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Overapproximative Human Arm Occupancy
Prediction for Collision Avoidance

Aaron Pereira and Matthias Althoff

Abstract— Predicting the occupancy of a human in real time is
of great interest in human–robot coexistence for obtaining regions
that a robot should avoid in safe motion planning. The human
body is composed of joints and links, suiting approximation by
a kinematic chain, but the control strategy of the human is
completely unknown, meaning the potential occupancy grows
very fast and it is difficult to compute tightly in real time.
As such, most previous work considers only specific, known,
or probable movements, and usually does not account for a
range of human dimensions. Focusing on the human arm, we
analyze archetypal movements performed by test subjects to
create a dynamic model. Motion-capture data of subjects are
fitted, for modeling purposes, to two abstractions: a 4-degree of
freedom (DOF) model and a 3-DOF model, to obtain dynamic
parameters. We validate our approach on movements from
a publicly available database. The prediction is shown to be
computationally fast, and reachable sets of the abstraction are
shown to enclose all possible future occupancies of the arm
for different subjects, tightly but overapproximatively. The 3-
DOF model has advantages over the 4-DOF in terms of speed,
though the 4-DOF model is tighter at smaller time horizons. Such
an overapproximative representation is intended for certifiable
safety-guaranteed collision avoidance algorithms for robots.

Note to Practitioners—Motivated by the need to keep humans
safe when working alongside robots, our earlier work proposes
a method of trajectory planning where the robot certifies each
movement as safe before it performs it. For this to prove that
unsafe collisions cannot occur, an overapproximative prediction of
the human is needed, meaning that no possible future position
of the human is outside the predicted region, or reachable
occupancy. However, making this prediction both small enough
(so that it does not include unreachable regions) and fast enough
for real-time use is not straightforward. We find the limits of
human motion by asking a range of test subjects to perform
movements as fast as possible. We calculate the reachable
occupancies based on these limits and show that our predictions
are indeed overapproximative, fast, and not wasteful of volume.
One can then use the aforementioned approach to guarantee
safety; future challenges are reliably sensing the human’s pose
and implementing our approach on an industrial robot.
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rescue, safety, security, theoretical foundations.
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I. INTRODUCTION

W ITH increasing automation in industry, in particular in
small and medium enterprises, robots that can be certi-

fied to work safely with humans are necessary. Speed, power,
and separation monitoring are some measures taken to improve
safety [1], [2], but even such cumbersome requirements do
not guarantee safety. Collision-free coexistence of humans and
robots requires predicting human motion, which is no trivial
task since human movements are highly unforeseeable and
fast.

We address the problem of predicting and formally bound-
ing any possible future spatial occupancy of human arm
movements. Consideration of all possible movements is real-
ized by reachability analysis, which computes the set of
possible trajectories of a dynamic system given sets of
initial states, inputs, and parameter values [3]. In order
to ensure collision avoidance, we model human behavior
as differential inclusions, which are uncertain models that
allow one to obtain several possible future behaviors [4].
We compute overapproximations of the set of possible
future occupancies, since exact algorithms exist only for
special problems such as linear systems with purely real
or imaginary eigenvalues [5]. The obtained occupancies can
be used to provide formal guarantees in motion planning,
e.g., as in [6].

As human motion is unpredictable and fast, the large
possible set of future human occupancies may unnecessarily
impede the movement of surrounding robots. We overcome
this often overly-cautious limitation with a two-step approach.
First, we generate a long-term plan that is based on the most
likely movement of surrounding humans. Of this long-term
plan, we execute only the first section and attach a fail-safe
maneuver, which brings the robot to a safe state before it
reaches positions possibly occupied by humans. In this paper,
we consider the robot safe when it is stationary, although
other safety criteria could be used, such as limiting the impact
force [7]. We refer to the execution of the first section of
the long-term plan plus the attached fail-safe maneuver as
the short-term plan, visualized in Fig. 1. By adapting the
duration of the first part of the long-term plan, we adjust the
required time horizon of the prediction to limit the expansion
of human occupancies [8]. Both the long-term and short-term
plans are constantly adjusted based on the pose estimation of
surrounding humans. Due to continuous replanning, it should
be avoided that the fail-safe maneuver is ever fully executed,
and thus the robot behaves mostly as intended, except in
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Fig. 1. (a) Long-term motion planning around expected human movement.
(b) Short-term fail-safe maneuver to account for unexpected movement, based
on reachable occupancies enclosing all possible motions. The first section
of the long-term trajectory has, at all times, at least one fail-safe maneuver
attached at the end. If the next section of the long-term trajectory is not
verified safe, the fail-safe maneuver will execute.

case of unexpected human motion. This approach is simulated
in [9].

Our work differs from previous work in safe human–robot
coexistence (HRCoex) in that we can guarantee collision
avoidance given that our uncertain models encompass all pos-
sible human behavior, i.e., no human motion falls outside our
models’ prediction. We show this using reachset conformance
checking [10].

Much previous work is concerned with limiting the impact
between humans and robots in a reactive manner, i.e., after
detecting a collision using, e.g., joint torque [11] or arti-
ficial skin [12]. Another approach is to build soft inher-
ently safe robots [13]. However, those concepts can become
unsafe when handling sharp objects or when moving fast.
Other concepts realize precollision control by minimizing
impact energy [14], a danger index [15], or motion scal-
ing based on proximity [16]. However, for many appli-
cations, such as with high-inertia robots, it is desirable
to guarantee a safety condition, such as noncontact, while
the robot is in motion. This is the aim pursued in our
work.

Since path planning of robots in dynamic environments
(see, e.g., [17]) is much more researched compared with set-
based predictions of humans, this paper solely focuses on set-
based prediction. We categorize our literature review of human
motion prediction into approaches that generate: 1) a single
behavior; 2) probability distributions of behaviors; and 3) the
set of all possible behaviors. Finally, we review techniques for
obtaining human motion models.

A. Single Motion Prediction

Approaches predicting a single future behavior must first
determine what natural human movement is. Human move-
ments are often believed to be optimal with respect to some
unknown cost function of the dynamics [18]. Morasso [19]
observes straight spatial hand trajectories in point-to-point
movements and deduces that the human control system oper-
ates in Cartesian space rather than joint space. Flash and
Hogan [20] present the minimum spatial jerk optimization
criterion that fits well to observed motion data. Available
muscular effort is also a factor in human movement; in [21],
the authors present a muscle-effort minimization criterion that
predicts the natural movement of humans holding weights

accurately. The effect of obstacles on natural human behavior
is inconclusive [22].

B. Probabilistic Motion Prediction

Since one cannot reliably predict the intention of the human,
several researchers use probabilistic models. Koppula and
Saxena [23] anticipate high-level movement using a temporal
conditional random field. Markov chains are used to model
human dynamics in [24], and probabilistic reachability analy-
sis, based on the dynamics obtained, is used in a collision
avoidance algorithm. Ding et al. [25] present another prob-
abilistic prediction of the human occupancy using a hidden
Markov model (HMM). Mainprice and Berenson [26] compute
a voxel map of occupancy probability, which is used in
a cost function to guide a path-planning algorithm. They
infer future movement from the initial arm motion using a
Gaussian mixture model trained on a database of previous
movements [27].

C. Set-Based Motion Prediction

When considering certifying safety, one obvious question
is what happens when humans do not behave as predicted by
a single behavior or a probability distribution of behaviors?
This may happen during a reflex movement when touching
something sharp or grabbing a toppling object. The authors
in [25] point out that unforeseen or unusual movements would
not be accounted for by their approach, and propose formal
techniques, specifically reachability analysis, as a comple-
mentary technique to account for such movements. There
exists no previous work that can rigorously predict the set
of future occupancies given an uncertain dynamic model of
human motion. The mapping of uncertain joint angles to the
occupancy of a kinematic chain has been considered in [28] in
an overapproximative way. A nonformal approach to compute
the set of future occupancies is described in [29], which
considers the future occupancy of the human given some
maximum joint velocities, where these velocities are assumed.
In this paper, we use reachability analysis to predict the set of
future occupancies. Solutions based on reachability analysis
have been proposed to guarantee safety of power systems [3],
automated vehicles [30], and recently for robot manipulators
in [8]. One challenge of this approach is that the set-based
calculations required are time consuming, and for systems
with nonlinear dynamics and high dimensionality, it can be
very difficult to calculate occupancies online and within real
time. Here, we use a Lagrangian technique that propagates
the reachable set in consecutive time intervals. For linear
continuous dynamics in particular, large state spaces with
potentially more than 100 continuous state variables can be
efficiently computed [31], [32].

D. Human Modeling

In order to predict human motion, one requires a model
of the human. The modeling task can be integrated into the
prediction approach, as it is often done in machine learning,
e.g., the aforementioned HMMs [25], or one obtains the model
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Fig. 2. Top: Offline, we capture archetypal movements of subjects and fit to a kinematic model; from the resulting joint positions, velocities, and accelerations,
we obtain a dynamic model. Bottom: Online, we fit sensor data (not necessarily motion capture) to the kinematic model to obtain the state in joint space,
and calculate the reachable set until a future time t f with the dynamics obtained offline. We then convert this to a reachable occupancy in Cartesian space.
(a) Motion capture experiments. (b) Fitting to kinematic model. (c) Obtaining dynamic model. (d) Sensing of human pose. (e) Fitting to kinematic model.
(f) Reachable set computation. (g) Occupancy mapping.

upfront. In our approach, we obtain the human model upfront
by collecting motion capture data of archetypal movements
and fitting them to a kinematic model. Digital human models
(DHMs) where both skeleton geometry and muscle placement
are taken into account, such as the model presented by
Holzbaur et al. [33], are well studied and provide insight into
how humans move. Demircan et al. fit the former model to
human motion-capture data in real time, achieving position
errors of a few centimeters [34] and showing how athletes
control their muscles to maximize acceleration in a particular
direction [35]. In contrast to these approaches, our goal is not
to reduce the error between predicted and observed motion,
but to bound the possible occupancy of the human and to
calculate this possible occupancy with real-time constraints.
Our model should be as accurate as possible but must be
overapproximative, so that the occupancy given by the model
for a certain time interval includes all possible reachable
occupancies of human arms of any shape, size, and mass,
to ensure that robots can safely account for all humans. As
such, DHMs have two drawbacks: 1) they do not account well
for variation in size and mass parameters and 2) they are too
complex to calculate in real time with set-based arithmetic.

E. Contribution

A previous attempt to rigorously predict the set of possible
future occupancies of humans [36] has the drawback that at
very short prediction horizons, the reachable occupancy is
large. Furthermore, since only a simple model using joint
position, velocity, and acceleration limits is considered for
prediction, the reachable set includes states that should, in fact,
be excluded.

We address these issues by developing another kinematic
parameterization; this parameterization introduces less over-
approximation at short prediction horizons, yielding a tighter
prediction while still accounting for all movement, but raises
challenges in accounting for singularity. These challenges are

addressed in Section IV. We also show that joint accelerations
are highly dependent on position and velocity and exploit this
to give a tighter prediction that can be used over longer predic-
tion horizons, without compromising real-time feasibility. This
is explained in Section V-C. This paper expands upon [36] as
mentioned above and presents a more in-depth evaluation of
the conservativeness and tightness of the results, including for
longer time horizons.

F. Organization

In the following section, we state the problem and our
approach. We show how the data are collected in Section III.
In Sections IV and V, we present the kinematic and dynamic
aspects of the models and the case for a simplified abstrac-
tion, as well as the conversion from the model state to
the human arm occupancy. We verify the overapproximative
models in Section VII on unknown movements and conclude
in Section VIII.

II. PROBLEM STATEMENT AND APPROACH

In this paper, we consider the scenario of a human sitting
or standing at a workstation, for example, on an assembly line
(see Fig. 2). In such a scenario, the fastest movement (and the
movement to be avoided by robots) is that of the arms. Thus,
in this paper, we intentionally focus on human arm movement
to demonstrate the proposed approach of set-based prediction.

The pose estimation used to start the prediction can avail
of various sensing technologies such as cameras [37] or depth
sensors [38], as we account for varying detection accuracies
in the error of the set of initial states. In our evaluation, we
validate our method with infrared motion capture data from
the publicly available CMU Graphics Lab Motion Capture
Database.1

1obtained from mocap.cs.cmu.edu on August 11, 2015
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The occupancy of the human body is fast changing and
hard to predict: bodies have different dimensions, shapes,
and a large number of DOFs. To account for all possible
uncertainties, we perform an extensive user study, described
in Section III, collecting motion capture data of test sub-
jects performing various extreme movements as illustrated in
Fig. 2(a). The complete raw data are fitted to a kinematic
model [Fig. 2(b)] resulting in possible combinations of joint
positions q, velocities q̈, and accelerations q̈, as shown in
Fig. 2(c).2 These data parameterize two uncertain models of
human arm motion as presented in Section IV: a 3-DOF model
and a 4-DOF model, which are critically discussed later.

The uncertain models are used during HRCoex to predict
the human occupancy as in the approach of Fig. 1. Initially, we
read sensor data of the human [Fig. 2(d)] and fit them to the
same kinematic model used during the user study [Fig. 2(e)].
Thus, we obtain initial joint angles and velocities, which we
enlarge based on assumed measurement uncertainties, yielding
the initial set of states for our prediction. Our reachable set
computation then predicts the set of possible joint angles
and velocities until the prediction horizon t f [Fig. 2(f)]; the
prediction horizon depends on the length of the short-term
plan as previously mentioned. Finally, the reachable set of
joint positions and velocities is mapped to the space occupied
by a human arm [Fig. 2(g)]. The process in Fig. 2(d)–(g) is
constantly repeated so that the prediction is constantly updated.
If the occupancy of the robot would never enter the predicted
occupancy of the human, the proposed short-term plan is
verified and can be executed. To formally state our problem,
we introduce reachable sets and two mappings.

Definition 1 (Reachable Set): Given a system with state
x(t), input u(t), and dynamics ẋ(t) = f (x(t), u(t)), where
t is time. The possible initial states x(0) and inputs u(t) are
bounded by sets, x(0) ∈ X0,∀t : u(t) ∈ U(t). The reachable
set of states x at t = t f is [see Fig. 2(f)]

Rx(t f ) :=
{

x(t f ) = x(0) +
∫ t f

0
f (x(t), u(t))dt

∣∣∣∣
x(0) ∈ X0,∀t : u(t) ∈ U(t)

}
.

Given a sensor reading s(t) ∈ S, we find the state x(t) ∈ X
of a kinematic model from the inverse kinematic mapping

mapI K (s) : S → P(X ),

where we use the power set P(X ) to account for nondetermin-
ism due to noise in sensor readings. From the sensor reading,
we can obtain the initial set of states X0 = mapI K (s(0)) for
the reachability analysis as defined in Definition 1. We further
define the occupancy mapping, which maps states to a subset
of space occupied by the arm:

mapOCC(x) : X → P(R3). (1)

After combining the reachable set of joints and joint angles
in Definition 1 with the occupancy mapping in (1), we obtain
the reachable occupancy.

2The vector of joint positions is q; the position of the i th joint is qi .

Fig. 3. From left to right: positions A, B, C, D, and E.

Definition 2 (Reachable Occupancy): Reachable
occupancy at time t is defined as

�(t) ⊇ {mapOCC(x)|x ∈ Rx(t)}.
We define �(t) as a superset, since the mapOCC

mapping for sets introduces overapproximation (detailed in
Section V-E). We further define the reachable set and reach-
able occupancy on a time interval as the union of the
reachable sets/occupancies of all times in the time inter-
val, i.e., Rx([t1, t2]) := ⋃

t∈[t1,t2] Rx(t) and �([t1, t2]) :=⋃
t∈[t1,t2] �(t). The above introduced definitions make it pos-

sible to formulate our problem statement.
Problem 1 (Occupancy Prediction): The predicted occu-

pancy �([0, t]) has to fulfill the following requirements.

1) �([0, t]) encloses the actual arm for any movements
of any test subject that could occur in a collaborative
environment from time 0 to time t .

2) The computation time of �([0, t]) is far less than t ,
so that it can be used online in a collision avoidance
algorithm.

3) �([0, t]) is as tight as possible, to minimize false-
positive detected collisions.

We intend �([0, t]) to be forwarded to a safety controller
as proposed in [6] and applied by the authors to a formally
safe robot controller in [8]. We now show how the arm model
is built, starting with the data collection.

III. DATA COLLECTION

Our set-based prediction bases its validity on collecting
extreme movement data from subjects of both genders with
a wide range of ages and physical activity levels; these data
are used offline to obtain motion parameters, specifically,
maximum joint positions, velocities and accelerations, and
acceleration ranges as a function of joint positions and veloc-
ities [see Fig. 2(a)–(c)].

We collect motion capture data from 38 persons, 12 female
and 26 male, ranging in age between 18 and 49 with a median
age of 24; 50% did three or more hours of sport a week. The
archetypal movements captured were designed to optimally
cover the entire workspace of the human arm. The subjects
were required to perform the following movements as fast
as possible (positions shown in Fig. 3), since unexpected
movements in an HRCoex scenario, such as reflex movements,
are often fast.

1) Punch to the front then recover to position E.
2) Punch to the front, ending in position A.
3) Position A to position B, elbow allowed to bend.
4) Position A to position B, elbow not allowed to bend.
5) Position D to position C, via position A.
6) Position D to position C, via position B.
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We capture the marker positions using a six-camera Vicon
motion capture system at a rate of 120 Hz and apply inverse
kinematics to find joint positions at each point in the time
series. A Kalman filter3 is used to remove noise and to
obtain the joint velocity. Acceleration is found by numerical
differentiation of velocity.

To the best of the authors’ knowledge, no maximum accel-
erations of a kinematic parameterization of the human arm are
published (maximum torques are more common, e.g., in [33]),
though studies of individual joints have been made, in partic-
ular the elbow. The choice of filter and hence the parameters
obtained are validated by the fact that the elbow joint accel-
erations agree well with those measured by Amis et al. [39]
using a camera. We obtain maximum elbow accelerations of
−524 and 676 rad/s2, respectively, while Amis et al. measured
mean maxima of −800 and 780 rad/s2 around cessation of
motion (flexion is in the positive direction). Though they even
observed movements of up to 1200 rad/s2, they mention that
the latter figure was painful to the test subject; furthermore,
in their test setup, the arm was laid along a flat surface, while
in our tests, the arm was unconstrained. In [40], the authors
also measure accelerations of the elbow (and of Euler angles
at the shoulder) from test movements, but since this is with
a view to building an exoskeleton for rehabilitation and not
obtaining the limits of human motion, the movements are not
extreme movements and accelerations are much lower (around
30 times lower) than those we observed.

The positions of the shoulder, elbow, and wrist were found
from markers placed on the arm; details are found in the
Appendix. We call the section of the kinematic chain from
the shoulder to the elbow the upper arm and the section of
kinematic chain from the elbow to the hand the forearm.

IV. KINEMATIC MODEL OF THE HUMAN ARM

The human body, made of joints and links, is often modeled
as a kinematic tree, e.g., [34] and [29]. Here, we present
two simple but overapproximative models that account for the
occupancy of the human arm.

A. 4-Degree-of-Freedom Model

We review previous work to motivate the choice of
our model. Fig. 4(a) shows a 7-DOF arm model similar
to [21] and [42]. The movement of the shoulder is deter-
mined by several joints of the shoulder complex, but we
consider only movement of the spherical glenohumeral (GH)
joint at the shoulder: the range of movement of the other
joints is limited, and hence can be considered part of torso
movement. References [41] and [43] also ignore the shoulder
complex to determine interrelation of joints when calculating
the workspace of the human arm; these models are identical
apart from the orientation of the first joint axis (a similar model
is used by [21] with yet another first joint axis orientation).

3State is [q�, q̈�]� where q is the vector of joint positions. Error covariance
is a diagonal matrix of 0.001 rad for rotational DOFs and 0.0005 m for the
third joint in the 3-DOF model, which is prismatic. Process covariance is
a matrix of zeros for the position part of the state and a diagonal matrix of
0.1 rad/s for the velocity part in rotational DOFs (0.05 m/s for prismatic DOF).

Fig. 4. (a) 7-DOF human arm and (b) 4-DOF model excluding wrist and
hand movement, similar to [29], [41], and [21].

Representing the spherical GH joint as a chain of three
coincident orthogonal revolute joints with the third joint axis
collinear with the upper arm axis allows the first joint axis to
be chosen freely; this is discussed in Section IV-C.

Among other studies, [41] disregards hand and wrist move-
ment, and rotation along the forearm axis. As these movements
do not greatly affect the occupancy, we also remove these
joints to reduce complexity; this leaves us with a 4-DOF
model.4 We account for all movements of the hand caused
by joints 5–7 in a static sphere SH of radius rH = 0.205 m
(the length from the wrist to the middle fingertip of a 95th
percentile British male [44]), around the wrist [see Fig. 4(b)].
The upper arm is enclosed in a capsule CU constructed by
a sphere SS of radius rS swept from the shoulder to the
elbow, and the forearm is similarly enclosed in a capsule CF

constructed by a sphere SE of radius rE swept from the elbow
to the wrist. We make a further simplification in order to
reduce the number of volumes in the reachable occupancy to
collision check (see Section V-E): since CF and SH are fixed
relative to each other, we enclose them both in a capsule CF H

of radius 0.205 m [see Fig. 4(b)]. rE and rS are taken as 0.1 m
(human arms are actually less broad, but this figure accounts
for clothing).

We refer to the position of the i th revolute joint in Fig. 4
as qi . In this 4-DOF model, the axes of the first and second
joints are orthogonal and intersecting, as are the axes of the
third and fourth joint. This leads to a coordinate singularity
of q1, described in Section IV-C, and a singularity at the elbow
when the elbow is fully extended, where q3 (rotation around
the upper arm, see Fig. 4) is undefined [45]. We describe
our solution to the latter singularity for the 4-DOF model in
Section V-D; in the following, we introduce a 3-DOF model
in which this singularity does not exist.

B. 3-Degree-of-Freedom Model

We develop a kinematic parameterization of arm movement
that removes the aforementioned singularity at the elbow by
merging the third and fourth joints of the previous model into
a single prismatic joint: the forearm is enclosed in a sphere SF

with its center on the forearm [36]. The shoulder is enclosed

4In the following description, the subscripts S, E, H, F , and U refer to
shoulder, elbow, hand, forearm, and upper arm, respectively.
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Fig. 5. (a) Kinematics of the 3-DOF model. q1 and q2 are joint angles
of the first two rotational joints. r3 is the extension of the prismatic joint.
(b) Evaluating rF the radius of SF .

in another sphere SS at the origin, and the arm occupancy is
the convex hull of these spheres, as shown in Fig. 5(a).

The following description refers to Fig. 5(a). As the shoul-
der is in SS and elbow is in SF , the arm is contained in
the convex hull by the property of convexity. The center of
SF is the end effector of the kinematic chain, and thus the
prismatic joint axis is along the line from the origin to the
center of SF ; the distance from the origin to the end effector
is the translational position of the prismatic joint, denoted r3
to distinguish from rotational joint position q3 in the 4-DOF
model.

The center point of SF , which we call the end effector of
the 3-DOF model, lies on the forearm, as shown in Fig. 5(b).
However, we must define the exact position. Since we wish
to keep the radius rF of SF as small as possible to reduce
overapproximation, we choose the end effector to be halfway
between the elbow and the tip of the hand (calculated as the
point extended past the wrist by the maximum hand length
from Section IV-A, 0.205 m; we also extend the forearm
beyond the elbow to include the thickness rE of the forearm).
Thus, the forearm movement is reduced to movement of a
prismatic joint at the end of a simple kinematic chain.

C. Placement of First Joint Axis

In both 3-DOF and 4-DOF models, the first two joints in
the kinematic chain are orthogonal and both revolute. This
introduces a coordinate singularity when the elbow (or in
the 3-DOF model, the end effector) lies on the first joint
axis. At this point q1 is undefined, and near this point, q1
varies highly for small variations in task space [see Fig. 6(a)].
As the orientation of the first axis can be freely chosen, this
singularity can be avoided. To find an axis through the origin
that the elbow (or end effector) does not intersect, we plot
all marker data (see Fig. 7). The axis chosen for the 3-DOF
model is the long axis of the clavicle,5 i.e., along the z-axis
in Fig. 17 of the Appendix (similar to [43]), rotated around
the y-axis by 5° and then around the x-axis by 5°; that of

5The reader can verify with a little gymnastics that it is very difficult to
align the humerus with the clavicle, as the acromial process blocks it.

Fig. 6. (a) Choice of joint 1 axis means that the inverse kinematic
solution shows rapidly changing q1; when the end effector is aligned with the
joint 1 axis, the inverse kinematics is even undefined. (b) More appropriate
choice of axis to minimize q̇1 and q̈1.

Fig. 7. Sampled workspaces of (a) 3-DOF model end effector and (b) 4-DOF
model elbow, with their respective axes in red. The axes do not intersect the
workspace. Coordinate system is that of the shoulder (scale in meters).

the 4-DOF model is the clavicle axis rotated around the y-
axis by 20°—both were chosen by observation of the sampled
workspace.

D. Accounting for Measurement Uncertainty

The measurements of the lengths of the forearm and upper
arm are subject to uncertainty; our models account for varia-
tion of these lengths differently. The rest of this section refers
to Fig. 8. In the 3-DOF model, the forearm is enclosed if SF

encloses the forearm plus measurement error; the upper arm is
automatically enclosed as both elbow and shoulder are inside
the convex hull of SF and SS .

For the 4-DOF model, the length of our capsule CU is set at
the length of the upper arm measured from the movement data
plus measurement uncertainty. In this way, the upper arm is
certainly enclosed. Setting the length of capsule CF H to that
of the measured forearm length and hand, plus uncertainty,
accounts for uncertainty in the length of the forearm (note
that, if we had not enclosed CF and SH in CF H , this would not
have been the case). However, the occupancy of the forearm
in the 4-DOF model also depends on the length of the upper
arm, and is therefore not automatically enclosed (see Fig. 8).
We account for measurement uncertainty in the upper arm
length by adding a prismatic pseudojoint between the second
and third revolute joints, as shown in Fig. 9. The interval of
joint values of this pseudojoint is the measured length of the
upper arm plus/minus measurement uncertainty.
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Fig. 8. 3-DOF (top) and 4-DOF (bottom) models of the arm coping with
measurement uncertainty in arm length. The 4-DOF model cannot account
for uncertainty in upper arm length, as the variable upper arm length means
the forearm may not be enclosed by CFH.

Fig. 9. In the 4-DOF model, measurement uncertainty in the upper arm is
accounted for by the addition of a prismatic pseudojoint.

Fig. 10. Prediction �ISO(t) based on hand speed constant from [1].

E. ISO-Compliant Model

To compare our overapproximative prediction, we introduce
an ISO-based reachable occupancy �ISO([0, t]). The hand
speed constant v = 1.6 m/s is given in [1] as the maximum
speed of the upper body of a nonwalking human. We take the
4-DOF model from Section IV-A and enlarge it by v · t as
shown in Fig. 10 to account for movement under the assumed
maximum velocity.

V. DYNAMIC MODEL

Having abstracted the human arm to a kinematic chain,
we define the state x of a kinematic chain as [q�, q̇�]�,
where q is the vector of joint positions and q̇ is the vector
of joint velocities. We discuss two models for determining
the dynamics of the kinematic chain in Section IV from the
motion data gathered as described in Section III—one model
is torque based and the other is acceleration based. Finally,
we motivate the use of the acceleration-based model.

A. Torque Model

Holzbaur et al. [33] collate the maximum muscle forces
from a variety of studies for use in their DHM, and thus
it would be intuitive to calculate the range of torques of
each joint as the sum of the range of contributions from
each muscle, if the moment arms were known. Alternatively,
Otis et al. [46] measure the maximum flexion, abduction, and
rotation torques for a range of shoulder joint positions and
angular velocities, and Amis et al. [39] study the forces on
the arm during maximal elbow movements. The dynamics of
a torque-based model of the human arm is identical to that of
a kinematic chain and can be described as [47]

τ = H (q)q̈ + C(q, q̇)q̇ + F(q̇) + g(q,α) + τext

where q is the vector of joint positions, H is the inertia
matrix, C is the matrix of Coriolis and centrifugal forces,
F is the friction vector, and g is the gravitational vector as a
function of the joint positions and orientation α of the shoulder
coordinate system with respect to the world. τ is the vector
of the total torque on the joints and τext is the vector of
external torques, including those from the movement of the
base relative to the world. Calculating the reachable set of
such a system is challenging as: 1) mass, inertia, and friction
parameters for calculating H , C , and F are uncertain, which
introduces large overapproximations; 2) external torques τext
are unknown, as is the direction of the gravity vector g(q,α),
which varies with shoulder orientation; and 3) the system
is highly nonlinear and computation times are not real-time-
capable for this application with current methods [3], [48].

We therefore opt for a model that is based on acceleration,
but which accounts for joint position and velocity limits. This
is described in the following sections.

B. Accounting for Joint and Velocity Limits

It is quicker to compute the intersection of reachable sets
from four simple models than the reachable set from one com-
plex model. This is done as described in [49, Prop. 1], where
the reachable sets R(1), . . .R(n) from n models M1, . . .Mn

are all overapproximative and enclose the exact reachable set
Re, then Re ⊆ ⋂n

i=1 R(i). Here, Q(0) and Q̇(0) are the sets
of initial positions and velocities in joint space, respectively,
⊕ is the Minkowski sum (A ⊕ B = {a + b|a ∈ A, b ∈ B}),
and we find the maximum and minimum positions, velocities,
and accelerations, qinf , qsup, q̇inf , q̇sup, and q̈inf, q̈sup from the
archetypal movements. The reachable sets we predict with our
models are as follows:

1) a zeroth-order model of maximum joint position:
R(1)

q ([0, t]) = [qinf, qsup];
2) a first-order model of maximum joint velocity:

R(2)
q ([0, t]) = Q(0) ⊕ [q̇inf, q̇sup]t ;

3) a second-order model of maximum joint acceler-
ations, R(3)

q ([0, t]) = CH(Q(0)Q(0) ⊕ Q̇(0)t ⊕
[q̈inf(t2/2), q̈sup(t2/2)]);

4) another second-order model R(4)
q ([0, t]) based on accel-

eration as a function of state, described in the next
section.
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In order to obtain the reachable set of the time interval [0, t]
in the third model, we must compute the convex hull, indicated
by the operator CH, of the initial set Q(0) and the reachable
set at time t found using a second-order approximation of
motion (this encloses the reachable set of the interval, as it is
a special case of [30, Prop. 3.3]). We enclose this convex hull
in a Cartesian product of intervals. R(4)

q ([0, t]) is obtained
as a zonotope and also enclosed in a Cartesian product of
intervals. We use Cartesian products of intervals, as these can
be quickly and easily intersected: the intersection Rq([0, t]) =⋂4

i=1 R(i)
q ([0, t]) gives us a tighter overapproximative interval

of joint positions than any one model alone, where the joint
position, velocity, and acceleration limits are not exceeded.

C. Acceleration Model

Though ample work exists on maximum arm torques and
muscle forces, to the best of the authors’ knowledge, no
complete study into the maximum accelerations of all human
arm joints exists. We present a model where acceleration is
a linear function of the state x = [q�, q̇�]�. Let k be the
number of joints, C be a matrix of size k × 2k of coefficients
to be determined, Ik be an identity matrix of dimension k, 0k×1
be a vector of zeros of length k, 0k×k be a matrix of zeros of
size k × k, and umin and umax be a vector of uncertain inputs
to the model. The acceleration model can be described by a
set of linear differential inclusions of the form[

q̇
q̈

]
= ẋ ∈

[
0k×k Ik

C

]
x ⊕

[
0k×1

[umin, umax]
]

. (2)

Methods for determining reachable sets of a linear first-order
system of differential inclusions such as (2), for any time
interval when given an initial set, are fast and are detailed in
[30]. The reachable set is obtained as a zonotope to avoid the
wrapping effect; we then enclose it in a Cartesian product of
intervals. This enclosure in a product of intervals is necessary
for efficient intersection with reachable sets from other models,
as mentioned in Section V-B, and for overapproximative
conversion to a reachable occupancy, as shown in Section V-E.

If C is a matrix of zeros, in order that (2) accounts for
all of our observed data, umin and umax would need to be
the minimum and maximum accelerations observed over all
our data. This is a wide range, and our reachable set will
grow too quickly. An acceleration model that exploits the
correlation between state x and range of joint accelerations
would be preferable, as this can combine some of the accuracy
and insight offered by the torque model with the speed of
calculation of the linear model. The dependence of joint torque
on joint angle is well known and studied for the single and
multijoint cases. The dependency in a single joint is due to
muscle physiology and several models exist [50] whereas mul-
tijoint interdependencies could be due to muscle-on-muscle
impingement and intermuscular force transmission [51]. From
observation of our data, some relationships between joint posi-
tions, velocities, and accelerations can be observed for certain
joints (see Table I). Illustrated in Fig. 11 is the dependency
of q̈4 on q4 during one movement (this is intuitive, as at the
positive joint limit, only negative acceleration is possible, and
vice versa).

TABLE I

CORRELATIONS BETWEEN JOINT POSITIONS AND VELOCITIES,
AND ACCELERATION, OVER ENTIRE DATA SET (HIGHEST

VALUES FOR EACH JOINT ACCELERATION IN BOLD).
(a) 4-DOF SYSTEM. (b) 3-DOF SYSTEM

Fig. 11. By considering dependency of q̈4 on q4 (dashed lines), the set of
uncertain inputs [u∗

min, u∗
max] in the bottom model can be chosen smaller than

[umin, umax] in the top model.

Problem 2 (Lowest Possible Input Range): Given the dyna-
mical system in (2), we wish to find the matrix C such that
the range of [umin, umax] is minimized and all the training data
are consistent with this system.

We approach the problem one joint acceleration at a time.
We rearrange (2) to obtain

q̈i (t) ∈
j=2k∑
j=1

Ci, j x j (t) ⊕ [umin,i , umax,i ]. (3)

We consider only the three dimensions most highly correlated
with q̈i . Letting corri be the indices of these dimensions, xcorri

is a projection of x onto the dimensions corri . For example,
Table I(b) shows that q̈1 in the 3-DOF model correlates most
highly with dimensions 1, 3, and 6, so corr1 = [1, 3, 6] and
we have xcorr1 = [q1, r3, ṙ3]�. Note: just because acceleration
is not a function of all elements of the state that does not mean
the model is not overapproximative; for example, as seen in
Fig. 11, the differential inclusion that is not dependent on q4
is still overapproximative (it still accounts for all data points),
but it requires a larger range of [umin, umax]. Letting Ci,corri be
the entries in row i of C in the columns of corri , (3) becomes

q̈i (t) ∈ Ci,corri xcorri (t) ⊕ [umin,i , umax,i ]. (4)

We construct k data sets Si , i ∈ {1, . . . k}, where the data
points are values of [x�

corri
, q̈i ]� at every point in time over

the entire motion capture data. From these data sets, our goal
is to find Ci,corri such that ui,max − ui,min is minimized, for



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PEREIRA AND ALTHOFF: OVERAPPROXIMATIVE HUMAN ARM OCCUPANCY PREDICTION FOR COLLISION AVOIDANCE 9

Fig. 12. Two pairs of hyperplanes. The vertical distance between them is
to be minimized, as this is the range of [umin,i , umax,i ], thus the range of
possible values of q̈i .

each joint i . Since (4) must hold for all elements si ∈ Si , we
rearrange it to show

umax,i ≥ {[−Ci,corri , 1]si |si ∈ Si }
umin,i ≤ {[−Ci,corri , 1]si |si ∈ Si }. (5)

We can find the minimal ui,max − ui,min by formulating
the constraints in (5) as a linear programming problem
[52, Ch. 2.17].

D. Interdependence of Third and Fourth DOFs

When the elbow is fully extended [i.e., q4 ≈ −(π/2)], the
4-DOF arm has a singularity, meaning q3 (rotation around
the upper arm, see Fig. 4) is undefined [45]. The inverse
kinematics near this singularity is affected: miniscule changes
in Cartesian position lead to large changes in q3, and thus
extremely high values of q̈3 are observed. We account for
this by ignoring these erroneously high values when building
the dynamic model, and assume that the accelerations and
velocities of q3 near the singularity are the same as those
away from the singularity; they simply cannot be measured.
We define the boundary for cutoff at q4 = −(π/2) + ε.6

Values of q̈3 and q̇3 where q4 < −(π/2) + ε are not used
in determining the dynamic model.

We are now able to determine the reachable set of the
kinematic chain given the initial set of states, found online by
inverse kinematics, and the dynamics, determined in advance.

E. Representation in Space

We now consider the mapping mapOCC from Section II,
shown in Fig. 2(g). To the best of our knowledge, there
exists only one approach that computes overapproximative
occupancies of kinematic chains efficiently, which is that of
Täubig et al. [28]. Here, the occupancy of each link on a kine-
matic chain is represented as a sphere-swept volume (SSV),
defined as the Minkowski sum of a convex hull of points
with a zero-centered sphere. The set of points of the SSV is
generated sequentially from a given initial SSV enclosing the
i th link in its own (i th) coordinate system. For each joint down
to the base of the kinematic chain, the algorithm from [28]
sequentially generates a new SSV, which encloses the link in
the i − 1th coordinate system under all positions of the i th

6in our evaluation, we choose ε = 0.225 rad

Fig. 13. (a) Point on the SSV under the action of a prismatic joint is enclosed
in a line segment. (b) Occupancy of a point on the SSV under the action of a
revolute joint (dashed line) is enclosed by three points in the new SSV (solid
line) or (c) if the angle subtended is larger, we use more points. The previous
SSV had four points. The new one would have (a) 8 points, (b) 12 points, or
(c) 16 points (not all shown, for clarity of illustration).

Fig. 14. Top view of Figs. 4 and 5, only arm model and not human body
is shown. (a) 3-DOF model enclosed in capsule CF S so as to use method
in [28]. (b) Hand and forearm of 4-DOF model enclosed in CFH to save on
collision checking.

joint. This SSV in its turn is then used to generate a new
SSV enclosing the link in the i − 2th coordinate system under
all positions of the i − 1th joint, and so on until the (fixed)
base coordinate system. See Fig. 13: for a prismatic joint, each
point on the previous SSV corresponds to two points on the
new SSV, and the new SSV encloses the previous SSV under
the action of the joint exactly. For a revolute joint, the number
of points in the new SSV increases by a factor of at least three,
and the enclosure is not exact but is conservative; using more
points reduces the overapproximation, but of course increases
complexity. We use a factor of three when the range of angles
qi,max − qi,min is less than (π/2), four when less than π , five
when less than (3π/2), and six otherwise. We found that a
finer resolution did not yield significant improvements in terms
of volume. Hence, the SSV enclosing the end effector has at
least m · 2p3r points, where m points define the end-effector
occupancy in its own coordinate system, and the kinematic
chain has p prismatic and r rotational joints. We refer the
reader to [28] for a detailed description of the algorithm.

The 3-DOF model is the convex hull of spheres of two dif-
ferent radii, which is not an SSV and cannot use the previously
described method. We therefore enclose the 3-DOF model in
a capsule, as shown in Fig. 14(a). While this increases the
overapproximation by including extra volume that the human
does not occupy, this volume is mostly near the shoulder—an
area the robot is likely to avoid anyway due to proximity of the
head and torso. In an HRCoex scenario, therefore, this is less
restrictive than including extra volume near the extremities.
Furthermore, when the elbow is in flexion, the sphere SS

may intersect or even be enclosed in SF , in which case the
extra volume is minimal to nonexistent. The representation of
the 4-DOF model was two capsules and a sphere, however,
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reducing this to two capsules, as shown in Fig. 14(b) and
described in Section IV-A, reduces the number of collision
checks necessary when collision checking against the robot
occupancy.

VI. NOTE ON COMPLEXITY

The entire algorithm of generating the reachable occupancy
as illustrated in Fig. 2 consists of: A) obtaining the state
of the human; B) reachability analysis; and C) conversion
to a reachable occupancy. Although the biomechanics of
humans does not change, we present the complexity with the
consideration that one might refine the model and increase the
DOFs k.

A. Obtaining State of the Human

We calculate the inverse kinematics analytically, and then
filter it using a Kalman filter to reduce noise and obtain joint
velocities. The inverse kinematics is constant in complexity
and the Kalman filter involves matrix–matrix multiplication,
where complexity is cubic in the size of the matrices. The
state of the filter is the joints and their velocities and thus of
size 2k, meaning the largest matrices to multiply are size 2k,
and the filtering has complexity O(k3).

B. Reachability Analysis

Of the models presented in Section V-B, the first three have
trivial O(k) complexity (vector addition). The fourth model
involves reachability analysis on linear differential inclusions
over a time interval, which again has complexity O(k3) [30].

C. Conversion to Reachable Occupancy

The algorithm from [28] creates an SSV defined by a set
of points, which is generated sequentially from an initial
set as described in Section V-E. At each DOF, the set of
points is multiplied by two (prismatic DOF) or at least three
(rotational DOF) different transformation matrices to generate
a new set of cardinality twice or thrice the previous set. Since
the transformation matrices are constant size, the number of
multiplication operations is proportional to the number of
points in the new set obtained. As mentioned in Section V-E,
the number of points in the reachable occupancy is at least
m · 2p3r , where the link is enclosed in an SSV of m points,
and p and r are the number of prismatic and rotational DOFs.
The complexity of the algorithm is therefore exponential in
k = p + r . Recall that the 4-DOF model also requires a
prismatic pseudojoint to account for uncertainty in arm length
(Section IV-D).

For collision checking the reachable occupancies with the
occupancy of the robot, the well-known GJK algorithm may be
used, where computation time is approximately proportional to
the number of points of the SSVs to collision check [53]; we
do not need to explicitly compute the convex hull of the points
for the SSV for this algorithm, and hence collision checking
is also exponential in k. The 4-DOF model has two volumes
to collision check, whereas the 3-DOF model has only one.
In a manufacturing scenario, a robot must check its occupancy

against all humans in the collaborative space, so computation
increases linearly with the number of humans in the vicinity.

The approach is therefore overall of exponential complexity,
which further motivates our simplified low-DOF models.

VII. VALIDATION AND DISCUSSION

We validate our approach on data from the Carnegie Mellon
University Graphics Lab Motion Capture Database,7 perform-
ing conformance checking [10] to confirm that our approach
accounts for the required range of motion conservatively,
computing the volumes, and testing computation time.

A. Conformance Checking

The validation data are the same as used in [36], grouped
into the following categories:

1) Everyday motions, e.g., construction work, machining
work, manipulating objects, and stumbling (96 motions);

2) Sports-related motions, e.g., boxing, throwing balls, and
batting balls (67 motions);

3) Dance-related motions, e.g., swing dance, Indian dance,
and modern dance (58 motions);

4) Acrobatic motions—any motion where the feet are in the
air simultaneously, including cartwheels, jumps, swings
from a trapeze, and backflips (68 motions).

We choose the Everyday movements to be similar to motion
in an HRCoex scenario when humans are comfortable work-
ing alongside robots, but we add Sport, Dance, and Acro-
batic movements to test the limits of the prediction. For
the reachability analysis, the toolbox CORA [54] was used,
and INTLAB [55] for interval computations. We use the
Robotics Toolbox [56] to generate the robot kinematics and
dynamics and the MPT toolbox [57] for visualization and
volume computation of polytopes. Measurement uncertainties
are estimated at ±0.04 rad for revolute joints and ±0.001 m
for both prismatic joints and the length uncertainty of forearm
and upper arm; uncertainty in joint velocity measurements is
assumed to be zero.

We wish to show that the predictions are a tight overap-
proximation: 1) they enclose all human movement relevant to
an HRCoex scenario and 2) that smaller occupancies do not.
For this reason, we run the prediction for all these movements
under the following conditions:

1) 3-DOF model, whose occupancy is labeled �3DOF;
2) 4-DOF model (�4DOF);
3) ISO-based prediction as in Section IV-E (�ISO);
4) 3-DOF model where the range of velocities and accel-

erations is reduced by half (�3DOF,50%);
5) 4-DOF model where the range of velocities and accel-

erations is reduced by half (�4DOF,50%).

We include the latter two models to test whether the parame-
ters we obtained from extreme data in Section III are indeed
necessary to include all movement, or whether the range of
motion considered is too large. For each timestep of every

7Publicly available at mocap.cs.cmu.edu, accessed August 11, 2015.
The authors would be happy to provide details of the specific data files used
on request.
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TABLE II

NUMBER OF MOVEMENTS WHERE NO MARKERS ARE OUTSIDE
OCCUPANCY AT ANY TIME DURING MOVEMENT (ALL

MOVEMENTS IN CATEGORY IN BOLD)

movement, we filter the motion capture data with the same
Kalman filter from Section III and evaluate the reachable
occupancy during a time interval [0, t f ]. We check whether
the arm at time t f (in this case, all the markers on the arm) is
entirely contained in �([0, t f ]). We test t f = 16.7, 33.3, and
50.0 (times in milliseconds).8 Using simple distance checks
for markers on rigid bodies, we determine where markers
are incorrectly tracked; incorrectly tracked markers are not
checked for inclusion in the reachable volume. We do this for
both arms.

As can be seen in Table II, �3DOF and �4DOF correctly
account for all movement in the Everyday data set, though
in the other data sets, a few movements fall outside the
prediction. The arm dynamics in Dance, Sport, and Acrobatics
movements are faster than in the data used to parameterize
the model in Section III; hence, our assumptions on the arm
dynamics do not hold. Reducing the range of velocities and
accelerations by half in �3DOF,50% and �4DOF,50% means that
some Everyday movements, which should be accounted for,
are not; the predictions also perform worse on the other data
sets. Fig. 15 shows movements approaching the borders of the
reachable occupancies �3DOF and �4DOF (but still accounted
for), which are not captured by �3DOF,50% and �4DOF,50%. Our
reachable occupancies are therefore tight in the sense that the
parametrization from the archetypal movements is sufficient
to enclose relevant movement, but not excessive, since atten-
uating the parameters causes movements to fall outside the
borders of the reachable occupancy. Finally, the ISO-based
prediction, while simple and based on the currently accepted
standards, proves insufficient to conservatively estimate human
motion in all categories.

8The test data were sampled at 60 and 120 Hz, so t f corresponded to a
whole number of timesteps in all data.

Fig. 15. (a)–(c) 3-DOF model and (d)–(f) 4-DOF model, during Everyday
movements. The predictions are for the time interval [0, t f ] where (a) and
(d) t f = 16.7 ms, (b) and (e) t f = 33.3 ms, and (c) and (f) t f = 50.0 ms,
from left to right. Dots are markers on the arm and lines are the forearm and
upper arm. Blue is at t = 0 and black is at t = t f . All markers lie in the gray
occupancies (calculated with parameters from Section III), but not always in
the pink occupancies (calculated with parameters from Section III reduced by
50%). This illustrates that the parameters we use are necessary to capture all
relevant movement (scale in meters and origin at shoulder).

TABLE III

VOLUME COMPARISON (m3): MEAN μ, STANDARD DEVIATION σ ; n = 20

By including Acrobatic motions in the archetypal motions
used to determine the model parameters, our dynamic models
might also cover such movements. The reachable occupancy
would then be larger and the verifier would be extra cautious at
the expense of the robot’s performance. As workshop behavior
guidelines typically prohibit acrobatic-like movements, one
may argue that this range of motion can be safely ignored.
The exact movements used to obtain the dynamic parameters
should be a matter for legislators and standards committees.

B. Volume Calculation

On a sample of the data, we evaluate the average volumes
of �([0, t f ]) and compare it with the ISO-based approach
(Section IV-E) and the approach from [36], where we do not
account for acceleration range as a function of state. The
results are in Table III. Fig. 16 shows the growth of the
reachable set with t f .

The set �ISO is much smaller than either �3DOF or �4DOF,
however, not conservative. The 4-DOF model is tighter at
shorter prediction horizons than the 3-DOF model. That the
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Fig. 16. Expansion of reachable occupancies in (a) 3-DOF and
(b) 4-DOF model. The time intervals for the occupancies are [0, 16.7] ms
(pink), [0, 33.3] ms (gray), and [0, 50.0] ms (black). Circles are markers on
the arm and lines are forearm and upper arm (scale in meters and origin at
shoulder).

reachable occupancy of the 4-DOF model grows fast at larger
prediction horizons is due to the fact that the enclosure of the
motion of revolute joints is an overapproximation. The 4-DOF
model has four revolute joints whereas the 3-DOF model has
only two; hence, the overapproximation in the 4-DOF model is
greater. A tighter approximation using a more complex SSV as
suggested in [28, Eq. 26] may help, but increases complexity
and computation time for generating the reachable occupancy
and collision checking.

We observe an improvement in tightness over [36] with
the current method: in the previous work, we intersect reach-
able sets from only three of the four models presented
in Section V-B; the reachable set in this paper is strictly
smaller than that from [36], meaning the reachable occupancy
is smaller. The fourth model in Section V-B is more time
consuming than the others. One could consider an “anytime”
algorithm, whereby all dynamic models from Section V-B are
calculated in parallel and the intersections of only those which
are calculated in time are used to compute the reachable set:
if the reachability analysis takes too long, only the first three
models are used; if the reachability is computed in time, the
reachable set from the fourth model is also used to refine the
reachable set.

C. Computation Time

Computations were performed on MATLAB R2016b run-
ning on a 2.8 GHz Intel i7 processor with 16-GB RAM. Since
there is no iterative step in the calculations, hard real time
can be implemented. In Table IV, we see the computation
time over a sample of data for all steps in the online part
of the occupancy prediction, which stays well below the
prediction horizon for t f ≥ 16.7 ms. Computation time does
not vary with prediction horizon, apart from in the conversion
from reachable set to reachable occupancy. This is because,
as the reachable set expands and the joint intervals become
larger, we choose to use more points to define the reachable
occupancy, as explained in Section V-E and shown in Fig. 13;
this increases computation time.

TABLE IV

COMPUTATION TIMES (ms)

Overall, therefore, while both models are overapproxima-
tive, the 3-DOF model offers advantages in speed, at the
expense of tightness at short time horizons. The 3-DOF model
also deals better with the measurement uncertainty in arm
lengths, as shown in Section IV-D, whereas the 4-DOF model
requires an extra DOF to account for this.

A final consideration is that even when standing or sitting,
movement of the spine and of the joints in the shoulder
complex contributes to overall motion of the arm. Although
such motion is small in range and slower compared with
arm joints, it should be accounted for. Further human motion
studies on torso movement are necessary to determine whether
the complex but limited movement may be approximated by
the enlargement of uncertainties in the simpler model, for
example, as applied in [58], or whether additional DOFs may
be necessary, as in [29].

VIII. CONCLUSION

We address the problem of guaranteeing safety in areas
where humans and robots work together. From analysis
of extreme movement data, we parameterize a 3-DOF and
4-DOF arm model that is then used to formally predict, online
and overapproximatively, a volume that tightly bounds the arm
occupancy during a certain time horizon.

Tests on publicly available data showed that our occupancies
enclose human movement for HRCoex scenarios and also
work well in scenarios unlikely to be found in an HRCoex
environment. Mean computation times of less than 5 ms
demonstrate the suitability of this approach to online dynamic
path planning. Future work should focus on reliable state
estimation techniques from sensors that can be employed in
HRCoex scenarios. In contrast to probabilistic methods, this
technique may be used to formally certify safety in shared
human–robot workspaces and pave the way for coexistence
without cages—a goal long hindered by a lack of guaranteed
safety.

APPENDIX

MARKER POSITIONS ON ARM

Marker positions are illustrated in Fig. 17. The fitting of
the marker data to the kinematic model was performed so: the
orientation of the base coordinate system is that of the clavicle
in the ISB recommendations [59], defined by markers T10 and
C7 on the midspine and upper spine, and STRN and CLAV
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Fig. 17. Markers and local base coordinate system. The marker CLAV is at
the top of the sternum on the anterior of the torso; STRN (not shown) is at the
base of the sternum and T10 (not shown) is on the back on the midspine. The
base coordinate system is 40 mm below RSHO (in the negative y-direction)
and its orientation defined by T10, STRN, CLAV, and C7. The z-axis is
parallel to the line through RSHO and CLAV.

on the lower and upper ends of the breastbone. The origin is
at the center of the (spherical) GH Joint, estimated at 40mm
under (in negative y-direction from) the marker RSHO/LSHO
(the prefix L/R refers to left/right, respectively), and referred
to as the shoulder. The joint angles, however, are defined
differently from [59], motivated in Section IV-C. The elbow
position was taken at RELB/LELB. The wrist position was
taken as the midpoint between the two wrist markers RWRA
and RWRB/LWRA and LWRB.
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