
Optimal Parameter and
Memory-Size Search for
Multi-timescale Nexting

Mert Kayhan, Johannes Günther,
Klaus Diepold





Institute for Data Processing
Technische Universität München

Technical Report

Optimal Parameter and Memory-Size
Search for Multi-timescale Nexting

Mert Kayhan, Johannes Günther, Klaus Diepold

September 9, 2017



Mert Kayhan, Johannes Günther, Klaus Diepold. Optimal Parameter and Memory-Size
Search for Multi-timescale Nexting. Technical Report, Technische Universität München,
Munich, Germany, 2017.

Supervised by Prof. Dr.-Ing. K. Diepold ; submitted on September 9, 2017 to the Depart-
ment of Electrical Engineering and Information Technology of the Technische Universität
München.

c© 2017 Mert Kayhan, Johannes Günther, Klaus Diepold

Institute for Data Processing, Technische Universität München, 80290 München, Germany,
http://www.ldv.ei.tum.de.

This work is licenced under the Creative Commons Attribution 3.0 Germany License. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/de/ or send
a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California
94105, USA.

http://www.ldv.ei.tum.de


Abstract

Finding the right parameter set is crucial to the performance of a machine learning algo-
rithm. However, it is not easy to find that. Cross-validation is a commonly used strategy
to overcome this problem due to its simplicity and universality. This study was specifically
concerned with the nexting algorithm introduced by Günther et al.. The primary goal was
to find the right parameter set that would enable the algorithm to predict the quality of
known processes accurately and the algorithm to apply the given information to unknown
processes precisely. To test this point a self-cross-validating framework was prepared for
this algorithm. Through cross-validation, the best performing parameters and a suitable
memory-size were found for the given dataset.

First, a theoretical background was provided within the thesis in order to get the reader
up to speed with state of the art. Subsequently, the statistical terms that this study relies on
were covered briefly. Next, an overview was provided for the algorithm at hand. Afterwards,
the experimental setup and the results were discussed in depth.

After the experiments it was concluded that the algorithm is capable of delivering accu-
rate results for certain parameter sets. The results showed that for aggressive parameters,
large step-size and decay parameter, the performance is limited. On the basis of the re-
sults of this study, the best parameters for the given setting were α = 0.1

m , γ = 0.8 and
λ = 0.6. For memory-sizes ranging from 100001 to 1000001, the previously mentioned
parameter set delivered very accurate results.

3





Contents

1 Introduction 9

2 State of the Art 11
2.1 Fundamentals of Reinforcement Learning . . . . . . . . . . . . . . . . . . 11

2.1.1 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Reward and Return Function . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 The Environment and Environment Model . . . . . . . . . . . . . . 12
2.1.4 Value Fuctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Temporal Difference Learning (TD) . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Eligibility Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Approximation of Values for Large Applications . . . . . . . . . . . . . . . 19

2.4.1 Tile Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Statistical Background 23
3.1 Generalised Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Mean Absolute Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Classificaton Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Final Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Nexting with Temporal Difference Learning 27
4.1 Nexting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 How does the algorithm work? . . . . . . . . . . . . . . . . . . . . 29

5 Results 31
5.1 Learning From One Weld . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Learning From Multiple Welds . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Predicting Unknown Welds . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Memory-Size Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Other Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Table of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5



Contents

6 Discussion 43

7 Conclusion 45

6



List of Figures

2.1 Short sighted return formulation . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Discounted return formulation . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Geometric serie formulation of γ. . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Agent environment interaction [1] . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Agent and the environment. The elements related to the reward are illus-

trated in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Probability of each (S’, R) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Expected rewards for (S, A) tuples . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Expected rewards for (S, A, S’) triples . . . . . . . . . . . . . . . . . . . . . 14
2.9 Final state should get the value 0 [1] . . . . . . . . . . . . . . . . . . . . . 15
2.10 Bellman equation for VΠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 Bellman equation visualised [1] . . . . . . . . . . . . . . . . . . . . . . . . 15
2.12 Optimal value function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.13 TD(0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.14 Updates in TD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.15 Prediction update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.16 The forward view. Each state is updated according to upcoming rewards

and states.[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.17 Accumulating eligibility trace [1] . . . . . . . . . . . . . . . . . . . . . . . . 19
2.18 δt : Td-error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.19 Td-update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.20 The backward view looks at the current td-error and the trace vector to cre-

ate increments [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.21 Components of w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.22 Weight update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.23 Eligibility trace vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.24 Td-error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.25 Trace vector update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.26 Value approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.27 Coarse coding visualized [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Ŷ−i
λ formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Generalised cross validation formulation . . . . . . . . . . . . . . . . . . . 23
3.3 CVm criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Error in terms of prediction and observation . . . . . . . . . . . . . . . . . 24

7



List of Figures

3.5 Classification error formulation . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Precision analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 F1 score formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 The nexting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Td-fixpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 α = 1
m and γ = 0 (left), α = 0.1

m and γ = 0 (right) . . . . . . . . . . . . . . . . 32
5.2 The plots that are provided in the previous page represent the cases α = 0.1

m
(left) and α = 1

m (right). The chart above shows the results for these cases. . 33
5.3 Resulting plot for each fold on respective test set for α = 0.1

m and γ = 0. . . . 35
5.4 Resulting plot for each fold on respective test set for memory-size 100001 . 37
5.5 The resulting plot for each fold on respective test set for the convolutional

neural network with variance = 2 . . . . . . . . . . . . . . . . . . . . . . . 40

8



1 Introduction

Machine learning algorithms can learn how to perform important tasks by generalising from
examples [2]. As more data becomes available, more complex problems can be solved.
Therefore, machine learning techniques see widespread use nowadays. Machine learning
algorithms require the user to set parameters before using the models and depending
on the parameters the performance varies radically. Unfortunately, finding the optimal
parameters for a machine learning algorithm is not a trivial task. Overfitting, inability to
generalise and high dimensionality of input data are some of the issues that are often
faced [2]. In response to these challenges, this study makes use of cross-validation and
tile coding. The main goal of this study was to find the optimal parameter set that performs
accurately on trained processes and enables generalisation to solve other problems as
well.

Laser welding is one of the fields that recently started benefiting from machine learning
techniques. It is an accurate and a fast welding technique that is widely used in indus-
trial welding systems [3]. However, it is a process that is not so easy to control. There
may be changes in temperature, humidity or welding gas quality, which makes it a more
and more difficult task [4]. Moreover, there are also uncertainties caused by the material
[4]. Among these are, changes in the chemical compounding, and thickness and the con-
tamination of the surface [4]. Nevertheless, recent research indicate that cognitive laser
welding systems perform well on a trained work piece after setup [5]. To cope with the
issues, Günther et al. introduced a new cognitive control architecture. This thesis is based
on the nexting algorithm introduced in that paper. According to the paper, as a crucial part
of intelligence, process quality and state are included. Most importantly, the predictions
can be learned during run time [4]. Thanks to the latest developments in reinforcement
learning and temporal difference learning, non-linear and time-varying problems can be
also solved with prediction learning [6]. New techniques have boosted classical temporal
difference learning, which led to generalised online predictions [7]. Nexting is a tempo-
rally extended prediction approach which enables these predictions to be included within
the system [8]. Moreover general value function enables the system to learn and make
real-time predictions at multiple timescales [4].

Data was collected using a camera-based system with photodiodes , in other words, a
common setup for laser welding applications [9]. In such a scenario, the keyhole, where
the laser hits the material, oscillates with the frequency of 500 Hz [10]. As a benchmark
for real-time capability of the process, all sensors have to sample with at least twice the
frequency of the keyhole. The camera can sample at rates up to 1500 Hz and provide
a resolution of 144 x 176 pixels. In addition, the three photodiodes sampling at 40 kHz

9



1 Introduction

coincide with different wavelenghts.The first records the process temperature at the wave-
length between 1100 nm and 1800 nm. The second detects the plasma radiation at a
wavelength of 400-600 nm. Finally, the third detects the laser back reflection at 1050-1080
nm.

As the main part of this thesis, the previously mentioned algorithm was evaluated in the
given setting. To achieve this goal, a self-cross-validating framework was developed for
the algorithm. A grid search for the parameters given in the nexting algorithm to find the
optimal parameters was conducted. Afterwards, a memory-size search with the optimal
parameters was performed. Finally, with the optimal parameters and memory-size, the
algorithm was ran on different datasets. The results are provided by means of plots and
error measures.

First, state of the art was introduced in order to provide the reader a solid background
information. Second, relevant statistical terms were discussed so that the experimental
part is clear to the reader. Third, the experimental setup and the results of the experiment
were given comprehensively.

10



2 State of the Art

The expression reinforcement learning describes a certain type of learning problem, not
a definite algorithm [11]. Reinforcement learning means learning what to do and how to
relate situations to actions to maximize a reward [1]. The agent is not told which actions to
take, but should explore how to go through the action set; so that the maximum return is
reached. In short, the reinforcement learner (agent) takes actions and observes outcomes.
Through these actions and the related rewards, the agent discovers better ways to com-
plete the task. Clearly, it can be said that delayed reward and trial-and-error search are
the unique properties of reinforcement learning [11] . Furthermore, reinforcement learn-
ing can be also referred to as goal-directed learning, because the learner in question is
making moves towards a certain goal [4].

2.1 Fundamentals of Reinforcement Learning

In this section, the elements that are used in reinforcement learning will be discussed. One
can see four subelements of a reinforcement learning system: a policy, a reward function,
a model of the environment, and a value function[1].

2.1.1 Policy

Policy is a function that maps states to actions [11]. It can be also considered as a learning
strategy [11]. Policy determines how the agent chooses the actions that are possible at
that state [11]. However, state transitions can be also deterministic. In this case, taking a
given action always results in the same state [12].

2.1.2 Reward and Return Function

Reward function is the definition of the system’s goal. The aim of a reinforcement learner
is to maximize the gathered rewards in the long run. The reward defines what is beneficial
for the system. In other words, reward gives the system a sense of success and failure
[4]. Most importantly, the reward indicates what is good in the short run. It is vital to
understand, that the reward is a way of telling the agent, which goal needs to be achieved,
not how it needs to be achieved [1].

The return, Gt , is specified as some explicit function of the reward sequence [1]. Gen-
erally, the learner’s aim is to maximize the expected return [11]. For non-continuing tasks

11



2 State of the Art

or tasks with identifiable episodes a simple return function can be defined, where T is the
final time step [1].

Gt = Rt+1 + Rt+2+ ... + RT

Figure 2.1: Short sighted return formulation

In this case the return is the sum of the rewards accumulated over time. Unfortunately, in
many cases the environment-agent interaction cannot be broken into episodes, but it goes
on continually [11]. The return formulation 2.1 does not apply to such cases, because Tfinal

=∞ [1]. It means that, the return which the agent is trying to maximize might have already
reached infinity. Therefore, discounted returns are introduced. According to this approach
every reward, that the agent is collecting, is multiplied by a certain discount parameter γ
[1]. Trivially, γ is selected between 0 and 1, so that discounting can occur [1]. Now the
new aim of the agent is to maximize the discounted return over the future for 0≤ γ ≤ 1.∑∞

k=0 γ
k Rt+k+1

Figure 2.2: Discounted return formulation

For γ < 1, the sum 2.2 has a finite value as long as the reward sequence Rk is not an
infinite sequence [1]. ∑∞

i=0 γ
i = 1

1−γ

Figure 2.3: Geometric serie formulation of γ.

For the other extreme case γ = 0, the agent is not concerned with future rewards [1].
That is why we can also call this case myopic. The sole objective of a myopic agent is to
learn how to choose an action At so that the maximum Rt+1 can be reached [1]. In other
words, a myopic agent can maximize its return by maximizing each immediate reward. It is
important to understand that as γ approaches 1, the agent is becoming more concerned
about the future, so to say more farsighted, therefore the future rewards are taken into
consideration more strongly [11].

2.1.3 The Environment and Environment Model

The environment gives rise to rewards (2.1.2), which the learner is trying to maximize over
the future[1]. One instance of the reinforcement learning problem can be called a task,
which is defined by a complete specification of the environment [1]. At each time step t,
the learner gets a representation of the environment’s state, St ∈ S, where S corresponds
to all of the possible states, and accordingly select an action At ∈ A(St ), where A(St )
corresponds to all of the actions possible in state St [1]. One time step later, as a result of
the action selected in the previous time step, the learner receives a reward Rt+1 ∈ R ⊂ R,

12



2.1 Fundamentals of Reinforcement Learning

whereR represents the set of rewards for the new state St+1 [1]. In general, it can be said
that states are the bits of information that are used to make a certain decision, whereas
actions are the decisions that the learner is trying to learn how to make. In short, it can
be said that anything that cannot be changed by the agent willingly, can be taken as a part
of its environment. As it can be seen in Figure 2.4 the environment provides the reward
and the state information to the agent, and the agent is interacting with the environment
through its actions. But the agent has no possibility of affecting the environment, whereas
the environment affects the decisions the agent makes.

Figure 2.4: Agent environment interaction [1]

Model is a central part of the agent’s learning process, because it imitates the behaviour
of the environment surrounding the agent [1]. Let us assume the agent finds itself in state
S. Then, the model should contain the reward of the successor state S’ and the information
regarding the successor state S’ [11]. Moreover, the model helps the agent to plan ahead
of time, due to the fact that the learner can consider multiple scenarios [1]. However the
model is not always exact. On the contrary mostly it is very limited [11]. Reinforcement
learning methods are very advantageous in such cases, since they work using only data
retrieved from the system, without needing a model of its behaviour [12]. This is where
Markov property comes into play.

Figure 2.5: Agent and the environment. The elements related to the reward are illustrated in gray.

13



2 State of the Art

We cannot punish an agent for not knowing something, but only for forgetting something
that it once knew [1]. In a perfect scenario, a state signal should contain the past expe-
riences compactly, yet in a way that none of the relevant information is lost [1]. A signal
fulfulling these conditions can be called Markov, or has the Markov property. It can be also
seen that all of the necessary information can be found in the signal, which means that
the path or the history is irrelevant to the signal’s meaning [1]. Moreover, Markov states
provide the best foundation for action selection, it is as if the agent has the entire history
available before making a decision [1].

Markov decision processes are a central framework of model planning for reinforcement
learning problems. [13]. Markov decision process define a reinforcement learning task that
fulfills the Markov property mentioned earlier [11]. Action sets, one-step dynamics of the
environment and the state defines a finite MDP [1]. Given state S, action A, next state S’
and reward R, the probability of each possible S’, R tuple is given by the figure given below
[1].

p(S’, r | S, A) = pr {St+1 = S′, Rt+1 = R | St = S, At = A}

Figure 2.6: Probability of each (S’, R)

Figure 2.6 completely describes the finite MDP. Furthermore, expected rewards for the
state-action pairs can be represented according to figure 2.7.

R(S, A) = E[Rt+1 | St = S, At = A]

Figure 2.7: Expected rewards for (S, A) tuples

Finally, the expected rewards for the state-action-next state triples can be shown ac-
cording to figure 2.8.

R(S, A, S’) = E[Rt+1 | St = S, At = A, St+1 = S’] =
∑

R∈R Rp(S′,R|S,A)
p(S′|S,A)

Figure 2.8: Expected rewards for (S, A, S’) triples

2.1.4 Value Fuctions

Determining how acceptable a state is for the agent is very important to almost all re-
inforcement learning algorithms [1]. Therefore, these algorithms include value function
estimations, which determine how good a state is for the learner [1]. The phrase "how
good" is specified by the future rewards that can be collected over the long run [1]. Thus,
the value functions are determined according to policies (2.1.1) [1]. For MDPs a value
function VΠ(S) can be characterized as,

14



2.1 Fundamentals of Reinforcement Learning

VΠ(S) = EΠ [Gt | St = S] = EΠ [
∑∞

k=0 γ
k Rt+k+1 | St = S],

in which EΠ[•] defines a random variable while the agent follows the policy Π. Given
that there is a final state, this state should always get the value 0 [1].

Figure 2.9: Final state should get the value 0 [1]

Experience is a fundamental element in determining the value function VΠ [1]. For any
policy Π and any state S, the subsequent consistency condition applies between the value
of S and the value of the possible upcoming states:

VΠ =
∑

A Π(A | S)
∑

S′,R p(S′, R | S, A)[R + γVΠ(S′)]

Figure 2.10: Bellman equation for VΠ

which implies, that the selected action A ∈ A(S), next state S’ ∈ S, and finally the reward
R ∈ R [1]. The Bellman equation (Figure 2.10) declares that the value of the first state
must equal the discounted value of the state-to-come added with the reward expected over
the course [1]. The Bellman equation is a very critical basis for applicable VΠ [1].

Figure 2.11: Bellman equation visualised [1]

Discovering a policy that achieves peak reward over the future implies that the reinforce-
ment assignment is successfully solved. One can say that an optimal state-value function
should be as seen in Figure 2.12.

V∗(S) = maxΠVΠ(S)

Figure 2.12: Optimal value function

But is it really realistic to aim for the optimal state-value function? According to Richard
Sutton optimal policies can be only reached with extreme computational cost [1]. Is this

15



2 State of the Art

absolutely necessary? Due to the on-line nature of the reinforcement learning, approx-
imation of optimal functions is enabled [1]. Considering that, the aim is to get the best
approximation, the effort can be put in improving the prediction quality of the frequently en-
countered states [1]. The downside of this method is, naturally, there would be less effort
put into rare occurring states [1].

2.2 Temporal Difference Learning (TD)

If there is one idea that could be called irreplaceable to reinforcement learning, this would
be temporal difference learning [1]. Temporal difference is a combination of Monte Carlo
ideas and dynamic programming [1]. The term dynamic programming refers to a collec-
tion of algorithms that can be used to compute optimal policies given a perfect model of
the environment as a MDP [1]. Second, the term Monte Carlo methods refer to solving
reinforcement learning problem based on averaging sample returns [1]. As in Monte Carlo
methods temporal difference learning methods can learn directly from experience with-
out requiring a model [1]. As can also be seen in dynamic programming, also temporal
difference learning methods are able to improve their predictions based on the previous
predictions [1]. This means furthermore they do not need the final outcome of the process.

Temporal difference learning utilizes past experiences to perform predictions [1]. Given
some sequence following the policy Π, temporal difference methods update the approxi-
mation V of VΠ for the nonterminal states St happening in that sequence [1]. The simplest
method to update V is given in Figure 2.13.

V(St )← V(St ) + α[Rt+1 + γV(St+1) - V(St )]

Figure 2.13: TD(0)

As it can be also seen from Figure 2.13, when the increments calculated by 2.13 are
computed for every iteration and V is updated accordingly (while not reaching a terminal
state), V converges to a single numerical value [1]. V always converges deterministically,
given that α is chosen sufficiently small [1].

Predictions in temporal difference learning methods are very advantageous over pre-
dictions seen in other methods for several reasons. First, as mentioned earlier temporal
difference methods are able to determine a guess from another guess [4]. Second, tem-
poral difference learning methods do not require a model of the environment, the reward
sequence nor the next-state probability distributions [1]. Third, maybe the most impor-
tant feature, temporal difference learning methods only need one iteration to update its
prediction [1]. This enables the on-line updating, which will be discussed in the following
lines.

16



2.3 Eligibility Traces

Figure 2.14: Updates in TD

2.3 Eligibility Traces

One of the central and most basic mechanisms of reinforcement learning are eligibility
traces [1]. It can be said that eligibility traces yield much more successful results in terms
of learning [1]. Eligibility traces can be considered in two ways, the backward and the
forward view. The difference between these two is that the forward view is more theoretical
, whereas the backward view is more mechanistic [1].

Let us begin with an example, to clarify the meaning of n-step prediction. Assuming
that a two-step backup is aimed, this backup would be based on the first two rewards and
the approximated value of the state two-steps later [1]. It was already mentioned that TD
methods can learn to know guesses from guesses. However, this time the guess is not
one step later, but n steps later [1]. A corrected n-step truncated return, defined as

G(n)
t = Rt+1 + γRt+2 + ... + γn−1Rt+n + γnV (St+n),

is basically the n-step target for the system [1]. Moreover the similarity between far
sighted return and the n-step target is clearly visible. For n = 1 the truncated return takes
the form,

G1
t = Rt+1 + γV (St+1),

which would be used in the experimental part of this thesis [1] [4]. n-step target helps the
system to adjust the necessary increments to approximate V [1] . The required increment
can be computed according to,

∆Vt (St ) = α[Gn
t − Vt (St )],

where α is a positive step-size parameter [1] . These increments can be also considered
as updates. There are two kinds of updates. In on-line updating, the update is done during
the episode, as soon as there is enough data to compute the increment [1]. So, it can be

17



2 State of the Art

said that on-line methods come up with a solution by interacting with a system, therefore
applicable even if the data is not available beforehand [12]. In many cases, the agents
are placed in environments that are not known in advance, which makes it impossible to
collect data ahead of time [12].

Vt+1(S) = Vt (S) + ∆Vt (S)

Figure 2.15: Prediction update

On the other hand, in off-line updating, the increments are calculated and stored to be
put in use at the end of each episode [1] . It means that the approximation stays unaltered
until the end of the episode. Therefore, off-line methods are only applicable if the data is
already obtained [12].

The TD(λ) can be seen as a special case of averaging n-step returns [1] . This average
consists of all the n-step returns, each weighed proportional to λn−1, where 0 ≤ λ ≤ 1
[1]. The sum can be normalised with the factor 1 - λ for visual intent [4]. The resulting
formulation,

Gλ
t = (1− λ)

∑∞
n=1 λ

n−1G(n)
t ,

provides us a clear relationship between λ and the myopia of the agent. For λ = 1, one
gets the conventional return Gt , whereas for λ = 0 the one step backup is retrieved [1].

Figure 2.16: The forward view. Each state is updated according to upcoming rewards and states.[1]

In short, while taking the forward view, the agent has to scan through the future rewards
and decide how to combine them for the best outcome [11].

The backward view could be considered easier to understand and to implement, in com-
parison to forward view [1]. But why is the backward view so important? The forward view
is not applicable, because it tries to assess forward in time to compute each prediction.
This property makes the forward view acausal, therefore unimplementable [1]. In contrast
to the forward view, the backward view presents a causal and an incremental model that
can be replaced with the forward view [1]. Eligibility trace, an additional memory variable,
is introduced to link the backward view to each state [1]. The eligibility trace can also be
considered as a track record, where the past experiences are made available for the agent
to use. The random variable Et (s) ∈ R+ represents the eligibility trace for state S at the
time t [1]. On each iteration, all of the elements in the eligibility trace vector decay by the
factor λγ and the elements corresponding to the visited state are increased by 1 [1].

18



2.4 Approximation of Values for Large Applications

Et (S) =

{
λγEt−1(S) if S 6= St

λγEt−1(S) + 1 if S = St

}
(2.1)

The eligibility trace shown above is called an accumulating trace, because it accumu-
lates each time a state is visited, then decays steadily while the state is not visited [1].

Figure 2.17: Accumulating eligibility trace [1]

Furthermore at any time step, the trace vector records which states are recently visited,
where recently is considered in terms of λγ [1]. The eligibility trace marks the degree to
which each state is eligible of experiencing learning updates if a reinforcement learning
event occurs [1]. The eligibility trace enables the learner calculate TD-error for each state
[1].

δt = Rt+1 + γVt (St+1)− Vt (S)t

Figure 2.18: δt : Td-error

Td-error allows the agent to compute updates to all recently visited states [1].

∆Vt (S) = αδtEt (S) for all S ∈ S

Figure 2.19: Td-update

As can be seen in Figure 2.19, the backward view of the TD(λ) is looking at the current
td-error to update the prior state depending on the trace vector [1]. To summarise, on tasks
with large amounts of steps per episode, it is reasonable to use eligibility traces [1]. Yes,
methods with eligibility traces take more time to compute, in return they offer significantly
rapid-learning [1].

2.4 Approximation of Values for Large Applications

In previous sections, it was already studied how a approximated value function should look
like (2.1.4). But for large reinforcement learning problems, it is not realistic to expect pre-
determined value functions [12]. The reason behind this is that the agent might not have
encountered all of the possible states yet [1]. Therefore, the weight vector w is introduced
[1]. The vector w can be considered as a group of parameters that contains generalised
episode information. Normally, the length n of w is much less than the total number of

19



2 State of the Art

Figure 2.20: The backward view looks at the current td-error and the trace vector to create incre-
ments [1].

features in states, and altering one element of w affects many states [1]. Thus, w provides
the necessary abstraction to make the agent adaptable to different scenarios.

Gradient-descent methods are one of the most commonly used methods for value func-
tion approximation and on-line learning [1]. In gradient-descent methods, w is a column
vector with a fixed size and real valued elements [1].

w = (w1, w2, ..., wn)T

Figure 2.21: Components of w

An important question that arises in relation to this is how can we implement the
gradient-descent methods to the backward view of the TD(λ). To come up with the updates
necessary to compute the increments, gradient-descent methods also use the td-error and
a trace vector. The backward view is given by the Figure 2.22, where δt is the td-error and
the et is the trace vector.

wt+1 = wt + αδtet

Figure 2.22: Weight update

et = (e1, e2, ..., en)T

Figure 2.23: Eligibility trace vector

Introducing the approximated value function V̂ , the td-error can be computed [1].

δt = Rt+1 + γV̂ (Vt+1, wt )− V̂ (St , wt )

Figure 2.24: Td-error

Finally, the trace vector updates can be computed according to Figure 2.25.
In linear methods, the main aim is to derive a linear relationship between V̂ and w. For

every state S, there is a vector of features,

20



2.4 Approximation of Values for Large Applications

et = γλet−1 +∇wt V̂ (St , wt )

Figure 2.25: Trace vector update

x(S) = (x1, x2, ..., xn)T

with the same number of elements as w [1]. Given that the features are already built, V̂
is given by Figure 2.26.

V̂ (S, w) = wT x(S) =
∑n

i=1 wixi (S)

Figure 2.26: Value approximation

Linear approximation methods are very efficient in terms of computation [1]. Moreover,
the previously mentioned TD(λ) algorithm is proven to converge with the linear function
approximation, if the step-size parameter is reduced over time [1]. In the next subsection,
the methods to create feature vectors will be discussed.

2.4.1 Tile Coding

To apply the reinforcement learning algorithms with a continuous state space, coarse cod-
ing is introduced. Coarse coding is a special way of showing overlapping features in binary
numbers [8]. Tile coding is a type of coarse coding that is perfectly suited for on-line learn-
ing [4]. Furthermore, tile coding converts continuous variables into sparse, binary repre-
sentations [4]. This transformation helps the learner to avoid "the curse of dimensionality",
because it reduces the size of w [14].

Figure 2.27: Coarse coding visualized [1]

An observable advantage of tile coding is that the number of features can be rigidly
controlled and does not depend on the state [1]. There is always one feature available
in each tiling, so the total amount of features present is always equal to the number of
tilings [1]. Accordingly, the step-size parameter, α, can be set in a very effortless way. For
example, if α is chosen as 1

m , where m is the number of tilings, this results in one-trial

21



2 State of the Art

learning [1]. However, it is also possible to move slower in terms of learning. For example,
α can be chosen as 0.1

m , where the agent moves only one-tenth of the way to the target [1].
Because tile coding uses binary features, the value function approximation is very trivial

and cheap to compute [1]. Instead of performing n multiplications and additions, where n
is the size of the w, one can simply compute the indices in w that correspond to m and
perform m additions [1]. Moreover, the eligibility trace (2.2) computation is also simplified
for the same reason [1].

22



3 Statistical Background

3.1 Generalised Cross Validation

Given that there is a model with a normal distributed response only containing one nonlin-
ear function

Yi = F (Xi ) + εi

where εi ∼ N (0, σ2) are the error terms [15]. Accordingly, the hat matrix H projecting
the data Y on the fitted values, Ŷ = HY is calculated by

H = X(X’X + λP)−1X’

where X is the respective design and P is the penalty matrix [15]. In order to find λ,
cross-validation can be used but one observation should be always left out [15]. Which
results in the criterion

CV = 1
n

∑n
i=1(Y − Ŷ−i

λ (Xi ))2

to be minimised over λ, where Ŷ−i
λ is projected without obervation (Yi ,Xi ) [15].

Ŷ−i
λ =

∑n
j=1,j 6=i

Hij
1−Hii
Yj

Figure 3.1: Ŷ−i
λ formulation

As can be seen in in Figure 3.1, Ŷ−i
λ can be directly estimated from the matrix H. Using

Figure 3.1 and Figure 3.1 CV can be written as

CV = 1
n

∑n
i=1(Yi−Ŷλ

1−Hii
)2

where Hii is the diagonal elements of the matrix H [15]. By substituting Hii by their
average value tr (H)

n the generalised cross-validation is attained [15].

GCV = 1
n

∑n
i=1(Yi−Ŷλ

1− tr (H)
n

)

Figure 3.2: Generalised cross validation formulation

23



3 Statistical Background

3.1.1 Cross Validation

Cross validation is a direct estimate for prediction error [15]. In cross validation, the data
is split into many parts. For example, in 5-fold and 10-fold cross validation, the data is split
into 5 and 10 parts respectively [15]. Moreover the split up data is sliced in a way that the
resulting parts are disjunct [15]. That means, every observation is a member of only one
part [15].

CVm = 1
n

∑m
i=1

∑ni
j=1(Yij − F̂−i (Xij ))2

Figure 3.3: CVm criteria

The criteria CVm can be calculated as it is seen in Figure 3.3, where F̂−i (Xij ) denotes
the estimate without using the i-th part [15]. Therefore, the estimation is always done
by using m-1 parts whereas the validation is carried out by the discarded part [15]. This
sequence is performed m times always omitting another part [15].

3.2 Mean Absolute Error

Statistical comparisons of model estimates Pi , i ∈ N, with matched observations Oi , i ∈
N, belong to the most basic means of evaluating model performance [16].

ei = Pi − Oi

Figure 3.4: Error in terms of prediction and observation

The average model-prediction error can be written as

ēγ = [
∑n

i=1 wi |ei |γ/
∑n

j=1 wi ]
1
γ

where γ ≥ 1 and wi is a scaling assigned to each |ei |γ [17].
Mean absolute error expresses the average model prediction error in the units of the

variable of interest [16]. For γ=1 the average error can be calculated with

MAE = [n−1 ∑n
i=1 |ei |]

which, naturally, derives from the absolute value of each difference [16]. The mean
absolute error can be used to characterize uniformly distributed errors [18].

3.3 Classificaton Error

A training sample Dn is made of n observations Dn = {(x1, y1), (x2, y2), ..., (xn, yn)}, where
xi is a prediction and yi is a label [19]. To compute the classification error, one has to first

24



3.4 F1 Score

round the prediction xi to the nearest integer [4]. By comparing the rounded prediction and
the label, the number f is derived.

f =

{
f + 1 if xi 6= yi

f else

}
(3.1)

By dividing the number f into the total number of observations, n, the classification error
E can be attained.

E = f
n

Figure 3.5: Classification error formulation

3.4 F1 Score

Relevance is a very important concept for f1 score. However, relevance is a subjective topic
[20]. We can define the set A, which represents all of the relevant information available at
that time [21]. However the relevance cannot be considered on its own, therefore the set
B is introduced, which contains all of the retrieved information at that time [21].

Relevant Non-relevant
Retrieved A ∩ B ∼ A ∩ B
Not-retrieved A ∩ ∼ B ∼ A ∩ ∼ B

Now with the help of the table above, two elements required to calculate the f1 score can
be derived.

3.4.1 Recall

Recall is the fraction of real positive cases that are correctly predicted as positive [22]. As
an analogy to the table above, recall can be represented as

Recall = |A∩B||A| .

3.4.2 Precision

Precision is the fraction of predicted positive cases that are correctly real positives [22]. To
make it more intuitive, precision can be also shown by Figure 3.6.

25



3 Statistical Background

Precision = |A∩B||B|

Figure 3.6: Precision analogy

3.4.3 Final Formulation

p = 2 x ( precisionxprediction
precision+prediction )

Figure 3.7: F1 score formulation

As it can be seen from the figure above, f1 score is a measure of test’s accuracy [22].
It considers both precision and recall to calculate the score p [22]. Thus, f1 score can be
described as a weighted average of the precision and recall, where an f1 score is between
1 and 0 [22].

26



4 Nexting with Temporal Difference
Learning

4.1 Nexting

Psychologists have asserted that people and other animals regularly make large numbers
of short-term predictions about their sensory input [23]. For example, when we hear a
melody we predict what the next tone will be or when the next downbeat will occur and are
annoyed when our predictions are not accurate [8]. When we ride a bike, ski, or rollerblade
we have finely calibrated rapid predictions of whether we fall and of how our trajectory will
change in a turn [8]. In all these situations, we constantly try to predict what will happen to
us next [8]. Making straightforward, personal and short-term predictions has been called
nexting [24].

Nexting predictions are unique to one individual and to their immediate sensory signals
or state variables [8]. Unlike what Modayil et al. described as complex decision making
processes, nexting predictions involve less cognition and deliberation, one has to continu-
ally make massive amounts of small decisions [8].

The ability to predict and anticipate has been identified as a key part of intelligence [25].
Nexting can be considered as the most primitive kind of prediction; preceding, and possibly
the building block for, all others [8].

The nexting approach was inspired by two earlier psycological experiments [8].
Classical conditioning is known as conditioning experiments where the subject is to learn
and make simple predictions at a range of short time scales [26]. Predictions of upcom-
ing shock to a body part may be seen in the retraction of the same body part before-
hand or in the increase of the heart beat [8]. Another related experiment is known as
sensory preconditioning, in which it has been shown that animals learn the relationships
between stimuli even though none of them can be classified as good or bad or bound to
an intuitive response [27]. In such cases, predictions are made, however not expressed in
behaviour until some later stage of the experiment connects them to a response [8].

To be able to next is to have some elemental knowledge about how the environment
works in interaction with one’s body [8]. It requires some type of a model of the environ-
ment’s dynamics [8]. Therefore, to be able to learn to next, to recognize any inaccurate
predictions and constantly update your nexting, is to be aware of one’s world in a powerful
way [8].

27



4 Nexting with Temporal Difference Learning

4.2 Experimental Setup

Adequate information about the momentary performance of the system is necessary to
control a welding process [4]. However, such performance measures are not directly avail-
able in laser welding processes. Therefore, the nexting algorithm is introduced to estimate
the effectiveness of the process control [8].

intialize : w , e, s

repeat :

observe r , s′

δ ← r + γwT x(s′)− wT x(s)

e← γλe + x(s)

w ← w + αδe

s ← s′

Figure 4.1: The nexting algorithm

The nexting algorithm is given in Figure 4.1. The symbols that are used in the algorithm
will be defined in the following lines. The vector w represents the weight vector of the
value function, whereas s is the current state vector. Moreover, the reward is represented
by r and x(s) indicates the tile coded state vector. Additionally, the vector e shows the
eligibility trace vector and the next state is represented by s’. The parameter α serves as
the learning rate, or the step-size, while the discount factor is represented by γ. Finally,
the parameter λ shows the eligibility trace decay factor.

Nexting makes use of the temporal difference learning with linear function approximation
and general value functions (2.4) [4]. Thus, the algorithm is able to make predictions about
inconsistent non-reward or reward signals at multiple time scales [4]. For the algorithm
represented above, two discount rates, γ = 0 and γ = 0.8 will be considered. With γ = 0, the
algorithm predicts the immediate pseudo-reward, which we called myopic earlier. Whereas
with γ = 0.8, predictions become more far-sighted. Considering the approximation γ =
1 − 1

T , where T is time steps, it can be easily seen that for γ = 0.8, T corresponds to 5
[8]. This is an important value that shows us the learner is taking into account the next five
time steps as well.

To compare the many values that were chosen for λ, the decay parameter, a grid search
consisting of the values taken from Richard Sutton’s book, "Reinforcement Learning : An
Introduction", was performed [1]. These values were 0.6, 0.8, 0.9, 0.95, 0.995 respectively.

For the final parameter step-size α, the approximation 1
m was used, where m is the

number of active tiles within the tile coded state vector [4]. Moreover, according to Sutton,
the step-size parameter α = 0.1

m delivers accurate results as well. Therefore, this value
was also included within the experiment [1]. Additionally, to provide a smoother transition
between step-size parameters, α = 0.2

m , α = 0.4
m and α = 0.8

m were considered as well.

28



4.2 Experimental Setup

The algorithm was trained on a zinc-coated laser welding process in an overlap position
[4]. The laser was calibrated according to material, i.e., a power of 2000 W and a velocity
of 3.5 m/min [4]. Unfortunately, the welding seam was contaminated with grease on two
different spots [4]. The contamination affects the quality of welding because the grease
ignites once the laser hits it [4]. This can result in an insufficient joint, thus decreasing
the laser quality for this particular section [4]. To provide input to the learner, welds were
evaluated by an expert and labeled, which means each process is classified by its quality,
according to EN ISO 13919-1:1996 [4]. These labels range from 1 to 4, where 1 shows an
insufficient laser weld and 4 indicates the ideal laser weld [4]. These labels serve as the
pseudo-reward signal r [4].

For the tile coded state vector x(s), Richard Sutton’s tile coding software1 was selected
as the tile coding strategy. Given a float array, this software provides non-overlapping
tilings. The dataset consisted of the 16 deep neural network (DNN) features from the
camera image and the photodiode data, which resulted in a 19 dimensional state vector.
Furthermore, the dataset used the DNN features from a fully connected auto-encoding
neural network. The tile coding software was used with different memory-sizes to test the
generalisation abilities. These were 1000001, 750001, 500001, 250001, 100001 respec-
tively.

4.2.1 How does the algorithm work?

Based on the current state, s, the algorithm calculates the predicted value with the help of
the weight vector w (2.4) [4]. The calculated value, wT x(s), is compared to the true quality,
r, and the discounted prediction for the upcoming state γwT x(s’), where x(s’) represents
the next observed state, in order to calculate the temporal difference error δ (td-error) [4].
The weights are then updated accordingly to decrease the td-error [4]. The quality of the
prediction is improved towards the so called td-fixpoint [4].

r + γwT x(s′) = wT x(s)

Figure 4.2: Td-fixpoint

The updates are done subsequently for each time step in the dataset [4]. As the weights
shift towards the td-fixpoint, the weight vector becomes an indicator of the feature to quality
relationship within the dataset [4]. After the weight vector reaches the point of saturation,
i.e. the algorithm reaches the td-fixpoint, the learned weights and therefore the experience
stored within can be applied to new processes [4].

1https://webdocs.cs.ualberta.ca/ sutton/tiles2.html

29





5 Results

The algorithm was implemented in C++ and ran on two separate computers. The first
computer was a laptop with the following specifications: Intel Core i5 CPU with 2.7 GHz
clock rate and 8 GB 1867 MHz DDR3 RAM. The second was a desktop PC with the
following specifications: Intel Core i5-4570 CPU with 3.2 GHz clock rate and 16 GB DDR3
RAM.

Throughout the experiment, the approach was assessed using three error measures.
The first and the most suitable measure, given that the labels are rank-ordered, is the
mean absolute error, or the distance error (3.2), between the normalised prediction and
the label. To be able to visually compare the results, the normalisation factor 1 - γ was
used [4]. To provide a correlation to the supervised learning, classification error (3.3) was
also provided. Finally, to provide a sense of accuracy the f-score was included (3.4). To
calculate the f-score, the classification error was used. Weight and trace vectors were
selected as column vectors and initialised with zeros. Finally, a bias feature was included,
which means that one of the features in x(s) and x(s’) was always 1 [8]. Unfortunately, the
dataset had some missing welds, and therefore this resulted in a different number of welds
in different folds of the dataset (3.1).

5.1 Learning From One Weld

First of all, it is important to know if the algorithm is capable of learning at all. To test and
prove this point, the algorithm was trained on a selected weld and then tested to see if
it was able to learn this process. Due to the additional challenges in learning introduced
by contaminated welds, one of the contaminated welds was selected for this experiment.
The training consisted of 1000 iterations through the training set. To only concentrate on
the algorithm’s learning capability, γ was set to zero, which also implies that the choice of
λ has no effect on the prediction. For this experiment a relatively small memory size of
10001 was chosen because the algorithm did not have to store large amounts of informa-
tion.

α = 0.1 / m α = 1 / m
Mean Absolute Error 0 0.01
Classification Error 0 0
F-score 1 1

31



5 Results

Figure 5.1: α = 1
m and γ = 0 (left), α = 0.1

m and γ = 0 (right)

As can be seen from both of the plots the algorithm was capable of leaning the process
and accurately predicted the true quality. Now we can move on to a more complicated
test. After seeing these results, the question that comes to mind is what would happen if
the algorithm was trained on multiple welds and then asked to predict one of these welds.
This will be discussed in the following section.

5.2 Learning From Multiple Welds

As can be seen, the algorithm is capable of learning from a single process. According
to Richard Sutton, we cannot punish an agent for not knowing something, but for having
forgotten something that it once knew [1]. In this experiment, the goal was to find an initial
memory-size to perform cross-validation. To conduct this experiment, a training set of 60
welds was prepared. The algorithm is trained on the training for 100 iterations and then
asked to predict one of the welds within the training set. Again the parameter γ was set
to zero. The training set that was prepared using the dataset consisted of 108505 states
which made it unreasonable to use the memory size 10001. Therefore, a memory size of
1000001 was selected.

32



5.3 Predicting Unknown Welds

Figure 5.2: The plots that are provided in the previous page represent the cases α = 0.1
m (left) and

α = 1
m (right). The chart above shows the results for these cases.

As can be seen from the plots, the chosen memory-size is sufficient to contain enough
information about the trained welds because the algorithm is asked to predict multiple la-
bels within one weld. This means that the weight vector should contain enough information
about different labels to achieve an accurate prediction. Now that we have seen that the
algorithm is able to learn and predict the trained process with the selected memory-size,
the challenge becomes predicting unknown processes.

5.3 Predicting Unknown Welds

The algorithm was tested to see the performance on unknown welds. To conduct this part
of the experiment, 5-fold cross-validation was used (3.1.1). The dataset consisted of 100
welds. The algorithm was trained until it reached peak performance on the test set. In
this case, the performance was in terms of mean absolute error. To make sure that the
rewards are evenly distributed within the dataset, the dataset was shuffled. Furthermore,
it was tested to make sure that every time the program ran it produced the same shuffle.
To eliminate the luck factor, the algorithm was tested on two different welds. Again, the
memory-size 1000001 was selected. For the cases given below γ was set to zero.

α Mean Absolute Error
0.1 / m 0.12
0.2 / m 0.2
0.4 / m 0.32
0.8 / m 0.39
1 / m 0.39

33



5 Results

For all of the cases below the discount parameter, γ, was taken as 0.8. This means
the predictions were more far sighted. In this case, λ also starts to affect the predictions.
Therefore, different values of λ were tested and the results were compared. In this setting,
ideal return also becomes relevant. It was mentioned earlier that far sightedness causes
the algorithm to consider more steps ahead of time, and therefore, it is reasonable to
expect the algorithm to react to the changes beforehand. Thus is the ideal return very
important, because it provides a comparison function. Naturally, the mean absolute error
was calculated considering the ideal return. Furthermore, in the given setting the classi-
fication error has no specified meaning; therefore, it was not considered [4]. As a logical
consequence, the f-score was not considered any further.

λ = 0.6 λ = 0.8 λ = 0.9 λ = 0.95 λ = 0.995
α = 0.1 / m 0.05 0.06 0.09 0.11 0.12
α = 0.2 / m 0.09 0.14 0.17 0.18 0.25
α = 0.4 / m 0.29 0.31 0.4 0.4 0.4
α = 0.8 / m 0.39 0.4 0.4 0.4 0.4
α = 1 / m 0.39 0.4 0.4 0.4 0.4

34



5.3 Predicting Unknown Welds

Figure 5.3: Resulting plot for each fold on respective test set for α = 0.1
m and γ = 0.

35



5 Results

5.4 Memory-Size Search

First and foremost, memory-size is vital for generalisation. If the right memory-size is
chosen, the given information can be applied to unknown processes as well. As the
memory-size gets larger, the resolution gets higher which can result in inability to gen-
eralise because the tile coded state vectors do not overlap at some points. Therefore,
an ideal memory-size should be able to provide enough specification to differentiate
processes; on the other hand, it should be compact enough so that similar states can be
stored at the same memory location. Furthermore, given an equal time interval, using less
memory-size enables more predictions to be done compared to the larger memory-size
version. This can also lead to the use of less resources if the number of predictions are
kept the same. For this part of the experiment multiple memory-sizes were tested. The
goal was to find the smallest possible memory-size that is required to learn the welds
accurately. The parameters α = 0.1

m , γ = 0.8 and λ = 0.6 were used to perform this ex-
periment. Again, 5-fold cross-validation was used and the dataset consisted of 100 welds.

Memory-size Mean Absolute Error
100001 0.052
250001 0.049
500001 0.048
750001 0.046

36



5.4 Memory-Size Search

Figure 5.4: Resulting plot for each fold on respective test set for memory-size 100001

37



5 Results

5.5 Other Datasets

In the previous subsections a comparison of memory-sizes and parameters were per-
formed. In all of the cases, the only constant was the dataset. Next, the experiment was
conducted with four different datasets1. To perform this task, the parameters α = 0.1

m , γ
= 0.8 and λ = 0.6 were used. Furthermore, the memory-size was set to 100001. Again,
5-fold cross-validation was used to conduct the experiment. The following neural networks
were used to create the datasets:

Next, a nearest neighbour search was performed to combine the sensory readings
with the 16 DNN features obtained from the dataset. This resulted in a 19 dimensional
state-vector. 100 welds were taken from each dataset to perform each experiment.

Dataset Mean Absolute Error
Fully Connected 0.037
Convolutional Var = 0 0.027
Convolutional Var = 0.25 0.027
Convolutional Var = 2 0.027

1The fully connected auto-encoding neural network used in this setting was different than the previously
mentioned one.

38



5.5 Other Datasets

39



5 Results

Figure 5.5: The resulting plot for each fold on respective test set for the convolutional neural net-
work with variance = 2

5.6 Table of Results

In light of the results gathered from the conducted experiments, the final parameters were
chosen as α = 0.1

m , γ = 0.8 and λ = 0.6. Furthermore, the final memory-size was chosen
as 100001. The table given below compactly summarises all of the experiments done in
this study.

α γ λ Memory-size Mean Abso-
lute Error

Neural Net-
work

Learning from One
Weld

0.1 / m 0 - 10001 0 Fully Con-
nected 1

1 / m 0 - 10001 0.01 Fully Con-
nected 1

Learning from Mul-
tiple Welds

0.1 / m 0 - 1000001 0.18 Fully Con-
nected 1

1 / m 0 - 1000001 0.30 Fully Con-
nected 1

0.1 / m 0.8 0.6 1000001 0.05 Fully Con-
nected 1

0.2 / m 0.8 0.6 1000001 0.09 Fully Con-
nected 1

0.4 / m 0.8 0.6 1000001 0.29 Fully Con-
nected 1

40



5.6 Table of Results

0.8 / m 0.8 0.6 1000001 0.39 Fully Con-
nected 1

1 / m 0.8 0.6 1000001 0.39 Fully Con-
nected 1

0.1 / m 0.8 0.8 1000001 0.06 Fully Con-
nected 1

0.2 / m 0.8 0.8 1000001 0.14 Fully Con-
nected 1

0.4 / m 0.8 0.8 1000001 0.31 Fully Con-
nected 1

Predicting Un-
known Welds

0.8 / m 0.8 0.8 1000001 0.4 Fully Con-
nected 1

1 / m 0.8 0.8 1000001 0.4 Fully Con-
nected 1

0.1 / m 0.8 0.9 1000001 0.09 Fully Con-
nected 1

0.2 / m 0.8 0.9 1000001 0.17 Fully Con-
nected 1

0.4 / m 0.8 0.9 1000001 0.4 Fully Con-
nected 1

0.8 / m 0.8 0.9 1000001 0.4 Fully Con-
nected 1

1 / m 0.8 0.9 1000001 0.4 Fully Con-
nected 1

0.1 / m 0.8 0.95 1000001 0.11 Fully Con-
nected 1

0.2 / m 0.8 0.95 1000001 0.18 Fully Con-
nected 1

0.4 / m 0.8 0.95 1000001 0.4 Fully Con-
nected 1

0.8 / m 0.8 0.95 1000001 0.4 Fully Con-
nected 1

1 / m 0.8 0.95 1000001 0.4 Fully Con-
nected 1

0.1 / m 0.8 0.995 1000001 0.12 Fully Con-
nected 1

0.2 / m 0.8 0.995 1000001 0.25 Fully Con-
nected 1

0.4 / m 0.8 0.995 1000001 0.4 Fully Con-
nected 1

41



5 Results

0.8 / m 0.8 0.995 1000001 0.4 Fully Con-
nected 1

1 / m 0.8 0.995 1000001 0.4 Fully Con-
nected 1

0.1 / m 0 - 1000001 0.12 Fully Con-
nected 1

0.2 / m 0 - 1000001 0.2 Fully Con-
nected 1

0.4 / m 0 - 1000001 0.32 Fully Con-
nected 1

0.8 / m 0 - 1000001 0.39 Fully Con-
nected 1

1 / m 0 - 1000001 0.39 Fully Con-
nected 1

0.1 / m 0.8 0.6 100001 0.052 Fully Con-
nected 1

Memory-size
Search

0.1 / m 0.8 0.6 250001 0.049 Fully Con-
nected 1

0.1 / m 0.8 0.6 500001 0.048 Fully Con-
nected 1

0.1 / m 0.8 0.6 750001 0.046 Fully Con-
nected 1

0.1 / m 0.8 0.6 100001 0.027 Convolutional
Var = 0

Other Datasets 0.1 / m 0.8 0.6 100001 0.027 Convolutional
Var = 0.25

0.1 / m 0.8 0.6 100001 0.027 Convolutional
Var = 2

0.1 / m 0.8 0.6 100001 0.037 Fully Con-
nected 2

42



6 Discussion

In this thesis the Nexting algorithm introduced by Günther et al. was tested on a wide class
of specific welding problems. The representation acquired from each neural network was
given to the learner as a direct input. The reasoning behind this was to see if the system
was able to estimate the missing information about the welding process, in other words,
the quality of the welding seam. This is important because it is not possible to measure
the seam quality directly during a welding process.

As can be seen in the previous chapter, the algorithm demonstrated its ability to learn
the welding process dynamics and not only reproduced the learned information, but also
predicted unknown processes. Even with little amount of training on the training set, the
learner was able to follow the steps of the trained process correctly. This can be seen
by looking at the classification error as well. Furthermore, by making temporally extended
predictions, the process dynamics can be anticipated and the system can react to changes
in advance. These reactions are very vital to an autonomous laser welding system, be-
cause they can be used as a response in order to adjust the laser power. The algorithm
was able to deliver accurate results for this case as well.

The results of different experiments show that more aggressive parameters are not well-
suited for the datasets used. By using smaller parameters, the results were improved
drastically. Consequently, one can see that if the right parameters and memory-size are
chosen the algorithm is able to yield very accurate results for each dataset.

43





7 Conclusion

In this thesis, it has been shown that with the right parameters the nexting algorithm is
capable of gathering knowledge about given processes. For this parameter set, the algo-
rithm is able to not only predict known processes, but unknown ones as well. Therefore,
this study responds to one of the largest problems in machine learning, the problem of
generalisation.

The cross-validation framework, that was developed to perform the experiments, was
based on the state-of-the-art approach Nexting. The main goal was to keep the frame-
work flexible in order to enable the user to use it with different datasets and for variety of
scenarios. Through different experiments and user trials, this goal was achieved.

The data gathered in the experiments indicate that parameter choice plays a crucial role
in predictions. Depending on the parameters, the performance can vary from limited to
almost perfect. For the parameters α = 0.1

m , γ = 0.8 and λ = 0.6, the best scores were
reached. A memory-size of 100001 was sufficient to contain enough information about the
welds. It was seen that the features extracted from the convolutional neural networks out-
performed the features acquired from the fully connected auto-encoding neural networks.

Following this thesis, two things can be done. First, one can test for even smaller
memory-sizes to see if enough information can be still held within. The advantages of
a smaller memory-size was discussed earlier, and one can say that it also improves the
user experience because it helps to provide faster results. Second, experiments can be
conducted for smaller values of the parameter α to see if the results improve.

It was mentioned earlier that finding optimal parameters for a machine learning algorithm
is not an easy task . This study aimed to solve this issue using cross-validation. It was
seen that with the right parameters, after training the weight vector became an indicator of
the feature to quality relationship within the dataset. Therefore, the algorithm was able to
deliver accurate predictions.

45





Bibliography

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[2] Pedro Domingos. A few useful things to know about machine learning. Communica-
tions of the ACM, 55(10):78–87, 2012.

[3] Mark Jager, Silke Humbert, and Fred A Hamprecht. Sputter tracking for the auto-
matic monitoring of industrial laser-welding processes. IEEE Transactions on Indus-
trial Electronics, 55(5):2177–2184, 2008.

[4] Johannes Günther, Patrick M Pilarski, Gerhard Helfrich, Hao Shen, and Klaus
Diepold. Intelligent laser welding through representation, prediction, and control
learning: An architecture with deep neural networks and reinforcement learning.
Mechatronics, 34:1–11, 2016.

[5] Georg Schroth, Ingo Stork genannt Wersborg, and Klaus Diepold. A cognitive sys-
tem for autonomous robotic welding. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3148–3153. IEEE, 2009.

[6] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski,
Adam White, and Doina Precup. Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction. In The 10th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages 761–
768. International Foundation for Autonomous Agents and Multiagent Systems, 2011.

[7] Joseph Modayil, Adam White, Patrick M Pilarski, and Richard S Sutton. Acquiring
a broad range of empirical knowledge in real time by temporal-difference learning.
In 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pages 1903–1910. IEEE, 2012.

[8] Joseph Modayil, Adam White, and Richard S Sutton. Multi-timescale nexting in a
reinforcement learning robot. Adaptive Behavior, 22(2):146–160, 2014.

[9] Jiaqing Shao and Yong Yan. Review of techniques for on-line monitoring and inspec-
tion of laser welding. In Journal of Physics: Conference Series, volume 15, page 101.
IOP Publishing, 2005.

[10] J Kroos, U Gratzke, M Vicanek, and G Simon. Dynamic behaviour of the keyhole in
laser welding. Journal of physics D: Applied physics, 26(3):481, 1993.

47



Bibliography

[11] Florian Mulzer. Reinforcement Learning und Support Vector Machines: Eine Über-
sicht. VDM Publishing, 2008.

[12] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforce-
ment learning and dynamic programming using function approximators, volume 39.
CRC press, 2010.

[13] Sertan Girgin Manuel Loth, Rémi Munos Philippe Preux, and Daniil Ryabko. Recent
advances in reinforcement learning. 2008.

[14] Richard S Sutton. Generalization in reinforcement learning: Successful examples
using sparse coarse coding. Advances in neural information processing systems,
pages 1038–1044, 1996.

[15] Christiane Belitz. Model selection in generalised structured additive regression mod-
els. PhD thesis, lmu, 2007.

[16] Cort J Willmott and Kenji Matsuura. Advantages of the mean absolute error over the
root mean square error in assessing average model performance. Climate research,
30(1):79–82, 2005.

[17] Cort J Willmott, Steven G Ackleson, Robert E Davis, Johannes J Feddema, Kather-
ine M Klink, David R Legates, James O’donnell, and Clinton M Rowe. Statistics for
the evaluation and comparison of models. 1985.

[18] Tianfeng Chai and Roland R Draxler. Root mean square error or mean absolute error?
arguments against avoiding rmse in the literature. Geoscientific Model Development,
7(3):1247–1250, 2014.

[19] Ji-Hyun Kim. Estimating classification error rate: Repeated cross-validation, repeated
hold-out and bootstrap. Computational Statistics & Data Analysis, 53(11):3735–3745,
2009.

[20] William S Cooper. A definition of relevance for information retrieval. Information
storage and retrieval, 7(1):19–37, 1971.

[21] CJ Van Rijsbergen. Information retrieval 2nd edition butterworths. London available
on internet, 1979.

[22] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, in-
formedness, markedness and correlation. 2011.

[23] Giovanni Pezzulo. Coordinating with the future: the anticipatory nature of represen-
tation. Minds and Machines, 18(2):179–225, 2008.

[24] Daniel T Gilbert and Timothy D Wilson. Prospection: Experiencing the future. Sci-
ence, 317(5843):1351–1354, 2007.

48



Bibliography

[25] Jeff Hawkins and Sandra Blakeslee. On intelligence. Macmillan, 2007.

[26] Ivan Petrovich Pavlov. Conditional reflexes: An investigation of the physiological ac-
tivity of the cerebral cortex. H. Milford, 1927.

[27] WJ Brogden. Sensory pre-conditioning. Journal of Experimental Psychology,
25(4):323, 1939.

49


	Introduction
	State of the Art
	Fundamentals of Reinforcement Learning
	Policy
	Reward and Return Function
	The Environment and Environment Model
	Value Fuctions

	Temporal Difference Learning (TD)
	Eligibility Traces
	Approximation of Values for Large Applications
	Tile Coding


	Statistical Background
	Generalised Cross Validation
	Cross Validation

	Mean Absolute Error
	Classificaton Error
	F1 Score
	Recall
	Precision
	Final Formulation


	Nexting with Temporal Difference Learning
	Nexting
	Experimental Setup
	How does the algorithm work?


	Results
	Learning From One Weld
	Learning From Multiple Welds
	Predicting Unknown Welds
	Memory-Size Search
	Other Datasets
	Table of Results

	Discussion
	Conclusion

