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Abstract. Minimum cycle bases of weighted undirected and directed
graphs are bases of the cycle space of the (di)graphs with minimum
weight. We survey the known polynomial-time algorithms for their con-
struction, explain some of their properties and describe a few important
applications.

1 Introduction

Minimum cycle bases of undirected or directed multigraphs are bases of the cycle
space of the graphs or digraphs with minimum length or weight. Their intrigu-
ing combinatorial properties and their construction have interested researchers
for several decades. Since minimum cycle bases have diverse applications (e.g.,
electric networks, theoretical chemistry and biology, as well as periodic event
scheduling), they are also important for practitioners.

After introducing the necessary notation and concepts in Subsections 1.1
and 1.2 and reviewing some fundamental properties of minimum cycle bases
in Subsection 1.3, we explain the known algorithms for computing minimum
cycle bases in Section 2. Finally, Section 3 is devoted to applications.

1.1 Definitions and Notation

Let G = (V, E) be a directed multigraph with m edges and n vertices. Let
E = {e1, . . . , em}, and let w : E → R

+ be a positive weight function on E. A
cycle C in G is a subgraph (actually ignoring orientation) of G in which every
vertex has even degree (= in-degree + out-degree). We generally neglect vertices
of degree zero. C is called simple if it is connected and every vertex has degree
two. The weight of a cycle C with respect to w is defined as w(C) :=

∑
e∈C w(e).

We want to associate F -vector spaces (usually for F ∈ {GF (2), Q}) to the
cycles of G and to study in particular their w-minimal bases. Towards this,
choose a cyclic order of the edges in C. The entries of the incidence vector b(C)
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of C are defined as follows with respect to this order, for i = 1, . . . , m.

bi(C) =

⎧
⎪⎨

⎪⎩

−1, if ei ∈ C and ei occurs in backward direction
0, if ei �∈ C

+1, if ei ∈ C and ei occurs in forward direction.

For simple cycles, there are two different orders. These orders lead to incidence
vectors of opposite sign; as we are interested mainly in the linear spaces spanned
by them, this order is inconsequential. For F = GF (2) the orientation of the
edges is ignored; so one could alternatively define the incidence vector as the
ordinary binary incidence vector of cycles in the underlying graph.

The F -vector space CF (G), spanned by the incidence vectors of all cycles in
G is called F -cycle space of G. A basis of CF (G) is called F -cycle basis. The
weight of an F -cycle basis is defined as the weight of its binary incidence vectors:
w(B) =

∑
C∈B

∑
e:Ce �=0 w(e). If w(e) = 1 for all e ∈ E, we also speak of w(B)

as the length of B. A minimum F -cycle basis has minimum weight among all
F -cycle bases. We omit the prefix “F” if F is clear from the context.

The idea to consider different fields F is motivated by the applications, see
Section 3, some of which are formulated over Q, whereas the cycle-basis prob-
lem was originally studied only for GF (2). Additionally, there are interesting
differences among elements of the cycle spaces over different fields (see Fig. 1).
However, it is well-known that the dimension of the vector spaces always coin-
cides, see, e.g., [1,2].

Proposition 1. The dimension of the F -cycle space of a digraph G is equal
to μ(G) := |E| − |V | + c(G), where c(G) denotes the number of connected
components of G.

μ := μ(G) is called the cyclomatic number of G. It is also possible to consider the
directed cycle space of G, which is the subspace of CQ(G) generated by all cycles
whose incidence vectors contain only edges of the same orientation. This space
coincides with CQ(G) if and only if G is strongly connected. The algorithms in
Section 2 can be executed also in this space, by restricting them to work only
on cycles with edges of the same orientation.

1.2 Matroids

The most important property of the F -cycle space of a (di)graph G is that
it forms a matroid. We review some standard notions for matroids, cf. [3]. A
matroid M is a pair (E, I), where E is a finite ground set and I is a set of
subsets of E satisfying the axioms:

1. ∅ ∈ I;
2. if I ∈ I and I ′ ⊆ I then I ′ ∈ I; and
3. if I1, I2 ∈ I and |I1| < |I2|, then there is an element e ∈ I2 − I1 such that

I1 ∪ {e} ∈ I.
Subsets of E that belong to I are called independent ; all other sets are called de-
pendent. Minimal dependent sets of a matroid M are called circuits. A maximal
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Fig. 1. Cycle bases (in bold) of an orientation of the Petersen graph (with unit edge-
weights); the cycle spaces over Q and GF (2) have dimension µ = 15− 10 + 1 = 6. The
top six cycles clearly form a Q-basis. They are not a GF (2) basis, since every edge is
covered twice: thus, the cycles are linearly dependent. The lower six cycles form a cycle
basis over GF (2) and therefore over Q. As the Petersen graph has girth 5 and as all
cycles in the bases above have length 5, the cycle bases are minimal.

independent set is called a basis of the matroid, and all bases have the same car-
dinality.

Basis exchange is a very important property of matroids: If B1, B2 are bases of
a matroid and x ∈ B1\B2, then there exists y ∈ B2\B1 such that (B1\{x})∪{y}
is again a basis. Also, if B is a basis and e ∈ E \ B then B ∪ {e} contains a
unique circuit C; furthermore, (B ∪ {e}) \ {f} is a basis for any f ∈ C.

Matroids are further characterizedby the property that for any additive weight-
ing w : E �→ R, the greedy algorithm finds an optimal (maximum-weight) basis.

The F -cycle space of G has the structure of a matroid with sets of F -linearly
independent cycles as independent sets. F -cycle bases correspond to bases of
this matroid. Thus, cycles in an F -cycle basis may be replaced by certain other
cycles without destroying linear independence. More precisely, let B be a cycle
basis and C ∈ B a cycle. Then C can be replaced by any linear combination of
cycles from the basis in which C has a non-vanishing coefficient.

Because of the basis-exchange property of matroids, every F -cycle basis can
be obtained from a given F -cycle basis by a series of such replacements. For
minimum F -cycle bases, this implies the following lemma.

Lemma 1. Let B be an F -cycle basis. If no cycle C in B can be exchanged for
a shorter cycle D �∈ B, then B is a minimum F -cycle basis.

Consequently, if the cycles of two minimum F -cycle bases are ordered by increas-
ing weight, their (sorted) weight vectors, �w := (w(C1), . . . , w(Cμ)), coincide.

1.3 Basic Properties of Cycle Bases

There are several classes of special cycle bases which are of practical interest.
Most important are the fundamental tree bases that are constructed from a
spanning tree or—if G is not connected—from a spanning forest T of G by
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adding edges to T . Any non-tree edge e forms a unique fundamental cycle F (e)
with some edges of T . The set of such cycles has cardinality μ and their linear
independence is obvious since every non-tree edge is contained in exactly one
cycle. Hence, fundamental tree bases are F -cycle bases.

A fundamental tree basis BT can be computed in time O(mn), more specif-
ically in time O(

∑μ
i=1 |F i(e)|), where F i(e), i = 1, . . . , μ, are the fundamental

cycles [4]. Fundamental tree bases are not necessarily minimal among all cy-
cle bases. Moreover, examples show that a minimum cycle basis need not be a
fundamental tree basis [5,6]. See Subsection 2.5 for further discussion.

We may assume that G is simple and two-connected. If it is not, a prepro-
cessing step can be added which takes care of multiple edges and loops and then
the 2-blocks can be treated independently, see [7].

Every GF (2)-cycle basis is also a Q-cycle basis. The converse is not true,
see Fig. 1, and there are examples of graphs where a minimum Q-cycle basis is
strictly smaller than a minimum GF (2)-cycle basis, see [8,9].

Minimum F -cycle bases have important properties which are used in the algo-
rithms for their construction. For instance, they have to contain certain cycles.

Lemma 2 ([10]). Let e ∈ E be an edge of a graph G through which there exists
a shortest cycle C(e) with respect to w. Then there is a minimum F -cycle basis
B containing C(e). Moreover, every minimum F -cycle basis must contain some
shortest cycle through e.

In general, the set {C(e) : C(e) is a shortest cycle through e ∈ E} does not span
CF (G), however. The next lemma shows that minimum F -cycle bases contain
shortest paths between any two vertices.

Lemma 3 ([11,12]). Let v, w ∈ V and B be an F -cycle basis of G. Let P be a
shortest path from v to w. Then any cycle C of B that contains v and w can be
exchanged for either a cycle that includes P or a cycle that excludes v or w.

Lemma 4 ([12]). Let C be a cycle in a minimum F -cycle basis, and let u ∈ C
be an arbitrary vertex. Then there is an edge (v, w) ∈ C such that C consists of
a shortest u–v path, a shortest u–w path and (v, w).

Cycles that are contained in at least one minimum cycle basis of G are called
relevant cycles [11,13] (defined there only for GF (2)). Vismara [13] showed the
following result for GF (2); it is valid for arbitrary fields.

Lemma 5. Let G be a graph. A cycle C ∈ C(G) is relevant if and only if there
do not exist simple cycles, C1, . . . , Ck, with the property that C = C1 + · · ·+Ck

and w(C i) < w(C) for all i = 1, . . . , k.

For GF (2), the addition of two cycles C1 and C2 corresponds to the symmetric
difference

C1 + C2 = C1 ⊕ C2 = (E(C1) ∪ E(C2)) \ E(C1 ∩ C2)

of the underlying edge sets.
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2 Algorithms for Computing Minimum Cycle Bases

Some applications require only GF (2)-cycle bases while others (such as the
electric networks in Subsection 3.1) can at least utilize GF (2)-cycle bases, al-
though their structure is over Q. Therefore, we will describe first the GF (2)-case
in Subsections 2.1–2.3 and then mention the necessary modifications for Q in
Subsection 2.4.

Due to the matroid structure of CF (G), all known algorithms are based on
some sort of greedy argument. However, since the number of simple cycles in a
graph can be exponential in n, direct application of the greedy algorithm would
be too costly. There are two main approaches to deal with this issue.

The first polynomial algorithm, due to Horton [12], addresses the problem
by constructing an O(mn)-sized set of cycles that is guaranteed to contain a
minimum cycle basis.

The second methodological approach, by de Pina [14] and independently by
Berger et al. [7], contains an oracle that creates a cycle which—depending on
the point of view—replaces a long cycle in a given basis or, is added to a set of
cycles that is already part of a minimum cycle basis.

2.1 Horton’s Algorithm

Let us start with Horton’s Algorithm 1. It follows from Lemmas 3 and 4 that the
cycles of the form C(x, y, z) = P (z, x)+ (x, y) + P (y, z) for every triple {x, y, z}
with (x, y) ∈ E and z ∈ V , where P (z, x) denotes an arbitrary shortest z–x
path, contain a minimum cycle basis.

A minimum cycle basis is then extracted from this set by means of the greedy
algorithm. Linear independence of the cycles is checked by Gaussian elimination
on the corresponding cycle-edge incidence matrix.

Input: Two-connected simple edge-weighted digraph G
Output: Minimum GF (2)-cycle basis B
1. For all x, y ∈ G, find shortest paths, P (x, y), between x and y.
2. For all triples (z, x, y) with e={x, y}∈E construct the cycle, C(z, e) := P (z, x)+

e + P (y, z), if it is simple.
3. Order all cycles, C(z, e), by increasing weight.
4. Extract greedily a cycle basis, B, from this set by checking linear independence

with Gaussian elimination.

Algorithm 1. Horton’s algorithm to construct a minimum cycle basis

Since the number of candidate cycles is O(mn), a direct implementation has
running time O(m3n).

2.2 An Exchange Algorithm

The algorithm begins with a fundamental tree basis and successively exchanges
cycles for smaller ones if possible. The basic scheme is given in Algorithm 2.
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Input: Two-connected simple edge-weighted digraph G
Output: Minimum GF (2)-cycle basis B
1. Construct a fundamental tree basis B0 = {F 1, . . . , F µ}.
2. for i = 1 to µ do
3. Find a shortest cycle C i that is linearly independent of Bi−1 \ {F i}.
4. if w(C i) < w(F i) then
5. Bi := (Bi−1 \ {F i}) ∪ {C i}
6. end if
7. end for
8. Output B := Bµ

Algorithm 2. Basic exchange scheme

Of course, the crucial part is the oracle in Line 3 which selects a new cycle
Ci in each iteration of the algorithm.

Let B be a cycle basis. The cycle-edge incidence matrix A ∈ GF (2)μ×m of B
has as rows the (incidence vectors of the) cycles in B. We denote the rows of A
as well as the cycles in B by Ci, i = 1, . . . , μ.

When looking at linear (in)dependence of cycles, it suffices to restrict attention
to the entries corresponding to the non-tree-edges of a spanning tree of the
graph: a set of cycles is linearly independent if and only if the submatrix of A
corresponding to the non-tree-edges has full rank. Henceforth we will assume
that we have fixed a spanning tree for this purpose.

We will now describe Line 3 of Algorithm 2 for a fixed step i. Let U be the
inverse matrix of A (restricted to the non-tree edges) and let ui be the i-th
column of U padded with m − μ zeros (in place of the tree-edges). Denote by
A(−i) the matrix that results from A after removing the i’th row Ci. Clearly ui

is in the kernel of A(−i). The vector ui can be computed using standard matrix
operations. Alternatively, it is also possible to determine the entire matrix U in
each step; this leads to a simple update possibility for step i + 1, see [14].

The following trivial remark gives an easy-to-check criterion for whether a
cycle C can replace a basis cycle Ci ∈ B, using ui:

Remark 1. Let B be a cycle basis and let C �∈ B be a cycle. C is linearly
independent of the row-space of A(−i) if and only if

〈
C, ui

〉 �= 0 holds with the
vector ui defined above.

The vectors ui, i = 1, . . . , μ, have the property that
〈
Cj , u

i
〉

= 0, for j �= i. Ac-
cording to the criterion of Remark 1, it suffices to compute a shortest cycle C
for which

〈
C, ui

〉
= 1 in step i of the algorithm. This is achieved by comput-

ing a shortest path in an auxiliary undirected graph Gu. For u ∈ {0, 1}E the
graph Gu is constructed from G as follows (for an example see Figure 2): The
vertex set of Gu is V × GF (2). For each edge e = {x, y} in G add the two edges
{(x, 0), (y, 0 ⊕ ue)} and {(x, 1), (y, 1 ⊕ ue)} to Gu. Define a weight function wu :
Gu → R

+ by assigning each edge the weight w(e) of the corresponding edge e in G
it comes from. Gu has 2n vertices and 2m edges. For a vertex v of G and a simple
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(2, 1)

➀

3 4

2

(3, 1)

G Gu

(3, 0) (4, 0)

(4, 1)

1

(1, 1)

(1, 0) (2, 0)

Fig. 2. The dashed (1, 0)–(1, 1) path in Gu does not correspond to a cycle in G.
However, it contains the bold (3, 0)–(3, 1) sub-path corresponding to cycle {2, 3, 4}.
Here, u contains only one nonzero entry, namely for edge 2–3, displayed as ➀ in G.

(v, 0)–(v, 1) path Pv in Gu let W (Pv) denote the closed walk in G obtained by
replacing each vertex (x, u) of Pv by x. For the next observation see [7].

Lemma 6. Let v be a vertex of G, and let Pv be a simple (v, 0)–(v, 1) path in Gu.
Then the closed walk W (Pv) contains a simple cycle C in G with 〈C, u〉 = 1.

It is not difficult to show that among all paths Pv, a shortest one always corre-
sponds to a simple cycle C = W (Pv) in G. Hence, to find a shortest cycle C
with 〈C, u〉 = 1, one computes a shortest (v, 0)–(v, 1) path in Gu for each v and
retains only a shortest one.

Theorem 1 ([7]). Algorithm 2 computes a minimum cycle basis of G.

A direct implementation runs in time O(max{m3, mn2 log n}).

2.3 Speed-Ups

There are two major bottlenecks in both algorithms. On the one hand there is a
large number of shortest-path computations (n2 and μn of them, respectively),
and on the other hand, for the linear independence tests or the computation of
the vectors ui, Gaussian elimination on an O(mn) × μ(G) or a μ(G) × μ(G)
matrix, respectively, is needed.

There are ways to improve on both. Golynski and Horton [15] use a recursive
procedure to check linear independence of the cycle-edge incidence matrix of the
candidate cycles: the matrix is partitioned into blocks and the pivot operations
are performed block-wise. This allows the use of fast matrix multiplication and
accelerates the algorithm. Consequently, the performance improves from O(m3n)
to O(mωn), where ω denotes the matrix multiplication constant (it is presently
known, that ω < 2.376).

Kavitha, Mehlhorn, Michail, and Paluch [16] found a similar way to apply fast
matrix multiplication and a recursive computation of the vectors ui with delayed
updates to Algorithm 2, which reduces its running time from O(m3 +mn2 log n)
to O(m2n + mn2 log n); for dense graphs, this is an improvement.
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Finally, Mehlhorn and Michail [17] have recently improved the running time
to O(m2n/ logn+mn2). The idea here is that instead of solving n shortest path
problems in each step of Algorithm 2 for constructing the next cycle, one may
obtain that cycle by searching through a suitable set of candidate cycles, for
which the linear products

〈
C, ui

〉
are computed efficiently from a shortest path

tree structure. This approach only requires O(n) shortest path computations.
The candidate cycles are a subset of Horton’s candidate set from Subsection 2.1.

2.4 The Case of Q

Horton’s algorithm from Subsection 2.1 can be used without modification also for
computing a Q-minimum cycle basis. Note however, that for Gaussian elimina-
tion over Q, it is necessary to pay for the calculations on rational numbers with up
to O(m log m) bits by an additional factor of Õ(m) (which means O(m logk(m))
for some k) in asymptotic running time, representing the cost of each arithmetic
operation. Hence the algorithm takes time Õ(m4n) if implemented directly. With
the divide and conquer strategy sketched in Subsection 2.3, this may be reduced
to Õ(mω+1n), see [9].

Algorithm 2 can also be adapted to work over Q, see [18]. First, it has to be de-
termined how to compute the vectors ui from Remark 1. Kavitha and Mehlhorn
show that such vectors with size bounded by ||ui|| ≤ ii/2 can be computed ef-
ficiently. Second, one has to construct a shortest cycle C with

〈
C, ui

〉 �= 0 in
each step. This can be done by working in GF (p), for a set of small primes p
and applying the Chinese remainder theorem. The shortest path calculation is
done in a graph with p levels, but otherwise analogously. The above mentioned
block-updates lead to a running time of O(m3n+m2n2 log n). Finally, the variant
proposed in [17] gives a running time of O(m3n).

2.5 Other Algorithms and Variants

In many cases, it is not required that the F -cycle basis be minimal. Cycle bases
of low but not necessarily minimal weight can be computed more quickly. Several
different heuristic algorithms exist, see [6,12,19,20,21] and the references therein.

Algorithms for special graphs are also widely discussed, but references will
be omitted here. We only mention [22] for planar graphs with running time
O(n2 log n + m). Approximation algorithms are proposed in [16,23,17], with a
constant approximation factor. Randomized algorithms are considered in [24,17].

Cycle bases with additional properties are also of interest. For a discussion of
different classes, see, e.g., [20,25]. The problem to find a minimum cycle basis
among all fundamental tree bases is APX-hard [26]. The same holds for so-called
weakly fundamental cycle bases [27]. However, the existence of an unweighted
fundamental tree basis with a length of O(n2) has been proved recently, see [28].

3 Applications

Cycle bases appear as tools in several areas of engineering. We limit ourselves to
three which reflect their main functions. These can be summarized as follows:
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– The cycles of the basis are explicitly needed; the basis need not be minimal,
but a shorter cycle basis may speed up an ensuing algorithm.

– The cycles are needed explicitly; it is essential that the basis be minimal.
– The cycle basis itself is not needed explicitly; but information is derived from

it. It is necessary that the basis is minimal.

3.1 Electric Networks

Cycle bases can be used to model the second Kirchhoff law in the design of
electric networks. Electric circuits consist of interconnected network elements
whose properties can be described by non-linear differential equations in terms
of currents and voltages at time t.

The structure of the interconnection is given by a directed unweighted graph,
G = (V, E) whose edges correspond to network elements. Two edges meet in
a vertex if the corresponding elements are joined by a wire. More complicated
network elements with several ports can be represented by an equivalent cir-
cuit diagram consisting of simple circuit elements [29]. The direction of an edge
represents the voltage drop with respect to a specified ground node.

In addition to the properties of the circuit elements, the two time-independent
Kirchhoff laws govern the behavior of the network:

Current law: The sum of the currents across any edge cut of the network is
zero at all times.

Voltage law: The sum of the voltages along any mesh (directed cycle) in
the network is zero at all times. If the matrix A is the cycle-edge incidence
matrix of a Q-cycle basis, this law can be written as AU = 0, where U ∈ R

|E|

denotes the unknown edge voltages (at time t).

The combination of the Kirchhoff laws and the differential equations which de-
scribe the circuit elements is called the network equation. It completely describes
the network and can be used to determine the unknown voltages and currents
during the design process. There are different formulations of the network equa-
tion; the sparse tableau analysis [30] and the extended modified nodal analysis
model, see, e.g., [31] both contain explicitly the equations modeling the Kirchhoff
voltage law.

Since the graphs of electric networks can be very large, subsequent com-
putations such as a generic solvability check and error detection algorithms
are influenced by the length of the cycle basis used. A short or minimum Q-
cycle basis is therefore desirable, in particular if the computations need to be
done repeatedly. In practice, short Q-cycle bases will be used rather than mini-
mal ones to improve the running time.

3.2 Chemistry and Biology

For the investigation of functional properties of a chemical compound, it is of
interest to study the cycles (or rings) of the molecular graph. The goal is to de-
termine how the ring structure of a molecule influences its chemical and physical



Minimum Cycle Bases and Their Applications 43

properties. One of the most commonly used sets of rings is a minimum GF (2)-
cycle basis of the graph (called Smallest Set of Smallest Rings, see, e.g., [32]). It
is also possible to use the set of relevant cycles instead, for instance.

In this case, a minimum GF (2)-cycle basis needs to be explicitly determined.
For algorithms which compute all relevant cycles, see [13,33,34].

A different application is the use of a minimum GF (2)-cycle basis of the
molecular graph for the derivation of graph invariants: Structural information
about molecules is available in molecular databases. Most databases offer search
and retrieval functionality for molecules also by structure, i.e., the user draws or
uploads a molecular graph G, and then the database is searched for molecules
whose structure is identical to G or which contain substructures identical to G.

This identification requires solving the notorious (sub-)graph isomorphism
problem for G for each molecule in the database. A common strategy to avoid
solving many graph isomorphism problems exactly is to eliminate as many candi-
date structures as possible by comparing graph invariants known in this context
as molecular descriptors. The most popular descriptors involve the number of
atoms and bonds (vertices and edges) and the different atom types. Graphs from
the database whose invariants do not coincide with those of G (or do not allow
a substructure isomorphic to G) are immediately rejected.

As a consequence of the matroid property and Lemma 1, the weight of a
minimum cycle basis as well as the weight vector �w(G) are graph invariants.
In [34], other invariants are considered which, taken together, provide a strong
description of the structure of the cycle space.

The idea is to identify the ‘functionality’ of a relevant cycle in a minimum
GF (2)-cycle basis, i.e., stated informally, to characterize the part of the cycle
space it spans. Cycles with the same function can in principle be exchanged
for each other without violating linear independence; this redundancy defines
an equivalence relation, the interchangeability relation ∼κ, [33], that can be
characterized as follows.

Lemma 7. Let C, C′ be two relevant cycles of weight κ. Then C ∼κ C ′ if
and only if there is a representation C = C′ ⊕ ⊕

D∈I D, where {C ′} ∪ I is
a (linearly) independent subset of the relevant cycles of weight smaller than or
equal to κ.

This equivalence relation can also be interpreted as a refined form of the con-
nectivity concept in the cycle matroid of the graph. The ∼κ equivalence classes
are called interchangeability classes.

If a graph contains a unique shortest cycle C(e) for some edge e, this cycle is
necessarily contained in every minimum cycle basis, and it cannot be replaced
by any other cycle. Hence it forms its own equivalence class with respect to ∼κ

where κ = w(C). On the other hand, there often exist several relevant cycles
which are ∼κ interchangeable for κ = w(C). Minimum cycle bases of unweighted
complete graphs, for instance, have only one interchangeability class: suitable
1
2 (n2 − 3n + 2) of the

(
n
3

)
triangles need to be contained in a minimum cycle

basis; they are all interchangeable.
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Fig. 3. Molecules G1 (Perhydrophenalene) C13H22 and G2 (Adamantane) C13H16. All
edge weights are assumed to be equal to one. The minimum cycle basis of G1 consists
of the three hexagons. Since they are unique, each hexagon represents its own ∼6

equivalence class. In G2, any three of the four visible hexagons add up to the fourth,
hence they are all interchangeable. Any three of them form a minimum cycle basis.

It is possible to compute the generally exponential interchangeability classes
explicitly. However, the following observation leads to a graph invariant which
can be computed in polynomial time:

Lemma 8 ([33]). Let κ > 0 be the weight of some relevant cycle, let B,B′ be
two different minimum cycle bases and let Wκ be an equivalence class for ∼κ.
Then |B ∩Wκ| = |B′ ∩Wκ|.
Therefore we may call |B ∩ Wκ| the relative rank of Wκ. This rank describes
how many cycles of equal weight in a minimum cycle basis are related with
respect to interchangeability. For each weight κ of a relevant cycle, there may
be several equivalence classes. (Graph G1 in Fig. 3 has three ∼6 equivalence
classes, each with relative rank 1, Graph G2 has one ∼6 equivalence class of
relative rank 3.) The ordered vector �β(G) containing the relative ranks of the
∼κ equivalence classes is a graph invariant. Thus, intuitively, �β(G) measures
the degree of interconnectivity or local density of G’s cyclic structure (compare
again the two graphs in Fig. 3).

Theorem 2 ([34]). �β(G) can be computed in time O(m4n).

We may encode the information gained from a minimum cycle basis and the
relative ranks of the interchangeability classes within one vector: Vertical lines
separate the entries in �w(G) according to the ∼κ equivalence classes. The relative
rank of each class corresponds to the number of entries between two vertical
lines, sorted by increasing rank. A subscript e means that the corresponding
equivalence class has cardinality 1.

In Figure 4, compare in particular graphs 1 and 2, and 3 and 4, respectively.
For each pair, the vector �w(G) is equal, but the difference can be noticed by
looking at the information about the relative ranks.
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Fig. 4. Different molecules with the molecular formula C24H27NO2 and their invariants
1 N-(4-(1-adamantylmethyl)phenyl)anthranilic acid
2 1-,1-diphenyl-3-(ethylamino)-3-(p-methoxyphenyl)-1-propanol
3 N-cyclohexyl-,1-phenyl-1-(3,4-xylyl)-2-propynyl ester

3.3 Periodic Event Scheduling

In periodic event scheduling problems, the events v1, . . . , vn have to be sched-
uled to occur periodically with period T > 0 subject to certain constraints
[35,36,37,38,39].

A typical example is the construction of a bus or subway schedule in which
a bus or subway services each station on its line at regular intervals of T min-
utes. A valid schedule will consist of instructions for each driver on each of the
lines, at what time to arrive at and to leave from each station. There may be
constraints on such a schedule, for instance, interconnection constraints between
different lines. These could provide passengers with transfer options or prevent
trains from arriving at the same time at a station for security reasons. Fur-
ther, it is of course of interest to find a schedule which is also optimal with
respect to a linear or nonlinear objective function, as for instance the average
customer connection time.
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A periodic event v consists of an infinite number of individual events v =
(vi)i∈N such that

t(vi) − t(vi−1) = T

holds for the starting times t(vi) of the event vi. Clearly, the starting time of a
single individual event determines that of all other events in v. Thus, we define
the starting time of v by

π(v) = min{t(vi) + pT : i ∈ Z, t(vi) + pT ≥ 0} ∈ [0, T ).

Spans allow the modeling of constraints: trivial constraints prevent, e.g., a train
from leaving a station before it arrives; interconnection constraints may restrict
the schedules of different lines: Given l, u ∈ R such that 0 ≤ u − l < T , a span
is the union [l, u]T =

⋃
k∈Z[l + kT, u + kT ]. A span constraint e = (vi, vj) is a

relation between an ordered pair of periodic events and a span [lij , uij ]T so that

π(vj) − π(vi) ∈ [lij , uij ]T .

The periodic event scheduling problem (PESP) is given by the tuple (T, V, E)
where E is a set of span constraints. The task is to construct an (optimal)
schedule π : V → R so that all span constraints in E are fulfilled. The problem is
known to be NP-hard [35]. There exist various mixed integer programming (MIP)
formulations. We describe one that is based on the event graph G = (V, E),
with vertex set V = {v1, . . . , vn} and oriented edges between vi and vj whenever
e = (vi, vj) ∈ E. The edges are labeled with the spans [lij , uij ]T . A valid schedule
can then be seen as a labeling of the vertices of the graph by π(vi) so that for
each edge e and pij ∈ Z,

π(vj) + pij · T ∈ {π(vi) + xij : xij ∈ [lij , uij ]}
for xij in the regular interval [lij , uij]. The label π(vi) is also called potential
of vi. With xij = π(vj) − π(vi), the expression xij + pij · T is referred to as
periodic voltage. Exploiting this analogy to electric networks and assuming that
the underlying oriented graph is two-connected, a schedule is valid if and only if
〈C, x〉 = 0 for any cycle C in G, where the vectors x = (xij) ∈ R

m, p = (pij) ∈
Z

m fulfill the corresponding box constraints l ≤ x + pT ≤ u with l = lij and
u = (uij). This gives rise to the MIP-formulation:

min c(x + pT )
Ax = 0

l ≤ x + pT ≤ u

p ∈ Z
m,

where A denotes the cycle-edge incidence matrix of a Q-cycle basis of G and
c(x + pT ) is an objective function in terms of x + pT . The problem can be
reformulated in more condensed form [40]; then A has to be the incidence matrix
of an integral Q-cycle basis, a cycle basis which uses only integer coefficients to
generate all cycles in G, see [41,20].
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Experiments show that the problem can be solved faster when the chosen
cycle basis is small. Several real-world case studies exist. For instance, the Berlin
subway network and part of the Deutsche Bahn network was studied in [42,40],
the Munich subway network was analyzed in [43].

4 Conclusion

Minimum and other cycle bases over different fields are interesting objects. The
known algorithms all exploit the matroid property.

An open problem is to understand the exact difficulty frontier between min-
imum cycle bases and minimum cycle bases with an additional property: mini-
mum cycle bases can be computed in polynomial time. Minimum fundamental
tree cycle bases are hard to compute and to approximate, and minimum weakly
fundamental cycle bases are hard to approximate, but it is not clear what hap-
pens in between: fundamental cycle bases are a proper subset of integral cycle
bases, for instance, but currently, no polynomial time algorithm is known for
computing a minimum integral cycle basis.
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ICALP 2004. LNCS, vol. 3142, pp. 846–857. Springer, Heidelberg (2004)

17. Mehlhorn, K., Michail, D.: Minimum cycle bases: Faster and simpler. ACM Trans.
Algorithms (2009) (to appear)

18. Kavitha, T., Mehlhorn, K.: Algorithms to compute minimum cycle basis in directed
graphs. Theory of Computing Systems 40, 485–505 (2007)

19. Hartvigsen, D., Mardon, R.: The prism-free planar graphs and their cycles bases.
J. Graph Theory 15, 431–441 (1991)

20. Berger, F.: Minimum cycle bases in graphs. Ph.D thesis, TU München (2004)
21. Amaldi, E., Liberti, L., Maculan, N., Maffioli, F.: Efficient edge-swapping heuristics

for finding minimum fundamental cycle bases. In: Ribeiro, C.C., Martins, S.L.
(eds.) WEA 2004. LNCS, vol. 3059, pp. 14–29. Springer, Heidelberg (2004)

22. Hartvigsen, D., Mardon, R.: When do short cycles generate the cycle space? J.
Comb. Theory, Ser. B 57, 88–99 (1993)

23. Kavitha, T., Mehlhorn, K., Michail, D.: New approximation algorithms for mini-
mum cycle bases of graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS,
vol. 4393, pp. 512–523. Springer, Heidelberg (2007)

24. Hariharan, R., Kavitha, T., Mehlhorn, K.: Faster deterministic and randomized
algorithms for minimum cycle basis in directed graphs. SIAM J. Comp. 38, 1430–
1447 (2008)

25. Liebchen, C., Rizzi, R.: Classes of cycle bases. Discrete Appl. Math. 55, 337–355
(2007)

26. Galbiati, G., Amaldi, E.: On the approximability of the minimum fundamental
cycle basis problem. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS,
vol. 2909, pp. 151–164. Springer, Heidelberg (2004)

27. Rizzi, R.: Minimum weakly fundamental cycle bases are hard to find. Algorithmica
(2009), doi:10.1007/s00453–007–9112–8

28. Elkin, M., Liebchen, C., Rizzi, R.: New length bounds for cycle bases. Information
Processing Letters 104, 186–193 (2007)

29. Chen, W.K.: Active Network Analysis. Advanced series in electrical and computer
engineering, vol. 2. World Scientific, Singapore (1991)

30. Hachtel, G., Brayton, R., Gustavson, F.: The sparse tableau approach to network
analysis and design. IEEE Transactions of Circuit Theory CT-18, 111–113 (1971)
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