Survey on modularity

Thank you for participating in this survey!

Is your company prepared for the challenges of Industry 4.0? This current survey of the chair AIS (TUM) makes it possible to classify your company concerning modularity of software in your plants and machines. 20 minutes of time investment that will be worth it!

Appropriate software interfaces are requirements for flexible and adaptable production systems that can handle a component's failure robustly and continue the production or that can easily be adapted to other products. Further, in case of a fault the maintenance staff has to be supported in order to find a point for restarting. This is not realistic or achievable as your software was growing historically during the last years and decades and the number of variants and versions is not manageable anymore? Established approaches from informatics like product line approaches, feature models and code configuration or code generation from ElectroCAD or from models by means of module libraries slowly become a part of machine and plant factoring concerning control applications.

In the following questionnaire, information about the approach of software development for machines and plants in your company will be gathered. Our target group are especially people who deal with control software of machines and plants. Thereby, no concrete firm-specific data will be gathered, but merely some general characteristics. At some points, you will have to choose between several response categories. At other points, you will be asked to give a short description.

Of course, the gathered data will be treated in confidence and anonymously. Please answer the questions completely.

Block 1: Questions on company and equipment

1.1.	In which market does	your	company operate?	
	foods		chemical industry	biotechnology
	pharma		military	automotive
	medicine		robotics	aerospace
	other/further:			

1.2. With which tasks and disciplines in your company are you concerned?

mechanical engineering hydraulics/ pneumatics electronics/electrical engineering
automation software MES-department
 material flow planning other/further:
 1.3. To which area of activity does your company belong to? plant manufacturing special purpose machinery machines other/further:
 1.4. How many projects/machines/plants including software, mechanical engineering and electrical engineering do you realize on average during one year? 2-5 6-10 11-50 51-100 101-500 >500 n.a.
1.5. How many employees work at your company?
○ 1-9 ○ 10-50 ○ 51-250 ○ 251-1000 ○ 1001-5000 ○ >5000
n.a.

1.6. How many automation specialists/software engineers are involved in the development of a project/machine/plant on average?

\bigcirc	1-2	\bigcirc	3-5	\bigcirc	6-10		11-20	\bigcirc	21-50	>50
\bigcirc	n.a.									
1.7.	How comm	man <u>y</u> nissio	y autom	nation site or	specia n averaç	llists/sof ge?	tware en	gineer	s are ir	nvolved in the
\bigcirc	1-2	\bigcirc	3-5	\bigcirc	6-10	\bigcirc	11-20	\bigcirc	21-30	>30
\bigcirc	n.a.	\bigcirc	not giver	ı						
1.8.	Which	n type	e of logic	contr	ollers do	o you us	e in your	compa	ny?	
	Sien	nens] R(ockwell		Beck	noff		Schneider
	B&R	2] Fa	anuc		Bosch	ר		not given
othe	r/furthe	er:								
1.9.	How r	nany	CPUs (I	numbe	er) are u	ıtilized p	er machir	ne?		
\bigcirc	1-2	\bigcirc	3-5	\bigcirc	5-10	\bigcirc	11-20	\bigcirc	21-30	>30
\bigcirc	n.a.									
1.10	. How r	many	CPUs (I	numbe	er) are ι	ıtilized p	er plant?			
\bigcirc	1-2	\bigcirc	3-5	\bigcirc	5-10	\bigcirc	11-20	\bigcirc	21-30	>30
\bigcirc	n.a.									
1.11	. What	scop	e do you	ır soft	ware pro	ojects us	sually hav	e?		
	com	pone	nts			oarticula	r module:	s	parts	of a machine
	entir	e ma	chine			entire pla	ant		n.a.	

lf you How Num	ur answe big are s ber of P(er was e softwar OUs	entire mac e projects	chine/pl s of a m	lant: Iachine	/plar	nt on ave	rage?				
\bigcirc	<200	\bigcirc	201- 500	50 100	1- 00 (\bigcirc	1001- 2000	\bigcirc	2001- 5000	\bigcirc	more than	5000
\bigcirc	n.a.											
1.12.	How wo machine complex	ould yo es/plan kity, 6: `	ou descrit ts in yo very high	be the our bra comple	comple anch/dc exity)?	exity omair	of conti n/market	rol sof in g	tware p jeneral	orojec (1:	ts for the very low	
\bigcirc	1	2	3 (4	ं र	5 (6	n	.a.			
1.13	How we machine comple>	ould y es/plan kity)?	rou descr ts in you	ibe the	e com 1pany	plexi (1:	ty of co very lov	ontrol v com	softwa plexity,	re pro 6: v	ojects for very high	
\bigcirc	1) 2	3 (4		5 (6 (n	.a.			
1.14.	What a projects	re the from y	e most c our point	ritical a of view	applica ?	tions	/function	s of	your c	ontrol	software	
	commur level	nication	n field		activat	tion o	of drives		safety	y func	tions	
	commur superpo (SCADA	nicatior osed A)	n systems	6	CNC				time-: functi	sensit ons	ive	
	data trac several	cing ac control	ross systems		n-axis tasks	-posi	itioning		other	/furthe	er	

n.a.

Block 2: approaches in development

2.1. Who takes part in the meetings in order to exchange views between the different disciplines?

mechanical engineering	hydraulics/ pneumatics	electronics/electrical engineering
automation	software	MES-department
material flow planning	management	project leadership
there is no exchange	other/further:	

2.2. How often do meetings take place in order to exchange views between the different disciplines on average?

\bigcirc	only spora- dically	\bigcirc	semiannual	monthly		biweekly	\bigcirc	weekly	
\bigcirc	daily	\bigcirc	there is never a personal meeting						
2.3.	In which	form	is the specifi	cation of require	ments a	vailable?			
	only text	ual		text with graphics		oral trans distributi	sfer o on	of the	
	n.a.			other/further:					

٦

2.4. Which development documents are created/exchanged during the collaboration at the engineering and during the requirement elicitation?

Г

2.5.	Which modeling tools are utilized in your company?
	MagicDraw Enterprise Architect Eclipse Modelling Framework
	Matlab/Simulink other/further:
2.6.	Are there cross-disciplinary (mechanics, software and electrical engineering mechatronic modules in your company?
\bigcirc	no opartially standard n.a.
2.7.	Which disciplines are modularized in your company?
	mechanical engineering/ hydraulics/ electronics/electrical mechanics electronics/electrical
	drive engineering software safety engineering
	material flow n.a. other/further:

Blo	ck 3: software and reusability
3.1.	Which programming languages are used for control software in your company?
	High programming languages like C, C#, C++, Java
	Matlab/Simulink IEC 61131-3 - IL
	IEC 61131-3 - ST
	IEC 61131-3 – SFC Continuous Function Chart (CFC)
	S7-GRAPH further (detailed specification if high programming language)
3.2.	Do you use the object-oriented amplification of the IEC 61131-3 programming languages?
\bigcirc	no opartially ostandard n.a.
3.3.	Which standards do you consider during the implementation of your software projects?
	ISA TR88 (OMAC state machine) Weihenstephaner ISA 95
	ISA 88 structuring GEMMA
	other/further:
3.4.	What kind of software standard functions are utilized for control software projects in your company?
	company-specific standard functions
	external standard functions of suppliers

intelligent field device

functions to actuate components

communication
drives
positioning work (NC)
diagnosis
fault detection
n.a.
other/further:

3.5. Towards which criteria are the interfaces between software components/functions oriented in an average control software project?

3.6. How are interfaces predominantly implemented within an average control software project?

in-/output variables of components/ functions	data exchange across global variables/flags	interfaces/ properties (object orientation)
n.a.	other/further	

3.7. Which functions are included in every module by default?

positioning work (NC)

	operating modes
	n.a.
	other/further:
3.8.	What is the amount of library blocks in an average control software project? 0% 0% $\frac{1\%}{10\%}$ 0% $\frac{11\%}{25\%}$ 0% $\frac{26\%}{50\%}$ $\frac{51\%}{75\%}$ $\frac{76\%}{100\%}$
\bigcirc	n.a.
3.9.	What is the procedure form the creation to the release of a library block? no defined process developer develops and tests developer develops, another employee tests, it is documented and released
	developer develops, another employee tests, it is documented and released. Changes are intercepted in parallel.
	n.a.
	other/further:

3.10. Do you use version management tools in your company, and if yes, which ones?

none	Eclipse Subversive
Subversion with SAP	Rational ClearCase
VersionDog	Team Foundation Sever
Tortoise SVN	other/further:

3.11. If you use a version management tool, across which disciplines is it applied?

mechanical engineering/ mechanics	hydraulics/ pneumatics	electronics/electrical engineering
drive engineering	software	safety engineering
material flow	n.a.	other/further:

3.12. How does the change tracking work with versions?

	manual/history in the block header
	in separate text file
	status in SAP
	with version management tool
	integrated in the workflow of PLM
	n.a.
3.13	. Do you use continuous integration ¹ in your company? no partially standard n.a.
lf ye	s, which tool do you use for continuous integration?

3.14. Do you use variant management tools in your company and if yes, which ones?

none			Excel (Makros)
CodeSmith tool	as	configuration	pure::variants or other product line tool

¹ Continuous integration (also called ongoing or permanent integration) is a term from software development and describes the process of the ongoing assembly of components to an application. The aim of the continuous integration is to increase software quality. Typical actions are the translation and linking of the application parts, but in general, any other operation to generate derived information can be accomplished. Commonly, not only a new total system is built, but also automated tests are accomplished and software metrics are created. The whole process is triggered automatically by committing the version administration.

TIA Portal	other/further:
3.15. Do you use an automated cor project templates from engineeri	nfiguration of the control software based on ng tools?
no partially	standard n.a.
If code creation is used: From which too EPLAN Engineering Excel Center	Ols/models do you use the code creation? CODESYS UML other/further: Plugin

- 3.16. Are software project templates used and adapted to new variants (machines/plants)?
- no opartially standard n.a.
- 3.17. How are your control software projects on average made up at the moment and what is your target value for 2020 (voluntary statement)?

	at the moment	2020
machine-specific code		
project templates/created		
libraries		
(may not be applicable if		
template/created)		

Block 4: quality assurance

4.1.	Which measures for quality assurance are utilized in your company?
	code reviews
	manual dry run tests
	automated software testing
	automated integration tests, e.g. by the help of HiL
	manual tests at the machine/plant
	automated tests at the machine/plant
	tested only at commissioning
	n.a.
	other/further:
4.2.	Which scenarios are tested respectively towards which guidelines do you create tests?
	acceptance tests, only good behavior respectively directional stability
	towards FDA, every critical alarm is tested
	code coverage criterion, every possible scenario is tested
	requirement coverage, every specified scenario is tested

n.a.

other/further:

4.3. On which amount of the software projects is simulation used for testing? $\bigcirc 0\% \qquad \bigcirc \frac{1\%^{-}}{10\%} \qquad \bigcirc \frac{11\%^{-}}{25\%} \qquad \bigcirc \frac{26\%^{-}}{50\%} \qquad \bigcirc \frac{51\%^{-}}{75\%} \qquad \bigcirc \frac{76\%^{-}}{100\%}$ $\bigcirc n.a.$ If simulation is used, what is simulated?

If Simulation is used, which tools are applied for the simulation?							
	by forcing I/Os		WinMOD		PLC Sim		
	programming language		Matlab/ Simulink		other/further:		

Block 5: handover to the customer and commissioning of the plant

5.1. How long does a typical commissioning at the construction site take?

\bigcirc	< 2 weeks	\bigcirc	2 weeks - 1 month	\bigcirc	1-3 months
\bigcirc	3-6 months	\bigcirc	6-12 months	\bigcirc	> 12 months
\bigcirc	n.a.				
5.2.	When does th the machines/ never	e app the pl	lication enginee ants into operat	er/prog ion?	grammer at the construction site take
\bigcirc	only with new m	achin	es/plants		
\bigcirc	always				
\bigcirc	other/further:				

- 5.3. How is the software committed to the customer?
- The customer does not receive the source code
- The customer only receives parts of the source code
- The customer receives the whole source code
- 🔵 n.a.
- 5.4. How are updates done or respectively software adaptions performed?
- Every technician of the customer on site can adapt the software.
- Only total software projects are loaded
- per remote maintenance
-) n.a.

5.5. How often will the software of a machine/plant be updated during the life time of the machine/plant after the factory acceptance test?

\bigcirc	more than biweekly	\bigcirc	biweekly - every 3 months	\bigcirc	every 1-3 months				
\bigcirc	every 3-6 months	\bigcirc	every 6-12 months	\bigcirc	less than every 12 months				
\bigcirc	n.a.								
5.6.	.6. When does an exchange between the service department/the software department inhouse and at the customer on site concerning the current software status take place?								
	only at the factory during	accep	tance testing						
	As soon as the service and takes it with him	technic	ian is on site, he bacl	ks up th	e current status				
	Regularly within a remote	e acces	SS						
	other/further:								

Voluntary statement for potential requests name and mail address: