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Abstract

Making sense of visual data in raw pixel representation is a difficult task in machine learn-
ing because of the complex ways underlying factors interact to create images. Applying
two methods for representation learning, the stacked convolutional autoencoder (SCA)
and the stacked denoising autoencoder (SDA), however, image data can be encoded to
new representations.
After training both methods on digit (MNIST) and data from laser welding videos,

the image features produced by SCA improve on their SDA counterparts in two desirable
properties. Firstly, SCA yield image features that are more useful for a specific purpose,
namely the image classification with a subsequent SVM classifier. Secondly, SCA features
exhibit a higher degree of invariance to input transformations than those representations
generated by an SDA.
The superior performance of SCA over SDA image representations is likely a conse-

quence of SCA preserving and exploiting the spatial structure of the input data, while
also coming with pooling layers which by design lead to a degree of invariance.

3





Acknowledgment

I would like to use this opportunity to thank my supervisors, Johannes Günther and Sunil
R. Tatavarty, both for their sheer endless patience and their much needed support in
theoretical and implementation concerns.
Thanks are also due to my fellow students, specifically Bernd Prößner, Christoph

Passenberg and Stefan Röhrl, for all the stimulating discussions over 242 cups of coffee
and their brainstorming abilities, rescuing me out of countless dead ends.

5





Contents

1 Introduction 9
1.1 Topic Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 State of the Art 13
2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Neural Network Training . . . . . . . . . . . . . . . . . . . . . 18

2.2 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Approach 21
3.1 Experimental Plan Overview . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Data Collection and Preprocessing . . . . . . . . . . . . . . . . 21
3.2.2 Dataset Segmentation . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Autoencoding Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 SDA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 SCA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Autoencoder Training Strategy . . . . . . . . . . . . . . . . . . 30

4 Results and Discussion 31
4.1 Reconstruction Performance . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Autoencoding Process Analysis . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Classification Performance . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Feature Robustness . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Impact of Additional Max Pooling . . . . . . . . . . . . . . . . 43

5 Conclusion 45

References 47

7





1 Introduction

Understanding visual data is a difficult task in machine learning or, to be more exact, in
computer vision. Real world environments come with a large number of factors such as
light sources, object shapes and object surface properties that interact within a complex
causal web to produce image data in its raw pixel representation [1]. Humans are
capable of processing images of high resolution in rapid sequencial frequency, extracting
very abstract information from their surroundings. Current machine learning methods,
on the other hand, require vast learning capacity and prior knowledge [2] in order to
achieve remotely comparable successes on raw image data.
The stacked convolutional autoencoder (SCA), introduced by Masci et al. [3], is a

representation learning method that can unsupervisedly encode data into a new repre-
sentation while exploiting its spatial relations. Comparing SCA with the widely known
stacked denoising autoencoder (SDA) method, this work aims to evaluate the usefulness
of their new image data representations.
After both autoencoders have compressed image data into small sets of features, the

features are examined with respect to information loss, interpretability for image classifi-
cation by a support vector machine as well as robustness to input data transformations.

1.1 Topic Relevance
Compared to other sensory information, image data carries a great amount of informa-
tion about the world – not without reason have, throughout evolution, many different
organisms developed photoreceptive systems to detect and interpret photons meeting
their paths [4]. Visual data can be used to infer geometrical and location information
on surrounding objects, the materials they consist of and, given video data, their in-
teractions with one another, such as relative velocity. For manmade machines such
kinds of capabilities could be of “extremely high value” [5]. Obvious use cases in the
field of robotics spring to mind, but because of the enormous amount of information
deducable from the input, sheer limitless applications are imaginable – current examples
being optical character recognition, video surveillance, autonomous driving or product
quality assurance [6]. The quite general field of computer vision includes a multitude
of subareas, all of which come with an array of individual solutions to their respective
problems. While very specific recognition tasks such as optical character recognition
can be solved with relative ease, the "most challenging version of recognition is general
category (or class) recognition" [6].
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1 Introduction

1.2 Related Work
The most prominent current advances in area of image classification have been docu-
mented in the results on the annual ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), which “has become the standard benchmark for large-scale object recogni-
tion” [7]. Recent years have shown continuous improvements, with the 2014 leading
algorithm’s classification error of 6.8% being the first one coming close to but not yet
surpassing what one can expect of a human annotator – 5.1% [7].

Figure 1.1: Steadily decreasing image classification error in the yearly ILSVRC challenge, sur-
passing human performance of 5.10% in 2015.

The successes of those recent ILSVRC advances have been made possible by the
winning submission of 2012, Krizhevsky et al. [2], which introduced an innovation that
“by 2014 all of the top contestants were relying heavily on” [2]: large scale convolutional
neural networks (CNNs). Originally inspired by the human visual system, CNNs have
today come into widespread use for almost all image processing and object recognition
tasks. By applying identical filter patches throughout the whole input and subsampling of
the so generated signals they achieve translation invariance which is particularly beneficial
to imaging applications. Additionally, they are known as being able to be trained on
many stacked layers, ultimately being able to make very high level interpretations of the
raw low level data presented to them. The latest state of the art and 2015 ILSVRC
image classification winner introduced a way to optimize enormous 152 layer networks
to achieve its record breaking 3.57% test error [8].
Prior to 2012, however, first rate image processing solutions frequently employed a two

step approach [9]. At first every raw image, which usually is quite high in its resolution
or dimensionality, is reduced to a set of features – with significantly less dimensions.
Having turned all images into sets of features, in a second step a classifier such as a
Support Vector Machine (SVM) can be trained to link specific feature combinations to
hypotheses on the original image, like an image class. Figure 2 exemplifies – in simplified
manner – how these steps could work. The feature extraction method identifies features
such as “stem”, “leave” or “blossom” within an original image. A followup computer
algorithm is then able to process this feature vector, for instance to determine that the
image class must have been of a flower.
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1.2 Related Work

Figure 1.2: Raw images are reduced to sets of features, which can then be used to choose a
prediction for their class label.

The transformation of the data into another representation is necessary since tradi-
tional classifiers cannot handle the large amount of information coming with raw, high-
dimensional image data. They could, for instance, be prone to overfitting on irrelevant
aspects of the data or simply require too high amounts of computational power to train
models on the vast amounts of data. Feature extraction techniques have been developed
for many kinds of highdimensional data, such as music, visual, and text [10, 11, 12].
They are usually designed in supervised manner by hand, and aim to obtain a specific
piece of information from the raw data with every feature.
To advance the state of the art towards more intelligent and autonomous artificial

systems, however, it might be beneficial to develop systems that can transform data
into other representations unsupervisedly, reducing the amount of human input and
thus allowing to scale systems to large data volumes.
An example for such an algorithm is the principal component analysis (PCA), which

is capable of transforming images into vectors of linearly independent features through
factorization [11]. The design of the principal components is only led by the data itself
and does not require human input for image labeling - the algorithm merely stives to
pack as much information as possible into a given number of principal components,
condition to them being orthogonal to one another. While PCA have been frequently
used for feature extraction purposes, their capabilities are limited as they are not able
to perform nonlinear transformations. Desirable abstract representations of image data
are, however, "generally highly non-linear functions of the raw input" [1].
Another unsupervised approach to feature extraction remedies this limitation - au-
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toencoders (AE) can be seen as a "nonlinear generalization of PCA" [13]. Similarly to
PCA, their new feature representation is not guided by human design, but by an error
function that aims to maximize the recreatability of the original data from the given
number of features. This is achieved by first applying an encoding and then a decoding
neural network and comparing the original with the recreated data. Applying multiple
of these units leads to stacked autoencoders (SAE).
Masci et al. [3] combine CNNs with SAEs to construct stacked convolutional autoen-

coders (SCA) for feature extraction. The approach promises to include CNN character-
istics, which currently significantly outperform all other solutions in the realm of image
processing. Additionally, however, SCA can be trained in unsupervised fashion and then
be used for either extracting features or initializing the parameters of a traditional CNN.

1.3 Scope
While SCE have been introduced and applied to the standard datasets MNIST and
CIFAR10 [3], they have primarily been examined as a means to initialize traditional
CNNs, not as a tool for unsupervised feature extraction. By comparing features learnt
by a SDA with those of a SCA, it should be investigated whether the latter, novel
feature extraction method may be preferable for certain applications, particularly in the
domain of image data. Considering the two different architectures, one could expect
SCA to come with benefits such as more tolerance of variation in the input data (e.g.
translational, rotational and scale variance). The methods at hand are to be examined
with two quite different datasets. On the one hand, the MNIST digit recognition dataset
provides well curated images that facilitate standardized comparison with other research
approaches. On the other hand, a dataset of labeled high frequency image data of laser
welding processes is to be analyzed and will allow for insights into the requirements of
a real world application.
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2 State of the Art

The following chapter provides an overview over the central concepts and technolo-
gies the subsequent sections build on. It is intended to introduce and solidify a basic
understanding of the terminoloy and theoretical background.

2.1 Neural Networks
Determined to “understand the capability of higher organisms for perceptual recognition,
generalization, recall, and thinking” [14], psychologists have examined the physiological
setup of biological information processing in the brain. Investigating the inner workings of
the neural cell networks that have been found, F. Rosenblatt introduced the Perceptron,
“a probabilistic model for information storage and organization in the brain” [14].
A simple perceptron is a neural node that has a series of input and output connections.

It stores a weight value w for every single of its i incoming connections as well as one
bias value b. Making use of those parameters, it can compute a single output value

y � ϕ

�
i̧

j�0
pwj � xjq � b

�
(2.1)

for any given input vector x of size i. Specifically, the perceptron computes its output
value y by summing up over all weighted inputs, adding the bias and then applying a
so called activation function ϕ. The output value y is then passed on to all output
channels, where it may become the input xj for another perceptron. [15].

2.1.1 MLP
While a single basic Perceptron is only capable of learning linearly seperable patterns
[15], combining multiple ones into bigger networks allows for the approximation of more
complex relationships. The most prominent example of these larger networks is the
multi layer perceptron (MLP), which comes with a set of input neurons, a set of output
neurons, and a range of so-called hidden neurons inbetween. In this feedforward model
every neuron is receiving inputs from all neurons of the preceding layer, performing its
computation and sending the result on towards all neurons of the following layer.
Figure 2.1 shows an exemplary MLP schematic. Data can be fed to the red input

neurons, is then being processed by the blue hidden neurons, and finally passed on to
the green output nodes. While the number of neurons and hidden neuron layers can be

13



2 State of the Art

Figure 2.1: Schematic of a feedforward MLP neural network.

chosen freely when the network is set up, the direction of the dataflow will always be
unidirectional, from input neurons to output neurons. In their theoretical analyses Hornik
[16] and Cybenco [17] showed that if MLP networks are constructed with enough hidden
units, they are capable of “approximating any Borel measurable function” [16], which
has since fanned significant interest in artificial neural network research. Particularly
concerning modern adaptation and extensions of the basic MLP architecture, however,
“the theory of deep networks still poses many questions” [18].

2.1.2 Convolutional Networks
Convolutional Neural Networks (CNN) are specific type of neural network inspired by
receptive fields found in the animal visual cortex [19, 11]. In the biological visual nervous
system, neuron layers are not fully connected with all neurons in the preceding layer like
in an MLP, but each focus on specific regions of the visual field [20, 11]. Reducing the
number of connections inbetween neuron layers does also provide benefits to an artificial
network’s training and has led machine learning to surpass human capabilities in some
areas of image processing [7]. CNNs achieve this reduced connectivity with two core
building blocks – convolutional and pooling layers. In practice, current architectures
usually alternate between both layertypes and then conclude in a set of standard fully
connected MLP layers.
Every convolutional layer comes with a set of filters, usually matrices with the same

number of dimensions as the input but in some dimensions of smaller magnitude. An
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2.1 Neural Networks

example could be an input image of 10 by 10 pixels that is convolved with three filters of
2 by 2. Figure 2.2 shows how a signal is processed by such a convolutional layer. Every
filter moves through the whole original black and white image with a stride of 2 pixels
and computes a convolution value at those positions. Putting these values together,
every filter creates one activation or feature map. If the filter’s stride length is greater
than 1, every resulting activation map’s size will usually be smaller than the input im-
age’s as depicted in 2.2. Some convolutional layer architectures may, however, decrease
stride length to 1 or apply zero padding around the input image before performing the
convolution to prevent the activation map dimensions from shrinking or, for very rare
applications, even increase them.

Figure 2.2: A 10x10 image is being processed by three 2x2 convolutional filters at a stride of 2.

Every convolution step essentially does a comparison between a subsection of the
original image and a convolutional filter by multiplying pixels at the same location and
summing up over those values. In effect, the activation maps are therefore pointing at
the locations that resemble their feature map pattern within the original image.

Figure 2.3: A 6x6 image is processed by 2x2 max pooling at a stride 2.

The second type of specialized layer, the pooling or subsampling layer, is depicted in
figure 2.3. Pooling over a series of values can be done by aggregation methods such as
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2 State of the Art

summing up or averaging, but in practice “max pooling”, which means taking only the
maximum of a a set of values, finds the most application. Including pooling layers has
several benefits to the whole artificial neural network.
First and foremost, convolutional layers often raise the input’s size by substantially

expanding the number of filter maps while not to an equal extent decreasing the image
dimensions through stride. As this would make the network more computationally in-
tensive and prone to overfitting, having pooling conveniently allows to greatly reduce it
again and keep it manageable. Secondly, particularly max pooling introduces a degree of
invariance towards small input shifts – it does not matter whether a singal spike moves
within a pooling window, since it will always result in the same value after aggregation.

Figure 2.4: Schematic of the "AlexNet" architecture introduced by Krizhevsky et al. [2].

The breakthrough architecture for convolutional neural networks, bringing CNNs into
the spotlight of the computer vision, is depicted in Figure 2.4. Krizhevsky et al. [2]
achieved an impressive image classification performance by combining five convolutional,
three max pooling and three fully connected dense layers. One can plainly see the data
cubes increase in width (48 - 128 - 192 - 192 - 128) in most steps, which is due to
the convolution layers’ increasing number of convolutional filters. On the other hand,
the image width and height is greatly reduced (224*224 - 55*55 - 27*27 - 13*13),
which is due to big strides in the max pooling and first convolutional layer. With a
total of 650,000 neurons and 60 million parameters [2], however, the innovation was
made possible not only by employing recent discoveries in CNN design and training
methods, but also through advances in computational power and efficient algorithm
implementations.
Following the "AlexNet" success, a multitude of advances has recently been made in

all these areas, network architecture design, efficient training algorithms and the speedup
of the training hardware itself. But while some of the recent state of the art solutions
appear radically different [18, 8], they still rest upon the same basic building blocks -
convolutional, pooling and fully connected layers. In essence, all CNNs are a adaptation
of standard MLPs for image applications, but are advantageous since they come with
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2.1 Neural Networks

“much fewer connections and parameters, are easier to train, while their theoretically-
best performance is likely to be only slightly worse” [2].

2.1.3 Autoencoders
Autoencoding neural networks, or autoencoders, are in their base components quite
similar to the MLP and CNN architectures discussed in the previous sections. Their
main differing characteristic, however, lies with their set of output nodes which typically
is of the exact same dimensionality as the input nodes. As a result, the output data
can quite easily be compared to the input data, providing a training goal that does not
rely on labels manually prepared by humans but only on the training data itself. This
allows for unsupervised optimization of the full neural network, which in contrast to the
usual supervised methods does not require additional input, enabling the exploration of
unlabeled data [13].

Figure 2.5: Schematic of an autoencoding architecture. While both input and output nodes
(red) are of the same dimensionality, an encoder applies some type of neural network to reduce
the input to a different internal bottleneck dimensionality (green). A decoder then reverts this
process to arrive back at the original input shape.

While the output usually is of the same dimensionality as the input, an autoencoder’s
hidden layers are not. As seen in figure 2.5, the whole architecture can be divided into
two subnetworks - an encoder that maps the input nodes to a new representation called
the bottleneck, and a decoder which maps the bottleneck layer output back to the
original dimensionality. While both parts are required to train the network, the whole
decoding part is later dropped and only the encoder is used for transforming input data
into a new representation. While MLP-style encoding and decoding networks are very
common [21, 13, 22], they are not a necessity [1] and a combination of pooling and
convolutional neural network elements could potentially be used in an autoencoder.
Summing up, autoencoders are a type of neural network that does not train for the
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2 State of the Art

prediction of a specific class label, but attempts to simply maintain all information
that had originally been represented in the input data. They are constructed in such
a fashion that their decoding part can be dropped after training, resulting in only an
encoding neural network that transfoms data from its original into a new representation
of the bottleneck’s dimensionality.

2.1.4 Neural Network Training
As the neural network architectures discussed in the previous chapters almost always
come with large numbers of bias and weight variables for neurons and their connections,
tools are required to find suitable values for them.
Most state of the art approaches first apply a random initialization scheme to find
appropriate initial values for all parameters. A popular strategy, introduced by Glorot
and Bengio [23], samples them from uniform distributions whose bounds are dependent
on current and preceeding neural network layer sizes.
Following the initialization, the values have to be fine-tuned so the neural network will
produce not random but desired output. To achieve this, scholars typically use error
backpropagation in combination with a form of gradient descent, which is an iterative
optimization algorithm that utilizes the differentiation of the whole neural network’s
function with respect to those parameters that have to be tweaked [24, 25]. The output
nodes of networks usually represent some definitive piece of information, such as one
specific class in the case of most supervisedly trained neural networks - or the input data
reconstruction for the case of unsupervisedly trained autoencoders. Backpropagation
essentially nudges the weight and bias values into a specifc desired direction, driving the
network’s current outputs closer to their ideal - the true label or the true input data.

2.2 SVM
Support Vector Machines (SVMs) are a type of supervisedly trained classifier invented by
Vladimir N. Vapnik in 1963 and introduced in its current form in 1992 and 1995 [26, 27].
SVMs classify labeled data vectors by first mapping the data into a highdimensional
space, in which it is possible to then reasonably well seperate the data points into their
classes with linear decision hyperplanes. While the optimization algorithms do strive to
find a mapping into a space where all data is linearly seperable, so called soft margin
hyperplanes have been introduced for cases "where the training data cannot be separated
without error" [27], which also benefits classifier generalizability. Although SVMs in their
basic form can only be used to classify data into one of two classes, multi-label problems
can also be dealt with [28], for instance by training a series of SVMs - one for every
class.
SVMs require the user to specify a series of hyperparameters. This includes the soft

margin constant C, which sets the degree of penalty for data points violating the decision
hyperplane. Large values of C will therefore force the SVM to find more closely fitting
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2.2 SVM

models. Another hyperparameter consists in the choice of kernel that maps the original
data representation in its new space - popular alternatives include linear, polynomial
and rbf kernels. Some of these kernels come with additional hyperparameters which
have to be taken into consideration. The standard method to identify suitable SVM
hyperparameters is grid search, in which several parameter options "are generally chosen
on a logarithmic scale and classifier accuracy is estimated for each point on the grid"
[29].
Presuming the adherence to the aforementioned advice, further improvements in SVM

classification accuracy can primarily be obtained by improving the data or feature rep-
resentation - one must find "features that make the classification task easy" [29].
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3 Approach

Having established and defined the basic concepts, this section outlines the course of
action for the experiments aimed at answering the theses.

3.1 Experimental Plan Overview
While the benchmark MNIST dataset consists of processed images in a standardized
train- and test split, the welding data comes with several folders of raw image and label
files. After thorough examination, initial focus therefore lies in preparing and structuring
the welding data.
In a next step, several architectures are trained and tested for both SDA and SCA.

Training hyperparameters as well as the architectures are adapted and optimized on
the welding dataset, spending 14 working days on each autoencoder. Concluding this
parameter search, the final autoencoding models are trained using the same computer
setup and spending an equal time of about 50 hours on each model.
Finally, the quality of both autoencoders’ features is assessed on both datasets. The

trained SDA and SCA encoders are used to extract features from input images, which
can then be evaluated in respect to their recreation error, predictive power and resiliance
to input variation.

3.2 Dataset
3.2.1 Data Collection and Preprocessing
The benchmark MNIST dataset is comprised of 70,000 handwritten digits labeled into
ten classes from zero to nine and split into a training set of 60,000 and a test set of
10,000 images. It has been created with great care, for instance by making sure the two
sets of human writers for training and test images are disjoint [30]. Additionally, some
preprocessing has been conducted as the digits "have been size-normalized and centered
in a fixed-size image" [30].
As the welding data is not by any means an as well-curated and throroughly tested
dataset as MNIST, its data and the data collection process should be examined as well
as some basic preprocessing performed.
The welding data has been generated using several experimental setups (processes). Of
these processes, four are of adequate quality for further experimentation, namely P76,
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P77, P80 and P81. Every process itself comes with a range of videos (welds), each
stemming from a single workpiece as it undergoes the laser welding procedure.

(a) Frame 0 - Beginning (b) Frame 879 - Continuing (c) Frame 1758 - Finishing

Figure 3.1: Raw welding images from several frames within the first weld video of process 76.

The greyscale weld videos are taken at a resolution of 144x176 and frequency of 1000
Hz or 1000 frames per second, and come with about 1,500 to 2,500 images each - three
exemplary images can be seen in figure 3.1.
Over the course of every process, several scenarios have been simulated to encourage
welding results of differing qualities. Such scenarios include, for instance, oil films or
stains on the metal workpieces as well as variations in laser speed and power. After
examining the processed workpiece, each video frame is assigned one of four quality
labels, with category one representing a generally failed weld and category two to four
referring to increasingly fine welds in accordance with the norm EN ISO 13919-1:1996
[31]. While there do exist 22 welds with multiple labels, the vast majority of the total 244
weld videos has been labeled with a single label assigned to every one of its frames. Table
3.1 provides an overview of the label distributions throughout all processes, revealing
that some labels are severely underrepresented in certain processes.

Class 1 Class 2 Class 3 Class 4
Process 76 52,636 59,135 44,500 11,099
Process 77 83,493 36,085 49,772 22,421
Process 80 1,951 22,589 14,620 14,821
Process 81 6,343 33,827 10,859 11,608

Table 3.1: Full label analysis of all images from the four welding processes. There are notable
inbalances in label distribution that should be taken into consideration.

After diligent examination of the data at hand, several preprocessing steps have been
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3.2 Dataset

undergone to prepare the dataset.
First of all, several mislabeled welds have been dropped, excluding them from any fur-
ther analysis. This includes three welds of process 76, namely W67, W69 and W70,
which show labels that differ from the ones noted in the workpiece examiner’s report.
Furthermore, welds W26 to W30 of process 81 come with ambiguous labeling, for in-
stance "3 to 4" or "1 to 4" instead of pointing to one definitive class. As the four used
classes of the welding dataset are ordinally scaled and not necessarily have an interval
interpretation, these labels are hard to interpret correctly and the mentioned welds have
also been dropped from the dataset.
In a second step, the image data itself has been preprocessed. A box of 105x105 pix-
els was cropped from the center of the raw 144x176 pictures, assuming that most of
the images’ important information can be retrieved from the centrally located welding
keyhole. Afterwards, the resulting square was downscaled to a more manageable 32x32
pixels using bicubic interpolation.
There are many other potential preprocessing measures that could be explored in future
experiments, such as subtracting the dataset’s mean image, adjusting for lighting con-
ditions or increasing the number of training units by data augmentation measures like
random image flipping and rotations.

3.2.2 Dataset Segmentation
Seperating a full dataset into training and testing parts is a crucial step that has to be
conducted diligently. A correctly chosen test set can later be used to draw well-founded
conclusions on the trained models’ generalizability to classification problems not only
within the train set, but the whole base population. If the test data is not sampled
to be independent from the training data, however, the explanatory power of test set
metrics is compromised and cannot be used to objectively draw conclusions on the base
population.
Standard image datasets used for classification in literature generally avoid the afore-

mentioned issues by only supplying the experimenter with absolutely independent units,
sampled from a common and large base population. No matter how these units are later
split into train and test sets, the generalizability of test metrics is therefore ensured.
The welding data used in this paper, however, has been generated differently and

does come with inherent interdependencies between individual data units. Those data
dependencies can be grouped on three levels: the image level, weld level and the process
level.

• Image level: Stemming from a limited number of high-frequency video streams,
individual images are obviously not independent from the rest of the dataset.
Strong dependencies occur particularly with images in the same video, as the
short 0.001 second time interval inbetween them makes adjacent frames visibly
very similar and statistically highly interdependent.
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• Video/weld level: Examining the dataset, one finds video labels not randomly
distributed over the course of every process, but are correlated with time. The
experiment operator obviously did not draw randomly but conducted similar exper-
iments in close temporal proximity to one another. Other variables (e.g. lighting
conditions, slight setup alterations or lense splatters such as the one above the key-
hole in figure 3.1) are also correlated with time, resulting in potential correlation
between videos/welds within the same process.

• Setup/process level: Within each setup or process, all units have been captured
on the same day, at the same workstation, with the same physical equipment
setup and type of lens. Comparing random samples of different processes, one
finds obvious differences such as camera offset and varying levels of zoom that
are strongly correlated with setups and could be identified by most analytical
algorithms with ease.

Concluding from these examinations, it becomes apparent that the data at hand
cannot be split into training and perfectly independent test set at any level. Strong
dependencies inbetween images from the same weld video or from the same physical
setup would render any conclusion drawn from a test set sampled at those levels less
meaningful and generalizable. While there probabably also exist dependencies among
images from different welds of the same setup, however, those interrelations do seem
weaker and might not be completely inhibitory.
Faced with these insights, one has no choice but to separate training and testing

units at the weld level, accepting a certain degree of dependency between the two.
To circumvent inter-setup differences, the general population has to be restricted to a
single setup or process. Since the welding process P77 showed the most balanced label
distribution in table 3.1, all further experiments have been conducted on train/test splits
sampled from different welds of a single process, P77.
This splitting approach leads however, as outlined above, not to perfectly independent

train and test sets, which does in the end limit the explanatory power of test set metrics
and should be taken into consideration whenever any generalizability conclusions are
drawn. Furthermore, while all neural network architectures and training parameters are
to be optimized using the welding dataset, identical models should also be trained on
the MNIST dataset to verify any drawn conclusions. The MNIST dataset has been in
use for an extensive period of time [30] and should not suffer from similar dependency
issues as described above.
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3.3 Autoencoding Networks
This section covers the decisions that ultimately resulted in the structuring and training
of both the convolutional and traditional autoencoder.
While the general principles of both feature extraction approaches are preset by liter-

ature, the specific way a method is applied to the task at hand can differ immensely and
depends on a large number of variables. To give both a fair chance, the optimization
of each method has been constrained with the same time limit of 2 weeks as well as
equivalently sized budgets of computational power for training and trying to improve
models. All architectural decisions, parameters and training strategy insights have been
obtained solely based on the welding dataset, although for the final evaluation have also
been applied to the MNIST autoencoder training.
The parameter searching processes followed roughly the same pattern for all autoen-

coder variables. Holding other parameters constant at a standard default value, one or
two would be varied over a narrow spectrum and resulting gains or losses in reconstruc-
tion performance noted. While this approach assumes independence between varied and
held-constant parameters, an exhaustive search over all combinations seems unfeasable
within a reasonable timeframe.

3.3.1 SDA Architecture
While one could imagine lots of potential autoencoding architectures, those covered in
literature can be sorted into two major groups, such ones of triangular and others of
rectangular shape - figure 3.2 provides an illustration of the major differences. With the
number of input nodes and bottleneck nodes being dictated by the data and the intended
purpose of the extracted features, both types of structures’ first layer typically expands
the input dimensions by a factor in the realm of 1.5 or 2.0 [13, 32]. Triangular SDA
follow this expansion by continuously shrinking subsequent layers until sizing the last
layer before the bottleneck at about 5.0 times its follower [13]. Rectangular schematics,
however, do not decrease the size of subsequent layers, staying at high dimensionality
right up to the bottleneck [33].
Preliminary experiments showed no advantage but in fact slightly inferior performance

in sample triangular autoencoders against rectangulars of equivalent size. Furthermore,
rectangular design makes varying the depth of the autoencoders, as in total number of
layers, simpler as other layers’ sizes do not have to be adjusted with every additional
layer.
Within the realm of rectangular architectures, multiple layer sizes - {1024, 2048, 4096}

neurons - as well as different levels of depth - {2,3,4,5,6,7} layers - have been examined.
While reconstruction performance scores showed to improve with depth as well as layer
size, both those factors increase the total number of nodes linearly, making training
significantly more time intensive. Choosing the maximum value for both variables, most
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(a) Triangular Shape

(b) Rectangular Shape

Figure 3.2: Autoencoders typically come in one of two different shapes. While both usually
expand in dimensionality right after the input nodes (red), one type steadily decreases its layer
volume towards the bottleneck nodes (green), while the other keeps it constant.

models seemed to reliably approach a good performance after only about 50 hours of
total training time, which seems high but still manageable.
While in their original work Vincent et al. apply binomial masking noise to the train-

ing data of their denoising autoencoders, simply setting some values to zero at a preset
probability [32], the welding and MNIST images of the following experiments are cor-
rupted using additive gaussian noise, which is a "natural choice for real valued input"
[22]. Before every individual SDA training step, to compute the corrupted input

Xcorrupted � X � N
�

0, rd � σ pXqs2
	

(3.1)

the input data X is modified by adding a value drawn from a gaussian distribution
with mean 0 and a standard deviation of d times the standard deviation of X. The factor
d therefore allows to control the degree of corruption in proportion to the standard
deviation inherent to the signal. For all SDA training in the following experiments, d
has been set to 30%.
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Figure 3.3: Schematic of the full final SDA architecture following the style of [2] - see figure 2.4
for reference - solid arrows represent the fully connected MLP layers. This network has a total
number of 176,342,032 learnable parameters.

Summarizing this section’s examinations, figure 3.3 depicts the final SDA architecture
used for all following experiments. The encoding and decoding network parts both
consist of six fully connected layers with 4096 neurons each, with a 16 neuron bottleneck
inbetween. The input images’ spatial structure is lost with the first encoding layer, and
each of the consecutive layers then maps the data to a new representation. Finally the
bottleneck enforces that the a compact feature set representing the original image is
found. The decoding layers, on the other hand, ensure that the information lost in the
encoding process remains minimal.

3.3.2 SCA Architecture
While research concerning standard denoising autoencoders and convolutional neural
networks is quite abundantly available, a combination of both - namely convolutional
autoencoders - can only scarcely be found in literature. Masci et al. introduce SCA,
examine learnt filters and present classification scores, but only to very limited extent
mention the architectures employed to achieve those results [3]. The following SCA ar-
chitectural decisions therefore have - while certain key elements are the result of variation
and experimentation - primarily been guided by state of the art CNN design, specifically
the "AlexNet" architecture [2] and the very practical recommendations from Stanford
University’s CS231n lecture on visual recognition with CNNs [34].
Specifically, the examined architecture options follow a pattern described by Li and

Karpathy as "the most common ConvNet architecture" [34] - alternating between several
convolutional and max pooling layers, followed by 1 or 2 fully connected layers.
Table 3.2 outlines all convolutional and pooling layer combinations that have been

considered. While additional convolution layers seemed helpful, significant amounts of
max pooling quickly proved to be obstructive to good reconstruction performance. For
any row in table 3.2, the rightmost architecture, using only a single subsampling layer,
showed the smallest reconstruction error. Delving into larger structures with up to 7
convolutional layers, performance improved with network size but only up until 5 convo-
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3 Pooling Layers 2 Pooling Layers 1 Pooling Layer
1 Convolutional Layer - - CP
2 Convolutional Layers - CPCP CCP
3 Convolutional Layers CPCPCP CCPCP CCCP
4 Convolutional Layers - CCPCCP CCCCP
5 Convolutional Layers - CCCPCCP CCCCCP
6 Convolutional Layers CCPCCPCCP CCCPCCCP CCCCCCP
7 Convolutional Layers - - CCCCCCCP

Table 3.2: The combinations and sequential order of convolutional (C) and max pooling (P)
layers that have been considered in the SCA architecture optimization process.

lutional layers, and showed slightly decreasing results for 6 and 7 layers. While several
architectures were tested with multiple max pooling layers at varying positions, the best
performing model therefore only had a single max pooling layer, namely CCCCCP.
In line with recommendations [34] and the "AlexNet" reference architecture [2], the

final, pooling layer is followed by two fully connected layers before leading up to the
bottleneck. SCAs have showed best reconstruction errors if those are sized at 4096
neurons, although several alternatives {1024, 2048, 4096} have been considered.
Only limited experimentation was conducted with the size of convolutional layer filters,

in most experiments and the final architecture only 3x3 filters of stride 1 and padding
1 are employed. Although both the ILSVRC 2012 and 2013 winners make use of large
convolutional filters - {11x11, 5x5} and {7x7, 5x5} in their respective first two network
layers [2, 35], these large filters typically are a only used as a compromise, helping to
deal with large input images and GPU memory limitations [34]. In fact, a stack of small
filter convolutional layers is preferable to one big filter layer as they allow "to express
more powerful features of the input" [34]. The ILSVRC 2014 runner up confirms this
as it successfully employs the same convolution strategy with 3x3 filters and padding of
1 [36]. One notable disadvantage, however, is the reduced interpretability of such small
convolutional filters’ visualizations. As the welding data raw images are available in
substantially greater resolution than 32x32, future research may benefit from increasing
the image resolution while at the same time also enlarging the first convolutional layer’s
filter size to counteract computational issues.
State of the art CNNs show similar strategies for setting the number of each convo-

lutional layer’s filters, namely increasing them to 150%-250% of the preceding layer’s
number, most commonly to 200%, while then keeping the number relatively constant in
the second half of the network [2, 35, 36]. Following this observation and several trial
runs to find the maximal number of filters while maintaining training time at SDA level,
the final architecture’s 5 convolutional layers come with 4, 8, 16, 16 and 16 convolution
filters each.
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Examining different pool sizes for the max pooling layers confirmed the aforementioned
conclusions - any additional pooling, which includes increasing the pool size from 2x2 to
3x3 or 4x4, impedes reconstruction performance. The final architecture therefore only
includes a single max pooling layer with a pool size of 2x2 and stride of 2.
While they have not been part of variation and optimization, the decoding layer strat-

egy should be explained to allow the reproduction of all SCA experiments. SDA decoders
are straightforward - as they can map from any desired input to any output dimensional-
ity, constructing the corresponding decoding to a fully connected encoding layer merely
means copying its number of nodes. SCA, on the other hand, also employ convolutional
and subsampling layers that require more contemplation. With the convolution opera-
tions used in the encoder applying padding to maintain activation map dimensions (they
all remain at 32x32), reversing the operation has been conducted by simply applying the
same convolutional filter size, but reducing the number of filters to the desired output
depth. Other padding strategies, such as full or valid convolutions, can also inverted
by modifying the decoding convolution layer’s padding. Finally, 2x2 max pooling has
been undone by simply repeating the values at hand until a patch of desired size was
filled. While autoencoders in literature sometimes use weight tying "forcing encoder and
decoder matrices to be symmetric" [22], this strategy has for simplicity neither been
applied to SDA nor to SCA decoding layers.

Figure 3.4: Schematic of the final SCA architecture up to the bottleneck. The identical decoding
half has been omitted because of space limitations. The schematic follows the style of [2] - dotted
lines represent convolution operations, dashed lines max pooling while solid arrows show fully
connected layers. The SCA has a total number of 67,272,705 learnable parameters.

Concluding this section, figure 3.4 outlines the schematic of the final SCA encoder’s
architecture. Following five convolutional layers of an increasing number of filters, a 2x2
max pooling layer reduces the data throughput to 16x16x16. After two 4096 neuron
fully connected layers, the bottleneck compresses the data to a representation of just 16
features. As the decoding half of the SCA is symmetrical to the encoder, it has been
omitted because of space considerations.
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3.3.3 Autoencoder Training Strategy
Bergstra and Bengio show theoretically and through empirical study that in deep neural
network training "only a few of the hyper-parameters really matter" [37], concluding that
hyperparameter optimization is ideally not done in a rigid grid search fashion, attempting
to tweak every variable, but with random search. They suggest experimenters should
prioritize the optimization of those variables they deem important for the dataset at
hand, while allocating less time to the others.
In line with these suggestions, the majority of time for optimizing SDA and SCA has

focused on finding suitable autoencoder network architectures, as this is a novel area
that comes with comparatively few best practice references. Neural network training
strategy, on the other hand, is extensively covered in literature which allows to make
sound decisions without excessive experimentation. In contrast to many architectural
choices of sections 3.3.1 and 3.3.2, which have been examined and tailored to a certain
degree, the following variables and decisions have therefore been held constant for both
SDA and SCA.

• Training batch size has been set to 128 images, which is within the realm of
Bengio’s recommendations [38].

• Rectifying nonlinearities have been used for all neuron activation functions. They
are frequently employed in CNN architectures as they speed up model convergence
[2] and experimental results evidence their benefits "especially for deep architec-
tures" [39].

• Learning rate has been set to a schedule linearly decreasing over the course of
training epochs, from initial 0.1 to final 0.0001.

• Momentum has been set to a schedule linearly increasing over the course of training
epochs, from initial 0.9 to final 0.999. The combination of both the learing rate
and momentum schedule have been motivated by the work of Sutskever et al.
[40].

• Weights have been initialized according to the "GlorotUniform" strategy [23], draw-
ing from a random uniform distribution that is bounded relative to incoming and
outgoing network connectivity. No encoder uses any kind of weight tying with
their respective decoder.

Finally, while Bengio et al. that suggest layer-wise pretraining initializes "weights
in a region near a good local minimum" [41], despite significant experimentation no
variant of either SDA or SCA has ever outperformed completely random initialization.
Consequently, all final autoencoders have not been pretrained layer by layer before their
full network optimization.
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The following sections focus on key findings and resulting conclusions from the experi-
ments. Beginning with the trained models themselves, the examination commences with
an analysis on what happened during the autoencoding processes, namely how well they
were able to reconstruct the original data and how this has been achieved. The subse-
quent, main part investigates on the utility and applications of the generated bottleneck
features, specifically how useful they are for image classification as well as how robust
they are against forcefully induced input variations.

4.1 Reconstruction Performance
Commencing the evaluation process, this preliminary comparison takes a look at the
autoencoder training objective, the reconstruction of the original image.

(a) A commencing welding operation (b) An ongoing welding operation

(c) Image with uncommon dark splatter

Figure 4.1: Original welding images and their reconstructions created by SDA and SCA. Although
most characteristics of the originals seem present in the reconstructions, uncommon marks are
not reproduced (c).This selection of images is not representative of the base population.

Figure 4.1 illustrates key differences between the welding image originals and their
autoencoder reconstructions. Both autoencoding processes seem to smooth out back-
ground noise, particularly any information that is only ever represented within a very
small number of input images. A dark splatter such as in the left half of Figure 4.1c,
for instance, is not present in any of the two reconstructions since learning to encode its
characteristics and location would only have helped to improve the reconstruction of a

31



4 Results and Discussion

very limited number training images. It might also be interesting to note that the SCA
reconstructions seem slightly less homogenous than the SDA’s, carrying some additional
information on their originals’ texture and condition.
Examining reconstructed images from the MNIST dataset, one finds the overwhelm-

ing majority to be very close duplicates to their originals - as illustrated in Figure 4.2a.
The autoencoders do experience problems, however - notably with such drawings that
diverge from the "standard" form and shape of the depicted digit. In particular, an
autoencoder may learn that some features typically appear together within many images
- such as the three strokes within the digit seven. Faced with only two of those strokes,
it then may attempt to add the third one on its own, especially if there have not been
enough two stroke sevens within the training data set (see Figure 4.2b).
Another problem case consists of sloppy or unusual digit designs. Figure 4.2c, for in-
stance, depicts a quite unique design of the numeral nine, with many features resembling
the two strokes of the numeral one. Consequently, SDA and SCA both struggle to recon-
struct the complete closed circle, since leaving out the lower semicircle is substantially
more in line with what is to expected with the numeral one.
While these problems occur only rarely, they do lead to potential misinterpretation of
the reconstructed data. Figure 4.2d shows such an instance, when a sloppily drawn four
is compressed and reconstructed in something that could be interpreted as a six or zero,
but probably almost never as a four.

(a) Reconstructions of Numeral 3 (b) Reconstructions of Numeral 7

(c) Reconstructions of Numeral 9 (d) Reconstructions of Numeral 4

Figure 4.2: Original MNIST input images and their reconstructions created by SDA and SCA.
Most are well on point (a), however some types of input do cause problems (b,c,d). This selection
of images is not representative of the base population.

While figure 4.6 will later go into detail on the improvement over the course of
training, at this point the final mean squared reconstruction error of 0.000887 for SCA
and 0.0012367 for SDA should be noted. Summing up, the reconstruction performances
of SDA and SCA seem decent and generally indicate that only little information is lost
when encoding images to a low bottleneck dimensionality. Both autoencoders do have
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issues, however, particularly when faced with information that is not represented very
frequently within the training data.

4.2 Autoencoding Process Analysis
Attempting to reveal the inner workings of SCA and SDA, this section tries to examinine
the SCA and SDA encoding and decoding processes themselves. Both autoencoders have
experienced similar time budgets for architecture design and testing as well as the training
and optimization of the final models, and yield features of comparable reproduction
quality. They do, however, differ in their approaches to transforming data representations
from layer to layer. SCA do maintain - albeit often reduce - the original images’ two- or
threedimensional structure, whereas SDA are fully connected from the very first layer,
allowing all nodes to process input from any given location in the preceeding image data.
As a result, visualizations of images as they pass through a stack of layers really only
make sense for trying to understand the inner workings of a SCA.

Figure 4.3: Weights learnt by a sample of 100 neurons of the SDA’s first encoding layer.
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The neurons of an SDA’s first layer, however, have individual connections with and
store a weight for every single input pixel. Plotting those weights arranged in the input’s
spatial structure therefore offers an opportunity to see what happens at least in this first
SDA layer. Looking at a randomly sampled selection of 100 of these weight maps in
Figure 4.3, one sees starkly varying levels of specialization from neuron to neuron. While
some few appear to be heavily fitted to recognize specific input images, many appear to
be able to recognize what could be described as faint depictions of geomentric shapes,
mainly at the location of the welding keyhole and welding seam. Most neurons, however,
seem not fitted at all. While it is entirely possible that the depiction of their weights
just appears random to the human eye - they could, for instance, actually be detecting
meaningful features in cooperation with other neurons - their output will most likely be
either ignored or underprioritized in subsequent neuron layers.
Examining the autoencoding process within SCA, on the other hand, one has the

opportunity to visually inspect how the data representation evolves from layer to layer.
Figure 4.4 shows how a welding image is transformed by the weights of every convolu-
tional layer, revealing multiple interesting insights.
First of all, one notices that the dissimilarities between layers’ activation maps seem
to slightly increase with each consecutive layer, possibly hinting at increasing levels of
specialization. The activation maps right before the bottleneck layers, while probably
not each encoding entirely distinct sets of features, could be seen as each having a focus,
highlighting an admittedly vague but different aspect of the original input data.
Secondly, upon close examination, it becomes apparent that the max pooling layer within
the bottleneck has an effect on the spatial arrangement of the activation maps. The
two by two pixel max pooling essentially leads to 75% of all data being lost from ev-
ery individual activation map. It seems like the autoencoder circumvents this issue by
shifting several of its activations by one pixel, so that otherwise missing information can
possibly be retrieved from these dedicated maps. This phenomenon can be observed
by comparing the activation maps of Figure 4.4, upon which one notices that not all
activation maps are vertically aligned with each other.
Lastly, while the majority of encoding activation maps seem to be generally activated
and do resemble the original input image, a large portion are primarily under-activated
and black. An examination of the corresponding weights and biases of those activations
does not confirm that their sums are just generally of low absolute values, indicating that
these activations do indeed represent convolutional filters that are strongly stimulated by
a very small subsection of their input and much less in other areas. Albeit the argument
certainly is a speculative one, one could identify the relatively homogenous nature of
the welding data as the reason for why this phenomenon seems far less pronounced with
the MNIST dataset in Figure 4.5, since not much information on the original image is
required for reconstruction.
Looking at the reconstruction of the welding images, one notices that although some
faint structures do seem to emerge layer by layer, shapes remotely resembling the input
are only noticable after the fourth reconstructing convolutional layer. This stands in
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Figure 4.4: A welding image is processed by all layers of a convolutional autoencoder. Since they
do not have a relevant human interpretable spacial structure, the fully connected and bottleneck
parts inbetween are not displayed.

stark contrast to the MNIST data reconstruction of Figure 4.5, in which the original
numeral is already decipherable at its first reconstruction layer’s activation maps.
Taking aside the welding dataset and having a closer look at the activation maps

stemming from the MNIST convolutional autoencoder in 4.5, a few other differences
stick out. First and foremost, one notices that the encoder seems more proficient in
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Figure 4.5: An image of the numeral two is processed by all layers of a convolutional autoen-
coder. Since they do not have a human interpretable spacial structure, the fully connected and
bottleneck parts inbetween are not displayed.

deconstructing the input image into more destinct features. While most activation
maps right before the bottleneck still are complete enough to guess the input numeral,
they appear quite focused on individual features such as horizontal, vertical or inclinated
stokes.
The reconstruction, on the other hand, takes a more holistic approach. Almost every
activation map, starting from the very first layer of reconstruction, depicts not single
features or strokes but shapes that resemble the complete original structure. While they
are still quite noisy and vague in the beginning, every continuous layer seems to come
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with sharper and sharper activations, culminating in the second to last layer with four
very distinct and well specialized convolution maps. One can easily comprehend how
those four signals, two of which seem to carry the general shape and two the contours
of the numeral two, can be combined to generate the sharp-edged reconstruction of the
original input.

4.3 Feature Analysis
While the previous sections were covering the methodology and procedures of the autoen-
coding processes themselves, the following attempts to evaluate the eventual product of
those actions, the lowdimensional bottleneck features.

4.3.1 Classification Performance
Apart from measuring reconstruction error, which essentialy rates how much of the total
original information can be recovered in the autoencoding process, there are other ways
to objectively judge the features’ potential utility. One can, for instance, measure how
easily a classifier like an SVM can infer higher level information using those features,
such as human given labels on the original images. For the welding dataset, this means
identifying one of four distinct welding irregularity categories, three of whom are in
accordance with the norm EN ISO 13919-1:1996 [31] and one representing general failure.
The MNIST dataset, on the other hand, requires the identification of one in ten numerals.
The metric for judging these SVM classification performances will in the following always
be the F-score, which takes into account both classifiers’ precision and recall concerning
one class. Multi-class F-scores are then attained by computing the unit weighted mean
of the individual class F-scores.
Figure 4.6 showcases the training progress for SCA and SDA on the welding dataset.

For both autoencoders, prolonged training seems to result in decreasing reconstruction
error as well as increasing classification F-score. The SCA metrics’ development seems
quite monotonous and quickly approaches a saturation level, particularly concerning its
F-score. The SDA, on the other hand, shows a lot more volatile performance swings
over the course of training. Its best F-score (0.456) is actually already obtainend after
only 5 hours or 100 epochs of training, when its reconstruction error (0.11) is still
exceptionally high. Looking at the complete figure, however, one can clearly identify
this value as an outlier and make out a generally positive trend over time, signaling that
in fact the SDA’s F-score does benefit from continued training and lower reconstruction
errors. Acknowledging the overall picture, it can be stated that in this application its
convolutional elements seem to give the SCA an edge over the conventional SDA. The
SCA generally outperforms over its counterpart with substantially lower reconstuction
error (0.000887 against 0.0012367) and higher F-score (0.5677 against 0.4471) after
both autoencoders have undergone 1000 epochs of training. Moreover, while an average
epoch of training takes slightly longer on the SCA (224 sec. against 194 sec.), reliably
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(a) SCA training on the full P77 dataset

(b) SDA training on the full P77 dataset

Figure 4.6: Performance metrics show decreasing reconstruction error and increasing F-score
over the course of 1000 epochs of autoencoder training. Left vertical axis: F-score, right vertical
axis: reconstruction error, horizontal axis: total training time in hours.

high performance can be expected to be reached a lot quicker with the SCA as its metrics
seem a lot less prone to variance.
While those results appear coherent and their implications straightforward, they

should be taken with a grain of salt. Training an SVM with the exact same parameters,
but different input - not the 16 features stemming from SCA or SDA, but the 1024
original image pixel values - remarkably leads to an even superior F-score of 0.5895.
While this finding is not completely counterintuitive - SVMs have been applied as a
solution to raw image data of similar dimensionality [27, 42, 43, 44, 45] - it puts in
question both the implementation of SCA and SDA as well as the welding dataset itself.
Since both autoencoders seem to produce visually and statistically good reconstructions,
however, one is inclined to suspect the data or its labeling as the primary reason for
the overly high performing SVM baseline. On the one hand, the classification into four
weld categories might therefore not be as hard a problem as one imagines - it might
for instance be that most required information already comes with the few pixels of the
welding keyhole and be relatively simple to identify. One could further imagine issues
of data dependency between individual welds - as mentioned in section 3.2.2 - to make
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the problem at hand considerably simpler for the classifier as it no longer needs to focus
on quite hard to identify high level weld characteristics and features to make a decision.

Format of the Classified Data Best Reconstruction Error SVM F-score
Welding Data raw - 0.5895
Welding Data SCA features 0.000886926 0.5677
Welding Data SDA features 0.0012367 0.4471
MNIST raw - 0.9816
MNIST SCA features 0.00703701 0.9811
MNIST SDA features 0.012068 0.9782

Table 4.1: Detailed performance report of the best performing architectures for both autoencoder
features and the raw image data on the welding and MNIST datasets.

Examinig the architectures’ performance on the reference MNIST dataset in table
4.1, one can identify similar patterns to the welding dataset results: SCAs appear to
be better at image reconstruction than SDAs, and the overall best classification result
comes from an SVM trained not on features but on the raw image data. The F-score
based on SCA feature classification follows with only a small distance while the SVM
working with SDA features shows the lowest overall classification performance.
The good result achieved with the SVM on raw MNIST image data is in line with similar
experiments in literature [44, 45], indicating that the experiment setup itself is solid and
not erroneous. One could still wonder why a black box SVM approach that does not
even take into account the spatial relations of the images’ data points can outperform
a dedicated solution like SCA feature extraction. The differences in performance scores,
however, are quite low and as the autoencoder architecture and training parameters
have been optimized for the welding dataset a, there is still room for improvement by
dedicated optimization of those parameters for the MNIST dataset. Furthermore, the
following section will show that a feature extraction approach does provide benefits in
robustness against input variation.

4.3.2 Feature Robustness
Finally, both autoencoders’ susceptibility to varying input is put to the test. All base
models have been trained and optimized on relatively uniform data with low levels of
translational, rotational and scale variance. These trained autoencoders along with their
fitted SVMs are now used to extract features and try to classify datasets with artificially
induced variance of varying severity.
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(a) Rotational Variation (b) Scale Variation

(c) Translational Variation (d) All three types of Variation

Figure 4.7: Weld classification performance decreases as features lose interpretability with in-
creasing levels of variation in the welding test dataset.

Analyzing Figure 4.7, one can clearly see classification performances deteriorating
gravely with only little levels of any type of unexpected variance. Even though the
SDA features initially perform substantially below SCA levels (0.4471 against 0.5677),
this gap quickly narrows, leaving less and less of the original advantage, until most
differences seem to have completely disappeared at 200% variation. Although the
gaps do narrow, one could argue that during most types and intensities of variation, a
clear hierarchy can be made out - the SCA features seem least affected, followed by
SDA features, and an SVM trained on raw input pixels is disrupted the most by input
variation.
Another interesting conclusion lies in the different rates at which all models seem to
suffer from different types of variance. Generally speaking, translations, i.e. shifts of the
full image in a random direction, have the most severe effects on classification, followed
by random rescaling and finally rotational variations. One could argue that particularly
with rotations, the degree of impact changes heavily depending on a pixel’s location

40



4.3 Feature Analysis

within the original image. Is information required for determining an image’s class
primarily encoded within the image center - a plausible assumption given that this is
where typically the welding keyhole is located - then a small rotation of the whole image
might not distort those essential features severely. Translational distortions, however,
affect the whole image equally and could potentially only be dealt with by making the
feature encoding process invariant to changes in location.
Lastly, one peculiar effect seems to be induced by high levels of translational variation: It
pushes the classification F-score below 0.25, the theoretical minimum value for random
guessing. Since the metric was obtained on a large sample size of 12800 units, an
explanation can only stem from an issue in the experiment setup itself or an actual
causal relationship linking high level of translational variation with misclassification.
Table 4.2 allows for a more detailed examination of the overall worst result on record,
an SCA’s F-score of 0.2132 in Figure 4.7d, when faced with 200% of all three types of
variance. Taking a close look at table 4.2, one finds the low overall low score not linked
to low levels of precision - which seem to be reasonably random distributed around their
expected level of 0.25 - but rather with low levels of recall, particularly for units of the
classes 2 and 4.

class precision recall f1-score support
1 0.24 0.52 0.33 3200
2 0.23 0.14 0.17 3200
3 0.26 0.30 0.28 3200
4 0.29 0.04 0.07 3200
avg / total 0.26 0.25 0.21 12800

Table 4.2: Detailed by-class report of an SVM’s performance on SCA features stemming from
heavily variance induced welding data.

Consulting the SDA feature and raw data models that also inexplicably underperform
at the same level of 200% induced variance confirms this finding. The SVM trained
on raw input shows a recall of 0.10, the one trained on SDA features a recall of 0.09
for class 4. While definitely not an indisputable conclusion, a possible explanation for
this low level of recall particularly with one specific label class and translational variance
might be that those features required to make a determination for class 4 are all found
in specific locations of the image, such as the central keyhole or the welding seam. In
absence of these features at their expected location because of the translational shifts,
a classifier might deem another class more likely, leading to an underrepresentation of
class 4 in the predictions and explain the overall low recall and F-score.
Moving on to the effects of induced variation on the MNIST dataset, figure 4.8 paints

a quite different picture than its welding counterpart. While even slight levels of variance

41



4 Results and Discussion

have a huge impact on the classification of the welding images, the MNIST features seem
a lot more resilient.

(a) Rotational Variation (b) Scale Variation

(c) Translational Variation (d) All three types of Variation

Figure 4.8: MNIST classification performance decreases as features lose interpretability with
increasing levels of variation in the MNIST test dataset.

One could argue that since the individual MNIST images have been generated by many
seperated, heterogenous processes - namely human writers, its training data already
comes with a comparatively high variation, particularly of scale and rotational variance.
The welding images, on the other hand, have been generated within a single experiment
setup, resulting in relatively similar and homogenous training data. The MNIST data
hence forces both autoencoders and classifiers to learn to cope with some degree of
variance, a fact that manifests itself in figure 4.8, which in contrast to the welding
plots of figure 4.7 shows curves of a rather slowly falling concave, not dwindling convex
character. Another possible explanation for the excessive robustness of the MNIST
features might lie in the nature and number of features that identify the image classes.
It is conceivable that while the weld classification hinges on just a low number of features
- as argued in the explanation for the diminutive F-scores above - the numerals of the
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MNIST dataset each offer a full series of unequivocal features. Even if added variance
were to mask several features, there would therefore still be a chance for some still being
visible enough to make a correct classification.

4.3.3 Impact of Additional Max Pooling
The previous sections’ SCA architecture decisions have been guided solely by the op-
timization of reconstruction and classification scores. While that has lead to models
performing well on the test dataset, particularly the welding data features are quite sus-
ceptible to even low amounts of input variation, as depicted in figure 4.7. Having a
look at the SCA architecture employed, one might wonder whether the low usage of
max pooling - only a single layer of 2x2 pooling filters is put to use - is one reason for
these observations. In order to assess the influence of higher degrees of max pooling on
SCA model robustness, two additional autoencoding architectures have therefore been
trained on the welding and MNIST training datasets to test if indeed robustness can be
influenced by altering max pooling.
The first of these new test models (SCA2) comes with a larger max pooling layer of 3x3

instead of the former 2x2, the second model (SCA3) employs no longer a single but three
individual 2x2 max pooling layers that each follow one of the last three convolutional
layers before the bottleneck. While they change composition and degree of max pooling,
both new autoencoders keep all other architectual and training variables constant.

(a) Welding Dataset (b) MNIST Dataset

Figure 4.9: Convolutional autoencoders with increasing levels of max pooling show different de-
grees of resilience against the mix of all three variance types. The red graphs show the previously
evaluated SCA performances of figures 4.7d and 4.8d for reference.

Since the new architectures deviate from what has been deemed optimal for the weld-
ing dataset in section 3.3.2, one can reasonably expect a certain degree of deterioration
in the test set scores. Unsurprisingly, figure 4.9a confirms these expected losses as the
features stemming from the new architectures initially both show inferior classification
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F-scores on the welding dataset, namely from 0.5549 (SCA2) and 0.519 (SCA3) com-
pared to 0.5677 (SCA). After introducing variation to the test data, however, the SCA2
architecture outperforms its competitors at every single degree of induced variance, in-
dicating the larger max pooling layer may entail superior feature robustness. The SCA3
features, on the other hand, underperform at any given level. While this particular find-
ing cannot link increases in max pooling to feature resiliance, it should not be seen as
evidence disproving a causal relation as the bad performance might be attributable to
the for the welding dataset disadvantageous architecture.
Astonishingly, the MNIST classification seems to substantilly benefit from the new

architecture designs as both show substantial gains in performance against the section
3.3.2 design. While the features extracted with the benchmark SCA obtain an F-score
of 0.9811, SCA2 manages to achieve 0.9837 and SCA3 even 0.9857 on the unchanged
testing data. These observations indicate that although the architecture tweaked for
the welding dataset has performed quite adequately on the MNIST data, there may still
remain room for improvement by dedicated optimization. After introducing variance
to the test sets, both SCA2 and SCA3 retain their leads over the low max pooling
architecture, particularly SCA3 which manages to further widen the gap, indicating that
its features are indeed more robust.
While not all evidence is unequivocal, the tests illustrated in figure 4.9b indicate that

increasing an SCA’s degree of max pooling can positively affect feature robustness.
Arbitrarily large or many max pooling layers will at some point certainly cause the loss
of too much data and impede feature usability, but minimal max pooling approaches
such as the section 3.3.2 design may render SCA encoded data representations more
susceptibe to input variance than need be.
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This work evaluates the stacked convolutional autoencoder (SCA), an in literature
scarcely covered method for representation learning, in comparison with the more com-
mon stacked denoising autoencoder (SDA)
For finding suitable values for architectures and training hyperparameters, each of the

two neural network types has been alotted an equal budget of 14 working days. Utilizing
those values and giving both methods similar budgets of computing power, a final SCA
encoder and an SDA encoder have been trained. The two encoders were then examined
on two datasets of visual data. The first dataset was a real world application, namely
videos from a series of 244 laser welding experiments, and the second one the standard
MNIST dataset to allow verification of conclusions and comparability to other research.
Finally, both encoding methods’ extracted features were evaluated. During the au-

toencoder training process, the SCA showed to loose slightly less information when
transforming images into feature vectors than the SDA. Furthermore, a support vector
machine was used attempting to infer images’ labels from their new compressed feature
representation. Experiments demonstrated the SCA encoded features to be more useful
for this classification task than SDA generated representations. Finally, the invariance
of SCA and SDA encoded representations was tested by adding increasing levels of
transformational variation to the test datasets, expecting deterioration in classification
scores. While the observations being more noticable on the MNIST dataset, the SCA
features consistently showed slightly more robustness against unexpected variance than
SDA features.
Apart from revealing practical recommendations to SCA and SDA architecture design

and training (section 3.3), this work has also highlighted the importance of extensive
analysis before splitting real world, non-curated datasets into training and test sets
(section 3.2). The key takeaway, however, lies in the comparison of the different repre-
sentations that SCA and SDA have learnt within the realm of visual data. Bengio et al.
name both the disentanglement of the underlying factors causing data variation as well
as the learning of abstract features that are invariant to local input changes as desir-
able properties for representations, particularly in conjunction with image data [1]. The
aforementioned experiments have indicated that SCA encoded image representations are
more useful for image classification applications. Specifically factors correlated with the
datasets’ labeling may therefore be present in the SCA features in a more disentangled
fashion than in their SDA counterpart, simplifying the work of the following classification
algorithm. Furthermore, SCA representations have shown higher levels of invariance to-
wards small image transformations than SDA features. As these transformations are not
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informative to the task at hand, namely not masking or altering characteristics required
for classification, a good data representation should be abstract and insensitive to such
input changes [1].
Summing up, one can state that because SCA are able to exploit spatial relations

and come with max pooling layers that naturally increase transformation invariance,
they may be a better choice for representation learning in the realm of visual data than
SDA. As particularly the time intensive autoencoder training experiments of this work
have not been conducted in sufficiently large number and in enough architectural and
hyperparameter configurations to yield statistically incontestable findings, these results
should, however, be taken with a grain of salt and ideally confirmed by further research.
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