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Summary. Using the principle of energy conservation has been considered for
gravity field determination from satellite observations since the early satellite era,
see e.g. O’Keefe (1957), Bjerhammar (1968), Reigber (1969) or Ilk (1983). CHAMP
is the first satellite to which the energy balance approach can be usefully applied,
now that near-continuous orbit tracking by GPS is available, aided by accelerom-
etry. Simulation studies show the feasibility of the approach. One concern is the
sensitivity to velocity errors. As a next step CHAMP’s Rapid Science Orbits (RSO)
are used. Their error level is sufficiently low to demonstrate the feasibility of the
energy balance approach with real data. The accelerometer data (ACC), used for
modeling the non-conservative forces, give rise to further concern.
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1 Energy Integral

The concept is based on the total energy E of a satellite, which is assumed to
be a constant of motion. According to Landau and Lifschitz (1976) it reads
for a unit mass

E =
1
2

ṙ2 − 1
2

(Ω × r)2 + U, (1)

where Ω is the rotation vector of the earth and r and ṙ are position and
velocity of the satellite in an earth fixed frame. Equation (1) is also referred to
as energy integral. For the potential energy U the sign convention of physics
is employed (opposite to geodetic convention). In order to derive from (1)
the gravitational potential of the earth, U must be corrected for the tidal
potential of third bodies.

In reality, however, E is not constant in time, due to non-conservative
forces like air drag or solar radiation pressure. In the case of CHAMP these
forces are measured by accelerometry and the respective loss of energy can
be determined by integration of the measured accelerations a along the orbit.
Equation (1) can thus be rearranged to
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V =
1
2

ṙ2 − 1
2

(Ω × r)2 − Vt −
∫

r

a · dr − E, (2)

where V is the gravitational potential of the earth (now with the geodetic
sign convention) and Vt is the tidal potential. V can be determined up to
the unknown constant E. Subtraction of a normal field gives the disturbing
potential T as time series along the orbit. In the sequel T is used as pseudo
observation, with r,ṙ and a being measured.

2 Analysis Method

A semi-analytical approach, proposed by Sneeuw (2000), was used for gravity
field analysis. Under the assumption of constant orbit height and inclination,
potential coefficients of different spherical harmonic (sh) order m are un-
correlated and the normal equation matrix shows a block-diagonal structure.
Therefore the inversion of the matrix can be performed very efficiently. Errors
due to the applied approximations can be minimized by iteration.

The potential, up to sh-degree L, along the orbit can be expressed as

V (u,Λ) =
L∑

m=−L

L∑

k=−L

Amk ei(ku+mΛ) (3)

Amk =
L∑

l=max(|m|,|k|)

GM

R

(
R

r

)l+1

Flmk(I)Klm, (4)

where u is the argument of latitude, Λ the longitude of the ascending node and
the lumped coefficients Amk are computed from inclination function Flmk and
the potential coefficients Klm. From equation (3) the Amk can be determined
by a 2D Fourier-transformation. For this purpose the disturbing potential
along the orbit is generated in a regular grid on the surface of a torus. This
is the proper space domain for a 2D Fourier-series (see Sneeuw, 2001).

3 Simulation Studies and Error Budget

In order to test the feasibility of the energy approach, simulation studies were
carried out. From an a priori gravity field (EGM96s was used) an orbit was
generated by numerical integration. Simulated positions and velocities along
the orbit were then used to compute the disturbing potential according to
the equations given in section 1. In order to decrease the approximation error
induced by the analytic assumptions (see section 2) the disturbing potential
was reduced to a constant orbit height using the radial gradient ∂T/∂r. The
time series of pseudo observations T was then used for estimation of poten-
tial coefficients. In principle it should be possible to recover the a priori field
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Fig. 1. Error simulation for orbit data with RSO-quality. Empirical position and
velocity errors (left) are used to estimate the accuracy of the potential, computed
from the energy integral (upper right: using position errors only; lower right: using
both position and velocity errors)

without significant errors. In our simulation the difference between the recov-
ered field and the a priori field shows RMS values per latitude at the level
of 1–2 cm in geoid height at satellite altitude. This is not sufficient for high
precision gravity field determination but is far below the error level estimated
for the RSO data used in section 4. The errors are due to simple interpolation
and gridding algorithms.

The error budget of the CHAMP RSO data was estimated in comparison
to a precise reduced dynamic orbit, POD (Precise Orbit Determination). Po-
sition and velocity differences between POD and RSO were used as empirical
error estimate for the RSO. These errors were added to the simulated or-
bit to generate noisy time series. Again potential coefficients were estimated.
Figure 1 shows the errors in position and velocity as well as the propagated
error in the disturbing potential along the orbit. The simulation shows that
the energy integral is highly sensitive to velocity errors, while position errors
are of low influence. The RMS of the error in the disturbing potential is at
the level of 20 cm at orbit altitude. This shows that one cannot expect to
determine the gravity field to an accuracy below the decimeter level, when
using data of RSO-quality.

4 Gravity Field Recovery Using Real Data

Eleven days of CHAMP RSO and ACC data, as provided by GFZ, have been
used as a first step in applying the energy balance approach to real data.
The RSO is given in an earth fixed frame (Conventional Terrestrial System
CTS), while the ACC measurements are given in an instrument fixed frame
but can be transformed to space fixed frame (Conventional Inertial System
CIS) using the provided attitude data. As shown in section 3, velocity errors
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are most critical for the method and errors at the decimeter level (at orbit
height) can be expected when using the RSO data.

4.1 Non-conservative Forces

Disregarding the accelerometer measurements in the energy integral (2) leads
to a drift of about −700 m2 s−2 per day. This is the amount of energy
dissipation caused by non-conservative forces. The value corresponds to a
descent of CHAMP of about 80 m per day. The energy dissipation reads in
discrete form ∫

r

a · dr ≈
∑

∆r′e · (Rs
e · as), (5)

with ∆re being the distance between two epochs in CTS, as the accelerations
in CIS and Rs

e the transformation matrix from CIS to CTS.
In order to model the non-conservative forces correctly, special attention

must be given to the ACC data. Here the largest contribution arises from
the along-track component. The other components (cross-track and radial)
enter only via the order of misalignment between the velocity vector and
the space craft body system. Forces which act orthogonal to the orbit give
no contribution. If the ACC data is biased, the integration in (2) leads to a
drift of the dissipative energy and — in consequence — also in the derived
disturbing potential. The energy integral is not constant in that case. Still,
this is not a drawback of the energy method — in contrary, the condition of
energy conservation can be used to estimate the ACC bias.

4.2 Estimation of Accelerometer Bias

Using the ACC data (as shown in figure 2) in equation (2), leads to a drift
in the potential of about −2290 m2 s−2 per day. This drift is assumed to be
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Fig. 2. Left: ACC data over one day after preprocessing. The cross-track compo-
nent has been reduced for its mean value, which seems reasonable considering the
satellite’s attitude. The radial component, which is known to be of poor quality
was not used at all. Right: Slope of the drift in the energy integral, caused by a
biased ACC along-track component (plotted at normal points in 2 hours interval)
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caused by a bias in the ACC data. It can be determined at cross-over points
of the satellite tracks. The derived potential values at those points (reduced
to constant orbit altitude) are expected to be equal. For biased accelerations
the energy integral does not hold and the values at identical points differ by

∆T =
∑

∆r′e · (Rs
e · b), (6)

where b is the bias. Equation (6) is the mathematical model for the estimation
of b from the potential differences at cross-over points. In our computations
we have only estimated the along-track component of the bias. A mean value
of −3.4 · 10−6m s−2 was derived for it.

The slope s of the drift is given by s = ∆T/∆t, where ∆T is the poten-
tial difference at the cross-over points and ∆t is the time span between the
corresponding epochs. The slope (see figure 2, right) reveals variations in the
drift of the order of ± 20 m2 s−2. This corresponds to a temporal variation
of the bias. For the used period the bias differs between -3.54 m s−2 and
-3.43 m s−2. A polynomial of 9th order was used to model the bias. The
variation of the slope indicates periodic variations in the bias.

4.3 Results

After estimation of the along-track bias, the energy integral was recomputed
(a scale factor of 0.8 was used for all components) and a gravity field de-
termined from the derived disturbing potential. No correlations between the
pseudo observations were modeled in the estimation process. The field was
compared to the GRIM5-C1 potential model. The coefficients C2,1 and S2,1

could not be estimated to a sufficient accuracy, which might be due to dif-
ferent reference frame definitions in the two fields. Both coefficients were
disregarded in the following comparison. Figure 3 shows the difference in
geoid height between the two fields at orbit height. The latitude-RMS shows

absolute geoid error at orbit height
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Fig. 3. Empirical geoid error at satellite altitude from comparison to GRIM5-C1.
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values of 10–20 cm, which corresponds to the accuracy one can expect from
RSO data (see section 3). The structure of the empirical error shows correla-
tions to orbit tracks. This again indicates that the errors are to a large extent
caused by orbit errors. It is worthwhile noticing, that in case of poor orbit
quality a similar error structure is a well known phenomenon in geoids based
on satellite altimetry.

5 Summary

The energy balance approach, proposed since the early days of satellite
geodesy, could be applied for the first time with real data. A gravity field
has been computed from 11 days of CHAMP RSO and ACC data. Compari-
son to GRIM5-C1 shows an accuracy of 10–20 cm in geoid height at satellite
altitude. This corresponds to the expected accuracy level obtained from an
error simulation. The energy integral is highly sensitive to velocity errors.
This shows that a very precise orbit is necessary to recover the gravity field
to a reasonable quality.

Furthermore it has been shown, that the semi-analytical torus approach
can be successfully applied in gravity field recovery and that the energy bal-
ance approach is useful for accelerometer calibration.
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