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A current market-practice to incorporate multivariate defaults in global risk-
factor simulations is the iteration of (multiplicative) i.i.d. survival indicator in-

crements along a given time-grid, where the indicator distribution is based on a

copula ansatz. The underlying assumption is that the behavior of the resulting
iterated default distribution is similar to the one-shot distribution. It is shown

that in most cases this assumption is not fulfilled and furthermore numerical

analysis is presented that shows sizable differences in probabilities assigned
to both “survival-of-all” and “mixed default/survival” events. Moreover, the

classes of distributions for which probabilities from the “terminal one-shot”

and “terminal iterated” distribution coincide are derived for problems consid-
ering “survival-of-all” events as well as “mixed default/survival” events. For
the former problem, distributions must fulfill a lack-of-memory type property,
which is, e.g., fulfilled by min-stable multivariate exponential distributions.
These correspond in a copula-framework to exponential margins coupled via

extreme-value copulas. For the latter problem, while looping default inspired
multivariate Freund distributions and more generally multivariate phase-type
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distributions could be a solution, under practically relevant and reasonable
additional assumptions on portfolio rebalancing and nested distributions, the

unique solution is the Marshall–Olkin class.

Keywords: stepwise default simulation, default dependence, extreme-value cop-
ulas, Marshall–Olkin distribution, nested margining, Freund distribution, loop-

ing default models, multivariate phase-type distribution.

1. Introduction

The increasingly global nature of financial products and risks calls for ad-

equately complex stochastic models and simulation procedures. These are

required for valuation purposes as well as for risk analysis and often involve

thousands of risk factors that can be different in nature. Investment banks

and financial service companies are devoting a sizable effort to design soft-

ware and hardware architectures that support such global simulations effec-

tively, see, e.g. [1]. The path-dependent nature of many risks and the neces-

sity to analyze risks at different time horizons lead to an iterated simulation

of all risk factors across time steps. The consistent statistical representation

of default-times of multiple entities and their inter-dependence-structure is

the main motivation for this paper. For the simulation of default-times, up

to a final horizon, two possible approaches are considered:

(i) Simulate the default-times, at the beginning, once and for all in each

given scenario. The resulting values are stored and the other risk factors

are simulated iteratively up to the final time horizon.

(ii) Alternatively, one simulates in each given scenario for every time-period

a “default/no default” indicator of all non-defaulted entities conditional

on the default history — i.e. the survival of non-defaulted entities up to

the beginning of this period and the default-times of already defaulted

entities.

We anticipate that we will be concerned with the consistency of the two

approaches above under a number of additional specifications. The basic

question is:

When is an iterated default simulation, often done by sampling a given

type of multivariate distribution, equivalent to a one-shot simulation under

essentially the same distribution?

Although this appears to be a simple question, it is in fact rather nuanced.

For this question to fully make sense we need to be a little more precise on
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our definitions and on our problem specification, and it is indeed one of the

main purposes of this paper to fully clarify this question, its implications,

and some possible answers. It is worth putting this pre-question in the

open now, and we would like to mention that the first named author has

witnessed cases in the industry where the two procedures were assumed to

be equivalent when they were not, and this both in the valuation/hedging

space and in the risk measurement space. While the author is not allowed

to provide details on such cases for confidentiality issues, we will see some

numerical examples clarifying this discrepancy in the course of the paper.

Going back to our introduction, the dependence between default-times

and other risk factors has to be introduced on the whole risk factor evolu-

tion in approach (i) and on the period steps in approach (ii), respectively.

In this formulation both approaches are mathematically equivalent — how-

ever, this equivalence is based on conditional probabilities, which can be

arbitrarily complex.1 Consider, for example, the case of wrong way risk for

credit valuation adjustments for credit default swap (CDS) trades under

collateralization in [2], where the first approach is used: even with just

three default times involved, the CDS and the two trading parties, the for-

mulas become very involved and cumbersome. Thus, generally, one either

has a model for the default-times in approach (i) with complex conditional

probabilities, or one has a model for the indicator increment process in

approach (ii) with unknown “terminal iterated” dependence. The mathe-

matical underpinning — if any — for company-wide, global simulation of

defaults is often, or can be translated into, a copula-based ansatz. Such

a model originates from the statistical literature and renders approach (i)

more natural from the company-default perspective. However, when deal-

ing with large portfolios, the literature on financial risk management mostly

prefers models relying on a repeated evolution of risk factors on common

time grids. Approach (ii) is more consistent with this way of thinking and

therefore more desirable both from a theoretical and practical point of view,

for the following reasons:

• Software consistency with “Brownian-driven” asset classes:

Consider a bank that runs a global simulation on a large portfolio, in-

cluding complex products and defaults, in order to obtain a risk measure.

1Contrary to the univariate case, where sampling from conditional probability distribu-

tions can be handled using the distributional transform, even if we can calculate the
probabilities, conditional multivariate probability distributions can be very difficult to

sample from.
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One example would be computing the value-at-risk or the expected short-

fall of CVA, a task that is numerically very intensive, see, e.g. [3]. In

this context, there is need to evolve risk factors according to controlled

time steps that are common to all factors, to have all required variables

at each step of the simulation. While this is relatively natural for asset

models that are driven by Brownian-type processes and even extensions

with jumps, it becomes harder when trying to include defaults of under-

lying entities or counterparties. The reason for this is that default-times,

typically represented through intensity models, should be simulated just

once, being static random variables as opposed to stochastic processes.

Once simulated, there would be nothing left to iterate. However, the

consistency of the global simulation and the desire to have all variables

simulated at every step is prompting the design of iterated survival or

default flags across the time steps that are already used in the simulation

of more traditional assets.

• Basel III requirement for risk horizons: A further motivation for

iterating the global simulation across standard time steps is coming from

the Basel III framework when trying to address liquidity risk. The Bank

of International Settlements (BIS) suggests the following solution, see [4].

“The Committee has agreed that the differentiation of market liquidity

across the trading book will be based on the concept of liquidity hori-

zons. It proposes that banks’ trading book exposures be assigned to a small

number of liquidity horizon categories: [10 days, 1 month, 3 months, 6

months, 1 year]. The shortest liquidity horizon (most liquid exposures)

is in line with the current 10-day VaR treatment in the trading book.

The longest liquidity horizon (least liquid exposures) matches the banking

book horizon at one year. The Committee believes that such a frame-

work will deliver a more graduated treatment of risks across the balance

sheet. Among other benefits, this should also serve to reduce arbitrage

opportunities between the banking and trading books.”

It is clear then that a bank will need to simulate the risk factors of the

portfolio across a grid including the standardized holding periods above.

In this sense it will be practical to simulate all variables, including de-

faults and survivals, in common time steps. Software architecture and the

possibility to effectively decompose the simulation across steps, prompt

to the possibility to iterate the default simulation rather than trying to

simulate random default-times just once.

• General need for dependence modeling in the context of the cur-

rent counterparty credit risk debate: As an example, the current

 I
nn

ov
at

io
ns

 in
 I

ns
ur

an
ce

, R
is

k-
 a

nd
 A

ss
et

 M
an

ag
em

en
t D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

09
.1

93
.1

9.
25

0 
on

 0
9/

18
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:1 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch03 page 51

Consistent Iterated Simulation of Multivariate Defaults 51

debate on valuation adjustments (as the partly overlapping credit CVA,

debit DVA, and funding FVA adjustments, see, e.g., [3]), is forcing fi-

nancial institutions to run global simulations over very large portfolios.

By nature, CVA is an option on a very large portfolio containing the

most disparate risk factors. A key quantity in valuing this option is

the dependence between the default of a counterparty and the value of

the underlying portfolio that is traded with that counterparty. When

such dependence is adverse for the agent making the calculation we have

wrong way risk (WWR), a risk that is at the center of the agenda of the

Bank of International Settlements in reforming current regulation. Mod-

eling the dynamics of dependence is not only essential for the current

emergencies of the industry, such as CVA/DVA/FVA and risk measures

on these quantities, but it is also necessary for the management of pure

credit products, such as, e.g., Collateralized Debt or Loan Obligations

(CDO, CLO).

Before shifting the focus solely to default-times, it is important to consider

not only the distribution of default-times but also the dependence on other

risk factors:

(a) In reality, default risk is correlated with other risk-factors. These can

be risk-factors belonging to other asset classes, e.g. equity, or even

macro-economic risk factors. These dependencies, however, are usually

not considered in model building for the following reasons: It might be

easy to reject the independence-assumption between a default-time and

some other risk-factor with qualitative arguments or statistical tests,

but the determination of a good model for this dependence (or directly

for the joint distribution) is usually far from trivial. Even if one can

formulate a satisfying model for other risk-factors and default-times

— or the survival-indicator increments — the additional complexity

can lead to computational problems (as explained in the following).

Furthermore, the design of such a global model, including dependence

between risk-factor classes, would require different departments of the

financial institution to work together. For most institutions this is

infeasible as business is often separated into different sections, of which

each models their relevant risk factors to their own appropriate level of

complexity.

(b) The computation of transition probabilities, or sampling from these

transition-distributions, for the risk-factor evolution will be very
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difficult and non-trivial in most cases. In particular, if there are

no closed-form expressions, one usually has to rely on numerical-

integration techniques — if available — which becomes time-consuming

and is difficult to implement.

(c) Dependency information requires additional storage — especially if the

dependency is conditional on the full histories of risk-factors, which is

even challenging in low, but especially in high dimensions.

Focussing on the (discrete) survival-indicator process, there are more prob-

lems which have to be considered:

(d) Assume that there are d entities and N simulation steps up to the final

time-horizon. In the worst case of full default-evolution-dependence this

leads to
∑N−1
k=0 (k + 2)d transition-probabilities. In the case of simple

time-dependence, we have N ·3d transition-probabilities. In the case of

complete time-homogeneity, one “only” has 3d transition-probabilities.

For a large number of entities d or/and a large number of simulation

steps N the issue of over-parameterization becomes apparent.

(e) Let T be the final time-horizon. Then the number of time-steps, and

subsequently the number of parameters, depends on the step-size ∆,

i.e. N = T/∆. This can lead to problems if different step-sizes have to

be simulated (e.g. days, weeks, months, ...) as all probabilities should

be consistent.

An additional problem is that the definition of all transition-probabilities

have to be re-assessed in case the composition of the defaultable portfolio

changes.

In summary, approach (i) appears more natural from the perspective of

default modeling itself, however, in a global risk factor model, approach (ii)

might be more desirable and is mostly used in the financial industry. Sum-

ming up, this involves the following questions:

(1) What are convenient conditions on the multivariate distribution of the

default-times such that approach (i) and approach (ii) are consistent

in the sense that if one knows the distribution of default-times for ap-

proach (i), one has a manageable “default/no default” indicator process

for approach (ii) yielding the same results, and vice versa.

(2) What can go wrong, if one uses some indicator evolution which is not

consistent in the sense of (1) — e.g. based on a Gaussian coupling of

exponential random variables?
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The consistency in question (1) can be weakened if the problem only con-

cerns “survival-of-all” events instead of “mixed default/survival” events.

The class of consistent distributions in the sense of question (1) might be

very large — as the requirement of understanding the distribution as a

model in approach (i) and approach (ii) can be fulfilled for many distri-

butions with enough time at hand. However, most of these distributions

are not feasible in practice, as we do not only need a model which is fully

understood, but also feasible for simulation in terms of memory usage and

sampling strategy. Therefore, a convenient assumption, which resolves — or

at least diminishes — problems (a)–(e) from above, is a (continuous-time)

time-homogeneous Markovian survival-indicator process. This is equivalent

to conditional probabilities being determined by the current set of defaulted

entities, but not on their specific default-times. The idea of using Marko-

vian survival-indicator processes (even possibly time-inhomogeneous and

only Markovian conditional on a set of intensity processes) is not new and

has been discussed in [5] and [6]. These papers focus on the issue of pricing

portfolio-credit derivatives. In the following we give a short overview on

the “survival-of-all” and “mixed default/survival” problems.

1.1. Problem one: “Survival-of-all” events

In this special case the underlying problem only concerns the

default/survival-of-all entities up to certain points in time. An example

for such a problem is the valuation of a first-to-default swap on a basket of

entities. Subsequently, one can demand a weaker version of consistency and

feasibility — namely that the “survival-of-all” event and the corresponding

indicator process are consistent and feasible. The class of consistent and

feasible distributions for this problem was first studied in [7] and is related

to a multivariate generalization of the univariate lack-of-memory property.

In particular, a subclass fulfilling this property are min-stable multivari-

ate exponential distributions. These are multivariate distributions with

exponential margins and an extreme-value copula. Fundamental examples

of this subclass, such as the Marshall–Olkin and the Gumbel–Hougaard

distribution, are presented in this paper.

1.2. Problem two: “Mixed default/survival” events

Problems which depend on “mixed default/survival” events — and thus

do not fall in the same category as problem one — require the original

strict version of consistency. This leads (under previously outlined feasibil-

ity conditions) to time-homogeneous Markovian survival-indicators. This
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general class is already known under the name multivariate phase-type dis-

tributions. This article analyzes further desirable theoretical and practical

conditions on the resulting simulation process and as a result focuses on

the subclasses of Marshall–Olkin distributions as well as a multivariate ex-

tension of the bivariate Freund distribution. In particular, the practically

important requirement of having the Markov property also for sub-vectors

of indicators leads to a new characterization of the Marshall–Olkin law

that has been first discussed in [8] and is recalled here in the context of the

present paper. Our general aim is to increase awareness of the fact that

the stepwise simulation of default indicators (approach (ii) above) is a hard

task in general, and in particular that the practical implementation is not

feasible without huge efforts (both theoretical and computational), and that

sizable errors and undesired effects may occur by iterating under the wrong

conditions.

1.3. Structure of the paper

In Sec. 2 the survival-indicator process is introduced. It is shown that

Markovianity of this process can be identified on a distributional level with

a lack-of-memory type property. Subsequently, multiple lack-of-memory

properties are presented and associated with certain classes of multivari-

ate probability distributions. In particular, the min-stable multivariate

exponential property (MSMVE) is introduced and is related to its charac-

terization via extreme-value copulas and exponential margins.

Section 3 addresses the “survival-of-all” problem. Therefore, the con-

cepts of self-chaining distributions and copulas, which were introduced in

[7], are revisited and advanced. In particular, it is shown that the MSMVE

characterization in terms of extreme-value copulas with exponential mar-

gins solves the problem. Then it is outlined that the widely used Gaussian-

coupled exponential distributions do not fulfill that property. Moreover,

choosing such a distribution for the step-innovations leads asymptotically

to independence of the default-times, completely destroying dependence in

the limit if the step size in time tends to zero.

In Sec. 4 the “mixed default/survival” problem is discussed, for looping

default models, Freund distributions, and multivariate phase-type distribu-

tions. A special focus lies on the Marshall–Olkin class, leveraging its new

characterization in terms of Markov property of vectors and subvectors of

indicators, as in [8], and different simulation strategies as well as a conve-

nient construction through Lévy-frailty models.
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The final section concludes the article.

2. Default-time distributions and survival-indicator

processes

Assume that (Ω,F ,P) is a probability space on which all random objects of

this section are defined. Throughout this article, let τ = (τ1, . . . , τd)
′ be a

(non-negative) random vector of default-times2 for d entities with joint- and

marginal survival function(s) F̄ and F̄i, i ∈ [d] := {1, . . . , d}, respectively3

and Z = Z(t) be the corresponding survival indicator process which is

defined by

Zi(t) := 1{τi>t}, i ∈ [d], t ≥ 0.

In light of the introduction — and particularly as our questions of inter-

est rely on iterating the survival-indicator process over periods with fixed

length ∆ — it may seem more appropriate (and also simpler) to work with

the discretized version of Z, hereby denoted by Z(∆) and defined by

Z
(∆)
i (j) := Zi(j∆), j ∈ {0, . . . , N}, i ∈ [d].

As outlined in the introduction, there are various arguments why it is con-

venient to assume that the underlying continuous-time process Z is also

time-homogeneous Markovian. In the following another technical and a

model building argument for this assumption are presented:

(a) Technical argument: The period-length, ∆ > 0, is usually an externally

given quantity — e.g. set by the regulator as liquidity horizon or it is

implicitly given from the existing IT-infrastructure. Hence, a model

which can only be used consistently and feasible for very specific ∆ is

not desirable, as any (externally driven) change in ∆ might destroy the

models usability.

(b) Model building argument: From a model building perspective it is rea-

sonable to assume that Z(∆) has a representation with an underly-

ing continuous-time process Z. A deviation from the Markovian as-

sumption above implies that the process Z either violates the time-

homogeneity or the Markovian assumption entirely. However, if one

2For consistency, these “event”-times are referred to as default-times throughout this

article, however, other notions such as fatality-, inter-arrival-, or inter-failure-times are
equally applicable.
3For τ and s, t ≥ 0, the multivariate survival function is defined by F̄ (s) := P(τ > s)

and the ith marginal survival function by F̄i(t) := P(τi > t).
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assumes that the time-homogeneous Markovian property of Z(∆) is a

tolerable deviation from reality — one should avoid choosing a model

which violates those very properties on the continuous-time scale.

In summary, one can conclude that assuming an implied continuous-

time, time-homogeneous Markovian survival-indicator process Z is a rea-

sonable assumption, if one wants a feasible and consistent approach. In

particular, this assumption is desirable from a technical aspect and also

from a model building view if the underlying entities do note make the

time-homogeneity assumption in itself unusable. Therefore, it is assumed

throughout this article that, as a feasibility condition, Z is a continuous-

time, time-homogeneous Markovian survival-indicator process.

2.1. Markovian survival indicator-processes

Let I = {0, 1}d and define the auxiliary function h to establish a bijection

between the power set of [d], denoted by P([d]), and I by

h : P([d])→ I, I 7→ (1{1∈I}, . . . , 1{d∈I})
′.

A survival-indicator process is a stochastic process Z = Z(t) on I fulfilling

for all s, t ≥ 0 and J ( I ⊆ [d]

P(Z(t+ s) = h(I) | Z(t) = h(J)) = 0.

This process is Markovian if for all I, J ⊆ [d], A ∈ σ(Z(v) : v ≤ t), and

s, t ≥ 0

P(Z(t+ s) = h(I) | Z(t) = h(J), A)

= P(Z(s+ t) = h(I) | Z(t) = h(J)).

It is furthermore called time-homogeneous if additionally for all s, t, v ≥ 0

P(Z(t+ s+ v) = h(I) | Z(t+ v) = h(J))

= P(Z(t+ s) = h(I) | Z(t) = h(J)).

A time-homogeneous Markovian process satisfies

P(Z(t+ s) = h(I) | Z(t) = h(J)) = (~eh̃(J))
′ exp{Qs}~eh̃(I),

where h̃ : P([d])→ {0, 1}2d is an arbitrary bijection between the power set

of [d] and the set {1, . . . , 2d}, which fulfills h̃(I) < h̃(J) ⇔ |I| > |J | for all

I, J ⊆ [d],4 ~ek, k ∈ [2d], is the canonical basis of R2d , and Q ∈ R2d×2d is an

4This property guarantees, that the resulting intensity matrix Q is an upper-triagonal

matrix.
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intensity matrix.5 As it is assumed that h̃ is chosen such that for two sets

with different cardinality, the one with more elements has the lower index,

the matrix Q is upper trigonal with non-negative off-diagonal values and

rows summing up to zero, i.e.

Q =

q1,1 ?
. . .

0 qd,d

 .

Remark 2.1 (Intensities of a Markovian Process). Let Q ∈ Rn×n
be a (not necessarily upper trigonal) intensity matrix for n states S —

w.l.o.g. assume S = [n]. Then, one can construct a continuous-time, time-

homogeneous Markovian process Z as follows (see [9]):

(i) Let X0 be the (possibly random) initial state, i.e. define Z(0) := X0.

(ii) For k ∈ N0 define the kth jump time of Z by Tk (for k = 0 let T0 := 0).

Furthermore, assume that Z(Tk) = i ∈ S.

(a) Let Ek+1 ∼ Exp(−qii) be an exponential random variable with rate

−qii which is, conditional on Z(Tk), independent of σ({El, Tl, l ≤
k}).

(b) Define Tk+1 := Tk + Ek+1 and define Z(t) = i ∀t ∈ (Tk, Tk+1).

(c) Let Xk+1 be a discrete random variable on S\{i} with probabilities

proportional to the ith row, i.e. P(Xk+1 = j) = −qij/qii. Moreover,

assume that Xk+1 is independent of σ({El, Tl, l ≤ k}) as well as

independent of Tk+1.

(d) Let Z(Tk+1) = Xk+1.

(iii) Repeat (ii) either infinitely often or until an absorbing state is reached,

i.e. a state i with qii = 0. Note that for practical application the algo-

rithm stops if Tk+1 > T for some terminal time-horizon T > 0.

It is useful to know that a time-homogeneous Markovian survival-

indicator process is uniquely defined if for every non-zero transition, i.e.

h(J) → h(I), I ⊆ J , the transition probability for an arbitrary posi-

tive transition-time is known. This will be shown in the sequel. Let

τ be a default-vector with corresponding time-homogeneous Markovian

survival-process Z and intensity-matrix Q. Furthermore, let 1 ≤ K ≤ d,

5For a thorough introduction to continuous-time Markovian processes and a reference

for this result, see [9], Ch. 8 and 9.

 I
nn

ov
at

io
ns

 in
 I

ns
ur

an
ce

, R
is

k-
 a

nd
 A

ss
et

 M
an

ag
em

en
t D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

09
.1

93
.1

9.
25

0 
on

 0
9/

18
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:1 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch03 page 58

58 Innovations in Insurance, Risk- and Asset Management

I = {i1, . . . , iK} ⊆ [d], tI ≥ 0, π ∈ Sd be a permutation6 with π([K]) = I

and tπ(1) ≥ . . . ≥ tπ(K), and define Aπ,K as the finite set

Aπ,K := {(I1, . . . , IK) : π([k]) ⊆ Ik, Ik ⊆ Ik+1 ∀k = 1, . . . ,K} ,

where tπ(K+1) = 0 and IK+1 = [d]. Then

P(τ I > tI) =
∑

(I1,...,IK)∈Aπ,K

K∏
k=1

(~eh̃(Ik+1))
′ exp

{
(tπ(k) − tπ(k+1))Q

}
~eh̃(Ik).

The assumption that the survival-indicator process is time-homogeneous

Markovian has an important implication: Let s = (s1, . . . , sd)
′ ≥ 0 be a

deterministic vector of non-negative times and let π ∈ Sd be a permutation

such that sπ(1) ≥ . . . ≥ sπ(d). Then for t ≥ 0, v = s+ t, and vπ(d+1) = 0 as

well as Id+1 = [d]

P(τ > s+ t) =
∑

(I1,...,IK)∈Aπ,d

d∏
k=1

(~eh̃(Ik+1))
′ exp

{
(vπ(k) − vπ(k+1))Q

}
~eh̃(Ik)

= (~eh̃([d]))
′ exp{tQ}~eh̃([d])

×
∑

(I1,...,IK)∈Aπ,d

d∏
k=1

(~eh̃(Ik+1))
′ exp

{
(sπ(k) − sπ(k+1))Q

}
~eh̃(Ik)

= P(τ > s)P(τ > t).

This is equivalent to

P(τ > s+ t | τ > t) = P(τ > s). (1)

Analogously, one can derive for some ∅ 6= I ⊆ J ⊆ [d], and t, v ≥ 0, that

P(τ I > sI + t+ v | τ J > t+ v, τ[d]\J ≤ t+ v)

= P(τ I > sI + t | τ J > t, τ[d]\J ≤ t).

2.2. Lack-of-memory properties

It is not a coincidence that Eq. (1) collapses in the univariate case to the

well-known univariate lack-of-memory property — also known as Cauchy’s

6A permutation on [d] is a bijection from [d] to [d]; the set of all permutations on [d] is

denoted by Sd.
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functional equation — as in that case the time-homogeneity of the survival-

indicator process implies exactly that the probability of a survival-time big-

ger than s+t conditional on a survival-time bigger than s is stationary with

respect to t, i.e.

P(τ > s+ t | τ > t) = P(τ > s). (2)

It is a well-known fact that the class of non-negative distributions ful-

filling Eq. (2) and having at least one continuity point7 are exponential

distributions — see, e.g., [10], p. 190. This property implies a very conve-

nient simulation scheme if one is interested in the exponentially distributed

survival-time of some entity:

1{τ>j∆}
d
=

j∏
k=1

1{τ(k)>∆},

where τ (k) ∼ τ are i.i.d. copies of τ and
d
= denotes equality in distribution.

The univariate lack-of-memory property, Eq. (2), can be extended to a

multivariate property in multiple ways. In the following, a few of these are

presented. Therefore, let τ be a vector of non-negative random default-

times and assume that the following conditions hold for all ∅ 6= I ⊆ [d] and

sI , tI , cI , s, t ≥ 0.

• Multivariate independent exponential lack-of-memory (MIELOM):

P(τ I > sI + tI | τ I > tI) = P(τ I > sI). (3)

• Multivariate Marshall–Olkin lack-of-memory (MMOLOM):

P(τ I > sI + t | τ I > t) = P(τ I > sI). (4)

• Min-stable multivariate exponential lack-of-memory (MSMVE):

P(τ I > cI(s+ t) | τ I > cIt) = P(τ I > cIs). (5)

• Exponential-minima lack-of-memory (EM):

P(τ I > s+ t | τ I > t) = P(τ I > s). (6)

7This condition can be weakened in this context.
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It was shown in [11] that (MIELOM) is equivalent to τ having indepen-

dent exponential components and (MMOLOM) is equivalent to τ having

a Marshall–Olkin distribution, i.e. there exist λI ≥ 0, ∅ 6= I ⊆ [d], with∑
I:i∈I λI > 0 for all i ∈ [d], such that for all t ≥ 0

P(τ > t) = exp

− ∑
I:∅6=I⊆[d]

λI max
i∈I

ti

 . (7)

Furthermore, the authors provided the following stochastic model: Let

EI , ∅ 6= I ⊆ [d], be exponential random variables with rates λI , ∅ 6= I ⊆ [d],

as above. Then the random vector τ has the survival function in Eq. (7),

where τ is defined by

τi := min{EI : i ∈ I}, i ∈ [d]. (8)

Marshall–Olkin distributions and continuous-time, time-homogeneous

Markovian survival-indicator processes are deeply connected. In [8] it

was shown that τ has a Marshall–Olkin distribution if and only if for ev-

ery non-empty subset I the marginal survival-indicator process ZI(t) :=

(1{τi>t}, i ∈ I)′ is time-homogeneous Markovian. The following theorem

shows that every continuous-time, time-homogeneous Markovian survival-

indicator process can be constructed using a finite sequence of Marshall–

Olkin distributed random vectors.

Theorem 2.1. Let Q be an intensity matrix of a time-homogeneous Marko-

vian survival-indicator process. Consider the process Z, which is con-

structed as follows:

(i) Define Z(0) = h([d]) = (1, . . . , 1)′ (All entities are alive at time 0).

(ii) Assume that Z jumped k ∈ N0 times and define the time of the

kth jump by Tk (for k = 0 let T0 := 0). Furthermore, assume that

h−1(Z(Tk)) = I ⊆ [d].

(a) For ∅ 6= J ⊆ I, let EJk+1 ∼ Exp(qh(I),h(I\J)) be independent expo-

nential random variables with rates qh(I),h(I\J), which are, condi-

tional on Z(Tk), also independent of all previously used random

variables.

(b) Define

Tk+1 := Tk + min∅6=J⊆I E
J
k+1 and Dk+1 := argmin∅6=J⊆I E

J
k+1.

Furthermore, define Z(t) := h(I) ∀t ∈ (Tk, Tk+1) and Z(Tk+1) :=

h(I\Dk+1).
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The resulting process Z is time-homogeneous Markovian with intensity ma-

trix Q. Note how the minimum operation in (b) is related to the Marshall–

Olkin fatal shock model.

Proof. The statement follows directly from Thm. A.1.

It is a well-known fact, see e.g. [12], p. 174, that the class of MSMVE

distributions is characterized by having exponential margins and a survival

copula of extreme-value kind, i.e. a copula Ĉ that satisfies

Ĉ(ut) = Ĉ(u)t, ∀u ∈ [0, 1]d, t ≥ 0. (9)

Furthermore, it holds that (see, e.g., [13])

MIELOM ( MMOLOM ( MSMVE ( EM.

For the purpose of this article, we also define weaker versions of these

properties, where the respective property only has to be fulfilled for I = [d],

and these are then referred to as weak versions of the respective properties,

e.g., weak exponential minima property (WEM).

3. Problem one: Iterating “survival-of-all”

This section addresses problem one, for which only “survival-of-all” events

are relevant. Let the vector of default-times be denoted by τ = (τ1, . . . , τd)
′.

A “survival-of-all” event (similarly for a “first-to-default” event) has the

form {
min
i∈[d]

τi > s

}
, for some s > 0.

In practical applications, one has the options of either directly model-

ing the joint minimum of all default-times, or modeling the vector of all

default-times and considering its minimum. Note that these approaches

are sometimes called top-down- and bottom-up approach, respectively, not

to be confused with the related but different top-down and bottom-up ap-

proaches for collateralized debt or loan obligations, see for example [14].

The top-down approach has the appealing advantage that everything be-

comes simpler and more advanced models, e.g. with stochastic intensity,

become feasible. On the contrary, the bottom-up approach has the advan-

tage that the default-times themselves are more “natural,” compared to

their joint minimum, as a model. This means in particular that in bottom-

up models:
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• There is usually good knowledge on the single default-times τi through

historic data or CDS-quotes.

• On the contrary, there is comparably little understanding of the “first-

to-default”-time that, barring heroic assumptions on pool homogeneity,

granularity, and dependence, is usually accessed through brute force sim-

ulation methods.

• The dependence of other risk factors, e.g. equity, to the default-times is

usually less complex than their dependence to the “first-to-default” time.

• A dependence-structure between default-times can be found, e.g., by

mixtures of expert-judgment and model calibration to portfolio credit

derivative data (e.g. CDO’s), even though at the moment these markets

are much less liquid than before the 2007-2008 crisis.

For the rest of this section the second option of modeling the default-times

vector, namely the bottom up option, is considered.

The assumption of a continuous-time, time-homogeneous Markovian

survival-indicator process has been motivated with the need to understand

the increment- as well as the “terminal iterated”-distribution and to limit

the data which has to be stored for simulation. For this very problem we can

weaken these requirements by simply asking that the survival-indicator pro-

cess has a time-homogeneous probability to stay in the “no default”-state.

In other words, for this particular problem, the distribution of default-times

is feasible if it fulfills the weak exponential minima (WEM) property:

P(τ > s+ t | τ > t) = P(τ > s). (10)

Another formulation of this class, fulfilling Eq. (10), is the following:

“terminal one-shot survival probability up to t1 + . . .+ tN”

= P(τ > t1 + . . .+ tN ) = P(τ (1) > t1) · . . . · P(τ (N) > tN )

= “terminal iterated survival probability with steps t1, . . . , tN ,”

where τ (k), k ∈ [d], are i.i.d. copies of τ . The class of distributions fulfilling

the WEM-property is potentially large, as the following examples show, and

to the best knowledge of the authors it is not characterized in any other

way.

Example 3.1. Let τ have a bivariate survival function corresponding to an

independence survival-copula and the marginal survival functions F̄1(t) =

(t+1) exp{−t} and F̄2(t) = (1+t)−1, respectively. The functions F̄i, i ∈ [2],

are both proper survival functions as they are decreasing, continuous, and

tend to zero and one for t → 0 and t → ∞, respectively. Then the joint
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minimum, mini∈[2] τi, is exponential, and in particular τ fulfills the WEM-

property, but neither τ1 nor τ2 are exponential,

P
(

min
i∈[2]

τi > t

)
= (t+ 1) exp{−t} · (1 + t)−1 = exp{−t}.

Example 3.2. Let η be a (d−1)-dimensional non-negative random vector,

E an exponential random variable with rate λ > 0, and Π a random variable

on the set of permutations on [d]. Define τ̃ := (E,E + η′)′ and τ by

τ := (τ̃Π(1), . . . , τ̃Π(d))
′.

Then τ has the WEM-property, as by construction mini∈[d] τi = E.

The rest of this section has two purposes:

• The assumption of a time-homogeneous Markovian first-default survival

indicator has strong links to multivariate lack-of-memory properties. It is

shown that, in particular, all MSMVE distributions fulfill this property.

As a well-known representative of this class, the Gumbel–Hougaard cop-

ula and the corresponding Gumbel–Hougaard exponential distribution8

are introduced as an example.

• Showing that the popular approach of (independent in time) Gaussian-

coupled exponential increments does not fulfill the WEM-property. Fur-

thermore, it is shown that this approach kills dependence asymptotically

for N → ∞ — meaning the “terminal iterated” dependence is approxi-

mately that of independent-coupled exponential random variables.

3.1. Lack-of-memory properties revisited

Let ∆ be the period step-size, T the final horizon, and N the number of

periods up to T , i.e. T = N∆.

In [7], in the context of the problem of “survival-of-all”, the authors

tried to bridge the gap between the question

8The Gumbel–Hougaard distribution is the multivariate extension defined later in
Eq. (12). This was originally introduced in [15] for the bivariate case. It is not to

be confused with the two other bivariate exponential distributions introduced in that
very paper that are also named after Emil J. Gumbel. One of those, with the survival

function exp{−λ1t1−λ2t2−θt1t2}, is characterized by a lack-of-memory property called

bivariate remaining life constancy, see, e.g., [16], [17], which has the interpretation that,
conditional on the survival of the respective other component up to an arbitrary time,

both variables are exponential, cf. [18].
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Which distributions have equal “terminal one-shot” and “terminal

iterated” survival probabilities for common step-size ∆?

and properties of survival copulas corresponding to multivariate exponen-

tial distributions. This leads to the definition of so called self-chaining

copulas — or self-chaining distributions.

In the following, this approach will be (broadly) outlined, advanced

and generalized, exploring the full lack-of-memory implications and char-

acterization for the extreme-value copula with exponential margin solution

obtained initially in [7]. We will confirm also the special solutions found in

[7], namely the Gumbel–Hougaard copula and the Marshall–Olkin copula,

further specifying the properties of these solutions, although we will not

address the bivariate Pickands functions solution here. For further details

on Pickands functions see, for example, [19] or [20].

Definition 3.1. The distribution of τ has the weak common ∆-period ex-

ponential minima (WCPEM(∆))-property if for every two natural numbers

j, k ∈ N

P(τ > (j + k)∆ | τ > j∆) = P(τ > k∆).

It has the common ∆-period exponential minima (CPEM (∆))-property if

for all non-empty I ⊆ [d] the vector τ I has the (WCPEM(∆))-property.

It can be easily shown that this property can be rewritten as follows:

Definition 3.2. A random vector τ is ∆-periodic self-chaining if for all

j ∈ N

P(τ > j∆) = P(τ > ∆)j .

For a ∆-periodic self-chaining distribution, the corresponding survival-

copula Ĉ is called N-self-chaining in the point (F̄1(∆), . . . , F̄d(∆))′.

From Def. 3.1 it is visible that a distribution fulfilling the

(W)CPEM(∆)-property for all ∆ > 0 fulfills the (W)EM-property and

vice versa. Therefore, in light of Def. 3.2, the following definition follows.

Definition 3.3. A random vector τ is self-chaining if for all t > 0

P(τ > t) = P(τ > 1)t.

For a self-chaining distribution, the corresponding survival-copula Ĉ is

called R-self-chaining (or self-chaining) in the point (F̄1(1), . . . , F̄d(1))′.
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Let τ have exponential margins and define u := (F̄1(1), . . . , F̄d(1))′.

Then τ is self-chaining if and only if the survival-copula Ĉ fulfills (for the

specific u)

Ĉ(ut) = Ĉ(u)t, ∀t > 0. (11)

Equation (11) is well-known from extreme-value theory, as the class of copu-

las fulfilling Eq. (11) for all u ∈ [0, 1]d, cf. Eq. (9), is that of extreme-value

copulas (EVCs) and furthermore, that the class of min-stable multivari-

ate exponential distributions, cf. Eq. (5), is characterized by a coupling of

EVC’s and exponential margins, see [12], p. 174.

A self-chaining survival-copula in the point u ∈ [0, 1]d can only be

coupled with exponential margins with rates λi = − lnui, i ∈ [d], to a self-

chaining distribution, while an extreme-value copula can be coupled with

any exponential margin to a self-chaining distribution. In general, it should

be noted that almost all lack-of-memory properties get lost if the underlying

survival-copula is re-coupled with different marginal distributions — even

if one stays in the exponential class.

An example for a (survival-)copula which is self-chaining in arbitrary

points u ∈ [0, 1]d is the Gumbel–Hougaard copula, see [15],[16],[21],[22],

which is implicitly defined by the following multivariate exponential distri-

bution (λ > 0, θ ≥ 1)

P(τ > s) = exp

−
(

d∑
i=1

(λisi)
θ

) 1
θ

 , s ≥ 0. (12)

In [22], it was proven that the class of Gumbel–Hougaard copulas are the

only copulas which are both extreme-value- and Archimedean copulas, see

also [7] for an alternative proof.

An example for a distribution with exponential minima, which is not

min-stable multivariate exponential, with a recipe from [13] for the bivariate

case.

(1) Let E
(k)
I be independent exponential random variables with rates

λ
(k)
I , k ∈ [2], ∅ 6= I ⊆ [2].

(2) Let τ̃ (k) = (τ̃
(k)
1 , τ̃

(k)
2 )′, k ∈ [2], be defined by

τ̃
(k)
i := min{E(k)

{i}, E
(k)
[2] }, i, k ∈ [2],

i.e. both τ̃ (1) and τ̃ (2) are Marshall–Olkin distributed.
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(3) Let τ for p ∈ (0, 1) and a
(k)
i , i, k ∈ [2], be defined by

τi = Xa
(1)
i τ̃

(1)
i + (1−X)a

(2)
i τ̃

(2)
i , i ∈ [2],

where X is a Bernoulli variable with “success probability” p.

Choose λ
(1)
{1} = 1/2, λ

(1)
{2} = 1, λ

(1)
[2] = 2, λ

(2)
{1} = 2/3, λ

(2)
{2} = 1/2, λ

(2)
[2] = 1 as

well as a
(1)
1 = 1/2, a

(1)
2 = 1, a

(2)
1 = 1/3, and a

(2)
2 = 1/2; then the attained

distribution has EM but is not MSMVE. The attained distribution is a

mixture of MO-coupled, i.e. having a copula from a Marshall–Olkin survival

copula, exponential random variables. The key for the EM-property to hold

is to make sure that the mixed MO-coupled exponential distributions have

equal diagonal-functions for all margins. This concept can be extended to

arbitrary dimensions for the creation of distributions with EM.

In more basic terms, this discussion highlights a tension between the full

Marshall–Olkin law and the Marshall–Olkin copula with possibly different

exponential margins. The initial results in [7] include the solution given

by the Marshall–Olkin copula with possibly re-scaled exponential margins,

leading to a multivariate distribution that is different from a fully consistent

Marshall–Olkin law. In more intuitive terms, we can say that re-scaling

the margins with new exponentials breaks the natural consistency between

margins and dependence that is a key property of the Marshall–Olkin law.

In general, arbitrarily decoupling the margins and the dependence structure

may result in paradoxical results when analyzing wrong way risk in CDS

trades, see, for example, the low dimensional examples in [23], [3], [2], and

[24].

For the construction of high-dimensional models it might be convenient

to know that there is another recent approach for the generation of (ex-

tendible) EM-distributed random vectors via first hitting times of matrix-

mixtures of subordinators which are weakly infinitely divisible with respect

to time over random exponential barriers, see [25], [26].

3.2. Change in dependence when iterating non-self

chaining copulas

In the following, a standard approach which is widely used in the financial

industry is critically analyzed: The discretely iterated Gaussian-coupled

exponential margins survival-indicator process. Let, as before, T > 0,

N ∈ N, and ∆ := T/N and define for j ∈ N

Z(∆)(j + 1) | {Z(∆)(j) = 1} := 1{ζj+1>∆},

 I
nn

ov
at

io
ns

 in
 I

ns
ur

an
ce

, R
is

k-
 a

nd
 A

ss
et

 M
an

ag
em

en
t D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

09
.1

93
.1

9.
25

0 
on

 0
9/

18
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 9, 2018 13:1 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch03 page 67

Consistent Iterated Simulation of Multivariate Defaults 67

for independent and identically distributed ζj+1 ∼ CΦ(ρ) ⊕ (F̄1, . . . , F̄d),

where CΦ(ρ) is the Gaussian copula with equi-correlation ρ > 0 and F̄i, i ∈
[d], are exponential survival functions.

Assume first that ζj , j ∈ [N ], are constructed with an arbitrary copula

coupled with exponential margins; then the “terminal iterated” probability

for the “survival-of-all” event is

P
(
Z(T/N)(N) = 1

)
=

(
P
(
ζ >

T

N

))N
. (13)

From multivariate extreme-value theory it is known that for N → ∞ the

expression in Eq. (13) either converges to a min-stable multivariate expo-

nential distribution9 or does not converge at all, see [12].

Definition 3.4. Let Ĉ be an extreme-value copula. Every copula ĈF with

lim
n→∞

ĈF (u1/n)n = Ĉ(u), ∀u ∈ [0, 1]d,

is said to be in the domain of attraction of Ĉ.

Theorem 3.1. Let d = 2, then the Clayton copula, Frank copula, and the

Gaussian copula for ρ < 1 are in the domain of attraction of the indepen-

dence copula.

Proof. See [12],[27]–[29].

This implies in particular for d = 2 and large N that the distribution of τ is

approximately that of independent exponential random variables. Hence,

and this is a word of warning, for large N the Gaussian-coupling kills the

correlation of the “terminal iterated” law.

Remark 3.1. The asymptotic “terminal iterated” dependence can be in-

ferred if the survival-copula of the iterated law lies in the domain of at-

traction of some extreme-value copula, e.g. in Thm. 3.1, it was shown that

the bivariate non-comonotonic Gaussian-, Clayton-, and Frank copulas are

in the domain of attraction of the independence copula, see [12], p. 141

and also [29] for an early account on asymptotic independence of the Gaus-

sian copula. The bivariate exchangeable t-copula lies in the domain of

attraction of the t-EV copula, which is for finite degrees of freedom not the

independence copula and depends on the degrees of freedom as well as the

correlation parameter, see [30]. Furthermore, if ĈF lies in the domain of

9A vector of independent exponentially distributed random variables is also MSMVE.
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attraction of Ĉ, then their upper-tail-dependence coefficient coincides —

in particular, if a copula ĈF incorporates asymptotic independence and

lies in the domain of attraction of an extreme-value copula Ĉ, then Ĉ is

the independence copula, see e.g. [30], pp. 587–588. Moreover, if ĈF is a

d-dimensional copula which lies in the domain of attraction of Ĉ and in-

corporates pairwise asymptotic independence, then Ĉ is the independence

copula, see, e.g., [30], p. 591. This implies in particular that also the d-

dimensional exchangeable Gaussian-copula with ρ < 1 lies in the domain

of attraction of the independence copula.

In the following example, this effect is analyzed numerically for bivariate

Gaussian-coupled exponential distributions with rates λIG = 1% and λSG =

4.5%, corresponding to an investment grade (IG) or speculative grade (SG)

entity. The “terminal one-shot” and “terminal iterated” probability for the

“survival-of-all” event is denoted by

pT := P(ζ > T ) or pN∆ := P(ζ > ∆)N = P(τ > T ).

In Tables 1 and 2, the result of this analysis for two different settings

with different final time-horizons as well as different numbers of iterations

can be observed. The results illustrate the statement from Thm. 3.1, i.e.

that Gaussian-coupled exponential distributions with ρ < 1 do not have

the WEM-property. Moreover, the relative error is sizable and becomes

larger for higher marginal rates and higher correlation, which is especially

undesirable.

Table 1. Comparison of “terminal one-shot”

and “terminal iterated” survival probabilities for

T = 5y and N = 1000.

λ1 λ2 ρ pT pN∆ % Diff.

0.010 0.010 0.25 0.9084 0.9049 0.38%
0.010 0.010 0.50 0.9142 0.9057 0.95%

0.010 0.010 0.75 0.9238 0.9103 1.48%

0.010 0.045 0.25 0.7679 0.7598 1.07%
0.010 0.045 0.50 0.7785 0.7614 2.24%
0.010 0.045 0.75 0.7908 0.7698 2.73%

0.045 0.045 0.25 0.6592 0.6382 3.29%
0.045 0.045 0.50 0.6851 0.6421 6.7%
0.045 0.045 0.75 0.7187 0.6605 8.81%

In Fig. 1, the relative error is visualized for four additional survival-

copulas, i.e. the t-, Clayton-, Frank-, and Gumbel-copula, and multiple
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Table 2. Comparison of “terminal one-shot”

and “terminal iterated” survival probabilities for

T = 30y and N = 1000.

λ1 λ2 ρ pT pN∆ % Diff.

0.010 0.010 0.25 0.5765 0.5496 4.91%
0.010 0.010 0.50 0.6084 0.5545 9.71%

0.010 0.010 0.75 0.6483 0.5766 12.43%

0.010 0.045 0.25 0.2169 0.1929 12.47%
0.010 0.045 0.50 0.2389 0.1974 21.01%

0.010 0.045 0.75 0.2553 0.2142 19.2%

0.045 0.045 0.25 0.0949 0.0682 39.17%
0.045 0.045 0.50 0.1268 0.0728 74.09%

0.045 0.045 0.75 0.1667 0.0899 85.38%

Kendall’s τ , denoted by τK , where the underlying copula parameters are

calibrated such that a certain τK is achieved. One can see that the error

is strongly dependent on the chosen rank correlation. Furthermore, the

Gaussian coupling seems to have the largest errors for τK ≤ 75%, while the

error for the t-coupling is rather small in comparison. An explanation for

the latter observation could be that the bivariate t-copula converges for a

low degree of freedoms comparably fast, see [27], and the t-EV copula still

incorporates information on ν and τK .

In conclusion, these calculations show that a coupling with the

Gaussian-, Frank-, or Clayton copula can lead to sizable differences in the

terminal probabilities. This is not a surprising result, as it was already

shown theoretically that the terminal probabilities can only match if the

iterated distribution has the WEM-property (e.g. an MSMVE-distribution)

and that the iteration of Gaussian-copulas leads asymptotically to indepen-

dence; however, this analysis underscores the severity of the mismatch.

4. Problem two: “Mixed default/survival” events

So far, the problem of finding conditions under which the “survival-of-all”

simulation can be iterated (feasible) in a way that makes it consistent to

a single step simulation was addressed. However, while the “survival-of-

all” may be of interest in situations where one wishes to exclude even a

single default, or for the valuation of a first-to-default CDS, it is more in-

teresting to look at the general problem of iterating in presence of “mixed-

default/survival”-states. This problem, “problem two,” is the topic of the

present section and conditions for the feasible and consistent simulation

of “mixed-default/survival”-indicators up to a terminal time are analyzed.
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0%

5%

10%

0% 25% 50% 75% 100%

Clayton

Frank

Gumbel

Normal

t

Fig. 1. Relative deviation of pT and pN∆ in % vs. Kendalls’s τ for T = 5y, λi = 4.5%, i =

1, 2, N = 10, and 3 degrees of freedom for the t-distribution, see [28].

Finally, examples such as the Marshall–Olkin distribution and a multivari-

ate extension of the Freund distribution are presented.

4.1. The looping default model and the Freund distribution

One of the most intuitive models for contagion effects in portfolio-credit risk

is the so-called “looping default”-model, the terminology being introduced

in one of the first works on counterparty credit risk pricing, see [31]. In the

bivariate case, the model can easily be explained: Let C1 and C2 be two

companies with respective default intensities for t ≥ 0

λ̃1(t) = λ1 + 1{τ2≤t}(η1 − λ1),

λ̃2(t) = λ2 + 1{τ1≤t}(η2 − λ2),

where λ1, λ2, η1, η2 > 0. Loosely speaking, this means that

the default/survival-probabilities of company C1 depend on the de-

fault/survival of company C2 and vice versa. This explains the notion

of a “looping-default” model, as the influence of companies on each-others

default/survival-probabilities can be depicted as a loop. This model formu-

lation can easily be generalized to non-linear or stochastic hazard functions.

Constructing a well-defined probability space, however, supporting such a

multivariate distribution is non-trivial. Therefore, it was initially assumed
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that the set of companies can be divided into two classes A and B, such

that the default of a company from set A can influence the default of a

company from B, but not vice versa. As a consequence the model can be

formulated recursively in the spirit of a classical intensity-based model, see

[31]. The problem of constructing the distribution in the general model

(with hazard-rate functions which are deterministic functions of time and

default history) on a well-defined probability space has been investigated

in subsequent articles and finally was resolved in [32], where the “looping-

default” model is defined using the so-called “total hazard construction,”

which originates from the statistical literature, see [33] and [34]. The total

hazard construction defines a d-dimensional random vector τ of default-

times as a function of d independent unit exponential random variables

E1, . . . , Ed, such that the corresponding default intensities satisfy certain

relations that are specified a priori. This construction algorithm is, how-

ever, rather complicated to implement in practice, and in particular has no

natural coherence with stepwise simulation — rendering it inconvenient for

our purpose. As a first example of the total hazard construction, [32] recon-

siders the “looping default” of [31] in a two-dimensional setup. In [6] and

[5], it was shown that the “looping default” model falls into the class of

default models whose survival indicator process is a Markov chain, which

provides an alternative stochastic construction being naturally consistent

with stepwise simulation. Interestingly, in the bivariate case the probability

law of τ = (τ1, τ2)′ is well-known in the statistical literature as well.

Remark 4.1 (Looping default model/Freund distribution). The

bivariate distribution which is derived in [32] coincides precisely with the so-

called bivariate Freund distribution, which is an “old friend” from reliability

theory, see [35]. In other words, the looping default has incidentally been

known for many years in the statistical literature by the name “Freund

distribution.” The fact that both distributions coincide can be observed by

comparing the bivariate densities derived in [32] and [35], respectively. The

details are provided below.

In the sequel, a new construction for the Freund distribution based on

continuous-time, time-homogeneous Markovian processes is presented. This

construction provides an alternative access to this probability law, which

is in particular based on a stepwise-simulation ansatz. Moreover, it can be

easily generalized to dimensions d > 2 and to extensions with simultaneous

defaults.
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Consider two companies’ default-times τ = (τ1, τ2)′. We construct

the associated survival indicator process Z(t) := (1{τ1>t}, 1{τ2>t})
′ as a

continuous-time, time-homogeneous Markov chain. This process is fully

described by its intensity matrix Q. Let the four states (1, 1), (0, 1), (1, 0),

and (0, 0) be indexed by the numbers 1, 2, 3, and 4 and define the intensity

matrix Q ∈ R4×4 by

Q =


−(λ1 + λ2) λ1 λ2 0

0 −η2 0 η2

0 0 −η1 η1

0 0 0 0

 ,

where the “initial intensities” λi > 0, i ∈ [2], and the “intensities conditional

on second-party default” ηi > 0, i ∈ [2], are positive real numbers. It is easy

to verify that in case the condition ηi 6= λ1+λ2, i ∈ [2], is fulfilled the matrix

Q is diagonalizable,10 i.e. we can find a matrix M such that

M−1QM = diag(−(λ1 + λ2),−η2,−η1, 0),

where the transformation-matrix M has the eigenvectors of Q as column

vectors, i.e.

M =


1 λ1

λ1+λ2−η2
λ2

λ1+λ2−η1 1

0 1 0 1

0 0 1 1

0 0 0 1

 .

This intensity matrix Q can be interpreted as follows (cf. Thm. 2.1):

Being in a certain state corresponds to a certain row of the matrix — e.g.

the process starts in state (1, 1) corresponding to row 1. For each other

state (0, 1), (1, 0), and (0, 0) there are independent latent exponential ran-

dom variables with rates Q(1,1),(0,1), Q(1,1),(1,0), and Q(1,1),(0,0). The process

Z reacts only on the smallest of these random variables and moves to the

corresponding target state. A rate of zero corresponds to the correspond-

ing random variable being “degenerate,” i.e. almost surely equal to infinity.

Therefore, the chain cannot go directly from no default (1, 1) to joint de-

fault (0, 0). Finally, as Q has vanishing row sums, the ith diagonal entry

corresponds to the negative rate of the minimum of all latent exponential

random variables for transition out of i. The same logic applies to the other

rows of Q. In particular, after the default of one company, the hazard rate

10The case ηi = λ1 +λ2 for some i ∈ [2] is still a valid model. However, as the matrix Q
is not diagonalizable, the analytical calculation of probabilities becomes more involved.
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of the remaining company changes from λi to ηi, and the bottom row of

Q is zero because the state of two defaults is an absorbing state. Using

diagonalization, one can show that for t > 0 the entries of the transition

matrix

P [t] := etQ = M−1 exp{tMQM−1}M

are given by

P(1,1),(1,1)[t] = e−(λ1+λ2) t,

P(1,1),(0,1)[t] =
λ1

λ1 + λ2 − η2

(
e−η2 t − e−(λ1+λ2) t

)
,

P(1,1),(1,0)[t] =
λ2

λ1 + λ2 − η1

(
e−η1 t − e−(λ1+λ2) t

)
,

P(1,1),(0,0)[t] = − λ1

λ1 + λ2 − η2
e−η2 t − λ2

λ1 + λ2 − η1
e−η1 t

+ 1 +
( λ1

λ1 + λ2 − η2
+

λ2

λ1 + λ2 − η1
− 1
)
e−(λ1+λ2) t,

P(0,1),(0,1)[t] = e−η2 t, P(0,1),(0,0)(t) = 1− e−η2 t,
P(1,0),(1,0)[t] = e−η1 t, P(1,0),(0,0)(t) = 1− e−η1 t,

and all other entries of P being zero. In particular, we calculate

P(τ1 > t1, τ2 > t2)

=

{
P(1,1),(1,1)(t1)

(
P(1,1),(1,1)(t2 − t1) + P(1,1),(0,1)(t2 − t1)

)
, t2 ≥ t1

P(1,1),(1,1)(t2)
(
P(1,1),(1,1)(t1 − t2) + P(1,1),(1,0)(t1 − t2)

)
, t1 > t2

=

{
λ2−η2

λ1+λ2−η2 e
−(λ1+λ2) t2 + λ1

λ1+λ2−η2 e
−η2 t2−(λ1+λ2−η2) t1 , t2 ≥ t1

λ1−η1
λ1+λ2−η1 e

−(λ1+λ2) t1 + λ2

λ1+λ2−η1 e
−η1 t1−(λ1+λ2−η1) t2 , t1 > t2.

The latter distribution is precisely the Freund distribution, which can be

seen by comparing it to Eq. (47.26) in [16], p. 356. Note additionally, that

the so-called ACBVE(η̃1, η̃2, η̃12)-distribution, defined in [36], arises as the

three-parametric subfamily of the Freund distribution, obtained from the

parameters

λ1 = η̃1 +
η̃12η̃1

η̃1 + η̃2
, λ2 = η̃2 +

η̃12η̃2

η̃1 + η̃2
, η1 = η̃1 + η̃12, η2 = η̃2 + η̃12.

Multivariate extensions of the described Markov chain construction,

leading to the Freund distribution, are now clearly straightforward. One

can simply define the intensity matrix Q as follows: For each set I ⊆ [d] one

has to define exponential rates ηJ for all subsets J ⊆ I with |J | = |I|−1, i.e.

corresponding to exactly one additional default scenario, and write them in
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the respective entry Qh(I),h(J). All other off-diagonal entries of Q are set to

zero, and then the diagonal elements are computed as the negative of the

sum over all previously defined row entries. Similarly, one can generalize

the model to allow for multiple defaults and also assign positive exponential

rates to subsets J ⊆ I with |J | =|I| − k, k ≥ 1.

For stepwise simulation along the ∆-grid, one only requires the matrix

P [∆] = exp{∆Q}, which can be computed easily if Q is diagonalizable or

otherwise numerically (e.g. expm in MATLAB or Matrix::expm in R).

Remark 4.2. The class of distributions attained in continuous-time, time-

homogeneous Markovian survival-indicator processes coincides with the

class of multivariate phase-type distributions which were introduced in [37],

see also [38]. Multivariate phase-type distributed random vectors τ are de-

fined implicitly through a continuous-time, time-homogeneous Markovian

process Z and absorbing sets Ai, i ∈ [d], such that
⋂
i∈dAi is absorbing and

τi := inf{t > 0 : Z(t) ∈ Ai}, i ∈ [d].

In particular, it follows that all resulting marginal distributions of τ are

univariate phase-type distributions.

4.2. Marshall–Olkin distributions

Throughout this section, we denote by ZI the I-margin of the survival-

indicator process Z which only consists of the components indexed by I ⊆
[d]. This section starts with summarizing the findings and results of [8], in

which it is emphasized that for practical applications even the assumption of

a continuous-time, time-homogeneous Markovian survival-indicator process

has serious drawbacks if the corresponding default-times vector τ does not

have a Marshall–Olkin distribution. The findings are:

(a) In general, even if Z is time-homogeneous Markovian the survival-

indicator ZI , corresponding to a subportfolio ∅ 6= I ( [d], might not

fulfill this property. As a result, even if a certain study involves only

the default-times τ I one has to simulate the full survival-indicator pro-

cess Z. This is undesirable for two reasons: Firstly, simulations only

considering subportfolios cannot be performed more efficiently than via

the full portfolio simulation. Second, every restructuring of the credit

portfolio requires a careful adjustment and possibly a reevaluation of

the whole default model (see (b) for a detailed account).

(b) If the underlying credit portfolio is subject to restructuring, the Marko-

vian survival-indicator model is, in general, problematic. This is best
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explained in the case where an additional entity d + 1 is added to the

credit portfolio. Then, each state L splits into two separate states L

and L̃ := L∪ {d+ 1}, and following this logic each “transition-rate” in

the intensity matrix has the interpretation

Ph(I),h(J)[∆] = P
(
Z((k + 1)∆) ∈ h({J, J̃}) | Z(k∆) ∈ h({I, Ĩ})

)
,

with an extended version of h. Hence, to be consistent with the model

before restructuring, generally all transition probabilities have to be

carefully translated into a new model. Therefore, models which have

a “dimension-less” specification are very popular in the industry — an

example for such a model, which particularly does not correspond to a

Markovian survival-indicator, is the Gaussian one-factor model.

(c) A general drawback of all Markovian survival-indicator models is that

one-dimensional marginals are heavily dependent on the specification

of Q. Moreover, given an intensity-matrix Q, the construction of finite

state space Markovian processes, cf. Rmk. 2.1 or Thm. 2.1, gives a par-

ticular interpretation of the joint behavior, which is lost after applying

arbitrary marginal transformation. Finally, if there exists a positive

rate qh(I),h(J) for two sets with |J | ≤ |I| − 2, the default-time distri-

bution has a singular component, i.e. joint defaults are possible. As a

result, marginal transformation is even more difficult and can introduce

undesired effects if performed without care, see e.g. [39], Sec. 5.

A Markovian characterization of the Marshall–Olkin law

The problem described in (a) can easily be resolved by requiring that also

all marginal survival-indicator processes ZI have to be time-homogeneous

Markovian. The main result of [8] is the following theorem.

Theorem 4.1. (Markovian characterization of MO). The |I|-
dimensional survival indicator processes ZI are time-homogeneous Marko-

vian for all subsets ∅ 6= I ⊆ [d] if and only if τ = (τ1, . . . , τd)
′ has a

Marshall–Olkin distribution.

Simulation and Application

There are multiple stochastic models that produce Marshall–Olkin dis-

tributed random vectors, which can be used for model specification and

simulation. We will consider three models. The seminal interpretation is
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an exogenous shock model representation with 2d − 1 independent expo-

nential shock arrival-times, one for each subset of components, cf. Eq. (8),

see also [11]. An alternative model, in the following denoted as the Arnold

model, was introduced in [40] and is based on compound sums of expo-

nential random variables. The model can be summarized as follows: Let

{Ei}i∈N be an i.i.d. family of exponential random variables with a rate

c =
∑
∅6=I⊆[d] λI and {Xi}i∈N a discrete Markov-chain on {I : ∅ 6= I ⊆ [d]},

which has a probability of λI/c for a transition from an arbitrary state each

into I. Then, the random vector τ is defined by

τi := inf{t > 0 : i ∈ XN(t)},

where N(t) :=
∑∞
i=1 1{E1+...+Ei≤t}. The latter is closely linked to the clas-

sical model for the underlying Markovian survival-indicator as introduced

in the previous sections, which is the third model.

Remark 4.3 (Comparison of MO-models). All three models require a

full model specification, i.e. 2d−1 parameters, one for every non-empty set

of components. The original model has the advantage of being very simple

and easy to implement, however, for large dimensions d one has to sample

2d−1 exponential shocks — therefore the simulation of n independent sam-

ples has a runtime of the order O(n2d), see [41]. The Arnold-model is a

little more difficult to implement efficiently, see [41], Alg. 3.3 and Alg. 3.4

for details, however the sampling of n independent samples has an expected

runtime of the order O(2d + nd3). The classical Markov simulation is

very similar to the Arnold model, with two important differences, which

make this approach either more or less desirable. The Arnold model has

the property that the distributions of waiting times to the next “event” as

well as the random set-variable of “killed” components corresponding to

that event are i.i.d. However, if all set-components have already defaulted

nothing happens. In the classical Markovian setup the exponential-rates of

the waiting times as well as the (random) new state depend on the current

state. As a result the initial setup and storage for transition probabilities of

the Arnold model is less costly. The price to pay is that not every “event”

corresponds to an action. In summary, which of these models is most ap-

propriate depends on the dimension d, the number of simulations n, and

the computational capabilities.

A possible way to reduce the number of model parameters as well as the

computational effort for simulation (with all models) is to assume that all,

but a few selected shock-rates equal zero: In [42] the shock model is defined
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using only idiosyncratic shocks, a global shock, and a few additional shocks

which are chosen on some classification, e.g. industry segment, country,

etc., see also [43] for a similar approach.

Considering default modeling, the dynamic properties of the aggregated

default counting process and the related loss process have been studied in

[44] and [45] under pool homogeneity assumptions and time-inhomogeneous

cluster default-intensities11 in dimensions up to d = 125. These authors

build on the framework of [43], one of the few frameworks allowing for an

explicit joint bottom-up and top-down approach, where a Marshall–Olkin

bottom up setting corresponds to a generalized Poisson process top-down

setup. The GPL model in [44] is one of the first pre-crisis arbitrage-free

aggregate loss model to be consistently calibrated to the whole panel of

different CDO tranches and maturities for the iTraxx (or CDX) portfolio,

including a discussion on tranchelets. For a summary of related models

and a calibration study ranging from 2005 to 2009 iTraxx tranches data

see [14]. For an example of the calibration of a (time-inhomogeneous)

Markovian model to market data, see [46] and [47].

Marshall–Olkin one-factor models

While survival-indicator processes defined on a latent Marshall–Olkin dis-

tribution solve the problem described in (a), it is still a model with a large

number of parameters, which is in general inefficient to sample. Further-

more, the problem described in (b) is not resolved, as a Marshall–Olkin

distributed vector τ attained with the classical shock model representation

as a model tied to a specific dimension d, and certain objects indexed by

{1, . . . , d}. Assume, that a d + 1 dimensional Marshall–Olkin distribution

τ̃ exists with τ̃ [d]
d
= τ . Then, for i ∈ [d], it holds that (cf. Eq. (8))

τ̃i = min{ẼI : i ∈ I}

= min{min{ẼI , ẼI∪{d+1}} : i ∈ I ⊆ [d]},

where ẼI , ∅ 6= I ⊆ [d+ 1], are the independent exponential random shocks

from the shock model representation of τ̃ . In particular, it follows for the

rates of τ that

λI = λ̃I + λ̃I∪{d+1}, ∅ 6= I ⊆ [d],

11In this model, all defaults are triggered by independent, time-inhomogeneous Poisson

processes for subsets (clusters) of entities.
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which shows that there are infinitely many possibilities to embed a

Marshall–Olkin distribution into a higher dimensional Marshall–Olkin dis-

tribution. Summarizing, one can conclude that, in general, for large d the

Marshall–Olkin distribution has too many parameters and has no direct

intuition for the extension into higher dimensions.

The simplest way to circumvent this issue is to assume that there exists

an exchangeable sequence τ̃i, i ∈ N, such that for every finite ∅ 6= I ⊆ N the

random vector τ̃ I := (τ̃i)i∈I has a Marshall–Olkin distribution. Random

vectors τ which have such a construction are said to have an extendible

Marshall–Olkin distribution. A thorough treatment of these distributions

can be found in [20], which also shows that an extendible Marshall–Olkin

distribution can be characterized and constructed by a Lévy-subordinator

Λ.

Theorem 4.2 (Lévy-frailty construction). Let {τi}i∈N be an ex-

changeable sequence on some probability space, such that each finite margin

has a Marshall–Olkin distribution. Denote by H =
⋂
n≥1 σ(τn, τn+1, . . .)

the tail-σ-field of {τi}i∈N.

(a) The stochastic process Λ(t) := − logP(τ1 > t | H), t ≥ 0, is a (possibly

killed) Lévy subordinator.

(b) There exists a sequence of i.i.d. unit exponential random variables

{Ei}i∈N, independent of Λ, such that almost surely

τi = inf{t > 0 : Λ(t) > Ei}, i ∈ N.

(c) Denote by x 7→ ψ(x) the associated Bernstein function,12 i.e.

exp{−tψ(x)} = E[exp{−xΛ(t)}], then

P(τ > t) =

d∏
i=1

e−tπ(i)(ψ(i)−ψ(i−1))

for each d ≥ 1 and τ = (τ1, . . . , τd)
′, t ∈ Rd+ and a permutation π on

[d] with tπ(1) ≥ . . . ≥ tπ(d).

Proof. By De Finetti’s Theorem, conditional on H the sequence {τi}i∈N
is i.i.d., with distribution function 1− exp{−Λ(t)} for Λ(t) := − logP(τ1 >

t | H), see [50]. The claim on the variables {Ei}i∈N can be established

12A Bernstein function ψ is characterized by a Lévy-triplet (a, b, ν) for a, b ≥ 0 and a
Lévy-measure ν on (0,∞) fulfilling the integrability condition

∫
(0,∞) 1 ∧ vν(dv) < ∞,

where ψ(x) = a1(0,∞)(x) + bx+
∫
(0,∞)(1− e−xv)ν(dv), x ≥ 0, see [48], [49].
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with a modified distribution function, see [51], Prop. 2.1. Furthermore,

the law of {Λ(t)}t≥0 is almost surely uniquely determined by H, and by

[41], Chapter 3.3, it is a (possibly killed) Lévy subordinator with the claimed

properties.

The alternative stochastic model of extendible Marshall–Olkin distribu-

tions via the so-called Lévy-frailty construction in Thm. 4.2 has the advan-

tage of being a De Finetti model for extendible sequences, which renders

the approach independent of the dimension d. This solves not only the

problem described in (b), but also provides an alternative simulation strat-

egy, see [8] for a detailed account. The alternative simulation strategy has

the advantage that its runtime scales linearly with increasing dimension,

which makes it particularly interesting for large d. The approach comes

with the drawback that a simulation bias is introduced as we can only sam-

ple the random walk corresponding to some embedding of Λ on a discrete

time-grid. This bias, however, can be controlled through the step size of

the discrete time-grid.

In the following we present five examples of Lévy-subordinators which

can be used to define parametric one-factor Marshall–Olkin distributions.

Example 4.1 (Linear drift). Let Λ(t) = bt, t ≥ 0 for some b > 0, then

τ corresponds to d independent exponentially distributed random variables

with common rate b. A simple extension can be attained assuming a “global

shock” E ∼ Exp(a), a > 0, which “kills” all entities. This corresponds to a

(killed) Lévy-subordinator Λ(t) = bt+∞· 1{E≤t}, t ≥ 0 with the convention

0 ·∞ = 0. The corresponding Bernstein-function is ψ(x) = a1(0,∞)(x)+bx.

This model is, e.g., implicitly used in [52]. A “global shock” can anal-

ogously be introduced in every Lévy-frailty model by assuming that Λ is

“killed” — that is, sent to the absorbing state ∞ — at a rate a > 0, i.e.

there exists an independent exponential random variable E with rate a and

we assume that Λ(t) = ∞ for t > E. The corresponding new Bernstein-

function can be attained by adding the term a1(0,∞)(x) to the old one.

Example 4.2 (Compound Poisson subordinator). Let Λ(t) = bt +∑N(t)
k=1 Jk for independent N and {Jk}k∈N, where the former is a clas-

sical Poisson-process with rate λ > 0 and the latter an i.i.d. family

of random variables on (0,∞). The corresponding Bernstein-function is

ψ(x) = bx + λ(1 − L(x; J1)), where L(x; J1) is the Laplace-transformation

corresponding to J1.
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For a compound Poisson subordinator, defined as above, the number

of jumps in the time-intervals (0, t1], (t1, t2], . . . are independent and

Poi(λ(tk − tk−1)) distributed on N0, respectively, and the jth jump-size

is Jj .

Example 4.3 (Gamma subordinator). Let Λ have a Bernstein func-

tion of the form ψ(x) = α ln(1 + x/β) for α, β > 0. The corresponding

increments Λ(s) − Λ(t) are Gamma-distributed and can easily be sampled,

see e.g. [41], Alg. 6.5 and Alg. 6.6, pp. 242–243.

Example 4.4 (Inverse-Gaussian subordinator). Let Λ have a Bern-

stein function of the form ψ(x) = β(
√

2x+ η2 − η) for β, η > 0. The

corresponding increments Λ(s)−Λ(t) are Inverse-Gaussian distributed and

can easily be sampled, see e.g. [41], Alg. 6.10, p. 245.

Example 4.5 (Stable subordinator). Let Λ have a Bernstein function

of the form ψ(x) = xα for some 1 ≥ α > 0. Then the increments Λ(s) −
Λ(t) belong to the class of stable distributions and can be sampled, see e.g.

[41], Alg. 6.11, p. 246.

Marshall–Olkin multi-factor models

The Lévy-frailty model has the serious drawback of being a one-factor

model. This implies not only homogeneity with respect to marginal dis-

tributions, but also an exchangeable dependence structure. However, we

can exploit that independent Lévy subordinators form a cone and we can

consider the extended Lévy-frailty model, where τ is defined by

τi := inf{t > 0 : Λi(t) > Ei}, i ∈ [d], (14)

where Λi, i ∈ [d], are Lévy subordinators from the cone spanned from in-

dependent Lévy subordinators Υ1, . . . ,Υn and E1, . . . , Ed are i.i.d. unit

exponentials, which are independent thereof. In the following, a result of

[26] regarding this model is presented. Assume that Υ is an n-dimensional

vector of independent Lévy subordinators corresponding to Bernstein func-

tions ψ̂1, . . . , ψ̂n and Θ = (θ1, . . . ,θd) ∈ Rn×d+ is a matrix with non-negative

entries. Define the process Λ by Λi := θ′iΥ, i ∈ [d].

Theorem 4.3. Let t ≥ 0 and π ∈ Sd be a permutation with tπ(1) ≥ . . . ≥
tπ(d) and let τ be defined as in Eq. (14). Then

P(τ > t) = exp

−
d∑
i=1

tπ(i)

n∑
k=1

ψ̂k

 i∑
j=1

Θk,π(j)

− ψ̂k
i−1∑
j=1

Θk,π(j)

 .
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Furthermore, τ has a Marshall–Olkin distribution.

Proof. See [26].

A slightly simplified extension with n = 1 has the interpretation of allowing

inhomogeneous trigger rates in the original Lévy-frailty model, cf. [53].

Furthermore, a useful alternative representation of the vector in Thm. 4.3

can be attained as follows, cf. [41], Sec. 3.3.4: Let τ (k) be independent

random vectors corresponding to Lévy-frailty models with inhomogeneous

trigger rates θk and trigger processes ψ̂k for k = 1, . . . , n. Then τ has the

survival function in Thm. 4.3, where τ is defined by

τi := min{τ (k)
i : k ∈ [n]}, i ∈ [d].

Remark 4.4 (Constructing the full Marshall–Olkin class). The

multi-factor Lévy-frailty construction is general enough to comprise the

full family of Marshall–Olkin distributions. To this end, we use m = 2d −
1 independent killed subordinators Υ(I)(t) := ∞1{EI≤t} and Λ(k)(t) :=∑
I:k∈I Λ̂(I)(t), which is basically just a complicated way of writing the

original Marshall–Olkin shock model, cf. Eq. (8). This construction is not

unique in the class of Lévy-frailty models and provides an alternative proof

of [54], Thm. 4.2.

Closely related, a hierarchical and h-extendible Marshall–Olkin law is

constructed in [55] and [56]. The idea is to group the components according

to some (economic) criterion (e.g., geographic region, industry segment,

etc.). In the simplest case one has only one classification criterion, say for

illustration purposes the industry segment, and each component is affected

by a global and an industry specific factor. With respect to the factor model

described in Thm. 4.3, assume that the components can be separated into

J industry segments. Let Υ1, . . . ,ΥJ be independent Lévy subordinators,

each corresponding to a specific segment. Furthermore, let Υ0 be another

independent Lévy subordinator corresponding to a global factor affecting

all components. For component i ∈ [d] which is in segment k, an individual

trigger-processes Λi is defined using the weights θi which are for α, βk > 0

defined by

θi = (α, 0, . . . , 0︸ ︷︷ ︸
k−1 times

, βk, 0, . . . , 0︸ ︷︷ ︸
(J−k) times

)′ ∈ RJ+1
+
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and by

Λi = θ′iΥ =

n∑
k=0

Θk,iΥk.

This model is said to be h-extendible with two levels of hierarchy —

meaning that there exists a σ-algebra G0 such that, conditional on this G0,

the vector of default-times separates into independent groups and there

exist group specific σ-algebras Gk such that the marginal group vectors of

default-times are conditionally i.i.d., see [56]. For more levels of hierar-

chy, say one wants an additional regional classification, the model can be

extended easily.

This model specification solves the problems (a), (b), and partially also

(c), which were described at the beginning of this section:

(a) As shown in the previous paragraph, Marshall–Olkin distributions have

the unique property that all marginal survival indicators are time-

homogeneous Markovian. Therefore, simulation-studies on subport-

folios can be performed efficiently using lower dimensional Markovian

processes.

(b) The hierarchical construction gives an intuitive way to deal with portfo-

lio restructuring. In case of a downsize, we can simply use the reduced

model as each of the factors should be chosen in a way that they are

(mostly) independent of the portfolio. If an additional component has

to be modeled, one only has to specify factor-loadings corresponding to

the “risk” regarding to each factor.

(c) Even though this model setup is not a copula ansatz, the factor ap-

proach offers a schematic picture of the inner- and outer-group depen-

dence between components. In particular, it follows that the depen-

dence, measured with the upper-tail dependence coefficient, between

two components of the same group is higher than that of two compo-

nents of different groups, see [55] for a similar result with temporal-,

instead of spatial scaling of the underlying subordinators. However,

the complete dependence structure, in form of the underlying copula,

as well as the marginal distributions, are influenced by the specific

weights. If only marginal distributions should be altered, this is pos-

sible by using a component specific factor. However, the choice of the

marginal is restricted to the class of exponential distributions (as oth-

erwise the Markov property is lost) and the minimal marginal rate is

determined by the remaining weights.
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In default modeling, the historical data is rarely substantial enough

to perform goodness-of-fit tests for the chosen copula. Therefore, a good

qualitative understanding of the schematic dependence is crucial. A slight

modification of this model, which then partially solves (c), can be specified,

if the loadings are assumed to be constant, e.g. αi = βi = 1, and the group-

components of the resulting vector are scaled with group specific scalar

values to attain a group specific exponential-rate.

In Fig. 2, most of the distributional classes discussed in this paper are

summarized in a schematic picture.

WEM

Multivariate phase-type

EM

MSMVE

MO (≡ 2d − 1-factor LFM)

k-factor LFM
(k < 2d − 1)

1-factor LFM

Ind.
exp.

Multivariate
Freund

Fig. 2. Venn-diagram of (selected) multivariate exponential, Phase-type distributions,
and distributions fulfilling the WEM-property. See Chap. 2.2 as well as [41], [37], [35],
[13] for details.
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4.3. Case study: Iteration bias for selected multivariate

distributions

In Thm. 3.1 it was highlighted that iterating bivariate (non-comonotonic)

Gaussian-, Clayton-, or Frank-coupled exponential margins “kills” depen-

dence asymptotically. In the first numerical case study, cf. Sec. 3.2, it was

demonstrated that probabilities for “survival-of-all” events can divert sig-

nificantly if “terminal one-shot” are compared to “terminal iterated” laws.

Only distributions fulfilling the weak exponential minima property have the

property that “survival-of-all” events have the same probability under the

“terminal one-shot” and “terminal iterated” law.

In Thm. 4.1 it was shown that the “terminal one-shot” and the “terminal

iterated” law are equal if and only if it is a Marshall–Olkin distribution.

The purpose of this section is to underscore this statement with a second

numerical case study.

The model

Before numerical results are presented, it is specified mathematically what

was referred to loosely as the “terminal one-shot” and “terminal iterated”

law. It is assumed that the multivariate probability and survival distri-

bution of “mixed default/survival” events are replaced by corresponding

events using discretely iterated survival indicators, i.e. instead of

P

(⋂
i∈I
{τi > ki∆}

)
∩

⋂
i 6∈I

{τi ≤ ki∆}


we consider the probabilities

P

(⋂
i∈I
{Z̃(∆)

i (ki) = 1}

)
∩

⋂
i 6∈I

{Z̃(∆)
i (ki) = 0}

 ,

where Z̃
(∆)

is a (discrete-time) Markov-chain with i.i.d. multiplicative in-

crements that are fully determined by

Z̃
(∆)

(1)
d
= (1{τ1>∆}, . . . , 1{τd>∆})

′.

This approach corresponds to the widespread industry-practice of defin-

ing a default distribution and iterating (multiplicative) i.i.d. increments of

the corresponding survival-indicator for the step-size ∆ through a discrete

time grid up to the final horizon T = N∆.
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The case study

It is assumed that ∆ = 1, k1 = 10, and k2 ∈ {5, 10} for the event {τ1 >
k1∆, τ2 > k2∆} and the following distributions with common marginal rate

λ > 0 are considered:

• Marshall–Olkin: A bivariate exchangeable Marshall–Olkin distribution

with copula-parameter αMO ∈ [0, 1], in the exchangeable Cuadras-Augé

parameterization.

• Gumbel: A bivariate Gumbel distribution with parameter θGu ∈ [1,∞].

• Clayton: An exchangeable Clayton-coupled exponential distribution with

parameter θCl ≥ −1.

• Frank: An exchangeable Frank-coupled exponential distribution with pa-

rameter θFr ∈ R.

• Gaussian: An exchangeable Gaussian-coupled exponential distribution

with parameter ρGa ∈ [−1, 1].

• t: An exchangeable t-coupled exponential distribution for ν = 3 degrees

of freedom, parameter ρt ∈ [−1, 1].

The marginal rates are assumed to be λSG = 4.5% (speculative grade) and

the copula parameters are calibrated such that Kendall’s τ equals 50%,

see [30], pp. 260–261 for an overview on the Gumbel, Clayton, and Frank

copula. Additionally, the following distributions are considered:

• Freund: An exchangeable Freund distribution with rates λ1 = λ2 = λSG
and η1 = η2 = 3λSG. The corresponding marginal distributions are not

exponential and the resulting Kendall’s τ is not set up to equal 50%.

• Independent: Two independent exponential random variables with com-

mon marginal rate λSG > 0. The independence copula is contained in

all previously mentioned copulas families and is included as a reference

point in this analysis.

In Tables 3 and 4 the results for both events can be observed. As

expected, apart from Marshall–Olkin, Gumbel, Freund, and the indepen-

dence copula, all copulas yield sizable differences for the “survival-of-all”

event. For the “mixed default/survival” event only the Marshall–Olkin dis-

tribution and the independence copula yield equal “terminal one-shot” and

“terminal iterated” probabilities. The effect is particularly strong for the

Clayton- and Frank copula, where the “terminal iterated” probabilities are

almost at the level of the independence copula.
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Table 3. Comparison of “terminal one-shot” and “ter-

minal iterated” survival probabilities for k1 = 10,

k2 = 10, and ∆ = 1y (survival-of-all case).

Copula Exact law Iterated law %Diff

Marshall–Olkin 0.5488 0.5488 0%
Gumbel 0.5292 0.5292 0%

Clayton 0.5051 0.4220 19.71%

Frank 0.5299 0.4388 20.77%
Gaussian 0.5205 0.4788 8.72%

t 0.5219 0.5053 3.28%

Independent 0.4066 0.4066 0%
Freund 0.4066 0.4066 0%

Table 4. Comparison “terminal one-shot” and “termi-

nal iterated” survival probabilities for k1 = 10, k2 = 5,

and ∆ = 1y (mixed default-survival case).

Copula Exact law Iterated law %Diff

Marshall–Olkin 0.5916 0.5916 0%

Gumbel 0.6046 0.5809 4.09%

Clayton 0.5747 0.5187 10.79%
Frank 0.5965 0.5289 12.77%

Gaussian 0.5956 0.5525 7.8%

t 0.5956 0.5676 4.93%
Independent 0.5092 0.5092 0%

Freund 0.4885 0.5042 −3.13%

5. Conclusions

The problem of simulating the survival-indicator process on a discrete time-

grid along with the remaining risk-factors has been investigated. It has been

argued that, especially for high dimensions, good candidates for consis-

tent and feasible joint simulations are continuous-time, time-homogeneous

Markovian survival-indicators processes. In particular, the market practice

of modeling the survival-indicator process as a discrete-time Markov chain

with i.i.d. multiplicative increments, corresponding to a step distribution

which is based on a copula-based ansatz, has been analyzed, criticized, and

rectified. It has been shown theoretically and demonstrated with numeri-

cal examples that if we are concerned only with the “survival-of-all” event,

then in order for “terminal one-shot” and “terminal iterated” probabilities

to coincide, the multivariate default times distribution must fulfill the weak

exponential minima property. In particular, this property is fulfilled for
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exponential margins with a survival copula of extreme-value kind. If we are

concerned with more general “mixed default/survival” events, this consis-

tency is only achieved by Marshall–Olkin distributions. A special emphasis

is on warning practitioners who are iterating Gaussian-coupled exponential

distributions, which fulfill neither the weak exponential minima property

nor do they belong to the class of Marshall–Olkin distributions. Indeed,

since these distributions lie in the domain of attraction of the independence

copula, iterating them completely “kills” dependence asymptotically, when

the number of iterations increases.

Appendix A. Alternative construction of Markovian processes

An alternative construction of continuous-time, time-homogeneous Marko-

vian processes on finite state spaces is presented. The construction is a

variation of the classical construction, where (state specifically) jumps are

constructed with exponential waiting times and independent new (random)

states, cf. Rmk. 2.1.

Theorem A.1. Let Q be an intensity matrix of a continuous-time, time-

homogeneous Markovian process on a finite state space S (which is w.l.o.g.

assumed to be {1, . . . , |S|}). Consider a process Z which is constructed as

follows:

(i) Let X0 be the (possibly random) initial state, i.e. define Z(0) := X0.

(ii) Assume that Z jumped k ∈ N0 times and define the time of the kth

jump by Tk (for k = 0 we define T0 := 0). Furthermore, assume that

Z(Tk) = i ∈ S.

(a) For j ∈ S\{i} let Ejk+1 ∼ Exp(qij) be independent exponential

random variables and define Eik+1 := ∞. Assume additionally

that Ek+1, conditional on Z(Tk), is independent of {El : l ≤ k},
Ek+1 := (E1

k+1, . . . , E
d
k+1)′.

(b) Define Tk+1 := Tk + minj∈S E
j
k+1 and Z(t) := i ∀t ∈ (Tk, Tk+1).

(c) Define Z(Tk+1) := argminj∈S E
j
k+1.

(iii) Repeat (ii) either infinitely often or until an absorbing state is reached.

Then the process Z is time-homogeneous Markovian with intensity-matrix

Q.

Proof. For k ≥ 0 and i ∈ S define Pk(·) = P(· | Z(Tk) = i). It suffices to

show that for every k ≥ 0 and i ∈ S the following three conditions hold, as

this implies the classical construction:
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(I) Pk(minj∈S E
j
k+1 > t) = exp{qiit} ∀t > 0.

(II) Pk(argminj∈S\{i}E
j
k+1 = j?) = −qij?/qii ∀j? ∈ S\{i}.

(III) The random variables minj∈S E
j
k+1 and argminj∈S\{i}E

j
k+1 are inde-

pendent conditional on {Z(Tk) = i}.

Condition (I) holds as the minimum of independent exponential random

variables is again exponential with the rate corresponding the sum of all

rates. In this particular case this implies, conditional on {Z(Tk) = i},
minj∈S E

j
k+1 is exponential with rate∑

j∈S\{i}

qij
(?)
= −qii,

where (?) follows because Q is an intensity matrix.

The following calculation shows that condition (II) hold:

Pk

(
argmin
j∈S\{i}

Ejk+1 = j?

)
= Pk

(
Ej

?

k+1 < min
j∈S\{i,j?}

Ejk+1

)
(?)
= Ek

exp

−Ej?k+1

∑
j∈S\{i,j?}

qij




(†)
=

qij?

qij? +
∑
j∈S\{i,j?} qij

(‡)
= −qij

?

qii
,

where (?) follows using the tower property conditioning on Ej
?

k+1, (†) follows

with the Laplace-transform of the exponential distribution, and (‡) follows

using that Q has vanishing row sums.

Finally, the following calculate proves that condition (III) holds:

Pk

(
min

j∈S\{i}
Ejk+1 > t, argmin

j∈S\{i}
Ejk+1 = j?

)

(?)
= Ek

1{Ej?k+1>t}
exp

−Ej?k+1

∑
j∈S\{i,j?}

qij




(†)
= −qij

?

qii
exp{qiit},

where (?) follows using the tower property conditioning on Ej
?

k+1 and (†)
follows using that for an exponential random variable E with rate η > 0
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one has for t, x > 0

E
[
1{E>t} exp{−xE}

]
=

∫ ∞
t

η exp{−(x+ η)v}dv

=
η

η + x
exp{−(x+ η)t}.
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