
Integrated Task Learning and Kinesthetic
Teaching for Human-Robot Cooperation

Riccardo Caccavale1, Alberto Finzi1, Dongheui Lee2, and Matteo Saveriano2
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Abstract. We present an integrated framework that permits implicit
task learning and kinesthetic teaching during the execution of robotic
tasks in cooperation with humans. The proposed system combines phys-
ical human-robot interaction, attentional supervision, multimodal inter-
action to support robot teaching and incremental task learning. We de-
scribe the overall system architecture discussing a task learning scenario.

1 Introduction

An effective cooperation between a robotic system and a human during the
execution of complex tasks requires natural interaction and continuous and in-
cremental adaptation. In this work, we present an integrated framework that
permits implicit task learning and kinesthetic teaching during human-robot in-
teraction. Our aim is to allow a human operator to naturally interact with a
robot in order to teach incrementally complex and refined tasks.

Our approach integrates multimodal interaction [9], attentional supervision
[8, 6, 4], and kinesthetic teaching [10, 11]. In this setting, the human operator
can naturally interact with the robot using gestures, voice, and physical guid-
ance, while a supervisory attentional system [8, 6, 4] continuously supervises and
tracks the human-robot interactive activities during both training and execution
sessions. Attentional mechanisms suitable for human-robot task teaching have
been explored in the literature, mainly in the context of visual attention [3, 7, 1];
in contrast, in this work we focus on attentional supervision and physical inter-
action. Namely, in the proposed framework the human can continuously switch
from execution to teaching and vice versa; in course of a kinesthetic teaching
session, the human can physically interact with the robot in order to demon-
strate the execution of an action, while the supervisory system is exploited to
interpret the human guidance in the context a structured task. In this setting,
the supervisory attentional system supports implicit non-verbal communication
and permits to track the human demonstration at different levels of abstraction
(tasks, sub-tasks, actions and motions primitives).

In the rest of the paper we detail the system architecture and describe its
functioning in a simple task learning scenario.



2 System Architecture

In Figure 1, we illustrate the overall architecture. The human can interact with
the system in a multimodal manner with gestures, speech, and physical guid-
ance during kinesthetic teaching session. In this context, the Robot Behavior
Manager manages low-level tasks execution, supervision, and learning, while an
Attentional System is responsible for hierarchical tasks supervision and behavior
orchestration. These components are better described below.

Fig. 1. The overall architecture for teaching and execution.

Robot Behavior Manager. The Robot Behavior Manager (RBM) handles low-
level aspects of the human-robot interaction and it is responsible for a correct
task execution. In particular, RBM is responsible for: i) smooth transition be-
tween teaching and execution modes; ii) demonstrated task segmentation into
basic motion primitives; iii) scene monitoring (objects classification and track-
ing); and iv) robot state monitoring (robot-objects distance, motion primitives
learned or executed). Task teaching is performed by means of kinesthetic teach-
ing [10]. In this work, we use the gravity compensation control to make the
robot ideally massless, guaranteeing an easy and safe physical guidance. High
level tasks are represented as a set of point-to-point motion primitives (reaching
and manipulating objects), learned from human demonstrations. RBM adopts
stable dynamical systems to compactly represent motion primitives and to gener-
ate motor commands in the execution phase. Dynamical systems are well-suited
for point-to-point motion generation since they are guaranteed to converge to-
wards a given target, and they can rapidly adapt to external perturbations, like
changes in the initial/target location and unforeseen obstacles [11].

Attentional System. The attentional system provides the cognitive control mech-
anisms needed to flexibly orchestrate the execution of complex tasks and to



monitor the human activities. Following a supervisory attentional system and
contention scheduling approach [8, 6], we propose a framework where interac-
tive action execution and learning are supported by attentional regulations. The
attentional system exploits hierarchical task representations to supervise and
regulate the robot actions, while interacting with the human. More specifically,
we rely on the system proposed by [4], which is endowed with a Long Term
Memory (LTM) and a Working Memory (WM) (see Attentional Executive Sys-
tem in Figure 1). The LTM contains the behavioral repertoire available to the
system, including structured tasks and primitive actions. These tasks/behaviors
are to be allocated and instantiated in the Working Memory (WM) for their ac-
tual execution. In particular, the cognitive control cycle is managed by a process
that continuously updates the WM by allocating and deallocating hierarchical
tasks/behaviors according to their denotations in the LTM. The WM represents
the executive state of the system and is associated with concrete sensorimotor
processes (see Attentional Behavior-based System in Figure 1) whose activa-
tions are top-down (task-based) and bottom-up (stimuli-driven) regulated by
the attentional influences. In this context, multiple tasks can be executed at the
same time and several behaviors can compete in the WM generating conflicts
and impasses [2]. Contentions among alternative behaviors are solved exploiting
the attentional activations: following a winner-takes-all approach, the behaviors
associated with the higher activations are selected with the exclusive access to
mutually exclusive resources. Additional details about this framework can be
found in [4, 5]. This attentional supervisory framework can be deployed not only
during cooperative action execution, but also when the operator interacts with
the robotic system in order to teach a new task.

3 Action Teaching and Segmentation

In our framework, the user can anytime switch between teaching and execution
during the robot activity. If the current task structure is not linked to concrete
sensorimotor behaviors, the system waits for the user guidance in order to learn
how to execute the missing subtasks and motion primitives. During the teaching
phase the human can physically guide the robot in order to demonstrate the
correct task execution; this kinesthetic teaching session is supervised by the at-
tentional system which is to associate these training motions to the correct tasks
and sub-tasks. The human can also explicitly communicate with the robot (us-
ing gestures or speech) in order to facilitate the learning process with additional
verbal/non-verbal cues or to inspect a trained activity invoking the repetition
of learned tasks and sub-tasks. In this setting, the attentional system tracks
and monitors both the human and the robot task execution. This way, during a
learning session the low-level robotic actions, trained by the user (such as tra-
jectories, objects handling, etc.) through kinesthetic teaching, can be labeled by
the higher level tasks/sub-tasks interpreted by the attentional system. Figure
2 illustrates the hierarchical structure associated with a pick and place task.
During the teaching mode the attentional system monitors the subtasks to be



Fig. 2. A representation of the action segmentation during a pick and place task. The
RBM (down) performs the action segmentation, while the attentional system (up)
connects these segments to the task structure.

fulfilled (pick(water) and place(water) in Figure 2), here the distance between
the end-effector and the related objects directly affects bottom-up attentional
mechanisms (a close object emphasizes the related affordances and the associ-
ated behaviors in the WM). When a new segment is recognized by the system,
a new node in the tree is generated and linked to the most emphasized sub-
task. Here, we deploy a simple action segmentation mechanism which is based
on object proximity and explicit commands. Each object in the environment is
associated with a proximity area. When the end-effector of the robot (or the
human hand) enters or leaves the proximity area of an object a new segment
is generated. Analogously, when an open/close gripper command is executed a
new low-level action is created. We distinguish between two classes of actions:
Near-Object-Action (NOA) and Far-Object-Action (FOA). In the case of NOA,
the action is segmented inside the proximity area of an object and we exploit
Dynamic Movement Primitives to compute a robust approximation of the ob-
served trajectory in order to reproduce the motion more accurately. Instead, in
the case of FOA, the action is segmented out of the proximity area of any object
and only the end-point of the observed trajectory is considered. Indeed, in this
case the action can be reproduced in a less accurate manner allowing the robot
to reach the end-point regardless of the starting-point. The proposed segmenta-
tion mechanism allows the system to recognize complex actions involving two or
more objects. For example, the pouring action (NOA) illustrated in Figure 3 has
been trained with high accuracy and associated with the pour(water) primitive
behavior within the abstract task of pouring.
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Fig. 3. Task structure and action segmentation during a pouring task. The robot has
to pick-up the bottle, reach the glass, pour the water and place the bottle. The tree
depicted in the figures represents the task structure whose leaves are the segments
recognized by the system during teaching.
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