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Abstract 

Specific product and processing characteristics impact planning of food supply chains. These 

include, for example, the shelf life of the products and the cleaning requirements of the produc-

tion equipment. This thesis introduces three types of optimization-based approaches for plan-

ning food supply chains at different levels. The developed approaches are applied to real-life 

food industry cases. At the strategic planning level, a two-stage stochastic programming model 

determines the selection of new product designs and processing technologies in a supply chain 

context. Numerical tests investigate the interdependencies between product designs and pro-

cessing technologies for novel milk concentrates. Flexible technologies are selected that can 

produce different product designs. The tests also show that the technology selection is highly 

dependent on the uncertain demand characteristics of the new concentrate products. At the tac-

tical planning level, a sustainability framework evaluates the impact of shelf life on the trade-

off between economic and environmental objectives for the example of milk powders and milk 

concentrates. The framework includes a multi-objective optimization model and a rolling hori-

zon scheme that captures product price uncertainty. Numerical tests show that the economic 

value of shelf life is not a strong argument against the substitution of powders with more envi-

ronmental-friendly concentrates. At the operational planning level, a lot sizing and scheduling 

model for flowshops accurately represents different setup and cleaning classes that are identi-

fied through a novel classification scheme. Numerical tests investigate the impact of different 

setup and cleaning requirements in short-term production scheduling of cheese. In particular, 

the tests give insights into the extent to which a misidentification of cleanings may decrease the 

scheduling flexibility. 
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Zusammenfassung 

Die Planung von Wertschöpfungsketten für Lebensmittel wird von spezifischen Produkt- und 

Prozesseigenschaften beeinflusst, wie beispielsweise Produkthaltbarkeiten und Reinigungsan-

forderungen der Produktionsanlagen. In der vorliegenden Dissertation werden drei auf mathe-

matischer Optimierung basierende Methoden entwickelt, die sich mit der Planung von Wert-

schöpfungsketten für Lebensmittel auf verschiedenen Planungsebenen beschäftigen. Die Me-

thoden werden in Fallstudien aus der Lebensmittelindustrie angewandt. Auf der strategischen 

Planungsebene werden die Auswahl neuer Produktdesigns und Produktionstechnologien und 

relevante Entscheidungen entlang der Wertschöpfungskette mittels eines zweistufigen, stochas-

tischen Optimierungsmodells integriert. Die numerischen Tests analysieren die Interdependen-

zen zwischen Produktdesigns und Produktionstechnologien für neuartige Milchkonzentrate. 

Flexible Technologien werden ausgewählt, welche unterschiedliche Produktdesigns produzie-

ren können. Die numerische Analyse zeigt auch, dass die Auswahl der Produktionstechnologien 

stark von Nachfrageunsicherheiten der neuen Konzentrate abhängt. Auf der taktischen Pla-

nungsebene bewertet ein konzeptioneller Rahmen den Einfluss der Produkthaltbarkeit auf öko-

nomische und ökologische Ziele in der Wertschöpfungskette von Milchpulver und -konzentra-

ten. Bestandteile des konzeptionellen Rahmens sind ein mehrkriterielles Optimierungsmodell 

und ein Planungsschema mit rollierendem Zeithorizont, das unsichere Preisfluktuationen be-

rücksichtigt. Die numerischen Tests zeigen, dass der ökonomische Wert von Produkthaltbarkeit 

kein starkes Argument gegen die Substitution von Pulvern durch umweltfreundlichere Kon-

zentrate ist. Auf der operativen Planungsebene werden verschiedene Rüst- und Reinigungsvor-

gänge mit Hilfe eines neuartigen Klassifikationsschemas identifiziert und in ein Modell für 

Losgrößen- und Reihenfolgeplanung für Flowshops integriert. Die numerischen Tests analysie-

ren die Auswirkungen von verschiedenen Rüst- und Reinigungsanforderungen auf die kurzfris-

tige Ablaufplanung in der Käseherstellung. Die Studie zeigt insbesondere inwieweit eine Fehl-

identifizierung von Reinigungen die Planungsflexibilität verringern kann.  
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Chapter 1. Introduction 

1.1 Food supply chain planning 

The food industry is an important manufacturing sector. In the European Union, for instance, 

the food and drink industry represents the largest manufacturing sector in terms of turnover and 

employment, with over €1 trillion turnover and over 4.25 million employees in 2016 

(FoodDrinkEurope, 2016). In the food supply chain, many different organization are involved, 

like farmers, food processors, and distributors, which aim at providing final consumers with 

foods and drinks.  

Several important challenges typify planning of food supply chains. Consumers demand high-

quality food products that are safe and have sufficient shelf lives. This leads, for example, to 

extensive cleaning requirements at the processing plants. However, cleanings typically contrib-

ute considerably to food waste. Furthermore, consumer awareness of environmental sustaina-

bility has increased significantly over the last few years. In order to keep a competitive ad-

vantage, food producers therefore regularly introduce novel and more environmental-friendly 

processing technologies to their plants, which consume less resources. To cater both consumer 

and societal needs, new product introductions are also common in the food industry. Often there 

is no existing market or previous demand data for the new products resulting in various demand 

uncertainties that have major impacts on the food supply chain planning. Since food products 

are usually defined through their production processes, decisions on processing technologies 

and new products are highly interrelated. Also, new products and technologies often result in 

changes in the supply chain. Managing this nexus is therefore a key challenge in food supply 

chain planning. 

Motivated by the aforementioned challenges, this thesis focuses on planning of food supply 

chains. Specific product and processing characteristics that cause complexities for supply chain 

planning must be accounted for. Novel and advanced decision tools are therefore necessary to 

achieve the overall supply chain objectives, which relate both to costs and environmental crite-

ria. Depending on the planning tasks, decision tools at different planning levels are required. 

Three different planning levels are typically distinguished, i.e., long-term, mid-term, and short-

term, or alternatively strategic, tactical, and operational. The scope of the planning activities, 

the level of aggregation, the impact of the decisions, and the planning horizon vary between the 

planning levels.  



 Introduction 

2 
 

In the following, we first discuss the food-specific product and processing characteristics that 

are analyzed in this thesis. Then, we describe the food industry cases, which the developed 

planning approaches are applied to. Finally, we provide the research objectives, the thesis out-

line, and a list of the included publications. 

1.2 Product and processing characteristics of food supply chains 

Several product and processing characteristics typify food supply chains. In the following, we 

give a brief overview of the food-specific product and processing characteristics that are ana-

lyzed in this thesis. To appropriately address these different characteristics in food supply chain 

planning models, interdisciplinary research approaches involving e.g., product designers, food 

process engineers, and supply chain experts, are often required. Process manufacturing is com-

mon in production systems for food, chemicals, and pharmaceutics. These process industry 

sectors therefore share some common product and processing characteristics. We refer to Fran-

soo and Rutten (1994) for an overview of general process industry characteristics. 

Shelf life. Managing perishability in production and distribution planning is a key challenge in 

many industries (see e.g., the review by Amorim et al., 2013b). In the food industry, shelf life 

is the most distinguishing product characteristic. Products are typically produced from rela-

tively few types of raw materials and the quality of raw materials is often subject to variability. 

Furthermore, intermediates and final products are often subject to perishability. To control the 

quality degradations strict control of hygiene standards and careful handling of inventories are 

required throughout the entire supply chain. Controlling the storage conditions (e.g., chilled or 

ambient) is of importance for many types of food products, as the temperature levels are directly 

connected to the quality control. Modeling shelf life of perishable food products is fundamental 

to reduce product waste along the supply chain adding complexity to supply chain planning. 

Specific constraints are often required in planning models to track the quality degradation (see 

e.g., Rong et al., 2011). As described in Section 1.1, new environmental-friendly processing 

technologies are frequently introduced at food processing plants. Even though the resulting 

products are more environmentally sustainable, the shelf life is often reduced. In case of price 

fluctuations, shelf-life-reduced products may negatively affect the economic performance due 

to limited storage duration.  

Setups and cleanings. Extensive setup and cleaning requirements typify the food sector. Setups 

and cleanings cause long downtimes of equipment, high consumption of energy, water, and 

cleaning agents, and waste of materials. This results in significant economic and environmental 
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impacts. In planning and scheduling of food production it is therefore important to account for 

setups and cleanings (see e.g., Kopanos et al., 2012). Different to many other industries, setup 

and cleaning operations in food processing often cannot be reduced as they are essential to 

adhere to extensive quality and safety regulations. Furthermore, the quality and safety consid-

erations lead to a diversity of setup and cleaning requirements and many different types of 

setups and cleanings that typically must be performed while production is stopped.  

Resource consumption. Large amounts of resources, such as energy, water, and cleaning 

agents, are commonly needed in food processing and distribution. Consumer expectations for 

fresh high-quality food products typically result in high energy consumption, since in order to 

achieve high-quality products, cooling or more energy intensive processes often must be em-

ployed. Cleanings also consume large amounts of resources. Resource consumption is therefore 

a key cost driver that also has a strong impact on the environment. Consequently, including 

energy consumption (see e.g., Zanoni and Zavanella, 2012; Van der Vorst et al.; 2009), water 

consumption (see e.g., Ahumada and Villalobos; 2011), and consumption of cleaning agents in 

food supply chain models is especially important. 

Product losses. Product losses are typical for food supply chains. They can occur at different 

stages in the supply chain, like in processing (see e.g., Waldron, 2009), storage, and transpor-

tation. Typically, large product losses result from cleanings and quality degradation. Products 

that are thrown away along the supply chain are very costly and they cause substantial environ-

mental impacts. Reduction of product losses is therefore important both from economic and 

environmental perspectives. The food industry confederation in the European Union has, for 

example, made the fight against food waste one of its key priorities (FoodDrinkEurope, 2017). 

1.3 Food industry cases 

The planning approaches presented in this thesis are applied to real-life food industry cases that 

are introduced in this section. Particularly, two different cases from the dairy industry are ana-

lyzed. The dairy industry is a large sector within the food industry. In the German food and 

drink industry, for example, the dairy industry is the second largest industry with 13.2% share 

of the total turnover in 2016 after the meat industry with 24.3% share of the total turnover 

(Bundesvereinigung der Deutschen Ernährungsindustrie e.V., 2017). 
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1.3.1 Substitution of skim milk powders with concentrates 

In the dairy industry, drying of powders is one of the most energy intensive processes (Ramírez 

et al., 2006). Dried dairy products are a popular ingredient in the processing of various food 

products, such as filled bakery products, ice-cream, yoghurt, and finished meals. For this pur-

pose, milk is concentrated in large volumes and further dried to generate skim milk powders. 

These processes consume enormous amounts of energy. Before the final products are produced, 

the powders are often reconstituted by again adding the water, which was previously extracted. 

In these cases, omitting the energy intensive drying process and producing instead concentrates 

with more efficient concentration processes is an option. As a consequence, substantial amounts 

of powders may be substituted with concentrates leading to extensive energy savings in pro-

duction. 

However, the production advantage may be offset through the higher storage and transportation 

impacts (concentrates have smaller dry-matter content than powders and they may require 

chilled temperatures), and the increased perishability of the products (concentrates have a sig-

nificantly lower shelf life than powders). The whole supply chain is therefore affected through 

the technology innovation. Furthermore, powders and concentrates can be processed with mul-

titude of processing variants by combining different technologies. This results in numerous dif-

ferent product designs with different dry-matter contents and shelf lives. Finally, for these novel 

products, there are a number of uncertain demand characteristics.  

This case focuses on the introduction of novel products and processing technologies. For the 

evaluation of these products and processing technologies it is important to account for many of 

the product and processing characteristics described in Section 1.2, like shelf life, cleanings, 

resource consumption, and product losses. This interdisciplinary project is carried out in coop-

eration with the chair of Food and Bioprocess Engineering at the Technical University of Mu-

nich as well as two German dairy companies. 

1.3.2 Cleanings in cheese production 

One of the major sectors in the dairy industry is the production of cheese. In this research pro-

ject, key challenges in production scheduling of cheese are investigated. The aim is to develop 

a weekly production schedule such that production on weekends is minimized. The project fo-

cuses specifically on scheduling of setup and cleaning activities. In particular, different types 

and characteristics of setup and cleaning activities are analyzed. The analyzed settings are typ-

ical for various process industry applications with extensive setup and cleaning requirements. 
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A number of types of cheeses exist, each with its special production process, ripening process, 

taste, and texture. In this project, we analyze the production of soft and blue cheese. The pro-

duction environment is classified as a no-wait flowshop, in which multiple products are pro-

duced sequentially on a single production line. The main production processes are analyzed, 

which are filling into tubs, curd preparation, filling into forms, resting, and brining. The usage 

of the forms, into which the cheeses are filled, is a specifically important consideration. Other 

important scheduling aspects include, for example, due date restrictions, precedence relations 

between products (e.g., requiring production of natural products before production of products 

with strong flavor), and heterogeneous processing times.  

This case from the dairy industry focuses mainly on one of the processing characteristic men-

tioned in Section 1.2, i.e., setups and cleanings. However, scheduling of setups and cleanings 

also relates to some of the other product and processing characteristics as they are directly 

linked to the resource consumption and product losses of the processing system, as well as the 

quality of the products. This research project is carried out together with a medium-sized dairy 

company from Germany. 

1.4 Research objectives 

The overall aim of the thesis is to contribute to the knowledge on food supply chain planning. 

The thesis covers three topics that all develop an optimization-based planning approach con-

sidering a food-specific supply chain problem. Here, the relevant product and processing char-

acteristics must be accounted for. We do not aim at developing optimization models that sys-

tematically accommodate all product and processing characteristics simultaneously, but rather 

focus on the ones that are relevant for the specific problem and planning level. Interdisciplinary 

collaboration is required to integrate knowledge about food processing technologies in the de-

veloped planning approaches. Although the problems studied in this thesis are typically found 

in food supply chains, similar issues can also be found in other settings. Therefore, some of the 

developed approaches are generically formulated. In the following, we discuss the aim of the 

thesis in more detail and formulate specific research questions. 

Consumer demands for new and sustainable products necessitate the introduction of new pro-

cessing technologies. Technological innovation also leads to new processing technologies that 

allow for new product introductions. Decisions on the selection of new products and technolo-

gies are therefore highly interrelated. Moreover, these must be embedded in suitable supply 

chain structures and the key demand uncertainties must be captured. This is especially relevant 
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in the food industry, since the products are usually defined through their production processes. 

This brings us to the first research question in this thesis: 

RQ1: How can interdependencies between the selection of new product designs and processing 

technologies including the characteristic uncertainties be addressed?  

Shelf life is a product characteristic that typifies food supply chains. Shelf life can have an 

economic benefit in case of fluctuating prices as shelf-stable products allow to delay the sales 

until a higher price level is reached. Environmental impacts increase with longer shelf lives and 

longer storage durations. The shelf life therefore impacts different sustainability objectives. The 

dairy case on substituting skim milk powders with concentrates is very well suited to demon-

strate the impact of shelf life on the trade-off between economic and environmental perfor-

mance. The next research question therefore specifically considers this case: 

RQ2: From an integrated economic and environmental perspective, should traditional milk 

powders be substituted with novel milk concentrates? Is the decision impacted by the value of 

shelf life? 

Setups and cleanings represent an especially important processing characteristic in the food 

industry. Diverse setup and cleaning requirements result in different types and characteristics 

of setups and cleanings. Also, they are often interrelated through specific substitution relation-

ships. An accurate representation of setups and cleanings in scheduling approaches is funda-

mental for an efficient use of resource. Although scheduling of setups and cleanings has re-

ceived some attention in the literature, there is no systematic approach available. This leads us 

to the final research question in this thesis: 

RQ3: How can different setup and cleaning requirements and their interrelationships be sys-

tematically addressed in scheduling approaches? 

1.5 Thesis outline 

The thesis is organized as a collection of three research papers that focus on the overall research 

objective. Optimization-based planning approaches at three different planning levels are devel-

oped, i.e., at a strategic level in Chapter 2, at a tactical level in Chapter 3, and at an operational 

level in Chapter 4. For each particular problem, the related literature is outlined in the respective 

chapter. More specifically, the thesis is organized as follows.  
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Chapter 2 investigates the selection of new product designs and processing technologies in a 

supply chain context, accounting for the characteristic demand uncertainties. The chapter there-

fore aims at answering research question 1. First, a design space is derived through interdisci-

plinary research, in which the interdependencies between products and processing technologies 

are mapped for different product specifications, such as shelf life requirements. Then, we intro-

duce a novel modeling approach based on two-stage stochastic programming that covers the 

nexus between new product introduction, processing technologies, and supply chain. The de-

veloped approach is general and not only applicable to food supply chains. Next, we apply the 

approach to the selection of processing technologies and product designs for milk concentrates 

(see Section 1.3.1) and carry out numerical tests. These specifically analyze how the product 

and technology selection is affected by demand uncertainties. 

In Chapter 3, a framework is developed for evaluating the impact of shelf life on the trade-off 

between the economic and environmental performance of milk powders and milk concentrates 

(see Section 1.3.1). The proposed framework includes a multi-objective optimization model, a 

rolling horizon scheme that deals with product price uncertainty, and a method for objective 

reduction. In this chapter both concentrates and powders are analyzed, as compared to only 

concentrates in Chapter 2. In numerical tests, we analyze the substitution of powders with con-

centrates from both an economic and an environmental perspective. We also particularly inves-

tigate the economic value of shelf life. This chapter therefore aims at answering research ques-

tion 2. 

Chapter 4 investigates setups and cleanings in lot sizing and scheduling. The chapter aims at 

answering research question 3. First, a novel classification scheme is developed for setups and 

cleanings. Then, a modeling approach is developed for lot sizing and scheduling of flowshops 

including a comprehensive representation of setups and cleanings, as well as their interrelation-

ships. The developed methodology applies in general to flowshops and is not limited to food 

production. Finally, the developed modeling approach is applied to the cheese production case 

described in Section 1.3.2. Numerical tests specifically analyze the flexibility in scheduling 

cleanings and the heterogeneity of the processing times.  

Finally, the thesis concludes with a summary of the results in Chapter 5. Possible directions for 

future research are also outlined. 
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1.6 Included publications 

The chapters in this thesis are based on different publications and are all readable as individual 

contributions. Combined they provide optimization-based planning approaches for food supply 

chains, each addressing specific product and processing characteristics. The chapters have been 

published as listed below. 

Chapter 2:  Stefansdottir, B., Grunow, M., 2018. Selecting new product designs and pro-

cessing technologies under uncertainty: two-stage stochastic model and applica-

tion to a food supply chain. International Journal of Production Economics, 201, 

89–101. 

Chapter 3:  Stefansdottir, B., Depping, V., Grunow, M., Kulozik, U., 2018. Impact of shelf 

life on the trade-off between economic and environmental objectives: a dairy 

case. International Journal of Production Economics, 201, 136–148. 

Chapter 4:  Stefansdottir, B., Grunow, M., Akkerman, R., 2017. Classifying and modeling 

setups and cleanings in lot sizing and scheduling. European Journal of Opera-

tional Research, 261(3), 849–865. 
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Chapter 2. Selection of product designs and processing technologies 

This chapter is based on an article published as: 

Stefansdottir, B., Grunow, M., 2018. Selecting new product designs and processing technolo-

gies under uncertainty: two-stage stochastic model and application to a food supply chain. 

International Journal of Production Economics, 201, 89–101. 

 

Abstract 

New product introduction frequently requires new processing technologies, and the develop-

ment of new processing technologies also allows for the introduction of new products. An as-

sessment of these new products and technologies must account for changes in the whole supply 

chain. This paper presents a two-stage stochastic mixed integer linear programming model that 

integrates the selection of new product designs and processing technologies in a supply chain 

context. Special attention is given to the demand uncertainties with regard to product specifica-

tions and volumes. The first stage of the model selects the processing technologies that deter-

mine the set of feasible product designs, leaving the detailed product designs and the production 

volumes as recourse actions to the second stage. We apply the developed approach to product 

designs and processing technologies in the dairy sector. Here, the substitution of milk powders 

through milk concentrates is currently being considered, which may lead to extensive energy 

savings in production. In an interdisciplinary effort, we first derive the design space encom-

passing the feasible dairy technologies and product designs for concentrates. Through numerical 

investigation we then show that flexible technologies are selected that can be used to produce 

different product designs. We also show that the selection of technologies is highly dependent 

on the uncertain demand characteristics of the new concentrate products. 

2.1 Introduction 

Consumer demands for new products require the introduction of new processing technologies. 

At the same time, technological progress leads to new processing technologies allowing product 

innovations. Product designs and processing technologies also need to be embedded in suitable 

supply chain structures. Managing this nexus between new product designs, technologies, and 

supply chains is the key challenge in today’s economies with decreasing product and processing 

technology life cycles. 
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For instance, in a reaction to customer demands for more environmental-friendly product de-

signs, the beverage industry introduced new packaging technologies, which results in changes 

to the whole supply chain. Similarly, the increased demand for electric mobility has led to the 

development of not only new traction batteries but also of body parts made of composite mate-

rials. This is reshaping the automotive industry as the new product designs require new manu-

facturing technologies as well as new supply chains. 

There is substantial literature on integrating processing technology selection with supply chain 

decisions. This previous work assumes decisions on product design to be given. However, prod-

uct designs and processing technologies are interdependent. An interdisciplinary approach in-

volving product designers, process engineers, and supply chain experts is required to address 

the nexus. Each of these disciplines needs to contribute to the development of the design space, 

which encompasses information on the potential product specifications as well as the associated 

processing technologies and supply chains. 

Managing the nexus is further complicated by demand uncertainties. Long before demand char-

acteristics are known, decisions on significant investments must be made. Particularly, the 

adoption of new products is hard to predict. Besides total demand volume, especially the exact 

product specifications demanded by the customers are often unknown. However, this product 

mix uncertainty can be dealt with by selecting processing technologies that have the flexibility 

to change to other product designs.  

Advances in fractionation technologies are examples of processing technology developments 

that offer opportunities for the introduction of new products. With the help of these new tech-

nologies, raw material can be separated more efficiently into different fractions of its constitu-

ents. One industry that strongly profits from these technological developments is the food sec-

tor. Milk, for instance, can be concentrated to different levels of dry-matter content. Different 

technologies may be employed and combined for concentration and heat treatment (for shelf 

live extension), leading to different product designs. Depending on the customer application, 

the concentrates can potentially substitute the traditionally used powders. A substantial reduc-

tion in energy consumption during processing results. However, this advantage may be offset 

by the necessity to ship larger volumes (which depends on the degree of concentration) and the 

necessity to cool certain types of concentrates (which depends on the previous heat treatment). 

Hence, the extent at which the new concentrates will substitute the powders and the most suit-

able product specifications for the concentrates are uncertain. The case therefore exemplifies 
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the nexus between product designs, processing technologies, and supply chain, including the 

characteristic uncertainties. 

The main contributions of the paper are (i) the development of a novel modeling approach that 

integrates the selection of new product designs into the decision making on processing technol-

ogies in a supply chain context; (ii) the comprehensive inclusion of product-specification and 

volume uncertainties related to new product introduction; (iii) the derivation of the design space 

for a case from the food industry based on extensive interdisciplinary collaboration; (iv) nu-

merical results demonstrating the suitability of our approach and showing that under uncertain-

ties typical for new product introduction, technologies are selected that have the flexibility to 

produce different products; and (v) the demonstration that technology selection in the case is 

highly dependent on the uncertain demand characteristics of the products, showing that man-

agers should strive to obtain information on customer demand characteristics, especially on 

shelf life.  

The remainder of this paper is organized as follows. In Section 2.2, the main related literature 

is outlined. Section 2.3 presents the proposed modeling approach. Initially, the design space is 

derived, in which the interdependence between products and processing technologies is mapped 

for the product specifications. Then, a two-stage stochastic mixed integer linear programming 

(MILP) model is presented. In the first stage, the processing technologies that determine the set 

of feasible product designs are selected. In the second stage, the product designs and their share 

in production volumes are determined, as well as the decisions on the supply chain operations. 

Section 2.4 describes the industry case on new energy efficient dairy processes and products. 

In Section 2.5, numerical analyses for an industry case at a German dairy company are carried 

out. Finally, Section 2.6 concludes the paper and presents future research opportunities. 

2.2 Related literature 

In the following, we first give a brief overview of deterministic and stochastic approaches that 

deal with selection of technologies (or process design) together with supply chain decisions. 

These approaches are summarized in Table 2.1. Because our approach is applied to a case from 

the food industry, we secondly review some interdisciplinary approaches in which quantitative 

operations management methods are integrated with food-specific characteristics. 
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Five of the publications in Table 2.1 are based on deterministic approaches. Corsano and Mon-

tagna (2011) develop an approach for the simultaneous design of plants and supply chain for 

the batch process industry. Decisions on process design, such as allocation of storage tanks and 

determination of unit sizes, and planning decisions for the supply chain are integrated in a mixed 

integer linear programming (MILP) model. Similarly, Corsano et al. (2011) formulate a mixed 

integer nonlinear programming (MINLP) model in which the sustainable design of plant and 

supply chain is simultaneously achieved for a bioethanol supply chain. You et al. (2012) present 

a multi-objective mixed integer linear programming (Mo-MILP) model for the design of cellu-

losic ethanol supply chains. Decisions are taken on network design, technology selection, pro-

duction planning, and logistics management. In addition, the model is integrated with a life 

cycle assessment and input-output analyses. Hugo and Pistikopoulos (2005) also develop a Mo-

MILP model for the selection of processing technologies for a chemical supply chain. In their 

model, the net present value of capital investments is maximized while minimizing environ-

mental impact. The only study from the food industry is presented in Quaglia et al. (2012). They 

develop an MINLP model for the synthesis and design of processing networks for a case study 

from the vegetable oil industry, considering both business aspects (such as financial criteria and 

supply chain) and engineering aspects (such as processing conditions and design of processing 

technology). 

Table 2.1: Overview of deterministic and stochastic approaches dealing with technology selection in a supply chain context. 

Publication Industry  
application 

Method Det./  
Stoch.a 

Product  
design  
 

Technology 
selection 
(process  
design) 

Supply 
chain 
decisions 

Hugo and Pistikopoulos (2005) Chemical Mo-MILP Det. - X X 
Corsano and Montagna (2011)  Batch process MILP Det. - X X 
Corsano et al. (2011) Chemical MINLP Det. - X X 
You et al. (2012) Chemical Mo-MILP Det. - X X 
Quaglia et al. (2012) Food MINLP Det. - X X 
You and Grossmann (2008) Chemical Mo-MINLP Stoch. - X X 
Guillén-Gosálbez and Gross-
mann (2009) 

Chemical Mo-MINLP Stoch. - X X 

Guillén-Gosálbez and Gross-
mann (2010) 

Chemical Mo-MINLP Stoch. - X X 

Gebreslassie et al. (2012) Chemical Mo-MILP Stoch. - X X 
Kostin et al. (2012) Chemical Mo-MILP Stoch. - X X 
Ruiz-Femenia et al. (2013) Chemical Mo-MILP Stoch. - X X 
This paper (2018) Food MILP Stoch. X X X 

a Det./Stoch.: Deterministic approach / Stochastic approach. 
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None of the reviewed deterministic studies captures the nexus between new product designs, 

processing technology selection, and supply chain operations. Integrated decisions on pro-

cessing technologies and supply chain are addressed in all studies, but assuming that the product 

is given.  

Supply chain planning problems under uncertainty have been widely studied. Six stochastic 

approaches related to the model developed in our paper are summarized in Table 2.1. You and 

Grossmann (2008) develop a Mo-MINLP model for the design and planning of responsive sup-

ply chains under demand uncertainty. Uncertainty is addressed by using a probabilistic model 

in which uncertain parameters are treated as variables with known probability distribution. The 

model is applied to a polystyrene supply chain. In Guillén-Gosálbez and Grossmann (2009), a 

stochastic Mo-MINLP model is also developed. The model deals with the design of a sustain-

able chemical supply chain including technology selection, with uncertainty in the life cycle 

inventory. This study is extended in Guillén-Gosálbez and Grossmann (2010) for uncertainty 

in the parameters of the environmental damage model. Also, Ruiz-Femenia et al. (2013) extend 

the study by Guillén-Gosálbez and Grossmann (2009) by considering demand uncertainties. 

Gebreslassie et al. (2012) develop a two-stage stochastic model for hydrocarbon biorefinery 

supply chain under supply and demand uncertainties, accounting also for risk management. 

Different conversion technologies are analyzed together with supply network design. In Kostin 

et al. (2012), bioethanol supply chain design with capacity expansion of production and storage 

facilities under demand uncertainty is addressed. 

Like for the deterministic approaches, none of the stochastic approaches captures the nexus 

between product designs, processing technologies, and supply chain. In all studies, technology 

selection in a supply chain context is analyzed assuming a given product. All of the reviewed 

stochastic approaches are from the chemical industry because of the strong link between pro-

cessing technologies and supply chains in this industry. 

The integrated selection of product designs and processing technologies in a supply chain con-

text requires interdisciplinary efforts involving operations management, engineering, and natu-

ral sciences. Food supply chains, however, have attracted only limited interdisciplinary work 

(Akkerman et al., 2010). There is some literature on modeling quality degradation in food pro-

cessing and distribution (Rong and Grunow, 2010). Rong et al. (2011) integrate microbiological 

models with the logistic models, with the aim of determining storage and transportation dura-

tion together with setting the temperature. Zanoni and Zavanella (2012) present a model for a 
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food supply chain determining temperature level and storage time, as related to quality preser-

vation and energy consumption. Controlling the temperature is of importance for a variety of 

food products, because the temperature is directly connected to the control of food quality, as 

well as to the energy consumption and the waste in the chain. Van der Vorst et al. (2009) show 

how food quality and sustainability together with logistics processes can be embedded in sim-

ulation modeling for a pineapple supply chain, in which sustainability is modeled by relating 

energy use and emissions to distribution. The paper also addresses different potential locations 

for one type of processing technology.  

The focus of the interdisciplinary food supply chain studies is on the impact of characteristics 

of a given product (such as quality degradation) on the supply chain. The design of the product 

and the selection of processing technologies are not covered. 

There is a lack of quantitative approaches that include product design decisions in the integrated 

decisions on processing technology and supply chain operations. In our approach, we therefore 

first derive an integrated design space for both the product design and processing technology. 

This step requires an extensive interdisciplinary collaboration with process engineers for our 

case from the food industry. In a second step, we select the product designs and processing 

technologies in the supply chain context considering the key demand uncertainties. 

2.3 Modeling approach for selection of product designs and processing technologies 

The selection of product designs and processing technologies is complicated by demand uncer-

tainties. We selected a decision model relying on two-stage stochastic programming to handle 

these uncertainties. The set of decisions are partitioned into first stage decisions, made facing 

the future uncertainties, and second stage decisions, made after the uncertainties have material-

ized. The first stage decisions on investments and capacities are more strategic, while the sec-

ond stage decisions on production and transportation amounts are more operational. Such two-

stage approaches are widely used, because they are declarative and can easily be adapted to 

changes in the problem environment. Examples are Kostin et al. (2012) and Ruiz-Femenia et 

al. (2013). However, they only consider process technologies and supply chain decisions. Dif-

ferent from our paper, they assume the product design to be given. 

2.3.1 Problem definition 

A supply chain with three echelons is considered, see Figure 2.1. Producers ship the raw mate-

rial to processing plants where it is processed into finished products and then sent to customers. 

At the processing plants, a network of possible technology paths transform the raw material 
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into finished products of distinct characteristics. This is shown in the lower part of the figure. 

A technology path consists of several interlinked processing stages, e.g., stages M1-M2-M3 

and M1-M3 in Figure 2.1 represent two technology paths. Each technology path can produce 

several products by running the equipment at the processing stages in different modes, resulting 

in various product designs. This is illustrated, in Figure 2.1, with different arrows for the prod-

uct designs. 

Today’s supply chain models must account for sustainability aspects, like resource consump-

tion and waste. Therefore, we assume that at each stage the product is processed, requiring 

resources and also leading to waste. Detailed modeling of each stage is required, because dif-

ferent technology paths share stages and consequently the equipment at these stages. Addition-

ally, waste can vary for the same type of equipment due to different characteristics of the prod-

ucts. Runtimes can also vary for the same type of equipment, depending on the operating mode. 

The following assumptions are made to facilitate the modeling: 

 Total supply of key raw material producers is fixed, e.g., due to long-term contracts. 

 Additional raw material can be procured from the spot market. 

 Some equipment units may be available at the processing plants, but additional equipment 

units with fixed capacity may be added. 

 At each stage, by-products may result. 

 Transportation capacities are sufficient. 

 

Figure 2.1: Representation of the nexus between product designs, processing technologies, and supply chain. 
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 The share wasted during processing and transportation of raw material is known for each 

product. 

 If demand is low, the products can be sent to a secondary market yielding a lower profit 

margin. 

 The decision maker is risk-neutral. 

2.3.2 Modeling of uncertainties 

There is no existing market or previous demand data for the new products. The key uncertainties 

related to new product introduction are not only the demand volumes, but also the product 

specifications as demanded by the customers. A systematic representation of the interdepend-

ence of the product technology paths and the product specifications is given in the form of a 

design space for which an example is shown in Figure 2.2. While technology path N1 is able to 

span a wide range of values for product specification 1, it can only span the upper part of prod-

uct specification 2. Three products with distinct combinations of values for both specifications 

can be produced when technology path N1 is implemented. The definition of the design space 

requires an interdisciplinary collaboration, in which the detailed specifications of the products 

and the capabilities of the technology paths are analyzed. 

The uncertainties in relation to product specifications and demand volumes are handled through 

a two-stage stochastic programming model, in which uncertainties are represented as scenarios. 

The set of decisions are split into scenario-independent here-and-now decisions (first stage) and 

scenario-dependent wait-and-see decisions (second stage). In the first stage, the technology 

paths that determine the set of feasible products are selected. Furthermore, the number of in-

vested equipment units at each processing stage is determined. In the second stage, the types of 

products to be produced and the production volumes of each type are determined. Therefore, 

  

Figure 2.2: Design space for product designs and processing technologies. 
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depending on how uncertainties resolve, the equipment that is selected in the first stage can be 

operated in different modes to obtain the requested product designs. Several product designs 

can be chosen to fulfill customer demand. Also, decisions on production volumes and flows 

through the supply chain are made. 

2.3.3 Model formulation 

The following notation is introduced for the model: 

Indices and index sets 

𝑖 ∈ 𝐼 producer 

𝑗 ∈ 𝐽 processing plant 

𝑘 ∈ 𝐾 customer 

𝑢 ∈ 𝑈 resource 

𝑛 ∈ 𝑁 technology path 

𝑚 ∈ 𝑀 processing stage 

𝑝 ∈ 𝑃 product 

𝑝 ∈ 𝑡𝑒𝑐ℎ(𝑛) product belonging to technology path n as determined in design space 

𝑚’ ∈ 𝑠𝑢𝑐 (𝑚) stage that is immediate successor of stage m for product p 

𝑜 ∈ 𝑂 product specification 

𝑡 ∈ 𝑇 time period 

𝑠 ∈ 𝑆 scenario 

Parameters 

𝛾  probability of scenario s 

𝜙 discount rate 

𝜁  supply of producer i in period t 

𝜀  distance between producer i and plant j 

𝜀  distance between plant j and customer k 

𝜎  waste fraction of raw material transported from producer i to plant j  

𝜎  waste fraction at stage m for product p 

𝜇  fraction of unconverted product at stage m for product p 

𝛼  usage rate of resource u during processing at stage m (e.g., kW, liters/hour) 

𝛼  consumption of resource u over setup/cleaning cycle at stage m  

(e.g., kWh, liters) 

𝜂  useful lifetime of equipment unit at stage m (in time periods) 

𝜅  number of equipment units in place at stage m in plant j 

𝜃  capacity per equipment unit at stage m for incoming flow of product p  

(e.g., liters/hour) 
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𝜏 number of time units in a time period (e.g., number of hours) 

𝜆  runtime at stage m for product p  

𝜉  setup/cleaning time at stage m  

𝛿  value for product specification o of product p  

𝛿  minimum value for product specification o requested by customer k for 

scenario s 

𝛿  maximum value for product specification o requested by customer k for  

scenario s 

𝜑  demand volumes for customer k in period t for scenario s 

𝐵 , 𝐵   sufficiently large positive values 

𝑟  price of product p sold to customer k in period t 

𝑟  price of product p sold to secondary market in period t  

𝑟  price of separated stream from stage m in period t  

𝑐  costs of raw material supplied from producer i in period t 

𝑐  costs of raw material supplied from spot market in period t 

𝑐  unit transportation costs of raw material 

𝑐  unit transportation costs of product p 

𝑐  unit costs of resource u 

𝑐  investment costs of technology path n 

𝑐  investment costs per equipment unit at stage m 

𝑐  maintenance costs of equipment unit at stage m in period t 

𝑣  scrap value of equipment unit at stage m 

Decision variables 

Here-and-now decision variables (first stage) 

𝐺  =1 if technology path n is selected in plant j (0, otherwise) 

𝐻  number of invested equipment units at stage m in plant j 

𝑅  first stage revenues 

𝐶  first stage costs 

Wait-and-see decision variables (second stage) 

𝐸  =1 if product p is selected in plant j for scenario s (0, otherwise) 

𝐹  flow quantity of raw material from producer i to plant j in period t for  

scenario s 

𝐿  amount of raw material procured from spot market for plant j in period t for 

scenario s 

𝑍  flow into stage m of process stream for product p in plant j in period t for  

scenario s 
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𝑍  flow out of stage m of process stream for product p in plant j in period t for 

scenario s 

𝑍  flow out of stage m of separated stream from product p in plant j in period t for 

scenario s 

𝑍  flow of resource u into stage m for processing product p in plant j in period t 

for scenario s 

𝑋  production quantity of product p in plant j in period t for scenario s 

W  quantity of product p sold to secondary market in plant j in period t for  

scenario s 

𝑄  flow quantity of product p from plant j to customer k in period t for scenario s 

𝐷  total shipment of product p to customer k in period t for scenario s 

𝑅  second stage revenues for scenario s 

𝐶  second stage costs for scenario s 

The two-stage stochastic model is formulated as follows: 

𝑀𝑎𝑥 𝑅 − 𝐶 + 𝛾 ∙

∈

(𝑅 − 𝐶 ) (2.1) 

subject to 

 𝑅 = (1 + 𝜙)( ) ∙ 𝑣 + (𝑐 − 𝑣 ) ∙
𝑚𝑎𝑥{𝜂 − 𝑇; 0}

𝜂
∈

∙

∈

𝐻  (2.2) 

𝐶 = 𝑐 ⋅

∈

𝐺

∈

+ 𝑐 ⋅

∈

𝐻

∈

+ (1 + 𝜙)( ) ∙ 𝑐 ⋅ 𝜅 + 𝐻

∈∈∈

 

(2.3) 

𝑅 = (1 + 𝜙)( )

∈

∙ 𝑟

∈

∙ 𝐷

∈

+ 𝑟

∈

∙ 𝑊

∈

+ 𝑟

∈

∙ 𝑍

∈∈

   ∀𝑠 ∈ 𝑆 

(2.4) 
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𝐶 = (1 + 𝜙)( )

∈

∙ 𝑐

∈

∙ 𝐹

∈

+ 𝑐 ∙ 𝐿

∈

+ 𝜀 ∙ 𝑐

∈

∙ 𝐹

∈

+ 𝜀 ∙ 𝑐 ∙

∈∈

𝑄

∈

+ 𝑐 ∙

∈∈∈

𝑍

∈

   ∀𝑠 ∈ 𝑆 

(2.5) 

𝐹

∈

= 𝜁    ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.6) 

𝐹

∈

∙ 1 − 𝜎 + 𝐿 = 𝑍

∈

   ∀𝑚 = 1, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.7) 

𝑍 = 𝑍 ’    ∀𝑚 ∈ 𝑀, 𝑚’ ∈ 𝑠𝑢𝑐 (𝑚), 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.8) 

𝑍 = 𝑍 ∙ (1 − 𝜎 ) ∙ 𝜇    ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.9) 

𝑍 = 𝑍 ∙ (1 − 𝜎 ) ∙ (1 − 𝜇 )   ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.10) 

𝑍 = 𝛼 ∙
𝑍

𝜃
+ 𝛼 ∙

𝑍

𝜃 ∙ 𝜆
   ∀𝑢 ∈ 𝑈, 𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽,   

  𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 
(2.11) 

𝑍 ≤ 𝐵 ∙ 𝐸    ∀𝑚 = 𝑀, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.12) 

𝐸

∈ ( )

≤ 𝐵 ∙ 𝐺    ∀𝑛 ∈ 𝑁, 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆 (2.13) 

𝜅 + 𝐻 ≥
𝑍

𝜃 ∙ 𝜏 ∙ 1 −
𝜉

𝜉 + 𝜆∈

   ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.14) 

𝑋 + 𝑊 = 𝑍   ∀𝑚 = 𝑀, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.15) 

𝑋 = 𝑄

∈

   ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.16) 

𝑄

∈

= 𝐷    ∀𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.17) 

𝐷 ∙ 𝛿 ≤ 𝐷 ∙ 𝛿 ≤ 𝐷 ∙ 𝛿    ∀𝑜 ∈ 𝑂, 𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.18) 

𝐷

∈

≤ 𝜑    ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.19) 

𝐺 ∈ {0,1}   ∀𝑛 ∈ 𝑁, 𝑗 ∈ 𝐽 (2.20) 
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𝐻 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟   ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽 (2.21) 

𝑅 ≥ 0, 𝐶 ≥ 0 (2.22) 

𝐸 ∈ {0,1}   ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆 (2.23) 

𝐹 ≥ 0   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.24) 

𝐿 ≥ 0   ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.25) 

𝑍 ≥ 0, 𝑍 ≥ 0,  𝑍 ≥ 0   ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.26) 

𝑍 ≥ 0   ∀𝑢 ∈ 𝑈, 𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.27) 

𝑋 ≥ 0, 𝑊 ≥ 0   ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.28) 

𝑄 ≥ 0   ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.29) 

𝐷 ≥ 0   ∀𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.30) 

𝑅 ≥ 0, 𝐶 ≥ 0   ∀𝑠 ∈ 𝑆 (2.31) 

In the above formulation, the objective function (2.1) aims to maximize the expected profit. 

The profit comprises the revenues and costs of the first stage, as well as the expected revenues 

and expected costs of the second stage. In constraints (2.2–2.5), the net present value of the 

costs and revenues are calculated. First stage revenues (2.2) include the salvage value and re-

sidual value of the investments. Residual value is allocated according to the time horizon con-

sidered and the lifetime of the equipment, assuming a straight-line depreciation. No salvage or 

residual value is assumed for investments in technology paths. First stage costs (2.3) include 

the investment and maintenance costs. Investment costs are determined by the selection of tech-

nology paths, e.g., for a material handling system, and number of equipment units at each stage. 

Second stage revenues (2.4) include the revenues of products sold to customers and to second-

ary market, as well as revenues for separated stream. Second stage costs (2.5) include costs for 

raw material supplied from producers and spot market, transportation costs, and resource costs. 

Constraints (2.6) ensure that total supplies of producers are sent to plants, due to long term 

contracts between producers and plants. Raw material from producers and spot market flows 

into the first stage at the plant, assuming a specific waste fraction for the transportation of raw 

material (2.7). Constraints (2.8) reflect the material flow between consecutive stages. At each 

stage the product is processed (2.9) and therefore the quantity of material flow out of the stage 

changes. Product waste due to processing and setup/cleaning activities at each stage is also 

accounted for. Constraints (2.10) track the flow of separated streams (by-products). 
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Amount of required resources are modeled with constraints (2.11). First resource consumption 

for processing is considered and secondly resource consumption over setup/cleaning cycle is 

multiplied by the number of required setup/cleaning cycles for the processed quantity. Con-

straints (2.12) link the continuous flow variables to the binary variables regarding selection of 

product designs. Note that even though investment decisions are made in the first stage, it is 

decided in the second stage which product designs are produced. Constraints (2.13) enforce the 

selection of technology paths. A set of products can be produced with the same technology path. 

Constraints (2.14) reflect the total number of equipment units at each stage, considering equip-

ment units in place as well as invested equipment units in the first stage. Material flow is thereby 

connected to the number of required equipment units, accounting for capacity reduction due to 

downtime of equipment resulting from setups/cleanings. 

The flow out of the last stage is equal to the total production available for customers plus the 

quantity sent to secondary market (2.15). Constraints (2.16) connect the production quantity 

available for the customers to the customer shipments. Constraints (2.17) aggregate the total 

shipments to customers. Only products that fulfill the minimum and maximum level of each 

customer product specification are shipped out (2.18), by forcing the shipment variable to zero 

if the product specifications are not met. Demand can be fulfilled with several products, intro-

ducing flexible product substitution to the developed approach (2.19). Finally, constraints 

(2.20–2.31) define the variable domains of the decision variables. 

The developed model comprehensively covers the integrated selection of product designs and 

processing technologies. The set of feasible product designs, depending on the selected tech-

nology, is restricted with constraints (2.13). With regard to product designs, different product 

specifications for the new product introduction are met with constraints (2.18). It is especially 

important to capture waste and resource consumption in today’s supply chain models. Waste is 

accounted for in constraints (2.7, 2.9) and flow of resources is determined in constraints (2.11). 

Additionally, the number of invested equipment units is calculated in constraints (2.14) consid-

ering also capacity reduction due to equipment downtime resulting from setups/cleanings.  

2.4 Case: New energy efficient dairy processes and products 

2.4.1 Case introduction 

Milk powders are a popular ingredient in the processing of various food products, such as ice 

cream blends, yoghurts, and elements for meals served in canteens and other settings. Milk 

powders are currently produced in two sequential process steps, first by concentrating to a dry-
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matter content (DMC) of approximately 45% and then by drying (usually by spray drying) to a 

dry-matter content of 95–97%. For the processing of powders, concentration is accountable for 

around 45% of the primary energy demand and drying for around 51% (Ramírez et al., 2006). 

In this paper, we investigate the implications of an omission of the energy intensive drying 

process for milk powders. Instead milk concentrates are produced with new and more efficient 

concentration processes. A similar technology innovation is also possible for whey concen-

trates. The necessity to ship larger volumes because concentrates have smaller dry-matter con-

tent than powders must be taken into account in the supply context. For the example of Ger-

many, this new technology for milk/whey concentrates has the potential of reducing energy 

consumption in processing by around 12% in this country alone. 

Furthermore, powders are often reconstituted before the production of the final products at the 

customer site by again adding the water, which was previously extracted. From the customer 

perspective, concentrates are hence functionally superior as they are ready for use and frequent 

problems related to reconstitution are eliminated, such as clumping and foam development. 

2.4.2 Product designs and processing technologies 

Concentration and heat treatments are applied to produce concentrates. For the concentration 

stage, water is removed by evaporation, reverse osmosis (RO), or by applying reverse osmosis 

as a pre-concentration before evaporation. By running the concentration technologies in differ-

ent modes, various product designs are reached. This leads to different dry-matter content of 

the product, defined as the total content of all substances except water (Walstra et al., 2006). 

Figure 2.3 shows the volume reduction of skim milk assuming an ingoing dry-matter content 

of 8.9% for skim milk. Obtainable dry-matter content of concentrates depends on the concen-

tration technologies, for example, after reaching a dry-matter content of 37% it is not feasible 

to further apply reverse osmosis. 

  

Figure 2.3: Volume reduction of skim milk. 
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It is essential to take the dry-matter content into account when making the technology selection. 

Transportation and storage costs decrease with a larger dry-matter content, as the products have 

lower volume. Larger dry-matter content leads to larger energy consumption at the processing 

stage, because the processed output per hour reduces and moreover the formation of deposits 

increases, imposing the need for more frequent cleanings. This is particularly the case for re-

verse osmosis with around 15 hours runtime between cleanings for 25% dry-matter content, as 

compared to around 5 hours for 35% dry-matter content. Therefore any attempt to increase the 

degree of concentration to reduce shipment volumes needs to be balanced with the increased 

cleaning requirements that impair the efficiency of the production processes. Cleanings lead to 

high consumption of water and cleaning agents, and cause product waste, which is very costly. 

Note that only cleanings, not setups, are relevant for this case. Table 2.2 summarizes the key 

characteristics of the concentration technologies that are important for our model.  

Different types of heat treatments are applied after concentration to preserve the product. There 

is also an option to apply pre-heat treatment before concentration to prolong storage stability. 

The relevant heat treatments are ultra-high temperature (UHT), extended shelf life (ESL), high-

heat treatment (HHT), and pasteurization. Figure 2.4 shows a representation of the technology 

paths. As a result of interdisciplinary collaboration, different dry-matter contents are selected 

for each technology path, i.e., 25%, 30%, and 35%. A dry-matter content of 25% is selected to 

Table 2.2: Key characteristics and trade-offs of concentration technologies. 

 Reverse osmosis (RO) Evaporation (EV) Reverse osmosis and  
evaporation (Combi) 

Investment 
costs 

↓ 
Typically significantly lower for 
RO than evaporation due to com-
pact foot print of equipment  
(Jevons and Awe, 2010) 

→ 
Two times higher for evaporation 
equipment based on mechanical 
vapor recompression than for RO 
(Jevons and Awe, 2010) 

↑ 
Invest in both RO and evapora-
tion units 

Maintenance 
costs 

↑ 
Lifetime of membranes typically 
around 1.5 years 

↓ 
Negligible 

→ 
Longer lifetime of membranes 

Energy con-
sumption 

↓ 
Specific primary energy of 45–90 
kJ/kg H2O (Kessler, 2002) 

↑ 
Specific primary energy of 200–
1000 kJ/kg H2O for triple-effect 
evaporator with mechanical or 
thermal recompression (Kessler, 
2002) 

→ 
Possibility of 33% reduction in 
energy consumption as com-
pared to evaporation (Madaeni 
and Zereshki, 2010) 

Cleaning con-
sumption 

↑ 
Cleaning introduces unique chal-
lenges with sequence of necessary 
steps (Kessler, 2002) 

→ 
Cleaning-in-place (CIP) proce-
dure depends on type of applica-
tion (Kessler, 2002) 

↑ 
Combination of RO and evapo-
ration cleaning requirements   

Obtainable 
dry- matter 
content (DMC) 

→ 
20–37% 

↑ 
20–50% 

→ 
34–50% (up to 28% with RO) 

Product shelf 
life 

Depends on product DMC and 
heat treatment(s)  

Depends on product DMC and 
heat treatment(s) 

Depends on product DMC and 
heat treatment(s) 
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capitalize on transportation and storage costs, as compared to the minimum degree of concen-

tration of 20% (a volume reduction of 8.9%, see Figure 2.3). Dry-matter contents of 30% and 

35% are selected as they can be used in a variety of final products, e.g., in finished meals, filled 

bakery products, and ice cream blends. Even though higher dry-matter contents are obtainable 

with concentration, the resulting concentrates cannot undergo the subsequent heat treatment 

necessary to obtain the required shelf life. Considering the concentration technologies together 

with the practice-relevant heat treatments leads to ten technology paths, see Table 2.3. How-

ever, some technologies have a maximum and/or minimum of dry-matter content such that 16 

products result (P1–P16). All products have fixed density depending on their dry-matter con-

tent. 

The product shelf life varies based on the applied heat treatments and the dry-matter content. 

The shelf life of pasteurized concentrates increases slightly with an increasing dry-matter con-

tent. On the other hand, the shelf life of products treated with UHT as pre-heat treatment and 

then ESL as post-heat treatment decreases with increasing dry-matter content due to age gela-

tion. Dumpler and Kulozik (2015) show that as dry-matter content increases, heat stability de-

creases as a function of heating temperature and time. After certain dry-matter content the heat 

 
Figure 2.4: Processing technologies for milk concentrates. 

Table 2.3: Modeled technology paths (N) and products (P). 

Techn. 
path 

Description Dry-matter content (DMC) 

25% 30% 35% 

N1 RO–HHT - P1 - 

N2 EV–HHT - P2 - 

N3 RO–Past. P3 P4 P5 

N4 EV–Past. P6 P7 P8 

N5 RO–EV–Past. - - P9 

N6a UHT–RO–ESL P10 P11 - 

N7a UHT–EV–ESL P12 P13 - 

N8 UHT–RO–HHT - - P14 

N9 UHT–EV–HHT - - P15 

N10 UHT–Combi–HHT - - P16 

a Transported at ambient temperature.  
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treatments can therefore not be applied due to heat instability of the concentrates. The product 

dry-matter content therefore limits the possible heat treatments. Due to high water content of 

concentrates there is a need to cool the products at 5 °C during transportation and storage. Only 

when UHT is applied in combination with ESL, sufficient shelf life is reached for transportation 

and storage at 20 °C (cf. N6 and N7). Energy consumption of the heat treatment varies also, for 

instance direct UHT is more energy intensive than pasteurization (Ramírez et al., 2006). The 

cheapest way of producing a concentrate is to concentrate it with reverse osmosis to 25% dry-

matter content and then apply pasteurization. 

Product designs of concentrates are both related to product shelf life and dry-matter content. 

The product specifications, described in Section 2.3.2, are therefore assumed to be the shelf life 

requirement and the demand composition of dry-matter content. Figure 2.5 shows the design 

space of the analyzed products. 

2.4.3 Industrial setting and parameterization 

The case is based on real data from a German dairy company. The planning horizon is selected 

as five years and one time period in the model represents three months. This planning horizon 

is considered reasonable, as the dairy company revises their investment decisions every five 

years. Annual rate at which cash flow is discounted is 10%. The company has one plant that 

receives raw milk from more than 200 local farms with an average distance of 50 km from the 

plant. On average per farm supplies around 50,000 liters per month of raw milk. There is sea-

sonality in the supply of raw milk, with the highest supply in spring and the lowest during 

 
Figure 2.5: Design space for the dairy products and technologies. 
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autumn. Raw milk is transported with tank trucks and a transportation waste percentage is cal-

culated based on an average waste of truck loads over one year. Costs for raw milk are based 

on contracts with farms and costs for raw milk procured from spot market are based on historical 

spot market prices. 

The plant will in the future focus its production on skim milk concentrates. Only the portion of 

the raw milk required for concentrates is accounted for, thereby the by-product cream can be 

neglected. Concentrates can be sent to secondary (powder) processing yielding a lower profit 

margin. It is assumed that no equipment is in place at the plant, such that no processing stage is 

given free usage of present capital. Ten different processing stages must be modeled for the 

analyzed technology paths (see Table 2.4). Separate stages are modeled for pre-heating and 

post-heating of same type, because in practice different equipment units are utilized. Capacities, 

runtime between cleanings, and cleaning times of equipment units were assessed together with 

the dairy company and equipment manufacturers. 

Investment costs were collected together with the dairy company and equipment manufacturers. 

Maintenance costs are negligible for all stages except for reverse osmosis and evaporation. The 

reverse osmosis consists of 84 membranes that are exchanged every 1.5 year. For evaporation 

high pressure cleanings are carried out. Useful lifetime of equipment units is between 6–8 years, 

in accordance to tax depreciation of dairy equipment. Scrap value of equipment is based on 

weight of equipment units and scrap value of stainless steel. The modeled resources are elec-

tricity, steam, water, and cleaning agents, which are all important cost drivers in the technology 

selection. Costs for personnel are excluded. Data on resource costs, waste, resource usage dur-

ing processing, and consumption of resources over cleaning cycle were collected at the dairy 

Table 2.4: Capacity, runtime, and cleaning time of equipment units at each processing stage. 

Processing stage Capacity  
(liters/hour) 

Runtime between 
cleanings (hours) 

Cleaning time 
(hours) 

(1) Milk collection 80,000 (liters) 23.5 0.5 

(2) Separation  25,000 14.0 2.0 

(3) Pasteurization (pre-heating) 25,000 14.0 2.0 

(4) UHT (pre-heating) 25,000 16.0 1.6 

(5) Reverse osmosis (RO) 9,800–12,000a 5.0–15.0a 2.5 

(6) Evaporation (EV) 7,800–26,900a 12.0–14.0a 1.0 

(7) ESL (post-heating) 25,000 2.5–3.6a 1.7 

(8) HHT (post-heating) 25,000 2.5–3.6a 1.7 

(9) Pasteurization (post-heating) 25,000 3.6–5.0a 2.1 

(10) Packaging/Storage (1,000 liters bag-in-box)   3,000 10.0 1.5 

a Depends on dry-matter content.    
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company and with equipment manufacturers. For cleaning-in-place (CIP), 90% re-usage of wa-

ter and cleaning agents is accounted for. 

The potential customers are aggregated into four customer groups; two domestic and two inter-

national. The average distance between plants and customers is 500 km and 2,000 km for do-

mestic and international customers, respectively. Prices of concentrates are based on contracts 

with customers. Data on transportation costs were collected at the dairy, these include resource 

costs for energy consumption due to cooling.  

The uncertainties are the shelf life requirement, demand composition of dry-matter content, and 

demand volume. Only a minimum level is required for the shelf life (𝛿 ), as customers al-

ways accept a longer shelf life product. Dry-matter content is dependent on the specific cus-

tomer application. Producers of finished meals, for instance, require larger dry-matter content 

than yoghurt producers. Also, only minimum level is required for the dry-matter content (𝛿 ), 

because customers can adjust their recipes for larger dry-matter contents. Constraints (2.19) are 

adjusted such that demand is fulfilled in kilogram dry-matter content (2.A1), in which 𝜌  is 

the density of product p and 𝜌  the density requested by customer k for scenario s (depend-

ing on the dry-matter content). 

𝐷 ∙ 𝛿

∈

∙ 𝜌 ≤ 𝜑 ∙ 𝛿 ∙ 𝜌     ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.A1) 

Scenarios for the demand structure of the dairy products and their probabilities are developed 

in close collaboration with the dairy company and reflect industry settings, see Table 2.5. The 

scenarios have equal probabilities. For this type of strategic problem that focuses on selection 

of novel product designs and processing technologies, this is as much knowledge of the market 

as the dairy companies have. Distribution of uncertainties are not known for this strategic prob-

lem. Scenario sampling can therefore not be applied. The key uncertainty is the acceptance of 

the new product in the market. Three scenarios are therefore created for the demand volume 

Table 2.5: Scenario structure of industry case. 

Shelf life requirement Demand composition of  
dry-matter content (DMC) 

Demand volume 

1 
50% request ≥   7 days (1 week) 

50% request ≥ 14 days (2 weeks) 
I 100% demands ≥ 30% DMC O-Optimistic +25% of x 

2 
50% request ≥ 14 days (2 weeks) 

50% request ≥ 21 days (3 weeks) 
II 

50% demands ≥ 30% DMC 

50% demands ≥ 25% DMC 
R-Realistic 

x = y + 5% in each 
period 

3 
50% request ≥ 21 days (3 weeks) 

50% request ≥ 28 days (4 weeks) 
III 100% demands ≥ 25% DMC P-Pessimistic –25% of x 
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(i.e., optimistic, realistic, or pessimistic demand volumes) to reflect the general acceptance of 

concentrates. However, it is assumed that the demand volume uncertainty is not period depend-

ent, but rather follows a specific growth path (5% increase in each period), as more powders 

will be substituted with concentrates. Optimistic and pessimistic scenarios are constructed as 

±25% of the realistic demand volume, reflecting market estimates. In addition, three scenarios 

for the demand impact of the two most important product specifications are created, i.e., shelf 

life requirement and dry-matter content. For the shelf life requirement, scenarios are created for 

different shares between 7, 14, 21, and 28 days minimum shelf life. Thereby, low and high shelf 

life requirements are captured. Shelf life requirement of less than 7 days is considered unreal-

istic in practice. Similarly, scenarios are created for different shares between 25% and 30% for 

the dry-matter content product specification, reflecting different uses of concentrates in final 

products. Shares are assumed to be the same for domestic and international customers. This 

results in a total of 27 scenarios (3∙3∙3).  

The model is implemented and solved in IBM ILOG CPLEX Optimization Studio 12.6 on a 2.6 

GHz Intel Xeon CPU with 32 GB RAM. The industry case results in a problem size of around 

733,000 decision variables and 725,000 constraints, which is solved to optimality in around 5 

minutes. 

2.5 Analyses of skim milk concentrates 

2.5.1 Results of industry case 

The results, based on the industrial setting described in Section 2.4.3, show that investing in the 

new technologies is profitable for the company. Four products that are all concentrated with 

reverse osmosis are selected; P1, P10, P11, and P14. Figure 2.6 shows the selection together 

with the number of equipment units. The numerical results show that the technology selection 

strongly relies on the flexibility to produce different volumes of the resulting set of feasible 

products. The selected products are selected from the technology paths determined in the first 

stage (cf. the design space). Two of the selected products (P10, P11) are from the same tech-

nology path (N6) and therefore in the second stage the product designs can be adjusted depend-

ing on how uncertainties resolve. Also, two of the products (P1, P14) are from technology paths 

(N1, N8), in which only one processing stage differs. 

Table 2.6 shows the share of shipments to customers for all realistic demand volume scenarios. 

The first three scenarios (1/I/R; 1/II/R; 1/III/R) involve low shelf life requirements. For these 

scenarios, only P1 that has 20 days shelf life is produced. The share of shipments is shifted to 
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other products for higher shelf life requirements. Also, for the product specification related to 

dry-matter content, the share is shifted to different products as the product specification 

changes. For example, if all customers request larger than 30% dry-matter content (1/I/R; 2/I/R; 

3/I/R) product P10 is not produced. 

Figure 2.7 shows the expected costs of the industry case. The raw milk costs constitute the 

largest portion of around 80% of the total costs, in which around 96% of the raw milk is supplied 

by farms and 4% is procured from spot market. The importance of minimizing all waste in the 

supply chain to lessen the required amount of the high value raw milk is apparent. In the dairy 

industry, the contribution margins are typically low and thus it is of great importance to opti-

mize the other cost items that constitute around 20% of the total costs. The transportation costs 

constitute a large portion, due to high transportation costs to international customers. The anal-

ysis of the resource costs shows that electricity costs constitute the highest percentage and that 

cleaning agent costs are relatively high, because cleaning of reverse osmosis is expensive. For 

the different scenarios, on average 13% is sent to powder processing because in scenarios with 

pessimistic demand volumes the supply is higher than the demand. 

A natural product choice from a resource cost perspective, would be product P3 that is concen-

trated to 25% dry-matter content with reverse osmosis after which pasteurization is applied. 

This product has the cheapest resource costs per kilogram dry-matter content. However, when 

making the product and technology selection in a supply chain context, like in our approach, 

products P1, P10, P11, and P14 are selected. These products have on average around 65.5% 

  

Figure 2.6: Results of industry case highlighting the selected processing technologies. 

Table 2.6: Share of shipments to customers for scenarios with realistic demand volumes. 

Techn. 
path 

Product 
Scenarioa 

(1/I/R) (1/II/R) (1/III/R) (2/I/R) (2/II/R) (2/III/R) (3/I/R) (3/II/R) (3/III/R)

N1 P1   (30% DMC) 100.0% 100.0% 100.0% 54.7% 54.7% 54.7% - - - 

N6 P10 (25% DMC) - - - - - 30.8% - 58.0% 68.1% 

 P11 (30% DMC) - - - 45.3% 45.3% 14.5% 59.1% - 28.4% 

N8 P14 (35% DMC) - - - - -  40.9% 42.0%   3.5% 

a See Table 2.5: shelf life requirement/demand composition of dry-matter content/demand volume. 
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larger resource costs per kg dry-matter content, as compared to P3. This highlights the im-

portance of making the decisions in a supply chain context accounting for the overall objectives 

of the supply chain, because otherwise wrong decisions are made. 

2.5.2 Impact of demand uncertainties 

In this section, we illustrate the impact of the different demand uncertainties by analyzing them 

separately in three tests. One dimension of uncertainty (see Table 2.5) is removed in each test, 

whereas the other two uncertainties are still present. The aim of these tests is to gain managerial 

insights on how the optimal product and technology selection is affected when one of the un-

certainties is no longer present. 

First, the shelf life uncertainty is removed, assuming that the shelf life requirements of custom-

ers are known. The model is run 51 times, i.e., for a known shelf life of 0 to 50 days. Figure 2.8 

shows the results in the design space. Additional information as compared to the design space 

presented in Figure 2.5 is shown on the left part of Figure 2.8. The tests result in four different 

product selection intervals in which the mix of selected products does not change; 0–9 days, 

10–14 days, 15–20 days, and 21–50 days. For a shelf life requirement of up to 9 days, technol-

ogy path N3 is selected with products P3 and P4. These are pasteurized products, as low shelf 

life is sufficient. For customers with 10–14 days shelf life requirement, demand is only fulfilled 

with pasteurized products of 30% dry-matter content (P4). Transportation costs decrease for 

this selection, but resource costs increase. Product P1, which is concentrated with reverse os-

mosis and heated with HHT, is selected for 15–20 days shelf life requirement. This product has 

larger shelf life than the products selected for lower than 15 days. For shelf life requirement 

larger and equal to 21 days, a pre-heated product (P16) is selected due to its long shelf life. This 

product is concentrated with combined reverse osmosis and evaporation, because a pure reverse 

osmosis concentration to 35% dry-matter content is very inefficient due to the short runtime 

between cleanings.  

 
Figure 2.7: Expected costs of industry case. 
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The structure of the solution in these tests is very different to the solution in Section 2.5.1 in 

which products P1, P10, P11, and P14 are selected. For low shelf life requirements, pasteurized 

products (P3, P4) are selected. But, for higher shelf life requirements P1 and P16 are selected, 

which are not from flexible technology paths. 

Next, the requested dry-matter content is investigated. The model is run three times, i.e., for a 

known dry-matter content requirement of 25%, 30%, and 35%, respectively. Demand is there-

fore fulfilled with the exact dry-matter content, as opposed to previous tests in which only a 

minimum level is required for the dry-matter content (cf. constraints 2.A1).  

Figure 2.9 shows the results in the design space. Additional information as compared to the 

design space presented in Figure 2.5 is shown on the lowest part of Figure 2.9. The product 

selection intervals result from the investigated dry-matter contents; 25%, 30%, and 35%. For a 

25% and 30% dry-matter content, pre-heated products (P10, P11) that are concentrated with 

reverse osmosis are selected. These products are also selected in Section 2.5.1. The structure of 

the solution is therefore more similar than for the shelf life tests. For a 35% dry-matter content, 

products P9 and P16 are selected that are concentrated with combined reverse osmosis and 

evaporation. 

  

Figure 2.8: Product and technology selection for known shelf life requirements of customers (selected technology paths 
and products are bolded in the design space, non-selected technology paths and products are shown in light grey). 
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Figure 2.10 shows the relative costs per kilogram dry-matter content for the three runs. Trans-

portation costs decrease significantly from 25% to 30% dry-matter content, because lower vol-

umes are transported. From 30% to 35% the transportation costs remain constant because prod-

uct P11 is transported at ambient temperature leveling out the volume reduction. Resource costs 

increase from 25% to 30% dry-matter content due to higher energy consumption and increased 

cleaning requirements that impair the efficiency of the processing. However, the resource costs 

decrease from 30% to 35% dry-matter content because for product P9 no pre-heating is required 

and pasteurization is applied for post-heating. Investment costs decrease slightly from 25% to 

 
Figure 2.9: Product and technology selection for known customer requirements for dry-matter content (selected technology 

paths and products are bolded in the design space, non-selected technology paths and products are shown in light grey). 

 

 
Figure 2.10: Relative costs per kilogram dry-matter content for known customer requirements for dry-matter content. 
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30%, because one less packaging equipment unit is required. Investment costs increase from 

30% to 35%, due to investments in an evaporator and an additional heat treatment equipment. 

Finally, the demand volumes are investigated. The model is run three times, i.e., for known 

optimistic, realistic, and pessimistic demand volumes, respectively. All runs result in the same 

product selection as in Section 2.5.1. However, the production volumes, procured amounts from 

spot market, transportation flows, and expected profits differ significantly. Further tests are 

carried out for the demand volumes by changing the periodic increase. Table 2.7 shows the 

results for tests with 1%, 5% (results of Section 2.5.1), 10%, and 20% increase. The technology 

selection is versatile for 1% to 10% increase, with shared equipment. However, for higher de-

mand volumes the processing is more dedicated and it is profitable to further invest in more 

technology paths. This leads to higher investment costs, but resource costs are reduced.  

In summary, it has been shown that the product and technology selection is highly dependent 

on the uncertain demand characteristics. Reverse osmosis is predominately selected for prod-

ucts with 25% or 30% dry-matter content, but in combination with different heat treatments. 

For products with 35% dry-matter content reverse osmosis together with evaporation is pre-

dominately selected. Managers should strive to obtain accurate information on customer prod-

uct specifications, especially for the shelf life requirement as the solution structure differs sig-

nificantly when this product specification is known. 

2.5.3 Performance evaluation of stochastic solution 

In this section, we compute the expected value of perfect information (EVPI) and the value of 

stochastic solution (VSS), which are commonly used to evaluate the performance of stochastic 

approaches. EVPI measures the amount a decision maker would be willing to pay for having 

perfect information in advance on how the uncertainties will reveal, or formulated negatively, 

it is the loss of profit due to incomplete information (Birge and Louveaux, 2011). The EVPI is 

calculated as the difference between the average of the deterministic wait-and-see solutions for 

each of the scenarios and the here-and-now solution as calculated in Section 2.5.1. For our 

Table 2.7: Product selection for different periodic demand volume increase. 

Periodic demand 
volume increase 

Product 

1% P1, P10, P11, P14 

5% P1, P10, P11, P14 

10% P1, P2, P15, P16 

20% P3, P4, P6, P7, P8, P9, P16 
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problem the EVPI amounts to 29.4% of the stochastic objective function value. This large EVPI 

value highlights that managers should consider putting extra effort in obtaining information 

about future demand as knowing the demand characteristics in advance leads to much higher 

profit. 

The VSS is defined as the difference between the stochastic here-and-now solution and the 

expected value solution (Birge and Louveaux, 2011). Two steps are required to calculate VSS. 

Firstly, the model is solved by substituting all random variables with expected values. Secondly, 

this solution is utilized to set values to the first-stage variables and the model is solved again. 

In our case, the expected values are the middle scenarios of each uncertainty, i.e., scenario 2 for 

the shelf life requirement, scenario II for the dry-matter content, and the realistic scenario for 

demand volumes (cf. Table 2.5). For our problem, the VSS amounts to even 117.8% of the 

stochastic objective function value. This large value shows the importance of the uncertainty. 

In the expected value solution, technologies are selected that cannot fulfill the demand structure 

of some important scenarios. In summary, it has been shown that the uncertainties have a sig-

nificant impact on the results. It is therefore advantageous to use the proposed two-stage sto-

chastic modeling approach as compared to a deterministic modeling approach. 

Further analyses are carried out to investigate the effect of each of the three demand uncertain-

ties separately. In these experiments, it is assumed that one of the uncertainties is no longer 

present (value fixed to expected scenario) and new stochastic solutions are computed. There-

fore, the EVPI is calculated by assuming there are only two uncertainties (9 scenarios). The 

results are as follows. If the demand composition of dry-matter content is known, then the EVPI 

is 27.9% of the stochastic objective function value. If the demand volumes are known, then the 

EVPI is 21.3% of the stochastic objective function value. Finally, if the shelf life requirements 

are known, then the EVPI is 0.8% of the stochastic objective function value. Both the EVPI for 

known demand composition of dry-matter content and the EVPI for known demand volumes 

are large, showing that even when these uncertainties are eliminated, the loss of profit due to 

incomplete information is still large. In contrast, a very low EVPI is reached when the shelf life 

requirement is known. These results demonstrate that this uncertainty has larger impact than 

the other two uncertainties, and that an accurate information on customer shelf life requirements 

would be particularly valuable to the dairy company. This also matches the results in Section 

2.5.2, in which the solution structure strongly differs for different known shelf life require-

ments. Also, these solutions are very different from the stochastic solution obtained in Section 

2.5.1. 
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2.6 Conclusions 

A modeling approach is developed that covers the nexus between new product introduction, 

processing technologies, and supply chain, as well as the characteristic uncertainties. As new 

product introduction frequently requires new processing technologies, these must be evaluated 

with a holistic assessment, like in our approach. Also, trade-offs among different production 

and supply chain decisions are addressed in our approach, by capturing the link between the 

selection of new technologies and products, and the resulting changes in the supply chain, as 

the whole supply chain is affected through the product and technology innovation.  

Uncertain demand characteristics related to new product introduction are captured through two-

stage stochastic mixed integer linear programming (MILP) model by mitigating the effects of 

uncertainties by number of scenarios. The characteristic uncertainties consist of demand vol-

umes and product specifications. In the first stage, decisions on technology selection and num-

ber of equipment units at each processing stage are made. Therefore, the set of feasible products 

is determined. In the second stage, it is determined how the equipment is run to achieve special 

product designs according to the requested product specifications. Also, decisions on material 

and resource flows through the supply chain are made. The modeling approach thereby captures 

the link between technology selection, product designs, and supply chain in a novel way. 

Tests for a real-world case at a German dairy company on the introduction of new energy effi-

cient processes for dairy concentrates show the suitability of our approach. Specific product 

and processing characteristics make the problem at hand complex. As a result of extensive in-

terdisciplinary collaboration, a design space is developed encompassing information on the 

dairy products and technologies. Several configurations of processing technologies are consid-

ered, which moreover can be run in different modes to achieve different product designs. The 

product-specification uncertainties of the dairy products are related to the shelf life require-

ments of customers and the demand composition of dry-matter content. 

The results show that investing in the new technologies is profitable for the company. For the 

case, the reverse osmosis concentration technology is selected in combination with different 

heat treatments. Hereby, flexible processing technologies are selected, which can produce dif-

ferent products in order to react to market uncertainties. Numerical tests provide managerial 

insights on how the product and technology selection is affected by the uncertainties. They 

demonstrate that the selection of product designs and processing technologies is highly depend-

ent on the uncertain demand characteristics of the concentrates. We show that shelf life uncer-
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tainty is the key driver for the product and technology selection. Knowing the shelf life require-

ment is therefore very valuable to the dairy company. If customers have low shelf life require-

ments, pasteurized products concentrated with reverse osmosis are selected, but if customers 

have high shelf life requirements, pre-heated products concentrated with combined reverse os-

mosis and evaporation are selected. 

The performance of the stochastic modeling approach is also evaluated by computing the ex-

pected value of perfect information (EVPI) and the value of stochastic solution (VSS). For the 

analyzed case, these measures show that it is worthwhile to develop a stochastic modeling ap-

proach for the selection of product designs and processing technologies, as compared to a de-

terministic modeling approach. Managers should bear in mind putting extra effort in obtaining 

information about future demand, especially with regard to the shelf life requirements, as this 

leads to significant savings. 

In further research, the two-stage stochastic model could be extended by including investments 

in later periods as the demand evolves. Furthermore, it is of interest to analyze more complex 

supply chains with, for example, several processing plants in which location of different pro-

cessing technologies must be determined. Further research could also extend the numerical 

analyses by investigating other types of products and processes. Interesting would in particular 

be a comparison of settings, in which product designs are tightly coupled with specific pro-

cessing technologies against settings, in which product designs are only loosely coupled with 

specific processing technologies. This would help in providing additional insights on the impact 

of the flexibility of the processing technologies to produce different product designs. Finally, 

environmental aspects deserve further consideration, as these also influence the selection of 

new product designs and processing technologies. Therefore, linking the model to a life cycle 

assessment and thereby including environmental impacts in decision making, e.g., in a multi-

objective optimization framework, could also be the subject of future research. 
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Chapter 3. Impact of shelf life on sustainability objectives 

This chapter is based on an article published as: 

Stefansdottir, B., Depping, V., Grunow, M., Kulozik, U., 2018. Impact of shelf life on the trade-

off between economic and environmental objectives: a dairy case. International Journal of Pro-

duction Economics, 201, 136–148. 

 

Abstract 

Food producers introduce more environmental-friendly processes to account for increasing sus-

tainability concerns. However, these processes often go along with a reduction of product shelf 

life, limiting the delay of sales to future periods with higher prices. We develop a framework to 

analyze the impact of shelf life on the trade-off between economic and environmental perfor-

mance of two types of dairy products. Since the differences in shelf life have their key impact 

at the tactical planning level, we develop an optimization model for this aggregation level. Its 

objectives reflect profit and relevant environmental indicators. A rolling horizon scheme is used 

to deal with price uncertainty, using Eurex futures as price predictors. Our framework uses these 

tactical planning results for strategic decisions on product and process selection. A real-life case 

study contrasts traditional milk powders against novel milk concentrates. Concentrates require 

less energy in processing, but have a shorter shelf life. Results show that powders offer a po-

tential profit benefit of up to 34.5%. However, this economic value of shelf life is subject to a 

priori perfect price knowledge. If futures are used as price predictors, the value of shelf life is 

reduced to only 1.1%. The economic value of shelf life is therefore not a strong argument 

against the substitution of powders with more environmental-friendly concentrates. We also 

show that two objectives, profit and eutrophication potential, are sufficient to capture trade-offs 

in the case. Several product mixes are determined that omit powders and perform well with 

regard to profit and environment. 

3.1 Introduction 

Consumer awareness of product sustainability has increased significantly. As a result, manu-

facturers introduce novel processing technologies, novel combinations of existing technologies 

often involving less or alternative processing steps, or less intensive, so-called minimal process 

conditions (Fellows, 2017; Sybesma et al., 2017). In the food sector, there is a quest to replace 
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highly fractionated and processed product with more sustainable products (Van der Goot et al., 

2016). Even though environmentally sustainable manufacturing processes are possible, a min-

imum processing of food products is often required to avoid pre-term spoilage. 

The introduction of more environmentally sustainable manufacturing processes often goes 

along with a reduction of product shelf life. For example, a reduction of the heat treatment 

intensity results in energy savings in food production, but generally also in a substantial loss of 

shelf life. The same holds for the substitution of heat treatments with modified atmosphere 

packaging. The sustainably produced, but more perishable products may require chilled storage 

and transportation. New products thus need to be assessed carefully along the whole supply 

chain to determine whether environmental impacts of manufacturing are decreased at the ex-

pense of increased perishability and environmental impacts of the downstream chain. 

New products with a reduced shelf life may be environmentally sustainable, even when the 

downstream impacts are taken into account. However, the shelf-life reduction negatively affects 

the economic performance because it limits the storage duration. Storable, long-shelf-life prod-

ucts are beneficial when price fluctuations occur. For example, if demand volumes or prices 

increase, long-shelf-life products may be stored for later sale. New sustainable products thus 

require a comprehensive evaluation of the shelf life’s impact on the economic as well as the 

environmental assessment. The strategic planning of product and process selection must there-

fore account for short-term decisions on shelf life. 

Multi-objective optimization is frequently applied to tackle the trade-offs between economic 

and environmental objectives (Banasik et al., 2016). Whereas the economic dimension is typi-

cally represented in a single objective of either cost minimization or profit maximization, the 

environmental dimension may require a whole range of environmental indicators. A common 

tool to assess the performance of products or production processes across different environ-

mental indicators is the Life Cycle Assessment (LCA). The LCA under ISO standards (ISO 

14040, 2006; ISO 14044, 2006) is based on the analysis of materials and energy flows at each 

phase of the life cycle. Thereby, a comprehensive assessment of environmental consequences 

along the value chain is assured. The use of multi-objective optimization avoids the controver-

sial aggregation of different environmental indicators in a single objective. However, a number 

of difficulties arises when having many objectives, such as increased computational costs and 

complications in visualizing the objective space (Deb and Saxena, 2005). The δ-error method 

can be used to reduce the number of objectives while retaining as much of the problem charac-

teristics as possible. 
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This study is based on a case from the dairy industry that is well suited to exemplify the impact 

of shelf-life reduction due to more environmentally sustainable manufacturing processes. The 

study evaluates a novel and sustainable dairy product in comparison to its more shelf-stable 

benchmark product. Since drying is one of the most energy intensive processes in the dairy 

industry, alternative processing variants have been developed in which the drying stage is omit-

ted, which consumes around 50 % of the total energy demand (Ramírez et al., 2006), although 

only 10 % of the water is removed in this stage. The new product, milk concentrates, has been 

proposed as a substitute for milk powders in applications in which the latter is reconstituted, 

e.g., in the production of yoghurts, ice cream, filled bakery products, or finished meals. Milk 

concentrates can be produced with shelf lives ranging from 9 to 50 days, depending on the 

selected processing variant. Most milk concentrates require chilled storage. By contrast, milk 

powders have up to two years shelf life and can be stored under ambient conditions.  

Depping et al. (2017) show that switching to milk concentrates is advantageous, even when 

taking the downstream impacts into account. This analysis only determined environmental im-

pacts and assumed a short and fixed-storage duration. Our study also includes the economic 

dimension and focuses especially on the impact of shelf life on the environmental and economic 

assessment. Particularly important is the variability of dairy product prices, which have been 

fluctuating strongly in the past years including price jumps of up to 43% within one year for 

skim milk powders traded on the German market (Süddeutsche Butter- und Käse-Börse e.V., 

2017). 

The paper provides the following contributions: 

 We systematically analyze the impact of shelf-life reduction due to sustainable processing 

on the trade-off between economic and environmental performance for the example of 

dairy products. 

 We develop a framework to allow for a comprehensive sustainability evaluation. Since 

the differences in shelf life have their key impact at the tactical planning level, we develop 

an approach that determines the production and storage volumes at this aggregation level. 

A multi-objective optimization model covers profit and all relevant environmental indi-

cators. We apply the δ-error method to identify trade-offs. Our framework deals with 

product price uncertainty by updating price information in a rolling horizon scheme. We 

use the tactical planning results from a rolling horizon application over a historical period 

to make strategic decisions on product and process selection. 
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 A real-life case study based on detailed economic and environmental data is used to con-

trast traditional milk powders against novel milk concentrates that require less energy in 

processing but have a shorter shelf life. We used historical data on powder prices in the 

years 2013 up to 2016 and the corresponding prices of futures traded at the Eurex. 

 Through objective reduction we show that trade-offs exist between the economic objec-

tive and one of the environmental objectives, while other objectives can be reduced with-

out a δ-error. 

 We quantify the economic value of the shelf life provided by powders. The results show 

a potential profit benefit of up to 34.5%. However, this value is subject to a priori perfect 

knowledge of prices. If futures are used as price predictors, the value of shelf life is re-

duced to only 1.1%. The economic value of the shelf life is therefore not a strong argument 

against the substitution of powders with more environmental-friendly concentrates. 

The remainder of this paper is organized as follows. In Section 3.2, the main related literature 

is outlined. Section 3.3 introduces the problem definition and the supply chains for milk pow-

ders and milk concentrates. In Section 3.4, we present the proposed evaluation framework that 

supports a selection of products and processes. It includes a multi-objective optimization model, 

a rolling horizon scheme, and a method for objective reduction. In Section 3.5, the developed 

methodology is applied to a real-life dairy case study and numerical analyses are carried out. 

Finally, Section 3.6 summarizes the main conclusions and presents future research opportuni-

ties. 

3.2 Related literature 

In the following, we first review papers that develop planning approaches under economic ob-

jectives considering shelf life and demand variability. We also discuss papers that determine 

the economic value of storage under uncertain prices. Then, we outline studies that have con-

sidered products’ environmental impacts in combination with their shelf life. Finally, studies 

that deal with products’ environmental and economic benefit in combination with their shelf 

life are reviewed. 

3.2.1 Economic objectives, shelf life, and demand variability 

Several studies have accounted for shelf life and demand variability in planning approaches 

with economic objectives. Stefansdottir and Grunow (2018) study the selection of product de-

signs and processing technologies under demand uncertainties with regard to volumes and prod-

uct specifications, such as the shelf-life requirement. They show that shelf life is a key driver 
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in the selection of product designs and technologies. Amorim et al. (2013b) review studies on 

production and distribution planning for perishable products. They identify seven papers that 

include demand uncertainties. The finding that demand uncertainty is restricted to uncertainty 

in demand levels is valid across all papers reviewed by Amorim et al. (2013b). In another study, 

Amorim et al. (2013a) also consider the risk of spoilage and of revenue loss, which results from 

uncertainties in the decay rates, demand level, and customer purchasing behavior. Pauls-Worm 

et al. (2014) moreover consider a practical problem in which a food producer faces non-station-

ary stochastic demand. The existing work on shelf life in planning approaches under economic 

objectives thus only deals with demand volume uncertainty, while the impact of variable prod-

uct prices is not discussed. In addition, none of these studies addresses the economic value of 

shelf life. 

3.2.2 Economic value of storage and price variability 

A range of analytical papers from the energy sector has analyzed the economic value of storage 

capacity under uncertain prices. Lai et al. (2011), for instance, develop a heuristic to determine 

the value of storing liquefied natural gas at a regasification terminal. Their heuristic accounts 

for seasonal and volatile natural gas prices, shipping models, and inventory control. Arvesen et 

al. (2013) analyze the option of using different injection and withdrawal rates in natural gas 

pipelines as a means for short-term gas storage. They value the storage option of this so-called 

linepack for power plants by applying a Least Squares Monte Carlo algorithm, incorporating 

both gas price (i.e., input) and electricity price (i.e., output) volatilities. They find that the 

linepack storage option has significant value for power plants to better exploit the sometimes 

extreme electricity price fluctuations. While the available analytical papers determine the eco-

nomic value of storage capacity, the related issue of a limited storage duration (i.e., shelf life) 

has not been considered so far. The economic value of shelf life under price variability thus has 

not been tackled. Furthermore, despite the possibility to optimally determine the economic 

value of storage, a major drawback of analytical approaches is the lacking inclusion of other 

criteria and thus, for instance, the neglect of economic and environmental trade-offs. 

3.2.3 Environmental impacts and shelf life 

Several studies consider the impact of novel techniques on products’ shelf life and environmen-

tal sustainability. Valsasina et al. (2017) describe the future potential of applying one-stage 

ultrahigh pressure homogenization (encompassing ultrahigh temperature) instead of conven-

tional homogenization followed by ultrahigh heat treatment for the preservation of milk. In their 
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case, the novel technique results in both a higher product shelf life and an improved environ-

mental sustainability. Hoang et al. (2016) and Claussen et al. (2011) compare the environmental 

impacts of fish cold chains that use traditional chilling or new superchilling technologies. They 

point to the higher environmental sustainability of superchilled fish along the supply chain, 

which, in addition, has the advantage of an extended shelf life at the customer stage. Manfredi 

et al. (2015) assess the environmental impacts of incorporating antimicrobial agents into a pack-

aging film for fresh milk. Although the antimicrobial coating goes along with additional envi-

ronmental impacts, the authors argue for an overall lower environmental impact due to food 

waste reduction at the customer stage. This finding is true for the specific case in which an 

initially low shelf life can be increased significantly (i.e., shelf life increases from two to nine 

days). The relation between shelf life and environmental sustainability thus depends on the 

assumption of whether and to what extent food waste is affected. Pardo and Zufía (2012) com-

pare four different technologies for preserving finished meals. They find that the most environ-

mentally sustainable and novel solution, namely modified atmosphere packaging, reduces shelf 

life by half compared to traditional but less sustainable heat treatment. Novel techniques thus 

must be assessed carefully to determine whether environmental sustainability is enhanced in 

line with shelf life or at its expense. Yet, no study explicitly considered the impact of shelf life 

on environmental sustainability. 

The possibility to improve products’ environmental sustainability with novel combinations of 

existing technologies has also been addressed in several studies (e.g., Cespi et al., 2014; Huntz-

inger and Eatmon, 2009). However, only Depping et al. (2017) so far have considered the effect 

of these combinations on the products’ shelf life. Combinations including less intensive process 

conditions thereby lead to a reduced shelf life while increasing environmental sustainability. 

No study has explicitly looked into the challenges that can arise from a trade-off between envi-

ronmental sustainability and shelf life. 

3.2.4 Multiple sustainability objectives and shelf life 

Only few studies consider the environmental and economic benefits of products in combination 

with their shelf life. In multi-objective approaches, shelf life has been included either explicitly 

as an objective or within the model constraints. Sazvar et al. (2014) develop a bi-objective 

stochastic mathematical model that accounts for the deterioration process of products and de-

termines both the optimal inventory policy and the type of transportation vehicles. Both eco-

nomic (i.e., cost) and environmental (i.e., greenhouse gas emission) criteria are considered un-

der uncertain demand volumes. Their generic, bi-objective tactical-operational model is valid 
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for supply chains of perishable products. The analyzed problem settings therefore exhibit some 

similarities to our paper, but the developed methodologies are different. In the chemical indus-

try, You et al. (2012) determine the optimal network design of a cellulosic ethanol supply chain 

with a multi-objective optimization model. Besides the minimization of costs and greenhouse 

gas emissions, a social objective is considered in terms of the maximization of accrued jobs 

along the supply chain. They account for the shelf life of biomass used for ethanol production. 

The shelf life, however, is simply modeled as a percentage of deteriorated biomass. 

Although challenges associated with highly perishable products are common within the food 

industry, corresponding papers investigating shelf-life restrictions in multi-objective optimiza-

tion are scarce. Soysal et al. (2014) design a generic beef network using a bi-objective model 

with greenhouse gas emissions as an environmental indicator. They consider product perisha-

bility by restricting the maximum number of periods that beef can be stored. Furthermore, shelf-

life restrictions are accounted for in two multi-objective vehicle routing papers (Bortolini et al., 

2016; Govindan et al., 2014). While Govindan et al. (2014) consider the same objectives as 

Soysal et al. (2014), Bortolini et al. (2016) additionally minimize delivery time as a third ob-

jective. 

No study to date captures the influence of shelf life on the combined economic and environ-

mental evaluation of products. Based on a real-life case study, we take a first step in assessing 

the extent to which the choice of food products is determined by perishability. To quantify the 

effects of shelf-life reduction, we cover product price variability and develop a multi-objective 

optimization model that includes, besides profit, all relevant environmental indicators. 

3.3 Problem definition and dairy supply chain context 

The case of substituting milk powders with milk concentrates exemplifies the impact of shelf-

life reduction due to sustainable processing. Milk powders are one of the key intermediate prod-

ucts in the dairy sector. They consume large amounts of energy in the drying process. A large 

proportion of this energy can be saved by producing concentrates instead, using novel pro-

cessing variants. However, the shelf life of concentrates is significantly lower. We therefore 

compare the shelf-stable milk powders to novel, shelf-life-reduced milk concentrates. The com-

parison must capture the impact of price variability. Under fluctuating prices, shelf-stable milk 

powders allow for the delay of sales until a higher price level is reached. Consequently, higher 



Impact of shelf life on sustainability objectives 

46 
 

profits can be realized; however, this requires information on the upcoming prices. The value 

of shelf life therefore depends on the accuracy of the price information. 

While long shelf life can have an economic benefit in the case of fluctuating prices, environ-

mental impacts increase with longer shelf lives and longer storage durations under chilled con-

ditions. Switching to more environmental-friendly milk concentrates thus impacts the trade-off 

between the economic and the environmental performance. Moreover, the environmental per-

formance must be assessed through a whole range of environmental indicators.  

The following additional problem characteristics have to be captured in the comparison of the 

two types of dairy products. At the processing stage, a multitude of processing variants results 

in numerous different powder and concentrate products. These processing variants differ in 

their processing impacts and product losses. Furthermore, the resulting products differ in stor-

age and transportation impacts. They may require ambient or chilled temperatures. They differ 

in their degree of concentration that determines the product mass needed to fill customer de-

mand. Therefore, all supply chain stages, from farming to customers, have to be considered. 

Detailed economic and environmental data for all stages must be elicited.  

The supply chain for skim milk powders and concentrates (see Figure 3.1) consists of the fol-

lowing stages: farming, processing, storage, transportation, and customer. The present case con-

siders a dairy plant that has long-term contracts with its supplying dairy farms or a cooperative 

in which farmers own the plant. Raw milk volumes are therefore delivered to the dairy plant 

and must be processed into powders or concentrates. 

Skim milk powders are typically processed into a dry-matter content (DMC) of around 95.5%. 

The industrial skim-milk-powder production process comprises a facultative skim milk pre-

concentration step involving reverse osmosis (RO), followed by multiple-effect evaporation 

(EV), and subsequent immediate drying/multi-stage drying (DRY/MSD). Skim milk concen-

trates, on the other hand, can be produced to different final dry-matter contents. This study 

 
Figure 3.1: Representation of the skim-milk-powder and skim-milk-concentrate supply chain. 
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considers four concentrate dry-matter contents: 20%, 25%, 30%, and 35%. Processing variants 

related to obtaining these four degrees of concentration are selected based on previous research 

(cf. Depping et al., 2017; Stefansdottir and Grunow, 2018). The production process of concen-

trates consists of an optional pre-heat treatment, a concentration step involving reverse osmosis, 

evaporation, or a combination of the two (Combi), and, finally, a post-heat treatment. Consid-

ered heat treatments include ultra-high temperature (UHT) at 137 °C for 5 seconds, extended 

shelf life (ESL) at 125 °C for 2 seconds, high-heat treatment (HHT) at 120 °C for 5 seconds, 

and pasteurization (Past) at 72 °C for 25 seconds.  

Powders are stored under ambient conditions. Their shelf life of around two years is limited by 

caking or other physical changes resulting in decreasing redispersability and flowability in dis-

pensing systems. These effects depend on the processing conditions (e.g., on whether lactose is 

pre-crystallized) and on the storage conditions (i.e., relative humidity and time). By contrast, 

most concentrates must be stored under chilled conditions, while ambient storage conditions 

are only applicable for certain pre-heated concentrates. The perishability of skim milk concen-

trates is determined mainly by the applied thermal pre-heat and post-heat treatments (Dumpler 

and Kulozik, 2015; Dumpler and Kulozik, 2016; Dumpler et al., 2017b; Dumpler et al., 2018). 

In case pre-heat treatment is applied in concentrate production, age-gelation becomes the lim-

iting factor for shelf life. Otherwise, shelf life is restricted by microbial growth. Pasteurized 

concentrates produced with evaporation have a higher shelf life than those produced with re-

verse osmosis since the heat treatment via evaporation already leads to a reduced initial bacterial 

count. Table 3.1 summarizes the different skim-milk powder and skim-milk-concentrate prod-

ucts as well as their storage conditions and shelf lives. 

In the downstream chain, powders and concentrates are transported to customers under chilled 

or ambient conditions. A flexible market with variable demand is considered, as fixed demand 

can already be subtracted from the total demand volumes. Customers require a certain mass of 

dry-matter content, which can be fulfilled by either powders or concentrates. Whereas concen-

trates are directly applied in fluid end products, powders must be reconstituted. Final product 

prices per kilogram dry-matter content are subject to fluctuations. 
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3.4 Methodology for a comprehensive sustainability evaluation 

3.4.1 Evaluation framework 

We develop a framework for evaluating the impact of shelf life on the trade-off between the 

economic and environmental performance of milk powders and concentrates (see Figure 3.2). 

The differences in shelf life have their main impact at the tactical planning level. We therefore 

perform repeated tactical planning and use the results to draw strategic conclusions on product 

and process selection. 

Part of the data relating to the identified processing variants, such as shelf life, is a direct input 

to the optimization model. The other part forms the basis for calculating economic and envi-

ronmental parameters required for the objective functions. The environmental parameters are 

determined with an attributional LCA. An attributional LCA describes the environmental im-

pact of a product system in steady state, therefore providing insight into the average environ-

mental impact of a product over its life cycle at a certain point in time (Hospido et al., 2010). 

A detailed approach is applied in which inputs and outputs are assessed for each processing 

step along the supply chain. This allows for a comparison of different processing variants for 

skim milk powders and concentrates. Economic and environmental parameter values are listed 

in Section 3.5.1. 

Table 3.1: Different skim-milk-powder and skim-milk-concentrate products. 

Product  
(Processing variant–DMC) 

Storage 
condition 

Shelf life 
(days) 

Limiting cause for shelf life 

Skim milk powders    
  EV–DRY–95.5%  ambient ≤ 730 Caking 
  Combi–DRY–95.5%  ambient ≤ 730 Caking 
  EV–MSD–95.5%  ambient ≤ 730 Caking 
  Combi–MSD–95.5%  ambient ≤ 730 Caking 
Skim milk concentrates    
  RO–Past–20% chilled 9 Microbial growth – vegetative cells 
  EV–Past–20% chilled 9–15 Microbial growth – vegetative cells 
  RO–Past–25% chilled 9 Microbial growth – vegetative cells 
  EV–Past–25% chilled 9–15 Microbial growth – vegetative cells 
  UHT–RO–ESL–25% ambient 40 Age-gelation 
  UHT–EV–ESL–25% ambient 40 Age-gelation 
  RO–Past–30% chilled 14 Microbial growth – vegetative cells 
  EV–Past–30% chilled 14–20 Microbial growth – vegetative cells 
  RO–HHT–30% chilled 20 Microbial growth – bacterial spores 
  EV–HHT–30% chilled 20 Microbial growth – bacterial spores 
  UHT–RO–ESL–30% ambient 22 Age-gelation 
  UHT–EV–ESL–30% ambient 22 Age-gelation 
  RO–Past–35% chilled 19 Microbial growth – vegetative cells 
  EV–Past–35% chilled 19–30 Microbial growth – vegetative cells 
  Combi–Past–35% chilled 19–30 Microbial growth – vegetative cells 
  UHT–RO–HHT–35% chilled 50 Age-gelation 
  UHT–EV–HHT–35% chilled 50 Age-gelation 
  UHT–Combi–HHT–35% chilled 50 Age-gelation 
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The multi-objective optimization model described in Section 3.4.2 is based on one economic 

objective and several environmental objectives that are first solved separately (single-objective 

optimization). To deal with uncertainty in final product prices, a rolling horizon scheme is de-

veloped. Model solving with the economic objective is implemented within the rolling horizon 

scheme. At the beginning of the first period, the model is solved based on price predictions of 

a selected horizon and only the decisions of the current period are fixed. Then, one period later, 

the price predictions are updated and the model is solved again. This procedure is repeated 

within the rolling horizon scheme. Due to the perishability of the products, the age of the stored 

products must be tracked within the rolling horizon scheme. 

After solving each objective of the optimization model separately, objective reduction is carried 

out to limit the difficulties of dealing with several objective functions. The selected approach 

for reducing objectives is outlined in Section 3.4.3. Subsequently, the reduced set of objectives 

is optimized with the multi-objective optimization model and a range of weighted trade-off 

solutions is determined, among which decision makers can choose according to their prefer-

ences. Finally, the results of the repeated tactical planning are used to select products and pro-

cesses at the strategic planning level. 

 

Figure 3.2: Overview of the developed evaluation framework. Standard boxes represent applied methods, dashed boxes rep-
resent input/output parameters. 
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3.4.2 Multi-objective optimization model 

We develop a multi-objective mixed integer linear programming (Mo-MILP) model for the 

tactical planning of perishable dairy products, accounting both for economic and environmental 

criteria. The model determines production, storage, and shipment quantities of the different 

products in each period. The benefit of the storage option, depending on the product’s shelf life, 

is therefore quantified. The following assumptions are made: 

 Depreciation costs are excluded, assuming that equipment units are already in place at a 

tactical planning level. Since capital goods account for less than 1% of the total environ-

mental impacts at the dairy plant, they are excluded from the environmental parameters. 

 Product-dependent production costs and impacts include resource consumption (during 

production and cleaning) and wastewater generation for all processing stages, as well as 

required packaging materials. 

 Storage capacities for different storage conditions (i.e., ambient or chilled) are limited. 

 Transportation capacities are sufficient. 

 Products must be shipped within their shelf life. Here, shelf life refers to the time that 

products may be stored at the dairy plant. This excludes the time needed for transportation 

as well as the minimum remaining shelf life required by customers. 

The following notation is introduced for the model: 

Indices and index sets 

𝑝 ∈ 𝑃 product 

𝑔 ∈ 𝐺  product type  

𝑝’ ∈ 𝑃(g) product belonging to product type g 

ℎ ∈ 𝐻  storage condition 

𝑝’’ ∈ 𝑃(ℎ) product stored in storage condition h 

𝑡 ∈ 𝑇  time period 

𝑡’ ∈ 𝑇  production period 

𝑒 ∈ 𝐸 environmental indicator 

Parameters 

𝜁  contracted supply of raw milk in period t [kg raw milk] 

𝜎  waste in raw milk transportation [%] 

𝜊  raw factor – amount of raw milk required for 1 kg DMC of product p  

[kg raw milk] 

𝜋  volume of product p [m3/kg DMC] 

𝜈  shelf life of product p [periods] 
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𝛽  maximum fraction for production of product type g per period [%] 

𝜃  storage capacity of storage condition h [m3] 

𝜀 transportation distance of final products [km] 

𝜎  waste in reconstitution for product p [%] 

𝑟  product price in period t [costs/kg DMC] 

𝑐  raw milk costs (including transportation) in period t [costs/kg raw milk] 

𝑐  production costs (including packaging material) of product p [costs/kg DMC] 

𝑐  inventory costs for product p per period [costs/(kg DMC ∙ period)] 

𝑐  transportation costs for product p [costs/(kg DMC ∙ km)] 

𝑖  raw milk impact (including transportation) of environmental indicator e  

[impact/kg raw milk] 

𝑖  production impact (including packaging material) of product p of environmen-

tal indicator e [impact/kg DMC] 

𝑖  inventory impact of product p per period of environmental indicator e  

[impact/(kg DMC ∙ period)] 

𝑖  transportation impact of product p of environmental indicator e  

[impact/(kg DMC ∙ km)] 

Decision variables 

𝑋 ’ quantity of product p produced in period t’ [kg DMC] 

𝐼 ’  inventory of product p produced in period t’ at the end of period t (t’≤t)  

[kg DMC] 

𝑄 ’  quantity of product p produced in period t’ and shipped in period t (t’≤t)  

[kg DMC] 

𝐷  demand fulfilled in period t [kg DMC] 

The multi-objective model is formulated as follows: 

𝑀𝑎𝑥 𝑟 ∙ 𝐷 − 𝑐 ∙

∈

𝜁 − 𝑐 ∙

’∈

𝑋 ’

∈

− 𝑐 ∙ 𝐼 ’

∈’∈∈∈

− 𝑐 ∙ 𝜀 ∙ 𝑄 ’

∈’∈∈

 
(3.1) 

𝑀𝑖𝑛 𝑖 ∙

∈

𝜁 + 𝑖 ∙

’∈

𝑋 ’

∈

+ 𝑖 ∙ 𝐼 ’

∈’∈∈

+ 𝑖 ∙ 𝜀 ∙ 𝑄 ’

∈’∈∈

   ∀𝑒 ∈ 𝐸 
(3.2) 
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subject to 

𝜁 ’ ∙ (1 − 𝜎 ) = 𝑋 ’ ∙ 𝜊

∈

  ∀𝑡’ ∈ 𝑇 (3.3) 

𝐼 ’ = 𝑋 ’ − 𝑄 ’    ∀𝑝 ∈ 𝑃, 𝑡’ ∈ 𝑇, 𝑡 ∈ 𝑇: 𝑡’ = 𝑡 (3.4) 

𝐼 ’ = 𝐼 ’, − 𝑄 ’    ∀𝑝 ∈ 𝑃, 𝑡’ ∈ 𝑇, 𝑡 = 2, … , 𝑇: 𝑡’ < 𝑡 (3.5) 

𝑋 ’

’∈

≤ 𝑄 ’

∈’∈

   ∀𝑝 ∈ 𝑃 (3.6) 

𝑋 ’ ’

’∈ ( )

≤ 𝛽 ∙ 𝑋 ’

∈

   ∀𝑔 ∈ 𝐺, 𝑡’ ∈ 𝑇 (3.7) 

𝐼 ’’ ’

’∈

∙ 𝜋 ’’

’’∈ ( )

≤ 𝜃    ∀ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 (3.8) 

𝑄 ’

’

∙ (1 − 𝜎 )

∈

= 𝐷    ∀𝑡 ∈ 𝑇 (3.9) 

𝑋 ’ ≥ 0   ∀𝑝 ∈ 𝑃, 𝑡’ ∈ 𝑇 (3.10) 

𝐼 ’ ≥ 0   ∀𝑝 ∈ 𝑃, 𝑡’ ∈ 𝑇, 𝑡 ∈ 𝑇 (3.11) 

𝑄 ’ ≥ 0   ∀𝑝 ∈ 𝑃, 𝑡’ ∈ 𝑇, 𝑡 ∈ 𝑇 (3.12) 

𝐷 ≥ 0   ∀𝑡 ∈ 𝑇 (3.13) 

In the above formulation, the first objective function aims to maximize the profit (3.1). The 

profit comprises the revenues of sold products and the costs along the supply chain, i.e., raw 

milk costs, production costs, inventory costs, and transportation costs. The second objective 

function aims to minimize environmental impacts related to the dairy supply chain (3.2), com-

prising raw milk impacts, production impacts, inventory impacts, and transportation impacts. 

The model allows for the consideration of environmental impacts in several environmental im-

pact categories. 

Constraints (3.3) guarantee that total supplies of raw milk are sent from the dairy farms to the 

dairy plant, also accounting for waste in raw milk transportation. Thereafter, the raw milk is 

processed into different types of final products. Constraints (3.4) and (3.5) represent inventory 

balances in which the age of the products is tracked. Products in inventory stem either from 

production in the current period (3.4) or from inventory at the end of the previous period (3.5). 

Constraints (3.6) ensure that total production quantities of each product are shipped to custom-

ers. This restriction is only required for the minimization of environmental impacts, not for 

profit maximization. 
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The total production quantities of a specific product type, e.g., powders or concentrates, may 

be restricted (3.7). Furthermore, storage capacities for different storage conditions must be re-

spected (3.8). Constraints (3.9) ensure that the storage duration of the final products is never 

longer than the respective shelf life. Products with a long shelf life (like powders) can therefore 

be stored for more time periods than products with a short shelf life (like concentrates) in order 

to take advantage of fluctuations in final product prices. Demand fulfillment is also modeled 

with constraints (3.9), accounting for waste in reconstitution. Finally, constraints (3.10–3.13) 

are non-negativity constraints. 

3.4.3 Objective reduction for identification of trade-offs 

Three main methods have been proposed for objective reduction: weighting, including pre-de-

fined weighting schemes like the Eco-Indicator 99, principal component analysis, and the δ-

error method. Since weighting omits essential trade-offs between multiple objectives and the 

principal component analysis lacks to determine the error of combining indicators to principal 

components, we opt to apply the δ-error method for objective reduction (cf. Brockhoff and 

Zitzler, 2006). The goal of this method is to identify a subset of objectives so that the error of 

omitting objectives is at a minimum. The δ-error is thus a measure for the approximation error 

in objective reduction that quantifies the change in the dominance structure if one solution be-

comes dominant compared to another. Brockhoff and Zitzler (2006) introduce two different 

methods for computing the minimum objective subset (MOSS), i.e., the δ-MOSS method, 

which finds a minimum objective subset for a maximum allowable approximation error and the 

k-MOSS method, which finds an objective subset of size k with a minimum error. In this study, 

the δ-MOSS method is applied. The δ-error is defined as in Guillén-Gosálbez (2011): 

(𝛾 ’ − 𝛾 ) ∙  𝑌 ∙ 𝑊 ’ = 𝛿 ’   ∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆, 𝑠’ ∈ 𝑆 (3.A1) 

The parameter 𝛾  is the value of the objective m for solution s. The decision variable 𝑌  equals 

1 if objective m is removed (0 otherwise) and the decision variable 𝑊 ’ equals 1 if s’ dominates 

s in the reduced space (0 otherwise). The error 𝛿 ’ is then defined as the difference between 

the value of objective m in solutions s’ and s. This approach allows for the reduction of objec-

tives, while determining and restricting the error of collapsing indicators. Relevant trade-offs 

can therefore be identified. 
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3.5 Analyses of skim milk powders and concentrates 

The accessed data on skim milk powders and skim milk concentrates is outlined in the follow-

ing. Results are presented first for the economic objective, since shelf life can provide an addi-

tional value for this objective. Subsequently, economic and environmental objectives are con-

sidered jointly and trade-offs arising after objective reduction are analyzed.  

3.5.1 Parametrization through LCA, cost analysis, and dairy futures 

The model is solved with real-life data from two German dairy companies, one producing pow-

ders and concentrates, and one using these intermediates to make final products. We collected 

economic and environmental data at these companies and at equipment manufacturers at all 

supply chain stages. This industrial data is complemented with experimental data from food 

engineering (cf. Dumpler and Kulozik, 2015; Dumpler and Kulozik, 2016; Dumpler et al., 

2017a; Dumpler at al., 2017b; Dumpler et al., 2018) and literature data. 

The planning horizon is one year with a granularity of weeks, leading to 52 periods t. Altogether 

22 products p are assessed (see Table 3.1), which are of two product types g, i.e., powders and 

concentrates. The products are also subdivided according to their required storage condition h 

into products that can be stored in an ambient environment and products that require a chilled 

environment. We conduct an LCA that covers four environmental indicators e: cumulative en-

ergy demand (CED), global warming potential (GWP), eutrophication potential (EP), and acid-

ification potential (AP). Indicators are selected for their importance to the dairy products' supply 

chain (De Vries and De Boer, 2010). To ensure compatibility with the literature-based raw-milk 

production impacts derived from Guerci et al. (2013), the same environmental impact assess-

ment method and characterization factors are used in the LCA of the downstream chain. The 

methods specified in EPD (2008) are applied for this purpose. For a more detailed description 

of the conducted LCA, see Depping et al. (2017). The following parameters result for each 

supply chain stage. 

Farming stage. The dairy plant is supplied by 200 local farms with an average distance of 100 

km from the plant. In raw milk delivery, 𝜎  = 0.04% of raw milk is wasted. The weekly raw 

milk supply used for variable demand for powder and concentrate production is on average 

around 𝜁 = 700,000 kg, which is assumed constant over the year. Raw milk costs (including 

the delivery costs) are on average over the planning horizon 𝑐 = 0.377 €/kg, according to 
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long-term contracts with the farms. For the raw milk impacts 𝑖 , averages of the environmen-

tal impact ranges per kilogram energy-corrected milk from Guerci et al. (2013) are used, namely 

CED–3.4709 MJ, GWP–1.2691 CO2-eq, EP–0.0032 PO4
---eq, and AP–0.0169 SO2-eq. 

Processing stage. At the dairy plant, runtimes, cleaning times, resource consumption, 

wastewater generation, and product losses are assessed for each processing step. In addition, 

the required packaging material is determined. Table 3.2 summarizes the resulting costs 𝑐  

and environmental impacts 𝑖  as well as the amount of raw milk required, the so-called raw 

factor 𝜊  to produce one ton dry-matter content of different products. The raw factor comprises 

necessary volume reduction and product losses in processing. Product shelf lives 𝜈  are shown 

in Table 3.1. 

Storage and transportation stages. The required storage volume 𝜋  depends on the dry-matter 

content of the products: 20%–0.0451 m3/kg DMC, 25%–0.0354 m3/kg DMC, 30%–0.0289 

m3/kg DMC, 35%–0.0242 m3/kg DMC, and 95.5%–0.0102 m3/kg DMC. Unlimited storage ca-

pacities 𝜃  are assumed since there is sufficient ambient storage space at the dairy plant and, 

Table 3.2: Economic and environmental data on production, encompassing packaging material. 

Product 
(Processing variant–DMC) 

Raw  
factora 

Costs 
[€/ 

ton DMC] 

CED 
[MJ/ 

ton DMC] 

GWP 
[ton CO2-eq/ 

ton DMC] 

EP 
[g PO4

---eq/ 
ton DMC] 

AP 
[g SO2-eq/ 
ton DMC] 

Skim milk powders      
  EV–DRY–95.5%  7,016  291.81 19,351  1,143.95  2.4495 1.7094 
  Combi–DRY–95.5%  6,979  224.07 14,617  869.81  1.7477 1.7219 
  EV–MSD–95.5%  7,000  315.79 21,140  1,278.52  16.9716 3.0247 
  Combi–MSD–95.5%  6,963  248.21 16,416  1,004.98  16.2714 3.0372 

Skim milk concentrates    
  RO–Past–20% 6,950  178.75 7,368  414.09  1.4777 1.3558 
  EV–Past–20% 6,955  226.65 10,749  607.36  1.9984 1.2134 
  RO–Past–25% 6,949  151.35 6,448  366.41  1.2353 1.2473 
  EV–Past–25% 6,963  211.65 10,685  610.36  1.8659 1.1521 
  UHT–RO–ESL–25% 6,957  191.31 9,273  540.43  1.5392 1.6791 
  UHT–EV–ESL–25% 6,970  251.67 13,515  784.68  2.1703 1.5847 
  RO–Past–30% 6,946  135.96 5,947  341.77  1.0864 1.2133 
  EV–Past–30% 6,973  202.77 10,698  615.94  1.7870 1.1317 
  RO–HHT–30% 6,946  143.04 6,343  366.57  1.1375 1.2645 
  EV–HHT–30% 6,974  209.85 11,095  640.76  1.8382 1.1829 
  UHT–RO–ESL–30% 6,953  174.73 8,683  510.46  1.3809 1.6400 
  UHT–EV–ESL–30% 6,981  241.67 13,444  785.21  2.0825 1.5599 
  RO–Past–35% 6,959  150.97 6,687  394.09  1.0991 1.5504 
  EV–Past–35% 6,981  196.28 10,708  619.98  1.7311 1.1274 
  Combi–Past–35% 6,950  129.91 6,056  351.19  1.0438 1.1880 
  UHT–RO–HHT–35% 6,967  188.23 9,321  556.57  1.3816 1.9693 
  UHT–EV–HHT–35% 6,990  233.65 13,351  782.97  2.0144 1.5475 
  UHT–Combi–HHT–35% 6,958  167.13 8,686  513.48  1.3260 1.6063 

a Mass of raw milk required to produce 1 ton of dry-matter content. 
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for chilled storage, there is a natural limit on the stored quantities due to the product’s perisha-

bility. Table 3.3 shows the inventory costs 𝑐  and inventory impacts 𝑖  related to storage 

under both ambient and chilled conditions. Likewise, Table 3.4 shows the transportation costs 

𝑐  and transportation impacts 𝑖  under both ambient and chilled conditions. A typical 

transportation distance to customers of 𝜀 = 500 km is selected. It is assumed that transportation 

takes 1 day and that customers require a minimum remaining product shelf life of 5 days. 

Customer stage. Skim milk powder futures that were traded at the Eurex Frankfurt AG from 

the years 2013 and 2014 are used as predictors for final product prices 𝑟  and contrasted to the 

realized prices on the German market. The futures have a horizon of up to 12 months, resulting 

in price predictions from 2013 up to 2016. Currently, the first skim milk concentrates are on 

the market and show an identical price per kilogram dry-matter content as powders. Concen-

trates can be directly applied, while powders must be reconstituted, resulting in an average 

product loss of 𝜎 = 4.2% for powders. 

The price predictions for the next 52 weeks are updated weekly in the rolling horizon scheme 

and the model with the economic objective is run over 104 datasets (2 years). It is assumed that 

futures prices from the first period of each dataset equal the realized prices. All test runs are 

Table 3.3: Economic and environmental data on storage. 

  Costs 
[€/ 

ton DMC∙week] 

CED 
[MJ/ 

ton DMC∙week] 

GWP 
[ton CO2-eq/ 

ton DMC∙week] 

EP 
[g PO4

---eq/ 
ton DMC∙week] 

AP 
[g SO2-eq/ 

ton DMC∙week] 

  ambienta      
25% 3.2346 - - - - 
30% 2.6955 - - - - 
95.5% 0.8467 - - - - 

  chilleda      
20% 6.4042 199.93 12.5254 0.0157 0.0482 
25% 5.1234 159.94 10.0204 0.0125 0.0385 
30% 4.2695 133.29 8.3503 0.0104 0.0321 
35% 3.6595 114.25 7.1574 0.0090 0.0275 

a Dry-matter contents are only considered, if at least one corresponding product exists. 

Table 3.4: Economic and environmental data on transportation. 

  Costs 
[€/ 

ton DMC∙km] 

CED 
[MJ/ 

ton DMC∙km] 

GWP 
[ton CO2-eq/ 

ton DMC∙km] 

EP 
[g PO4

---eq/ 
ton DMC∙km] 

AP 
[g SO2-eq/ 

ton DMC∙km] 

  ambienta      
25% 0.2619 12.84 0.8014 0.0024 0.0005 
30% 0.2183 10.70 0.6678 0.0020 0.0005 
95.5% 0.0686 3.36 0.2098 0.0006 0.0001 

  chilleda      
20% 0.3921 18.67 1.1732 0.0034 0.0008 
25% 0.3137 14.94 0.9385 0.0028 0.0006 
30% 0.2614 12.45 0.7821 0.0023 0.0005 
35% 0.2241 10.67 0.6704 0.0020 0.0004 

a Dry-matter contents are only considered, if at least one corresponding product exists. 
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implemented and solved in IBM ILOG CPLEX Optimization Studio 12.6 on a 2.6 GHz Intel 

Xeon CPU with 32 GB RAM. Each dataset results in a problem size of around 62,000 decision 

variables and 32,000 constraints, which is solved to optimality in around 50 seconds. The roll-

ing horizon scheme is solved over 104 datasets in approximately 1.5 hours. 

3.5.2 Economic analyses of shelf life 

3.5.2.1 Impact of price knowledge on production and storage  

The economic performance of a priori perfect knowledge of prices is compared with using 

futures as price predictors. Figure 3.3a shows the actual skim milk powder prices that were 

realized on the German market in the years 2013 up to 2016. Prices are expressed per ton dry-

matter content. While prices were rising or stable in 2013, prices were mostly falling steeply in 

2014, reaching only 57% of their initial state at the end of 2014.  

The product mix as well as production, inventory, and shipment quantities are determined aim-

ing at profit maximization. Figure 3.3b illustrates the product mix of skim milk powders and 

concentrates as well as inventory and shipment volumes. The figure summarizes the planning 

results for the first periods of the rolling horizon approach that are put into operation. Results 

show that powders are preferred over concentrates if prices are expected to rise, as they can be 

stored over a longer period of time. The skim milk powder option Combi–Dry–95.5% performs 

best. In the case of stable prices with small variabilities in the near future, the concentrate op-

tions UHT–Combi–HHT–35% and Combi–Past–35% are selected. The concentrate UHT–

Combi–HHT–35% with a shelf life of 50 days is able to take advantage of near-time price in-

creases, while the less-processed concentrate Combi–Past–35% with a shelf life of 19–30 days 

has a production cost advantage. In a sequence of periods with falling prices, solely the con-

centrate Combi–Past–35% is selected and sold immediately. Together, this shows how shelf 

life affects the selection of products under fluctuating prices. 

Figure 3.4a shows selected skim milk powder future prices. In the following, the first six futures 

of those are described. In week 12, the futures show a rather stable development of prices. While 

the futures as of weeks 13 and 14 are slightly increasing with a peak at the end of May 2013, 

the futures as of weeks 15 and 16 show a slightly faster increase. In week 17, the futures show 

a slight decrease.  

Figure 3.4b shows the product mix of skim milk powders and concentrates when prices are 

predicted with futures. The same products are selected for price predictions with futures as for 

a priori perfect price knowledge. However, the decisions on storage and shipment volumes are  
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Figure 3.3: (a) Actual German skim milk powder and concentrate prices for years 2013 up to 2016 (Source: Süddeutsche 

Butter- und Käse-Börse e.V., 2017); (b) Relative shipment and storage volumes resulting from maximization of profit based 
on a priori perfect knowledge of prices for the years 2013 and 2014. Volumes are scaled to maximum shipment volumes 

reached.  

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.4: (a) Selected skim milk powder future prices for years 2013 up to 2016 (Source: Eurex); (b) Relative shipment 
and storage volumes resulting from maximization of profit, based on futures as price predictors for years 2013 and 2014. 

Volumes are scaled to maximum shipment volumes reached based on a priori perfect price knowledge. 
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substantially different. In the case of price predictions with futures, the storage option is not 

used as much as with a priori perfect price knowledge. The lower storage and shipment volumes 

of powders mainly result from futures not predicting the large price increase in spring 2013 (see 

futures as of week 12–17). In addition, the recorded price fluctuations differ. The price variance, 

calculated over the 104 datasets of the rolling horizons, is remarkably higher for the actual 

prices (variance = 0.46) than the future prices (variance = 0.30). The possibility of using this 

higher price variability under perfect information therefore leads to an increased short-term 

storage of the rather shelf-stable concentrate UHT–Combi–HHT–35%.  

3.5.2.2 Value of shelf life  

We analyze the economic value of shelf life provided by powders for both a priori perfect price 

knowledge and price predictions with futures. The aim is to gain managerial insights into 

whether the long-storage option for powders, which enables the dairy plant to better exploit 

price variabilities, has a significant economic value. This value of shelf life is lost if producers 

change from powders to concentrates. In order to determine the value of shelf life, the produc-

tion of skim milk powders is restricted to an upper limit (𝛽 ) of the production volume in each 

period, i.e., from 100% to 0% in 25% steps. Figure 3.5 illustrates the resulting relative profits 

and the product mix for different powder production limits based on a priori perfect price 

knowledge and on price predictions with futures.  

The two price scenarios lead to significant differences in profit, as upcoming price fluctuations 

are only captured to a limited extent by price predictions with futures. For unlimited use of 

powders (𝛽 = 1), the difference is the highest. It amounts to 38.5% of the objective value 

based on a priori perfect price knowledge. This value can be interpreted as the expected value 

of perfect information (EVPI), i.e., the willingness of a decision maker to pay for perfect infor-

mation on upcoming prices. Even for product mixes without powders (𝛽 = 0), there ex-

ists a large profit gap.  

For a priori perfect price knowledge, the optimal share of powder production amounts to 

23.0%. When restricting the upper limit of powder production to zero, production of the 50-

days-storable concentrate UHT–Combi–HHT–35% increases from 14.4% to 20.2% with the 

rest being replaced by the less shelf-stable concentrate Combi–Past–35%. Profit decreases sig-

nificantly. Powders have a potential economic value of 34.5%. This shows a potentially large 

impact of shelf life on the economic performance. In contrast, price predictions based on futures 

result in an optimal powder share of only 9.6%. When restricting the powder production to zero,  
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Figure 3.5: Economic value of shelf life. Pie charts indicate share of production volumes over all periods of the planning 
horizon. 

this powder share is replaced exclusively by the production of the less shelf-stable concentrate 

Combi-Past–35%. The economic value of shelf life amounts to merely 1.1%. 

We additionally test the effect of not allowing any storage, which is equivalent to using a naïve 

price forecast. We find that an 8.0% lower profit is realized than with futures as price predictors, 

implying that predictions with futures are nonetheless valuable.  

Overall, our results for this case show that the value of shelf life strongly depends on the forecast 

accuracy. In the realistic case, in which only limited price information is available, concentrates 

are selected over powders. If price indicators such as futures are used, the economic value of 

shelf life is not a strong argument against the substitution of powders with more environmental-

friendly concentrates. 

3.5.3 Trade-off between economic and environmental objectives 

Next, we include the environmental objectives in the analyses. In the following tests, futures 

are used as price predictors and no upper limit on the production of a specific product type is 

assumed. After optimizing each objective separately, the δ-error method is applied to identify 

trade-offs between the different economic and environmental objectives. Figure 3.6 illustrates 
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a parallel coordinates plot with the set of objectives on the horizontal axis and the normalized 

value attained by each solution on the vertical axis. The Pareto solutions are normalized to 

values between zero and one, based on Marler and Arora (2004). A value of one indicates the 

best objective value across the Pareto solutions for both maximization and minimization prob-

lems. Each line represents a different Pareto solution. The product mix obtained when maxim-

izing profit in Section 3.5.2.1 results in the normalized objective values represented by the dot-

ted line in Figure 3.6. The same Pareto solutions are reached when minimizing cumulative en-

ergy demand, global warming potential, and acidification potential (solid line). This solution 

represents a production of Combi–Past–35% in every period with immediate shipments. When 

minimizing eutrophication potential, EV–Past–35% is selected (dashed line). In both cases, the 

production of concentrates with a low shelf life is optimal. This stems from the use of more 

environmental-friendly processes (i.e., pasteurization) for low-shelf-life products and from 

omitting storage, which avoids additional environmental impacts.  

To perform objective reduction according to the δ-error method, we analyze redundancies be-

tween objectives. There is a redundancy between cumulative energy demand, global warming 

potential, and acidification potential. Thus, the objective set can be reduced to the subset {profit, 

CED, EP} without losing any problem characteristics. When also removing cumulative energy 

demand from the subset, a δ-error of zero results, i.e., the dominance structure is not changed. 

Hence, a bi-criteria problem with the subset {profit, EP} is obtained.  

When optimizing the bi-criteria problem, weighting is selected to determine intermediate solu-

tions between the extreme points generated by single objective optimization. For this purpose, 

both objectives are normalized. Figure 3.7 illustrates a clear trade-off between profit and eu-

trophication potential. Here, EP* is defined as the share of eutrophication potential that the 

dairy plant can influence and thus excludes the fixed eutrophication potential originating from 

raw milk production. The weight of the profit is ω and the weight of the eutrophication potential 

is 1−ω. 

Figure 3.6: Parallel coordinates plot depicting the set of objectives in the horizontal axis and the normalized value of solu-
tions in the vertical axis. 
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Figure 3.7: Trade-off between profit and eutrophication potential with futures as price predictors. Pie charts indicate shares 
of production volumes over all periods of the planning horizon. 

By decreasing ω from 1 to 0, the initial product mix of Combi–Past–35%, UHT–Combi–HHT–

35%, and Combi–DRY–95.5% is altered. At ω = 0.8, UHT–Combi–HHT–35% is eliminated and 

the production of Combi–DRY–95.5% is reduced, since both production and storage of longer 

shelf-life products cause additional eutrophication potential. At ω = 0.6, all powder production 

is eliminated. Only Combi–Past–35% is produced. The profit only decreases by 4.7% compared 

to the profit for ω = 1. Even if the shelf life of Combi–Past–35% is significantly lower, the 

profit decline is limited. The reason lies in the low value of shelf life. At ω = 0.4, a part of the 

Combi–Past–35% production is substituted by EV–Past–35%. Finally, at ω = 0.2 and ω = 0, 

the entire Combi–Past–35% production is substituted by EV–Past–35%. Such minimization of 

the eutrophication potential decreases profits substantially (56.0%) compared to the profit for 

ω = 1. Thereof, 51.3%-points can be attributed to the shift in the concentration technology from 

a combined concentration, i.e., reverse osmosis and subsequent evaporation, to exclusively 

evaporation. This shift is caused mainly by the effect of different energy sources on the indicator 

eutrophication potential. Reverse osmosis demands more electricity and less natural gas than 

evaporation. However, electricity provision produced with the German average composition, 

which contains a large share of electricity produced from lignite, contributes substantially to 

eutrophication. 

Choosing evaporation over combined concentration is specific to the indicator eutrophication 

potential. Model results for the other environmental indicators favor, in line with the profit 

objective, concentrates produced with combined concentration. The optimal solution for the 

indicators cumulative energy demand, global warming potential, and acidification potential (see 

square in Figure 3.7) is to produce exclusively the pasteurized concentrate Combi–Past–35%. 

This solution differs from the solution for the bi-criteria problem at ω = 0.6 only by omitting 
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short-term storage of the pasteurized concentrate. The profit decrease compared to the profit 

for ω = 1 amounts to only 8.0%. This represents a dairy plant that switches from powders to 

concentrates and does not use futures as price predictors, but immediately sells the produced 

concentrates. In contrast, a dairy that replaces powders by concentrates but still maximizes 

profits using futures as price predictors, only faces a profit decrease of 1.1% (see triangle in 

Figure 3.7 and discussion in Section 3.5.2.2).  

Overall, the analyses show that only two objectives (i.e., profit and eutrophication potential) 

are sufficient to capture the trade-offs in the present case. The minimization of the eutrophica-

tion potential leads to a significant profit reduction, mostly due to a shift in the concentration 

technology from a combined concentration to evaporation. Thus, a shift to solutions that mini-

mize eutrophication potential is unrealistic in practice. However, the profit impact of the other 

environmental objectives is much less pronounced. In our case, environmental-friendly prod-

ucts have lower shelf lives. Yet, the economic value of the shelf life is low. Hence, we are able 

to determine a range of solutions that perform well with regard to both profit and the environ-

ment.  

3.6 Conclusions 

This study systematically analyzes the impact of shelf life on the trade-off between economic 

and environmental performance. We present a real-life case study for two types of dairy prod-

ucts that exemplifies the impact of shelf-life reduction due to sustainable processing. Namely, 

traditional milk powders are contrasted against novel milk concentrates, based on detailed eco-

nomic and environmental data. Concentrates require less energy in processing, but have a 

shorter shelf life. Powders and concentrates can be produced in a multitude of processing vari-

ants, resulting in numerous different products.  

We develop a sustainability evaluation framework. Part of this framework is a multi-objective 

optimization model covering profit and all relevant environmental indicators. It determines pro-

duction, storage, and shipment quantities at the tactical planning level, at which the shelf lives 

of the considered products have their key impact. Our framework deals with product price un-

certainty by updating information on prices in a rolling horizon scheme. Furthermore, we apply 

the δ-error method to identify trade-offs between objectives. The tactical planning results ob-

tained over a historical period are then used to make strategic decisions on product and process 

selection. 
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From an economic perspective, the selection of different powders and concentrates is influ-

enced by upcoming price developments. We use historical data on product prices in the years 

2013 up to 2016. However, this price information is not known when the tactical planning is 

done. For comparison, we therefore use the corresponding prices for futures traded at the Eurex 

that are known at the time of planning and can thus serve as price predictors. For both price 

scenarios, powders are selected if prices are expected to rise in the future. Novel, more envi-

ronmental-friendly concentrates that go along with a reduction of product shelf life are selected 

if prices are predicted to remain stable or fall. The two price scenarios result in large differences 

in storage and shipment volumes because upcoming price fluctuations are not fully captured by 

price predictions with Eurex futures. 

We also quantify the value of shelf life to gain managerial insights into whether the long-storage 

option for powders has significant economic value. The numerical results show that, based on 

a priori perfect price knowledge, profit can be increased by as much as 34.5% when including 

powders in the product mix. However, this value of shelf life generated by powders depends 

strongly on the forecast accuracy. In the realistic case in which futures are used as price predic-

tors, the advantage of powders is reduced to only 1.1%. Our analysis therefore shows that the 

economic value of shelf life is not a strong argument against the substitution of long-shelf-life 

products with more environmental-friendly low-shelf-life products. 

Only two objectives (i.e., profit and eutrophication potential) are sufficient to capture the trade-

offs in the presented case. The other three environmental objectives (i.e., cumulative energy 

demand, global warming potential, and acidification potential) are reduced without a δ-error. 

Results for the two objectives profit and eutrophication potential differ significantly in their 

optimal product mix and related indicator performance. While the maximization of profit leads 

to a selection of powders and concentrates produced with combined concentration (i.e., reverse 

osmosis and subsequent evaporation), the minimization of eutrophication potential leads to a 

selection of solely low-shelf-life concentrates produced with evaporation. However, profit de-

creases substantially if evaporation is used instead of combined concentration. A solution re-

sulting from the minimization of eutrophication potential is therefore unrealistic in practice. 

However, for the minimization of all other environmental objectives, concentrates produced 

with combined concentration are selected, resulting in a much smaller profit decrease. Hence, 

we are able to determine a range of solutions that perform well with regard to both economic 

and most environmental objectives.  
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In further research, different methodologies could be developed for evaluating the impact of 

shelf life on economic performance under price uncertainty. Developing an analytical approach 

would especially be interesting. This work could build on previous analytical research that in-

vestigated economic value of storage capacity. Methods for objective reduction also deserve 

further consideration. A comparison could be carried out between the results achieved with 

different objective reduction methods. Further research could also extend the numerical anal-

yses to using different price predictions for final product prices.  

Finally, further research could also extend the numerical analyses by investigating other types 

of products. In particular, it would be interesting to analyze products with even lower shelf 

lives. Here, the differences in shelf life have their main impact at the short-term, operational 

planning level. The key challenge then relates to finding ways to draw strategic decisions on 

product selection based on results obtained at this operational planning level. 
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Chapter 4. Setups and cleanings in lot sizing and scheduling 

This chapter is based on an article published as: 

Stefansdottir, B., Grunow, M., Akkerman, R., 2017. Classifying and modeling setups and clean-

ings in lot sizing and scheduling. European Journal of Operational Research, 261(3), 849–865. 

 

Abstract 

Much attention in the lot sizing and scheduling literature has been focused on reducing the 

number and size of setups. Cleanings, in contrast, remain a key cost driver in large parts of the 

process industries such as the food and pharmaceutical sectors. Here, quality and safety consid-

erations lead to a diversity of cleaning requirements. A prerequisite for an efficient use of re-

sources is an accurate representation of the constraints imposed by the different setups and 

cleanings. In this paper, we therefore first develop a general classification scheme for setups 

and cleanings. Three different classes are identified: batch-, time-, and volume-dependent set-

ups and cleanings. The classes are further differentiated based on their separability, substituta-

bility, reference point, flexibility, product dependency, and batch-size dependency. Secondly, 

we develop a generic optimization model for lot sizing and scheduling in the typical process-

industry setting of flowshops, accurately representing all setup and cleaning classes. Thirdly, 

we apply the model to the case of cheese production in no-wait flowshops, demonstrating the 

adaptability of the generic model to industry-specific settings as well as the computational ef-

ficiency of the approach. The results show that significant reductions in machine downtime and 

makespan are achieved. Finally, our numerical tests provide insights into the extent to which a 

misidentification of cleaning classes may decrease scheduling flexibility and impair solution 

quality. Our results also show the benefits of considering the heterogeneity in processing times, 

which can be used to compensate for setup- and cleaning-time differences during successive 

production stages. 

4.1 Introduction 

In the design and operation of production systems, a significant effort is normally made to re-

duce the amount of non-value-adding activities. Recent developments for instance include re-

ducing changeover time by conducting setups simultaneously with production activities (Al-

lahverdi and Soroush, 2008). However, in the process industries, changeovers mainly consist 



Setups and cleanings in lot sizing and scheduling 

68 
 

of cleanings. They must be performed while production is stopped. Quality and safety regula-

tions, for instance in the pharmaceutical, chemical, and food sectors, also prevent significant 

reduction. Cleanings cause long downtimes for machines, waste material, and consume energy, 

water, and cleaning agents. Together, these are key cost drivers in industries often characterized 

by high volumes and low profit margins. For lot sizing and scheduling in the process industries, 

it is therefore fundamental to account for cleanings in addition to setups.  

There are many different classes of setups and cleanings that require different approaches in lot 

sizing and scheduling. Among these are setups and cleanings when switching between two 

product batches and those when a certain production time or volume has been reached. Further-

more, setup and cleaning classes are often interrelated. Cleanings of different intensities may, 

for instance, be substitutable. A systematic classification of cleanings and their specific char-

acteristics is however lacking. Such a classification is prerequisite for developing a generic lot 

sizing and scheduling approach for setups and cleanings. Only a correct representation of the 

constraints that setups and cleanings impose enables an efficient use of resources. An incorrect 

formulation leads either to infeasibility or suboptimality. In particular, a formulation that is too 

rigid reduces problem complexity but also over-constrains the solution space. As a result, the 

lot sizing and scheduling problem solution cannot exploit the actual flexibility of the manufac-

turing system. In the application of the modeling approach, the correct identification of the 

setup and cleaning classes is crucial. 

In the process industries, the prevalent type of production systems are flowshops. On an aggre-

gate level, process industry production systems are often modelled as two-machine flowshops. 

The first machine may for example reflect continuous processing, whereas the second machine 

may reflect the transfer of the continuous flow into a flow of discrete units. An example of such 

flowshops are make-and-pack systems, frequently used in the production of consumer goods. 

The development of a generic lot sizing and scheduling approach covering setups and cleanings 

in two-machine flowshops can therefore be applied in many process industry settings. Moreo-

ver, it can easily be extended to multiple machines by re-utilizing the modelling concepts that 

link the production stages. 

Extensive cleaning requirements typify the food sector. Important aspects for lot sizing and 

scheduling in this industry include precedence relationships among products, heterogeneous 

processing times, as well as a variety of setups and cleanings. The example of cheese production 

exhibits a combination of the characteristics. Cleanings consume a significant share of the of 
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the available production time (typically more than 20%). Several types of cleanings are re-

quired, for example, when switching between products and after a certain production time. As 

the core processes for cheese production can be modelled as a two-machine flowshop with 

setups and cleanings, this environment is a suitable illustration for the lot sizing and scheduling 

approach presented in this paper. However, also problem specifics exist, for which a generic 

modelling approach must be adapted. In cheese production, a no-wait condition applies between 

the production stages and the usage of forms, into which the cheeses are filled, is an important 

consideration. 

The main contributions of this paper are (i) the development of a classification scheme for 

setups and cleanings; (ii) the development of an adaptable Mixed Integer Linear Programming 

(MILP) model for lot sizing and scheduling of flowshops with comprehensive representation 

of setups and cleanings, including their interrelationships; (iii) the application of the model to 

a real case at a medium-sized German cheese dairy with additional no-wait condition and ca-

pacity restriction on form usage; and (iv) the analysis of the value of the approach depending 

on the flexibility in scheduling cleanings and the heterogeneity of the processing times.  

The remainder of the paper is organized as follows. Section 4.2 presents the developed classi-

fication scheme for setups and cleanings. Note that the term "changeovers" is synonymous with 

"setups and cleanings" in the paper. Section 4.3 outlines the related literature. Section 4.4 pre-

sents the developed modeling approach. The application of the model to cheese production is 

described in Section 4.5, including supplementary modeling that captures industry-specific re-

quirements. Furthermore, the developed approach is solved for a case study at a medium-sized 

German cheese dairy and numerical analyses are carried out. Finally, Section 4.6 concludes the 

paper and outlines further research directions. 

4.2 Classification scheme for changeovers 

We develop a general classification scheme for changeovers. The classification scheme is in-

spired by classifications presented in several reviews on scheduling with setup operations. Al-

lahverdi et al. (1999, 2008) distinguish setups for batch (family) operations and non-batch (in-

dividual jobs) operations, as well as sequence-independent and sequence-dependent setups. 

Yang (1999) also considers the separability of setup operations. Cheng et al. (2000) include 

removal activities after production operations, which are typical in discrete manufacturing flow-

shops. Finally, Floudas and Lin (2004) focus specifically on chemical processes, for which they 

also consider time- and frequency-dependent setups. To summarize, some differentiating setup 
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characteristics have been considered, but none of these reviews has developed a comprehensive 

classification scheme for changeovers. Amongst other things, the existing schemes cannot be 

used to capture the scheduling-relevant characteristics of cleanings. Our scheme is a new and 

unique way of classifying changeovers. The scheme includes characteristics that have not been 

captured in other schemes, like substitutability, reference point, flexibility, and batch-size de-

pendency. 

Table 4.1 presents the classification scheme developed for changeovers. Each changeover be-

longs to a certain class or combination of classes (B, T, and/or V), has some general character-

istics, as well as characteristics related to the changeover matrix in terms of time and/or costs. 

The classification scheme characterizes changeovers on single machines. A scheduling problem 

will often include several machines that can each have multiple changeovers of different clas-

ses. This also means that even though a potential scarcity of machine capacities or of changeo-

ver resources (e.g., human operators) is an important consideration in scheduling problems (cf. 

Table 4.1: Classification scheme for changeovers. 

Characteristic Abbrevia-
tion 

Potential value Changeover class 

Batch 
(B) 

Time 
(T) 

Volume 
(V) 

General      
Separability {Sep}  inseparable (insep) 

 separable (sep) 
X 
X 

X 
X 

X 
X 

Substitutability {Sub}  insubstitutable (insub) 
 within class (wc) 
 across classes (ac) 
 within and across classes (wac) 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
X 

Reference point  {Ref}  start/finish of batch (sfb) 
 start of production (sop) 
 last changeover (lc) 
 fixed time point (ftp) 

X 
- 
- 
- 

- 
X 
X 
X 

- 
X 
X 
X 

Flexibility {Flex}  exact (ex) 
 maximum (max) 
 time window (tw) 

X 
X 
X 

X 
X 
X 

X 
X 
X 

Changeover matrix: time/costs    

Product  
dependency 
 

{Prod}  product(s) independent (pi) 
 predecessor product dependent (ppd) 
    family (f)/ no family (-f) 
 successor product dependent (spd) 
    family (f)/ no family (-f) 
 product sequence dependent (seqd) 
    family (f)/ no family (-f) 
    natural seq. (ns)/ no natural seq. (-ns) 
    triangular inequality kept (∆)/ violated (-∆) 
 predecessor products history (pph) 

X 
X 
 
X 
 
X 
 
 
 
- 

X 
- 
 
- 
 
- 
 
 
 
X 

X 
- 
 
- 
 
- 
 
 
 
X 

Batch-size  
dependency 

{Size}  batch-size(s) independent (bi) 
 predecessor batch-size dependent (pbd) 
 successor batch-size dependent (sbd) 
 pred. and succ. batch-size dependent (psbd) 
 predecessor batch-sizes history (pbh) 

X 
X 
X 
X 
- 

X 
- 
- 
- 
X 

X 
- 
- 
- 
X 
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Tempelmeier and Buschkühl, 2008; Tempelmeier and Copil, 2015), it is not considered in the 

classification of individual changeovers.  

Changeover classes. Three changeover classes are identified in Table 4.1. A batch-dependent 

changeover (B) may be required when switching between batches. The changeovers can also 

depend on time or production volume. Time-dependent changeovers (T) are, for example, com-

mon in the food industry, in which machines are frequently cleaned at the end of the day to 

meet hygiene regulations. For volume-dependent changeovers (V), the changeover require-

ments depend on the produced volume or the frequency of use. These are, for example, often 

scheduled in the chemical industry after a specific number of batches to prevent buildup of 

impurities in processing items. Combined time and volume dependency of changeovers is also 

possible. For example, fouling of pipelines in the process industries could depend on both the 

time and the volume of product pumped. 

General changeover characteristics. Figure 4.1 shows a graphical representation of general 

changeover characteristics.  

Changeovers are classified as inseparable or separable based on their separability. Inseparable 

changeovers require the machine to be idle during the changeover, which is typical for the pro-

cess industries. Separable changeovers, on the other hand, are prepared offline. These are com-

mon in discrete manufacturing. For instance, machine tools are often prepared offline in elec-

tronics assembly. However, they also arise in the process industries. An example is cheese pro-

duction in which cheese forms are cleaned offline. For the just-in-time tool single-minute ex-

change of die (SMED), inseparable and separable (or internal and external) changeovers are 

distinguished and as much of the changeover operations as possible are treated as separable 

while running the machines (Shingo, 1985). 

All changeovers are classified based on their substitutability. Changeovers may be insubstitut-

able, i.e., the changeover must take place and may not be substituted by any other changeover. 

A hierarchical structure may also be imposed on changeovers, leading to potential changeover 

 
Figure 4.1: Representation of general changeover characteristics. 
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substitutions. A matrix containing all of the changeovers can represent the changeover hierar-

chy. Changeovers may be substitutable within a class. For example, a time-dependent change-

over that is scheduled every second hour may be substituted with a daily time-dependent 

changeover. Furthermore, changeovers may be substitutable across classes. For example, in the 

food industry, a less intensive batch-dependent cleaning may be substituted with an intensive 

time-dependent cleaning. Finally, changeovers may be substitutable within and across classes, 

e.g., a time dependent changeover may be substituted with another time-dependent changeover 

and also with a volume-dependent changeover. 

The starting time of a changeover is based on a reference point. The starting time for batch-

dependent changeovers is always based on the start or finish of a batch. For time- and volume-

dependent changeovers on the other hand, the starting time is based on start of production, start 

of last changeover, or on a fixed time point. The fixed time point is for example the start of 

planning horizon. The start of production and start of planning horizon are the same for prob-

lems with makespan minimization. 

All changeovers are also classified based on the flexibility of their starting time. Changeovers 

may require an exact starting time with no flexibility. These are, for example, representative for 

food production, in which time-dependent cleanings take place at the end of each production 

day. Changeovers may also be more flexible, i.e., there may be an upper bound on the starting 

time (maximum) or both upper and lower bounds (time window). 

Changeover-matrix characteristics. Figure 4.2 shows a graphical representation of the char-

acteristics related to the structure of the changeover matrix. The changeover-matrix character-

istics can both be in terms of time and/or costs. The time and costs required to set up or clean a 

machine are known as the changeover time and costs, respectively. They do not necessarily 

have the same changeover-matrix characteristics. 

Depending on their product dependency, changeovers may be independent of the produced 

product(s) as is frequently the case for time- and volume-dependent changeovers, but also for 

batch-dependent changeovers. Batch-dependent changeovers may also depend on the predeces-

sor or successor batch. Family structure is a property of predecessor- and successor-dependent 

changeovers. Changeovers are minor when switching between products of the same family and 

major when switching between families. Furthermore, batch-dependent changeovers may be 
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product sequence dependent in which case they depend on both the predecessor and successor 

batch. Sequence dependency is one of the basic characteristic of the process industries 

(Kallrath, 2002). Yoghurt production is a good example of a production system with sequence 

dependency. When switching between products with different colors or flavors, cleaning tech-

niques like cleaning, rinsing, or pushing depend on the preceding and succeeding products (Ber-

lin et al., 2007). For example, an intensive cleaning technique is required when dark colored 

products precede light colored ones. Sequence-dependent changeovers have three properties. 

Family structure, the first property, has been described. Natural sequence between products, 

such as brighter to darker color, natural to stronger taste, or weaker to stronger microbiological 

contamination, is the second property of sequence dependency. Sorting products based on a 

natural sequence therefore reduces the required cleaning processes. Block planning, for exam-

ple, exploits family structures and natural sequences of products for a simplified modeling ap-

proach (e.g., Lütke Entrup et al., 2005; Günther et al., 2006). The third property of sequence 

dependency is triangular inequality. Triangular inequality is retained for most production envi-

ronments. In this case, the changeover time between any two products is always less than that 

when a third product is produced between the two. For non-triangular changeovers, an interme-

diate product (often of lower grade) is produced between certain products to absorb contami-

nation (Menezes et al., 2011). A minimum lot size is usually required for the intermediate prod-

uct. Production of animal nutrition is a good example in which non-triangular cleanings apply 

(Clark et al., 2010). Claassen et al. (2016) also show that the optimal production schedule can 

vary significantly when including non-triangular changeovers. Finally, time- and volume-de-

pendent changeovers may also depend on the history of the products being produced. For ex-

ample, in meat processing, the knife wear may depend on the product types being produced. 

  

Figure 4.2: Representation of changeover-matrix-related characteristics. 
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Changeovers may be batch-size(s) independent or dependent depending on their batch-size de-

pendency. For batch-size-independent changeovers, changeover duration does not depend on 

the batch size. For batch-size-dependent changeovers, changeover duration depends on the 

batch size of the predecessor, successor, predecessor and successor, or the predecessor batch-

sizes history. For example for a large successor lot, more packaging material must be prepared 

leading to a longer setup time. 

Classification. All changeovers can be classified according to the classification in Table 4.1, 

i.e., based on their class (B, T and/or V), their general characteristics (Sep/Sub/Ref/Flex), as 

well as changeover-matrix characteristics with regard to time t(Prod/Size) and costs 

c(Prod/Size). The classification of a changeover then takes the form  

Class; (Sep/Sub/Ref/Flex); t(Prod/Size); c(Prod/Size). 

Next, we illustrate the classification with two examples from the food industry. In this industry, 

changeovers often take the form of time-dependent cleanings done on the machines at the end 

of a production day. Assuming that this cleaning is substitutable across classes, with product- 

and batch-size-independent changeover matrix defined for times, its classification takes the 

form T; (insep/ac/ftp/ex); t(pi/bi); c(-/-). The second example concerns a typical changeover 

from one product to another on a production line. This is often an inseparable and insubstituta-

ble sequence-dependent batch changeover. If we assume a changeover matrix defined for costs, 

without a family structure or natural sequence, in which triangular inequality is maintained, and 

which is batch-size independent, then this changeover is classified as B; (insep/in-

sub/sfb/max); t(-/-); c(seqd(-f;-ns;∆)/bi). 

4.3 Related literature 

The developed classification scheme can be used to facilitate the representation of changeovers 

when modeling lot sizing and scheduling problems. Our paper focuses on classifying and mod-

eling changeovers with a particular focus on cleanings. Therefore, we have organized our liter-

ature review to first cover flowshops, the production environment, in which cleanings are most 

relevant. Due to their particular relevance for the case, we focus on no-wait flowshops. The 

second part reviews papers, which cover several changeover classes. 
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4.3.1 Simultaneous lot sizing and scheduling of flowshops 

Lot sizing and scheduling problems have been extensively researched in the academic literature 

both independently and together. Lot sizing addresses timing and production amounts for sat-

isfying demand over a time horizon (see the review by Buschkühl et al., 2010). Scheduling 

addresses sequencing of production activities (see the process industry reviews by Kallrath, 

2002; Méndez et al., 2006). As a result of sequence-dependent changeover times, different clas-

ses of changeovers, due dates, demand fluctuations, and tight capacities, lot sizing and sched-

uling problems are strongly interrelated and must be made simultaneously. 

Two research communities in particular have developed mathematical models for simultaneous 

lot sizing and scheduling: the Operations Research (OR) community and the Process Systems 

Engineering (PSE) community (Amorim et al., 2013c). Approaches can be classified by their 

time representation into discrete- and continuous-time models. For discrete-time representation, 

all activities are scheduled on a discrete time scale in which the planning horizon is divided into 

a finite number of time intervals. The discrete-time formulations from the OR community are 

clustered into small and big bucket formulations, both aimed at minimizing inventory and setup 

costs (see the review by Copil et al., 2017). For continuous-time representation, all activities 

are scheduled accurately on a continuous time scale. There are also mixed models, which com-

bine continuous- and discrete-time formulations. The block planning formulation is one of 

these. The choice of an appropriate time representation is a key issue, which must be addressed 

with the specific characteristics of the production system in mind. 

Flowshop scheduling has received much attention in literature (see e.g., the reviews by Gupta 

and Stafford, 2006; Hejazi and Saghafian, 2005). However, to the best of our knowledge, lot 

sizing and scheduling of flowshops with a systematic analyses of changeovers has not been 

investigated in the literature. No-wait flowshops, which form an important cluster of flowshops, 

have been studied extensively over the past few decades (see the reviews by Allahverdi, 2016; 

Hall and Sriskandarajah, 1996). However, only a few studies have addressed simultaneous lot 

sizing and scheduling of no-wait flowshops. The studies by Sriskandarajah and Wagneur 

(1999), Lin and Cheng (2001), and Wang and Cheng (2006) develop solution methods for the 

simultaneous lot sizing (batching) and scheduling of two-machine no-wait flowshops with se-

quence-independent setup times. Furthermore, Kumar et al. (2000) and Kim and Jeong (2009) 

develop genetic algorithms for m-machine no-wait flowshops with sequence-independent set-

ups. Also, Hall et al. (2003) develop a dynamic programming algorithm for lot sizing and sched-

uling of m-machine no-wait flowshops with sequence-dependent setup times. All the analyzed 
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studies minimize the makespan or maximum lateness, because time is commonly the principal 

criteria for no-wait flowshops. Furthermore, all of the studies only include one class of change-

over and therefore none of the studies systematically addresses different changeovers. 

4.3.2 Lot sizing and scheduling involving several changeover classes 

In the food industry, scheduling of setups and especially cleanings plays a central role due to 

extensive hygienic requirements. In the following, we therefore focus on lot sizing and sched-

uling studies from the food industry in which two or more classes of changeovers are modeled. 

Table 4.2 presents an overview of the studies based on their application, method, time repre-

sentation, objective, and changeover classification. Studies of integrated production scheduling 

and distribution are excluded. 

Most of the reviewed papers are from the dairy industry, as there is an increasing interest in 

investigating changeovers in scheduling approaches from this sector. All papers apply MILP 

models, and Kilic (2011) also applies constraint programming. Furthermore, two approaches 

are based on block planning (see the papers by Kilic, 2011; Günther et al., 2006). All of the 

Table 4.2: Overview of changeovers in the literature on lot sizing and scheduling in the food industry involving several changeo-
ver classes. 

Publication Appli-
cation 

Method Time 
repr. 

Objec-
tive 

Changeover classification 
Class General characteris-

tics 

(Sep/Sub/Ref/Flex) 

Changeover- 
matrix  
characteristics 
Time(Prod/Size) 

Changeover- 
matrix  
characteristics 

Costs(Prod/Size) 

Kopanos et al. 
(2012) 

Ice-
cream 

MILP Cont. Min 
make-
span 

B; 
B; 
T; 
T; 

(insep/insub/sfb/max); 
(insep/insub/sfb/max); 
(insep/insub/ftp/ex); 
(insep/insub/ftp/ex); 

t(seqd(-f;ns;∆)/bi); 
 t(seqd(-f;ns;∆)/bi); 
t(pi/bi); 
t(pi/bi); 

c(-/-) 
c(-/-) 
c(-/-) 
c(-/-) 

Van Elzakker et 
al. (2012) 

Ice-
cream 

MILP Cont. Min 
make-
span 

B; 
B; 
T; 

(insep/insub/sfb/max); 
(insep/insub/sfb/max); 
(insep/insub/sop/tw); 

t(seqd(-f;-ns;∆)/bi); 
t(seqd(-f;-ns;∆)/bi); 
t(pi/bi); 

c(-/-) 
c(-/-) 
c(-/-) 

Doganis and 
Sarimveis (2007) 

Yoghurt MILP Mix Min 
costs 

B; 
T; 

(insep/ac/sfb/max); 
(insep/ac/ftp/ex); 

t(seqd(-f;ns;∆)/bi); 
t(pi/bi); 

c(seqd(-f;ns;∆)/bi) 
c(-/-) 

Doganis and 
Sarimveis (2008) 

Yoghurt MILP Mix Min 
costs 

B; 
T; 

(insep/ac/sfb/max); 
(insep/ac/ftp/ex); 

t(seqd(-f;ns;∆)/bi); 
t(pi/bi); 

c(seqd(-f;ns;∆)/bi) 
c(-/-) 

Kopanos et al. 
(2010) 

Yoghurt MILP Mix Min 
costs 

B; 
T; 
T; 

(insep/ac/sfb/max); 
(insep/ac/ftp/ex); 
(insep/ac/ftp/ex); 

t(seqd(f;ns;∆)/bi); 
t(pi/bi); 
t(pi/bi); 

c(seqd(f;ns;∆)/bi) 
c(-/-) 
c(-/-) 

Kopanos et al. 
(2011) 

Yoghurt MILP Mix Min 
costs 

B; 
B; 
T; 
T; 

(insep/insub/sfb/max); 
(insep/insub/sfb/max); 
(insep/insub/ftp/ex); 
(insep/insub/ftp/ex); 

t(seqd(f;ns;∆)/bi); 
t(spd(-f)/bi); 
t(pi/bi); 
t(pi/bi); 

c(seqd(f;ns;∆)/bi) 
c(-/-) 
c(-/-) 
c(-/-) 

Kilic (2011) Milk MILP, 
constr. 
progr. 

Cont. Min 
make-
span 

B; 
T; 
T; 

(insep/insub/sfb/max); 
(insep/insub/lc/max); 
(insep/insub/lc/max); 

t(seqd(f;ns;∆)/bi); 
t(pi/bi); 
t(pi/bi); 

c(-/-) 
c(-/-) 
c(-/-) 

Günther et al. 
(2006) 

Scalded 
sausage 

MILP Mix Max 
margin 

B; 
T; 

(insep/insub/sfb/max); 
(insep/insub/ftp/ex); 

t(seqd(f;ns;∆)/bi); 
t(pi/bi); 

c(-/-) 
c(-/-) 

This paper  
(2017) 

Cheese MILP Cont. Min 
make-
span 

B; 
T; 
V; 

(insep/insub/sfb/max); 
(insep/*/*/*); 
(insep/*/*/*); 

t(*/*); 
t(pi/bi); 
t(pi/bi); 

c(-/-) 
c(-/-) 
c(-/-) 

* Different combinations of characteristics are analyzed. 

 



Chapter 4 

77 
 

papers address lot sizing and scheduling; however in Kilic (2011) and Kopanos et al. (2012), it 

is not carried out simultaneously. Rather, lot sizing is carried out a priori. Either continuous- or 

mixed-time formulations are applied in the models. The objectives of the models include cost 

minimization, contribution margin maximization, and makespan minimization. 

The changeover classification of the analyzed studies is described next. All of the papers study 

two changeover classes, i.e., batch- and time-dependent changeovers. Only our paper analyses 

volume-dependent changeovers. All of the papers focus on inseparable cleanings, because in-

separability is common for cleanings. The studies by Doganis and Sarimveis (2007, 2008) and 

Kopanos et al. (2010, 2011) include substitution across classes. However, only time-dependent 

changeovers with exact starting times (like daily setup/shutdown) substitute batch-dependent 

changeovers, assuming that the equipment is clean when production is started on a new day. In 

our study, we incorporate substitution across classes that depends on the changeover duration. 

One other study on changeover substitution is found in the literature, see Gellert et al. (2011). 

They develop a genetic algorithm for scheduling yoghurt production and analyze changeover 

substitution across batch and time classes. However, this study does not address lot sizing and 

is therefore excluded from the literature overview. 

The batch-dependent changeovers are almost all sequence dependent with diverse changeover-

matrix structures. The models that minimize costs include changeover-matrix characteristics 

related to both time and costs. Many studies analyze cases in which there is a natural sequence, 

or both natural sequence and family structure, among the products. All studies, except for ours, 

address only batch-size-independent changeovers. Kopanos et al. (2012) and Van Elzakker et 

al. (2012) each examine two separate batch-dependent changeovers: at the processing and pack-

aging stages.  

Time-dependent changeovers are analyzed in all of the papers. Most studies employ a reference 

point based on a fixed time point. In Van Elzakker et al. (2012), however, the reference point 

is based on start of production and in Kilic (2011) it is based on last changeover. Only our study 

addresses several reference points within the same changeover class, i.e., reference points based 

on a fixed time point and based on time since last changeover are modeled for time-dependent 

changeovers. With regard to flexibility, only our paper and the papers by Van Elzakker et al. 

(2012) and Kilic (2011) study time-dependent changeovers that are scheduled within a specific 

time window or a maximum upper bound. On the other hand, time-dependent changeovers with 

exact starting times are analyzed in many papers by reducing the daily production time by the 

changeovers time (for example, see the papers by Doganis and Sarimveis, 2007, 2008). 
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Kopanos et al. (2010, 2011) study two separate time-dependent changeovers for a yoghurt pack-

aging line including daily setup and daily shutdown.  

There is a clear gap in the literature for a generic modeling approach addressing changeovers 

based on a systematic classification. As a consequence, none of the previous studies deals with 

(i) more than two changeover classes, (ii) volume-dependent changeovers, (iii) substitution of 

changeovers other than an exact time-dependent changeover substituting a batch-dependent 

changeover, or (iv) batch-size dependency of changeovers. Our study, in contrast, represents 

all changeover classes and different combinations of their characteristics in a simultaneous lot 

sizing and scheduling model.  

4.4 Lot sizing and scheduling of flowshops 

4.4.1 Model overview 

We develop a generic MILP model for lot sizing and scheduling of two-machine flowshops. 

The model provides the core structure for modeling changeovers. When the model is applied in 

a specific context, it will often be necessary to extend the model such that other aspects than 

changeovers are included. This can easily be done because of the adaptable and declarative 

nature of the approach.  

Lot sizing and scheduling is conventionally studied using models that trade-off between inven-

tory and setup costs. However, minimizing inventory and setup costs is only suitable if the costs 

can be identified as out-of-pocket costs for the individual products (Günther, 2014). Further-

more, inventory costs are often low for scheduling problems that typically have short planning 

horizons, and personnel costs often dominate setup costs. Hence, our objective is to minimize 

the makespan over a short horizon. Here, we also avoid idle times on machines, which occasion 

additional cleanings. A sequence-based, continuous-time representation is selected to allow 

precise scheduling of all activities and due to its flexibility in incorporating different changeo-

vers. Discrete-time formulations are often created in a relatively straightforward manner; how-

ever, they are difficult to use in many industrial projects as they often result in large combina-

torial problems when selecting sufficiently small intervals. 

Deterministic demand volumes of products must be fulfilled. The model determines the num-

ber, sequence, size, and starting times of lots as well as the changeovers. The number of poten-

tial lots per product is predetermined and may vary for different products. In practice, the num-

ber of potential lots per product can, for example, be determined as the maximum number of 

lots, over which the demand volume will be divided considering the changeover time and other 
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influencing factors. The lots, which are moved through the system without overtaking each 

other, have heterogeneous processing times, precedence relationships, and due dates. Products 

are first loaded onto the first machine in lots and then processed there. Afterwards they are 

loaded onto the next machine.  

The model addresses all of the changeover classes in Table 4.1, i.e., those containing batch-, 

time-, and volume-dependent changeovers. The focus is on the time dimension of the change-

over-matrix characteristics, because of the makespan objective. Changeover resources are as-

sumed to be uncapacitated, because the focus is on primary operations. All changeover classes 

are inseparable, which is common for this type of production environment. Substitution of 

changeovers on the same machine is incorporated across classes, depending on the changeover 

duration, meaning that shorter changeovers are substituted with longer ones. 

Batch-dependent changeovers, B; (insep/insub/sfb/max); t(seqd(-f;-ns;∆)/bi); c(-/-), are re-

quired on the second machine. This is typical for many process industry problems such as those 

in which continuous volumes are transferred to discrete and format change is required in the 

second stage. The reference point for the batch-dependent changeovers is based on the start/fin-

ish of last batch and the starting time is within an upper bound (maximum). The model is de-

veloped for sequence-dependent changeovers, which is the most complicated case, so other 

product dependencies can be incorporated. A general changeover-matrix structure in terms of 

family, natural sequence, and triangular inequality is modeled. The model is developed for 

batch-size-independent changeovers. Model adjustments for batch-size-dependent changeo-

vers, B; (insep/insub/sfb/max); t(spd(-f)/sbd); c(-/-), are also shown. 

We assume that there are time-, T; (insep/ac/ftp/tw); t(pi/bi); c(-/-), and volume-dependent 

changeovers, V; (insep/ac/ftp/tw); t(pi/bi); c(-/-), on the first machine. The changeovers occur 

within a specific time window, thereby exact and maximum criteria (upper bound) are also 

incorporated. An alternative formulation for exact time-dependent changeovers is also shown, 

T; (insep/ac/ftp/ex); t(pi/bi); c(-/-). The reference point for the time- and volume-dependent 

changeovers is based on the start of planning horizon (fixed time point). For makespan mini-

mization the start of planning horizon is the same as the start of production. How time-depend-

ent changeovers can be modeled based on the time since last changeover, T; (in-

sep/ac/lc/max); t(pi/bi); c(-/-), is also shown. Figure 4.3 shows the connection between the 

product speed and changeovers for the two-machine configuration.  
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4.4.2 Model formulation 

The following notation is introduced for the model: 

Indices and index sets 

𝑝 ∈ 𝑃 product  

𝑙 ∈ 𝐿 lot  

𝑙 ∈ 𝐿(𝑝) lot belonging to product p 

𝑎 ∈ 𝐴  time-dependent changeover 

𝑏 ∈ 𝐵  volume-dependent changeover 

Parameters 

𝛼  demand for product p [units] 

𝛽  minimum lot size of lot l [units] 

𝛾  due date of lot l [time units] 

𝛿  = 1 if lot l must be produced after lot l’ (0, otherwise) 

𝜀 loading duration of one unit [time units] 

𝜁  processing time of lot l on machine 1 [time units] 

𝜂 lowest processing time of all lots on machine 1 [time units] 

𝜃 ’  duration of sequence-dependent batch changeover between lot l and lot l’  

(l precedes l’) [time units] 

𝜅 duration of time-dependent changeover [time units] 

𝜆  earliest starting time of time-dependent changeover a—lower bound [time units] 

𝜆  latest starting time of time-dependent changeover a—upper bound [time units] 

𝜇 minimum number of time-dependent changeovers [changeovers] 

𝜈 changeover interval for time-dependent changeovers [time units] 

𝜉 duration of volume-dependent changeover [time units] 

𝜊  earliest starting of volume-dependent changeover b—lower bound [units] 

𝜊  latest starting of volume-dependent changeover b—upper bound [units] 

  

Figure 4.3: Representation of a two-machine flowshop. 
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𝜋 minimum number of volume-dependent changeovers [changeovers] 

𝜌 changeover interval for volume-dependent changeovers [units] 

𝜎  batch-size coefficient 

𝑀 , 𝑀  sufficiently large positive values 

Decision variables 

𝐶   makespan [time units] 

𝑋  amount produced in lot l [units] 

𝑆1  starting time of loading lot l on machine 1 [time units] 

𝐶1  completion time of loading lot l on machine 1 [time units] 

𝑆2  starting time of loading lot l on machine 2 [time units] 

𝐶2  completion time of loading lot l on machine 2 [time units] 

𝐸  duration of batch-dependent changeover before lot l [time units] 

𝑁  starting time of time-dependent changeover a [time units] 

𝑄  cumulated production amount after finishing lot l [units] 

𝑌 ’  = 1 if lot l processed before lot l’ (0, otherwise) 

𝐾  = 1 if lot l scheduled immediately before time-dependent changeover a  

(0, otherwise) 

𝐻  = 1 if lot l scheduled before exact time-dependent changeover a (0, otherwise) 

𝑂  = 1 if time-dependent changeover a is scheduled last (0, otherwise) 

𝑉  = 1 if lot l scheduled immediately before volume-dependent changeover b  

(0, otherwise) 

The lot sizing and scheduling model is formulated as follows: 

Objective function. The objective is to minimize the makespan (4.1). 

𝑀𝑖𝑛 𝐶  (4.1) 

subject to 

Demand, lot size, makespan, due dates, and precedence relationships. Demand for a prod-

uct must be fulfilled (4.2). A minimum lot size is introduced with constraints (4.3). If the trian-

gular inequality is violated, then these constraints impose sufficient intermediate product lot 

sizes to absorb all contamination. This is generally modeled so that a minimum lot size is im-

posed on all lots and not just on the intermediate lot. Completion time of the last lot on the 

second machine determines the makespan (4.4). All lots belonging to the same product must be 

finished before the respective due date of the product (4.5), assuming this is feasible for all 

problem instances. Due dates are based on customer or downstream processing requirements, 

reflected for example in instructions from higher planning levels. If due dates are not available 
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for some products, they are set to the end of the planning horizon. Constraints (4.6) model the 

precedence relationships among products. Alternatively, a large sequence-dependent batch 

changeover time can be set for these products. 

𝑋

∈ ( )

≥ 𝛼    ∀𝑝 ∈ 𝑃 (4.2) 

𝑋 ≥ 𝛽    ∀𝑙 ∈ 𝐿 (4.3) 

𝐶 ≥ 𝐶2    ∀𝑙 ∈ 𝐿 (4.4) 

𝐶2 ≤ 𝛾     ∀𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿(𝑝)  (4.5) 

𝑆1 ’ ∙ 𝛿 ’ ≤  𝑆1    ∀𝑙, 𝑙’ ∈ 𝐿 (4.6) 

Timing on machines. Constraints (4.7) define the completion times for loading on machine 1. 

Note that products are subsequently processed on machine 1 before arriving at machine 2. It is 

assumed that no changeovers occur before loading the first lot. Constraints (4.8) set the starting 

times for loading on machine 2. Constraints (4.9) define the completion times on machine 2. 

𝐶1 =  𝑆1 + 𝜀 ∙ 𝑋    ∀𝑙 ∈ 𝐿 (4.7) 

𝑆2 ≥ 𝑆1 + 𝜀 + 𝜁    ∀𝑙 ∈ 𝐿 (4.8) 

𝐶2 = 𝑆2 + 𝜀 ∙ 𝑋    ∀𝑙 ∈ 𝐿 (4.9) 

Constraints (4.10, 4.11) define the starting times on machine 1, accounting for the waiting times 

resulting from differences in processing times. If negative values result, constraints (4.15, 4.16) 

prevent lots from starting earlier than the completion time of the previous lot. Constraints (4.10) 

apply if lot l’ is produced after lot l, and constraints (4.11) if lot l is produced after lot l’. The 

constant 𝑀  represents the length of the planning horizon in time units. The variable 𝑌  is 

always zero when 𝑙 = 𝑙  (4.12).  

𝑆1 ’ ≥  𝐶1 − (𝜁 ’ − 𝜁 ) − 𝑀 ∙ (1 − 𝑌 ’)   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’) (4.10) 

𝑆1 ≥  𝐶1 ’ − (𝜁 − 𝜁 ’) − 𝑀 ∙ 𝑌 ’   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’) (4.11) 

𝑌 ’ = 0   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 = 𝑙’) (4.12) 

Constraints for all changeover classes are formulated next. 

Batch-dependent changeovers. Constraints (4.13, 4.14) define the starting times on machine 

2, accounting for the duration of sequence-dependent batch changeovers. The batch-dependent 

changeovers can be changed to predecessor- or successor-dependent changeovers by changing 

the parameter 𝜃 ’. 
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𝑆2 ’ ≥  𝐶2 + 𝜃 ’ − 𝑀 ∙ (1 − 𝑌 ’)   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’) (4.13) 

𝑆2 ≥  𝐶2 ’ + 𝜃 ’ − 𝑀 ∙ 𝑌 ’   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’) (4.14) 

The modeling of the batch-dependent changeovers can also be modified to include batch-size 

dependency. We show this for changeovers dependent on successor product and successor 

batch size. Predecessor batch-size-dependent changeovers can be modeled analogously. A con-

tinuous variable 𝐸 , which defines the duration of changeover before lot l, is utilized. In con-

straints (4.13), the parameter 𝜃 ’ is replaced by 𝐸 ’, and in constraints (4.14) the parameter 𝜃 ’  

is replaced by 𝐸 . Furthermore, constraints (4.A1) are added to set value on the new variable. 

The duration of the changeover depends on the batch size of the lot and a batch-size coefficient 

(𝜎 ). 

𝑋 ∙  𝜎 ≤ 𝐸    ∀𝑙 ∈ 𝐿 (4.A1) 

Time-dependent changeovers. If a time-dependent changeover is scheduled on machine 1 

(4.15, 4.16) and it is larger than the processing-time differences in constraints (4.10, 4.11), then 

the downtime on machine 1 must be larger or equal to the duration of the changeover. 

𝑆1 ’ ≥  𝐶1 + 𝜅 ∙ 𝐾 − 𝑀 ∙ (1 − 𝑌 ’)   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’), 𝑎 ∈ 𝐴 (4.15) 

𝑆1 ≥  𝐶1 ’ + 𝜅 ∙ 𝐾 ’ − 𝑀 ∙ 𝑌 ’   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’), 𝑎 ∈ 𝐴 (4.16) 

Constraints (4.17) determine the number of time-dependent changeovers, based on a fixed ref-

erence point (since start of planning horizon). Constraints (4.18) set the order of time-dependent 

changeovers (e.g., if second changeover is scheduled, then first changeover must be scheduled).  

𝐾

∈∈

≥
𝐶 − 𝜆

𝜈
     (4.17) 

𝐾

∈

≥ 𝐾 ’

∈

   ∀𝑎, 𝑎’ ∈ 𝐴: (𝑎 < 𝑎’) (4.18) 

The time-dependent changeovers are flexible, starting within their respective time windows 

(4.19, 4.20). Also, a value is set on the binary variable that indicates if changeover precedes a 

specific lot.  

𝐶1 ≤  𝜆 + 𝑀 ∙ (1 − 𝐾 )   ∀𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴 (4.19) 

𝐶1 ≥  𝜆 − 𝑀 ∙ (1 − 𝐾 )   ∀𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴 (4.20) 

For time-dependent changeovers with only an upper bound (maximum), only constraints (4.19) 

are imposed. The upper and lower bounds are equal for exact time-dependent changeovers. 
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Alternatively, exact time-dependent changeovers can be modeled by substituting constraints 

(4.15–4.20) with constraints (4.B1, 4.B2). 

𝐶1 ≤  𝜆 + 𝑀 ∙ (1 − 𝐻 )    ∀𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴 (4.B1) 

𝑆1 ≥  𝜆 + 𝜅 −  𝑀 ∙ 𝐻     ∀𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴 (4.B2) 

In the following, we show an alternative formulation for time-dependent changeovers that are 

not based on time since start of planning horizon as a reference point, but rather time since last 

changeover with a maximum upper bound on the starting time (flexibility). Other flexibility 

characteristics can also be incorporated. Constraints (4.17, 4.19, 4.20) are substituted with con-

straints (4.C1–4.C7). The changeover frequency is set with constraints (4.C1–4.C3). Only one 

changeover is the last changeover (4.C4). Constraints (4.C5–4.C7) set the starting times of the 

changeovers and a value on the binary variable that indicates if changeover precedes a specific 

lot, similarly as in constraints (4.19, 4.20). 

𝑁 ≤  𝜆  (4.C1) 

𝑁 ≤  𝑁 + 𝜈    ∀𝑎 ∈ 𝐴: (𝑎 < |𝐴|) (4.C2) 

𝐶 ≤  𝑁 + 𝜈 + 𝑀 ∙ (1 − 𝑂 )   ∀𝑎 ∈ 𝐴 (4.C3) 

𝑂 = 1

∈

 (4.C4) 

𝑁 ≤ 𝑀 ∙ 𝐾

∈

   ∀𝑎 ∈ 𝐴 (4.C5) 

𝐶1 ≤  𝑁 + 𝑀 ∙ (1 − 𝐾 )   ∀𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴 (4.C6) 

𝐶1 ≥  𝑁 − 𝑀 ∙ (1 − 𝐾 )   ∀𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴 (4.C7) 

Volume-dependent changeovers. Volume-dependent changeovers are scheduled with con-

straints (4.21, 4.22), similar to the way time-dependent changeovers are scheduled. Substitution 

can take place between time and volume-dependent changeovers. 

𝑆1 ’ ≥  𝐶1 + 𝜉 ∙ 𝑉 − 𝑀 ∙ (1 − 𝑌 ’)   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’), 𝑏 ∈ 𝐵 (4.21) 

𝑆1 ≥  𝐶1 ’ + 𝜉 ∙ 𝑉 ’ − 𝑀 ∙ 𝑌 ’   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙 ), 𝑏 ∈ 𝐵 (4.22) 

Constraints (4.23) set the number of volume-dependent changeovers, based on a fixed reference 

point. Formulation similar to that described for the time-dependent changeovers (4.C1–4.C7) 

can be developed for a reference point depending on volume since last changeover, but adjusted 

for volumes. Constraints (4.24) set the order of volume-dependent changeovers. 
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𝑉

∈∈

≥
𝛼

𝜌 
∈

  (4.23) 

𝑉

∈

≥ 𝑉 ’

∈

   ∀𝑏, 𝑏’ ∈ B: (𝑏 < 𝑏’) (4.24) 

The volume-dependent changeovers are flexible, i.e., scheduled within the upper and lower 

bounds (4.25, 4.26). For volume-dependent changeovers with only an upper bound (maximum), 

only constraints (4.25) are imposed. Upper and lower bounds are equal for exact volume-de-

pendent changeovers. 

𝑄 ≤  𝜊 + 𝑀 ∙ (1 − 𝑉 )   ∀𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵 (4.25) 

𝑄 ≥  𝜊 − 𝑀 ∙ (1 − 𝑉 )   ∀𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵 (4.26) 

Constraints (4.27, 4.28) set the cumulated production amounts. Constraints (4.29) enforce the 

cumulated amount of the first lot being greater than or equal to the production amount. Con-

straints (4.30) restrict the cumulated amount to be less than the total production amount. 

𝑄 ’ ≥  𝑄 +  𝑋 ’ − 𝑀 ∙ (1 − 𝑌 ’)   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’) (4.27) 

𝑄 ≥  𝑄 ’ + 𝑋 − 𝑀 ∙ 𝑌 ’   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’) (4.28) 

𝑋 ≤  𝑄    ∀𝑙 ∈ 𝐿 (4.29) 

𝑋 ’ ≥

’∈

𝑄    ∀𝑙 ∈ 𝐿 (4.30) 

Tightening constraints. Tightening constraints are introduced to reduce computational effort. 

A lower bound on the makespan similar to that in Kopanos et al. (2012) is introduced. The 

lower bound is calculated as the minimum processing time plus the net loading times plus a 

minimum duration of time- and volume-dependent changeovers (4.31). Waiting and sequence-

dependent batch changeovers are not included, as they depend on the resulting schedule. Con-

straints (4.32) break the symmetries of lots of same product assuming that a lower indexed lot 

is produced first. Constraints (4.33) set the number of lots that immediately precede a change-

over to at most one. Likewise, constraints (4.34) set the number of changeovers scheduled im-

mediately after a lot to at most one. 

𝐶 ≥ 𝜂 + 𝜀 ∙ 𝛼 + 𝜇 ∙ 𝜅 + 𝜋 ∙ 𝜉

∈

 (4.31) 

𝑌 ’ = 1   ∀𝑙, 𝑙’ ∈ 𝐿(𝑝): (𝑙 < 𝑙’) (4.32) 
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𝐾

∈

≤ 1   ∀𝑎 ∈ 𝐴,        𝑉

∈

≤ 1   ∀𝑏 ∈ 𝐵 (4.33) 

𝐾

∈

≤ 1   ∀𝑙 ∈ 𝐿,        𝑉

∈

≤ 1   ∀𝑙 ∈ 𝐿 (4.34) 

Variable domains. Constraints (4.35, 4.36) define the variable domains of decision variables. 

𝐶 ≥ 0, 𝑋 ≥ 0,  𝑆1 ≥ 0,  𝐶1 ≥ 0,  𝑆2 ≥ 0,  𝐶2 ≥ 0, 𝐸 ≥ 0,   𝑁 ≥ 0,
                          𝑄 ≥ 0 ∀𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴    

(4.35) 

𝑌 ’ ∈ {0,1},   𝐾 ∈ {0,1},   𝐻 ∈ {0,1},   𝑂 ∈ {0,1},   𝑉 ∈ {0,1}   ∀𝑙, 𝑙’ ∈ 𝐿,     
𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 

(4.36) 

The developed model comprehensively covers all changeover classes and their various charac-

teristics.  On machine 2, batch-dependent changeovers (4.13, 4.14) are scheduled between suc-

cessive lots. The changeover interactions of time- and volume-dependent changeovers on ma-

chine 1 are modeled through substitution across classes. Different changeover classes can there-

fore be scheduled between successive lots on machine 1, i.e., time- (4.15, 4.16), or volume-

dependent changeovers (4.21, 4.22). For insubstitutable time- and volume-dependent changeo-

vers, separate constraints would not be required for each class because the changeover times 

are added up. Furthermore, for additional changeovers of a certain class, the corresponding sets 

of constraints, variables and parameters must be duplicated. In the case study below, two time-

dependent changeovers are implemented.  

4.5 Application to cheese production 

We apply the developed model to cheese production. This application is selected, because 

cleanings play a major role in cheese production for health reasons and due to regulatory stand-

ards. 

4.5.1 Production process 

All cheese types can be roughly categorized into hard, semi-hard, soft, semi-soft, and cream 

cheeses, depending on moisture content. Each cheese type has its own special production pro-

cess, ripening process, taste, and texture. The paper focuses on the production of soft and blue 

cheese (categorized as semi-soft cheese). Figure 4.4 shows the processing steps followed by a 

short description of each step based on Walstra et al. (2006), Bylund (2003), and information 

from practice. Note that the term "filling" is used for cheese production as opposed to the term 

"loading" in the model description. 
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The raw milk is first standardized to around 3% fat content, pasteurized at approximately 72 °C, 

and cooled to 32 °C (1). Next, the milk is filled into tubs of uniform size (2). Rennet is then 

added. The rennet causes the casein in the milk to coagulate, which is a fundamental process in 

cheese production. The amount depends on the specific cheese type and recipe. Starter culture, 

or other additives, can also be added. The milk clots after mixing and the clotted milk is then 

cut to expel the whey from the curd (3). After curd preparation, the curd is filled into forms 

without waiting (4). The forms give the cheese its size and shape. Next, the cheese rests under 

special conditions for several hours (5). While resting, the remaining whey is dripped or pressed 

out to obtain the correct dry-matter content. The cheese is also turned several times. After rest-

ing, the cheese is typically salted in a salt bath to increase its shelf life (6). The cheese is sub-

sequently removed from the forms after which it ripens for several days under special conditions 

(7). Water losses and deterioration of texture should be avoided. After a few days, some cheeses 

are pierced to enable oxygen to enter so that blue mold can grow. The cheese is ultimately 

packaged and stored (8). 

The main capacity-constrained processes constituting the flowshop are analyzed. Enough tubs 

are assumed to be available. However the use of different form types, steps 4 to 6, must be 

tracked as forms are blocked for several hours in a capacitated resting area after being filled 

and represent a key bottleneck. Addressing processing steps 2 and 3 is also necessary as the 

product sequence and timing of these steps influences scheduling of the following steps due to 

a no-wait condition between steps 3 and 4. No-wait conditions often apply in the food industry 

due to the characteristics of production technologies or of intermediate products. Figure 4.5 

shows a representation of machine 1 (coagulator) and machine 2 (filler), which constitute a two-

machine no-wait flowshop. A no-wait condition is employed at the interfaces between the ma-

chines, whereby lots are immediately loaded onto the next machine. Sequence-dependent batch 

changeovers result on machine 2 due to exchanging of form types and cleaning of machines. 

  

Figure 4.4: Processing steps in soft and blue cheese production (steps 2 through 6 are analyzed in this study). 
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Furthermore, time- and/or volume-dependent cleanings must be addressed as cleaning opera-

tions are very important in the production of cheeses. Tight coordination of the changeovers 

across the production stages is required due to the no-wait condition. 

Despite increasing interest in lot sizing and scheduling in the dairy industry, the literature fo-

cuses mainly on yoghurt production. Cheese production is distinct from yoghurt production, 

e.g., because products are filled in forms, and heterogeneous clotting and resting times must be 

accounted for. To the best of our knowledge, only the study by Claassen and Van Beek (1993) 

examines cheese scheduling. However, this study focuses on packaging without addressing 

specific cheese production challenges such as cleanings, sequence dependency, and the capacity 

restrictions of forms. 

4.5.2 Modeling no-wait condition and form usage 

This section describes the adaptations of the developed approach for modeling the no-wait con-

dition between the machines and for tracking form usage. Discrete time periods are used to 

track form usage within each time period. That the required number of forms for the whole lot 

is available when filling starts is assumed, because receiving additional forms after a lot is 

started is unrealistic from a practical perspective. The notation below is added to the model 

presented in Section 4.4. 

Indices and index sets 

𝑓 ∈ 𝐹 form type  

𝑡 ∈ 𝑇  time period 

Parameters 

𝜏 length of discrete time period [time units] 

𝜐  number of forms filled from one tub for lot l [number of forms] 

 
Figure 4.5: Detailed view of the analyzed two-machine no-wait flowshop for cheese production. 
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𝜑  resting and brining time of lot l on machine 2, and separable form cleaning time 

[periods] 

𝜒  =1 if lot l requires form type f (0, otherwise) 

𝜓  number of available forms of form type f —capacity [number of forms] 

𝑀  sufficiently large positive value 

Decision variables 

𝐺  number of filled forms for lot l in period t [number of forms] 

𝑅  number of released forms for lot l in period t [number of forms] 

𝐼  inventory of form type f in period t [number of forms] 

𝑊  = 1 if filling of forms for lot l carried out in period t (0, otherwise) 

𝑈  consumption period of forms for lot l [period] 

No-wait condition. Constraints (4.8) are replaced with constraints (4.37), whereby lots are im-

mediately loaded onto machine 2 after being processed on machine 1. Also, constraints (4.10, 

4.11, 4.13, 4.14) are replaced with constraints (4.38, 4.39). The starting times on machine 1 

must account for the duration of sequence-dependent batch changeovers and the waiting times 

resulting from processing-times differences. For example, lot 2 in Figure 4.3 would have to 

start later on machine 1 due to the no-wait condition. 

𝑆2 = 𝑆1 + 𝜀 + 𝜁    ∀𝑙 ∈ 𝐿 (4.37) 

𝑆1 ’ ≥  𝐶1 + 𝜃 ’ − (𝜁 ’ − 𝜁 ) − 𝑀 ∙ (1 − 𝑌 ’)   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’) (4.38) 

𝑆1 ≥  𝐶1 ’ + 𝜃 ’ − (𝜁 − 𝜁 ’) − 𝑀 ∙ 𝑌 ’   ∀𝑙, 𝑙’ ∈ 𝐿: (𝑙 ≠ 𝑙’) (4.39) 

Form usage. In the sequel, continuous starting times for filling into forms are transformed into 

discrete time periods to track form usage. Constraints (4.40) set values on the discrete time 

periods when forms are consumed. Constraints (4.41) and (4.42) subsequently set the corre-

sponding values for the binary variables that specify if filling of lot l is carried out in discrete 

time period t. Combined, constraints (4.40–4.42) thereby link the continuous time axis and the 

discrete time axis through decision variables 𝑆2 , 𝑈 , and 𝑊 . Figure 4.6 illustrates the rela-

tionship between the time axes with an example. If the starting time for filling forms for lot 1 

(𝑆2 ) is at 150 time units and the length of the discrete time period is 120 time units, then the 

discrete time period in which forms are consumed (𝑈 ) is set to 2. Furthermore, the binary 

variable 𝑊  is assigned a value of 1. 

𝑆2

𝜏
 ≤ 𝑈 <

𝑆2 + 𝜏

𝜏
   ∀𝑙 ∈ 𝐿 (4.40) 
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𝑈 = 𝑡 ∙ 𝑊    ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (4.41) 

𝑊

∈

= 1   ∀𝑙 ∈ 𝐿 (4.42) 

 

At least the whole production lot is filled (4.43). Constraints (4.44) force the value of 𝐵  to 

zero when 𝐽  is zero. Constraints (4.45) determine the release time of forms by adding the 

resting time. Forms are not released unless they are first filled (4.46). 

𝑋 ∙ 𝜐 = 𝐺

∈

   ∀𝑙 ∈ 𝐿 (4.43) 

𝐺 ≤ 𝑀 ∙ 𝑊    ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (4.44) 

𝐺 = 𝑅 ,    ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇: 𝑡 ≤ 𝑇 − 𝜑  (4.45) 

𝑅 = 0   ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇: 𝑡 ≤ 𝜑  (4.46) 

It is assumed that all forms are available at the beginning of the planning horizon, e.g., due to 

extensive cleaning at the end of the previous planning horizon. The inventory (number of 

blocked forms) in the first period equals the number of forms filled in this period (4.47). Con-

straints (4.48) model the inventory balances of the other periods. The inventory of forms in each 

period must be less than the number of available forms (4.49).  

𝐼 = 𝐺 ∙ 𝜒  

∈

  ∀𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇: 𝑡 = 1 (4.47) 

𝐼 =  𝐼 , + 𝐺

∈

∙ 𝜒 − 𝑅

∈

∙ 𝜒    ∀𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇: 𝑡 ≥ 2 (4.48) 

𝐼 ≤ 𝜓    ∀𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (4.49) 

Variable domains. Constraints (4.50, 4.51) define the variable domains of decision variables. 

𝐺 ≥ 0,   𝑅 ≥ 0,   𝐼 ≥ 0   ∀𝑙 ∈ 𝐿, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (4.50) 

𝑊 ∈  {0,1},    𝑈 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟   ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (4.51) 

 
Figure 4.6: Relationship between continuous- and discrete-time axes. 
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4.5.3 Parametrization 

The case study includes the production of 30 different products, in which the weekly demand 

volumes (𝛼 ) are given. The number of possible lots per product is determined together with 

the cheese dairy based on the demand volumes. A minimum lot size (𝛽 ) is not required. The 

objective is to minimize the makespan over a one week planning horizon such that production 

on weekends is minimized. Total clotting, cutting, and stirring times of products are 80 to 144 

minutes (𝜁 ). The tubs are all of the same size with filling time (𝜀) of 104 seconds. There are 

three different form types and the number of available forms is limited to 1,000 to 4,000 (𝜓 ), 

depending on the type. There are between 5 and 13 forms per tub (𝜐 ). Resting and brining times 

of products are 13 to 19 hours (𝜑 ) including the separable cleaning time of forms. The period 

length for tracking form usage is set to 2 hours (𝜏).  

The required setups and cleanings are described next. First, there are batch-dependent change-

overs on the second machine, B; (insep/insub/sfb/max); t(seqd(-f;-ns;∆)/bi); c(-/-), in which the 

sequence-dependent duration (𝜃 ) varies depending on whether products require the same 

form type (either 0 or 15 minutes cleaning) or different form types (15 minutes cleaning plus 

15 minutes setup). Also, two time-dependent cleanings classified as T; (insep/in-

sub/ftp/tw); t(pi/bi); c(-/-) and T; (insep/insub/ftp/ex); t(pi/bi); c(-/-) are considered on the first 

machine. The first one, denoted with superscript (1), is a time-window-based cleaning. It takes 

42 minutes (𝜅( )) and is scheduled in the middle of each production day, i.e., between 8 

(𝜆
( )

) and 12 hours (𝜆
( )) of production. The cleaning interval is 24 hours (𝜈( )). The 

second time-dependent cleaning, denoted with superscript (2), is an exact cleaning. It takes 4 

hours (𝜅( )) and is scheduled at the end of each production day, i.e., after 20 hours (𝜆
( )

) of 

production. Substitution within the time-dependent cleaning class will not occur, because clean-

ings are scheduled at different times during the day. Also, substitution across classes will not 

occur, because the classes are scheduled on different machines. The minimum number of clean-

ings (𝜇( ),  𝜇( )) is calculated based on demand volumes. Figure 4.7 shows a graphical repre-

sentation of the setups/cleanings. In addition, cleanings of forms are carried out with uncapac-

itated separable cleanings, and are not shown in the figure. 

The precedence relationships among products are described next. Twelve products have due 

dates early in the production week: Monday to Thursday. This is because these are natural 

products, which are produced before products with stronger flavors, and because special treat-

ment such as pricking or coating is required in further processing, which should not occur on 
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weekends. Flavored cheeses such as those containing mushrooms or herbs are produced after 

the natural cheeses (𝛿 ). Flavored cheeses need no special treatment during further processing, 

because the flavors have already been added, and therefore have the end of week as due dates. 

Strong flavored cheeses are produced after the flavored cheeses. These are six cheeses that must 

be produced at the end of the production week (𝛿 ), because their recipes include garlic or hot 

peppers. After production of these strong flavored products an extensive cleaning is carried out. 

Solving the model for all products is computationally hard. We decompose therefore the prob-

lem based on the natural sequence of product groups and schedule each group sequentially. The 

makespan, changeover information, and form usage of previous groups is set as input for the 

subsequent group. Table 4.3 shows the product groups as well as the form types (𝜒 ) and due 

dates (𝛾 ) of products. 

The constraints implemented for the case study are summarized next. Constraints (4.1, 4.2, 4.4, 

4.5) are implemented, in which the makespan is defined (as with the dairy) as the completion 

time on machine 1, which is analogous to the makespan on machine 2 due to the no-wait con-

dition. Constraints (4.6) are not required because groups are solved separately. Batch-dependent 

changeovers and timing on machines are implemented with no-wait condition (4.7, 4.9, 4.12, 

4.37–4.39). Time-window-based cleanings are modeled with constraints (4.15–4.20) and exact 

cleaning with constraints (4.B1, 4.B2). There are no volume-dependent cleanings. The corre-

sponding tightening constraints (4.31–4.34) and variable domains (4.35, 4.36) are also imple-

mented. Furthermore, tracking form usage is implemented with constraints (4.40–4.51). We 

apply the model to a case at a medium-sized German cheese dairy. The model is implemented 

and solved in IBM ILOG CPLEX Optimization Studio 12.6 on a 2.6 GHz Intel Xeon CPU with 

32 GB RAM.  

 

Figure 4.7: Analyzed setups and cleanings for a one week planning horizon. 

 



Chapter 4 

93 
 

4.5.4 Illustrative results and model performance 

Around 3,300 to 3,800 variables and around 3,200 to 6,800 constraints result depending on the 

product group. Maximum runtime is set to 20 minutes for each group and the optimality gap is 

reported. The optimality gap is the difference between a theoretical upper bound on the optimal 

objective value and the achieved objective value. The model is first solved for a particular de-

mand week (week 1) and illustrative results are presented. Group 1 is solved to 2.4% optimality 

gap, group 2 to 2.1% optimality gap, and group 3 to optimality in a few seconds. The resulting 

optimality gap is considered acceptable. 

The schedule on machine 1 (coagulator) is shown in Figure 4.8. A capacity utilization of 74–

84% is achieved depending on the weekday. This is a very high utilization as it also includes 

the time-dependent cleanings (42 minutes and 4 hours) that are scheduled every day. Waiting 

times on machine 1 are only 4.5% of the makespan, which is attributable to the smart exploita-

tion of processing-time differences and cleaning coordination. For example, as also illustrated 

Table 4.3: Product groups, form types, and due dates. 

Groupa Product  
number 

Form  
type  

Due  
date 

1 1 1 Thursday 
1 2 1 Thursday 
1 3 1 Monday 
1 4 1 Monday 
1 5 1 Thursday 
1 6 2 Thursday 
1 7 2 Tuesday 
1 8 2 Tuesday 
1 9 2 Thursday 
1 10 3 Wednesday 
1 11 3 Monday 
1 12 3 Thursday 
2 13 1 - 
2 14 1 - 
2 15 1 - 
2 16 1 - 
2 17 2 - 
2 18 2 - 
2 19 2 - 
2 20 2 - 
2 21 3 - 
2 22 3 - 
2 23 3 - 
2 24 3 - 
3 25 1 - 
3 26 1 - 
3 27 1 - 
3 28 2 - 
3 29 3 - 
3 30 3 - 

a Group 1: Natural and blue cheeses. 
  Group 2: Flavored cheeses. 
  Group 3: Strong flavored cheeses. 
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in Figure 4.3, a lot with short processing time is frequently followed by a lot with a longer 

processing time to minimize waiting. Also, time-dependent cleanings are scheduled when 

switching from a lot with long processing time to a lot with shorter processing time. The com-

pletion times of the product groups are also shown in Figure 4.8, demonstrating the large pro-

duction volume of group 1. Furthermore, the lot sizing of products is shown. Some products 

are produced in one lot, while others are in two or more lots due to setup and cleaning require-

ments as well as restriction on form capacities. 

Figure 4.9 illustrates the filling schedule on machine 2 (filler). Several lots with same form type 

are usually produced subsequently by virtue of longer sequence-dependent batch changeover 

when switching between form types. Coordination of cleanings is also apparent in the results. 

Time-dependent cleanings are carried out concurrently with switching to a new form type in 

nine out of ten cases. In total, 35.8% of the batch-dependent changeover duration is carried out 

concurrently with time-dependent cleanings (marked with an asterisk in Figure 4.9). Coordina-

tion of cleanings, therefore significantly reduces the waiting times of the no-wait flowshop and 

improves the performance of the model. Figure 4.10 shows the form usage for each form type. 

 

Figure 4.8: Filling schedule on machine 1 (coagulator) for week 1. 

 

Figure 4.9: Filling schedule on machine 2 (filler) for week 1. 
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The same form type is regularly filled until reaching the maximum form capacity after which 

filling of a new form type is started. 

The performance of the developed approach is also compared to current planning at the cheese 

dairy (case study). The comparison is shown for machine 1, but machine 2 has the same utili-

zation as machine 1 on all days except for Saturdays. Figure 4.11, illustrates the waiting times 

on machine 1 resulting from the developed approach and the planned schedule for the case 

study. For this demand week, a 50.9% reduction in waiting times is realized with the developed 

approach. Since the time-dependent cleanings are scheduled each day, they can only be reduced 

by finishing before their starting time. On the other hand, the waiting times on machine 1 can 

be reduced by smart exploitation of processing-time differences and by efficient scheduling of 

changeovers.  

To validate the developed approach further, it is solved for two more demand weeks (weeks 2 

and 3) and also compared to the planned schedule for the case study. The results of all weeks 

are summarized in Table 4.4, which shows the stable performance of the developed approach. 

On average, a 39.1% reduction in waiting times is achieved. Also, one short time-dependent 

cleaning is saved in each week leading to a 2.9% reduction in time-dependent cleaning duration. 

This results in an average of 14.1% reduction in downtimes of machine 1 and a 3.7% makespan 

improvement. Significant cost reduction is thus realized by utilizing the developed approach, 

   
Figure 4.10: Form usage for week 1; (a) form type 1, (b) form type 2, and (c) form type 3. 

 
Figure 4.11: Comparison of waiting times on machine 1 for demand week 1. 
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because the plant can be closed on average five hours earlier each week and less must be paid 

in overtime salaries on weekends. 

4.5.5 Managerial insights based on sensitivity analyses 

Three numerical tests are analyzed in this section. In test 1, the restriction on form capacities is 

relaxed. The aim is to gain managerial insights on how much the limited form capacities impact 

the schedule. This may provide insight in the need for investments. In test 2, time-window-

based cleanings that are scheduled daily after 8 to 12 hours of production in the original settings 

must start daily at an exact time point (after 10 hours production). The aim is to analyze the 

value of providing the organizational flexibilities in scheduling cleanings and of employing a 

planning approach that is able to exploit it. In test 3, heterogeneous processing times on machine 

1 are replaced with homogenous processing times for all products. Here, the aim is to analyze, 

if management should strive to streamline the product portfolio such that the processing times 

become similar. The homogeneous processing times are calculated as weighted averages of the 

heterogeneous processing times (122.9 minutes for week 1, 122.8 minutes for week 2 and 122.2 

minutes for week 3). Tests 2 and 3 are conducted with relaxed form capacities and compared 

to the first test, such that restricted form capacities do not interfere with the results. In all tests, 

the runtime is set to 20 minutes for each group, as it is in Section 4.5.4. Yet group 3 is always 

solved to optimality in few seconds. Table 4.5 summarizes the main results. 

Comparing the results of test 1 with the original setting in which form capacities are restricted 

(see Table 4.4) shows an average makespan improvement of 0.8% and waiting time reduction 

of 15.6%. Figure 4.12 illustrates the form usage of test 1 for week 1. The results show that for 

relaxed form capacities, more forms are frequently required than the maximum capacity, i.e., 

above 100% usage. This is the case for all three form types. For example, many lots requiring 

form type 3 are produced sequentially on Tuesday reaching a usage of 144%. Furthermore, for 

relaxed form capacities, products are produced in fewer lots with larger lot sizes. The same 

Table 4.4: Comparison of the developed approach and the planned schedule for the case study. 

 Approach Week 1 Week 2 Week 3 

Optimality gap (%) 
(Group 1; Group 2; Group 3) 

Developed approach 2.4; 2.1; 0.0 2.5; 3.0; 0.0 3.5; 1.8; 0.0 

Case study - - - 

Makespan on machine 1 
(minutes) 

Developed approach 7,574.0 7,864.5 7,850.8 

Case study 7,968.3 8,146.2 8,061.0 

Downtimes    
Waiting on machine 1 
(minutes) 

Developed approach 340.0 370.5 450.4 

Case study 692.3 610.2 618.6 

Time-dependent cleanings  
on machine 1 (minutes) 

Developed approach 1,410.0 1,410.0 1,410.0 

Case study 1,452.0 1,452.0 1,452.0 
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pattern is realized for weeks 2 and 3. This shows that limited form capacities greatly impact the 

schedule. Therefore, the cheese dairy should analyze the possibilities of further investments. 

The results of test 2, show that by replacing the time-window-based cleaning with an exact 

cleaning, an average waiting time increase of 10.2% is realized compared to test 1. Average 

downtimes increase by 2.7%, because with rigid starting times there is no flexibility when 

scheduling cleanings. Providing flexibilities in scheduling cleanings is therefore of great value, 

if the planning method is able to exploit it. The importance of accurately identifying the setup 

and cleaning classes is also apparent. 

The results of test 3 show that homogenous processing times lead to a significant increase in 

makespan (1.7% on average) compared to heterogeneous processing times. Average waiting 

times increase by 41.9% and machine downtimes by 7.6%. This substantial increase in waiting 

times results, because smart exploitation of processing-time differences to schedule setups and 

cleanings is not possible. Figure 4.13 illustrates this with excerpts from the schedules for week 

Table 4.5: Results of numerical tests. 

 Test numbera Week 1 Week 2 Week 3 

Optimality gap (%) 
(Group 1; Group 2; Group 3) 

1 1.1; 2.1; 0.0 1.3; 2.2; 0.0 1.6; 2.0; 0.0 

2 1.7; 2.3; 0.0 1.7; 2.6; 0.0 2.5; 2.2; 0.0 

3 2.9; 2.7; 0.0 2.1; 2.5; 0.0 2.5; 2.7; 0.0 

Makespan on machine 1 
(minutes) 

1 7,518.2 7,852.5 7,728.3 

2 7,550.5 7,923.8 7,765.0 

3 7,686.4 7,915.2 7,889.2 

Downtimes     
Waiting on machine 1 
(minutes) 

1 284.2 358.5 327.9 

2 316.5 387.8 364.6 

3 452.4 421.2 488.8 

Time-dependent cleanings  
on machine 1 (minutes) 

1 1,410.0 1,410.0 1,410.0 

2 1,410.0 1,452.0 1,410.0 

3 1,410.0 1,410.0 1,410.0 

a  Test 1: Relaxed form capacities.  
   Test 2: Relaxed form capacities and exact scheduling of both time-dependent cleanings.  
   Test 3: Relaxed form capacities and homogeneous processing times. 

 

   
Figure 4.12: Form usage for week 1 with relaxed form capacity restriction; (a) form type 1, (b) form type 2, and (c) form type 3. 
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1 for both heterogeneous and homogeneous processing times. During this week, the same prod-

ucts are produced in the first two lots. A form change between these lots is required on machine 

2. The figure illustrates how the processing-time difference is exploited in the case of hetero-

geneous processing times to schedule the form change, which leads to less waiting time on 

machine 1. To summarize, a portfolio of products with heterogeneous processing times, as com-

pared to homogenous processing times, is advantageous. 

4.6 Conclusions 

Extensive requirements for setups and cleanings exist in the process industries. These result in 

prolonged machine downtimes, waste of material, and high resource consumption in terms of 

energy, water, and cleaning agents. Efficient scheduling of setups and cleanings is therefore 

fundamental. This paper develops a classification scheme that distinguishes three different clas-

ses of setups and cleanings: batch-, time-, and volume-dependent setups and cleanings. Each 

class is further differentiated based on general characteristics such as separability, substituta-

bility, reference point, and flexibility. In addition, setups and cleanings are characterized ac-

cording to the determinants of the setup and cleaning time and/or costs, distinguishing product 

dependency from batch-size dependency.  

The developed classification scheme facilitates the representation of setups and cleanings in the 

modeling of lot sizing and scheduling problems. Setups and cleanings are especially important 

in the process industries, in which flowshops are the prevalent type of production system. 

Therefore, a generic lot sizing and scheduling modeling approach for flowshops is developed 

based on the classification scheme. Besides precedence relationships and heterogeneous pro-

cessing times, all setup and cleaning classes with various characteristics as well as potential 

substitution relationships between different setups and cleanings are accurately represented in 

the model. 

 
Figure 4.13: Excerpts from schedules for week 1; (a) heterogeneous processing times and (b) homogeneous processing 

times.  
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The model is applied to a case study at a medium-sized German cheese dairy involving several 

classes of setups and cleanings. Sequence-dependent batch changeover and two different time-

dependent cleanings must be scheduled. The cheese types have heterogeneous processing times 

and are connected through precedence relationships. A no-wait condition must be employed 

between the machines, whereby lots are immediately loaded onto the next machine. In the 

cheese industry, a specific requirement concerns the use of different types of cheese forms. The 

forms are blocked for several hours after filling and represent a key bottleneck in the production 

of cheeses. The general model is adapted to account for the associated capacity considerations 

and the no-wait condition. These adaptations of the general model to the industry-specific re-

quirements can easily be done, because the solution approach is based on a MILP formulation 

in which algebraic expressions can be altered and added while maintaining computational effi-

ciency. 

The numerical results of the case study demonstrate the applicability and the advantages of the 

developed approach. The cheese dairy realizes significant cost reductions by utilizing the de-

veloped approach. An average reduction in machine downtime of 14.1% compared to the out-

come of their current manual lot sizing and scheduling process is achieved, which results in a 

3.7% makespan improvement. Each week, the cheese dairy can close the plant on average five 

hours earlier thereby significantly reducing overtime on weekends.  

The numerical results show that the model is able to exploit the flexibility of the production 

system and even benefit from its complexity. However, accurate setup and cleaning class iden-

tification is prerequisite. More specifically, not allowing for flexible starting times of cleaning 

operations may ease planning and execution but over-constrains the solution space. Our results 

indicate that rigid starting times lead to a 2.7% increase in machine downtimes. Similarly, ho-

mogeneous processing times may be easier to handle in manual scheduling. However, the ad-

ditional complexity that heterogeneity in processing times entails also goes along with the pos-

sibility to compensate for setup- and cleaning-time differences in the successive production 

stages. Our results show that neglecting heterogeneous processing times leads to a 7.6% in-

crease in machine downtimes.  

This paper developed a generic lot sizing and scheduling modeling approach for two-machine 

flowshops, which are common in large parts of the process industries. The model could easily 

be adapted such that more machines, and their specific setup and cleaning requirements, are 

included. Further research could also extend the numerical analyses to other industrial applica-

tions, because the developed approach provides adaptability to industry-specific features. While 
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the developed models could be solved with sufficiently small optimality gaps using standard 

solvers, other industries may require the development of more elaborate solution methodolo-

gies. Analyzing the computational effort for different combinations of constraints in the devel-

oped modeling approach, could also be a subject for future research. Future research could also 

explore the use of the developed classification scheme in the development of solution ap-

proaches for other production environments. An example might be the make-and-pack systems 

that are frequently found in the food sector and also require different types of cleanings. 

In addition to the economic impacts, setups and cleanings also have significant environmental 

impacts occasioned by material and resource consumption and the corresponding waste and 

emissions. In the case of the food industry, cleanings for instance contribute substantially to 

industrial food waste. Even though our approach efficiently utilizes setups and cleanings and 

thus implicitly reduces related environmental impacts, a more explicit consideration of all rel-

evant environmental impacts may be desirable. 
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Chapter 5. Summary and future research possibilities 

5.1 Summary of findings 

In this section, we summarize the conclusions that are drawn in the previous chapters and con-

clude by revisiting each research question raised in Section 1.4.  

RQ1: How can interdependencies between the selection of new product designs and processing 

technologies including the characteristic uncertainties be addressed? 

Chapter 2 focuses on the selection of new product designs and processing technologies in a 

supply chain context. We propose that a design space should first be derived, in which the 

interdependencies between products and processing technologies are mapped for different 

product specifications. This requires interdisciplinary research involving product designers, 

process engineers, and supply chain experts. As adoption of new products is hard to predict, the 

selection of product designs and processing technologies is complicated by demand uncertain-

ties. We argue that the key uncertainties for this decision problem are the demand volumes and 

the product specifications requested by the customers.  

We propose a novel decision model relying on two-stage stochastic programming for the plan-

ning problem. The model captures the link between the selection of product designs and the 

selection of processing technologies. Furthermore, the impact on the supply chain is captured. 

In the first stage of the model, the technologies that determine the set of feasible products are 

selected. Also, investment decision are made on the number of equipment units at each pro-

cessing stage. In the second stage of the model, decisions on the types of products to be pro-

duced and the production volumes of each type are made. Depending on how uncertainties 

resolve, the technologies selected in the first stage can therefore be operated differently to ob-

tain the product designs requested by the customers. 

We apply the approach to a real-life case on milk concentrates at a German dairy company. 

This case is well suited to exemplify the interdependencies between the selection of product 

designs and processing technologies. Specific characteristics of the milk concentrate products 

and of the dairy processes make the problem at hand complex. As a result of extensive interdis-

ciplinary collaboration with food process engineers, we first derive the design space that en-

compasses the feasible dairy technologies and the product designs for concentrates. The uncer-
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tain characteristics of the concentrate products are the demand volumes and the product speci-

fications related to the shelf life requirements of customers and the demand composition of dry-

matter content.  

Our analysis shows that it is profitable for the dairy company to invest in the processing tech-

nologies for milk concentrates. Hereby, the reverse osmosis concentration technology is se-

lected together with different heat treatments. The numerical tests demonstrate that the technol-

ogy selection strongly relies on the flexibility of the processing technologies to produce differ-

ent volumes of the resulting set of feasible products. To react to the uncertainties related to new 

product introduction, flexible technologies are therefore selected that can process the products 

into different product designs. The tests also provide managerial insights on how the optimal 

product and technology selection is affected by the demand uncertainties. Particularly, the ef-

fects when one of the uncertainties is no longer present are tested. It is shown that the selection 

is highly dependent on the demand uncertainties. Here, the uncertainty related to the shelf life 

requirements of customers has the largest impact and is therefore a key driver for the selection 

of products and technologies. Managers should therefore strive to obtain accurate demand in-

formation on product specifications related to the shelf life requirements of customers.  

RQ2: From an integrated economic and environmental perspective, should traditional milk 

powders be substituted with novel milk concentrates? Is the decision impacted by the value of 

shelf life? 

The case on milk powders and milk concentrates exemplifies the impact of shelf-life reduction 

due to sustainable processing. In Chapter 3, we develop a sustainability framework for the eval-

uation of these dairy products and the related dairy processing technologies. The framework 

includes an optimization model, a rolling horizon scheme, and a method for objective reduction. 

Since the differences in shelf life have their key impact at the tactical planning level we develop 

an optimization model at this aggregation level. The results of the tactical level, obtained over 

a historical period, are then used to draw strategic conclusions on the selection of the dairy 

products. As substituting traditional milk powders with novel and more environmental-friendly 

milk concentrates impacts both the economic and the environmental performance, the devel-

oped model is a multi-objective optimization model covering profit and all relevant environ-

mental indicators. The model is implemented in a rolling horizon scheme to deal with the fluc-

tuating prices of final products. It is important to capture the price fluctuations in the compari-

son of these products, as shelf-stable milk powders may be stored until a higher price level is 

reached, resulting in higher profits.   
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We apply the developed approach to a real-life case study for a German supply chain, based on 

detailed economic and environmental data. We first evaluate the substitution of powders with 

concentrates from an economic perspective. We compare the results obtained using historical 

data on product prices to the results obtained using Eurex futures as price predictors. It is shown 

that the product selection is highly influenced by the upcoming price developments. For both 

price scenarios, powders are favored over concentrates if prices are expected to rise. On the 

other hand, concentrates are selected in case of stable or falling prices. A product mix of pow-

ders and concentrates produced with combined concentration (i.e., reverse osmosis and subse-

quent evaporation) is selected for both price scenarios. We calculate the economic value of shelf 

life provided by powders, to evaluate whether the shelf life impacts the substitution decision. 

We show that powders offer a potential profit benefit of up to 34.5%. However, this economic 

value of shelf life is subject to a priori perfect price knowledge. The value of shelf life strongly 

depends on the accuracy of the price information, as it is reduced to only 1.1% if in the realistic 

case in which futures are used as price predictors. The economic value of shelf life is therefore 

not a strong argument against the substitution of powders by novel concentrates.  

We also evaluate the substitution of powders with concentrates from an environmental perspec-

tive by including the environmental objectives in the comparison. We show that only two ob-

jectives (i.e., profit and eutrophication potential) are sufficient to capture the trade-offs in the 

case. The minimization of the eutrophication potential results in a selection of concentrates that 

are concentrated with only evaporation. This results in a large profit reduction, which is unre-

alistic in practice. However, concentrates produced with combined concentration are selected 

for the minimization of all other environmental objectives, resulting in a much less pronounced 

profit impact. We are therefore able to determine a range of solutions that omit powders and 

perform well with regard to both profit and environment. As a result, we conclude that from an 

integrated economic and environmental perspective, traditional milk powders should be substi-

tuted with novel milk concentrates. 

RQ3: How can different setup and cleaning requirements and their interrelationships be sys-

tematically addressed in scheduling approaches? 

In Chapter 4 we suggest that different setup and cleaning requirements should first be classified, 

before they can be appropriately represented in scheduling approaches. We develop a novel 

scheme to support the classification. The scheme distinguishes three different classes: batch-, 

time-, and volume-dependent setups and cleanings. Also, different characteristics are identified 
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for each setup and cleaning class. Firstly, general characteristics include separability, substitut-

ability, reference point, and flexibility. Hereby, interrelationships between classes are repre-

sented through the substitutability characteristic. Secondly, changeover matrix characteristics 

with regard to time and/or costs include product dependency and batch-size dependency. Next, 

we develop a simultaneous lot sizing and scheduling model for flowshops, as flowshops are the 

prevalent type of production system in the process industries such as the food sector. The de-

veloped model shows how different setup and cleaning requirements can be systematically ad-

dressed in scheduling approaches based on the classification. It includes all setup and cleaning 

classes with different combinations of their characteristics. Interrelationships between classes 

are also accurately represented in the model. 

We apply the developed classification scheme and modeling approach to a case study on soft 

and blue cheese production at a German dairy company. The application shows how setup and 

cleaning requirements as well as their interrelationships can be addressed in a real-life setting 

with the developed classification scheme and optimization model. The company realizes sig-

nificant cost reductions by utilizing the developed approach as compared to their current manual 

lot sizing and scheduling process. Through an efficient scheduling of setups and cleanings, sig-

nificant reduction in machine downtimes are realized. 

We particularly compare flexible and fixed starting times of cleanings. The tests aim at analyz-

ing the value of providing the organizational flexibilities in scheduling cleanings and the value 

of employing an approach that has the ability to exploit it. The results show that flexible starting 

times significantly reduce makespan. This demonstrates the importance of accurately identify-

ing the cleaning class and the relevant characteristics through our classification scheme. We 

also carry out tests that aim at gaining managerial insights into whether the product portfolio 

should be streamlined, such that the processing times become homogeneous. Even though ho-

mogeneous processing times may be easier to handle in scheduling, our results show that ne-

glecting heterogeneous processing times leads to a large increase in machine downtimes. This 

is because with heterogeneous processing times it is possible to compensate for setup- and 

cleaning-time differences in the successive production stages. 

Overall, this thesis provides insights into the challenging planning of food supply chains. Alt-

hough the problems studied in this thesis are motivated by problems typically found in the food 

industry, other industries may also face similar problems. In large parts of the thesis, the devel-

oped methodologies are therefore applicable to a wide range of industries. Three different op-
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timization-based approaches are developed at different planning levels, i.e., a two-stage sto-

chastic programming model at the strategic level, a multi-objective optimization model at the 

tactical level, and a lot sizing and scheduling model at the operational level. The developed 

approaches are applied to real-life cases from the dairy industry, which are well suited to 

demonstrate the impact of food-specific product and processing characteristics. The approaches 

at the strategic and tactical planning levels are applied to a case study on dried dairy products. 

The approach at the strategic level captures uncertain demand characteristics, like requested 

product specifications and demand volumes, which are related to the introduction of new prod-

ucts and technologies. The approach at the tactical level also accounts for uncertainty, but with 

a focus on uncertain final product prices. Here, special attention is given to analyzing the value 

of shelf life. Finally, the approach at the operational level is applied to a case study on cheese 

production. Here, special attention is given to analyzing setups and cleanings. 

5.2 Future research possibilities 

In the previous chapters, suggestions have already been proposed for future research possibili-

ties. In this section, some more general suggestions are outlined.  

This thesis investigates the impact of several food-specific product and processing characteris-

tics. However, analyzing the impact of food safety was not within the scope of this thesis. Safety 

is also an important food-specific characteristic. In the food supply chain, it must be guaranteed 

that products are processed, handled, and stored in ways that prevent illnesses from the con-

sumption of the products. In recent years, some serious food scandals were realized that resulted 

in a large financial impact for the food producers and a serious health impact for the consumers. 

Considering the importance of food safety, there is a great research potential in integrating op-

timization of appropriate safety measures with the optimization of other supply chain operations 

from field to fork. 

Another food-specific characteristic that has not been analyzed in this thesis is raw material 

variability. Raw materials are especially important in the food industry, because many different 

products are usually produced from only a few types of raw materials and the raw material costs 

typically constitute a large proportion of the total costs of a product. Raw materials are obtained 

from agricultural and farming industries. Therefore, the quality of the raw materials is often 

subject to variability. This variability can have a large impact on the planning and scheduling 

of the production. Accounting for raw material variability in production planning models thus 

makes an interesting topic for future research. 
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Future research could also focus on developing further methodologies for evaluating the impact 

of shelf life on sustainability objectives. Hereby, it would be of interest to capture the decreasing 

value of products throughout their lifetime, instead of only penalizing for expired products that 

must be thrown out. Freshness could for example be considered as an additional objective in a 

multi-objective optimization model. Real-life applications of models that manage the product 

freshness can contribute to the fight against food waste, which is one of the key challenges in 

the food industry.  

Further research in food supply chains based on real-life case studies is also required. For all 

three planning approaches developed in this thesis, it would be of interest to apply them also to 

other real-life case studies. The focus could, for instance, be on different types of food products 

with shorter shelf life or on production systems with different setup and cleaning requirements. 

Hereby, detailed data on the food-specific product and processing characteristics must be elic-

ited.  

Due to an increasing demand for sustainable products and changing dietary preferences of con-

sumers, new product introductions are common in the food industry. Chapter 2 of this thesis 

shows that for the selection of new products it is important to capture the interdependencies 

between the product designs and the processing technologies. However, in previous research 

on product and technology selection it is always assumed that the product is given. This area 

therefore deserves further attention, for example through the development of different types of 

decision models. Furthermore, future research should focus on capturing stochasticity in the 

developed food supply chain approaches. Uncertainties are inherently associated with food sup-

ply chains, for example with regard to the supply of raw materials, the processing parameters, 

and the demand specifications of the products. 

In future years, the manufacturing sector will continue to transform due to an increasing digit-

ization in economy and society. Through modern technologies, data sets are growing rapidly in 

both size and complexity. To stay competitive, food companies must improve their data man-

agement and take advantage of big data. Therefore, supply chain experts must continue to find 

ways to analyze and integrate available data in planning tools to support data-driven decisions. 

Industry 4.0, or the fourth industrial revolution, refers to a development in the manufacturing 

sector in which production technologies are combined with state-of-the-art communication and 

information technologies. These technologies include, for example, cyber-physical systems, 

cloud computing, cognitive computing, and big data analytics. In Industry 4.0, production and 

logistics processes will be intelligently and digitally connected, providing real-time information 
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on the whole supply chain. This will result in improved efficiency and flexibility. The food 

industry is highly innovative with frequent introduction of new technologies. It is therefore 

likely that food companies will eagerly embrace the innovations related to Industry 4.0. The 

food industry can profit from Industry 4.0 in many ways, e.g., in tracking and tracing products, 

in monitoring and optimizing resource consumption and environmental impacts, and in intelli-

gent temperature control of sensitive processing tasks. Also, Industry 4.0 can support setup, 

cleaning, and maintenance activities through increasingly autonomous machines that manage 

their own requirements. Industry 4.0 therefore results in many interesting research topics for 

food supply chain planners.  
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Appendix A – Abbreviations 

AP  Acidification potential 

CED  Cumulative energy demand  

CIP  Cleaning-in-place 

Combi  Reverse osmosis and subsequent evaporation 

DMC Dry-matter content 

DRY  Spray drying 

EP  Eutrophication potential 

ESL  Extended shelf life 

EV  Evaporation 

EVPI  Expected value of perfect information  

GWP  Global warming potential 

HHT  High-heat treatment 

ISO International Organization for Standardization 

LCA  Life cycle assessment 

MI(N)LP  Mixed integer (non) linear programming 

Mo-MI(N)LP  Multi-objective mixed integer (non) linear programming 

MOSS Minimum objective subset 

MSD  Multi-stage drying 

OR  Operations research 

Past  Pasteurization 

PSE  Process systems engineering 

RO  Reverse osmosis 

SMED Single minute exchange of die 

UHT  Ultra-high temperature 

VSS  Value of stochastic solution 
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Appendix B – Notation 

Notation for Chapter 2 

Indices and index sets 

𝑖 ∈ 𝐼 producer 

𝑗 ∈ 𝐽 processing plant 

𝑘 ∈ 𝐾 customer 

𝑢 ∈ 𝑈 resource 

𝑛 ∈ 𝑁 technology path 

𝑚 ∈ 𝑀 processing stage 

𝑝 ∈ 𝑃 product 

𝑝 ∈ 𝑡𝑒𝑐ℎ(𝑛) product belonging to technology path n as determined in design space 

𝑚’ ∈ 𝑠𝑢𝑐 (𝑚) stage that is immediate successor of stage m for product p 

𝑜 ∈ 𝑂 product specification 

𝑡 ∈ 𝑇 time period 

𝑠 ∈ 𝑆 scenario 

Parameters 

𝛾  probability of scenario s 

𝜙 discount rate 

𝜁  supply of producer i in period t 

𝜀  distance between producer i and plant j 

𝜀  distance between plant j and customer k 

𝜎  waste fraction of raw material transported from producer i to plant j  

𝜎  waste fraction at stage m for product p 

𝜇  fraction of unconverted product at stage m for product p 

𝛼  usage rate of resource u during processing at stage m (e.g., kW, liters/hour) 

𝛼  consumption of resource u over setup/cleaning cycle at stage m  

(e.g., kWh, liters) 

𝜂  useful lifetime of equipment unit at stage m (in time periods) 

𝜅  number of equipment units in place at stage m in plant j 

𝜃  capacity per equipment unit at stage m for incoming flow of product p  

(e.g., liters/hour) 

𝜏 number of time units in a time period (e.g., number of hours) 

𝜆  runtime at stage m for product p  

𝜉  setup/cleaning time at stage m  

𝛿  value for product specification o of product p  
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𝛿  minimum value for product specification o requested by customer k for  

scenario s 

𝛿  maximum value for product specification o requested by customer k for  

scenario s 

𝜑  demand volumes for customer k in period t for scenario s 

𝜌  density of product p 

𝜌  density requested by customer k for scenario s (depending on dry-matter con-

tent) 

𝐵 , 𝐵   sufficiently large positive values 

𝑟  price of product p sold to customer k in period t 

𝑟  price of product p sold to secondary market in period t  

𝑟  price of separated stream from stage m in period t  

𝑐  costs of raw material supplied from producer i in period t 

𝑐  costs of raw material supplied from spot market in period t 

𝑐  unit transportation costs of raw material 

𝑐  unit transportation costs of product p 

𝑐  unit costs of resource u 

𝑐  investment costs of technology path n 

𝑐  investment costs per equipment unit at stage m 

𝑐  maintenance costs of equipment unit at stage m in period t 

𝑣  scrap value of equipment unit at stage m 

Decision variables 

𝐺  =1 if technology path n is selected in plant j (0, otherwise) 

𝐻  number of invested equipment units at stage m in plant j 

𝑅  first stage revenues 

𝐶  first stage costs 

𝐸  =1 if product p is selected in plant j for scenario s (0, otherwise) 

𝐹  flow quantity of raw material from producer i to plant j in period t for  

scenario s 

𝐿  amount of raw material procured from spot market for plant j in period t for 

scenario s 

𝑍  flow into stage m of process stream for product p in plant j in period t for  

scenario s 

𝑍  flow out of stage m of process stream for product p in plant j in period t for 

scenario s 

𝑍  flow out of stage m of separated stream from product p in plant j in period t for 

scenario s 
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𝑍  flow of resource u into stage m for processing product p in plant j in period t 

for scenario s 

𝑋  production quantity of product p in plant j in period t for scenario s 

W  quantity of product p sold to secondary market in plant j in period t for  

scenario s 

𝑄  flow quantity of product p from plant j to customer k in period t for scenario s 

𝐷  total shipment of product p to customer k in period t for scenario s 

𝑅  second stage revenues for scenario s 

𝐶  second stage costs for scenario s 

Notation for Chapter 3 

Indices and index sets 

𝑝 ∈ 𝑃 product 

𝑔 ∈ 𝐺  product type  

𝑝’ ∈ 𝑃(g) product belonging to product type g 

ℎ ∈ 𝐻  storage condition 

𝑝’’ ∈ 𝑃(ℎ) product stored in storage condition h 

𝑡 ∈ 𝑇  time period 

𝑡’ ∈ 𝑇  production period 

𝑒 ∈ 𝐸 environmental indicator 

𝑚 ∈ 𝑀 objective 

𝑠 ∈ 𝑆 solution 

Parameters 

𝜁  contracted supply of raw milk in period t [kg raw milk] 

𝜎  waste in raw milk transportation [%] 

𝜊  raw factor – amount of raw milk required for 1 kg DMC of product p  

[kg raw milk] 

𝜋  volume of product p [m3/kg DMC] 

𝜈  shelf life of product p [periods] 

𝛽  maximum fraction for production of product type g per period [%] 

𝜃  storage capacity of storage condition h [m3] 

𝜀 transportation distance of final products [km] 

𝜎  waste in reconstitution for product p [%] 

𝑟  product price in period t [costs/kg DMC] 

𝑐  raw milk costs (including transportation) in period t [costs/kg raw milk] 

𝑐  production costs (including packaging material) of product p [costs/kg DMC] 

𝑐  inventory costs for product p per period [costs/(kg DMC ∙ period)] 

𝑐  transportation costs for product p [costs/(kg DMC ∙ km)] 
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𝑖  raw milk impact (including transportation) of environmental indicator e  

[impact/kg raw milk] 

𝑖  production impact (including packaging material) of product p of environmen-

tal indicator e [impact/kg DMC] 

𝑖  inventory impact of product p per period of environmental indicator e  

[impact/(kg DMC ∙ period)] 

𝑖  transportation impact of product p of environmental indicator e  

[impact/(kg DMC ∙ km)] 

𝛾  value of objective m for solution s 

𝜔 weight of profit objective [%] 

Decision variables 

𝑋 ’ quantity of product p produced in period t’ [kg DMC] 

𝐼 ’  inventory of product p produced in period t’ at the end of period t (t’≤t)  

[kg DMC] 

𝑄 ’  quantity of product p produced in period t’ and shipped in period t (t’≤t)  

[kg DMC] 

𝐷  demand fulfilled in period t [kg DMC] 

𝛿 ’   difference between the value of objective m in solutions s’ and s  

𝑌  =1 if objective m is removed (0, otherwise) 

𝑊 ’  =1 if s’ dominates s in the reduced space (0, otherwise) 

Notation for Chapter 4 

Indices and index sets 

𝑝 ∈ 𝑃 product  

𝑙 ∈ 𝐿 lot  

𝑙 ∈ 𝐿(𝑝) lot belonging to product p 

𝑎 ∈ 𝐴  time-dependent changeover 

𝑏 ∈ 𝐵  volume-dependent changeover 

𝑓 ∈ 𝐹 form type  

𝑡 ∈ 𝑇  time period 

Parameters 

𝛼  demand for product p [units] 

𝛽  minimum lot size of lot l [units] 

𝛾  due date of lot l [time units] 

𝛿  = 1 if lot l must be produced after lot l’ (0, otherwise) 

𝜀 loading duration of one unit [time units] 

𝜁  processing time of lot l on machine 1 [time units] 

𝜂 lowest processing time of all lots on machine 1 [time units] 
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𝜃 ’  duration of sequence-dependent batch changeover between lot l and lot l’  

(l precedes l’) [time units] 

𝜅 duration of time-dependent changeover [time units] 

𝜆  earliest starting time of time-dependent changeover a—lower bound  

[time units] 

𝜆  latest starting time of time-dependent changeover a—upper bound [time units] 

𝜇 minimum number of time-dependent changeovers [changeovers] 

𝜈 changeover interval for time-dependent changeovers [time units] 

𝜉 duration of volume-dependent changeover [time units] 

𝜊  earliest starting of volume-dependent changeover b—lower bound [units] 

𝜊  latest starting of volume-dependent changeover b—upper bound [units] 

𝜋 minimum number of volume-dependent changeovers [changeovers] 

𝜌 changeover interval for volume-dependent changeovers [units] 

𝜎  batch-size coefficient 

𝜏 length of discrete time period [time units] 

𝜐  number of forms filled from one tub for lot l [number of forms] 

𝜑  resting and brining time of lot l on machine 2, and separable form cleaning 

time [periods] 

𝜒  =1 if lot l requires form type f (0, otherwise) 

𝜓  number of available forms of form type f —capacity [number of forms] 

𝑀 , 𝑀 , 𝑀  sufficiently large positive values 

Decision variables 

𝐶   makespan [time units] 

𝑋  amount produced in lot l [units] 

𝑆1  starting time of loading lot l on machine 1 [time units] 

𝐶1  completion time of loading lot l on machine 1 [time units] 

𝑆2  starting time of loading lot l on machine 2 [time units] 

𝐶2  completion time of loading lot l on machine 2 [time units] 

𝐸  duration of batch-dependent changeover before lot l [time units] 

𝑁  starting time of time-dependent changeover a [time units] 

𝑄  cumulated production amount after finishing lot l [units] 

𝑌 ’  = 1 if lot l processed before lot l’ (0, otherwise) 

𝐾  = 1 if lot l scheduled immediately before time-dependent changeover a  

(0, otherwise) 

𝐻  = 1 if lot l scheduled before exact time-dependent changeover a (0, otherwise) 

𝑂  = 1 if time-dependent changeover a is scheduled last (0, otherwise) 

𝑉  = 1 if lot l scheduled immediately before volume-dependent changeover b  

(0, otherwise) 

𝐺  number of filled forms for lot l in period t [number of forms] 

𝑅  number of released forms for lot l in period t [number of forms] 
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𝐼  inventory of form type f in period t [number of forms] 

𝐽  = 1 if filling of forms for lot l carried out in period t (0, otherwise) 

𝑈  consumption period of forms for lot l [period] 




