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The susceptibility of plants to microbial pathogens involves molecular interactions between 33 

microbial effectors and host targets. In most cases, pathogen effectors prevent recognition or 34 

suppress host defence. However, successful suppression of host defence is not always 35 

sufficient for pathogenesis, which requires further host components that meet the demands of 36 

pathogen development and nutrition. Additionally, the plants possess negative regulators of 37 

immune response to avoid autoimmunity and unnecessary investment into defence in 38 

environments with little disease pressure. Consequently, disease susceptibility can be lost by 39 

mutation of negative regulators of defence but also of other host factors, that otherwise 40 

support the successful pathogen. Here, we review genetic loss of susceptibility to adapted 41 

microbial pathogens and focus on examples of lost susceptibility to powdery mildew. We 42 

http://onlinelibrary.wiley.com/doi/10.1111/ppa.12103/abstract


discuss costs of resistance and potential consequences for application in breeding and 43 

biotechnology.  44 

45 



Introduction 46 

Plant resistance is common in nature to diseases caused by microbial agents. This is 47 

explained by the fact that microbes have to evolve pathogenicity and virulence factors to 48 

recognize a plant as a suitable host and to overcome preformed and pathogen-induced plant 49 

defence. Co-evolution of the pathogen with its hosts can cause a high degree of adaptation to 50 

a limited number of plants (Jones & Dangl, 2006). Host specificity is particularly wide-51 

spread amongst biotrophic fungal pathogens, which develop long-lasting interactions of 52 

specialized feeding cells, haustoria, with living host cells.  53 

Once a pathogen has overcome preformed defence barriers, it faces pathogen-induced plant 54 

defence. This is activated by recognition of either the pathogen itself or alterations of host 55 

cell structures or functions by the pathogen. Plants monitor their cell surface for molecular 56 

patterns that indicate the presence of non-self. This happens via the detection of either 57 

conserved non-self molecules, designated as microbe- or pathogen-associated molecular 58 

patterns (MAMPs or PAMPs), or by detection of non-self activities that release endogenous 59 

so-called damage-associated molecular patterns (DAMPs) from plant structures. Pattern 60 

recognition receptors and receptor-like proteins are the most prominent proteins that function 61 

in these processes. Their ligands are PAMPs such as bacterial flagellin or fungal chitin, or 62 

DAMPs such as plant-derived peptides or oligosaccharides (Fig. 1a). General non-self 63 

recognition appears partially redundant and is fundamental to diverse kinds of pathogen race-64 

nonspecific resistance (Boller & Felix, 2009). For suppression of induced defence, pathogens 65 

secrete effector molecules, which can result in effector-triggered susceptibility (ETS, Figs. 66 

1b, 1d). Effectors normally function in the pathogen but change the host´s response to 67 

pathogen infection in a way that supports compatibility. Consequently, plant immunity also 68 

involves direct or indirect recognition of pathogen effectors by host resistance proteins. Most 69 

plant resistance (R) proteins function as receptor of effectors or of host proteins damaged by 70 



the effector (de Wit et al. 2009). Such direct or indirect effector recognition then results in 71 

effector-triggered immunity (ETI). In contrast to PAMP-triggered immunity (PTI), ETI is 72 

pathogen race-specific, because effectors are more diverse and evolve rapidly. Additionally, 73 

effectors, which trigger immunity, can be eliminated, or other effectors can again supress ETI 74 

such that an evolutionary arms race takes place. Pathogens hence evolve virulence by 75 

avoidance and suppression of PTI and ETI (Jones & Dangl, 2006). 76 

Suppression of immunity appears to be a prerequisite for pathogenesis. However, it may not 77 

always be sufficient. This may be the case particularly if a biotrophic pathogen establishes 78 

feeding structures, such as the haustorium of a powdery mildew (PM) fungus, in intact host 79 

cells and has a long-lasting interaction with its host. In such a situation, pathogen effectors 80 

may not only overcome immunity but may additionally change plant cell architecture for 81 

accommodation of the pathogen. The haustorial complex consists of the fungal haustorium 82 

and the partially or fully host-derived neck band, an extrahaustorial matrix and an 83 

extrahaustorial membrane (Green et al., 2002). The host thus must contribute to the formation 84 

of this complex, albeit possibly under hostile control by pathogen effectors. Additionally it is 85 

suggested that infected leaf areas constitute nutrient sinks from which pathogens feed or are 86 

fed via host nutrient transporters (Fotopoulos et al., 2003; Chen et al., 2010). Hence, 87 

structural and metabolic reprogramming of the host (Fig.1) accompanies suppression of 88 

immunity in a compatible interaction with fungal biotrophs.  89 

Loss of susceptibility 90 

In most cases, immunity is dominantly inherited. This is most obvious for monogenic race-91 

specific resistances based on ETI. Quantitative (partial) resistance is of complex genetic 92 

nature and may involve allele-dosage effects. However, there is also recessively inherited 93 

resistance to fungal biotrophs. Recessively inherited resistance can be considered as loss of 94 

susceptibility (LOS). In this respect, one should distinguish between LOS-mutants, which 95 



show constitutive or primed defence to the pathogen, from those, which cannot support a 96 

compatible interaction. The first may suffer from compromised control over defence 97 

mechanisms (compare Figure 1 c and d), whereas the latter may be susceptibility mutants in a 98 

more narrow sense (compare Figure 1 e and f). They may reflect a high demand of the 99 

pathogen for contribution from an intact host to pathogenesis. Obligate biotrophs such as PM 100 

apparently lost many genes during co-evolution with their hosts because the plant can 101 

compensate for the lack of certain metabolic pathways (Spanu et al., 2010). Loss or 102 

dysfunction of host factors involved in such pathways (Figs. 1e, 1f) then may limit 103 

susceptibility. Such LOS is difficult to circumvent for the pathogen because at this point 104 

evolution is likely irreversible – the pathogen has entered a dead end. Consequently, LOS 105 

should confer durable resistance.  106 

From a mechanistic point of view, susceptibility can be lost when a negative regulator of 107 

disease resistance, such as POWDERY MILDEW RESISTANT4 (PMR4) loses function, and 108 

the corresponding mutant shows constitutive or primed defence. Hence, although resistance is 109 

recessively inherited due to loss of PMR4 function, immunity requires activated defence 110 

responses by the host. Accordingly, genetic experiments show that LOS in pmr4 mutants 111 

requires genetic elements of salicylic acid signalling (Nishimura et al., 2003). Similarly, PM 112 

resistance in mlo mutants requires functional ROR2, a component of the secretory machinery 113 

in barley (Collins et al., 2003), and further components of host defence in Arabidopsis 114 

(Consonni et al., 2006; Consonni et al., 2010). Other types of LOS are characterized by 115 

reduced pathogenesis because of insufficient host support for fungal development or 116 

nourishment. Barley monomeric G-protein RACB and barley alcohol dehydrogenase 1 are 117 

host proteins that potentially support fungal accommodation and biotrophy rather than control 118 

defence (Schultheiss et al., 2002; Hoefle et al., 2011; Pathuri et al., 2011). One might expect 119 

that LOS in a more narrow sense should be accompanied by pleiotropy in terms of plant 120 



development or metabolism, whereas mutants with enhanced PM defence may additionally 121 

show susceptibility to necrotrophs. The trade-off of basal resistance to biotrophs and 122 

susceptibility to necrotrophs is best explained because salicylic acid is involved in both.  123 

There are only few examples for accepted LOS mutants in a narrow sense, possibly because it 124 

is difficult phenotypically to uncouple less fungal success from more effective defence. At 125 

the cellular level, for instance, formation of callosic cell wall appositions and a certain 126 

frequency of subsequent single cell death typically accompany failure of fungal penetration 127 

on susceptible barley. Hence, if compatibility is limited due to LOS, enhanced plant defence 128 

might result from the failure of the fungus to proceed to a status that allows for effective 129 

delivery of suppressors.   130 

The powdery mildew resistance mutants pmr5 and pmr6 of Arabidopsis show PM resistance 131 

without obvious activation of defence pathways (Vogel et al., 2002, 2004). These mutants 132 

show cell wall alterations, and one may speculate that an altered host cell wall lacks proper 133 

cues for fungal development or releases an altered spectrum of DAMPs during fungal 134 

penetration such that defence is locally activated without primed defence signalling. This 135 

type of LOS causes growth retardation of the resistant mutants. Recently, it was suggested 136 

that Arabidopsis accession Te-0 could be a naturally occurring LOS genotype because it 137 

limits fungal sporulation without showing obvious enhanced defence reactions (Fabro & 138 

Alvarez, 2012). 139 

Future studies may show whether susceptibility proteins are involved in ETS or are part of a 140 

plant developmental or physiological program PM hitchhikes on without the requirement for 141 

direct molecular interference (compare Figs. 1e and 1f). It should also be generally analysed 142 

whether putative LOS mutants show normal responses to PAMPs and whether LOS is 143 

specific to a certain pathogen species or class rather than showing pleiotropic effects in 144 

interaction with other pathogens.   145 



 146 

Recent examples of LOS 147 

Table 1 contains selected recent descriptions of host genes required for full susceptibility to 148 

PM. Some of them are described below. Previous review articles contain further examples of 149 

potential susceptibility factors (Hückelhoven, 2005; O´Connell & Panstruga, 2006; Pavan et 150 

al., 2010). 151 

The barley monomeric G-protein RACB is a susceptibility factor for penetration by Blumeria 152 

graminis f.sp. hordei (Bgh, Schultheiss et al., 2002). RACB is required for fungal invasion 153 

and subsequent expansion of haustoria in epidermal leaf cells (Hoefle et al., 2011). At the 154 

mechanistic level, RACB and directly interacting proteins such as MICROTUBULE 155 

ASSOCIATED GAP1 and ROP BINDING KINASE1 organize arrays of cortical 156 

microtubules (Hoefle et al.; 2011, Huesmann et al., 2012). Microtubules have a function in 157 

basal penetration resistance (Kobayashi et al., 1997). Active RACB is suggested to loosen 158 

local arrays of microtubules for better penetration by Bgh. Because knock down of RACB 159 

supports basal penetration resistance, it is difficult to uncouple LOS from enhanced defence. 160 

However, recently it was shown that stable transgenic knock down of RACB also prevents 161 

normal outgrowth of hairs from the root epidermis (Hoefle et al., 2011). This supports the 162 

view that Bgh might co-opt RACB´s functions in local cell expansion during ingrowth into 163 

epidermal cells of barley. Consequently, loss of RACB is accompanied by developmental 164 

failure but not by spontaneous expression of classical pathogenesis-related genes (Björn 165 

Scheler and R.H. TU München, unpublished). 166 

Recently, it was shown that the barley endoplasmic reticulum-resident cysteine-rich receptor-167 

like kinase HvCRK1 is involved in negative control of basal resistance to Bgh. Interestingly, 168 

expression of HvCRK1 is induced by hydrogen peroxide and depends on a functional MLO 169 

susceptibility gene. Transient knock down of HvCRK1 via RNAi reduces the susceptibility 170 



index to penetration by Bgh by more than 50% in a susceptible MLO background 171 

(Rayapuram et al., 2012). HvCRK1 might thus be a part of an MLO-dependent regulon, 172 

which negatively controls basal resistance to Bgh. It is not yet known whether constitutive 173 

loss of HvCRK1 function would come along with pleiotropic effects. 174 

 175 

 176 

Barley BAX INHIBITOR-1 (BI-1) is another gene, whose expression is modulated by MLO, 177 

although it does not strictly depend on MLO. Transient or stable silencing of BI-1 limits 178 

fungal penetration success (Eichmann et al., 2010), whereas over-expression supports 179 

penetration even into fully resistant mlo mutants (Hückelhoven et al., 2003). BI-1-like plant 180 

LIFEGUARD proteins are further host factors, which, when silenced, limit susceptibility to 181 

penetration by Bgh and when over-expressed support susceptibility (C.W., R.E., and R.H., 182 

TU München, unpublished results). Arabidopsis BI-1 further interacts in planta with the 183 

monooxygenase CYP83A1, and cyp83a1 mutants show LOS to Erysiphe cruciferarum 184 

(C.W., R.E., and R.H., TU München, unpublished results). BI-1 further attenuates ETI of 185 

barley and Arabidopsis (Eichmann et al. 2006, Kawai-Yamada et al. 2009), and mammalian 186 

BI-1 is a direct effector target of pathogenic Escherichia coli for blocking apoptosis 187 

(Hemrajani et al., 2010). BI-1 proteins might thus be conserved proteins involved in disease 188 

susceptibility or control of innate immunity. Stable silencing of BI-1 in barley was not 189 

obviously costly for the plant when unchallenged. However, in Arabidopsis, loss of BI-1 190 

leads to enhanced sensitivity to fungal toxins and abiotic stress (Ishikawa et al., 2011). Vice 191 

versa, over-expression of green fluorescent protein-tagged barley BI-1 limits susceptibility to 192 

Fusarium graminearum (Babaeizad et al., 2009). 193 

Another example of a susceptibility gene is Arabidopsis MYB3R4. MYB3R4 is involved in 194 

DNA endoreduplication, which is locally activated in parts of the leaf successfully colonized 195 



by PM (Chandran et al., 2009). PM can infect MYB3R4 loss of function mutants, but disease 196 

development is attenuated. It was suggested that functional feeding sites of biotrophs require 197 

DNA endoreduplication and metabolic reprogramming for establishment of hypertrophy and 198 

nutrient sinks (Wildermuth, 2010). This may also involve alcoholic fermentation, which is 199 

transcriptionally activated at such feeding sites and involved in susceptibility to PM 200 

(Wildermuth, 2010; Pathuri et al., 2011). Loss of MYB3R4 results in mild developmental 201 

defects, whereas simultaneous loss of related MYB3R4 and MYB3R1 results in severe 202 

developmental failure (Haga et al., 2007; Haga et al., 2011). Hence, trade-off of LOS might 203 

be less severe when functional redundancy buffers pleiotropic effects. 204 

Recently, it was described that the Arabidopsis phytochrome-associated protein phosphatase 205 

type C (PAPP2C) negatively regulates basal resistance to PM (Wang et al., 2012). PAPP2C 206 

was identified in a yeast two hybrid screening using the atypical PM R protein RPW8.2 as 207 

bait. PAPP2C and RPW8.2 also interact in planta and both control salicylic acid-dependent 208 

defence with opposing outcomes. Silencing PAPP2C leads to spontaneous cell death and 209 

strongly limits PM. Data suggest that PAPP2C is a susceptibility factor and that RPW8.2 and 210 

PAPP2C act antagonistically.  211 

 212 

Evolution of susceptibility genes: disposition for disease? 213 

In human immunology, it is quite well accepted that there is a genetic disposition for 214 

infectious diseases, which only partially derives from immunodeficiency (e.g. Azad et al., 215 

2012). In plants however, there is little evidence for natural polymorphisms of susceptibility 216 

(S) genes, whereas diversity of race-specific R genes is increasingly well understood (Ellis et 217 

al., 2000). In this context, it is important to mention that dominant S-genes have been shown 218 

to operate in plant responses to host-specific toxins secreted by cell death-inducing fungi 219 

(Wolpert et al., 2002; Lorang et al., 2004; Stukenbrock et al., 2009). For S-genes to biotrophs 220 



this is not yet established, but one might expect future classification of race-specific S-genes 221 

and non-race specific S-genes. The first might code for effector targets, and LOS thus may 222 

not affect all fungal genotypes. The latter would code for more general regulators of 223 

immunity and factors supporting the pathogen (compare Fig. 1). 224 

The race-nonspecifically acting mlo11 allele is an example of a naturally occurring LOS 225 

phenomenon that has been domesticated by farmers in Africa (Jørgensen, 1992; Piffanelli et 226 

al., 2004). Another example of naturally occurring variation of susceptibility derives from 227 

polymorphisms at the Arabidopsis ACD6 locus, which greatly determines susceptibility to 228 

downy and powdery mildew (Todesco et al., 2010). Otherwise, little is known about natural 229 

diversity of putative S-genes to PM.  230 

A host susceptibility factor may put the plant under strong pathogen pressure. Hence, 231 

selection should eliminate susceptibility alleles. Since this is apparently not the case, S-genes 232 

should have important functions apart from being involved in pathogenesis. In turn, 233 

pleiotropy often accompanies loss of S-gene function. From the pathogen´s point of view, it 234 

might be advantageous to target host susceptibility factors, which are fundamental to host 235 

function and therefore evolve slowly. It would be interesting to learn more about allelic 236 

variation at susceptibility loci because our knowledge on susceptibility is extremely limited 237 

and largely builds on Arabidopsis null mutants and gene silencing in barley. One may further 238 

speculate that conserved susceptibility factors, which are effector targets, might be perfect 239 

guardees for R-proteins (Fig. 1g) that indirectly recognize effector functions via host protein 240 

guarding (van der Biezen & Jones, 1998). The interaction of PAPP2C with RPW8.2 possibly 241 

reflects such a mechanism. Understanding host susceptibility might thus also pave the way 242 

for better understanding of ETI. It is also possible that conserved S-genes become subject of 243 

gene duplications to build an evolutionary playground and to allow for the development of 244 

molecular decoys that mimic effector targets (van der Hoorn & Kamoun, 2008). 245 



The question arises whether targets of pathogen effectors generally are products of S-genes. 246 

This is clearly not the case. On the contrary, ETS involves suppression of host immunity 247 

often via direct inhibition of components of PTI or ETI. Consequently, loss of immunity-248 

related targets of effectors usually results in a gain of susceptibility rather than in LOS. 249 

However, negative regulators of host immune responses often are susceptibility factors and 250 

represent potential effector targets. Conservation of immune-modulators must be important 251 

for the plant in environments where it faces challenge by more than one stress, e.g. biotic and 252 

abiotic stress or biotrophs and necrotrophs, which the plant cannot defend at the same time in 253 

the same tissue. MLO for example is considered a modulator of host defence responses 254 

(Wolter et al., 1993; Büschges et al., 1997), and PM-resistant mlo mutants are super-255 

susceptible to cell death inducing pathogens and toxins (Jarosch et al., 1999; Kumar et al., 256 

2001; Consonni et al., 2006). Therefore, polymorphism of host S-genes might be under 257 

influence from geographic factors and local disease pressure.  258 

 259 

Costs of resistance and potential of application 260 

LOS is often accompanied by cost of resistance in form of pleiotropy. This is a major hurdle 261 

for application of LOS in terms of classical mutation breeding. However, nowadays 262 

TILLING may allow for finding alleles of S-genes that show partial loss of function and 263 

cause mild pleiotropy, when compared to full knock out alleles. Similarly, natural diversity of 264 

S-genes can be addressed by candidate sequencing associated with phenotyping disease 265 

resistance and pleiotropy, such that genomic resources become accessible for targeted 266 

inbreeding and stacking of weak S-alleles. One can speculate that some quantitative trait loci 267 

for PM resistance built on weak S-alleles. 268 

Another strategy for application of LOS might come from better understanding of 269 

susceptibility at the mechanistic level. This might be done via genetic suppressor screens (e.g. 270 



Freialdenhoven et al. 1996; Collins et al. 2003) or analysis of the protein interaction 271 

environment, in which susceptibility factors operate (e.g. Kim et al., 2002; Hoefle et al., 272 

2011; Huesmann et al., 2012). Such approaches might identify further susceptibility factors 273 

but also proteins that antagonise susceptibility factors and open new potentials for support of 274 

basal resistance.  275 

Transgenic suppression of S-genes by targeted knock down is successfully applied in research 276 

(e.g. Eichmann et al., 2010; Hoefle et al., 2011; Wang et al., 2012). However, strong 277 

silencing of S-genes may be accompanied by similar pleiotropy as full knock out. Here, 278 

promising approaches for application of LOS rely on partial silencing or on silencing on 279 

demand driven by PAMP-activated or tissue-specific promoters. Similar applications are 280 

plausible with expression of dominant negative alleles of S-genes that might derive from 281 

artificial evolution approaches. 282 

 283 

Conclusion 284 

Susceptibility to biotrophs seems to be a double-edged sword. A susceptible plant will suffer 285 

from disease but it likely survives because the biotroph may not eradicate its host. If a plant 286 

genotype lost susceptibility, it may suffer from pleiotropic effects and may be out-competed 287 

by susceptible neighbours at least in environments without extreme disease pressure. 288 

However, between extremely susceptible genotypes and fully resistant LOS mutants, there is 289 

a lot of space for future studies on how susceptibility is actually established and how much 290 

the host contributes to it. Our current difficulties to apply LOS in plant protection are due to 291 

our incomplete knowledge on the mechanistic principles of susceptibility and on the natural 292 

diversity of S-genes. Hence, future research on host susceptibility may further open our eyes 293 

for intimate interconnection of host and pathogen functions and pave the way for trapping 294 

obligate biotrophs on their evolutionary one-way track.  295 
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 482 



 483 

Figure 1 Hypothetical functions of susceptibility factors to biotrophs in the context of plant 484 

immunity. (a) Basal resistance to biotrophs involves PAMP/MAMP and DAMP-triggered 485 

immunity, which is initiated on ligand binding to pattern recognition receptors (PRRs). 486 

Transcriptional and metabolic re-programming of the host then leads to defence responses 487 

(red arrow) against the extracellular pathogen. (b) The pathogen secretes effectors, e, to 488 



suppress basal defence responses by interfering i.a. with signal transduction or defence 489 

responses. (c) Host immunity is under constitutive or induced negative control. The 490 

endogenous host factors operating in negative control of defence contribute to disease 491 

susceptibility and are therefore considered susceptibility factors (SF). (d) A host SF that acts 492 

in negative control of immunity is manipulated by a pathogen effector, which therefore can 493 

suppress immunity. (e) The host provides immunity-unrelated SFs, which serve demands of 494 

the biotrophic pathogen. (f) An immunity-unrelated SF is addressed by a pathogen effector to 495 

foster susceptibility. (g) Any type of SF may be guarded by resistance proteins (R) for 496 

triggering immunity (ETI) in response to effector action on the SF.   497 

 498 
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Table 1. Recent examples of susceptibility factors to PM. 500 

Susceptibility factor Protein features Potential function in 

susceptibility 

Pleiotropy , trade-off Reference 

Barley 

HvBI-1  

(BAX inhibitor-1) 

ER-resident membrane 

protein 

Suppression of penetration 

resistance and cell death 

Potentially enhanced 

susceptibility to 

necrotrophs 

Babaeizad et al. 

2009; Eichmann 

et al. 2010 
HvRACB ROP GTPase Support of haustorium 

accommodation and regulation of 

polarity 

Developmental defects Schultheiss et al. 

2002; Hoefle et 

al. 2011 
HvADH1 Alcohol dehydrogenase Carbohydrate 

metabolism/fermentation 

Potentially enhanced 

susceptibility to abiotic 

stress 

Pathuri et al. 

2011 

HvBLN1 (blufensin1) Secreted small peptide Negative regulation of penetration 

resistance 

Not analysed Meng et al. 2009 

HvSLN  
(Slender) 

DELLA-type 
transcriptional repressor 

of gibberellic acid 

responses 

Cell death regulation Developmental defects Saville et al. 
2012 

HvCRK1 DUF26 domain 

cysteine-rich receptor-

like kinase 

Defence regulation downstream of 

MLO 

Not analysed Rayapuram et al. 

2012 

Arabidopsis 

AtATG2 (autophagy-

related 2) 

Autophagosome 

biogenesis 

Regulation of autophagy and SA-

dependent defence 

Early senescence Wang et al. 

2011 
AtMYB3R4 Transcription factor Regulation of DNA 

endoreduplication/ 

hypertrophy 

Mild developmental 

defects 

Chandra et al. 

2009 

AtFERONIA Malectin-receptor-like 

kinase 

Control of host cell entry  Developmental defects Kessler et al. 

2010 

AtPAPP2C 
(phytochrome-

activated protein 

phosphatse 2C) 

Protein phosphatase Negative regulation of SA-
dependent defence and RPW8.2 

Developmental defects Wang et al. 
2012 

 501 

 502 


