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Abstract— In this work, we propose a model-based and data
efficient approach for reinforcement learning. The main idea
of our algorithm is to combine simulated and real rollouts
to efficiently find an optimal control policy. While performing
rollouts on the robot, we exploit sensory data to learn a
probabilistic model of the residual difference between the
measured state and the state predicted by a simplified model.
The simplified model can be any dynamical system, from a very
accurate system to a simple, linear one. The residual difference
is learned with Gaussian processes. Hence, we assume that
the difference between real and simplified model is Gaussian
distributed, which is less strict than assuming that the real
system is Gaussian distributed. The combination of the partial
model and the learned residuals is exploited to predict the real
system behavior and to search for an optimal policy. Simulations
and experiments show that our approach significantly reduces
the number of rollouts needed to find an optimal control policy
for the real system.

I. INTRODUCTION

Robots that learn novel tasks by self-practice have the
chance to be exploited in a wide range of situations, includ-
ing industrial and social applications. Reinforcement Learn-
ing (RL) gives the agent the possibility to autonomously
learn a task by trial and error [1]. In particular, the agent
performs a number of trials (rollouts) and uses sensory data
to improve the execution. In robotics and control applica-
tions, RL presents two main disadvantages [2]. First, the state
and action spaces are continuous-valued and high dimen-
sional, and existing approaches in RL to search continuous
spaces are not sample-efficient. A common strategy [3]–[6]
to reduce the search space to a discrete space consists in
parameterizing the control policy with a discrete number of
learnable parameters. Typical policy parameterizations adopt
Gaussian mixture models [3], hidden Markov models [7],
[8], or stable dynamical systems [5]. Second, it is extremely
time consuming to perform a big number of trials (rollouts)
on real devices. The rollouts can be reduced with a proper
initialization of the policy, for example using kinesthetic
teaching approaches [9]. However, reducing the rollouts
needed to find an optimal policy is still an open problem.

RL algorithms can be classified into two categories,
namely model-free and model-based approaches. Model-free
methods [4]–[6] directly learn the policy on the data samples
obtained after each rollout. Model-free approaches do not
require any model approximation and are applicable in many
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Fig. 1. Overview of the PI-REM algorithm.

situations. The problem of model-free approaches is that they
may require many rollouts to find the optimal policy [4].

Model-based methods, instead, explicitly learn a model of
the system to control from sensory data and use this learned
model to search the optimal policy. The comparison in [10]
shows that model-based approaches are efficient compared
with model-free methods. However, model-based methods
strongly suffer from the so-called model–bias problem. In-
deed, they assume that the learned model is sufficiently
accurate to represent the real system [11]–[13]. Learning an
accurate model of the system is not always possible. This is
the case, for instance, when the training data is too sparse. It
is clear that searching for a control policy using inaccurate
models might lead to poor results.

The Probabilistic Inference for Learning Control (PILCO)
algorithm in [10] alleviates the model-bias problem by
including uncertainty in the learned model. In particular,
PILCO leverages Gaussian Processes (GP) [14] to learn a
probabilistic model of the system which represents model
uncertainties as Gaussian noise. The GP model allows to
consider uncertainties in the long-term state predictions, and
to explicitly consider eventual model errors in the policy
evaluation. The comparison performed in [10] shows that
PILCO outperforms state-of-the-art algorithms in terms of
performed rollouts on the real robot in pendulum and cart–
pole swing-up tasks. Despite the good performance, PILCO
needs to learn a reliable model from sensory data to find an
optimal policy. In order to explore the state space as much
as possible and to rapidly learn a reliable model, PILCO
applies a random policy at the first stage of the learning. In



general, starting from a randomly initialized policy can be
dangerous for real systems. The robot, in fact, can exhibit
unstable behaviors in the first stages of the learning process,
with the consequent risk of damages.

The work in [15] combines the benefits of model-free and
model-based RL. Authors propose to model the system to
control as a dynamical system and to find an initial control
policy by using optimal control. The learned policy is then
applied to the real system and improved using a model-free
approach. The policy learned on the model represents a good
starting point for policy search, significantly reducing the
number of performed rollouts. The approach in [16] also uses
optimal control to find an initial policy, but it uses sensory
data to fit a locally linear model of the system.

In this paper, we propose a model-based RL approach that
exploits an approximate, analytical model of the robot to
rapidly learn an optimal control policy. The proposed Policy
Improvement with REsidual Model learning (PI-REM) as-
sumes that the system is modeled as a non-linear dynamical
system. In real scenarios, it is not trivial to analytically derive
the entire model, but it is reasonable to assume that part
of the model is easy to derive. For instance, in a robotic
application, the model of the robot in free motion has a well-
known structure [17], but it is hard to model the sensor noise
or the friction coefficient [18]. We refer to the known part of
the model as the approximate model. Given the approximate
model, we learn an optimal control policy in simulation. We
exploit PILCO in this study, but other choices are possible.
Directly applying the policy learned in simulation on a real
robot does not guarantee to fulfill the task. Hence, we exploit
sensory data to learn the residual difference between the real
and the approximate model using Gaussian Processes (GP)
[14]. The superposition of the approximate model and the
learned residual term represents a good estimation of the real
dynamics and it is adopted for model-based policy search.
An overview of PI-REM is shown in Fig. 1.

In contrast to PILCO, our approach exploits the approxi-
mate model to be more data efficient and to converge faster
to the optimal policy. Compared to the work in [15], PI-REM
explicitly learns the residual difference to improve the model
and speed-up the policy search. Indeed, the approximate
model is globally valid and we use sensory data only to
estimate local variations of that model. In contrast to [16],
we do not constraint the system dynamics to be locally linear.

The rest of the paper is organized as follows. Section II
describes our approach for model-based policy search. Ex-
periments and comparisons are reported in Sec. III. Section
IV states the conclusion and proposes future extensions.

II. POLICY IMPROVEMENT WITH RESIDUAL MODEL
LEARNING (PI-REM)

A. Preliminaries

The goal of a reinforcement learning algorithm is to find a
control policy u = π(x) that minimizes the expected return

Jπ(θ) =

N∑
t=0

E[c(xt)] (1)

where E[·] is the operator that computes the expected value
of a random variable, and c(xt) is the cost of being in state
x at time t. The vector θ represents a set of values used to
parameterize the continuous-valued policy function π(x,θ).

In this work, we consider that the system to control is
modeled as a non-linear dynamical system in the form

xrt+1 = fr(xrt ,u
r
t ) (2)

where xr ∈ Rd is the continuous-valued state vector, ur ∈
Rf is the control input vector, fr ∈ Rd is a continuous
and continuously differentiable function. The superscript r
indicates that the dynamical system (2) is the real (exact)
model of the system. The difference equation (2) can model
a variety of physical systems, including robotic platforms.

B. Additive Unknown Dynamics

In general, it is not trivial to derive the exact model in (2).
For example, although it is relatively simple to compute the
dynamical model of a robotic manipulator in free motion,
it is complicated to model eventual external forces. In
many robotics applications, we can assume that the function
fr(·, ·) in (2) consists of two terms: i) a deterministic and
know term, and ii) an additive unknown term. Under this
assumption, the dynamical system in (2) can be rewritten as

xrt+1 = fa(xrt ,u
r
t ) + fu(xrt ,u

r
t ) +w (3)

where the function fa(·, ·) is assumed known and determin-
istic, fu(·, ·) + w is an unknown and stochastic term, and
w ∈ Rd is an additive Gaussian noise. The dynamical system

xat+1 = fa(xat ,u
a
t ) (4)

represents the known dynamics in (3), and we call it the
approximate model. Note that xat and xrt represent the same
state vector in different points of the state space Rd.

The approximate model is known a priori. Hence, a control
policy ua = πa(xa) for (3) can be learned in simulation
by using a reinforcement learning or an optimal control
approach. In this work, we used the PILCO algorithm [10]
to learn πa, but other choices are possible. It is worth noting
that searching for the policy πa requires only simulations,
i.e., no experiments on the robot are performed at this stage.
The learned policy πa represents a good starting point to
search for a control policy πr for the real robot. This idea
of initializing a control policy from simulations has been
effectively applied in [15], where a linear system is used as
approximate model. Apart form initializing a policy from
simulation, this work exploits real data for the robot to
explicitly learn the unknown dynamics fu(·, ·) + w in (3).
In other words, when the learned policy πa is applied to the
real robot, the measured states are used either to improve
the current policy or to learn an estimate of the unknown
dynamic. This significantly reduces the number of rollouts
to perform on the real robot [10].



C. Learning Unknown Dynamics using Gaussian Processes
The unknown dynamics fu(·, ·) + w in (3) is learned

from sensory data using Gaussian Processes (GP) [14]. The
goal of the learning process is to obtain an estimate f̂

u
of

fu+w such that fa(·, ·)+ f̂
u
(·, ·) ≈ fa(·, ·)+fu(·, ·)+w.

To learn the unknown dynamics, we exploit the real xrt
and approximate xat states, as well as the real urt and
approximate uat control inputs.

For convenience, let us define ∆t = (∆xt,∆ut), where
∆xt = xrt − xat and ∆ut = urt − uat . We also define x̃rt =
(xrt ,u

r
t ) and x̃at = (xat ,u

a
t ). Using these definitions, it is

straightforward to show that x̃rt = x̃at + ∆t and to rewrite
the real dynamics in (3) as

fr(x̃rt ) = fr(x̃at +∆t) = fa(x̃at +∆t)+fu(x̃at +∆t)+w
(5)

Recalling that the zero-order Taylor series expansion of a
function f(a+ ∆a) = f(a) + r(∆a), we can write

fr(x̃at + ∆t) = fa(x̃at ) + ra(∆t) + fu(x̃at ) + ru(∆t) +w
(6)

where ra(∆t) and ru(∆t) are the residual errors generated
by stopping the Taylor series expansion at the zero-order.
Considering (6), the difference between the real (3) and
approximate (4) systems can be written as

∆xt+1 = fr(x̃at + ∆t)− fa(x̃at )

= fa(x̃at ) + fu(x̃at ) + r(∆t) +w − fa(x̃at )

= fu(x̃at ) + r(∆t) +w = f̂
u
(x̃at ,∆t)

(7)

where we pose r(∆t) = ra(∆t) + ru(∆t). GP assume
that the data are generated by a set of underlying functions,
whose joint probability distribution is Gaussian [14]. Having
assumed a Gaussian noise term w, we can conclude that the
stochastic process (7) can be effectively represented as a GP.

Equation (7) shows that f̂
u

maps x̃at and ∆t into the
next state ∆xt+1. Hence, the training inputs of our GP
are the tuples {x̃at ,∆t}N−1

t=0 , while the training outputs are
{yt = ∆xt+1−∆xt}N−1

t=0 . The training data are obtained as
follows. At the nth rollout, the current policy πn is applied
to the robot and to the approximate model. As already
mentioned, for the first rollout we set π1 = πa. After the
trial, we have the two data sets X a = {xat ,uat }Nt=0 and
X r = {xrt ,urt}Nt=0. Hence, we have to simply calculate
the element-wise difference X r − X a to obtain the tuples
X d = {∆xt,∆ut}Nt=0, which contain the rest of the training
data for the Gaussian process.

The state predicted with a GP ∆xt+1 is Gaussian dis-
tributed, i.e., p(∆xt+1|x̃at ,∆t) = N (∆xt+1|µt+1,Σt+1).
Given N training inputs X̃ = [x̃a1 ,∆1, . . . , x̃

a
N ,∆N ], train-

ing outputs y = [y1, . . . , yN ]T, and a query point x̃∗ =
[(x̃a,∗t )T(∆∗

t )
T]T, the predicted (one-step) mean µt+1 and

variance Σt+1 are

µt+1 = ∆xt +K x̃∗X̃

(
KX̃X̃ + σ2

nI
)−1

y

Σt+1 = k(x̃∗, x̃∗)−K x̃∗X̃

(
KX̃X̃ + σ2

nI
)−1

KX̃x̃∗

(8)

where K x̃∗X̃ = k(x̃∗, X̃), KX̃x̃∗ = KT
x̃∗X̃

, k(·, ·) is a
covariance function and the generic element ij of the matrix

KX̃X̃ is given by Kij

X̃X̃
= k(x̃i, x̃j). In our approach, k(·, ·)

is the squared exponential covariance function

k(x̃i, x̃j) = σ2
k exp

(
−1

2
(x̃i − x̃j)TΛ−1(x̃i − x̃j)

)
(9)

where Λ = diag(l21, ..., l
2
D). The tunable parameters Λ, σ2

k

and σ2
n are learned from the training data by using evidence

maximization [14]. The standard GP formulation works for
scalar outputs. For systems with a multidimensional state,
we consider one GP for each dimension assuming that the
dimensions are independent to each other.

D. Policy Parameterization and Cost Function
The control of a robotic device requires a continuous-

valued control policy. It is clear that searching for a control
policy in a continuous space is unfeasible in terms of
computational cost. A common strategy [2] to solve this issue
consists in assuming that the policy π is parameterized by
θ ∈ Rp, i.e., π(x,θ). In this work, we assume that the policy
is the mean of a GP in the form

π(x,θ) =

D∑
i

k(x∗, ci)
(
KCC + σ2

πI
)−1

yπ (10)

where x∗ is the current state, C = [c1, . . . , cD] are the
centers of the Gaussian basis function k(·, ·) defined as in
(9). The vector yπ plays the role of the GP training targets,
while KCC is defined as in (8). The tunable parameters of
the policy (10) are θ = [C,Λ,yπ]. As suggested in [10], we
set the variance σ2

π = 0.01 in our experiments.
As already mentioned, the optimal policy minimizes the

expected return Jπ(θ) in (1). In this work, we adopt a
saturating cost function c(xrt ) with spread σ2

c

c(xrt ) = 1− exp

(
− 1

2σ2
c

‖xrt − xg‖2
)
∈ [0, 1] (11)

where xg denotes the goal (target) state1.

E. Policy Evaluation
The learned GP model is used to compute the long-

term predictions p(∆x1|π), ..., p(∆xN , |π) starting from
p(∆x0). The long-term predictions, in fact, are needed to
compute the expected costs and to minimize the expected
return in (1). Compute the long-term predictions from the
one-step predictions in (8) requires the predictive distribution

p(yt) =

∫∫
p(f̂

u
(ξt)|ξt)p(ξt)df̂

u
dξt (12)

where ξt = [(x̃at )T(∆t)
T]T and yt = ∆xt+1−∆xt. Solving

the integral in (12) is analytically intractable. Hence, we
assume a Gaussian distribution p(∆t) = N (∆t|µ∆,Σ∆).
The mean µ∆ and Σ∆ are obtained by applying the mo-
ment matching algorithm in [10]. The predictive distribution
p(∆xt+1|π) is also Gaussian with mean and covariance

µt+1 = µt + µ∆

Σt+1 = Σt + Σ∆ + cov(∆xt,∆t) + cov(∆t,∆xt)
(13)

1In [19], the author presents the benefits of the saturating cost (11)
compared to a quadratic cost.



where the covariance cov(·, ·) is computed as in [19].
Once the long-term predictions are computed, the esti-

mated real state can be calculated as xrt = xat +∆xt, where
xat is the deterministic state of the approximate model (see
Sec. II-A). Given that xrt = xat + ∆xt, the expected real
long-term cost can be expressed as

Jπ(θ) =

N∑
t=0

Exr
t
[c(xrt )] =

N∑
t=0

E∆xt
[c(∆xt)] (14)

Indeed, by substituting ∆xt = xrt − xat into (11) we obtain

c(xrt ) = 1− exp

(
− 1

2σ2
c

‖xrt − xg‖2
)

= 1− exp

(
− 1

2σ2
c

‖∆xt + xat − xg‖2
)

= 1− exp

(
− 1

2σ2
c

‖∆xt − (xg − xat )‖2
)

= 1− exp

(
− 1

2σ2
c

‖∆xt −∆xg,t‖2
)

= c(∆xt)

The vector xat is the approximate state computed by applying
the initial policy πa and it is deterministic. Hence, we can
precalculate all the ∆xg,t for t = 1, . . . , N . Note that by
minimizing c(∆xt) we force the real robot to follow the
same trajectory of the approximate model. Recalling that the
predictive distribution p(∆xt|π) = N (∆xt|µt,Σt), we can
rewrite the real expected costs in (1) as

E∆xt
[c(∆xt)] =

∫
c(∆xt)N (∆xt|µt,Σt)d∆xt (15)

where µt and Σt are defined as in (13). The expected value
E∆xt

[c(∆xt)] in (15) can be computed analytically and it is
differentiable, which allows the adoption of gradient based
approaches for policy search.

F. Policy Search

We leverage the gradient ∂Jπ(θ)/∂θ to search the policy
parameters θ∗ that minimize the expected long-term cost
Jπ(θ). In our formulation, the expected costs in (1) can
be written in the form (15). Given that the expected costs
have the form (15), and assuming that the moment matching
algorithm is used for long-term predictions, the gradient
∂Jπ(θ)/∂θ can be computed analytically. The computation
of the gradient ∂Jπ(θ)/∂θ is detailed in [10].

The result of the policy improvement is a set of policy
parameters θn, where n indicates the nth iteration. The
control policy πn = π(x,θn) drives the estimated real state
xat + ∆xt towards the desired goal. The new policy πn is
applied to the real robot to obtain new training data and to
refine the residual model. The process is repeated until the
task is learned. PI-REM is summarized in Algorithm 1.

III. EXPERIMENTS

Experiments in this section show the effectiveness of our
approach in learning control policies for simulated and real
physical systems. The proposed approach is compared with
the PILCO algorithm in [10] considering the number of

Algorithm 1 Policy Improvement with REsidual Model
learning (PI-REM)

1: Learn a policy πa for the approximate model (4)
2: πn = πa

3: while task learning is not completed do
4: Apply πn to the approximate model and the real robot
5: Calculate the new training set X d = X r −X a
6: Calculate the new target set ∆xg,t = xg − xat
7: Learn GP model for the dynamics (7)
8: while Jπ(θ) not minimized do
9: Policy evaluation using (13) and (15)

10: Policy improvement (Sec. II-F and [10])
11: end while
12: return θ∗

13: end while
14: return π∗

fk

θ

m

l

u
+

(a)

θ

m

l

u
fk

+

(b)

Fig. 2. (a) The pendulum interacting with an elastic environment. (b) The
cart–pole system connected to a spring.

rollouts performed on the real system and the total time
duration of the rollouts (real experience). Both PI-REM and
PILCO are implemented in Matlab R©.

In all the experiments, we use the saturating cost function
in (11). To consider bounded control inputs, the control
policy in (10) is squashed into the interval [−umax, umax]

by using the function σ(x) = umax
9 sin (x)+sin (3x)

8 .

A. Simulation Results

We tested PI-REM in two different tasks, namely a pen-
dulum swing-up and a cart–pole swing-up (see Fig. 2), and
compared the results with PILCO [10]. For a fair comparison,
we use the same parameters for PI-REM and PILCO.

1) Pendulum swing-up: The task consists in balancing the
pendulum in the inverted position (θg = −π rad), starting
from the stable position (θ0 = 0 rad). As shown in Fig. 2(a),
the pendulum interacts with an elastic environment (modeled
as a spring) when it reaches the vertical position (θ = π rad).
The interaction generates an extra force fk on the pendulum,
which is neglected in our approximate model. Hence, the
approximate model is the standard pendulum model

θ̈t(
1

4
ml2 + I) +

1

2
mlg sin (θt) = ut − bθ̇t



where the mass m = 1 kg, the length l = 1 m, I = 1
12ml

2 is
the moment of inertia of a pendulum around the midpoint,
b = 0.01 sNm/rad is the friction coefficient, g = 9.81 m/s2 is
the gravity acceleration and ut is the control torque. The state
of the pendulum is defined as x = [θ̇, θ]T, while the goal to
reach is xg = [0,−π]T. The external force fk depends on
the stiffness of the spring. We tested three different stiffness
values, namely 100, 200 and 500 N/m. Results are reported
is Tab. I. Note that the time of real experience in Tab. I is a
multiple of the number of rollouts. This is because we keep
the duration of the task fixed for each rollout.

TABLE I
RESULTS FOR THE PENDULUM SWING-UP.

Stiffness Real rollouts Real experience
[N/m] [#] [s]

PI-REM 100 2 8
PILCO [10] 100 6 24

PI-REM 200 3 12
PILCO [10] 200 4 16

PI-REM 500 2 4
PILCO [10] 500 3 6

Stiffness 100 N/m: For a stiffness equal to 100 N/m,
umax = 5 Nm is sufficient to fulfill the task. The total
duration of the task is T = 4 s, while the sampling time is
dt = 0.1 s. Results in Tab. I show that PI-REM needs only
2 iterations and 8 s of real experience to learn the control
policy. For comparison, PILCO needs 6 iterations and 24 s
of real experience. The improvement mostly depends on the
reduced state prediction error of PI-REM. As shown in Fig.
3(a), the approximate model accurately represents the system
until the pendulum touches the spring. This lets PI-REM
to properly estimate the state after 2 iterations (see Fig.
3(b)). PILCO, instead, spends 5 iterations to learn a proper
model of the system. As shown in Fig. 4, after 2 iterations
the pendulum is able to reach the goal xg = [0,−π]T.
The learned control policy is bounded (u(x) ∈ [−5, 5] Nm),
and it drives the pendulum to the goal position in less
than 1 s (see Fig. 4(a)). This results in an average expected
return Jπ(θ) ≈ 12 (see Fig. 4(b)). PILCO needs more
rollouts (6 instead of 2) to find the optimal policy. Since
we used the same policy parameterization and cost function
in both the approaches, PILCO and PI-REM learn (almost)
the same control policy that generates a similar behavior of
the pendulum.

Stiffness 200 N/m: For a stiffness equal to 200 N/m, we
have to reduce the sampling time to 0.05 s to avoid numerical
instabilities in the simulation of the real model. Moreover, we
increase the maximum control input to 15 Nm. In this case,
our approach needs 3 iterations and 12 s of real experience
to learn the control policy (see Tab. I).

Stiffness 500 N/m: For a stiffness equal to 500 N/m, we
have to further reduce the sampling time to 0.0125 s. To
speed-up the learning, we reduce the prediction time to 2 s.
Moreover, we increase the maximum control input to 25 Nm.
In this case, our approach needs 2 iterations and 4 s of real
experience to learn the control policy (see Tab. I).
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Fig. 3. Pendulum model learning results (stiffness 100N/m). (a) State
predicted and measured after one iteration of PI-REM. (b) State prediction
(root mean square) errors of PI-REM and PILCO for different iterations.
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Fig. 4. Results for the pendulum swing-up (stiffness 100N/m). (a)
Pendulum angle and control policy obtained with PI-REM after 2 iterations.
The black solid line represents the goal. (b) Evolution of the expected return
Jπ(θ) for different rollouts (mean and std over 5 executions).

2) Cart–pole swing-up: The task consists in swinging-
up the pendulum on the cart and balance it in the inverted
position (θg = −π rad), starting from the stable position
(θ0 = 0 rad). The control input is the horizontal force ut
that makes the cart moving to the left or to the right. As
shown in Fig. 2(b), the cart is connected to a wall through
a spring. The additive force fk of the spring affects the
motion of the cart. The mass of the cart is mc = 0.5 kg, the
mass of the pendulum is mp = 0.5 kg, and the length of the
pendulum is l = 0.5 m. The state of the cart–pole system
is x = [p, ṗ, θ, θ̇]T, where p is the position of the cart, ṗ is
the velocity of the cart, θ and θ̇ are respectively the angle
and the angular velocity of the pendulum. The goal state is
xg = [0, 0, π, 0]T. The cart–pole system is more complicated
than the single pendulum, since the state has four dimensions
instead of two. Also in this case, the approximate model does
not consider the extra force fk. The approximate model of
the cart–pole pendulum is then

(mc +mp)p̈t +
1

2
mplθ̈t cos (θt)−

1

2
mplθ̇

2
t sin (θt) = ut − bṗt

2lθ̈t + 3p̈t cos (θt) + 3g sin (θt) = 0

We tested three different stiffness values, namely 25, 50
and 120 N/m. Results are reported is Tab. II. Recall that the
time of real experience in Tab. II is a multiple of the number
of rollouts.

Stiffness 25 N/m: For a stiffness equal to 25 N/m, umax =
10 N is sufficient to fulfill the task. The total duration of the
task is T = 4 s, while the sampling time is dt = 0.1 s.
Results in Tab. II show that our approach needs only 2
iterations and 8 s of real experience to learn the control



TABLE II
RESULTS FOR THE CART–POLE SWING-UP.

Stiffness Real rollouts Real experience
[N/m] [#] [s]

PI-REM 25 2 8
PILCO [10] 25 5 20

PI-REM 50 3 12
PILCO [10] 50 6 24

PI-REM 120 15 30
PILCO [10] 120 23 46
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Fig. 5. Results for the cart–pole swing-up (stiffness 120N/m). (a)–(b) State
of the cart–pole system and (c) learned control policy after 15 iterations
of PI-REM. The black solid line represents the goal. (d) Evolution of
the expected return Jπ(θ) for different rollouts (mean and std over 5
executions).

policy. For comparison, PILCO needs 5 iterations and 20 s
of real experience.

Stiffness 50 N/m: For a stiffness equal to 200 N/m, we have
to increase the maximum control input to 15 N in order to
fulfill the task. In this case, PI-REM needs 3 iterations and
12 s of real experience to learn the policy (see Tab. II).

Stiffness 120 N/m: For a stiffness equal to 120 N/m, we
have to reduce the sampling time to 0.05 s to avoid numerical
instabilities in the simulation of the real model. We also
reduce the duration of the task to T = 2 s to speed-up
the learning process. In this case, our approach needs 15
iterations and 30 s of real experience to learn the control
policy (see Tab. II). As shown in Fig. 5, after 15 iterations
the cart–pole system reaches the goal xg = [0, 0, π, 0]T. The
learned control policy is bounded (u(x) ∈ [−15, 15] N), and
it drives the cart–pole system to the goal position in less
than 4 s (see Fig. 5(a) to 5(c)). This results in an average
expected return Jπ(θ) ≈ 20 (see Fig. 5(d)). PILCO needs
more rollouts (23 instead of 15) to find the optimal policy.
Since we used the same policy parameterization and cost
function in both the approaches, PILCO and PI-REM learn
(almost) the same control policy that generates a similar
behavior of the cart–pole system.

In the considered simulations, the proposed PI-REM per-
forms better than PILCO. In terms of rollouts, our approach

takes from 25% to 67% less iterations than PILCO. As a
consequence, the time of real experience is reduced from
25% to 67% (from a minimum of 2 s to a maximum of 16 s
less than PILCO).

B. Robot Experiment

PI-REM is applied to control a qbmove Maker variable
stiffness actuator (VSA) [20]. As shown in Fig. 6, the arm
consists of four VSA. The first joint of the arm is actuated,
while the other three are not controlled. The task consists
in swinging-up the robotic arm by controlling the actuated
joint. As approximate model, we use the mass–spring system

mθ̈t + k(θt − ut) = 0 (16)

where m = 0.78 kg is the mass of the unactuated joints, and
k = 14 Nm/rad is the maximum stiffness of the qbmove
Maker [20]. The variable θt represents the link position,
while ut is the commanded motor position. It is worth
noticing that the approximate model in (16) neglects the
length, inertia and friction of the arm in Fig. 6. Moreover,
the model in (16) represents a VSA only in the region where
the behavior of the spring is linear.

Actuated
Joint

Unactuated
Joints

u

Fig. 6. The VSA arm used in the robotic experiment.

The goal is to learn a control policy ut that drives the
model from the initial state x0 = [θ0, θ̇0] = [π/2, 0]T to the
goal xg = [−π/2, 0]T in T = 5 s. The maximum input po-
sition is umax = 1.7 rad. Joint velocities are computed from
the measured joint angles using a constant velocity Kalman
filter. The robot is controlled at 500 Hz via a Simulink R©

interface. Results in Tab. III show that our approach needs
3 iterations and 15 s of real experience to lean the task.
For comparison, PILCO needs 5 iterations and 25 s of real
experience to learn the same task. Hence, PI-REM shows an
improvement of the performance of 40%. Figure 7 shows
the learned policy, the cost evolution and the state of the
robot after 3 iterations of PI-REM. Note that, for a better
visualization, we show only the first two seconds of the task.
As shown in Fig. 7(a), the robot effectively reaches the goal
after approximatively 0.5 s. This results in an expected return
Jπ(θ) ≈ 9 (see Fig. 7(d)). PILCO needs 5 rollouts (instead
of 3) to find the optimal policy. As shown in Fig. 7(d), the
expected return of PILCO is also Jπ(θ) ≈ 9. This indicates
that PILCO and PI-REM learn a similar control policy that
generates a similar behavior of the VSA pendulum.
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Fig. 7. Results for the VSA pendulum swing-up. (a) State of the VSA
pendulum, (b) learned control policy, and (c) snapshots of the task execution
after 3 iterations of PI-REM. The black solid line in (a) represents the goal.
(d) Evolution of the expected return Jπ(θ) for different rollouts.

Performed simulations and experiments show that learning
a black-box model of the residual, instead of a black-box
model of the entire system, can significantly improve the
performance of the policy search algorithm.

TABLE III
RESULTS FOR THE VSA PENDULUM SWING-UP.

Real rollouts Real experience
[#] [s]

PI-REM 3 15
PILCO [10] 5 25

IV. CONCLUSION AND FUTURE WORK

In this work, we proposed PI-REM, a model-based rein-
forcement learning approach that exploits a simplified model
to find an optimal control policy for a given task. The
proposed approach works in two steps. First, an optimal
policy is found for the simplified model using standard policy
search algorithms. Second, sensory data from the real robot
are exploited to learn a probabilistic model that represents
the difference between the real system and its simplified
model. Differently from most model-based RL approaches,
our method does not learn a black-box model of the entire
system. PI-REM learns, instead, a black-box model of the
differences between the real system and an approximated
model, i.e., the model residual. As a consequence, our
approach is suitable in applications where the system model
is inaccurate or only partially available. The approach has
been compared with PILCO, showing improvements in terms
of performed rollouts and time of real experience.

Our future research will focus on testing the proposed
approach in more complicated tasks with a high dimen-
sional searching space. An important open question is how

inaccurate the model can be in order to maintain enhanced
performance. We expect that with a completely wrong model,
the performance of the algorithm becomes similar or slightly
worse than classical black-box approaches such as PILCO.
However, formally quantifying the tolerated uncertainty still
remains an open theoretical problem. Another potential lim-
itation of our approach is that we assume additive model
residuals. Evaluating the generality of this assumption more
precisely will be a possible future research topic.
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