 50 10 0 0 0 0 0 0
0 0 10 505212 0 0 0 0
0 0 0 0 8 48 45 5 0 0
0 0 0 0 0 0 60 0 0 0
0 0 0 0 0 0 0 60 0 0
0 0 0 0 0 0 0 0 60 0
0 0 0 0 0 0 0 0 0 60


M loc

ε0 =
[
1 0 0
0 1 0
0 0 1

]
M loc

ε1 =
[
1 0 0
0 1 0
0 0 1

]
M loc

ε2 =
1

60

[
5212 0 0
8 48 45 5
0 0 60 0
0 0 0 60

]

M loc
ε3 =

1

60

[45 5 0 0
60 0 0 0
0 60 0 0
0 0 60 0
0 0 0 60

]

Note that the operators of ε0 and ε1 have 3 columns, while the operators of ε2 and ε3
have 4 columns. This corresponds to the fact that the ε0 and ε1 belong to the 0-th level,
where B0 has degree p0 = 2, while ε2 and ε3 are of level 1, with degree p1 = 3.

3.11 Advantages

The multi-level extraction operator offers the following advantages:

• When combined with Bézier extraction, it eases the implementation of hierarchical
refinement in existing finite element codes, as it gives a total element point of view
on the hierarchical refinement.

• More generally, the multi-level extraction operator eases the implementation of
hierarchical refinement in existing “single-level” codes, as it flattens the multi-
level hierarchy of functions into a sequence of elements equipped with a standard
single-level basis. For example, it could ease the implementation of hierarchical
refinement in existing IGA codes.

• It generalizes the Bézier extraction to multi-level refinements by presenting the
same properties (9), (10) and usage of the standard Bézier extraction

• Once computed, it removes the need to navigate through the hierarchy of overlay
functions, in contrast to, e.g., [20, 38, 39], but only a constant number of standard
single-level shapes are evaluated once per element, e.g., Bernstein polynomials.

• Once computed, it removes concatenation of mappings in case of overlay of local
reference spaces (e.g., [38, 39]):

– just one direct mapping from element to physical space can be employed,
– no coordinate conversion between levels is needed,
– it is important for evaluating derivatives, especially for high-order PDEs.

• In comparison to global methods,

– It substitutes large inefficient sparse multiplications by small dense multipli-
cations, more efficient and suitable to parallelism.

– It eases local evaluation of the solution field and its derivatives e.g., for mate-
rial non-linearities, deformation gradient, etc. Indeed, a global method that
maps all active functions (or degrees of freedom) simultaneously can be very
inefficient to evaluate the solution locally at a point. Alternatively, it would
be possible to evaluate the solution at all the integration point simultane-
ously, but this would still involve large inefficient sparse multiplications and
increase the memory requirements.

21

– It allows domain distribution in parallel codes, since it encodes local informa-
tion about each element individually.

• This approach is valid for every overlay of nested spaces, namely it is applicable
to different kinds of refinements and basis functions, e.g., (anisotropic) spline knot
insertion, (anisotropic) spline degree elevation, (anisotropic) C0-continuous lin-
ear polynomial and h-FEM refinement, or (anisotropic) C0-continuous high-order
polynomials and hp-FEM refinement (see, e.g., [35]). In particular, any polynomial
basis can be used, i.e. Bernstein, Legendre or Lagrange (combining the multi-level
extraction operator with the Legendre extraction [40]).

3.12 Knot insertion algorithms

In this section we present a few general algorithms inspired by [31, 41] to produce
the knot insertion operators. The algorithms are expressed in the MATLAB R© syntax.
Given Ξl = (ξl0, . . . , ξ

l
nl−p−1), l ∈ {1, 2}, Ξ1 ⊂ Ξ2, the local knot insertion operators

R1,2
ε can be computed column-wise by the Oslo algorithm [36, 41], or row-wise by the

Boehm’s method [36, 41]. Algorithm 1 shows a version of the Oslo algorithm using
vector operations, while Algorithm 2 presents its scalar version. The latter is suitable
to traditional procedural programming languages. Finally, R1,2

ε can be produced by
Algorithm 3. Analogously, the Boehm’s method can be repeatedly used to produce the
operators R1,2

ε , as shown for example in Algorithm 5. Here, the main loop runs once
through the knots Ξ1 and the knots to be inserted. The associated multiplicities are
cached to handle the overlapping columns between operators.
The Oslo algorithm computes the local coefficients of the knot insertion operator

by means of a direct formula based on the coarse and fine local knots. Such a direct
formula features no data dependencies between the computation of different columns
of R1,2

ε and, therefore, Algorithm 3 is suitable for parallelization. A possible parallel
version is presented in Algorithm 4. Instead, Algorithm 5 inserts a knot at a time from
left to right and overwrites intermediate coefficients. This iterative procedure features
inherent data dependencies between computations of coefficients of the same row, but
different rows could be computed in parallel. However, this is not within the scope of
this work. It should also be noted that Algorithm 5 is numerically more stable, as just
convex combinations are used, while Algorithms 1 and 2 can perform also non-convex
combinations. However, this becomes noticeable just for higher degrees.
The core operation of the presented algorithms are linear combinations of coefficients

and their count is listed in Table 1. Table 1 compares also the Algorithm bs2bs presented
in [42]. Algorithm 3 results to be more efficient than Algorithm 5 if 2 ·n1 > n2, i.e., if the
number of knots is at least doubled. Therefore, we prefer Algorithm 3, as this condition
will be typically met, e.g., in case of refinement by bisection. Algorithm bs2bs is better
than Algorithm 3 if 2 · (1 + p/(p + 1)) · e < n2, i.e., when the number e of non-empty
spans in the fine knot vector Ξ2 is quite smaller than n2. This can be the case when
the multiplicity in Ξ2 is high. Figure 6 compares the number of linear operations used
by the considered algorithms while bisecting Ξ = (−1,−1,−1,−1,−0.8, 0.3, 1, 1, 1, 1) 11
times, for p = 3. The parallel Oslo algorithm (Algorithm 4) is executed on 4 processors.

22

Boehm Oslo bs2bs

Operation Count p · (p+ 1) · (n2 − n1)
1
2p · (p+ 1) · n2 p · (2p+ 1) · e

Table 1: Number of linear combinations needed to produce the element local knot inser-
tion operators. e = number of non-empty knot spans in the fine knot vector
Ξ2.

Note that Figure 6b shows that the parallel Oslo algorithm distributes the number of
combinations uniformly among the processors as the number of inserted knots increases.
The multi-level extraction operator Mε can be computed by composing rows of the

operators Rl1,l2
ε , as described in Sections 3.4 and 3.4.

Algorithm 1 Oslo1 Algorithm (vector version)

1: procedure oslo1(p, coarsekn, finekn, m)
Input:

p: spline degree
coarsekn: coarse knot vector
finekn = {ξ1, . . . , ξm}: fine knot vector
rf: arbitrary fine knot index, such that 1 ≤ rf ≤ m− p− 1
cf: coarse knot index such that coarsekn(cf) ≤ finekn(rf) < coarsekn(cf+1)

Output:
b: vector knot insertion coefficients

2: b = 1;
3: for k=1, . . . , p do
4: t1 = coarsekn(cf+1-k:cf);
5: t2 = coarsekn(cf+1:cf+k);
6: x = finekn(rf+k);
7: w = (x-t1)./(t2-t1);
8: b = [(1-w) .* b; 0] + [0; w .* b];
9: end for

10: end procedure

23

Algorithm 2 Oslo1 Algorithm (scalar version)

1: procedure oslo1(p, coarsekn, finekn, m)
Input:

p: spline degree
coarsekn: coarse knot vector
finekn = {ξ1, . . . , ξm}: fine knot vector
rf: arbitrary fine knot index such that 1 ≤ rf ≤ m− p− 1
cf: coarse knot index such that coarsekn(cf) ≤ finekn(rf) < coarsekn(cf+1)

Output:
b: vector knot insertion coefficients

2: b(p+1)=1;
3: for k=1, . . . , p do
4: x = finekn(rf+k);
5: w2 = (coarsekn(cf+1)-x) / (coarsekn(cf+1) - coarsekn(cf+1-k));
6: b(p-k+1) = w2 * b(p-k+2);
7: for a = 2,. . . , k do
8: w1 = w2;
9: w2 = (coarsekn(cf+a)-x) / (coarsekn(cf+a) - coarsekn(cf-k+a));

10: b(p-k+a) = (1-w1) * b(p-k+a) + w2 * b(p-k+a+1);
11: end for
12: b(p+1) = (1-w2) * b(p+1);
13: end for
14: end procedure

24

Algorithm 3 Element Knot Insertion Operators (using Oslo algorithm)

Input:
p: spline degree
coarsekn: coarse knot vector
finekn = {ξ1, . . . , ξm}: fine knot vector
m: length of fine knot vector

Output:
e: number of fine elements
Rεa , a = 1, . . . , e : local element operators

1: cf=p+1;
2: rf=1;
3: e=1;
4: while rf ≤ m-p-1 do
5: mult=1;
6: while finekn(rf+mult) == finekn(rf) do
7: mult=mult+1;
8: end while
9: lastcf = cf;

10: while coarsekn(cf+1) ≤ finekn(rf) do
11: cf = cf+1;
12: end while
13: if e>1 then
14: offs = cf-lastcf;
15: Re(1:p+1-offs, 1:p+1-mult) = Re−1(1+offs:p+1, 1+mult:p+1);
16: end if
17: for t= p+2-mult:p+1 do
18: Re(:, t) = oslo1(p, coarsekn, finekn, cf, rf);
19: rf=rf+1;
20: end for
21: e=e+1;
22: end while

25

Algorithm 4 Element Knot Insertion Operators (parallel, using Oslo algorithm)

Input:
p: spline degree
coarsekn: coarse knot vector
glfinekn = {ξ1, . . . , ξm}: fine knot vector
m: length of fine knot vector
ithread: thread index (starting from 1)
nthreads: total number of threads

Output:
e: number of fine elements processed by the thread
Rεa , a = 1, . . . , e : local element operators processed by the thread

1: chunk = floor((m-2*(p+1)+1)/nthreads);
2: rem = mod(m-2*(p+1)+1,nthreads);
3: knstart = max((ithread-1)*chunk, 0) + min(ithread-1, rem)+1;
4: knend = 2*p+ ithread*chunk + min(ithread, rem)+1;
5: while knend-knstart+1 ≥ 2*(p+1) and glfinekn(knstart+p+1) == glfinekn(kn-

start+p) do
6: knstart = knstart+1;
7: end while
8: while knend-knstart+1 ≥ 2*(p+1) and glfinekn(knend-p-1) == glfinekn(knend-p)

do
9: knend = knend-1;

10: end while
11: if knend-knstart+1 < 2*(p+1) then return;
12: finekn = glfinekn(knstart:knend);
13: cf=p+1; rf=1; e=1;
14: while rf ≤length(finekn)-p-1 do
15: mult=1;
16: while finekn(rf+mult) == finekn(rf) do mult=mult+1;
17: lastcf = cf;
18: while coarsekn(cf+1) ≤ finekn(rf) do cf = cf+1;
19: if e>1 then
20: offs = cf-lastcf;
21: Re(1:p+1-offs, 1:p+1-mult) = Re−1(1+offs:p+1, 1+mult:p+1);
22: else
23: while coarsekn(cf+1) <= finekn(p+1) do cf = cf+1;
24: for t= 1:p+1-mult do
25: Re(1:p+1, t) = oslo1(p, coarsekn, finekn, cf, rf,ithread);
26: rf=rf+1;
27: end for
28: end if
29: for t= p+2-mult:p+1 do
30: Re(:, t) = oslo1(p, coarsekn, finekn, cf, rf);
31: rf=rf+1;
32: end for
33: e=e+1;
34: end while

26

Algorithm 5 Element Knot Insertion Operators (using Boehm’s method)

Input:
p: spline degree
old kn = {ξ̂1, . . . , ξ̂r}: : coarse knot vector
r: length of old kn
ins kn = {ξ1, . . . , ξs}: knots to insert
s: length of ins kn

Output:
e: number of fine elements
Rεa , a = 1, . . . , e : local element operators

1: i = p+1; k = p+1; j = 0; e=1; new kn(1:p+1) = old kn(1:p+1);
2: R1 = I;
3: while i<r or j<s do
4: nmv(e) = 0;
5: om=1;
6: while i+1+om≤r and old kn(i+1) == old kn(i+1+om) do
7: om=om+1;
8: end while
9: while j<s and ins kn(j+1) ≤ old kn(i+1) do

10: nm=0;
11: while j+1+nm≤s and ins kn(j+1) == ins kn(j+1+nm) do
12: nm=nm+1;
13: end while
14: nmv(e) = nm;
15: if ins kn(j+1) == old kn(i+1) then omv(e) = om;
16: else omv(e) = 0;
17: end if
18: for r = 0, . . . , nm-1 do
19: Re+1 (p+1-omv(e),p+1-nm-omv(e)+r+1)=1;
20: for l=0, . . . , -r+1 do
21: alfa = (old kn(i+p+l) - ins kn(j+1))/(old kn(i+p+l) - new kn(k+l));
22: ind2=p+1+l+r-nm-omv(e);
23: Re+1(:,ind2,e+1)= alfa*Re+1(:,ind2-1) + (1-alfa)*Re+1(:,ind2);
24: end for
25: for l=-r,. . . ,-p+1 do
26: alfa = (old kn(i+p+l) - ins kn(j+1))/(old kn(i+p+l) - new kn(k+l));
27: ind2=p+1+l+r;
28: Re(:,ind2)= alfa*Re(:,ind2-1) + (1-alfa)*Re(:,ind2);
29: end for
30: Re+1(1:p+1-omv(e),1:p+1-nm-omv(e))=Re(1+omv(e):p+1,omv(e)+nm+1:p+1);
31: new kn(k+1) = ins kn(j+1);
32: k=k+1; j=j+1;
33: end for
34: if omv(e) == 0 then
35: e = e+1;
36: nmv(e) = 0;
37: end if
38: end while

27

39: if i < r then
40: for t=0:om-1 do
41: new kn(k+1) = old kn(i+1);
42: Re+1(p+1-t,p+1-t)= 1;
43: k = k + 1; i = i + 1;
44: end for
45: omv(e)=om;
46: Re+1(1:p+1-omv(e),1:p+1-nmv(e)-omv(e))=Re(1+omv(e):p+1,omv(e)+nmv(e)+1:p+1);
47: e = e+1;
48: end if
49: end while
50: for f = e-1,. . . ,2 do
51: Rf−1(1+omv(f-1):p+1,2+nmv(f-1)+omv(f-1):p+1)=Rf (1:p+1-

omv(f-1),2:p+1-nmv(f-1)-omv(f-1));
52: end for

101 102 103
101

102

103

104

105

Number of Added Knots

N
u
m
b
e
r
o
f
L
in
e
a
r
O
p
e
ra

ti
o
n
s

Boehm

Bs2bs

Oslo

Parallel Oslo

(a) Number of linear operations

101 102 103
0

4

8

14

Number of Added Knots

N
r
.

O
p
s
.

N
r
.

O
p
s
.

P
a
r
a
ll
e
l
O

s
lo

Boehm

Bs2bs

Oslo

(b) Number of linear operations divided by num-
ber of operations required by parallel Oslo

Figure 6: Comparison of knot insertion operator algorithms on a test consisting of 11
bisections of Ξ = (−1,−1,−1,−1,−0.8, 0.3, 1, 1, 1, 1), for p = 3. The parallel
Oslo algorithm (Algorithm 4) is executed on 4 processors.

28

4 Numerical Examples

In this section we present two illustrative numerical examples common in the literature,
(see, e.g., [43, 32, 24]). Similarly to [24], the adaptive refinements will be driven by the
contribution to the error in the energy norm ηε local to one element ε. The formula for
ηε will be given in the following for each specific example. In particular, Algorithm 6
has been used to control refinement.

Algorithm 6 Multi-Level Error-Controlled Refinement

1: procedure Multi-Level Error-Controlled Refinement(α, max iterations)
2: Define an initial mesh of elements of level l = 0
3: k = 0
4: for k < max iterations do
5: Solve problem on current mesh
6: Compute ηε for each element ε
7: Mark α% of the elements with highest error for refinement
8: for each marked element ε̃ do
9: Deactivate element ε̃

10: Activate all the sub-domains of level l + 1 contained in ε̃, where l is the
level of ε̃

11: end for
12: k = k + 1
13: end for
14: end procedure

In the following, we consider overlay of B-Spline and NURBS functions, together with
refinement by bi-section.

4.1 Heat Conduction on L-Shaped domain

As a first example, let us consider the Laplace equation defined over an L-shaped domain
Ω. We seek a function u : Ω → R such that

∆u = 0 on Ω

u = 0 on ΓD

∇u · n = g on ΓN

where ΓD ∩ΓN = ∅, ΓD ∪ ΓN = ∂Ω, ∂Ω is the boundary of Ω, and n is the unit outward
normal vector on ∂Ω. The domain Ω and its boundaries ΓN , ΓD are depicted in Fig-
ure 7. We manufacture a solution for this problem considering as analytical solution the
function ū = r

2
3 sin(23θ) satisfying the Dirichlet boundary conditions, with g computed

from ū as g = ∇ū · n.

29

r

θ

ΓN

ΓN

ΓN

ΓN

ΓD

ΓD

1 1

1

1

Figure 7: L-Shaped domain.

For an element ε, ηε is defined as

η2ε =

∫
ε

∇(u− ū) · ∇(u− ū)dx.

An example of three refinement steps is shown in Figure 8, while the convergence for
spline degree p ∈ {2, 3} using Algorithm 6 with α = 0.2 is shown in Figure 9. Here, the
refinement is directed towards the singular re-entrant corner, improving the convergence
of the uniform mesh refinement. In particular, the optimal convergence rate p/2 [44] is
obtained, showing the capabilities of the adaptive method in capturing the singularity.
The same result was obtained in, e.g., [32, 24]

4.2 Linear Elastic Circular Plate with a Hole

As a second example, we consider an infinite plate with a circular hole under constant
in-plane tension. The infinite plate is modeled by a finite quarter of annulus Ω, as
described in Figure 10. Ri is the radius of the hole, while Ro is the outer radius of the
annulus. We solve the classical equations of linear elasticity with zero right hand side

−∇ · σ(u) = 0 on Ω

u = 0 on ΓD

∇u · n = g on ΓN

where σ(u) = C : ε(u), ε(u) = (∇u+∇u>)/2, Cijkl = λδijδkl + µ(δikδjl + δilδjk). The
constants λ and µ are the Lamè parameters and δij is the standard Kronecker delta. For

30

0 0.2 0.4 0.6 0.8 1 1.2

u

Figure 8: Example of three adaptive steps on the L-shaped domain problem. The color
represents temperature. The left column shows the Bézier control mesh, i.e.,
the elements and the control points with respect of the Bernstein basis. The
right column shows the control mesh. These two meshes are related by Equa-
tion (10). The control mesh is composed of control points associated to func-
tions in N . The control points relative to functions in N l are represented by
circles, for l = 0, diamonds for l = 1, triangles for l = 2.

31

101 102 103 104 105
10−4

10−3

10−2

10−1

100

1

1

1
0.33

DOFs

%
E
rr
o
r
in

e
n
e
rg

y
n
o
rm

Multi-Level THB

Tensor Product Refinement

(a) p = 2

101 102 103 104 105
10−3

10−2

10−1

1

1.5

1
0.38

DOFs

%
E
rr
o
r
in

e
n
e
rg

y
n
o
rm

Multi-Level THB

Tensor Product Refinement

(b) p = 3

Figure 9: Convergence rates of the multi-level refinement compared to standard tensor
product refinement.

symmetry

ΓN

sy
m
m
et
ry

Ri

Ro

r
θ

x

y

Ri = 1
Ro = 8
Tx=10

Figure 10: Elastic plate with circular hole.

32

this problem, the analytical stress [45] reads, in cylindrical coordinates,

σrr(r, θ) =
Tx

2

[
1− R2

i

r2
+

(
1− 4

R2
i

r2
+ 3

R4
i

r4

)
cos(2θ)

]
,

σθθ(r, θ) =
Tx

2

[
1 +

R2
i

r2
−
(
1 + 3

R4
i

r4

)
cos(2θ)

]
,

σrθ(r, θ) = −Tx

2

[
1 + 2

R2
i

r2
− 3

R4
i

r4

]
sin(2θ),

where Tx is the magnitude of the applied stress, imposed as Neumann boundary condition
with the exact traction at the outer boundary ΓN of the circular plate, see Figure 10.
For an element ε, the measure for the true error ηε is defined as

η2ε =

∫
ε

ε(u− ū) : C : ε(u− ū)dx,

where ū is the analytical solution. An example of three refinement steps is shown in
Figure 11, while the convergence for spline degree p ∈ {2, 3} using Algorithm 6 with α =
0.4 is depicted in Figure 12. Here, the solution is smooth but with a stress concentration
close to the lower left corner. The local refinement is initially directed towards this area,
yielding a superior pre-asymptotic convergence behaviour with respect to the uniform
refinement. After this phase, the absence of singularity gradually drives the refinement
to the whole domain. The error in the energy norm results to be slightly shifted down,
but with the same convergence rate as the uniform refinement. The same results were
obtained in, e.g., [43, 32, 24]

33

0 5 10 15 20 25 30

σxx

Figure 11: Example of three adaptive steps on the plate with circular hole. The color rep-
resent σxx. The left column shows the Bézier control mesh, i.e., the elements
and the control points with respect of the Bernstein basis. The right column
shows the control mesh. These two meshes are related by Equation (10). The
control mesh is composed of control points associated to functions in N . The
control points relative to functions in N l are represented by circles, for l = 0,
diamonds for l = 1, triangles for l = 2.

34

101 102 103 104 105 106
10−6

10−5

10−4

10−3

10−2

10−1

1

1

1

1

DOFs

%
E
rr
o
r
in

e
n
e
rg

y
n
o
rm

Multi-Level THB

Tensor Product Refinement

(a) p = 2

101 102 103 104 105

10−6

10−4

10−2

1

1.5

1

1.5

DOFs

%
E
rr
o
r
in

e
n
e
rg

y
n
o
rm

Multi-Level THB

Tensor Product Refinement

(b) p = 3

Figure 12: Convergence rates of the multi-level refinement compared to standard tensor
product refinement.

5 Conclusions

We have introduced the multi-level extraction as a way to implement hierarchically
refined Isogeometric Analysis on existing finite element codes. Our main focus is on
(Truncated) Hierarchical B-Splines and Isogeometric Analysis, but we have presented a
general concept applicable to every sequence of nested spaces. The proposed local ap-
proach is suitable for big-scale, parallel and non-linear simulations, and in Section 3.11
we have reported a comprehensive list of its advantages and examples of applicable se-
quences of nested spaces. Moreover, the multi-level extraction incorporates the essential
features of similar approaches present in the literature [26, 28, 25, 29, 24, 23, 30] and
generalizes them in a unique framework. Furthermore, some basic algorithms to com-
pute the multi-level extraction operator for knot insertion on spline spaces have been
outlined and compared.
In conclusion, the proposed multi-level extraction appears to be a viable and practical

tool for transforming an existing finite element software into an adaptive isogeomet-
ric code able to efficiently tackle problems where local refinement and adaptivity are
necessary.

Acknowledgements

The authors gratefully acknowledge the support of the TUM Institute for Advanced
Study, funded by the German Excellence Initiative and the European Union Seventh
Framework Programme under grant agreement number 291763, as well as the support of
the German Research Foundation (DFG) under Grant RA 624/22 and RA 624/27 of the
priority programme SPP 1748. Moreover, A. Reali gratefully acknowledges the support
of Fondazione Cariplo - Regione Lombardia through the project ”Verso nuovi strumenti

35

di simulazione super veloci ed accurati basati sull’analisi isogeometrica”, within the
program RST - rafforzamento. Finally, the authors would like to thank Prof. T.J.R.
Hughes (University of Texas at Austin) for the fruitful discussion on the subject of this
paper.

References

[1] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis. Chichester,
UK: John Wiley & Sons, Ltd, Aug. 2009.

[2] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement,” Computer Methods
in Applied Mechanics and Engineering, vol. 194, pp. 4135–4195, Oct. 2005.

[3] M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, and C. M. Landis, “A
phase-field description of dynamic brittle fracture,” Computer Methods in Applied
Mechanics and Engineering, vol. 217, pp. 77–95, Apr. 2012. 00360.

[4] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis of
structural vibrations,” Computer Methods in Applied Mechanics and Engineering,
vol. 195, pp. 5257–5296, Aug. 2006. 00738.

[5] T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, “$\bar B$ and $\bar
F$ projection methods for nearly incompressible linear and non-linear elasticity
and plasticity using higher-order NURBS elements,” Computer Methods in Applied
Mechanics and Engineering, vol. 197, pp. 2732–2762, June 2008. 00032.

[6] S. Morganti, F. Auricchio, D. J. Benson, F. I. Gambarin, S. Hartmann, T. J. R.
Hughes, and A. Reali, “Patient-specific isogeometric structural analysis of aortic
valve closure,” Computer Methods in Applied Mechanics and Engineering, vol. 284,
pp. 508–520, Feb. 2015. 00046.

[7] I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and S. Hulshoff, “The
role of continuity in residual-based variational multiscale modeling of turbulence,”
Computational Mechanics, vol. 41, pp. 371–378, Feb. 2008. 00211.

[8] Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Sco-
vazzi, “Variational multiscale residual-based turbulence modeling for large eddy
simulation of incompressible flows,” Computer Methods in Applied Mechanics and
Engineering, vol. 197, pp. 173–201, Dec. 2007. 00662.

[9] Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D sim-
ulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction
modeling with composite blades,” International Journal for Numerical Methods in
Fluids, vol. 65, pp. 236–253, Jan. 2011. 00277.

36

[10] M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. H. Wu, J. Mineroff,
A. Reali, Y. Bazilevs, and M. S. Sacks, “Dynamic and fluid–structure interaction
simulations of bioprosthetic heart valves using parametric design with T-splines
and Fung-type material models,” Computational Mechanics, vol. 55, pp. 1211–1225,
June 2015. 00053.

[11] H. Gómez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis
of the Cahn–Hilliard phase-field model,” Computer Methods in Applied Mechanics
and Engineering, vol. 197, pp. 4333–4352, Sept. 2008. 00368.

[12] J. Kiendl, M.-C. Hsu, M. C. H. Wu, and A. Reali, “Isogeometric Kirchhoff–Love
shell formulations for general hyperelastic materials,” Computer Methods in Applied
Mechanics and Engineering, vol. 291, pp. 280–303, July 2015. 00043.

[13] M. A. Scott, M. J. Borden, C. V. Verhoosel, T. W. Sederberg, and T. J. R.
Hughes, “Isogeometric finite element data structures based on Bézier extraction
of T-splines,” International Journal for Numerical Methods in Engineering, vol. 88,
pp. 126–156, Oct. 2011. 00193.

[14] M. A. Scott, X. Li, T. W. Sederberg, and T. J. R. Hughes, “Local refinement of
analysis-suitable T-splines,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 213, pp. 206–222, Mar. 2012. 00244.

[15] T. Dokken, T. Lyche, and K. F. Pettersen, “Polynomial splines over locally refined
box-partitions,” Computer Aided Geometric Design, vol. 30, pp. 331–356, Mar.
2013. 00174.

[16] D. R. Forsey and R. H. Bartels, “Hierarchical B-spline Refinement,” in Proceedings
of the 15th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’88, (New York, NY, USA), pp. 205–212, ACM, 1988.

[17] G. Greiner and K. Hormann, “Interpolating and Approximating Scattered 3D-data
with Hierarchical Tensor Product B-Splines,” in In Surface Fitting and Multireso-
lution Methods, pp. 163–172, Vanderbilt University Press, 1997.

[18] R. Kraft, “Adaptive and linearly independent multilevel B-splines,” in Surface Fit-
ting and Multiresolution Methods, Vanderbilt University Press, 1997.

[19] C. Giannelli, B. Jüttler, and H. Speleers, “THB-splines: The truncated basis for
hierarchical splines,” Computer Aided Geometric Design, vol. 29, pp. 485–498, Oct.
2012.

[20] C. Giannelli, B. Jüttler, S. K. Kleiss, A. Mantzaflaris, B. Simeon, and J. Špeh,
“THB-splines: An effective mathematical technology for adaptive refinement in ge-
ometric design and isogeometric analysis,” Computer Methods in Applied Mechanics
and Engineering, vol. 299, pp. 337–365, Feb. 2016.

37

[21] G. Kiss, C. Giannelli, and B. Jüttler, “Algorithms and Data Structures for Trun-
cated Hierarchical B–splines,” in Mathematical Methods for Curves and Surfaces,
pp. 304–323, Springer, Berlin, Heidelberg, June 2012.

[22] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes, “Isogeometric fi-
nite element data structures based on Bézier extraction of NURBS,” International
Journal for Numerical Methods in Engineering, vol. 87, pp. 15–47, July 2011. 00159.

[23] E. Garau and R. Vázquez, “Algorithms for the implementation of adaptive isogeo-
metric methods using hierarchical splines,” Techincal Report 16-08, IMATI-CNR,
Pavia, June 2016.

[24] P. Hennig, S. Müller, and M. Kästner, “Bézier extraction and adaptive refinement
of truncated hierarchical NURBS,” Computer Methods in Applied Mechanics and
Engineering, vol. 305, pp. 316–339, June 2016.

[25] A.-V. Vuong, “Finite Element Concepts and Bezier Extraction in Hierarchical
Isogeometric Analysis,” in Progress in Industrial Mathematics at ECMI 2012,
pp. 385–390, Springer, Cham, 2014.

[26] P. B. Bornemann and F. Cirak, “A subdivision-based implementation of the hier-
archical b-spline finite element method,” Computer Methods in Applied Mechanics
and Engineering, vol. 253, pp. 584–598, Jan. 2013.

[27] C. Apprich, K. Höllig, J. Hörner, A. Keller, and E. N. Yazdani, “Finite Element
Approximation with Hierarchical B-Splines,” in Curves and Surfaces, pp. 1–15,
Springer, Cham, June 2014.

[28] M. A. Scott, D. C. Thomas, and E. J. Evans, “Isogeometric spline forests,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 269, pp. 222–264, Feb.
2014.

[29] E. J. Evans, M. A. Scott, X. Li, and D. C. Thomas, “Hierarchical T-splines:
Analysis-suitability, Bézier extraction, and application as an adaptive basis for
isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering,
vol. 284, pp. 1–20, Feb. 2015.

[30] G. Lorenzo, M. A. Scott, K. Tew, T. J. R. Hughes, and H. Gomez, “Hierarchi-
cally refined and coarsened splines for moving interface problems, with particular
application to phase-field models of prostate tumor growth,” Computer Methods in
Applied Mechanics and Engineering, vol. 319, pp. 515–548, June 2017. 00001.

[31] L. Piegl and W. Tiller, The NURBS Book. Monographs in Visual Communications,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

[32] A. V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon, “A hierarchical approach to
adaptive local refinement in isogeometric analysis,” Computer Methods in Applied
Mechanics and Engineering, vol. 200, pp. 3554–3567, Dec. 2011.

38

[33] C. Giannelli, B. Jüttler, and H. Speleers, “Strongly stable bases for adaptively
refined multilevel spline spaces,” Advances in Computational Mathematics, vol. 40,
pp. 459–490, Sept. 2013.

[34] A. Buffa and C. Giannelli, “Adaptive isogeometric methods with hierarchical
splines: Error estimator and convergence,” Mathematical Models and Methods in
Applied Sciences, vol. 26, no. 01, pp. 1–25, 2016.

[35] P. Di Stolfo, A. Schröder, N. Zander, and S. Kollmannsberger, “An easy treatment
of hanging nodes in -finite elements,” Finite Elements in Analysis and Design,
vol. 121, pp. 101–117, Nov. 2016.

[36] W. Boehm, “On the efficiency of knot insertion algorithms,” Computer Aided Geo-
metric Design, vol. 2, pp. 141–143, Sept. 1985.

[37] B.-G. Lee and Y. Park, “Degree elevation of B-spline curves and its matrix repre-
sentation,” Journal of the Korean Society for Industrial and Applied Mathematics,
vol. 4, no. 2, pp. 1–9, 2000. 00001.

[38] N. Zander, T. Bog, M. Elhaddad, F. Frischmann, S. Kollmannsberger, and E. Rank,
“The multi-level hp-method for three-dimensional problems: Dynamically changing
high-order mesh refinement with arbitrary hanging nodes,” Computer Methods in
Applied Mechanics and Engineering, vol. 310, pp. 252–277, Oct. 2016.

[39] M. Nesme, F. Faure, and Y. Payan, “Hierarchical Multi-resolution Finite Element
Model for Soft Body Simulation,” in 2nd Workshop on Computer Assisted Diagnosis
and Surgery, pp. 40–47, Springer Berlin Heidelberg, Mar. 2006.

[40] D. Schillinger, P. K. Ruthala, and L. H. Nguyen, “Lagrange extraction and projec-
tion for NURBS basis functions: A direct link between isogeometric and standard
nodal finite element formulations,” International Journal for Numerical Methods in
Engineering, vol. 108, pp. 515–534, Nov. 2016.

[41] T. Lyche and K. Morken, “Spline methods draft.” www.uio.no/studier/emner/mat-
nat/ifi/INF-MAT5340/v13/undervisningsmateriale/book.pdf, 2011 (Online; ac-
cessed 20.02.17)., 2008.

[42] G. Casciola and L. Romani, “A general matrix representation for non-uniform B-
spline subdivision with boundary control,” techincal report, ALMA-DL University
of Bologna, 2007. amsacta.unibo.it/2532/.

[43] M. R. Dörfel, B. Jüttler, and B. Simeon, “Adaptive isogeometric analysis by local
h-refinement with T-splines,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 199, pp. 264–275, Jan. 2010. 00332.

[44] Z. Yosibash, Singularities in Elliptic Boundary Value Problems and Elasticity and
Their Connection with Failure Initiation, vol. 37 of Interdisciplinary Applied Math-
ematics. New York, NY: Springer New York, 2012. 00030.

39

[45] P. L. Gould, Introduction to Linear Elasticity. Springer-Verlag, 1999.

40

	Introduction
	Preliminaries
	B-Splines and NURBS
	Bézier extraction
	(Truncated) hierarchical B-Splines
	Overlay of univariate B-Splines
	Hierarchical B-Spline basis
	Truncated hierarchical B-Splines basis

	Multi-level extraction operator
	Basic concept
	Linear transformation between basis functions of nested spaces
	The global multi-level extraction for HB and knot insertion
	The local multi-level extraction for HB and knot insertion
	The multi-level extraction operator
	The multi-level extraction for THB and knot insertion
	Local computation of the local multi-level extraction operator
	Structure of the local multi-level extraction operator

	Multi-level Bézier extraction
	The multi-level extraction for (truncated) hierarchical NURBS
	Extension to higher dimensional spaces
	Extension to other sequences of nested spaces
	The multi-level extraction for degree elevation

	Advantages
	Knot insertion algorithms

	Numerical Examples
	Heat Conduction on L-Shaped domain
	Linear Elastic Circular Plate with a Hole

	Conclusions

