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Abstract

Lightweight structures attract with their slender dimensions and their
curved shapes. However, they are characterized by pronounced non-
linear behavior. Within this thesis consequences on the design, the
analysis and the verification of safety of lightweight structures con-
sidering their non-linear behavior are discussed and novel methods
and techniques for the raised challenges are developed.

To account for the close relation between geometry and load-bearing
behavior, the concept of performing structural analyses on CAD mod-
els with the Isogeometric B-Rep Analysis (IBRA) as a very recent finite
element technique is extended to the analysis of structural mem-
branes. A prestressed membrane element and a cable element are
formulated. The cable element follows the novel paradigm of embed-
ded B-Rep edge elements. These new developments are investigated
and assessed in both academic and real examples.

The shape of lightweight structures in many cases results from an
elastic mounting procedure. The large deformations that occur dur-
ing these mounting processes can have an important impact on the
load-bearing behavior. In order to account for this impact, the config-
uration update between different construction stages of the structure
is investigated. A review of existing methods is followed by an in-
depth development of mechanically accurate update procedures that
are applied to selected examples of increasing complexity.

Only little guidance exists for the verification of lightweight structures
considering their non-linear behavior. Based on reviews of existing
standards for the verification of non-linear structures and of the un-
derlying principles of the Eurocodes, the behavior of structural mem-
branes is analyzed in detail. As a contribution to the development
of a future Eurocode for structural membranes, propositions for the
classification of their non-linear behavior and – in a more general
sense – for their verification are made.
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Zusammenfassung

Tragwerke des Leichtbaus begeistern durch ihre schlanken Abmes-
sungen und ihre gekrümmten Formen. Allerdings weisen sie ein aus-
geprägt nichtlineares Tragverhalten auf. Im Rahmen dieser Arbeit
werden Auswirkungen dieses Tragverhaltens auf den Entwurf, die
Analyse und den Sicherheitsnachweis von Leichtbautragwerken un-
ter Berücksichtigung ihres nichtlinearen Verhaltens diskutiert und
neue Methoden und Techniken für die erarbeiteten Fragestellungen
entwickelt.

Um die unmittelbare Abhängigkeit von Geometrie und Lastabtra-
gung zu berücksichtigen, wird das Konzept der Strukturanalyse auf
dem CAD Modell mittels der Isogeometrischen B-Rep Analyse (IBRA),
einer jungen Finite Element Technik, auf die Analyse von Membran-
tragwerken erweitert. Ein vorgespanntes Membranelement und ein
Seilelement werden formuliert, wobei das Seilelement hierbei dem
neuen Ansatz eingebetteter B-Rep Kantenelemente folgt. Diese Neu-
entwicklungen werden anhand verschiedener akademischer und rea-
ler Beispiele untersucht und getestet.

Die Form leichter Tragwerke ist oft das Ergebnis ihres Aufbauprozes-
ses wobei die dabei auftretenden großen Verformungen erheblichen
Einfluss auf die Lastabtragung haben können. Um diesen Einfluss zu
berücksichtigen, wird das Konfigurationsupdate zwischen den einzel-
nen Bauzuständen des Tragwerks untersucht. Auf eine Übersicht über
bestehende Methoden folgt eine detaillierte Entwicklung von mecha-
nisch präzisen Update-Methoden, die anschließend in ausgewählten
Beispielen mit steigender Komplexität angewandt werden.

Derzeit existieren noch wenige Richtlinien für den Nachweis von
Leichtbautragwerken unter Berücksichtigung ihres nichtlinearen Ver-
haltens. Ausgehend von einer Diskussion bestehender Normen zum
Nachweis nichtlinearer Tragwerke sowie der Grundlagen der Euro-
codes wird das Verhalten von Membrantragwerken im Detail analy-
siert. Als Beitrag zur Entwicklung eines zukünftigen Eurocodes für
Membrantragwerke werden Vorschläge für die Klassifizierung ihres
nichtlinearen Tragverhaltens und – im allgemeinen Sinne – für ihren
Nachweis gemacht.
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1
INTRODUCTION

Contemporary structural design often aims at a reduction of the invested
material. Besides the obvious economic advantages of this reduction, using
less material and therefore less “gray energy” is closely related to the eco-
logical impact of the structure. In architectural design, the reduction of the
applied material often implicates minimalistic, clear structures reduced
to the essential.

Lightweight structures are a natural answer to those demands. Although
the concept of lightweight construction perfectly fits those contemporary
requirements, the idea already disposes of a long tradition: Already in 1940
Fritz LEONHARDT [83, p. 413, transl.] proclaimed

"Lightweight construction – a demand of our time" ,

a statement that certainly has lost nothing of its relevance despite its age.

Compared to conventional structures, lighter structures also follow dif-
ferent load-bearing principles, with considerable impact on their design:
Lightweight structural design aims at an advantageous stress distribu-
tion, characterized by normal forces entailing a full utilization of the cross
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1 Introduction

section. In order to allow for this stress distribution, the shape has to be
adapted to the desired load-bearing characteristics. Beyond load-bearing,
lightweight construction often includes an optimized production: To this
aim, the use of initially straight resp. flat members and a simple mounting
procedure are to be preferred.

In general lightweight structures are characterized by non-linear behav-
ior in their structural design and analysis. Two aspects are considered of
special relevance in the current context:

– The required adapted shape allowing for the advantageous load-
bearing through normal forces is the result of a form-finding resp.
optimization process in most cases, either through specialized nu-
merical applications or by using physical experiments like hanging
shapes.

– The reduction in material generally leads to a lower stiffness and thus
entails larger deformations. These finite deformations are beyond
the scope of linear structural behavior and linearized kinematics.

The design and analysis of lightweight structures deals with these aspects
since its first days. In that context often the design of the roof structure
of the Olympiastadion München (1972) is considered a seminal project,
which built the basis of a wide development for numerical applications in
civil engineering. Nowadays new challenges for the numerical design and
analysis of lightweight structures arise.

This thesis intends to give more insight to some of these challenges and to
propose adequate techniques for the consideration of non-linear structural
behavior in the analysis and design of lightweight structures. Therefore
the fields dealt with can be outlined as follows:

– The tight relation between geometry and structural behavior for
lightweight structures requires a close interaction of geometric mod-
eling (design) and mechanical simulation (analysis). Therefore a
common model description is needed for both purposes that allows
for a real interaction and the advantageous use of the respective
methods.

2



1 Introduction

– The simulation of the deformation process during the mounting
of lightweight structures and the determination of the impact on
further load-bearing behavior requires a mechanically consistent
description of the mounting process.

– Beyond the analysis of lightweight structures, the verification of
safety considering their non-linear behavior still is the subject of
intense discussions.

For each field, the current state of the art will be presented as a basis and
further necessary developments will be worked out including a detailed
derivation of novel mechanical aspects and methodological approaches.
The derived components and techniques will be critically assessed and
discussed in detail.

Outline of the thesis

CHAPTER 2 reviews the necessary fundamentals for the subsequent de-
velopments. The basics of geometry description, parameterization and
the application of NURBS-based B-Rep models are introduced. Following
a short review of structural mechanics under consideration of finite dis-
placements, characteristics of geometrically non-linear beam elements
and finite rotations are pointed out. Finally the specific behavior and com-
putation approaches for structural membranes as main examples within
this thesis are reviewed.

CHAPTER 3 presents the isogeometric B-Rep analysis (IBRA) integrating
the geometry of structures and their load-bearing behavior in one model.
To this aim the concept of IBRA is described and the necessary compo-
nents for analyzing tensile structures – mainly a prestressed membrane
element and an embedded cable element – are elaborated. An evaluation
of the developed components in terms of accuracy, speed and robustness
is followed by selected application examples.

CHAPTER 4 starts with a review of realized deformation-based structures
of different scales and highlights the influence of deformation on the load-
bearing behavior of lightweight structures. Existing approaches of con-
struction stage analysis as an approach to properly account for the effect
of deformation in later structural simulations are critically assessed. Based
on these considerations, methods for the update of configurations in a

3



1 Introduction

multi-stage analysis of non-linear structures are discussed. Application ex-
amples and novel simulation approaches to simulate deformation-based
structures and their mounting close this chapter.

CHAPTER 5 is focused on the verification of safety for geometrically non-
linear structures. A review of existing verification concepts and standards
yields the present basis for the verification of structural membranes. In
regard of the development of a future Eurocode for structural membranes,
possible classifications of the behavior of tensile structures are exemplified
and investigated in detail.

CHAPTER 6 gives conclusions and an outlook on future research.

Remark: All structural simulations shown in the present thesis have been
obtained with the research code Carat++ [29] of the Chair of Structural
Analysis, Technische Universität München.
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2
FUNDAMENTALS

Dealing with lightweight structures and their design and analysis requires
various aspects from the fields of structural mechanics as well as differen-
tial geometry. In that context, the necessary fundamentals for the develop-
ments in the next chapters will be introduced here.

Lightweight structures draw their load-bearing capacity out of their ge-
ometry. Hence an emphasis is made on the fundamentals of geometry
description and parameterization, as well as discretization with (low-order)
polynomials and NURBS-based B-Rep models. The large displacements
that can be encountered for many lightweight structures necessitate geo-
metrically non-linear kinematics. These are discussed together with their
implications on the solution process with FEA.

Finally the chapter reviews specific aspects for geometrically non-linear
beam elements and for structural membranes, since these will be focused
on in the structures discussed in the sequel.

5



2 Fundamentals

Conventions

Note the following conventions that will be used throughout this thesis if
not indicated differently:

– Greek letters (α,β ) can take the values {1, 2}, whereas Latin indices
(i , j ) can take the values {1, 2, 3}.

– Capital letters, like X and A 1, refer to the reference configuration.
The description in the current configuration is indicated by lower
case letters, e.g. x or g3.

– The partial derivative w.r.t. a quantity i will be written (•),i and the
partial derivative w.r.t. to a discretization parameter ur is abbreviated
as (•),r .

– Quantities referring to a local Cartesian basis will be denoted by an
overbar, ¯(•). The corresponding bases will be denoted by E i resp. ei .

– Einstein summation convention is used: When an index variable
appears as super- and subscript index within a single term, sum-
mation of that term over all the values of the index is implied, e.g.
aαb α = a1b 1+a2b 2.

– For the structural examples and applications unit-free quantites are
assumed, if not indicated differently. Hence an arbitrary length and
force measure may be applied consistently in these examples.

2.1 Basics of geometry and its description

The mechanical objects that are discussed in the sequel are reductions of
the reality in several ways. Three of these are of special importance for the
following developments:

– Physical reduction: In order to simplify their description, the me-
chanical behavior of structures is often homogenized to some extent.
For instance the ensemble of yarns and fill of a textile membrane
is commonly represented by a homogeneous material within the
material law, see also Section 2.3.2.

6



2.1 Basics of geometry and its description

t
L1

L2

L1, L2� t

b

h

L

L � h , b

Figure 2.1: Dimension reduction for a surface structure to its
mid-surface and for a line structure to its center-line

– Geometric reduction: Surface structures – in the present context
membrane and shell elements – are commonly characterized by
their mid-surface, whereas line structures such as cables, trusses
and beams are characterized by their center-line, as illustrated in
Figure 2.1. Therefore the corresponding mechanical properties are
commonly pre-integrated in order to significantly simplify the de-
scription of those entities.

– Discretization: In order to allow for the numerical treatment of the
structural problem to solve, the continuous geometry has to be dis-
cretized to a finite number of degrees of freedom (DOFs), see Sections
2.1.2 and 2.3.4.

If not indicated differently in the sequel the geometrically reduced mid-
surface resp. center-line description assuming homogeneous material
properties is considered. In the following sections, relevant fundamentals
of geometry and geometry description are briefly laid out as basis for the
following chapters. The presentation is mostly done with the example of
surfaces. However, the conclusions and derivations are in principle valid
for curves, as well.
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2 Fundamentals

X m
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ce
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1 ,θ
2 )

E 2

E 1

E 3

A 1

A 2

A 3

θ 1

θ 2

Figure 2.2: Differential geometry of a surface: curvilinear
parameters θα with corresponding covariant base vectors A i at

the position X mid-surface(θ 1,θ 2)

2.1.1 Differential geometry of surfaces in space

Since a vast amount of literature on differential geometry of surfaces has
been published, only a brief introduction is given here. For further reading,
the reader is referred e.g. to Basar et al. [9], Bischoff et al. [21], Holzapfel [72],
Klingbeil [80], Pottman et al. [122], and Walker [147], which also provide
the basis for this section.

Mathematically, a surface in space may be represented in different ways,
classified as explicit, implicit and parametric representation. Among those,
the parametric representation is best suited for general surfaces.

Base vectors

For the parametric representation, a net of curvilinear coordinates θ 1 and
θ 2, called parameter-lines, is laid out on the mid-surface as illustrated in
Figure 2.2, see also Section 2.1.2.

Covariant base vectors Aα can then be obtained by

Aα =
∂ X mid-surface

∂ θ α
= X mid-surface,α , (2.1)

8



2.1 Basics of geometry and its description

whereas the third base vector A 3 is a unit normal vector N to the mid-
surface1. Hence it can be determined as

A 3 =
A 1×A 2

|A 1×A 2|
. (2.2)

Using these base vectors, a position vector X P to a point P in the three-
dimensional body is determined by

X P = X (θ 1,θ 2,θ 3) = X mid-surface(θ
1,θ 2) +θ 3A 3 , (2.3)

where θ 3 ∈ [−t /2; t /2], with t being the thickness of the structure as illus-
trated in Figure 2.1.

The contravariant base vectors Aα may be introduced as dual basis [72]
with the definition

Aα ·Aβ =δαβ =

(

0 for α 6=β
1 for α=β

, (2.4)

or alternatively by

Aα = AαβAβ , (2.5)

where Aαβ are the contravariant metric coefficients that will be introduced
in Equation (2.7). For the third base vector, the normal vector to the surface,
these considerations lead to A3 = A 3.

The metric tensor

Referring to the thus derived base vectors, the so-called metric tensor A is
given by

A= AαβAα⊗Aβ = AαβAα⊗Aβ , (2.6)

where the metric coefficients are determined as Aαβ = Aα ·Aβ . The metric
is also referred to as first fundamental form of surfaces, see Klingbeil [80].

1 Note that for structures defined through their mid-surface the base vectors are com-
monly referred to as A i , whereas in general they are termed G i . This difference is due to the
determination of the third base vector in Equation (2.2): In general G3 is neither perpendicu-
lar to Gα nor of unit length, but to be determined in analogy to Equation (2.1).

9



2 Fundamentals

The contravariant metric coefficients Aαβ used in Equation (2.5) may be
determined through

�

Aαβ
�

=
�

Aαβ
�−1

. (2.7)

With the help of the metric coefficients, a differential piece of area dA can
be computed based on the Lagrangian identity

|A 1×A 2|=
p

A11A22− (A12)2 =
Ç

det
�

Aαβ
�

=
p

A (2.8)

as

dA = |A 1×A 2|dθ 1dθ 2 =
p

Adθ 1dθ 2 . (2.9)

It might be convenient to represent tensors in different bases, e.g. in a
Cartesian basis. If for a tensor T the transformation from one basis Aα⊗Aβ
to another basis Ãα⊗ Ãβ is required, the necessary transformation of the
tensor coefficients Tαβ to the corresponding coefficients T̃αβ is performed
by

T̃γδ = Tαβ (Ãγ ·Aα)(Aβ · Ãδ) . (2.10)

Curvature properties of a surface

The curvature properties of a surface are characterized through the curva-
ture tensor

K = BαβAα⊗Aβ = BαβAα⊗Aβ , (2.11)

where Bαβ is defined as the second fundamental form of the surface, see
Basar et al. [9], Itskov [76], and Klingbeil [80].

The covariant curvature coefficients Bαβ are defined as

Bαβ = Bβα =−Aα ·A 3,β = Aα,β ·A 3 =
1

2

�

Aα,β +Aβ ,α

�

·A 3 . (2.12)

In combination, the metric tensor A and the curvature tensor K resp. their
coefficients are used to define essential geometric properties of a surface
at a specific point

�

θ 1,θ 2
�

. In the present context curvature properties are
in the focus, see Figure 2.3.
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2.1 Basics of geometry and its description

t2

t1

n

θ 1

θ 2

ϕ

R1

R2

t2

t1

Figure 2.3: Curvature properties: principal radii Rα, tangents tα
and surface normal n with tangential base vectors

The Gaussian curvature K is determined by

K =
B11B22−

�

B12

�2

A11A22−
�

A12

�2 =
det

�

Bαβ
�

det
�

Aαβ
� =

B

A
, (2.13)

as the second invariant I2 (K ) of the curvature tensor. It expresses the prod-
uct of the principal curvatures κ1 and κ2,

K = κ1κ2 =
1

R1

1

R2
, (2.14)

where Rα are the principal radii. Regarding their load-bearing behavior,
shapes may be characterized based on their Gaussian curvature K :

– K > 0 : a synclastic shape, where both principal radii are on the same
side of the surface. This shape occurs e.g. for pressurized cushions
or shells loaded under self-weight, see Figure 2.3 (right).

– K = 0 : a developable surface which may be flattened without residual
stresses, e.g. a cylinder or a cone.

11
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– K < 0 : an anticlastic shape, where both principal radii are on oppo-
site sides of the surface. Mechanically prestressed tensile structures
are commonly anticlastic, see Figure 2.3 (left).

The mean curvature H is determined as

H =
1

2

B11A22−2B12A12+B22A11

det
�

Aαβ
� , (2.15)

which is expressed through the first invariant I1 (K ) of the curvature tensor,
see Basar et al. [9] and Walker [147]. It expresses the arithmetic mean of
the principal curvatures κ1 and κ2:

2H = κ1+κ2 =
1

R1
+

1

R2
(2.16)

As will be referred to in Section 2.5.3, minimal surfaces are characterized
by a mean curvature H = 0.

Note that the measures K and H are surface properties which are – just
like the principal curvatures κ1 and κ2 – independent of the parameteriza-
tion. The fact that H and K are determined through the first and second
invariant of the curvature tensor K , respectively, reflects this observation.

2.1.2 Geometry parameterization and discretization

As mentioned above, the introduction of a parameterization allows for a
description of geometry. In general the handling of geometry – both in
CAD (Computer-Aided Design)-tools and in FEA (Finite Element Analysis)-
software – requires the possibility to modify shapes and to represent ge-
ometry and solution fields through a finite number of discrete parameters.

Parametric description of geometries

In an explicit respectively implicit geometry description, a modification
might be realized by altering the function parameters ci , for instance the
radius r of a circle in 2D:

x 2+ y 2 = r (2.17)

However, these function parameters are in general not well-suited for direct
interaction, e.g. through a graphical user-interface (GUI).

12



2.1 Basics of geometry and its description

In the parametric description the spatial coordinates x , y and z of a point
on the surface are the function of two surface parameters θ 1 and θ 2. Basis
functions are used to either fit or approximate a finite number of nodal
positions. Hence in CAD control points and their positions are the han-
dles to create and modify geometry. In general a surface S in parametric
representation can be determined through

S
�

θ 1,θ 2
�

= f
�

θ 1,θ 2, Pi , c j

�

, (2.18)

where Pi are the control point positions and c j are possible additional
parameters like weights for the individual control points. As an exam-
ple a parametric description of a NURBS-based surface is given in Equa-
tion (2.26).

Spatial discretization

The concept of spatial discretization is at the core of the finite element
method (FEM), see Bathe [10], Belytschko et al. [18], Hughes [74], Strang
et al. [135], and Zienkiewicz et al. [152]: the functional spaces for the de-
scription of the different fields – e.g. geometry, displacements, stresses –
are approximated by finite elements with their locally confined basis func-
tions. Following the isoparametric paradigm (see Strang et al. [135] and
Zienkiewicz et al. [152]) the solution field is expressed through the same
ansatz as the geometry itself.

Within the spatial discretization, the continuous surface S is then repre-
sented by nele non-overlapping sub-domains Ωe (the finite elements) by

S ≈ Sh =
nele
⋃

e=1

Ωe , (2.19)

where the subscript h is used to indicate the approximative character, rep-
resented in Figure 2.4(a). This geometry transformation from the original,
continuous geometry S to the discretized geometry Sh is called meshing,
see Coll Sans [43] and Topping [142].

With the concept of classical finite element analysis (FEA), it is possible
to reduce the unknown fields to discrete quantities in the nodes of the
elements. The unknown spatial fields are now approximated within the
elements by locally confined basis functions among which low order (linear,

13
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54
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θ 1

77

25

21
33

(a) Continuous surface and spatial discretization with bi-linear quad-mesh

Local node Global node

ξ

η

Element 15

18

33

21

25

1
2
3
4

21
25
18
33

(b) Element of the mesh from (a) with global nodes and local parameters and node numbers

Figure 2.4: Spatial discretization of a surface with a low-order
(bi-linear) polynomial quad-mesh and global and local nodes

quadratic) Lagrange polynomial shape functions are the most commonly
used, see Figure 2.5. As an example the approximated displacement field
uh is expressed within the element as

uh =uh

�

ξ,η
�

=
nnodes
∑

i=1

Ni

�

ξ,η
�

ûi . (2.20)

Here ξ and η, introduced in Figure 2.4(b), identify the local parameters
within the element2, Ni is the basis function corresponding to node i of

2 Here the parameters
�

ξ,η
�

are introduced instead of the priorly used
�

θ 1,θ 2
�

: Thus a

difference is made between the parameters of the geometric description,
�

θ 1,θ 2
�

, spreading
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Local node 4
Local node 1

Local node 2
Local node 3

N1 =
1
4 (1+ξ)(1+η)

η

ξ

N2 =
1
4 (1−ξ)(1+η)

η

ξ

N3 =
1
4 (1−ξ)(1−η) N4 =

1
4 (1+ξ)(1−η)

ξ ξ

ηη

Figure 2.5: Bi-linear shape functions and parameterlines for the
spatial discretization from Figure 2.4

the element and ûi are the discrete nodal displacements at node i . The
same principle is applied to all occurring fields, including the geometry
itself.

The quality of the approximation can generally be improved by refinement,
i.e. either increasing the number of elements (h-method) or using higher-
valued shape functions (p -method), see Hughes [74] and Zienkiewicz et al.
[152].

In analogy to Equation (2.20) the geometry X within a finite element is
approximated as

X ≈ X h

�

ξ,η
�

=
nnodes
∑

i=1

Ni

�

ξ,η
�

X̂ i , (2.21)

through the whole surface, and those corresponding to each individual finite element,
�

ξ,η
�

,
confined within the element, see also Figure 2.4(a).
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where X̂ i are the discrete nodal positions. In consequence the base vectors
Aα from Equations (2.1) and (2.2) are then computed as

A 1 h =
∂ X h

∂ ξ
=

nnodes
∑

i=1

Ni ,1 X̂ i resp. A 2 h =
∂ X h

∂ η
=

nnodes
∑

i=1

Ni ,2 X̂ i . (2.22)

Further required entities of differential geometry can then be derived from
these approximated base vectors A i h. Obviously the approximation by
piecewise low order polynomial shape functions leads to a reduction of
continuity as can be seen in Figure 2.4(a). Hence, as a consequence of
the meshing, some entities like curvature properties or discrete surface
normals need to be approximated by adapted approaches, as they are
discussed e.g. in Linhard [88] and Wakefield [146]. For ease of reading in
the remainder of this thesis the subscript h, indicating the approximated
quantities, will be skipped if the context allows to do so.

An alternative approach to approximate geometry and solution fields lies in
directly using the basis functions from CAD, as is presented in the following
section.

2.2 NURBS-based B-Rep models

As an alternative to classical facet-type discretization (see Figure 2.5),
which is predominant in contemporary CAE-systems (Computer-Aided
Engineering), CAD often relies on NURBS-based B-Rep models. Figure 2.6
shows a prototypic example for such a NURBS-based B-Rep model, which
is composed out of trimmed NURBS surfaces. The fundamentals for this
type of geometry description and related implications are presented in the
following.

Note that this section only intends to give a brief introduction. Further
reading and more complete information may be found e.g. in Breitenberger
[32], Cottrell [45], Hughes et al. [73], and Piegl et al. [120].

2.2.1 NURBS, NURBS curves and NURBS surfaces

Non-Uniform Rational B-Splines (NURBS) are the underlying geometry
description for B-Rep models applied in many contemporary CAD systems,
see e.g. Piegl et al. [120]. The term "non-uniform" refers to the knot vector
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a) Object

b) NURBS-based B-Rep model

Figure 2.6: NURBS-based B-Rep model as composition of
trimmed NURBS surfaces (multi-patch) (remade after Choi [42])

Ξ = [ξ1,ξ2, ...,ξn+p+1] that can be non-uniformly defined while the term
"rational" refers to the basis function definition.

NURBS curves

Mathematically NURBS curves are defined as

C (ξ) =
n
∑

i=1

Ni ,p (ξ)wi
∑n

k=1 Nk ,p (ξ)wk

Pi =
n
∑

i=1

Ri ,p (ξ)Pi , (2.23)

where the NURBS basis functions Ri ,p (ξ) of polynomial degree p consist
of the B-Spline basis functions Ni ,p (ξ) and ξ is the parametric coordinate
of the curve, see Figure 2.7. Each control point Pi has an additional weight
wi that allows to control the influence of the individual point on the curve.

In contrast to linear shape functions, the control points Pi are generally not
interpolating, i.e. they are not located within the geometry they describe,
as illustrated in Figure 2.7.

Basis functions

The B-Spline basis functions Ni ,p are computed starting from p = 0 as

Ni ,0(ξ) =

(

1 for ξi ≤ ξ<ξi+1

0 otherwise
, (2.24)
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C (ξ1−4)
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P4

P5

P6

P7

C (ξ5)

C (ξ6)

C (ξ7)

C (ξ8−11)

(a) B-Spline curve in the 2D-space with its control points Pi , the control point polygon
(dashed lines) and corresponding knot positions on the curve
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(b) Corresponding basis functions Ni ,p in the parameter space

Figure 2.7: Cubic B-Spline curve with a clamped knot vector
Ξ= [0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1] (leading to interpolating

control points P1 and P7) and corresponding basis functions
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2.2 NURBS-based B-Rep models

while for p ≥ 1 they are defined as

Ni ,p (ξ) =
ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ) +

ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ) . (2.25)

Inside a knot span the basis functions Ni ,p (ξ) are C∞-continuous. The
continuity across knots depends on the multiplicity k of the knot and is
determined to be C p−k , see also Piegl et al. [120].

B-Spline basis functions have important characteristics, especially w.r.t.
their usage as basis functions for element formulations (see also Hughes
et al. [73]):

– Partition of unity, i.e.
∑n

i=1 Ni ,p

�

ξ
�

= 1

– Local support, i.e. the support is contained in the interval
�

ξi ,ξi+p+1

�

– Non-negativity, i.e. Ni ,p

�

ξ
�

≥ 0

– Linear independence, i.e.
∑n

i=1αi Ni ,p

�

ξ
�

= 0⇔α j = 0, j = 1, 2, ..., n

Geometry refinement

Another important aspect of B-Spline resp. NURBS geometries is related to
their capabilities of geometry refinement: Refinement is possible without
altering the initial geometry, but nevertheless increasing the number of
control points. This aspect is especially important for the representation of
solution fields, when B-Spline resp. NURBS are applied as basis functions
for FEA. Different refinement strategies have been developed which are
classified as

– knot insertion, the analog of h-refinement: By inserting knots new
control points are introduced and the continuity may be reduced if
knots are repeated;

– order elevation, the analog of p -refinement: It consists in increasing
the polynomial degree of the basis functions while preserving the
continuity through repetition of knots;

– combination of knot insertion and order elevation: This combination
of the other two strategies is referred to as k -refinement. It allows for
a more homogeneous structure in the refined level.
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For more details on the refinement, the reader is referred to Cottrell [45],
Hughes et al. [73], and Piegl et al. [120].

NURBS surfaces

Analogously to the definition of the curve in Equation (2.23) a NURBS sur-
face S as illustrated in Figure 2.8 is defined by the tensor product structure
of its basis functions as

S (ξ,η) =
n
∑

i=1

m
∑

j=1

Ni ,p (ξ)M j ,q (η)wi j
∑n

k=1

∑m
l=1 Nk ,p (ξ)Ml ,q (η)wk l

Pi j

=
n
∑

i=1

m
∑

j=1

Ri j ,p q (ξ,η)Pi j ,

(2.26)

where ξ and η are the two parametric dimensions, m × n is the net of
control points, and p and q are the respective polynomial degrees of the
corresponding basis functions Ni ,p (ξ) and M j ,q (η).

These NURBS surfaces are able to exactly represent many technically rele-
vant geometric primitives like conic sections. Nevertheless, an exact geom-
etry representation is still only possible for geometries which are within the
function space. This aspect will be treated in Section 2.2.5 and exemplified
in Section 3.4.2.

2.2.2 Trimmed surfaces and the trimming operation

Trimming refers to the operation of creating trimmed surfaces, i.e. surfaces
that are based on a complete patch where parts are "cut off" or holes are
"cut out". The result of this trimming operation is a partially visible surface,
defined by a trimmed domain D in the parameter space. In Figure 2.9 an
example of a trimmed surface with a hole is illustrated.

The trimming curves C̃(ξ̃), i.e. the separators between visible and non-
visible resp. active and non-active parts of the surface, are defined in the
parameter space of the surface with their counterpart C(ξ̃) in the geometry
space. Here ξ̃ is the parametric coordinate of the curve. The geometric
definition of the trimming curves is based on the intersection of geometric
entities. Through this intersection the representation of the curve in the
parameter space of the surface to be trimmed is determined.
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Control point

Control point net

Parameter curve
ξ

η

(a) NURBS surface with an increased weight wi j of the top control point, pulling up the surface

η5−7

η4

ξ1−3η1−3

ξ4

ξ5−7

(b) Corresponding NURBS basis functions in the parameter space

Figure 2.8: Quadratic NURBS surface with clamped knot vectors
Ξ= H = [0, 0, 0, 0.5, 1, 1, 1] and its basis functions
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Figure 2.9: B-Rep description of a spatial surface with a hole:
The NURBS-based surface is bounded by trimming curves C̃(ξ̃) in
the parameter space, with their corresponding geometrical curves

C(ξ̃) on the surface S. The trimming curves C̃(ξ̃) are joined
properly to form outer (counter-clockwise oriented) and inner

(clockwise oriented) trimming loops, respectively.
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In computer-aided architectural geometry, different geometry descrip-
tions are used, see Pottman et al. [122]. Among those notably the sub-
division surfaces should be mentioned which are increasingly used in
modern architectural design tools owing to their ease of handling and
the great topological freedom they provide. However, for computationally
oriented approaches to geometries the standard model for the description
of trimmed surfaces in contemporary CAD systems is a NURBS-based
Boundary-Representation (B-Rep) model, see Hoffmann [71], Mäntylä [93],
and Stroud [137], which is described in the following section.

2.2.3 Boundary Representation (B-Rep)

An unbounded NURBS surface is described by the tensor product structure
of the NURBS basis functions, see Equation (2.26). By adding a description
of the boundary, the limitations of this tensor product w.r.t an arbitrary
number of edges or the representation of holes can be overcome, see Fig-
ure 2.9.

The Boundary-Representation (B-Rep) is a technique used in CAD to de-
scribe arbitrary geometrical entities. For a three dimensional object a set
of adjacent bounded surface elements called faces (F) describes the "skin"
of the object and thus the object itself, see Stroud [137]. The faces at their
turn are bounded by sets of edges (E) which are curves lying on the surface
of the faces. Several edges meet in points that are called vertices (V). The
geometric counterparts to these topology entities F, E, and V are surfaces
(S), curves (C) and points (P), respectively. Expressed in the parameter
space of the surface, the curves are referred to as C̃(ξ̃). These entities are
represented in Figure 2.9.

By also interpreting the original boundaries of the underlying patch as
trimming curves, in the B-Rep description a trimmed surface is completely
enclosed by trimming curves C̃(ξ̃) in the parameter space. These trimming
curves are joined properly to form outer (oriented counter-clockwise) and
inner (oriented clockwise) trimming loops. Thus the B-Rep description of
the trimmed surface in Figure 2.9 consists of the NURBS-based surface
description and the outer and – if applicable – the inner trimming loop.

As illustrated in Figure 2.6, these trimmed surfaces are then combined
to so-called multi-patch geometries, which form complete NURBS based
B-Rep models.
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2.2.4 Integration procedure

As introduced by Breitenberger [32], the integration over the trimmed
NURBS surface is done knot span (element) wise by applying a Gaussian
quadrature rule. If required as a consequence of trimming, the Gauss-space
is adapted in order to fit to the trimmed surface domain according to the
Adaptive Gaussian Integration Procedure [32]. Within this adapted Gauss-
space a standard integration procedure, as presented e.g. in Cottrell [45]
and Hughes et al. [73] can be applied.

As an example for the integration of NURBS-based B-Rep models, the area
of a knot span is given as

|A|=
∫

A

d A =

∫

G
J1 J2 dG, (2.27)

where G ∈ [−1,1]× [−1,1] is the Gaussian space and Jα indicates the Jaco-
bians for the respective mapping operations. J1 represents the mapping
from the geometry space in R3 to the parameter space D ∈R2. Using the
base vectors Aα, J1 can be computed as

J1 = ||A 1×A 2|| . (2.28)

J2 at its turn represents the mapping from the parameter space D to the
Gaussian space G. The Jacobian J2 can be determined as

J2 =
∂ ξ

∂ ξG

∂ η

∂ ηG
, (2.29)

where ξ and η are the parameters in the parameter space and ξG and ηG
describe the Gaussian space.

For the numerical integration, a standard Gauss quadrature is applied:

|A| ≈
ng
∑

l=0

J1(ξl ,ηl ) J2(ξl ,ηl )wl =
ng
∑

l=0

J1(ξl ,ηl ) w̃l , (2.30)

where ng is the number of quadrature points for each knot span and wl

are the corresponding quadrature weights. Since J2 is deformation inde-
pendent, it can be pre-evaluated and thus the modified quadrature weight
w̃l applied in Equation (2.30) can be defined as w̃l = J2wl .

For a more in-depth description of the integration procedure and its im-
plementation, refer to Breitenberger [32].
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2.3 Structural mechanics for finite displacements

2.2.5 Exact geometry representation in IGA in the context of
mechanically motivated surfaces

The isogeometric analysis (IGA), which will be presented in detail in Chap-
ter 3, refers to NURBS as basis functions for the analysis. One often cited
feature of IGA is the exactness of the geometry representation through the
use of NURBS, see e.g. Bazilevs et al. [16], Cottrell et al. [46], and Hughes
et al. [73]. This exactness is valid for geometrically defined CAD-based
structures, i.e. structures that are constructed out of the primitives that are
available within the CAD-representation. In this context NURBS allow for
significantly more geometric entities to be represented exactly, compared
to standard linear or polynomial shape functions.

In general, solution fields cannot exactly be expressed with the same basis
functions as the reference geometry. This also holds for NURBS discretiza-
tions, although – as for any discretization – refinement evidently improves
the approximation of the solution field, without disturbing the quality of
the initial geometry description, see Bazilevs et al. [16] and Beirão da Veiga
et al. [17].

The shape of mechanically motivated surfaces such as minimal surfaces
or hanging shapes in a certain sense already is a solution field. Thus – in
contrast to geometrically motivated surfaces – the geometry of mechan-
ically motivated surfaces is not necessarily within the function space of
CAD parameterizations like NURBS. This approximating characteristic of
a NURBS-based geometry description will be investigated in Section 3.4.2.

2.3 Structural mechanics for finite displacements

In this section necessary fundamentals of structural mechanics for the
analysis of lightweight structures shall briefly be introduced. Hereby the
focus lies on the consideration of finite displacements since in the form-
finding (see Section 2.5.3) and in the analysis of lightweight structures large
deformations occur, requiring a geometrically non-linear description.

2.3.1 Kinematics

The analysis of structures is based on the observation of their deforma-
tion process. This kinematic description introduces further assumptions,

25



2 Fundamentals

A 1

A 2

a3

a2
a1

E 2E 1

E 3

A 3

X �

θ 1
,θ 2 �

u
�

θ 1,θ 2
�

x
� θ

1 ,θ
2
�

θ 1

θ 2

θ 2

θ 1

Figure 2.10: Schematic representation of the reference and the
current configuration X and x with their respective base vectors

A i and ai as well as the displacement vector u= x− X

models and simplifications to those already introduced in the geometry
description. The main concept lies in the comparison of an initial, unde-
formed reference configuration X and a deformed current configuration x
that will be introduced in the sequel.

Note that this brief introduction can only provide some selected aspects.
For a more complete representation and deeper insight, a vast amount of
literature exists. This section as well as parts of the notation are mainly
based on Belytschko et al. [18], Holzapfel [72], and Parisch [110].

Deformations, configurations and deformation gradient

The deformation u of a surface structure is expressed by the displacement
of its mid-surface (see Figure 2.1) as defined by the difference of positions
of the current configuration x and the reference configuration X :

u= u(θ 1,θ 2,θ 3 = 0) = xmid-surface− X mid-surface = x(θ 1,θ 2)− X (θ 1,θ 2)

(2.31)

A representation of the configurations X and x, the displacement vector u
and the corresponding base-vectors is given in Figure 2.10.
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The deformation process can be described using the covariant base vec-
tors in the current configuration gi = ∂ x/∂ θ i = x,i and the contravariant
base vectors in the reference configuration G i = ∂ θ i /∂ X , see Equations
(2.1) and (2.5), to formulate the deformation gradient F which links the
reference configuration to the deformed configuration:

F =
∂ x

∂ X
= gi ⊗ G i (2.32)

The determinant of F can be expressed as

det [F ] =
da

dA
=

√

√

√

det
�

gαβ
�

det
�

Gαβ
� , (2.33)

linking the surface areas dA and da in the undeformed resp. deformed
configuration, see Equation (2.9), by means of the metric tensor, see Equa-
tion (2.6).

Strain measures

As strain measure the Green-Lagrange (GL) strain tensor E is mostly used
within this thesis:

E =
1

2
(F T · F − I ) = Ei j G i ⊗ G j , (2.34)

where I denotes the identity tensor. The coefficients Ei j are determined
as

Ei j =
1

2
(g i j −Gi j ) . (2.35)

In membrane theory, the thickness t is considered very small, such that
contributions of θ 3 may be set to zero in this context, see Basar et al. [9]
and Bischoff et al. [21]. Hence the local basis A i refers to the continuum
base vectors G i . It is further implied that transverse strain components
are zero, i.e. Ei 3 = E3i = 0. Thus the components of the GL strain tensor E
in Equation (2.35) can be written as

Eαβ =
1

2
(aαβ −Aαβ ) = εαβ (2.36)
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in order to align with classical definitions. Here the membrane strain coef-
ficients εαβ are introduced in order to distinguish the membrane strains
from the general case.

The related strain measure based in the current configuration is the Euler-
Almansi strain tensor

e= ei j gi ⊗g j , (2.37)

where the coefficients ei j are the same as the coefficients Ei j of the GL
strains, see Equation (2.35).

2.3.2 Stresses and material law

As energetically conjugated stress measure to the GL strains, the 2nd Piola-
Kirchhoff (PK2) stress tensor S is introduced. The coefficients of the elastic
stresses Selast can be identified as the in-plane normal stresses S 11, S 22, and
the in-plane shear stress S 12 resp. S 21 through the constitutive equation

Selast = Sαβelast Gα⊗ Gβ =C : E , (2.38)

where C = C αβγδGα ⊗ Gβ ⊗ Gγ ⊗ Gδ is the fourth order elasticity tensor.

The coefficients Sαβelast of the PK2 stress tensor are determined as

Sαβelast =C αβγδεγδ . (2.39)

Within this thesis the St. Venant-Kirchhoff (StVK) material model, which is
characterized by Young’s modulus E and Poisson’s ratio ν, will be applied.
Using the convective curvilinear basis, the coefficients of the elasticity
tensor CStVK are determined as

C αβγδ
StVK =

E ν

1−ν2
G αβG γδ +

E

2 (1+ν)

�

G αγG βδ +G αδG βγ
�

. (2.40)

Referring to a local Cartesian basis and applying Voigt-notation, the St.
Venant-Kirchhoff material law can then be simplified to
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2.3 Structural mechanics for finite displacements

Note that the St. Venant-Kirchhoff material model as the spatial general-
ization of Hooke’s material law is only suited for the description of small
strains. More sophisticated material models accounting for moderate to
large strains and anisotropy can be found e.g. in Holzapfel [72] and Ogden
[108].

Whereas the PK2 stress tensor S refers to the reference configuration, the
energetically conjugate to the Euler-Almansi strains, see Equation (2.37),
is the Cauchy stress tensor

σ =σαβgα⊗gβ . (2.42)

The Cauchy stresses act in the current configuration and hence express
the "true physical stresses" (Parisch [110]). The two stress measures are
linked through

S = det [F ] F−1 ·σF−T = det [F ]σαβ Gα⊗ Gβ = Sαβ Gα⊗ Gβ , (2.43)

from which the components of the PK2 stress tensor can be identified as

Sαβ = det [F ]σαβ . (2.44)

Another common stress measure is the first Piola-Kirchhoff (PK1) stress
tensor P , which is obtained by

P = det [F ] ·σ · F−T = F · S = P αβgα⊗ Gβ . (2.45)

It is based in both the current and the reference configuration and hence
is non-symmetric.

2.3.3 Equilibrium

Equilibrium is fulfilled, when internal and external forces are in balance.
For a static problem, i.e. neglecting dynamic effects, this state is expressed
in the reference configuration through

divP +ρ0 B = 0 , (2.46)

where P represents the stress state in the body through the PK1 stress
tensor, see Equation (2.45),ρ0 is the density of the body and B is the vector
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of body forces, both in the reference configuration. The corresponding
formulation in the current configuration is

divσ+ρb= 0 , (2.47)

where nowσ represents the stress state in the body through the Cauchy
stress tensor, see Equation (2.42), ρ is the density of the body and b is
the vector of body forces (see Basar et al. [9], Wunderlich et al. [151], and
Zienkiewicz et al. [152] for more details).

The relation from Equations (2.46) resp. (2.47) has to be fulfilled every-
where in the structure including the boundaries. This is referred to as
the strong form of equilibrium. Since in general a closed-form solution to
spatial problems cannot be found, discretization methods like the finite el-
ement method (FEM) are employed. Here the field equations are no longer
satisfied point-wise, but in an integral sense. This leads to the weak form
of the equilibrium problem, commonly formulated through the principle
of virtual work (see Wunderlich et al. [151]):

δW =δWint+δWext = 0 (2.48)

The internal and external contributions to the virtual work are defined as

−δWint =

∫

Ω0

S :δEdΩ0 =

∫

Ω

σ :δedΩ (2.49)

and

δWext =

∫

Γ0

T ·δudΓ0+

∫

Ω0

ρ0 B ·δudΩ0

=

∫

Γ

t ·δudΓ +

∫

Ω

ρb ·δudΩ ,

(2.50)

where Ω0 and Ω represent the structural domain in the reference and
current configuration, respectively, and Γ0 and Γ are the corresponding
domain boundaries. T and t are the respective vectors of forces applied on
the boundary in the two configurations. The virtual strainsδE andδe arise
from the virtual displacement field δu which is applied to the structure.
Equation (2.48) can be expressed through the variation of the internal and
external work expression w.r.t. to δu as

δW =
∂W

∂ u
δu= 0 . (2.51)
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2.3 Structural mechanics for finite displacements

2.3.4 Discretization and solution approach

By introducing the discretized displacement vector uh and an arbitrary
virtual discretized displacement vector δuh, see Equation (2.20), a spatial
discretization is applied, see Section 2.1.2. Hence the equilibrium expres-
sion from Equation (2.51) transforms to

δW =
∂W

∂ uh
δuh =−R ·δuh = 0 . (2.52)

Since the virtual displacements δuh are arbitrary, the residual force vector
R has to vanish in order to fulfill equilibrium.

Solution approach for the general discretized non-linear problem

The expression of the unbalanced forces R in Equation (2.52) turns out to
be non-linear for the general case, hence necessitating an iterative solution
approach like the Newton-Raphson algorithm. The tangential stiffness
matrix K is introduced as the linearization of the unbalanced forces R :

LIN(R ) = R +
∂ R

∂ uh
∆uh = R + K∆uh = 0 (2.53)

Thus in each iteration step, the system from Equation (2.53) is solved for
the displacement increment∆uh. The stiffness K and the residual R are
updated in consequence and used to solve the next inner iteration until
convergence is achieved. Written in components, the definition of the
vector of unbalanced forces R and the stiffness matrix K are identified as

Rr =−
∂W

∂ ur
=−

∂Wint

∂ ur
−
∂Wext

∂ ur
=R int

r +R ext
r , (2.54)

Kr s =
∂ Rr

∂ us
=−

∂ 2W

∂ ur ∂ us
=−

∂ 2Wint

∂ ur ∂ us
−
∂ 2Wext

∂ ur ∂ us
= K int

r s +K ext
r s , (2.55)

where {r, s }= 1, ..., nDOF denote the respective degrees of freedom (DOFs).

Determination of the discrete quantities

Applying the discretization to the virtual work expressions from Equations
(2.49) and (2.50) allows identifying the individual contributions to the
residual force vector R and the corresponding stiffness matrix K .
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In the reference configuration one can identify

Rr =

∫

Ω0

�

S : E ,r

�

dΩ0−
∫

Γ0

�

T ·u,r

�

dΓ0−
∫

Ω0

ρ0 B ·u,r dΩ0 , (2.56)

where the first integral represents the internal contributions R int
r and the

other two integrals represent R ext
r . The right-hand side vector of unbal-

anced forces F is defined as F =−R resp. in components F int
r =−R int

r and
accordingly F ext

r =−R ext
r .

For the case of deformation-independent external forces T , the external
contribution K ext

r s to the stiffness matrix vanishes and hence

Kr s = K int
r s =R int

r,s =

∫

Ω0

�

S ,s : E ,r + S : E ,r,s

�

dΩ0 . (2.57)

An in-depth discussion of the contribution of deformation-dependent
loads, e.g. surface pressure, can be found in Jrusjrungkiat [77], Rumpel et al.
[125], and Schweizerhof et al. [132].

Based on the definition of the strain tensor E and the stress tensor S in
Equations (2.36) and (2.39), respectively, together with the definition of
the discretized base vectors G i and gi , see Equation (2.22), the required
components for the determination of R and K can now be determined as
a function of the discrete nodal displacements û.

2.4 Characteristics of geometrically non-linear beam
elements

Beam elements are among the most widely used elements, especially in
structural engineering. Based on a dimension reduction, see Figure 2.1,
and possibly a homogenization (e.g. in the case of reinforced concrete
members), beam element formulations can be used to model many parts
of classical civil engineering structures.

Depending on the assumed beam-theory (following the Euler-Bernoulli
assumption or Timoshenko shear-deformability, accounting for torsional
warping, etc.) beam elements are classically formulated with 6 to 8 DOFs
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2.4 Characteristics of geometrically non-linear beam elements

per node3 and provide the corresponding number of resultant forces. Usu-
ally these are: normal force N , bending moments My and Mz, torsional
moment MT (resp. Mx) and shear forces Vy and Vz, where x, y and z refer to
the local axes of the beam element.

Under the assumption of small deformations and geometrically linear
kinematics (referred to as Theory of First Order) beam element formulations
can be considered established and generally provide satisfying and reliable
results. However, the development of beam elements fully accounting
for geometrical non-linearity is a challenging and still very active area of
research, see e.g. the recent developments by Bauer et al. [14], Lumpe et al.
[91], and Meier et al. [97].

In order to deal with moderate geometrical non-linearity and to assess
stability problems, Theory of Second Order (abbr. Th.II.O.; also referred
to as second-order analysis) has been developed. A strain measure εThIIO,
suitable for moderate non-linear deformations, is used and equilibrium
is established in the deformed configuration. In order to be accessible
for manual calculation, further assumptions, notably the decoupling of
bending and longitudinal deformation, have been introduced, see Lumpe
et al. [91] and Petersen [112], forming different "sub-versions" of Th.II.O.

Th.II.O. has been and still is successfully applied to a wide range of struc-
tures and provides the basis of many verification standards for geomet-
rical non-linearity (e.g. in the Eurocodes, see Chapter 5). However, with
increased computational possibilities and increasingly softer structures
entailing larger deformations, Th.II.O. often is no longer suitable. For the
present context of lightweight structures and more specifically the appli-
cation in combination with structural membranes, two simplifications are
in the focus: On the one hand, the strain measure εThIIO used in Th.II.O.
is only applicable for small to moderate rotations, hence not for large de-
formations as they occur for the structures of interest. On the other hand,
Th.II.O. (resp. its implementations in most available FE-environments) is
not properly taking spatial deformations and their interaction into account,
see Lumpe et al. [91]. Hence it can be stated that for the structures treated
within this thesis – slender structures exhibiting large spatial deformations
– Th.II.O. is not sufficient for reliable structural analyses.

3 Note that within this thesis, the applied beam element formulation does not account
for warping effects; the profiles that are used are considered warping free. In consequence,
the beam elements need 6 DOFs per node and the listed resultant forces, see Section 2.4.3.
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Figure 2.11: Non-commutativity of finite rotations with the
example of a changed rotation sequence for rotations of a box

around the x- and y-axis

As a basis for the developments and discussions within this thesis where
bending active elements are included, some necessary fundamentals are
presented in the following.

2.4.1 Finite rotations and their parameterization

One of the core aspects in the development of FE-formulations for spatial
beam elements (as well as for shell elements) considering geometrically
non-linear deformations is the treatment of finite rotations, i.e. rotations
that cannot be considered "small" or even "moderate" any longer. Unlike
rotations, displacements u are added up over the load or iteration steps,
i.e. the displacement at the load resp. iteration step (i +1) is

u(i+1) = u(i )+∆u(i ) . (2.58)

In contrast, spatial rotations in general are non-additive, i.e. they cannot
be determined as the sum of incremental rotations∆ϕ, see e.g. Crisfield
[48] and Krenk [82]. Since the sequence of rotations is crucial for the result,

34



2.4 Characteristics of geometrically non-linear beam elements
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Figure 2.12: Spatial rotation of a point A by an angle ϕ around a
rotation axis n (remade based on [82])

the rotation "vector" ϕ in fact is a pseudo-vector, since it holds in general
that for the combination of two rotations ϕ1 and ϕ2

ϕ1+ϕ2 6=ϕ2+ϕ1 , (2.59)

which is referred to as non-commutativity [48, 82, 91]. This circumstance
is illustrated in Figure 2.11. By switching the order of two rotations of mag-
nitude π/2 around the x- and y-axis, respectively, the result is completely
changed. Hence a unique description of spatial rotations and a possibility
for updating them between load and iteration steps is required.

Figure 2.12 displays the spatial rotation of a point A0 to the new position
A. This rotation can be defined by a rotation axis n and a rotation angle ϕ.
Thus the position vector X A0

is rotated to give the vector xA . This rotation
can be expressed as

xA = R X A0
, (2.60)

where R is called rotation tensor and can be expressed through n and ϕ,
see e.g. Eberly [55].

Since n is of unit length a priori, it only has two independent parameters.
Together with the rotation angle ϕ, a spatial rotation can uniquely be
defined by three independent parameters, where commonly n is scaled to
a length ϕ in order to include the entire rotation within one vector.
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A consistent update of the rotation tensor R is obtained through a multi-
plicative update, i.e. in step (i +1) the rotation tensor can be expressed as

R (i+1) =∆R (i )R (i ) , (2.61)

where∆R (i ) is the incremental rotation from step (i ).

Besides the described axis-angle representation, different approaches have
been developed in order to enable a consistent description for the update of
rotations, see Crisfield [48] and Krenk [82], where especially the possibility
of an additive update (through modified rotation parameters) is of interest
for the integration into an existing FEA-environment. Eberly [55] gives a
very compact overview of different parameterizations for finite rotations,
including transformation rules and estimations of computational cost.

Another approach, as used in the beam formulation by Lumpe et al. [91],
consists in expressing the rotation through director displacements: Two
directors4 are introduced and their tip-displacements uniquely define the
rotation state of the beam. It can be shown that also for this parameteri-
zation, only three independent parameters describe the entire rotation.
Expressing rotations through displacements proves to be unique, path-
independent and free of singularities, even for large rotations. However the
modeling of junctions of several elements and the application of moments
turns out to be considerably more complex, see [91].

Although in many ways the challenges encountered by the rotation descrip-
tion are the same for beams and shells, another aspect becomes important
specifically for beam elements: Since the beam element description is
reduced to its center-line, see Figure 2.1, already the unique and consis-
tent definition of the local axes spanning the cross section is challenging,
especially for spatially curved beams, as discussed e.g. by Bauer et al. [14].

2.4.2 Buckling of beam elements

Beam elements are encountered in various applications within lightweight
structures: They provide the supports or act as columns, or they may act as
integrated supporting arches. In all these applications beams act mainly
in compression. Depending on the application, compression is often com-
bined with bending. Since for the beam members slender dimensions are

4 For shells, one director is sufficient, see e.g. Bischoff et al. [21] and Dornisch et al. [53].
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Figure 2.13: Plane buckling of a beam: Deformations wb and wn
in the basic state resp. in the neighboring state, determination of

the buckling modeφ and load-displacement diagram with the
characteristic displacements wb and wn

desired, they may be susceptible to buckling. Buckling occurs in absence
of stability, which at its turn can be defined as "the power to recover equi-
librium" as denoted by Felippa [59, p.28-3] or in other words: "A structure
is stable at an equilibrium position if it returns to that position upon being
disturbed by an extraneous action" [59, p.28-3].

Buckling of elements under compression is characterized by the existence
of two infinitesimally close states of equilibrium for one load stateλ. These
states are referred to as basic state and neighboring state, respectively, see
Figure 2.13. Hence the structure may change from one state to the other
without an external force, as is the case for kinematic structures. The cor-
responding load state is referred to as critical load resp. buckling load λcrit.
The deformation between these two states – with an arbitrary scaling – is
known as buckling modeφ.

Tracing buckling points5 is an important part of structural analysis in the
non-linear regime. Obviously, the problem described in Equation (2.62)
will have several solutions for λcrit. For most civil engineering structures,
the first critical point, i.e. the one corresponding to the lowest load factor
λcrit, is of interest.

5 For the sake of completeness the existence of other types of critical points like limit
points shall be mentioned, however they are not in the focus of this thesis.
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Buckling points may be detected through an analysis of the stiffness matrix.
When the tangential stiffness matrix K (u,λ) turns out to be singular at a
load level λcrit, which is detected through

det
�

K
�

ucrit,λcrit

�

�

= 0 resp. K
�

ucrit,λcrit

�

φ = 0 , (2.62)

a critical point is reached in whichφ 6= 0 is the null eigenvector. If a buck-
ling point is reached, the eigenvector φ represents the buckling mode,
corresponding to the arbitrarily scaled difference between the basis and
the reference state introduced in Figure 2.13.

However, the detection of buckling points with the definition of the full
non-linear problem in Equation (2.62) is computationally expensive when
it comes to complex structures. For many applications like in early design
stages of civil engineering structures, a simplified estimation of the critical
load factors may be sufficient. In that case a Linearized Prebuckling (LPB)
analysis may be applied, which drastically simplifies the eigenvalue de-
termination from Equation (2.62). For the LPB the stiffness matrix is split
into the elastic part K el and the geometric stiffness K geo. Furthermore
the assumption that K geo is linearly dependent on the load factor λ is in-
troduced, i.e. K geo = λ · K ref

geo, where K ref
geo = K geo (λ= 1) is the geometric

stiffness matrix evaluated at the reference state.

Consequently Equation (2.62) can be rewritten as

K LPBφ =
�

K el+λK ref
geo

�

φ = 0 , (2.63)

which is often called the LPB stability eigenproblem. The solution of Equa-
tion (2.63) will deliver nDOF eigenvalues λ, where nDOF is the number of
DOFs of the system. The eigenvalue λi closest to zero then is the critical
load factor.

Through the assumed simplifications, which are cited e.g. by Felippa [59],
the range of applicability of LPB is limited. The most important limitations
in the present context are that prebuckling deformations must be small
and that the effect of imperfection is considered negligible.

In the context of lightweight structures with bending-active members
(beams) combined with tensile elements, see Chapter 4, a controlled buck-
ling through pre-deformation of the beams is actively used in order to
create new structural shapes. Within this combination, very slender beams
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Figure 2.14: The corotational kinematic description as a
decomposition of the element deformation (remade based on [59])

are applied, for buckling is prevented by the lateral stabilization from the
membrane the beams are embedded in.

2.4.3 Applied beam element formulation

For the applications in the sequel of this thesis, notably in Chapter 4, an
existing beam element formulation is used, a spatial corotational beam
element formulation by Krenk [82]. Following the corotational concept,
the deformation of the element is decomposed into two parts as illustrated
in Figure 2.14: a rigid body motion of the element, accounting for the finite
displacements and rotations, and an elastic element deformation. Since
the applications in focus deal with large displacements but small strains,
locally linear deformations are assumed. Although the elastic deformations
are assumed to be small, at this point it should be noted that the rigid-body
motion of the corotated frame still necessitates the description of finite
rotations as explained in Section 2.4.1.

The element is based on six natural deformation modes that account for
longitudinal extension, symmetric bending and opposing bending around
the y- and z-axis, respectively, and for twisting around the x-axis. As nodal
DOFs the element disposes of three displacements and three rotations per
node, as illustrated in Figure 4.14, which largely simplifies the combina-
tion with other elements. The implementation used within this thesis has
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Figure 2.15: Roll-up of an initially straight cantilever to a circle
in pure bending

been benchmarked by Heyden [69]. Selected benchmarks are shown in the
following to demonstrate the abilities of the element. In these benchmarks,
the reference solutions – analytical solutions resp. established solutions
from literature – are indicated by continuous black graphs.

The so-called mainspring example illustrated in Figure 2.15 is a classical
benchmark (see [11, 48, 82]) and demonstrates the ability to deal with large
rotations in pure bending. From the analytical solution it can be seen that
for a tip moment M = 2πE I /L the initially straight cantilever has to form
a closed circle. Applying a sufficiently fine discretization and reasonable
load increments, the beam closes to a circle up to numerical deviations.

The analysis of a 45° bending beam, loaded out of its plane, presents an-
other well established benchmark, documented e.g. in Bathe et al. [11] and
Bauer et al. [14]. The problem setup and the deformed configuration are
shown in Figure 2.16. Although the computed out-of plane displacement
w very nicely matches the reference solution from Bathe et al. [11], small
deviations in the displacements u and v are still noticeable. These can be
explained by the simplifying assumption of neglecting warping, although
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Figure 2.16: 45° bending beam loaded out of plane representing
a spatial deformation including torsion

a non-warping free cross section (square) is analyzed here. However, the
overall results prove the applicability of the element formulation to spatial
problems with large deformations.

As a final example, the frame illustrated in Figure 2.17 is analyzed. This
benchmark, discussed by Wriggers [149], is used to demonstrate the ability
to couple elements and to analyze structures beyond the stability point,
see Figure 2.17(b). In order to track the load-displacement curve beyond
a critical value of w ≈ −115, appropriate path-following methods like
displacement- or arc-length-control (see [59, 82, 149]) are required. As
can be seen, also the post-critical behavior is accurately tracked by the
implemented element.

A series of other benchmarks for the applied element formulation can be
found in [69]. In conclusion it can be stated that the element formulation
fulfills all necessary requirements to be applied in the hybrid structures of
Chapter 4.
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Figure 2.17: Bending of a one-sided frame under a single nodal
force, leading to large deformations and a critical point

2.5 Characteristics of structural membranes

Structural membranes offer a unique language of shapes to designers as
well as to visitors, mainly characterized by their curved silhouette that
underlines the efficient lightweight nature of these structures.

The mechanical properties of structural membranes and their closely re-
lated shape entail very particular characteristics, also concerning their
numerical design and analysis. Some of these specific characteristics are
briefly introduced in the sequel as preparation for the developments in
the next chapters.

2.5.1 Characteristics and consequences of the load-bearing
behavior of structural membranes

One of the core characteristics of structural membranes is their load-
bearing behavior: external and internal loads are transferred to the sup-
ports exclusively via tension, acting tangentially to their mid-surface. The
absence of compression and bending allows for the very thin dimensions
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of wide-span structural membranes, typically in the range of millimeters.
In order to ensure stability and to transfer out-of-plane loads, prestress in
the membrane and the cables is necessary.

Possibly occurring compressive forces lead to wrinkling in the membrane,
as can be seen in Figure 3.15, which corresponds to local buckling in one
direction due to the very thin to negligible bending stiffness. The anal-
ysis of wrinkling in structural membranes has been tackled by different
approaches, see e.g. Jrusjrungkiat [77] and Rossi et al. [124].

In general wrinkling in membranes has to be avoided, as stated in [60, 136],
since it results in loss of stiffness and eventually leads to fatigue in the
material. Therefore, during the design and assessment of structural mem-
branes, as discussed in Sections 2.5.2 and 5.3, the absence of compressive
forces should be assured.

As mentioned above, the load-bearing through tensile forces allows for
the use of very thin material. Two main types of material are in use, see
Knippers et al. [81]:

– Foils, most prominent the widely used ETFE-foils, with a thickness
of typically less than 0.3 mm.

– Woven coated fabrics, most prominent PTFE-coated glass fibers resp.
PVC-coated polyester fibers, with a thickness typically in the range
of 0.8 to 2 mm.

The investigation of the material behavior of foils and fabrics in use deals
with topics like the consideration of orthotropy or the characterization of
non-linear material properties, see e.g. Bridgens et al. [33, 34], Knippers
et al. [81], Moritz [100], Münsch et al. [102], Schiemann [128], Uhlemann
[143], and Widhammer [148]. Within this thesis the simplifying assumption
of linear elastic isotropic material behavior is made, see also Section 2.3.2.

2.5.2 Principal design steps for structural membranes

In order to ensure the load-bearing exclusively via tension the design pro-
cess for structural membranes can be seen as a design cycle. As commonly
defined, this membrane design cycle consists of three major steps that
mutually interact, see e.g. Bletzinger et al. [24], Dieringer [49], Gibson [61],
Linhard [88], and Stimpfle et al. [134]:
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– Form-finding has the task of defining the shape that fulfills both
aesthetic and mechanical constraints. See Section 2.5.3 for more
details.

– In structural analysis and verification the membrane structure is
assessed against various loading scenarios in order to guarantee its
safety, see also Chapter 5. The structural analysis commonly starts
with the form-found shape and the desired prestress.

– The cutting pattern generation yields the plane patterns for the pro-
duction of the individual membrane strips. Since compromises on
the resulting shape and prestress have to be made, this step may lead
to adjustments in the other steps of the design cycle.

In general, all design steps show large deformations which necessitate a
geometrically non-linear analysis. The mechanical basis of the structural
analysis considering geometrical non-linearity has already been laid out
in Section 2.3. The form-finding will be introduced in more detail in the
next section. For the sake of completeness, a short outlook on the cutting
pattern determination shall be given here. Detailed discussions on cutting
pattern determination may be found e.g. in Dieringer [49], Linhard [88],
and Widhammer [148].

Outlook on cutting pattern determination

Since structural membranes draw their load-bearing capacity out of the
combination of prestress and their curved shape, they are characterized by
a Gaussian curvature K 6= 0, see Equation (2.13), i.e. they are doubly curved.
As a consequence, structural membranes in general are non-developable.
The cutting pattern generation has the task of determining the plane, un-
stressed patterns that – after their assembly – result in the desired shape
with the prescribed prestress resp. approximate it as good as possible.

As a first step in the cutting pattern determination the membrane surface
is divided into separate strips. The boundaries of these strips in most cases
follow geodesic lines as shortest paths between two points on the surface,
see Forster et al. [60]. The numerical determination of these geodesic lines
on facet-type FE-meshes (see Section 2.1.2) represents a computational
challenge on its own, see Dieringer [49] and Linhard [88].
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Figure 2.18: Schematic cutting pattern determination for a
four-point sail: The separate strips are individually flattened and
serve as starting configuration for a cutting pattern optimization.

The problem of cutting pattern determination for these strips can be formu-
lated as an optimization problem, where the reference configuration X 2D

(see Figure 2.18) shall be such that the deviation of the stresses σel,2D→3D

from the mounting procedure and the prescribed prestress σpre are mini-
mized:

min
X 2D

→ f
�

X 2D

�

=σel,2D→3D−σpre (2.64)

Several solution approaches to that problem have been proposed, e.g.
a minimization of stress difference energy, see Bletzinger et al. [26] and
Dieringer [49]. The Variation of Reference Strategy (VaReS) (see Dieringer
et al. [51] and Widhammer [148]) as a more recent development is based
on the minimum of the total elastic potential energyΠtotal:

min
X 2D

→Πtotal =Πel,2D→3D−Πpre (2.65)

Thus VaReS avoids several of the numerical problems of the aforemen-
tioned approaches and allows incorporating anisotropy as well as highly
non-linear material models as demonstrated in Widhammer [148].
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2.5.3 Form-finding of tensile structures

The core part in the design process of architectural membranes is the
form-finding, since it is the design step that ultimately reveals the shape
of the structure. In the context of tensile structures it is the goal of any
form-finding procedure to determine the shape of equilibrium w.r.t. a
given stress distribution and boundary conditions.

Before the increasing success of numerical approaches to form-finding,
physical form-finding had been used exclusively to determine the shape
of textile membranes and cable net structures. Soap-film models with
their isotropic prestress state can be used for the special case of minimal
surfaces, i.e. surfaces that link given geometric boundary conditions with
the minimum surface area possible. Therefore, soap-film or other physical
models have successfully been used and still provide an attractive ground
for creative form-finding within the design of membrane structures.

Minimal surfaces have also been in the focus of mathematical research (see
e.g. Euler [57], Goldschmidt [63], Meusnier [98], Scherk [127], and Schwarz
[131]) and still are today (see e.g. Costa [44]). The derived analytical solu-
tions allow for pertinent comparisons of mechanical form-finding meth-
ods and the applied element formulations as used later in Section 3.4.2.
Minimal surfaces provide several interesting characteristics, e.g. they are
characterized by a mean curvature of zero, see Equation (2.15), which will
be at the basis of the application in Section 3.5.3.

The search for a minimal surface area is obviously closely related to mini-
mizing the material or weight used in a structure, which can be seen as a
classical task for structural optimization, see Bletzinger et al. [25, 28], essen-
tially providing the same results as the specialized form-finding method-
ology that is described in the following. From this procedure, the require-
ments for finite element formulations to be integrated in a form-finding
analysis will be elaborated.

The inverse problem of form-finding

In a general sense, form-finding can be considered as a very special applica-
tion of non-linear structural analysis. While in classical structural analysis
the stress state is determined based on the load-dependent displacements,
in form-finding problems this procedure is inverted: the desired stress
state (i.e. the prestress of the membrane or cable net) is prescribed and
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Figure 2.19: The inverse problem of form-finding, opposed to
classical structural analysis (remade based on [24])

the geometry that brings this state into equilibrium is determined, see
Figure 2.19. Due to this opposing behavior, form-finding is often described
as an "inverse problem", see Bletzinger et al. [24, 26, 27].

Since the goal of the form-finding procedure is to determine a shape of
equilibrium, the form-finding problem can be formulated based on the
principle of virtual work, see Equation (2.48). As the final shape of the
structure is unknown at the beginning of the form-finding procedure,
the problem has to be formulated in the current – yet still unknown –
configuration. This way, equilibrium will ultimately be established for the
form-found shape that fits the chosen prestress state.

For the case of mechanically prestressed structural membranes (in contrast
to pneumatically prestressed cushions resp. air-halls), no external loads
are considered during the form-finding. Comparing the self-weight of
structural membranes – in the range of some few kg/m2, see [81] – to the
level of prestress, usually self-weight is neglected, too. Thus the balance
of momentum, expressed through the internal virtual work in the current
configuration can be simplified from Equation (2.49) to

δWcur =δWcur,int =−
∫

Ω

σ :δedΩ = 0 , (2.66)

where the Cauchy stresses now represent the prescribed prestress state.
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(a) Regular parameterization and corresponding deformed geometry

(b) Artificially distorted parameterization and corresponding deformed geometry

Figure 2.20: Illustration of the "non-unique" surface
parameterization: Two different parameterizations describing the

same geometry.

As described in Section 2.3, the problem from Equation (2.66) is discretized
in order to be treated numerically. In the case of form-finding, the resulting
stiffness matrix K turns out to be singular. This deficiency corresponds to
non-unique positions of the nodes on the determined shape, as illustrated
in Figure 2.20. A physical counterpart to this phenomenon can be found
in soap-bubbles where the soap is floating on the surface, although not
altering the bubble’s shape (see also Isenberg [75]).

48



2.5 Characteristics of structural membranes

Since this singular problem cannot be handled by the usual means of struc-
tural analysis, special approaches are required for the form-finding simu-
lation. Many different methods have been proposed in order to overcome
this problem, like the dynamic relaxation, see Barnes [8] and Wakefield
[145], the force density method by Linkwitz [89] or adapted linearization
techniques as presented by Haug [68]. As form-finding methodology in the
present thesis, the Updated Reference Strategy (URS), initially proposed by
Bletzinger et al. [27], is applied.

A priori all mentioned form-finding approaches are viable and should lead
– at least for cases with a unique solution like minimal surfaces – to the
same results. However, a round robin exercise on form-finding carried
out by Gosling et al. [65] revealed considerable differences between the
different methods respectively their implementations in various software
packages.

Form-finding with the updated reference strategy

In URS, the form-finding problem is set up as a combination of the original
problem in the current configuration, according to Equation (2.66), and
a stabilization term. In analogy to the expression in the current config-
uration, this stabilization term is defined by a modified problem in the
reference configuration,

δWref =δWref,int =−
∫

Ω0

(S :δE )dΩ0 = 0 , (2.67)

see Equation (2.49), where now also the PK2 stresses are prescribed.

By linearly blending the two respective formulations for equilibrium of
the structure, δWcur from Equation (2.66) and δWref from Equation (2.67),
while introducing a homotopy factor λ, a mixed formulation is obtained:

δWURS =λ ·δWcur+ (1−λ) ·δWref (2.68)

Thus, by adding a certain portion of the stable, related problem δWref

formulated in the reference configuration, the originally singular problem
δWcur is stabilized. After each form-finding step, the resulting geometry is
set as the new reference and the solution of the problem is repeated, thus
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giving the name of the method. Obviously the homotopy factor λ controls
the solvability of the problem: As long as λ is sufficiently small in order to
stabilize the problem, the system of equations is guaranteed to converge.
For a detailed discussion on the choice of λ and the resulting convergence
properties the reader is referred to Bletzinger et al. [26] and Wüchner et al.
[150].

As convergence criterion for the URS, a comparison of the different stress
measures can be used: When convergence is achieved, the prescribed

prestress Sαβ0 in the reference configuration matches the resulting stress
σαβ in the current configuration. As shown in Equation (2.44) the two
stress measures are linked by the pull-back operation Sαβ = det [F ]σαβ

with the deformation gradient F = ∂ x/∂ X , see Equation (2.32). Hence
the convergence criterion of Sαβ ≈σαβ is equivalent to det [F ]≈ 1, which
means that both geometries, the current geometry x and the reference
configuration X , are identical and a shape that fulfills equilibrium w.r.t.
the given prestress and boundary conditions is found.

Discrete formulation of the Updated Reference Strategy

In prestressed tensile structures, stress results from elastic deformation
and from prestress,

S = S0+ Sel = Sαβ Gα⊗ Gβ , (2.69)

with the prestress being indicated by the subscript "0".

Since in pure form-finding problems only prescribed and thus constant
prestress is applied and no elastic stresses occur, the corresponding deriva-
tive of S = S0 in Equation (2.57) vanishes and the residual and stiffness
expression for form-finding can be written in simplified form as

R fofi
r =

∫

Ω0

�

S0 : E ,r

�

dΩ0 and K fofi
r s =

∫

Ω0

�

S0 : E ,r,s

�

dΩ0 , (2.70)

where now only the first and second derivative of the strains are required.

Enhancements of the Updated Reference Strategy

Based on the presented approach, various enhancements of the URS have
been developed over time. For example important progress has been made
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2.5 Characteristics of structural membranes

in the field of automatic stress adaptation and control of the prestress ratio
as a shaping parameter, see Bletzinger et al. [26] and Wüchner et al. [150].

Lately the problem of integrating elastic members into the design process
of structural membranes has gained more attention. These so-called hy-
brid structures unite both processes sketched in Figure 2.19 in one single
process, introducing new design possibilities and structural capacities as
well as new computational challenges, see Dieringer et al. [50], Lienhard
[85], and Philipp et al. [113, 117]. The arising possibilities and mechanical
implications will be discussed in more detail in Chapter 4.

Based on the observation that the singularity in the equilibrium in Equa-
tion (2.66) is only related to the in-plane movement of the nodes (see also
Figure 2.20), a splitting of the residual force components is performed in
the eXtended Updated Reference Strategy (X-URS) by Dieringer et al. [52].
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Summary and conclusions of Chapter 2

This chapter provides the necessary fundamentals for the developments
in the following chapters. Most of the explanations are made for surface
structures, however the main conclusions and developments are valid for
line elements (beams, cables) as well.

Within this chapter, notably the following aspects have been presented:

– differential geometry (notably of surfaces)

– geometry description and parameterization

– NURBS-based B-Rep models as geometry description and using
NURBS as basis functions in FEA

– fundamentals of structural mechanics and solution of structural
problems with FEA

– specific aspects of structural mechanics and geometric parameteri-
zation for beam elements accounting for finite displacements

– specific aspects for the form-finding and analysis of structural mem-
branes

Moreover several conventions and notations are introduced in order to
simplify the developments and derivations in the following chapters.
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3
THE INTEGRATION OF GEOMETRY AND

STRUCTURAL BEHAVIOR WITH

ISOGEOMETRIC B-REP ANALYSIS

The load-bearing behavior of lightweight structures is closely linked to their
shape: Making use of double curvature, shells resp. prestressed membranes
are able to form structures of an impressive slenderness.

To allow for that slenderness, the shapes of lightweight structures often
result from a close integration of a functional and aesthetic design on the
one hand and mechanical form-finding resp. optimization on the other
hand. In that regard Stimpfle [133] describes the usage of different models
for the respective purposes and the conversion between these as one of
the bottle-necks in the design process of lightweight structures. In order to
enable the required close collaboration between design and engineering,
the isogeometric B-Rep analysis (IBRA) delivers the potential for a deep
CAD-CAE-integration on one model.
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3 Integration of geometry and structural behavior with IBRA

Within this chapter, IBRA as a technique for the design and analysis of
lightweight structures is presented. For the analysis of structural mem-
branes, several components are developed. Finally, selected examples
demonstrate the potential and allow to critically assess the application of
IBRA for the design and analysis of membrane structures.

Remark I: The geometric modeling of the presented examples has been
performed within the CAD software Rhino3D [95]. All structural analyses
have been realized with the FE-code Carat++ [29]which is integrated to
Rhino3D by the in-house plug-in TeDA [23].

Remark II: In parts the content of this chapter has been published in
Philipp et al. [114–116, 118]. For the sake of easier readability these sources
will not always be cited explicitly.

3.1 Lightweight structures and the interaction of
geometry and structural behavior

More than most other structures, lightweight structures rely on an “optimal”
shape. Consequently they are (to be) designed in such a way that they
transfer loads using their geometry, i.e. mainly (shells) resp. exclusively
(tensile structures) by normal stresses and by reducing bending as much
as possible. This ensures the optimal use of the cross-section through
constant stresses along the thickness (see also Figure 4.1), thus allowing
for a reduction of the used material.

Two examples illustrate the close interaction of geometry and structural
behavior for lightweight structures:

– Shell structures are very sensitive to their geometry-adapted support
conditions as well as their loading conditions.

– Structural membranes depend on their geometry – mainly their cur-
vature – to withstand loads, but also to prevent “events” like ponding.

In consequence the shape-definition of lightweight structures usually is an
iterative process, with alternating geometrical modifications and mechan-
ical analyses. This iterative process can be illustrated in the form-finding
of a structural membrane (see Section 2.5.3): Here the geometrical model-
ing of the initial shape (characterized e.g. by high- and low-points) enters
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3.2 IBRA for lightweight structures

the mechanical form-finding analysis. The form-found shape at its turn
(possibly after several iterations) is further used in the architectural design.

To facilitate a close collaboration between the geometrical design and a
structural analysis, an approach that allows both disciplines to collaborate
on one model is required. In the following a technique that meets those
requirements is presented.

3.2 The isogeometric B-Rep analysis for lightweight
structures

For several decades the finite element method (FEM) as the predominant
method for computer-aided engineering (CAE) on the one hand and the
computer-aided design (CAD) on the other hand have evolved more or
less independently. When the need for a better CAD-CAE-integration (also
referred to as "design-through-analysis work-flow") had been addressed,
most approaches have aimed on facilitating the automatic creation of a
separate, specialized analysis model from the CAD model.

Complex and powerful mesh-generation approaches have helped to au-
tomatize that task to some extent. Nevertheless considerable manpower
still is invested in order to set up the structural model. Conversion be-
tween the models, especially recovering information from CAE to CAD, is
time-consuming, error-prone and, generally, only approximative (see also
Coll Sans [43], Hughes et al. [73], and Topping [142]).

In this context the isogeometric analysis (IGA) and – applied in the present
work – the isogeometric B-Rep analysis (IBRA) have been developed in
order to overcome the gap between CAD and CAE.

The concept of the isogeometric B-Rep analysis

The isogeometric B-Rep analysis (IBRA) which has been recently introduced
by Breitenberger et al. [31] can be seen as a generalization of the isogeomet-
ric analysis (IGA) which at its turn had been introduced by Hughes et al.
[73]. Within the present work only a very brief overview is given, for further
details on IGA and IBRA in general, the reader is referred to Breitenberger
et al. [31], Cottrell [45], and Hughes et al. [73].
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3 Integration of geometry and structural behavior with IBRA

As already discussed in Section 2.2, the isogeometric paradigm entails the
use of basis functions from CAD (most commonly NURBS, see Equations
(2.23) and (2.26) as well as Figures 2.7 and 2.8) for representing the geom-
etry as well as the solution fields. This approach is opposed to classical
finite element analysis (FEA) where typically low-order – often linear – in-
terpolating functions describe the geometry in a facet-type manner, see
Figure 2.5.

While IGA in its pure form is restricted to complete patches, IBRA refers
to the full NURBS-based Boundary-Representation (B-Rep) model (see
Section 2.2 and Figure 2.9) which is standard in many modern CAD systems.
To this end, IBRA provides the framework for a consistent mechanical
interpretation of the geometrical trimming operation. Thus, also trimmed
and coupled patches can be used in a consistent manner: with IBRA, the
complete CAD model can be augmented to an analysis suitable model.

Moreover the concept of IBRA allows enforcing various properties to the B-
Rep entities. This can be seen as a new type of finite element formulation,
the B-Rep edge element: Elements of this type permit enforcing among
others coupling boundary conditions or supports and loads, as presented
in Breitenberger et al. [31], or even mechanical properties like a cable
element with prestress (see Philipp et al. [114]), which is introduced in
Section 3.3.2.

The concept of embedding mechanical elements within the parameter
space of a membrane or shell structure has recently been applied by Bauer
et al. [13] to the non-linear isogeometric spatial Bernoulli beam introduced
in [14] in order to form a B-Rep edge beam as stiffening resp. supporting
element for lightweight structures.

3.3 Developments for the analysis of tensile structures
with IBRA

Since its conception, IGA has penetrated many areas of engineering and
computational mechanics, such as structural and fluid mechanics, fluid-
structure interaction, optimization, and contact mechanics. Various struc-
tural element formulations have been developed based on IGA, notably
for shells [19, 20, 53, 56, 79] and membranes [114, 126], as well as cables
and rods [7, 14, 66, 123].
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3.3 Developments for analyzing tensile structures with IBRA

For the analysis of tensile structures, new structural elements are required,
notably a geometrically non-linear membrane element and an embed-
ded cable element, both accounting for prestress. Their development is
presented in the sequel.

3.3.1 Membrane element accounting for prestress

Owing to their very thin dimensions, structural membranes are commonly
reduced to their mid-surface as illustrated in Figure 2.1. The thickness t of
the membrane is assumed to be constant and deformation-independent.
Hence it is convenient to apply Voigt-notation and to introduce entities
that are pre-integrated over the thickness (see also Bischoff et al. [21]). Thus
pre-integration of the stresses S from Equation (2.38) over θ 3 yields the
resultant forces
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Referring to a local Cartesian basis eα in order to obtain values for the coef-
ficients of the stress resultants that are free of the influence of a distorted
basis, the PK2-stress resultants from elastic deformation can be written as
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= t · D̄ isotropic · ε̄ . (3.2)

In the present context D̄ isotropic is the material matrix for the St. Venant-
Kirchhoff material model, see Section 2.3.2:

D̄ isotropic =
E

1−ν2
·


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


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ν 1 0

0 0 1−ν
2
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(3.3)
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In analogy to Equation (2.10) the transformation of the strain coefficients
from a curvilinear system as in Equation (2.36) to a local Cartesian refer-
ence frame (e1, e2) as required in Equation (3.2) is performed by

ε̄γδ = εαβ (eγ ·Aα)(Aβ ·eδ) . (3.4)

The prestress S0 from Equation (2.69) is pre-integrated in analogy to Equa-
tion (3.1) to give
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respectively n̄0 in a local Cartesian frame.

With these derivations at hand, the contribution to the internal and ex-
ternal forces from Equation (2.56) as well as to the stiffness matrix from
Equation (2.57) can be written as follows:

F int
r =−

∫

A

�

n̄ : ε̄,r

�

dA (3.6)

F ext
r = t ·

∫

A

�

ρ ·u,r

�

dA+

∫

A

�

q ·u,r

�

dA+

∫

Γ0

�

p ·u,r

�

dΓ0 (3.7)

K int
r s =

∫

A

�

n̄,s : ε̄,r + n̄ : ε̄,r,s

�

dA (3.8)

Here ρ is the vector of body forces, q are distributed external loads and
p are external loads on the edges. Note that q and p are supposed to be
deformation-independent in the present developments. A is the surface
area of the membrane and Γ0 are the respective edges.

From Equations (3.6) to (3.8) it can be seen that the stress resultants n̄, the
variations u,r of the displacements and the first and second variations of
the strains, ε̄,r and ε̄,r,s , respectively, are required for the determination of
the stiffness and residual force contributions of the element.
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The coefficients of the first variation of the in-plane strains ε̄ in a Cartesian
basis can be derived from Equation (3.4) and (2.36) as

ε̄αβ ,r = εαβ ,r (eγ ·Aα)(Aβ ·eδ) =
1

2
aαβ ,r (eγ ·Aα)(Aβ ·eδ) . (3.9)

The derivative aαβ ,r of the metric herein is obtained as

aαβ ,r = (aα ·aβ ),r = aα,r ·aβ +aα ·aβ ,r . (3.10)

Applying discretization (see Section 2.1.2) the variation of the base vector
w.r.t. the displacement variables can finally be determined referring to
Equation (2.22) as

aα,r = x,α,r =
∑

i

N i
,αûi ,r . (3.11)

The second variations of the strain coefficients are obtained as

εαβ ,r,s =
1

2
aαβ ,r,s =

1

2
(aα,r ·aβ ,s +aα,s ·aβ ,r ) , (3.12)

since from Equation (3.11) it is obvious that ûi only appears linearly and
thus the second derivative w.r.t. the discretization parameters of the base
vectors aα,r,s = 0. Together with Equations (3.9) and (3.11), ε̄αβ ,r,s can thus
be determined from the shape function derivatives N i

,α.

The variation of the elastic part of the stress resultants n̄elast can be deter-
mined from Equations (3.2) and (3.9) as

n̄elast,r = t · D̄ isotropic · ε̄,r . (3.13)

Hence all components for the determination of the element stiffness matrix
and the internal force vector are determined.

3.3.2 Embedded cable element accounting for prestress

In the context of textile architecture, cables play a crucial role. They intro-
duce accentuated kinks in the form of valley or ridge cables as displayed
in Figure 3.4 or act as Neumann boundary condition in the form of edge
cables. A broad variety of cable elements has been developed, including
also isogeometric formulations as in Raknes et al. [123].
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Commonly cable elements are formulated based on an explicit description
of the cable geometry. Besides stability issues due to the lack of bending
stiffness (see Raknes et al. [123] for a detailed discussion) the development
of cable element formulations is rather straightforward. Problems arise for
the coupling with other elements, like the coupling with membrane ele-
ments as it is necessary in the present case of architectural membranes. Al-
ready in standard FEA the coupling of different elements generally requires
an adapted discretization or meshing, such that the respective elements
to be coupled share common nodes. For IGA this problem is even more
complex: The parameterization is non-interpolating, i.e. the control points
are not located on the geometry (see Section 2.2), and the basis functions
are not confined within the directly neighboring knotspans. Therefore a
one-to-one identification of the control points to be coupled is no longer
directly possible, which represents an important challenge.

The concept of B-Rep edge elements

Within this thesis, the development follows a novel paradigm: The curve
of the cable is no longer described explicitly, but implicitly, embedded in
the parameter space of the NURBS patch. This general concept for the
formulation of embedded elements can be used for imposing a variety of
analysis properties. Some application examples are listed in the following:

– Neumann boundary conditions (forces, moments);

– Dirichlet boundary conditions (displacements, rotations);

– mechanically motivated entities like the prestressed cable element
presented in the sequel or the embedded beam element developed
by Bauer et al. [13];

– internal (coupling) boundary conditions for the coupling between
patches in multi-patch applications.

As illustrated by Breitenberger et al. [31], within the present context, the
coupling1 is not realized by a strong coupling of degrees of freedom, i.e. by
merging control point positions. Instead the coupling is formulated in the

1 Here "coupling" is used in the general sense of correctly accounting for different
structural members that are coupled.
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3.3 Developments for analyzing tensile structures with IBRA

weak form, see Equation (3.14), on the basis of the virtual work expression.
For a more detailed discussion on the coupling between patches, see also
Apostolatos et al. [6] and Breitenberger et al. [31, 32].

This new concept of B-Rep edges allows for straightforward modeling of
line elements such as cables or beams, but also supports that are embed-
ded in a NURBS patch without requiring a separate discretization in 3D.
The same concept is also used for the realization of the above mentioned
coupling between different patches.

The mechanical contributions of these B-Rep edge elements are accounted
for in the weak form. Hence various effects like coupling or the B-Rep cable
element may be added to the equilibrium expression from Equation (2.48),
written as

δW =δWint+δWext+δW coupling
B-Rep +δW cable

B-Rep + ...= 0 , (3.14)

where for ease of notation all k different B-Rep contributions are assembled
in the expression W k

B-Rep.

In analogy to Equations (2.54) and (2.55), the components of the residual
force vector and the tangential stiffness matrix accounting for the B-Rep
contributions can be derived:

Rr =−
∂W

∂ ur
=−

∂Wint

∂ ur
−
∂Wext

∂ ur
−
∑

k

∂W k
B-Rep

∂ ur

=R int
r +R ext

r +
∑

k

R k
B-Rep r

(3.15)

Kr s =−
∂ 2W

∂ ur ∂ us
=−

∂ 2Wint

∂ ur ∂ us
−
∂ 2Wext

∂ ur ∂ us
−
∑

k

∂ 2W k
B-Rep

∂ ur ∂ us

= K int
r s +K ext

r s +
∑

k

K k
B-Rep r s

(3.16)

Basis functions and integration of B-Rep edge elements

As mentioned above, the one-dimensional B-Rep edge elements dispose
of an implicit geometry description. As such they are embedded into a
surface as a non-zero knot span of a trimming curve. Hence the B-Rep
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Figure 3.1: B-Rep edge element as an embedded cable along the
trimming curve of a strip in a four-point sail

62



3.3 Developments for analyzing tensile structures with IBRA

edge elements are situated along the boundary of the thus trimmed surface
(for a description of the trimming, see Sections 2.2.2 and 2.2.3) with the
curve parameter ξ̃, see Figure 3.1. Through this implicit definition in the
parameter space of the surface, the B-Rep edge elements are embedded
into NURBS surfaces and extract their basis functions from these surfaces
as illustrated in Figure 3.2.

The thus extracted basis functions N i
p (ξ̃) as a subset of the basis functions

R i j
p q (ξ,η) of the NURBS surface still provide required properties w.r.t. their

usage as basis functions for element formulations like partition of unity or
linear independence.

As presented in Section 2.2.1, the basis functions R i j
p q (ξ,η) are related to

the control points of the surface. Consequently each of the extracted basis
functions N i

p (ξ̃) also refers to a control point of the surface and no addi-
tional control points (and with them additional degrees of freedom) are
introduced. The extension of the (highlighted) affected control points Pi

(i.e. the corresponding basis function N i
p (ξ̃) 6= 0 along C̃ (ξ̃)) transverse

to the curve of the cable reflects the overlapping basis functions, see Fig-
ure 3.3.

The numerical integration of these extracted basis functions is realized
through Gauss-points along the curve. At each Gauss-point the extracted
non-zero basis functions are evaluated and the respective contribution is
assigned to the corresponding control point of the NURBS surface. Thus
the contribution of the cable element to the residual force and stiffness,
see Equations (3.15) and (3.16), is taken into account.

It is important to point out that – since it is a trimming curve (see Sec-
tion 2.2.2) – there is no explicit description of the B-Rep edge curve in
the geometry space. Consequently it can only be addressed through the
parameter space of the surface. Once defined by the trimming operation,
it is linked to the surface it is embedded in. As an example this implicit
definition is illustrated by computing the length of an embedded cable in
the next section.

In the sequel, an embedded cable element based on this new paradigm is
formulated as a B-Rep edge element.
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1

Evaluation of

along B-Rep edge
basis functions

(a) B-Spline basis functions N i j
p q (ξ,η)of the NURBS surface (here with p = q = 3 and 3×3 elements)

and location of the evaluation for the basis functions of the curve

0

1

(b) Extracted basis functions N i
p (ξ̃) for the B-Rep cable element

Figure 3.2: Extraction of the implicitly defined basis functions
for the B-Rep edge element from the embedding surface
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Figure 3.3: Top view of the four-point sail with embedded B-Rep
cable element. The control points highlighted in red are affected

by the considered B-Rep edge element.

Geometry description of the cable as a B-Rep edge element

The length |L | of a B-Rep edge element in the reference configuration is
given by

|L |=
∫

Γe

dΓe =

∫

ξ̃





G̃1







2
dξ̃=

∫

ξ̃













∂ X curve

∂ ξ̃













2

dξ̃ , (3.17)

where G̃1 is the local base vector of the B-Rep element corresponding to
the curvilinear coordinate ξ̃ along the curve, derived from the position
vector X curve of the spatial curve, see Figure 3.1(a). Through the implicit
description of the geometry X curve of the curve, the expression is referred
to the position vector of the surface along the B-Rep edge,

X curve(ξ̃) = X surf(ξ(ξ̃),η(ξ̃)) . (3.18)

Applying Equation (3.18), the length |L | from Equation (3.17) can be ex-
pressed through the coordinates of the surface:

|L |=
∫

ξ̃
















∂ X curve(ξ̃)

∂ ξ̃
















2

dξ̃=

∫

ξ̃
















�

∂ X surf

∂ ξ

∂ ξ

∂ ξ̃
+
∂ X surf

∂ η

∂ η

∂ ξ̃

�
















2

dξ̃
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(3.19)

To perform this integration, the basis functions of the NURBS surface
along the B-Rep edge are extracted as illustrated in Figure 3.2 and the
above sketched integration procedure is applied.

The corresponding length |`| in the current configuration is defined analo-
gously, now w.r.t. the surface description xsurf.

Kinematics, material law and equilibrium

According to classical cable mechanics the cable is characterized by its
cross section area Acable that is assumed constant along the cable, a ho-
mogeneous stress distribution through the cross section and the elas-
tic stiffness that is material dependent. Here, as in Equation (3.3), a St.
Venant-Kirchhoff material model is assumed as well as a constant and
deformation-independent cross section area. Therefore, the stresses S cable

in the reference configuration are defined as

S cable = S cable
0 +S cable

elast = S cable
0 +E ·εcable

11 , (3.20)

introducing the prestress S cable
0 in the cable, Young’s modulus E and the

longitudinal Green-Lagrange strain εcable
11 . In analogy to Equation (2.36)

the strain in the cable is expressed through the metrics as

εcable
11 =

1

2
(g̃11− G̃11) , (3.21)

following the parameter ξ̃ of the curve.

Referring to the implicit description of the cable geometry, the contribution
of the cable element to the overall structural behavior can be expressed
through its contribution to the internal virtual work by

δW cable
int =

∫

Ωe

S cable :δεcabledΩe = Acable

∫

Γe

S cable :δεcabledΓe , (3.22)

whereΩe andΓe represent the volume and the longitudinal extension of the
B-Rep edge element, respectively. In Equation (3.22) the aforementioned
assumption of a homogeneous stress distribution is used to perform the
preintegration through the cross-section area Acable in order to obtain the
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3.3 Developments for analyzing tensile structures with IBRA

force in the cable. The virtual work contribution δW cable
int of the cable then

enters the B-Rep contributions in Equation (3.14) as δW cable
B-Rep from where

it contributes to the internal force and stiffness of the embedding surface,
see Equations (3.15) and (3.16), respectively.

Application scenarios of the B-Rep edge cable

As already discussed, the presented cable element is formulated as a B-
Rep edge element along a trimming curve, i.e. along the boundary of a
considered patch. Since several B-Rep contributions can be applied to one
B-Rep edge simultaneously, see Equation (3.16), situations like ridge or
valley cables can be simulated with the present approach, as is illustrated
in the demonstrator application in Figure 3.4 for the different scenarios:
Two surfaces with a non-matching parameterization are trimmed along
one trimming curve. Edge cables are applied along all edges. Along the
trimmed edges of the two surfaces that geometrically coalesce a cable
element is assigned to one of the B-Rep edges. Additionally a displacement-
coupling condition is applied between the two trimming edges, such that
the surfaces stay attached.

Hence, all scenarios for the application of cable elements in the context of
architectural membranes can be treated with the developed element.

3.3.3 Outlook on the cutting pattern generation with IBRA

The analysis of structural membranes with IBRA presented in this the-
sis reveals attractive properties for a future cutting pattern generation.
The principle of cutting pattern generation has already been presented in
Section 2.5.2 and illustrated in Figure 2.18.

For a closed NURBS-based surface description the geometric evaluation
of the geodesic lines are straightforward, see Maekawa [92] and Polthier
et al. [121], unlike the determination on facet-type meshes as they are used
in classical FEA, discussed by Bletzinger et al. [26] and Dieringer [49]. The
subsequent separation of the surface into separate strips can be performed
by using these geodesics as B-Rep trimming curves, see Section 2.2.3. Note
that those operations are even commonly fully supported by contemporary
CAD systems.
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(b)

(d)

Original configuration Form-found configuration

Edge cables

Coupling and

Edge cables

Prestressed

prestressed cable

membrane

Figure 3.4: Application scenarios of the B-Rep cable element in
the form-finding of a multi-patch structural membrane

For the development of a cutting pattern optimization of the individual
strips within IBRA, two different concepts seem especially promising at
the current state:

– In analogy to the approaches given by Bletzinger et al. [26], Dieringer
[49], and Widhammer [148], the control point positions Pi j of the
(trimmed) patch in the plane reference configuration X 2D are con-
sidered as unknowns. These are optimized in order to fulfill the re-
quirements from Equations (2.64) resp. (2.65).

– Following the logic of the trimming operation, a novel approach
might be considered, based on the present developments in IBRA:
Instead of optimizing the control point positions Pi j of the trimmed
patch in the geometry space, the trimming curves C̃ themselves are
moved across a plane NURBS patch. In this case the control points
P̃i of the trimming curve in the parameter space (ξ,η) of the surface
are the optimization variables. This approach corresponds directly
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to the intuitive quest for the best cutting line on a piece of textile.
As an objective for the optimization both the deviation in geometry
and the (pre-)stress state between the mounted and the form-found
shape could be used.

Based on the presented developments and on the work of Widhammer
[148], promising developments towards a cutting pattern determination
with IBRA have been made by Goldbach et al. [62].

3.4 Evaluation of the developed components

In the following, the developed elements and techniques shall be applied
to selected numerical examples in order to evaluate their behavior and
ability for the analysis of lightweight structures with IBRA.

3.4.1 Non-linear analysis of a stretched quarter-circle

The correct and accurate formulation and implementation of the devel-
oped elements in a non-linear structural analysis is demonstrated by using
the example of a stretched quarter-circle, displayed in Figure 3.5(a).

This example is modeled in three different ways, illustrated in the top row
of Figure 3.6:

(a) an untrimmed quarter of a circle, corresponding to a geometrically
ideal parametrization of the structure,

(b) a quarter of a circle, trimmed out of a rectangular patch, correspond-
ing to the direct modeling approach of most CAD environments,
and

(c) a quarter of a circle composed of two oblique rectangular patches
that are trimmed and coupled along arbitrary borders with non-
matching parameterizations.

These models are analyzed as pure membrane examples (i.e. without cable,
the upper graph in Figure 3.5(b)) as well as with an elastic cable applied at
the edge (the lower graph in Figure 3.5(b)). In all cases the support condi-
tions are the symmetry conditions of a complete circle and the distributed
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Figure 3.5: Quarter-circle under radial load constituted of a
membrane and – if activated – an elastic B-Rep edge cable

load p is applied as a radial load, uniformly pulling the circle and resulting
in a hydrostatic stress state in the structure, cf. Figure 3.5(a).

For this problem, the analytical solution for the radial extension d is

p

Emem · t +
Ecable ·Acable

R

=
1

2

d 3

R 3
+

3

2

d 2

R 2
+

d

R
, (3.23)

where p is the radial load, R is the initial radius, Emem and t are the Young’s
modulus and the thickness of the membrane, and Ecable and Acable are the
Young’s modulus and the cross section of the cable, respectively. For the
case of the pure membrane example where the cable is not activated, the
corresponding term vanishes. In Figure 3.5(b) the analytical solution for
both with and without an edge cable is plotted in black.

At first, an ideal discretization, depicted in Figure 3.6(a), is analyzed. One
can see from the graph in Figure 3.5(b) that the results from the non-
linear analysis exactly match the analytical solutions with and without
the edge cable, even for large deformations. Since in radial direction the

70



3.4 Evaluation of the developed components
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Figure 3.6: Different modelings of the stretched quarter-circle
with control point net and deformed configurations (for

quantitative results see Figure 3.5(b))
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displacements increase linearly from center to edge and the exact circle
can be represented by a polynomial degree of p = 2 using NURBS, further
degree elevation does not affect the result, see the deformed configuration
in Figure 3.6(a).

Although this modeling is perfectly adapted to the problem, it does not re-
flect the direct modeling of the structure in a CAD environment, but rather
represents an academic approach. Since the main goal in the application
of IBRA is a close CAD-CAE workflow, modeling variations closer to CAD
are further examined.

The most common approach in a CAD environment to model the quarter-
circle is trimming the structure out of a rectangular patch, see Figure 3.6(b)
and Figure 3.12. It is important to note that this trimming – at least in gen-
eral – comes with a certain, user-defined or environment-dependent level
of accuracy, see also Breitenberger et al. [31]. Therefore the quality of the
results is limited by the quality of the original problem representation. In
principle, the deviations in the results can be reduced to machine accuracy,
supposing the corresponding precision in the geometry representation as
will be discussed in Section 3.4.2. For the case with the elastic cable along
the edge, this cable is now modeled along the trimming curve by enriching
the trimming curve with the mechanical properties of the cable element
as presented in Section 3.3.2. As can be seen in Figure 3.5(b), the results
from the trimmed example without and with the edge cable again nicely
match those from the ideal discretization.

The trimmed and coupled modeling and deformed configuration of the
stretched quarter-circle are shown in Figure 3.6(c). Within this modeling,
the major challenges are united in one example: the two patches are ar-
bitrarily trimmed and coupled along two of the B-Rep edges. In addition,
both types of boundary conditions mentioned in Section 3.3.2, Dirichlet
boundary conditions at the supports and Neumann boundary conditions
as the radial load p , are applied on the B-Rep trimming curves.

For this artificially complex geometry representation accurate results are
obtained as well, see Figure 3.5(b). As mentioned in the previous section
for the purely trimmed example, the quality of the result is just limited by
the initial quality of the geometry representation.

With these examples of the stretched quarter circle, the membrane and the
cable element have shown to provide accurate results for geometrically
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(a) Initial configuration as a cylinder and form-
found configuration for the catenoid

(b) Basic parameterization of the catenoid with
p = q = 2 in ring and meridian direction

Figure 3.7: Problem description and parameterization of the
investigated catenoid

non-linear analyses, see Figure 3.5(b). Furthermore the elements perfectly
comply with the applied trimming and coupling approaches, as has been
demonstrated with the examples in Figures 3.6(b) and 3.6(c). Therefore it
can be stated that arbitrary geometries can be modeled and analyzed with
the developed and presented methods.

3.4.2 Form-finding of a catenoid

In the following, the example of a catenoid will be form-found with the de-
rived isogeometric membrane element for the demonstration of accuracy
and robustness of the formulated elements in combination with different
refinement strategies.

The catenoid has been the first minimal surface to be discovered, see Euler
[57], Goldschmidt [63], and Meusnier [98]. Being a surface of revolution,
the catenoid can be formed by rotating a catenary curve around an axis as
shown in Figure 3.7. The boundaries of the catenoid are formed by two rigid
rings which in the sequel are assumed to be of equal radius R1 = R2 = R .
The form-finding then starts from a cylinder of radius R and height H .

Analytical description and form-finding

The resulting surface area A for a varying distance H between the rings of
radius R = 1 is plotted in Figure 3.8(a). While the curve is smooth up to a
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height Hcritical, the surface area suddenly drops and remains constant for
any further increase of H beyond this limit.

For the range of H <Hcritical the mathematical description of a catenoid
provides the analytical solution for the surface area. The catenoid can
be described by its radius r (z ) which varies along the axis of rotation z
according to the catenary equation

r (z ) =C1 cosh

�

z +C2

C1

�

, (3.24)

where the coordinate z covers the height H of the catenoid, see Figure 3.7.
The unknown constants C1 and C2 can be determined by introducing the
radius of the upper and the lower bound, assumed to be equal in our case.
In the present derivations z ranges from−H /2 to H /2, leading to C2 = 0. C1

then represents the minimal radius r0 = r (z = 0), which occurs for reasons
of symmetry at z = 0. Note that even for these assumptions Equation (3.24)
cannot be solved analytically for r0. Instead Equation (3.24) simplifies to

R = r (z =±H /2) = r0 cosh

�

H

2r0

�

, (3.25)

which then has to be solved for a given pair of geometry parameters R
and H . For the parameters given in Figure 3.7, the unknown C1 can be
determined to be C1 = r0 = 0.552434124.

The analytical solution of the surface area of the catenoid then is

Acatenoid = r 2
0 πsinh

�

H

r0

�

+ r0πH . (3.26)

As can be seen in Figure 3.8(a), in the range of H <Hcritical the computed
surface areas from form-finding nicely match the analytical solution, thus
underlining the accuracy of the applied approach and of the developed
elements.

At the limit Hcritical the catenoid collapses into two disconnected circular
disks as displayed in Figure 3.8(b). These disks have a surface area of
A2disk = 2πR 2, which obviously stays constant independent of H . The result
of two separated disks represents the so-called Goldschmidt-solution [63].

The critical height Hcritical can also be confirmed by physical experiments,
see e.g. Müller et al. [101], and mathematically be determined by an analysis

74



3.4 Evaluation of the developed components

2R 2π

S u
rf

ac
e

ar
ea

A

Height H of the cylinder

3.00

4.00

5.00

6.00

7.00

8.00

Hcrit

0.4 0.6 0.8 1 1.2 1.4 1.6

Goldschmidt
Catenoid
Form-finding

(a) Evolution of the surface area with increasing
height for the configuration from Figure 3.7(a)

0

∞
Form-finding
steps

(b) Evolution of the collapse for an initial height
H >Hcrit throughout the form-finding steps

Figure 3.8: Form-finding of a catenoid: surface area as a function
of the height H and evolution of the collapse for a height H >Hcrit

of the catenary equation, see e.g. Isenberg [75]. From Equation (3.25) one
obtains

H

R
= 2 ·

r0

R
·arccosh

�

R

r0

�

(3.27)

which provides a maximum ratio of H
R ≈ 1.32548684. The sharp repro-

duction of this limit in the form-finding simulation, see Figure 3.8(a), un-
derlines the reliability and accuracy of the developed element and the
form-finding approach.

Obviously the constriction of r0 towards zero, which can be observed in
the collapsing process in Figure 3.8(b), is challenging for the elements,
since they suffer severe distortion during this deformation. Ultimately the
affected surface elements are degenerated to lines. For the formulated
isogeometric membrane elements no convergence problems related to
this constriction effect have been observed which demonstrates the great
robustness of the developed membrane elements even for severe paramet-
ric distortions. The obtained values of the surface area before and after
the critical limit nicely match the analytical solutions as can be seen in
Figure 3.8(a).
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A close inspection of the area evolution in Figure 3.8(a) shows an interest-
ing phenomenon: For a range of approx. 1.055≤H /R ≤ 1.325 the obtained
surface area is bigger than the two-disk-solution. At a first glance this be-
havior seems to contradict the requirements for a minimal surface, since a
solution with smaller surface area exists. Closer evaluation of these possi-
ble solutions provides the explanation that the catenoid only represents a
local minimum in this range of the height H , whereas the global minimum
is not reached in the form-finding analysis. Since the starting configuration
has been a cylinder, the form-finding procedure is "caught" in this local
minimum and cannot proceed to the global minimum, represented by the
Goldschmidt-solution.

Form-finding in its nature is very closely related to a general optimization
problem, see also Bletzinger et al. [25, 28]. The starting configuration has a
significant influence on whether a global or a local optimum is found. In
order to demonstrate this behavior, consider the modified starting con-
figuration in Figure 3.9(a). Instead of a complete cylinder, an additional
parameter is introduced by the radius Rinner of an inner cylinder that is
linked to the outer rings by a circular disk with a corresponding hole. By
controlling this radius Rinner we can control whether the Goldschmidt-
solution or the catenoid solution is obtained as result of the form-finding
analysis, for Rinner smaller resp. bigger than the limit determined in Fig-
ure 3.9(b). Thus the complete range of theoretically possible solutions can
accurately be explored with the present approach and elements.

Geometry approximation for the surface area of the catenoid

Based on the discussion in Section 2.2.5 the approximation quality of the
NURBS-based geometry description shall be investigated with the help
of the form-finding of the catenoid. In order to demonstrate the conver-
gence behavior of the geometry description, the surface area resulting
from a form-finding analysis with different discretizations (see Section 2.2)
shall be assessed against the analytically derived surface area Acatenoid from
Equation (3.26), termed Aanalytical in the following. As a starting configura-
tion for the form-finding the cylinder from Figure 3.7 is used. In the ring
direction, a polynomial degree p = 2 is applied and the ring is divided
in 16 elements. Since a circle can be described exactly by a NURBS of
polynomial degree p = 2, no error is introduced by the discretization in
the ring direction and further refinement is hence useless. In the merid-
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Figure 3.9: Controlling the obtained minimal surface – either
the catenoid or the Goldschmidt-solution – by varying Rinner

ian direction, the polynomial degree p is varied and a refinement r , i.e.
a subdivision along the meridian, is introduced, see Figure 3.10(a). For
all parameterizations, a sufficiently large number of form-finding steps
with highest solution accuracy has been carried out, thus only leaving the
geometry approximation as a source of deviation.

As a measurement for the deviation a relative error ε is introduced as

ε =

�

�Acomputed−Aanalytical

�

�

Aanalytical
. (3.28)

In Figure 3.10(b) the relative error ε is plotted for polynomial degrees p
from 1 to 4 with increasing refinement r . As expected, for all polynomial
degrees the error decreases, ultimately to machine precision. It should
be noted that a polynomial degree of p = q = 1 would be identical to the
solution of the form-finding problem using "classical" FEA with bi-linear
elements.

The order of convergence to be expected for this evaluation of the surface
area is 2

�

p −m
�

, where p is the polynomial degree and m the order of
derivatives occurring in the present evaluation, see Strang et al. [135] and
Zienkiewicz et al. [152]. For the surface area evaluation in Equation (3.26)
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Figure 3.10: Approximation quality and convergence of the
geometry representation of a catenoid

no derivatives occur, therefore m = 0 and the slope of the error to be
expected is 2p . Within a certain range – between a too coarse parame-
terization on the one end and limits of numerical evaluation at around
10−14 on the other end – this slope of 2p can be observed in the log-log-
diagram in Figure 3.10(b). From this fit it can be concluded that the pure
discretization error dominates the convergence behavior.

In general it can be stated that NURBS-based descriptions usually are
very close to typical real membrane geometries and obviously most other
shapes used in engineering, see e.g. the Olympic roofs in Section 3.5.2.
Applying refinement strategies, the quality of the approximation can be
improved quasi-arbitrarily.

3.5 Application examples for the shape definition and
analysis of lightweight structures with IBRA

To demonstrate the abilities and potential of analyzing lightweight struc-
tures and defining their shape with the isogeometric B-Rep analysis, three
examples are presented. In addition to the advantages of using IBRA, short-
comings and possibilities for future developments are discussed.
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3.5.1 Generation of an inflated bubble cluster

Besides interesting characteristics in terms of speed and accuracy of the
computation discussed in the previous sections, the most promising po-
tential of IBRA lies in the power of integrating design and analysis within
one single model. The example of the formation process of a bubble cluster
reveals this potential.

As illustrated in the overview displayed in Figure 3.11 this cluster of three
intersecting bubbles is defined through an interaction of geometrical and
mechanical operations.

In step (1) a circular disk is modeled within the CAD-environment. The
circular disk is trimmed out of a rectangular patch as depicted in Fig-
ure 3.12(left). This circular disk is given the mechanical properties of a thin
elastic membrane, supported along its trimming edge. Applying an inter-
nal pressure as a follower load from below on the initially flat membrane,
in step (2) it is inflated to a single bubble as displayed in Figure 3.12(right).

Once the bubble has reached the desired size resp. an acceptable stress
level, the obtained geometry as the result of a mechanical operation – still
an intact NURBS-based CAD geometry – is again manipulated in the CAD-
environment: In step (3) the bubble is copied (two times) and the resulting
bubbles are finally intersected. Figure 3.13 shows this intersection for two
bubbles and the detail of the control point polygon of a trimmed bubble.

The trimming edges from the intersection are used to enforce the coupling
between the bubbles in step (4). A displacement-coupling B-Rep edge
element as mentioned in Section 3.3.2 is therefore modeled along the
intersection lines, penalizing a relative displacement between the coupled
bubbles. As illustrated in Figure 3.14 the applied penalty factorαdisp for the
displacement – corresponding to a spring stiffness of coupling springs [6,
31] – allows controlling the gap between the patches: Decreasingαdisp leads
to a larger gap between the patches. The coupling points are illustrated in
orange in Figure 3.14.

Besides the coupling, a refinement of the bubble cluster is also performed
in step (4) in order to be able to represent the displacements that might
occur in subsequent loading scenarios, see Figure 3.11.

Finally in step (5) the bubble cluster is subjected to wind suction with
varying intensity across the respective bubbles. Under this load the whole
cluster is pulled in one direction (here towards the back and the right)
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3 Integration of geometry and structural behavior with IBRA

(1) Modeling

(2) Inflation

(3) Copying and intersection

(4) Coupling and refinement

(5) Further loading

Figure 3.11: Generation of a bubble cluster as a combination of
geometrical and mechanical operations
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3.5 Application examples for lightweight structures with IBRA

Figure 3.12: Detail of step (1) and (2) in top view and
perspective with the control point net. With the exception of the

four corner points, all control points of the initial circular disk are
affected by the inflation and change their spatial position.

which eventually leads to the occurrence of wrinkles as can be seen in
Figure 3.11. The pattern of these wrinkles follows the orientation of the
principal stresses, thus forming a kind of "tension cord".

As displayed in detail in Figure 3.15 substantial refinement, i.e. an enriching
in DOFs (see Section 2.2.1), is required in order to permit the representation
of the deformation pattern that yields those wrinkles2.

The example of the bubble cluster illustrates the potential that lies in us-
ing one common model for design and analysis: Not only the conversion
between different models is omitted – and with it an important source of

2 However with membrane elements lacking bending rigidity an analysis of these
wrinkles and their wavelength would require specialized wrinkling models, see Section 2.5.1,
or the usage of a shell element formulation with correspondingly small thickness.
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3 Integration of geometry and structural behavior with IBRA

Figure 3.13: Intersection of the copied bubbles in step (3): The
intersection is realized by trimming along the intersection line, as
for the two bubbles on the left. The control point net of a trimmed

bubble is depicted on the right.

αdisp = 1.0 ·109 αdisp = 1.0 ·106 αdisp = 1.0 ·103

Figure 3.14: Controlling the "watertightness" with the help of
the penalty factor αdisp for the displacement coupling of the B-Rep

coupling edges in step (4).
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3.5 Application examples for lightweight structures with IBRA

Figure 3.15: Wrinkles for the case of a varying wind suction load
in step (5). The occurrence of wrinkles and their wavelength

strongly depend on the applied refinement, displayed on the right.

error and inconsistencies – but also the advantages of both "worlds", the
geometrical design and the mechanical analysis, come to use. Eventually,
by alternately applying geometrical modifications and mechanical anal-
yses, an easy and fast way of creating physically motivated structures is
established.

However, the common model still has to fulfill the requirements for the
analysis. As illustrated with the example of the wrinkles, substantial re-
finement from the design model to the analysis model might be necessary
in order to yield mechanically correct results. On the downside, a refined
model with a significantly high number of DOFs might be far less attractive
for design purposes, due to both issues of speed and ease of manipulation.

3.5.2 Form-finding of the roof of the Olympiastadion München

The Olympiastadion München3 (Olympic Stadium Munich) was built as
the main venue for the 1972 Summer Olympics. It is mainly known for its
roof landscape which has become iconic for lightweight architecture.

Figure 3.16 depicts the result of a numerical form-finding (see Section 2.5.3)
of the roof of the Olympic Stadium. Despite the roof being executed as a
cable net (see e.g. Tomlow [141]), the general shape of the roof can closely

3 design by Behnisch & Partner, Otto; engineering Leonhardt, Andrä und Partner

83



3 Integration of geometry and structural behavior with IBRA

Figure 3.16: Form-finding of the roof of the Olympiastadion
München as an isotropically prestressed membrane (recalculation)

Figure 3.17: Detailed view of two segments of the roof of the
Olympic Stadium with the corresponding control point net

be determined by form-finding with isotropically prestressed membrane
patches, resulting in minimal surfaces.

As discussed in Section 2.2.5 the NURBS-based surface description used in
IBRA is very well suited for a good approximation of membrane geometries.
Owing to this quality of the geometry description, the form-finding of the
Olympic Stadium can be realized with a very low number of control points
and – in consequence – of DOFs. This leads to short computation times for
the form-finding, even for very large structures like the Olympic Stadium.
To give an order of magnitude, the entire roof displayed in Figure 3.16 is
described with approx. 640 control points. An exemplary detailed view
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|Displacement| (structure) [m]

|Velocity| (wind) [m/s]

0.00 1.243

0.00 15.00

Figure 3.18: Application of the form-found IBRA model of the
Olympic Stadium within a fluid-structure interaction simulation,

see [109] (©C. Osorio, with kind permission)

of two segments with the corresponding control point net is depicted in
Figure 3.17.

The form-found isogeometric model illustrated in Figure 3.16 is used by
Osorio [109]within a fluid-structure interaction simulation, investigating
the flow of wind around the flexible structure. Figure 3.18 displays an exem-
plary result by indicating the streamlines of the wind and the displacement
of the roof under the wind load.

Within this investigation substantial refinement (to approx. 4000 control
points) has been necessary in order to be able to reproduce the small wave-
lengths of the deformation of the roofs. This corresponds to the necessary
refinement in order to permit the formation of the wrinkles in the bubble
cluster from Section 3.5.1.

Comparative studies between a classical FEM-model of a triangulated
mesh with the presented isogeometric model show very good agreement
in the results of the static, dynamic and coupled simulations [109].

3.5.3 Grid structures on surfaces of zero mean curvature

In their research on doubly curved grid structures, Schling et al. [129] inves-
tigate different layouts of line elements on doubly curved surfaces. These
surfaces in general are advantageous for the design of networks of line
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3 Integration of geometry and structural behavior with IBRA

Figure 3.19: Accuracy assessments by Hitrec et al. [70] on the top
half of the unit-cell from Figure 3.20 with regard to the minimal
surface form-finding with TeDA [23] as a plug-in to Rhino3D [95]

elements since they allow the structure to bear loads like a shell, see also
Section 4.1.1.

Within this research, lines of specific curvature – geodesic curves, principal
curvature lines and asymptotic curves – are further examined. These curves
dispose of an advantageous characteristic: they can easily be built out of
planar strips since only twisting and bending around the weak axis are
required. Among those lines asymptotic curves are curves with no normal
curvature. They turn out to be especially attractive in terms of construction:
Since they can be formed from straight plane strips perpendicular to the
underlying surface, they are able to resist local loads by bending in their
strong axis [129].

In addition, in the case of surfaces of zero mean curvature – i.e. minimal
surfaces, see Section 2.5.3 – asymptotic curves on these surfaces are per-
pendicular to each other. In terms of structural design this means that all
nodes are identical for an ideal meeting angle of 90°.

However, the determination of a network of asymptotic curves on a sur-
face is a complex task on its own, which has to be solved in an iterative
procedure [129].

For the determination of these asymptotic curve networks, the smooth
NURBS-based surface descriptions of minimal surfaces that are form-
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3.5 Application examples for lightweight structures with IBRA

Figure 3.20: Definition process of the Asymptotic Pavilion from
form-finding and asymptotic line determination on the unit-cell
(top left) to the final layout of the asymptotic lines (bottom right)
[70, 129] (©D. Hitrec [70],E. Schling [129], with kind permission)

found with the developments presented within this thesis have been used.
This has turned out to be be an ideal basis: On the one hand, Hitrec et
al. [70] have realized comparative studies of the quality of the obtained
surfaces (measured in terms of surface area as well as maximum mean
curvature). A screen-shot of those comparative studies is displayed in
Figure 3.19. Here it has been shown that the quality of the resulting surfaces
with the developed IBRA form-finding is excellent, better than with any
tested commercial environment. On the other hand, the smoothness of the
surface description and direct availability of entities like continuous fields
of surface normals is a big advantage in the development of the necessary
algorithms for the determination of the network of asymptotic curves [70].
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3 Integration of geometry and structural behavior with IBRA

Figure 3.21: Mock-up of the Asymptotic Pavilion in scale 1 : 5,
realized from plane, straight beech veneer strips (©D. Hitrec [70]

and E. Schling [129], with kind permission)

Based on the "unit-cells" that are also depicted in Figure 3.19, Hitrec et al.
[70] have developed the Asymptotic Pavilion. The form definition process
based on the form-finding of a minimal surface is described in Figure 3.20.

A first mock-up of the Asymptotic Pavilion in scale 1 : 5, shown in Fig-
ure 3.21, has been realized from plane, straight beech veneer strips to
check for the ease of assembly and the principle load-bearing behavior.
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3.5 Application examples for lightweight structures with IBRA

Summary and conclusion of Chapter 3

Within this chapter, the integration of geometry and structural behavior of
lightweight structures with the help of a recent finite element technique,
the isogeometric B-Rep analysis (IBRA), has been presented.

In regard of the application to membrane structures, notably the following
aspects and developments have been in the focus:

– IBRA as an analysis technique has briefly been presented.

– The necessary components for the form-finding and analysis of
membrane structures have been developed, mainly the formula-
tion of a prestressed membrane element and an embedded cable
element following the novel paradigm of B-Rep edge elements.

– The developed components have been successfully evaluated for
their accuracy, robustness, speed and flexibility in application.

– With the help of selected applications the potential and ability of
IBRA for a wide field of lightweight structures has been assessed.

Overall, IBRA has revealed substantial advantages in the design and analy-
sis of membrane structures for the noted aspects like a smooth CAD-CAE-
integration or the quality of the surface representation.
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4
THE INTERACTION OF DEFORMATION AND

STRUCTURAL BEHAVIOR

Besides their geometry, lightweight structures and their load-bearing be-
havior also depend on their deformation. Lacking bending rigidity, tensile
structures like structural membranes or cable nets rely on deformation to
adapt to different load cases, see Section 2.5.1. The presence of prestress
in those membrane structures already results from an initial deforma-
tion from the plane unstressed cutting-patterns to their spatial assembled
configuration, see Sections 2.5.2 and 5.4.1.

Investigating the deformation of structures in general, two types of defor-
mation can be distinguished:

– the deformation as the reaction of a structure to a specific load sce-
nario as mentioned above and

– the planned deformation during the erection process of a structure
that is used to modify and adjust the load-bearing behavior or shape
of that structure.
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4 Interaction of deformation and structural behavior

Within this chapter, the latter kind of deformation will be discussed. There-
fore selected realized examples for this kind of structures are presented
at first. The analysis of the impact of deformation on the load-bearing be-
havior by means of a construction stage analysis is discussed focusing on
geometric non-linearity. Based on these considerations, the consequences
and prerequisites for the modeling and analysis of lightweight structures
are investigated. Concluding this chapter, demonstrator examples illus-
trate the discussed effects and reveal critical aspects of the simulation of
these structures.

Remark I: The structural analyses within this chapter have been performed
with classical finite elements within the FE-code Carat++ [29]. Neverthe-
less it should be mentioned that the findings of this chapter apply as well
to isogeometric analysis (presented in Chapter 3), of course.

Remark II: In parts the content of this chapter has been published in
Philipp et al. [113, 117] and Dieringer et al. [50] (co-authored). For the sake
of easier readability these sources will not always be cited explicitly.

4.1 Deformation-based structures

Most structures in civil engineering are built from undeformed members:
Relatively rigid elements like bricks or steel members are assembled or
concrete is poured into formwork which is only removed when the concrete
has reached sufficient stiffness and resistance. These structural elements
deform under the applied loads. Commonly, deformation is considered
an effect that has to be limited, which is also assessed in the verification of
structures, see Chapter 5. It should be noted that – even for conventional
structures – the deformation of structural elements during the construction
stages might have to be considered, as discussed in Section 4.2.1.

In contrast, there are types of structures that actually gain their shape def-
inition from the large deformations during their building process. The
structures that are in the focus of the present chapter mainly rely on bend-
ing deformation, in order to create or increase the curvature of a structure.

At a first glance, bending seems to contradict the principles of lightweight
construction: Structures acting only along their center-line resp. mid-
surface (see Figure 2.1) can be stressed – at least theoretically – until their
ultimate stressσu is reached. Since the stress distribution is uniform, i.e.
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Figure 4.1: Stress distributions in a member in tension resp.
bending assuming linear elastic material and plane cross sections

constant along the cross section, the whole member is utilized entirely as
depicted in Figure 4.1(a). Assuming linear elastic material behavior and
plane cross sections, bending stresses increase linearly from the center to
the external edges of the member. When the ultimate stressσu is reached
at the maximum distance from the center, close to the center the fibers
are barely stressed yet. Consequently, the cross section is not uniformly
utilized, see Figure 4.1(b).

4.1.1 Gridshells – Creating curvature through bending

According to Happold et al. [67, p.101] the term gridshell 1 refers to "a
doubly curved surface formed from a lattice of timber laths bolted together
at uniform spacing in two directions". Obviously there are gridshells which
are built out of curved members or even by assembling linear segments to
a spatial structure. However this type of gridshells requires the production
of initially curved elements resp. expensive connection details and very
often also expensive scaffolding during the assembly.

Opposed to that approach is the concept of creating curvature, here doubly-
curved shapes, through bending. The main motivation for the bending-
induced curvature is the usage of initially straight members with the aim

1 Often the term lattice shell is used instead in earlier publications, as in [67].
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4 Interaction of deformation and structural behavior

of reducing the cost of such structures. This advantage in cost is mainly
due to the easier production and transportation of straight members. Evi-
dently, several aspects need to be considered, when substantial bending is
introduced in the members during construction:

– What are the limits of this bending during the erection of the struc-
ture? For efficient and economic structures it should be avoided
that the mounting process leads to the highest stresses and hence
determines the dimensions of the structure.

– How can the mechanism that has been used to realize the double
curvature be blocked such that the structure becomes (more) stable
after the mounting process?

– To what extent does the elastic deformation during the erection of
the structure influence its load-bearing behavior?

Two selected examples are briefly introduced in the following to illustrate
the possibilities and the range of application of creating curvature through
bending.

Multihalle Mannheim

The Multihalle Mannheim2 was built for the German federal garden show
1975. It certainly is a seminal project for this type of construction, as well
due to its pioneering way of construction as by its dimensions, covering
roughly 10000 m2. As described by Burkhardt et al. [39] and Happold et al.
[67] the shape was determined through hanging-chain models by Frei Otto
and his team, from where spatial coordinates of nodes of the gridshell were
measured. On site, a uniform pin-jointed double-layer lattice of timber
laths, spaced by 0.5 m, was laid out as depicted in Figure 4.2(left). With the
help of forklifts and temporary scaffolding towers, the lattice was pushed
into its final geometry, see Figure 4.2(right).

In order to lock the in-plane shear deformation, the joints were then fixed
and additional diagonal steel cables were introduced in order to guarantee
sufficient shear stiffness in the gridshell. Along the edge of the membrane,
proper boundary conditions had to be realized to support the in-plane

2 design by Mutschler, Langner, Otto; engineering by Ove Arup & Partners
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4.1 Deformation-based structures

Figure 4.2: Multihalle Mannheim: lay-out of the lattice (left) and
lifting with the help of forklifts and temporary towers (right) (both

from [39], ©Atelier Frei Otto + Partner, with kind permission)

load carrying of the gridshell structure. Finally a PVC-coated polyester
membrane was installed as cladding.

Since relatively small radii of curvature were realized in the shell (down to
only 6 m), high bending stresses occur, even with full shear flexibility. These
induced bending stresses have been the subject of intensive investigations.
Relying on the mechanical characteristics of timber, Happold et al. [67]
argue that an important part of the bending stresses relax due to creep
in the material. Early computer models were set up to analyze the global
behavior. Besides verification of the ultimate stresses, the shell structure
is susceptible to instability, which was verified in a buckling analysis as
described in Section 2.4.2.

The Multihalle can still be seen as one of the biggest examples of "bent
curvature" ever realized. Especially with respect to the computational
possibilities of that time, the Multihalle – as the roof of the Olympic Stadium
in Munich presented in Section 3.5.2 – can be called one of the seminal
works for further development of lightweight structural engineering.

Cathédrale éphémère de Créteil, Paris, France, 2013

Within the last decades, gridshells as "bending-active" structures live to see
a certain renaissance. As stated e.g. by Lienhard et al. [86] this is mainly due
to increased computational possibilities, facilitating the shape definition
and analysis of these structures, and to the material properties of fiber-
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reinforced polymers (FRP). FRPs unite both properties required for highly
curved gridshells made out of initially straight members, see [85, 86]:

– To be able to withstand the stresses induced by the initial bending,
their strength-to-stiffness ratio (i.e. the ratio of permissible bending
strengthσu and Young’s modulus E ) has to be high.

– Furthermore, the breaking strain εu needs to be sufficiently high to
be able to undergo the required deformations.

The long-term behavior of the material has to be adapted to the application,
since creep may act beneficially, as it has been the case for the Multihalle,
or may lead to a loss of prestress, which will be of interest for the hybrid
structures discussed in Section 4.1.2.

The Cathédrale éphémère de Créteil 3 is a temporary religious building,
covering 350 m2. Its construction process corresponds more or less to
that of the Multihalle: Laying out a regular (square) two-layer grid, lifting
it to its final position, stiffening, cladding. As described by Peloux et al.
[111] and Tayeb et al. [139], the first important difference comes with the
material applied: Here pultruded composite tubes from GFRP (glass-fiber
reinforced polymers) have been used. With their competitive price and
their very low weight, these are very attractive for the application in struc-
tures which need to be deformed and lifted "in one piece", as shown in
Figure 4.3 (left). Earlier studies with pultruded FRP-tubes by Douthe et al.
[54] and Tayeb et al. [138] have identified scaffold swivel couplers to be
well suited as pin-joint connections between the layers. As bracing, a third
layer of tubes is attached following the diagonals of the lattice once the grid
is lifted to its final shape and the edges are fixed, see Figure 4.3 (middle).
In combination, the bracing and the edges again allow the lattice to act
as a shell globally. The overall dimensions allowed for the installation of
a continuous PVC-coated membrane without in situ welded joints, see
Figure 4.3 (right).

From both structures, the Multihalle and the Cathédrale éphémère, some
common observations can be made. The possibility to build up gridshells
from an initially flat lattice relies on the absence of in-plane shear stiffness.

3 Ephemeral cathedral of Créteil (Paris, France): designed and engineered by T/E/S/S
atelier d’ingénierie and the Navier Laboratory; more information on www.thinkshell.fr
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Figure 4.3: Ephemeral Cathedral of Créteil – a gridshell in FRP
constructed through elastic bending: Lifting of the grid, bracing by

a third layer and covering with a PVC-coated membrane
(©Camille Moissinac, used with kind permission)

Unlike for fabrics, which require a cutting-pattern generation as presented
in Section 2.5.2, the absence of in-plane shear stiffness leads to large ge-
ometrical freedom. In principle, a doubly-curved and in consequence
non-developable shape thus can be developed. However, the analysis of
these gridshells still is very complex and even small geometric deviations
might lead to failure through global buckling of the shell or compression
buckling in the bent tubes, see Tayeb et al. [138].

Whereas in these structures the gridshell is autonomous, i.e. independent
of its cladding membrane, the structures discussed in the following section
try to short-circuit the internal forces rather than to hand them to the
supports.

4.1.2 Hybrid structures – The combination of tension and
bending

As defined by Dieringer et al. [50, p.149], "hybrid structures, in general, are
structures which combine a certain number of principal structural elements
or materials. The idea is to combine them in a way that each member is
acting in its "preferred" structural state." A beam out of reinforced con-
crete may be the most prominent example for a beneficial combination of
materials: Whereas the steel reinforcement bar takes the tension stresses
from bending, concrete takes the compression (and protects the steel
against corrosion). In the present context of lightweight structures, the
term "hybrid" refers to a beneficial combination of bent and tensile mem-
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(a) Entry arch to the German federal
garden show 1957 ([38], ©Atelier Frei
Otto + Partner, with kind permission)

(b) Bat-sail developped by Off [107] with integrated GFRP
rods to increase the covered area (©Robert Off / IMS-
institue, with kind permission)

Figure 4.4: Full-scale examples for integrated bending-active
elements in compression in lightweight membrane structures

bers. Several selected examples shall introduce this combined behavior
and serve as a basis for the discussion of the mechanical effects that occur.

Membrane restrained arches

The Entry arch to the German federal garden show 1957 (Cologne, Ger-
many) by Frei Otto is a very prominent example for the combination of
bending and tension: The very slender supporting arch4 has been produced
with an initial curvature. The arch is further loaded by the prestressed mem-
brane, for which it serves as a line support, see Figure 4.4(a). Thus at the
same time, the arch as a support with varying height introduces curvature
into the membrane, whereas the membrane restrains the arch from tilting
and lateral buckling.

Recent projects make even more accentuated use of this "symbiotic" ef-
fect: The Bat-sail by Off [107], illustrated in Figure 4.4(b), includes initially
straight GFRP splines into the membrane. The very slender beams spread
the opposite edges of the membrane and in return are compressed by that
spreading. Owing to the very thin diameter of the rods, the restraining
by the membrane is necessary to prevent buckling of the bending active
members.

4 The steel arch spans 34 m, with a tubular cross section of 171×14 mm [38, 81].
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Figure 4.5: Umbrella for Marrakech: Finalized structure and
detail of inclusion of the bent arms (©J. Lienhard [85], used with

kind permission)

Actively bent beam

Edge cable

Membrane

(a) Plane membrane restrained arch: the
membrane, prestressed by the edge ca-
ble, stabilizes the pre-bent arch

Actively bent beams Spacers

Tension cord
Membrane

(b) Membrane restrained girder (top view and perspec-
tive): the membrane transfers the stresses from the cable
to the bent beams

Figure 4.6: Plane membrane restrained arch and spatial
membrane restrained girder (remade based on [3, 4])

An example of larger scale is the Umbrella for Marrakech as described
by Lienhard et al. [87], illustrated in Figure 4.5. Here as well GFRP rods
are introduced in pockets of the membrane. The free ends of the rods
create additional corner points, increasing the covered area of the umbrella
structure. Again, the membrane stabilizes the beams against buckling. An
eccentric attachment of the beams to the membrane stabilizes the beam
also against out-of-plane buckling, see Lienhard [85].

The investigations by Alpermann [2–4] on membrane stiffened arches
give a more detailed insight into the interaction of bent members and
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restraining tensile components. Besides stabilization against buckling,
considerable reductions in deformation resp. a considerable increase of the
stiffness can be obtained for the case of the plane arches, see Figure 4.6(a).
Extending the idea to the spatial case leads to a membrane restrained girder,
presented in [4], which is a combination of two bent rods, a tension cord, a
restraining membrane and short spacers, as depicted in Figure 4.6(b). Here
all members act in their favorable way. The stabilization against buckling
of the upper belt by the membrane allows to significantly increase the
ultimate load capacity of the girder as documented in [2].

Selfstressed bowstring footbridge

The selfstressed bowstring footbridge by Caron et al. [40] makes use of
the advantageous characteristics of FRP mentioned above and mainly
follows the same idea as the membrane restrained girder. A mock-up of
the selfstressed bowstring footbridge in scale 1 : 10 is shown in Figure 4.7.
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Figure 4.7: Mock-up of the selfstressed bowstring footbridge in
scale 1 : 10 (©J.-F. Caron [40], used with kind permission)

For the bow of the footbridge a pultruded pipe is used, whereas the rest of
the structure consists of cables as tension members. The mounting process,
illustrated in Figure 4.8, can briefly be described as follows: In a controlled
buckling procedure (see Section 2.4.2) with the help of a pretensioning
cable, the initially straight bow is bent, even beyond its final position. One
longitudinal cable and a web of stay cables are attached without prestress.
By releasing the pretensioning cable, the supports move apart and thus
introduce prestress in the longitudinal cable and the web of stay cables.
Hence the tension members "lock" the elastically bent bow, leading to the
term selfstressed.
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Foverbend

Overbent bow
Unbent pultruded pipe
Bent bow

Loverbent

Lbow

Lpipe

Cable and stays (no tension)

Overbent bow

Pretensioning cable
Bent bow

Pulleys

Selfstressed cable and stays
Bent bow

Pretensioning cable
Overbent bow

Cable and stays (no tension)

Step 3

Step 2

Step 1

Loverbent

Lbow

Loverbent
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Figure 4.8: Selfstressed bowstring footbridge: description of the
mounting process in 2D (remade based on [40])
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Whereas all the steps for one arch cited above can be realized in a plane,
i.e. lying on the ground, the spatial assembly and stabilization is realized
through two of these arches leaning against each other, see [40].

Conclusions for the combination of tension and bending

To conclude, both the Marrakech umbrella and the Selfstressed bow-string
footbridge are examples for structures, where the bending of a member and
the tensile components "interlock", i.e. after their mounting, the internal
stress states – at least for the most part – short-circuit each other. Hence,
the structure can be placed without excessive horizontal support forces
due to prestress resp. pre-bending in the structure.

This use of pretension in bending (pre-bending) in order to prestress other
structural members and thus define the shape and behavior of the structure
is sometimes referred to as active bending, see e.g. Lienhard et al. [86].

Among the crucial contributions of the tensile components is the buckling
stabilization of the elastically bent members under compression. As long as
buckling is prevented, the stiffening effect of prestressing in compression
and bending can be fully utilized, see Alpermann [2] and Lienhard [85].

Although the presented prototypes show very attractive characteristics,
large scale structures beyond rather academic resp. sculptural applica-
tions have not yet been realized to my best knowledge. Several possible
explanations for that can be given: At first, controlled buckling will be even
more complicated to realize at a larger scale. Additionally, the FRP-profiles
applied in the examples mentioned above are very sensitive with respect
to local perturbations. The FRP-tubes show considerable creep and joints
between sections are difficult to realize. Nevertheless, with advances in
the material research of FRPs, the potential lying in this type of structures
might be further exploited in the future.

In the following, the prerequisites and limits for the analysis of this type of
structures, relying on their mounting procedure, shall be discussed.

4.2 Including deformation in structural analysis

Commonly, deformation is seen as an effect to be considered resp. limited
in structural analysis. In contrast, in the examples cited in Section 4.1,
deformation is treated as a design handle. However, for both points of

102



4.2 Including deformation in structural analysis

view the ability of tracking deformations and their impact on the structure
is crucial and increasingly challenging, the softer and lighter structures
become.

This section gives an overview of existing approaches to consider deforma-
tions in the analysis of structures for the case where those deformations
have a considerable impact on the load-bearing behavior. Therefore the
application of construction stage analysis in structural engineering is intro-
duced and its importance and limits are discussed. Special attention is paid
to the aspect of geometric non-linearity in combination with construction
stage analysis.

4.2.1 Construction stage analysis in structural engineering

Construction stage analysis, i.e. the consideration of the predetermined
construction process in the analysis, is an aspect of structural analysis
that is rarely considered up to now. However, the importance of construc-
tion stage analysis is increasing for several reasons: Besides ever lighter
structures with higher, possibly planned deformations (see Section 4.1)
and special construction techniques like incremental launching in bridge
construction, also the available tools for structural analysis have changed.

With increasingly powerful modeling and computation environments avail-
able, structural analysis is frequently realized with the help of integral spa-
tial structural models. Bischoff [22] describes this trend and notes that the
control over the flow of forces is lost, at least in parts, when these integral
models are compared to the analysis of separate extracted (often plane)
partial models, which has been standard up to now.

Commonly integral models are modeled as one piece, so to say in a "gravity-
free environment", and then loaded, see Löwenstein [90]. Thus, the deforma-
tion from earlier stages (e.g. the compression of lower stories of a high-rise
building) is not taken into account for the analysis of later stages (here the
top stories). This can lead to considerable deviations in the displacements
and in the resultant forces as is documented e.g. in [22, 90].
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4 Interaction of deformation and structural behavior

Construction stages for a multi-story frame

With the prototypic example of a multi-story frame (based on the example
discussed by Bischoff [22] and Löwenstein [90]), different approaches to
take the effect of the construction sequence into account are discussed.
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Figure 4.9: Prototypic example for the construction stage
analysis of a multi-story frame and results of an integral analysis of

the system (example based on [90])

Therefore, the system described in Figure 4.9(a), representing a simplified
two-story building, is analyzed. The clamped supports at the left represent
the connection of the slabs to the core of the building which is assumed
infinitely stiff. This common assumption is justified by comparing the stiff-
nesses in the structure. The slabs themselves are considered as beams with
an infinite axial stiffness E Aslab, a bending stiffness E I and a self-weight
g which is taken into account as the exclusive load case. The supporting
columns share the same bending stiffness but have a finite axial stiffness
E Acolumn. Moreover their self-weight is neglected.

The first approach to the problem consists in analyzing the integral prob-
lem, which is illustrated in Figure 4.9(b) and (c). Here the structure is
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4.2 Including deformation in structural analysis

assumed to be constructed in one piece and self-weight is only applied
after completion of the structure.

Obviously the integral model does not reflect the construction sequence
of the building. Commonly multi-story buildings are built in stages where
each story represents one stage. Under this assumption, there are two
construction stages5 to be considered.
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Figure 4.10: Construction stage analysis of the multi-story
frame through change of system as a superposition; the resulting
bending moments are indicated in blue (example based on [90])

A first attempt to account for the impact of the construction sequence, the
"Change of system" [90], is illustrated in Figure 4.10. Here each construction
stage is treated separately, acting on those parts of the final structure, which
have already been built up to the considered stage. It is important to point
out that for each analysis the system is considered in its undeformed, initial
state, see Figure 4.10(b).

The results for each construction stage correspond to the superposition
of the respective quantity in all stages up to the one under inspection. In
Figure 4.10 this superposition has been realized for the displacements w

5 In general construction stages of a structure reflect characteristic moments in its
construction process which at its turn is measured with a pseudo-time t .
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4 Interaction of deformation and structural behavior

and the bending moments My. The gap ∆w at the junction of the first
and the second story corresponds to the displacement from the first con-
struction stage. In reality, this gap would have been closed through local
adaptations, either by producing the column of the second floor longer
(i.e. with a length Lcolumn 2 =H +∆w ) or by the use of shim plates.

An alternative method for the construction stage analysis consists in the
"Compensation of deformations" [90]. Here the adjustments on site for
taking the "gaps" into account are considered in the analysis. Each con-
struction stage represents an individual problem.
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Figure 4.11: Construction stage analysis of the multi-story frame
through compensation of deformations (example based on [90])

As illustrated in Figure 4.11(a), the first stage is equivalent to the analy-
sis with the change of system-approach [90]. The resulting deformations
are characterized by the degrees of freedom (DOFs) D1 and D2. For the
next stage, they are stored as initial deformations∆w (I) and∆ϕ(I), respec-
tively. The superscript in Roman numbering indicates the corresponding
construction stage from which the initial displacements result.
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4.2 Including deformation in structural analysis

The detail represented in Figure 4.11(b) illustrates the assignment of de-
grees of freedom for the structural system of the second construction stage:
The first story is already deformed by the load from step (I), expressed
through∆w (I) and∆ϕ(I). The second story is coupled to the first through
the assignment of corresponding DOFs to double nodes6: Although they
share the same DOF (here D1), the foot-point of the column of the second
story (node 6) and the corner of the lower frame (node 2) are distant by the
gap∆w (I) which is applied as an initial deformation. Using the same DOF
assures that the two nodes share the same deformation but preserve this
gap. In the present case the initial rotation∆ϕ(I) does not have an effect
since the stories are linked through a hinge and hence the rotations of
nodes 6 and 2 are independent anyway. Nevertheless it is quite convenient
to apply the initial rotation∆ϕ(I) since in consequence each stage delivers
only the additional deformations introduced during their realization.

The results of the completed structure can be read directly from the last
step: Since the initial deformations accounted for in the coupling of the
doubled nodes already included earlier stages, the whole history is repre-
sented by the deformations and resultant forces obtained in the last stage.
Figure 4.11(c) shows the deformed configuration of the completed struc-
ture, which is the result of the analysis of stage (II). Note that the bending
moment is not represented for the finalized structure in Figure 4.11(c)
since for linear computations following Th.I.O., the results are equivalent
to those in Figure 4.10(c), obtained by the construction stage analysis with
the change of system.

The simple prototypic example of a two-story frame already underlines
the importance of taking construction stages into account when e.g. com-
paring the different resulting bending moments My. Construction stage
analysis reveals considerably different results especially in cases where
larger deformations occur due to softer structures or larger spans. Con-
sequently, for the analysis of challenging structural concepts within civil
engineering, reliable and robust construction stage analysis modules are
required. However, of the approaches presented above, only the compen-
sation of deformations may be applied to the analysis of geometrically

6 Here double nodes refer to two (or more) nodes that share the same geometric position,
but are linked to the different attached elements. They can be used to control the coupling or
to model transition conditions between elements like hinges.
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4 Interaction of deformation and structural behavior

non-linear problems, since the other approach – the change of system –
relies on superposition.

Construction stages in bridge engineering

In bridge engineering, construction stage analysis is already commonly
used and readily available in commercial software packages. There are
several reasons, why taking the construction sequence into account is even
more important for bridges than in building engineering.

Depending on their method of construction (e.g. incremental launching,
free cantilevering or formwork on multi-span steel girders, see [96]), the
structural system may change during the construction sequence.

Figure 4.12: Pont de Normandie (France), during construction
in the cantilevering phase and before juncture of the two free ends

(©Bouygues Construction, used with kind permission)

As an example, the cable-stayed Pont de Normandie7, built as a free can-
tilever, is taken. During construction, the two ends of the bridge deck act
as cantilevers under horizontal wind loads. As illustrated in Figure 4.12
the final cantilever length before juncture is approximately half the bridge
span. After juncture, the bridge deck between the two pylons has changed
its structural system and the maximum bending moment under the same
wind load decreases considerably.

Many bridges realized in all methods of construction also include tempo-
rary supports, like the red supporting towers depicted in Figure 4.13. Once
these temporary supports are removed, the structural system changes

7 concept and design by M. Virlogeux, architecture by C. Lavigne; see [96]
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4.2 Including deformation in structural analysis

completely: The free spans the bridge has to carry increase with important
effects on the resultant forces and displacements.

More in general, different members of the bridge may change their struc-
tural properties during the construction sequence: They may be removed
(like the temporary supports mentioned above), added later-on (e.g. cast-
ing concrete on a steel girder with formwork) or tensioned to different
levels (stay-cables resp. tension cables), just to name a few examples.
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Figure 4.13: Viaduc de Millau (France), showing considerable
deformations in the bridge deck during incremental launching

(©CEVM Eiffage / Foster+Partners / JL DERU –
photo-daylight.com, used with kind permission)

Whereas these examples represent a more or less sudden change of the
structural system and thus represent a new construction stage, there are
also continuous effects which require attention: Time-dependent effects
as a consequence of stresses like the relaxation of stay-cables or creep resp.
different maturities of concrete can be of crucial importance in bridge
engineering, as documented by Buonomo et al. [37], Cremer et al. [47], and
Mehlhorn et al. [96]. Note that these time-dependent effects are – as well
as material non-linearity – not considered within the present thesis. An
exemplary study of these effects in bridge engineering can be found in [1].

One of the goals of a construction stage analysis in bridge engineering is a
reliable and accurate prediction of the deformations. Owing to the large
spans, these cannot be neglected. As described by Buonomo et al. [37]
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and Cremer et al. [47], the engineering of the Viaduc de Millau8 included
an in-depth simulation of the launching procedure in order to reliably
predict the deformations (see Figure 4.13) and the tension in the stay-
cables that is required to eventually obtain the planned even trajectory.
The consideration of elastic deformation under self-weight of the bridge
is even more important in case there are no possibilities of adjusting the
trajectory after finalization. Therefore many bridge profiles are produced
with a planned camber, such that eventually under self-weight, they show
a smooth, even trajectory [94, 96].

Overall, many of the effects dealt with in the construction stage analy-
sis in bridge engineering focus on system non-linearity (i.e. the change
of systems by adding members, changing positions, etc.) resp. material
non-linearity (like creep, relaxation, etc.) and on the verification of the
intermediate stages. However – unlike the construction stage analysis in
building constructions discussed above – the impact of the intermediate
stages on subsequent steps and the consideration of geometric incompati-
bilities is commonly regarded of less importance.

4.2.2 Geometric non-linearity and construction stage analysis

As discussed in the previous section, construction stage analysis (CSA) is
sometimes used in the engineering of structures. However, depending on
the specific discipline and the investigated structure, CSA is applied rather
rarely respectively with different aims.

Dealing with lightweight structures, the most relevant effect to be consid-
ered is their geometrically non-linear behavior. As discussed and exempli-
fied in Section 4.1, the applied erection method and with it the construction
sequence may heavily influence the load-bearing behavior and capacity
of lightweight structures.

Looking at the methods for CSA that have been presented in detail in Sec-
tion 4.2.1, their general applicability to geometrically non-linear structures
can be assessed in the following.

The change of system-approach relies on superposition of the individual
stages. Implicitly, the use of superposition necessitates linear behavior of
the structure. In case of non-linear structures, where the stiffness K of

8 design by Foster+Partners, engineering by Bureau Greisch

110



4.3 Modeling and analysis of deformation-based structures

the system is a function of the state, expressed in the deformation u, i.e.
K = K (u), this assumption of linear behavior is no longer valid.

The compensation of deformations-approach keeps track of the deforma-
tion throughout the different construction stages, accounting for occurring
kinks resp. gaps. In principle the deformation state u is suitable to describe
the state of a structure. Consequently, the compensation of deformations
shall further be discussed and enhanced for non-linear modeling and anal-
ysis of actively bent structures in the following.

4.3 Modeling and analysis of deformation-based
structures

Whereas most conventional structures are designed in their undeformed
state, there are structures which rely on deformation as a shape-defining
principle. Among these, the structures making use of bending in their
erection resp. formation process (actively bent structures) are in the focus
of the following derivations. Enlarging the focus beyond bending, one may
also speak of deformation-based structures in general.

4.3.1 Element formulations applied in the simulation of
deformation-based structures

For the structures that are discussed within this chapter and have been
presented in Section 4.1.2, several structural elements are required, notably

– a prestressed membrane,

– cables, also accounting for prestress,

– columns, able to withstand compression and

– beams for line members with bending rigidity.

All of these elements share the prerequisites of geometrically non-linear
kinematics, accounting for the large deformations that occur for the struc-
tures in mind. Moreover, their respective DOFs should permit an easy and
consistent coupling of the different structural elements.
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4 Interaction of deformation and structural behavior

For the membrane, the element formulation with prestress (isotropic or
anisotropic using a projection scheme) presented by Dieringer [49] is used.
The triangular resp. quadrilateral element with linear shape functions
accounts for large displacements with its geometrically non-linear kine-
matics.

Cables (with prestress) and columns are both modeled using a truss el-
ement formulation, also described in [49]. The two-node element with
linear shape functions is also formulated with fully non-linear kinematics.

For the beams, the corotational element formulation by Krenk [82] is ap-
plied, which has briefly been introduced in Section 2.4.3 along with se-
lected benchmarks. It also disposes of two nodes, where at each node three
translations and three global rotations are used as DOFs.
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Figure 4.14: Element formulations with their respective (globally
oriented) DOFs applied for the analysis of hybrid structures

It is important to mention that these element formulations are well suited
to be applied together in a structure, since they all dispose of the same
DOFs (three displacements per node; in addition three rotations for the
beam). Hence a direct coupling at each common node by simply referring
to the same DOFs is possible. The applied element formulations with their
respective DOFs are depicted in Figure 4.14.

The correct formulation and implementation of these elements, especially
of the membrane and truss element, in the in-house FEA-environment
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4.3 Modeling and analysis of deformation-based structures

Carat++ [29] have been successfully demonstrated in numerous projects
from academic to industrial scale. Among these, the dynamic analysis
of full-scale models of foldable umbrella structures under wind as docu-
mented in Dieringer et al. [50] and Philipp et al. [117] shall be particularly
mentioned in this context.

4.3.2 Update of configurations and coupling of elements

As described in Section 4.2.1, the core aspect of construction stage analysis
is the update from one step resp. construction stage to the subsequent one.
In the following the information that is necessary to perform these updates
for the analysis of structures with non-linear behavior are elaborated in
detail.

Update of configurations

In an abstract sense, non-linear structures show large deformations u and
considerable changes in their internal forces fint in each step. Therefore in
principle two major possibilities to keep track of the different steps and
their impact on the subsequent stage (i +1) exist9:

– Take the resulting geometry x(i ) as starting configuration X (i+1) for
the next step and prescribe the internal forces f(i )int as given "prestress"

f(i+1)
int 0 to the stage (i +1). This approach is referred to by restart with

initial stresses or abbreviated as InitStress in the following.

– Keep the original geometry X orig and apply the (accumulated) de-

formation u(i ) as initial displacement u(i+1)
0 . This option is referred

to by restart with initial displacements respectively abbreviated as
InitDisp in the following.

Referring to the approaches presented in Section 4.2.1 the latter method,
the restart with initial displacements, corresponds to the Compensation
of deformations-approach. The Change of system finds its approximate

9 Here and in the following the terms "stage" and "step" are used quite synonymously:
Whereas "stage" refers rather to a built state of a structure, "step" recalls the notion of a
pseudo-time t , reflecting the mounting process.
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correspondence in the restart with initial stresses. However, the InitStress-
approach already accounts for the change in geometry through deforma-
tion from earlier steps.

M (i )P (i )Step (i )

X = X orig

x(i ) = x
�

u(i )
�

= X +u(i )

u(i )

f(i )int = fint

�

u(i )
�

Step (i +1) with initial displacements Step (i +1) with initial stresses

u(i+1)
0 = u(i )u(i+1) = u(i+1)

0 +∆u(i+1)

X (i+1) = X orig

x(i+1) = X +u(i+1)
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int = f(i+1)
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�
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�

f(i+1)
int 0 = f(i )int∆u(i+1)

Figure 4.15: Different methods for the configuration update
after an initial step (i ) for the case of geometrically non-linear
structural behavior. The respective initialized parameters are

highlighted in blue.

The two update methods are illustrated in Figure 4.15 for the prototypic
example of a cantilever under combined loading. After an initial step (i ) the
final state from that step is to be transferred to the subsequent step (i +1)
with a new load combination. The parameters that are used to transfer the
state from one step to the next are highlighted in blue. As can be seen with
the green deformed configurations, the final resulting geometries x(i+1)

(and with them the respective final internal force states f(i+1)
int ) differ. In

the following a worked-through example of a simple von Mises truss shall
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Figure 4.16: Description and analytical solution for the
discussed von Mises truss example

highlight in more detail the differences between the two update methods
and the limits of application.

The von Mises truss as analytical example for the configuration update

Figure 4.16 shows the so-called von Mises truss example, a famous aca-
demic problem (see e.g. [48, 59, 82, 149] for intense discussions), which is
characterized by one single DOF w for reasons of symmetry. The internal
virtual work of a single truss member i can be written as

δWint,i =

∫

V0

S11 ·δεGLdV = Ai L i

�

S11,i ·δεGL,i

�

, (4.1)

where L i and Ai are the length and cross section of the member i , re-
spectively. In the two members constant strains εGL (measured as Green-
Lagrange strains10) and stresses S11 along the elements are assumed. In

10 Note that for the sake of easier readability in the present context the Green-Lagrange
strains are indicated as εGL in contrast to the nomenclature in Chapter 2

115



4 Interaction of deformation and structural behavior

Equation (4.1) the integration over the volume is replaced by the pre-
integrated member contribution, making use of the constant strains and
stresses in the truss element.

The strains εGL,i in the member (i ) can be expressed as a function of the
reference length L i and the current length `i ,

εGL,i =
1

2

`2
i − L 2

i

L 2
i

. (4.2)

As indicated in Figure 4.16(a) the respective lengths are computed as

L1 = L2 = L =
p

b 2+h 2 and `1 = `2 = `=
q

b 2+ (h −w )2 . (4.3)

Hence the equilibrium equation Rint − Rext = 0 with the external force
Rext =λP can be expressed as

λP = E A (h −w )
2h w −w 2

(b 2+h 2)3/2
=

E A

L 3

�

w 3−3w 2h +2h 2w
�

. (4.4)

Inserting the parameters indicated in Figure 4.16(a), Equation (4.4) simpli-
fies to

λP = 25
p

2
�

w 3−3w 2+2w
�

, (4.5)

which is plotted in Figure 4.16(b) for P = 1.0 and varying λ.

In order to investigate the effects of the different configuration updates
described above, two load factors λ(i ) representing two separated stages
resp. steps are chosen: λ(1) = 6.5 and λ(2) = 13.0. In Table 4.1 the numerical
results for the displacement w for the selected load factors λ(i ) are given.
From the solution in Equation (4.5) the analytical results for the load steps
are known and serve as reference for comparisons.

The first step with a load factor λ(1) = 6.5 yields the displacement w (1) =
0.1091417, as illustrated in Figure 4.16(a) in green. For the restart of step (2)
two different updates are performed. The restart geometry after application
of the configuration update is the same for both methods. In the case of
InitDisp the update is realized by the initial displacement w (2)

0 which is
identical to the prescribed change in geometry w (1) that has been used to
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Table 4.1: Numerical results for the von Mises truss example
with the parameters indicated in Figure 4.16(a)

λ wanalytical w (2)InitDisp w (2)tot,InitStress

6.5(=λ(1)) 0.1091417 0.1091417 0.1091417

13.0(=λ(2)) 0.3256631 0.3256631 0.2607719

redefine the configuration for the InitStress approach. For the restart with
initial stresses the internal force N (2)

InitStress 0 is directly prescribed as

N (2)
InitStress 0 =

`(1)

L

�

E A ·εGL

�

w (1)
�
�

, (4.6)

where the factor `(1)/L transfers the – unphysical – 2nd Piola-Kirchhoff
stresses to the new configuration. The length `(1) after deformation in
step (1) is determined from Equation (4.3) with the displacement w (1).
Consequently the vertical component NInitStress 0,z is determined as

N (2)
InitStress 0,z =

h −w (1)

`(1)
N (2)

InitStress 0 =
h −w (1)

`(1)
`(1)

L

�

E A ·εGL

�

w (1)
�
�

. (4.7)

For the restart with an initial displacement the resultant force is

N (2)
InitDisp =

`(2)

L

�

E A ·εGL

�

, (4.8)

where now `(2) results from the initial displacement w (2)
0 =w (1) and conse-

quently `(2) = `(1) for the restart. Again the factor `(2)/L transfers the stresses
to the new configuration. Hence the vertical component is derived as

N (2)
InitDisp,z =

h −w (1)

`(2)
`(2)

L

�

E A ·εGL

�

w (1)
�
�

, (4.9)

which is obviously identical to N (2)
InitStress 0,z from Equation (4.7). Accord-

ingly, both update methods yield the correct total displacements of w =
0.1091417 at the start of stage (2) as can be read from Table 4.1.

Hence the update of the force state is correctly realized and equilibrium
is established with both approaches. For structures with a linear or at
least nearly linear behavior, characterized by a constant system stiffness
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different configuration update methods
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Figure 4.17: Load-displacement diagram and stiffness K for the
von Mises truss example with the respective update methods after

stage (1)with λ(1) = 6.5

matrix K 6= f (u), the two approaches may hence be used equivalently. This
again corresponds to the findings from the construction stage analysis in
Section 4.2.1.

However, the stiffness of the system, which for the present single DOF
example is a scalar K , is affected by the configuration update. As plotted
in Figure 4.17 in dark blue, the configuration update by an initial displace-
ment yields the same load-displacement relation λ-w as the analytical
solution. This is also reflected in the function of the stiffness K for which
the analytical expression is determined from the residual force in Equa-
tion (4.4) as

Kanalytical =
∂ Ranalytic

∂ w
=

E A

L 3

�

3w 2−6h w +2h 2
�

. (4.10)

For the InitStress update, at λ(1) the stiffness suddenly increases, as can be
seen in the dashed light blue graphs in Figure 4.17. This increased stiffness
is reflected in a slight kink in the load-displacement graph (thicker light
blue lines). Although globally the behavior is still close to the analytical
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4.4 Applications for the simulation of the mounting process

∆w (2)

λ(2)P

w (2)0 =w (1)w (2)

(a) Result for λ(2) with InitDisp. The total dis-
placement w (2) directly results from the analysis.

λ(2)P

w (2)tot ∆w (2)

(b) Result for λ(2) with InitStress. The displace-

ment w (2)
tot is evaluated in the postprocessing.

Figure 4.18: Final stage in step (2)with λ=λ(2) = 13.0 after
restart with different methods for the configuration update

solution, the system behaves too stiff. This behavior can be expressed in
numbers through the results in Table 4.1. For the ultimate load value of
stage (2), λ(2) = 13.0, the analytic result and the result from the InitDisp
update coincide at w (2)

analytical =w (2)
InitDisp = 0.3256631, whereas the InitStress

update underestimates the displacement by roughly 20%. Figure 4.18 illus-
trates the different update approaches as well as the respective results for
the von Mises truss example.

From the example of the von Mises truss it can be concluded that – at least
for structures with considerably non-linear behavior, i.e. large displace-
ments and a stiffness K that depends on the displacement state u – the
update by initial displacements is necessary to provide mechanically accu-
rate multi-stage analyses. However, the analysis with initial displacements
also entails additional challenges for the modeling and computation, as
will be discussed in the next section.

4.4 Applications for the simulation of the mounting
process

Based on the analytical investigations carried out in the previous section,
a prototypic membrane structure with an integrated bending-active mem-
ber is analyzed. With the help of this example, different strategies for the
correct mechanical modeling of the mounting process are presented, ap-
plied and compared.
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4 Interaction of deformation and structural behavior

4.4.1 A follow-up structural analysis after the form-finding of
hybrid structures

As introduced in Section 2.5.1 the structural analysis for the different load-
ing scenarios of a membrane structure (see Chapter 5) is performed on
the form-found shape of equilibrium. Whereas in pure tensile structures
only prestressed membranes and cables are applied in between fixed sup-
ports, recently the integration of elastic members into the design process of
structural membranes has gained more attention. These hybrid structures
unite elastic deformation and the material-independent stress field of the
form-found members in one single process. For a detailed discussion on
hybrid structures, the necessary adaptations in the form-finding process
and their design possibilities, see Dieringer et al. [50], Lienhard [85], and
Philipp et al. [113, 117]. Within this section, the focus is on the update of
the configuration from form-finding to the follow-up structural analysis
by initial displacement (method InitDisp) as introduced in the previous
section.

Figure 4.19 shows the prototypic structure of a membrane that is supported
by a central arch and delimited by edge cables along two opposite ends of
the membrane. For this arch, the element formulation by Krenk [82] that
has been introduced in Section 2.4 is used. In its unloaded configuration
the shape of the arch follows a semi-circle of radius R = h = 1.0. The
dimensions and relevant mechanical properties are listed in Figure 4.19.

During the form-finding, the membrane and the cables act through their
prestress whereas the arch reacts by its internal elastic forces due to the
encountered deformation. The form-found shape in Figure 4.19 on the
right shows the shape of equilibrium, where now the arch is compressed
and bent, mainly resulting in a normal force N and a bending moment M .
To give an order of magnitude, the apex of the arch deflects vertically by
wapex =−0.19451 to give the new height hnew = 0.80549.

Before introducing an external load in a follow-up structural analysis the
modeling of the restart with initial displacements as illustrated in Fig-
ure 4.20 is considered in detail. For the elastic member (the arch), the
deformation encountered during the form-finding (see Figure 4.19), i.e.
the difference between the initial configuration X initial and the form-found
configuration xform-found, is applied as initial displacement u0. Note that
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4.4 Applications for the simulation of the mounting process

ν= 0.3
Membrane t = 1 ·10−3

E = 700
σiso

0 = 1000

ν= 0.3
Cable A = 83 ·10−6

E = 160000
σ0 = 60241

Beam A = 100 ·10−6

E = 100000
Iy = Iz = 23 ·10−6

shear-stiff

Initial configuration

a

a
b

h
hnew

Displacement
of the arch

Form-found configuration

xform-found

MembraneCable

Supporting arch

Supported edge

X initial

Geometry a = b = 1.0 h = 1.0

Figure 4.19: Form-finding of a hybrid structure with an elastic
supporting arch modeled with beam elements. The displacements

of the arch are highlighted in the form-found configuration.

– depending on the involved element formulations – the vector u0 also
might include other DOFs like initial rotations ϕi 0.

As described in Section 2.5.3 the reference configuration X mem+cab
updated of the

form-finding elements, i.e. the membrane and the cables, is updated to the
configuration xform-found. In contrast, the reference configuration X beam

orig is
the same as in the initial configuration. After applying the initial displace-
ments u0, the geometry of the form-found shape as well as the internal
stress state in all members is restored.

Besides the different configurations, Figure 4.20 also illustrates the con-
sequences for the modeling: Disposing of two different reference config-
urations, the membrane and the supporting arch are now topologically
separated, i.e. they do not share the same nodes anymore11.

11 Note that the represented configuration does not reflect an equilibruim state. Equilib-
rium is only re-established after application of the initial displacements and the respective
coupling of the DOFs
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Initial displacements u0

Nodes to
be coupledX mem+cab

updated

xbeam
form-found

X beam
initial u(142)0

883

142

884

885

883+u(142)0884+ v(142)0

885+w(142)0

239

E 1
E 2

E 3

=xmem+cab
form-found

Figure 4.20: Configuration update by initializing displacements
after form-finding. The detailed view shows the attribution of
DOFs and initial displacements for exemplary doubled nodes.

During form-finding a common node and with it the nodal DOFs were
shared by membrane and beam elements, thus ensuring the connection.
Since for the update two separate initial configurations are required, the
concerned nodes have to be doubled, leading to two related nodes like
the ones highlighted in blue in Figure 4.20. A coupling of those nodes is
realized by assigning the same DOFs. However, the initial displacement
is only assigned to the node of the elastic member, here the beam. Fig-
ure 4.20(right) illustrates this doubling and coupling of the nodes for the
example of the highlighted node: After the form-finding the original node
142 is doubled to give node 239. Node 142 stays attached to the beam and is

assigned the initial displacements u(142)0 =
�

u , v, w ,ϕx ,ϕy ,ϕz

�T

(142)0. After
this initial displacement, the two nodes are located at the same position. By
referring to the same DOFs as indicated they share the same deformation
in the sequel.

Summing up, an analysis accounting for the different stages by initial dis-
placements has to double the concerned nodes (while keeping the correct
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4.4 Applications for the simulation of the mounting process

topological attribution of the elements), assign multi-point coupling con-
ditions and attribute the respective initial displacements.

In a follow-up structural analysis of this example one of the two membrane
fields is loaded by a snow-type surface load of p = 3.0. The displaced
structure is depicted in Figure 4.21 on the right, showing the considerable
deformations of the membrane. As required, the supporting arch stays
attached to the membrane and – due to the asymmetric loading – also
shows a slight displacement in the x-direction.

Initial configuration

Structural analysis

E 2
E 3

E 1

X beam
initial

X beam
initial +u0

xfinal

Restart configuration

snow load p

Fbeam = f (X initial, xfinal)

Fmembrane = f (X restart, xfinal)

X initial

X restart

Figure 4.21: Different mechanical configurations for the arch
supported membrane and the result of a structural analysis under
a one-sided snow load p . The different mechanical configurations

also affect the respective deformation gradients F .

As a mechanical consequence of the different reference configurations X ,
the corresponding deformation gradients F (see Equation (2.32)) are dif-
ferent, even if the current configurations x coincide. These different config-
urations and the corresponding deformation gradients F are schematically
sketched in Figure 4.21.

Hybrid structures which combine purely form-found components (mem-
brane, cable) with elastic members (beams) commonly dispose of several
different reference configurations X for their members, requiring the pro-
posed configuration update technique. Even pure tensile structures would
necessitate that kind of analysis: The prestress that has been introduced
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4 Interaction of deformation and structural behavior

as a design parameter (σ0 or n0, for instance) already is the result of a
mounting from the plane, unstressed cutting patterns to their spatially
assembled configuration, see Section 2.5.1. Hence all members – the sepa-
rate membrane strips as well as the cables – dispose of different reference
configurations. In consequence, a mechanically accurate simulation of
the mounting process from those cutting patterns has to start from the
unstressed configuration and describe the erection process by initial dis-
placements and coupling of DOFs as described with the present prototypic
example.

Critical aspects of the configuration update by initial displacements

In the previous section, the construction stage analysis with initial dis-
placements in combination with a multi-point constraint have been used
to perform a mechanically accurate structural analysis after form-finding.
In this example the configuration update could be realized by an initial dis-
placement since an equilibrium configuration – the one that had resulted
from form-finding – was known beforehand. However, this procedure
might be critical in general for several reasons.

The required initial displacements u0 and rotations ϕ0 can be large. Con-
sequently, applying them in one single load step might present a consider-
able challenge for the element formulations and for the convergence of
the equilibrium problem on the one hand. Whereas initial displacements
have turned out to be less critical, the application of large initial rotations
in one step may lead to severe problems in convergence as described in
Section 2.4.1. On the other hand, the application of the initial state in sev-
eral steps a priori contradicts the concept of the multi-point constraint
coupling from the beginning of the analysis.

Moreover, in many cases, a "meeting configuration" of the different mem-
bers to be coupled which is in equilibrium is not known beforehand. Espe-
cially for more complex mounting scenarios with several different elastic
members to be coupled, an advantageous intermediate "meeting config-
uration" might be less obvious than it has been the case for the previous
example. Consequently, structures with a complex deformation history
often rely on "exhaustive physical form-finding experiments" [85, p. 79].
Thus before starting the computational analysis, a good approximation
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4.4 Applications for the simulation of the mounting process

of those intermediate self-equilibrated meeting configurations stages is
determined.

For these reasons as well as for a general simplification of the problem set-
up by omitting complex definitions of couplings and initial displacements,
an alternative approach is proposed in the next section.

4.4.2 Guided movements and coupling of structural elements
with contracting cables

In the physical form-finding of bending active structures as well as in
actual mounting processes, different members – be it two flexible rods or
a structural membrane and the primary structure – are forced to meet at
selected points. Inspired by these mounting procedures, the concept of
contracting cables in order to direct guided movements and to realize the
coupling of structural elements will be presented.

Contracting cables have already been applied e.g. by Lienhard et al. [84] as
"ultra-elastic contraction elements". Bauer et al. [15]make use of a similar
approach by penalizing the distance between two geometric points for
mounting analyses of lightweight structures with IBRA, see Chapter 3. It
should be noted that ultimately the two approaches are closely related,
since both aim on adding an additional constraint – two geometrical points
have to coincide – by different means: The contracting cables solve this
problem by mechanical modeling whereas penalizing affects the equation
system directly.

In most cases, the nodes to be coupled are intended to move to the same
position. In consequence a contracting cable between those nodes would
have to reduce its length to `contracted = 0, which has to be feasible with the
applied strain measure ε. In the present element formulation the Green-
Lagrange strain εGL has been used, see Equation (2.34).

As illustrated in Figure 4.22 for line elements, characterized by their lengths
L resp. `, the Green-Lagrange strain measure shows no singularities and is
also well-defined for a length `= 0, where it is determined to be

εGL (`= 0) =
1

2

0− L 2

L 2
=−

1

2
. (4.11)

125



4 Interaction of deformation and structural behavior

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5

St
ra

in
ε

Length ratio `/L

εGL
εeng

εGL =
1
2
`2−L2

L2

Green-Lagrange strain:

εeng =
`−L

L

Engineering strain:

1

1

Figure 4.22: Plot of the Green-Lagrange strain εGL for line
elements, with the engineering strains εeng as a reference

In combination with the Young’s modulus Ecable and applying the St. Venant
Kirchhoff material law, see Equation (2.40), the corresponding stress re-
quired to obtain this length `= 0 is

Scompression (`= 0) = Ecable ·εGL (`= 0) =−
1

2
·Ecable . (4.12)

For the contracting cables this force shall be applied as a prestress S0. Since
the goal is to exert force on the members to be joined and not on the
cable itself, the Young’s modulus Ecable of the cable is reduced as much as
numerically possible. Thus, eventually the prestress is entirely acting on
the two attached nodes with the force

Ncontraction =
`

L
·S0A =

`

L
·N PK2

0 , (4.13)

where `/L transfers the unphysical 2nd Piola-Kirchhoff stresses to 1st Piola-
Kirchhoff stresses. The resulting force is oriented along the straight con-
nection between the geometric location of those nodes in the current
configuration.

In order to join two points, the prestress S0 could be chosen arbitrarily
high in theory. However using too high values might lead to numerical
instabilities. Nevertheless, the application of contracting cables that will
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4.4 Applications for the simulation of the mounting process

be shown with the help of selected examples, has turned out to be quite
robust and flexible.

Cantilevers with large deformations

For the first example, a reference solution has to be established at a first
place. Therefore the system depicted in Figure 4.23 is analyzed. The ob-
tained displacements indicated in Figure 4.23 match the reference results
by Krenk [82] very well.

H

Fext utip

wtip E I = 100 H = 10.0
axially stiff + shear stiff

Results

Fext = 2.4

utip

5.469

wtip

2.020

X

Z

Figure 4.23: Cantilever with a tip load: Problem definition and
deformed configuration with numerical results

Now the external load Fext is "replaced" by a contracting cable spanned be-
tween the free ends of two cantilevers as depicted in orange in Figure 4.24.
With a distance of B = 12.0 between the two cantilevers, a full contraction
of the cable corresponds to a larger bending of the cantilevers than in the
reference case from Figure 4.23. Due to the symmetric problem setup, only
the tip-deformations of the left cantilever are tracked.

At first, in scenario (I) this complete contraction to `cable = 0 is examined.
Choosing a very high level for the prestress N PK2

0 (here N PK2
0 = 10000), the

two cantilevers touch nearly perfectly: The resulting tip-displacement in
x-direction is utip = 5.998, which corresponds very well to the expected
uideal = B/2 = 6.000. It is interesting to note that the current length of
the cable in that scenario, measuring the persisting gap, has diminished
to ultimately `cable ≈ 0.004. Seen in terms of the large deformations and
possible applications in the analysis of actively bent structures, this is
deemed by far sufficient.

As second scenario, indicated as (II), the considerations on the magni-
tude of the applied force are investigated: In order to reach the same
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H

utip

wtip
(II)

(I)
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Beam:

Cable: N0 B = 12.0

N0 = 10000

utip

5.998

wtip

2.527(I)

N0 = 27.12(II) 5.484 2.053

X

Z
E I = 100 H = 10.0
axially stiff + shear stiff

Results

Contracting cable

Figure 4.24: Two cantilevers connected by a contracting cable
attached to their tips: Problem definition and deformed

configurations for (I) closing the gap and (II) comparing to the
problem from Figure 4.23.

tip-displacement in x-direction as for the force-loaded cantilever from
Figure 4.23, i.e. u force

tip = 5.469, the required prestress force in the contract-

ing cable shall be determined: The reference displacement u force
tip leaves a

gap between the two tips. This gap corresponds to the current length `cable

of the cable which is in consequence

`cable = Lcable−2 ·u force
tip = 12−10.938= 1.062 . (4.14)

Knowing that the external force corresponding to the reference deforma-
tion has been Fext = 2.4, the corresponding PK2-prestress force can be
determined as

N PK2
0 =

Lcable

`cable
· Fext =

12

1.062
·2.4= 27.12 (4.15)

by inverting Equation (4.13). As indicated in Figure 4.24, the application
of this prestres N PK2

0 = 27.12 in the cable leads to a tip-displacement utip =
5.484 which meets the reference solution quite well.

With these results it can be stated that the concept of contracting cables
works accurately and robustly in order to pull two nodes towards each
other, either to the same position or to a desired distance.
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4.4 Applications for the simulation of the mounting process

Examples for shape control by contracting cables

Beyond the pure control of geometric distance, the concept of contracting
cables can also be used to align resp. couple rotations. With the help of
additional auxiliary lever arms, the forces exerted by contracting cables
can act as moments as the following examples will demonstrate.

The first example is oriented along the pure bending of a cantilever which
has been presented as a benchmark for the applied beam element in Fig-
ure 2.15 in Section 2.4.3. Now two of these cantilevers are bent to form a
semi-circle with the help of two contracting cables as illustrated in Fig-
ure 4.25.

H

wtip

B

X

Z

Contracting cables

utip

Bending-active

Stiff beam

Beam:

Cable: B = 12.73

E I = 100 H = 10.0
axially stiff + shear stiff

Rideal = 2H /π= 6.366

beams

elements

Results

Ncable

utip

3.558

wtip

6.356

Figure 4.25: Bending of two cantilevers to a semi-circle with the
help of contracting cables and auxiliary stiff beam elements

The two cantilevers are situated at a distance B = 2 ·Rideal = 12.73 which
corresponds to the diameter of the ideal semi-circle. Two lever arms (in-
dicated by the thicker lines in Figure 4.25) are attached to the tips of the
cantilevers, modeled as "infinitely" stiff beams. Two contracting cables
are applied: Cable 1 (sketched slightly above its actual position) links the
tips of the cantilevers whereas cable 2 (sketched slightly below) is attached
to the free ends of the stiff lever-arms. Figure 4.25 shows an intermediate
configuration to clarify the different attachment points of the contracting
cables.

The deformed configuration in Figure 4.25 is very close to the desired semi-
circle. As the tip-displacements show, the position of the tip is accurate to
1% compared to the location on a perfect semi-circle.
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4 Interaction of deformation and structural behavior

As a second example, a prototypic bending-active bridge, depicted in Fig-
ure 4.26, is analyzed in order to illustrate the concept of controlled buckling
mentioned in Section 4.2. Like in the selfstressed bowstring footbridge,
see Figures 4.7 and 4.8, the upper bow of the bridge is lifted by a controlled
buckling. Therefore the lower bending-active element is installed as two
separated pieces which in total are shorter than the upper bow. These
pieces are attached to the upper bow at the two outer nodes, assuring the
transfer of the bending moment between the bows.

B
b

h

Final configuration

Displacement

H

coupling

Initial
configuration

Beams: E I = 100 E A = 100000
shear-stiff

B = 10.0

b = 8.73

H = 0.2

h = 2.33

Geometry:

Result:

Stiff beam
elements

Contracting
cables

Figure 4.26: Prototypic self stressed bridge: Through the
difference in length the upper bow "buckles" more, whereas the

lower bow is closed using stiff beams and contracting cables

Additional stiff lever arms at the free end of the pieces are used to ensure the
common rotation of the two ends. Two contracting cables are applied and
force the juncture of the lower bow. This shortening of its chord forces the
upper bow to lift. Since this lifting can be regarded as a forced bending due
to a compressive normal force, it is called a controlled buckling. Note that
an initial camber as illustrated in the starting configuration in Figure 4.26
is required to facilitate the initialization of the lifting process.

Figure 4.26 again shows an intermediate configuration (in lighter colors)
and the final self stressed bridge. The gap in between the pieces of the
lower bow and the free ends of the auxiliary lever arms is almost perfectly
closed by contraction of the guiding cables.
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4.4 Applications for the simulation of the mounting process

Contracting cables for initializing the restart after form-finding

Finally, the concept of contracting cables is used for the configuration
update after the form-finding. To that end, the structure discussed in Sec-
tion 4.4.1 is taken as an example. Instead of applying the initial displace-
ments and multi-point constraints as illustrated in Figure 4.20, the doubled
nodes are now coupled by contracting cables.

In Figure 4.27 these cables are illustrated. In the detailed view in Figure 4.27
(right) the DOF numbering shows that the coupling of the membrane
nodes, here node 239, and the nodes on the beam, here node 142, is no
longer realized by distributing the same DOFs, but by controlling the dis-
tance between the nodes with the help of a contracting cable.

Contracting cables

Nodes to
be linked

X mem+cab
updated

xbeam
form-found

X beam
initial

883

142

884

885

431432

433

239

E 1
E 2

E 3

= xmem+cab
form-found

Figure 4.27: Arch supported membrane from Figure 4.19 with
contracting cables (orange) for the restart after form-finding

Although the introduction of the contracting cables is accompanied by
mechanical challenges due to the high prestresses and the low stiffness,
it can largely simplify the initialization and coupling procedure. In the
present case, restarting with contracting cables instead of initial displace-
ments has resulted in the identical deformation under the snow load p as
depicted in Figure 4.21.
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4 Interaction of deformation and structural behavior

Summary and conclusion of Chapter 4

Within this chapter, the interaction of deformation and structural behavior
has been analyzed, focusing on lightweight structures. A review of realized
examples has pointed out the potential of structures that actively make
use of bending for their shape definition and the related challenges for
their modeling and computation.

In order to analyze these structures, several aspects of their modeling and
analysis have been discussed and compared:

– different methods for the construction stage analysis, focussed on
their ability for the application in geometrically non-linear struc-
tures;

– configuration updates for multi-stage analyses like a structural anal-
ysis following the form-finding of a hybrid structure;

– contracting cables as an elegant and innovative technique to realize
more complex mounting scenarios and explore a priori unknown
equilibrium paths.

Together with accurate and robust non-linear element formulations, the
findings of this chapter can be considered a basis for complex mounting
analyses of structures like the ones presented. The discussed limitations
of the different analysis and modeling techniques shall help to better esti-
mate the reliability of implemented approaches when these are applied to
geometrically non-linear structures and their mounting analysis.
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5
THE SAFETY VERIFICATION OF MEMBRANE

STRUCTURES CONSIDERING THEIR

NON-LINEAR BEHAVIOR

The verification of safety is one of the core requirements for the realization
of structures. In that context Terwel [140, p. 17] states that

"structural safety can be defined as the absence of unacceptable
risk associated with failure of (part of) a structure".

Whereas for structures with linear behavior prescriptions for the assess-
ment of safety are provided for many materials within various standards,
only few and limited guidelines exist for those structures exhibiting non-
linear behavior due to large deformations.

Within this chapter, the safety verification of membrane structures con-
sidering their non-linear behavior is discussed. The current design prac-
tice w.r.t. non-linear structural behavior and the general context of the
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5 Safety verification of membrane structures

Eurocodes will be presented. The focus of this chapter will then be on
approaches for the safety verification of structural membranes.

Remark: In parts the content of this chapter has been published in Philipp
et al. [119] and presented in my unpublished contributions to the German
mirror group for CEN/TC 250/WG 5 for the preparation of a future Eurocode
for Membrane structures, see Stranghöner et al. [136]. For the sake of easier
readability these sources will not always be cited explicitly.

5.1 General design practice in civil engineering

To a large extent the current design practice for civil engineering structures
relies on existing codes and standards. In the European building indus-
try the Eurocodes provide standards for various types of structures and
materials, e.g. steel, concrete and timber1. In the following, the basis of
and principal approach to safety verification with the Eurocodes will be
presented.

5.1.1 The semi-probabilistic method

As stated by the European Comission [58], for the Eurocodes (EC) "the
approach of structural reliability is based on the semi-probabilistic method
(limit-state performance design and partial factors method)". Hence the
reliability analysis within the Eurocodes is placed between deterministic
methods and full probabilistic methods2, see EC 0 (EN 1990) "Eurocode –
Basis of structural design" [106].

The main concept behind the semi-probabilistic method is to define a
probability of failure Pf that represents an acceptable level of safety3 (see
Figure 5.1(b)). This probability of failure can be linked to a reliability index
β . To give an order of magnitude, for "usual" buildings (reliability class RC2)
an annual failure probability in the order of 10−6 is deemed acceptable [106].
All further verifications of specified limit states4 in the different Eurocodes
are designed in such a way that they assure this level of probability of

1 In the basic Eurocode EC0 [106] a list of currently existing Eurocodes is provided.
2 An exemplary application of a reliability approach to the assessment of membrane

structures is presented by Gosling et al. [64].
3 The applied definition of safety will be discussed in Section 5.1.2.
4 The definition of these limit states leads to the term limit state design.
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5.1 General design practice in civil engineering

failure. Hence the probability of failure is used to determine resp. calibrate
partial factors (often also called factors of safety). These are then applied
and will implicitly assure the desired probability of failure. The implicit,
indirect consideration of a probability of failure leads to the term "semi-
probabilistic".

In the context of limit state design for structural membranes, two major
limit states can be distinguished, the serviceability limit state (SLS) and the
ultimate limit state (ULS). While the first (SLS) is focused on functioning,
comfort and appearance, the second (ULS) concerns the safety of peo-
ple and of the structure. Both verifications are based on the definition of
relevant design situations and load cases [106].

5.1.2 The principal concept of the Eurocodes

In earlier design approaches, a global safety factor concept was used instead
of the previously introduced semi-probabilistic method of the Eurocodes.
This concept of global safety factors is illustrated in Figure 5.1(a): Assuming
both the effects of action E 5 due to actions F and the resistance R being
subject to statistical variations, the definition of mean values (e.g. the mean
stress µE ) and fractile values (e.g. the 95% fractile of the stress, E95%) were
used for verification. As described in Figure 5.1(a), this concept led to
two values for the quantification of safety, the central factor of safety γ0

as difference between the two mean values µE and µR , and the nominal
factor of safety γnom as difference between the respective fractiles, e.g. E95%

and R5%.

The semi-probabilistic method still relies on distributed probabilities for
loads and resistances: Fractile values are used to define the "characteristic"
values for the actions and resistances, Fk and Rk, respectively.

These characteristic values are directly used to verify the serviceability limit
state: Applying characteristic material properties (e.g. Young’s modulus E
or Poisson’s ratio ν) and characteristic (i.e. unfactored) loads, entities like
the deflection under that load are computed and assessed against given
limits.

The verification for the ultimate limit state is based on a comparison of a
design value of an effect of action, Ed, and a design value of the correspond-

5 As cited in [106] an effect of action E may act on individual structural members (e.g.
stresses, strains, moments) or on the whole structure (e.g. deflections).
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(a) Global safety factor concept: mean values µE and µR , standard deviations σE and σR , corre-
sponding probabilities of realization pR (R ) and pE (E ), and defined factors of safety γnom and γ0
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(b) Failure probability Pf (volume under the red surface) as a function of the variations of effects
of actions E and resistance R , and failure boundary (green) delimiting the failure domain

Figure 5.1: Concepts of safety: global safety factor concept and
failure probabilities (schematic sketches)
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5.2 Non-linear behavior and verification approaches

ing resistance, Rd. This basic verification concept is usually expressed as

Ed = Ed{G ⊕Q} ≤Rd =
Rk

γM
, (5.1)

where Rd is defined through the characteristic resistance Rk and the par-
tial factor γM. This partial factor γM ≥ 1.0 reflects the uncertainties in the
definition of the material properties. The better material properties can
be predicted, the smaller γM can be assumed. As an example, the partial
safety factors for steel and timber are defined as γM,steel ≈ 1.0 to 1.1 resp.
γM,timber ≈ 1.3, reflecting the larger variation of material properties in tim-
ber.

The design value of the effect of action, Ed, is the outcome of a load com-
bination of permanent and variable actions G and Q , respectively. These
actions are collected in load combinations (indicated by the combinato-
rial sign "⊕" in Equation (5.1)) that reflect relevant scenarios the structure
might be faced with during its projected lifetime. In addition, partial factors
γF are applied to the respective loads in order to account for the uncer-
tainties in the load values. As an example the classical partial factors for
self weight and variable actions are γG = 1.35 and γQ = 1.5, respectively,
again reflecting the larger variation of the latter. Combination factorsψ
represent the probability of occurrence in the respective load combina-
tions, e.g. a combination of self weight of the structure, wind and traffic
load. In the Eurocodes for the respective materials, detailed instructions
for the detailing and design of structures are provided, as well as specific
values for the various partial factors.

5.2 Non-linear behavior and verification approaches

As has already been discussed, architectural membranes and other pre-
stressed tensile structures draw their load-bearing capacities out of their
shape – generally doubly curved – and their ability to undergo large defor-
mations. In order to reliably simulate these large deformations, the need
for a geometrically non-linear analysis is obvious. However this need for
non-linear analysis has important consequences on possible verification
approaches. In the following, these consequences on load combinations as
well as on the determination and proceeding of design values Ed of effects
of actions will be discussed.
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5 Safety verification of membrane structures

5.2.1 Linear behavior and related simplifications

As presented in Section 5.1.2, a core ingredient to the philosophy of the
Eurocodes is the concept of load combinations. Regarding the analysis of
geometrically non-linear structures it is important to state that without
linear behavior of the structure, the widely used superposition approach
is not applicable any longer, see also Section 4.2.2. At a first glance, this
may be considered a minor inconvenience, however the consequences to
the computational effort are much more severe: A major simplification
made in the Eurocodes is to state that for the determination of the effects
of actions a factoring of the action F is – at least in most cases – equivalent
to factoring the effects E of this action, as expressed in Equation (6.2) of
the EC0 [106]:

Ed = γSd ·E {γf,i · Frep,i ; ad}
linear structural−−−−−−−−→

behavior
Ed = E {γSd ·γf,i · Frep,i ; ad} (5.2)

Here i is the summation index for different loading actions, Ed is the de-
sign value of the effect of action due to the load case which is composed of
actions Frep applied to the design geometry ad. Frep is the representative
value of the action that is multiplied by the partial factor γf which accounts
for possible unfavorable deviations from the representative value6. At the
left hand side of Equation (5.2), the resulting effect of action E is factored
by a partial factor γSd for the uncertainties in modeling. At the right hand
side the underlying actions F are factored by γSd which is commonly sum-
marized in one single partial factor

γF = γSd ·γf . (5.3)

To give a prototypic example, the design value Ed of a combination of self
weight G and two variable actions Q1 and Q2,

Ed{G ⊕Q1⊕Q2}= f
�

G ,Q1,Q2,γG,γQ1,γQ2

�

, (5.4)

with their respective weighting factors γG and γQα can then – with the
assumption of linear structural behavior, i.e. a linear relation between
action F and effect of action E – be broken down to

Ed{G ⊕Q1⊕Q2}= γG f (G ) +γQ1 f
�

Q1

�

+γQ2 f
�

Q2

�

. (5.5)
6 Note: For alignment with the commonly used terms, in the sequel no distinction will

be made between the characteristic value Fk and the representative value of the action, Frep;
only one single action F will be used.
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Even for a large number of combinations, as usually required by current
verification standards, each relation f (F ) only needs to be evaluated once.
The required combinations are then superposed from these evaluations in
the postprocessing.

5.2.2 Review of verification concepts for geometric
non-linearity

Before focusing on structural membranes it seems of interest to review
general prescriptions and applied verification concepts for geometric non-
linearity. This provides a basis for the discussion of structural membranes
as well as a possible comparison for the elaborated approaches.

Classification of non-linearity in Eurocode 0

Setting the principal frame for all material-specific Eurocodes, Eurocode 0
[36, 106] addresses the issue of non-linear structural behavior by indicating
a distinction between two different types of non-linear behavior:

"For non-linear analysis (i.e. when the relationship between
actions and their effects is not linear), the following simplified
rules may be considered in the case of a single predominant
action:

a) When the action effect increases more than the action, the
partial factor γF should be applied to the representative
value of the action.

b) When the action effect increases less than the action, the
partial factor γF should be applied to the action effect of
the representative value of the action.

NOTE Except for rope, cable and membrane structures, most
structures or structural elements are in category a)."

[36, §6.3.2(4)]

Hence a distinction is made between structures where the effect of action
E increases more than the representative value of the action Frep (category
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category a)

E
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Ed (a) = E {γF · Fk}

Ed (b) = γF ·E {Fk}
category b)

Fd = γF · Fk

E increases

linearly to F

Dimensioning
point (Fk, Ek)

Action F

Figure 5.2: Schematic representation of the two types of
non-linear behavior of structures proposed in the EC 0 [106]

a) respectively less (category b). The behavior characterized by category
a) often is termed over-linear while category b) describes under-linear
behavior, see also Stranghöner et al. [136] and Uhlemann et al. [144].

The simplified representation in Figure 5.2 illustrates the difference be-
tween the two types of behavior. As mentioned above, for the case of a
linear behavior of the structure (indicated by the gray dotted line), the
two cases coincide and thus the simplification from Equation (5.2) can be
applied.

In case of non-linear structural behavior, it is important to correctly clas-
sify the type of structure to one of the above categories. However, the
prescriptions w.r.t. tensile structures given in EC 0 (see citation above)
are quite vague. A reliable and unique classification of a structure can be
problematic, since the direct output of a non-linear simulation based on
non-factorized characteristic actions Fk is only the dimensioning point
�

Fk, Ek

�

, not a complete graph as shown in Figure 5.2. In a more abstract
sense, this classification of the non-linear behavior requires the determi-
nation of the slope resp. of the curvature of the F -E -graph. Two related
approaches will be discussed in Section 5.3.2.
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Figure 5.3: Classical notion of non-linear relation of effects of
action E and load amplification γ in static analysis

Geometrical non-linearity with Theory of Second Order

The notion of non-linear behavior as sketched in Figure 5.3 and as specified
in Eurocode 0 is mainly based in the non-linear analysis of elements with
bending rigidity: For slender structural elements, the consideration of
geometrically non-linear effects is deemed necessary.

For steel, concrete or timber structures the common approach to geomet-
ric non-linearity is an analysis following Theory of Second Order (abbr.
Th.II.O.; also referred to as second-order analysis), see e.g. Eurocode 3 "De-
sign of steel structures – Part 1-1: General rules and rules for buildings"
[104]. For a brief introduction to an analysis according to Th.II.O., refer to
Section 2.4.

Depending on the external longitudinal force P in Figure 5.3, different
effects of the resultant normal force N on the displayed member can be
observed: While in the case of tension, i.e. a normal force N > 0, the defor-
mation and with it the bending stresses are reduced, in case of compression,
i.e. N < 0, an increase of the effects of action is observed. Consequently in
most standards, an analysis according to Th.II.O. is compulsory for mem-
bers in compression since it is a matter of safety, whereas for members in
tension it may be used for a more economic design.
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5 Safety verification of membrane structures

Besides specific, often problem-dependent simplified approaches, where
individual stability checks of equivalent members resp. tabulated ampli-
fication factors are applied, for non-linear analyses according to Th.II.O.
the basic approach can be summarized as follows:

– Load combinations according to Equation (5.4) are assembled in-
cluding the application of partial factors γF,

– the effects of action (here stresses σEd) under this load ensemble
are derived applying the non-linear strain measure and (iteratively)
establishing equilibrium in the deformed configuration assuming
unfavorable imperfections,

– these stressesσEd are assessed against design limit stressesσu/γM0.

Hence the prescriptions from Eurocode 0 cited in the previous section
are implicitly fulfilled: By factoring the actions F the over-linear behavior
assumed for slender members in compression is taken into account.

Verification of cable structures

In their load-bearing behavior cable structures as prestressed tensile struc-
tures are "close relatives" to structural membranes. However, in contrast
to the latter, for cable structures established standards and verification
guidelines exist. In the present context the implemented standard is Eu-
rocode 3 "Design of steel structures – Part 1-11: Design of structures with
tension components" [35, 105] (EN 1993-1-11), which gives guidance for
the verification approach considering non-linear behavior and prestress.

Dealing with prestressed structures reveals the question of how to treat
prestress (see also Section 5.4.1): Is it to be considered an action, and con-
sequently increased through a partial factor, or rather a resistance? EN
1993-1-11 gives the prescription that "permanent actions, which should
consist of actions from gravity loads "G" and prestress "P" should be con-
sidered as a single permanent action "G+P" to which the relevant partial
factors γGi should be applied" [35, §2.2(2)], which in consequence results
in increasing the prestress for the verification in ULS, see also Kathage et al.
[78].

Kathage et al. [78] and Schmidt et al. [130] state that for cable structures
the ultimate limit state (ULS) and the serviceability limit state (SLS) are
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much closer related than for most other structures. In fact, often the SLS is
dominating and solely determining the design verification for prestressed
cable net structures or, as phrased in EN 1993-1-11, "serviceability checks
may govern over ULS-verifications" [35, §2.2(1)].

As stated in EN 1993-1-11, SLS prescriptions may be used to assure that
stresses remain in the elastic range, i.e. below an ultimate elastic stressσu.
As a lower bound tensile forces in all members have to be assured in all
states7 (cf. the cable net example in Section 5.3.2). These "indirect" ULS
verifications become possible due to the generally under-linear structural
response to actions.

However, based on stochastic investigations of a spoke-wheel cable roof,
Schmidt et al. [130] formulate criticism of the verification prescriptions
from EN 1993-1-11: Following SLS-prescriptions the verification condition
from EN 1993-1-11 can be reformulated to

σEk ≤
σuk

1.5 ·γR ·γF
(5.6)

whereσuk is the characteristic ultimate stress of the cable material and γR

and γF are the partial factors for the resistance and the action, respectively
(see also [78]). The stressesσEk result from the same loading scenarios as
in ULS, but applying characteristic, i.e. unfactored loads. Equation (5.6)
implicitly fulfills the condition of Eurocode 0 [106] for structures with
under-linear behavior: the partial factor is "applied to the action effect of
the representative value of the action" [106, §6.3.2(4)].

This fixation of the safe-sided simplification from the basic Eurocode 0
including the prescription of fixed amplification factors for the verification
of cable net structures in the EN 1993-1-11 is criticized by Schmidt et al.
[130]: Through its conservative approach, economic design making use of
the "strongly under-linear relation between action and actually resulting
stress resultants" [130, p.724,transl.] is no longer possible and consequently
the prescriptions from EN 1993-1-11 are considered pessimistic and not
well suited.

7 This condition certainly is of even more importance than it is the case for preventing
wrinkling of membrane structures which can still be stabilized through tensile stresses in the
second direction, see also Sections 2.5.1 and 3.5.1.
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5 Safety verification of membrane structures

5.3 Membrane structures and the Eurocode framework

As mentioned above, in Europe the design of structures generally is codified
in the Structural Eurocodes (EC) which exist for the most widely applied
materials like steel, concrete or timber. However, such a unified standard
does not yet exist for membrane structures. Based on first attempts towards
a unified design and verification approach (like the TensiNet Design Guide
by Forster et al. [60]), CEN/TC250/WG58 has initiated the development
of a new Eurocode. This code intends to provide guidance for the very
particular design and simulation demands of structural membranes.

5.3.1 Review of verification guidelines for membrane
structures

In contrast to most other materials used in the building and construction
industry, currently in Europe there is no unified standard for the verifica-
tion of architectural membranes. Some standards and design guides exist
on national level, like the ITBTP9 recommendations [12] (France) or the
German practice, combining the DIN 4134 [103] and the dissertation by
Minte [99]. Most of these standards and guidelines (and also the ASCE10

55-10 [5] (USA)) are based on a stress factor approach that compares the
results of an analysis with characteristic loads (i.e. unfactored, representa-
tive actions) to a permissible strength, corresponding to the global safety
factor concept presented in Section 5.1.2.

As an example, one may take the approach from the ITBTP guide [12],

TC ≤ TD =
kq ·ke

γt
·Trm =

Trm

γstress
, (5.7)

where the design strength TD is derived from the (characteristic) tensile
strength Trm, reduced by the factors kq and ke (with {kq, ke} < 1), as well
as the so-called safety coefficient γt, also taking into account the environ-
mental degradation. The design strength TD represents the permissible
strength that is ultimately assessed against the calculated tensile force TC

8 CEN .. European commitee for standardization; TC250 .. Technical Commitee "Struc-
tural Eurocodes"; WG5 .. Working Group 5 for Membrane Structures

9 Institut technique du bâtiment et des travaux publiques, France
10 American Society of Civil Engineers, USA
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under the respective load combination, assuming characteristic values
for the actions. The quality factor kq adjusts the member capacity to the
execution quality and the quality of the fabric itself; the scaling factor ke

reflects the increased risk of critical defect with increasing surface area.
For the sake of comparison, the individual factors – kq, ke and γt – may be
summarized in one stress reduction coefficient γstress (often termed "stress
factor"), as demonstrated in Equation (5.7).

Although the various standards and guidelines show differences in their
respective prescribed load combinations and the way in which the stress
reductions are applied, they can basically be compared to the procedure
described in Equation (5.7), summarizing the respective factors and co-
efficients to the overall stress factor γstress. As stated e.g. by Forster et al.
[60] and Gosling et al. [64], the mentioned guidelines agree on comparable
"levels of uncertainty", reflected in the respective stress factors γstress as
they are schematically represented in Table 5.1.

Table 5.1: Comparison of the respective stress factors γstress in
selected verification approaches.

Standard Factors Incorporated influences γstress

ASCE 55-10 [5] Lt,β life cycle factor, strength reduction;
based on different load combina-
tions

4.0 to 7.8

ITBTP Design
Guide [12]

kq, ke,γt execution quality, scale factor, envi-
ronmental degradation

(4.0)5.0 to 7.0

German prac-
tice, based on
DIN 4134 [103]
and Minte [99]

Ares
(γf,γM, Ai )

loading uncertainties, material
safety, test scaling, influence of
time, environmental degradation,
temperature

2.9 to 6.4

In summary one may conclude that permissible stresses are obtained by
reducing the characteristic strength of the textile by a reduction factor
γstress in the order of 4.0 to 7.0 (the extreme values of 2.9 and 7.8 from
Table 5.1 are rather rare cases). This already provides a basis for a common
European approach. However the underlying global safety factor concept
is not in line with the contemporary semi-probabilistic method at the
basis of the Eurocodes, see Section 5.1.2. Moreover, the inclusion of safety
margins as well as other effects in one single factor γstress as displayed
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prototypically in Equation (5.7) renders the identification of the existing
"structural reserves" in a membrane structure virtually impossible.

Throughout all reviewed guidelines, the analysis and verification of differ-
ent load scenarios is required. This definition of scenarios does not release
the designing engineer from his responsibility to keep in mind the whole
structure and the situations it might face in the future, see also Bown et al.
[30]. However, as also cited in Forster et al. [60] and Stranghöner et al. [136],
several scenarios are generally to be considered:

– assessment of strength of stressed fabrics, cables and other members;

– assessment of deformation in order to avoid contact of the tensile
components with the surrounding structure as well as excessive
deformation in general;

– ensuring a fully taut state in order to avoid dynamic flutter of the
membrane and to avoid wrinkles;

– avoidance of progressive collapse due to failure of any component;

– avoidance of ponding, i.e. ensuring positive drainage from all areas
and under all conditions.

Since these scenarios are more or less unanimously accepted, they will not
be further discussed within this thesis.

5.3.2 Classification of the non-linear behavior of tensile
structures

As cited in Section 5.2.2, EC0 [106] provides a classification into two types
of non-linear behavior. Following the prescriptions in Section 6.3.2 of the
EC0, cable and membrane structures are to be classified as structures with
under-linear behavior (see Figure 5.2), or – expressed in the words of the
EC0 – as structures for which "[..] the action effect increases less than the
action [..]" [106, §6.3.2(4)].

Reduced cable net as an analytical example

In order to underline this assumption and demonstrate some effects of non-
linearity, a reduced model of a classical hypar as illustrated in Figure 5.4
will be discussed as a prototype. The simplifications made from the hypar
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of a prestressed
cable net
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Plane prestressed
cables

Figure 5.4: Reduction of a hypar membrane to a simplified cable
net: At first the hypar membrane is reduced to a net of four cables

(left). Applying symmetry conditions and rotating into a plane
allows analyzing the system as a plane two-cable structure (right).

membrane to the model of two prestressed truss members (single DOF
system) allow keeping the derivations intelligible, however conclusions to
the principal behavior of the membrane can be drawn.

For the analysis of the non-linear behavior of this prototype structure, its
residual force expression R = R int + R ext is derived as a function of the
displacement variables u according to the derivations in Sections 2.3.4 and
4.3.2. In the present single DOF system the residual force vector R reduces
to a scalar R . In case of conservative loading, the external residual force
Rext is equal to the load Fext, see Figure 5.4, representing e.g. a snow load.

The internal virtual work of a single member i can be written as

δWint,i =

∫

V0

�

�

S11+S0

�

·δεGL

�

dV = Ai L i

�

�

S11,i +S0,i

�

·δεGL,i

�

, (5.8)

where L i and Ai are the length and cross section of the member i , re-
spectively. In the members constant strains (measured as Green-Lagrange
strains11) and stresses (2nd Piola-Kirchhoff stresses from elastic deforma-

11 Note that for the sake of easier readability in the present context the Green-Lagrange
strains are indicated as εGL in contrast to the nomenclature in Chapter 2.
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tion,S11 and prestress S0) along the elements are assumed. In Equation (5.8)
the integration over the volume has been replaced by the pre-integrated
member contributions, making use of the constant strains and stresses in
each member.

For truss members, the strains εGL can be expressed as a function of the
reference length L i and the current length `i :

εGL,i =
1

2

`2
i − L 2

i

L 2
i

, (5.9)

and consequently for the individual members in Figure 5.4:

εGL,1 =
1

2

w 2+2h1w

L 2
1

resp. εGL,2 =
1

2

w 2−2h2w

L 2
2

(5.10)

Introducing the simplifying assumptions of equal height hi = h , initial
length L i = L , cross section Ai = A, and prestress S0,i = S0 for the two
members, the expression of the internal residual force Rint =ΣRint,i can be
formulated as derived in Equation (2.56) as

Rint =
A

L 3
(w +h )

�

E

2

�

w 2+2h w
�

+S0L 2

�

+
A

L 3
(w −h )

�

E

2

�

w 2−2h w
�

+S0L 2

�

=
E A

L 3

�

w 3+2h 2w
�

+2
w

L
S0A .

(5.11)

Additionally assuming linear elastic material (St. Venant-Kirchhoff material
law, see Equation (2.41)), here the elastic stresses S11 have been replaced
by S11 = E εGL, introducing Young’s modulus E .

For the evaluation of internal forces as effects of actions, the internal forces
N1 and N2 of the respective members can be written as

Ni =
`i

L i
Ai Si =

`i

L i
Ai

�

E εGL,i +S0,i

�

=
`i

L i

�

E A

2

`2
i − L 2

i

L 2
i

+S0A

�

, (5.12)

where the current length `i is a function of the unknown vertical displace-
ment w . The factor `i /L i yields a physically meaningful force from the
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Figure 5.5: Effects of actions E for the cable net example and
linear extrapolations w.r.t. dimensioning point Fext,k

PK2 stresses in the member. Note that in all presented developments, a de-
formation of the cross-section A is neglected (corresponding to Poisson’s
ratio ν= 0).

With these formulations at hand, selected effects of action E are analyzed
regarding their possible verification according to the approach of Eurocode
0: (i) the displacement w and (ii) the normal forces N1 and N2 in the upper
resp. lower cable, see Figure 5.4. Figure 5.5 shows the progression of these
parameters under an increasing load Fext.

At a first glance the deformation w seems to increase linearly with in-
creasing Fext. Fixing an arbitrarily chosen dimensioning point through a
characteristic load Fext,k, here Fext,k = 0.15, allows introducing a linear ex-
trapolation (indicated by the thin dotted lines in Figure 5.5), from which the
slightly non-linear curve of w w.r.t. Fext can be observed. As expected and
in line with the prescriptions of EC0 for cable nets, under-linear behavior
can be observed.

For the member forces Ni the global tendency can also be observed as
expected: N1 (corresponding to the "tension cord") increases, whereas
N2, the force corresponding to the "compression arch", decreases under
increasing load. For the ULS-verification of stresses resp. forces against
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Figure 5.6: Application of the partial factor γ to the effect of
action E resp. the action F , and resulting design values N1,d

material resistance R as stated in Equation (5.1) only the increasing force
N1 is of interest. Taking again the characteristic load Fext,k as evaluation
point, N1 behaves under-linearly compared to the linear extrapolation
(dashed line in Figure 5.5). However this under-linear behavior is mainly,
if not exclusively, related to the "offset" of N1 due to the prestress force
N1,0 = S0A. When compared to its tangent (dotted line in Figure 5.5), it can
be seen that the graph of N1 is convex. Hence the general classification of
cable net structures as under-linear is to be treated with care, since in large
parts it depends on the magnitude of the prestress and the extrapolation
range.

In that sense a comparison to the classical notions of non-linearity as
illustrated in Figure 5.3 is difficult: In the classical definition, all loads
are affected by one load amplification factor γ, unlike in the present case,
where just the load Fext is multiplied, whereas the prestress as a structural
property stays constant.

To illustrate the two different approaches of determining the design value
of N1, the resulting design values N1,d are displayed in Figure 5.6. It can be
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Figure 5.7: Effects of actions E for the cable net example under
consideration of cable 2 going slack. The dashed lines represent

the case where cable 2 still contributes in compression.

seen that by either factoring the action F or the effect of action E , they
differ considerably.

For N2, the force in the "compression arch", the elastic stresses absorb
the prestress. Here, another relevant effect can be noticed: For an external
force of Fext ≈ 0.18 the prestress in member 2 is absorbed and the cable will
go slack. Consequently, it will no longer contribute to the load-bearing of
the structure, i.e. the system changes and the entire load has to be carried
by member 1. As illustrated in Figure 5.7, where now the failure of cable
2 is considered, the increase of N1 accelerates, indicated by the kink in
the graph. The same effect can be observed for the displacement w . The
comparison with the dashed graphs, which indicate the respective trend
without considering cable 2 going slack, shows that this effect certainly is
not negligible. However, it cannot be taken into account by factoring the
effect of action E directly, see Figure 5.6(a).

The fundamental change of the structural system introduces a new source
of non-linearity in the system. This so-called system non-linearity is ac-
companied by a sudden change in the stiffness (see also Section 4.2.1 on
construction stage analysis). Obviously for prestressed cable net structures
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as well as for structural membranes the case of members going slack is to
be avoided. However in the discussion on how to classify the non-linear
behavior of structures and – on the long end – how to apply partial factors,
effects affecting the overall structure have to be taken into account. Just
like the prevention of exceeding a defined stress level, the prevention of
these effects needs to be assured with a certain probability.

Following the prescriptions of Eurocode 0 [106], the ULS verification of N1 is
placed in category b) and the assessment follows the procedure illustrated
in Figure 5.6(a): stresses are determined based on characteristic loads Fk,
factored by a partial safety factor γ and then these stresses are assessed
against admissible stresses.

From this very simplistic and reduced example, one can already conclude
that the current design practice – i.e. application of safety factors on the
effects of action E rather than on the action F itself – complies with the
basic instructions for non-linear structures of the Eurocode 0. However,
occurring system non-linearity by members going slack, see Figure 5.7,
cannot be tracked with this approach. The following real-life example of a
four-point sail investigates the principle behavior for a full-scale example.

Evaluation of stresses for a four-point sail

For the evaluation of stresses, the full-scale example of a simple hypar
with an extension of 6 by 6 m and 4 m height is taken. The form-finding
is performed with isotropic prestress in the membrane and a prestress
ratio of n0,membrane/N0,cable = 1/10, yielding the shape that is displayed in
Figure 5.8. The structure is loaded by a snow-load s . The magnitude of s is
increased from 0 to 0.48 kN/m2. Besides all material and cross-sectional
data for the static analysis, Figure 5.8 indicates the evaluation points where
the stresses are measured. These are distributed along the two principal
load-bearing directions, the tension cord, spanning from high-point to
high-point, and the compression arch perpendicular to it.

As stresses, the principal stressesσI andσII are considered, representing
the extremal stresses at each point of the structure. Investigations of the
stresses plotted in Figure 5.9 show that the highest stresses occur in the
tension cord close to the high-point (point 806 in Figure 5.8) whereas the
most severe loss of prestress occurs in the compression arch close to the
center (point 396 in Figure 5.8). These two points are selected for further
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Figure 5.8: Four-point sail with model parameters, principal
load-bearing directions and indication of evaluation points

verification of the stresses, assuming a dimensioning load (characteristic
load) of sk = 0.24 kN/m2.

Analyzing the first principal stress σI in the tension cord (point 806), a
convex load-stress curve can be observed. However, in comparison with a
linear interpolation which is depicted as the gray dotted line in Figure 5.10,
the shifted starting point of the linear evaluation (due to prestress) suggests
an under-linear progression of the stress. Following the instructions from
Eurocode 0, an exemplary application of a partial factor γF on the principal
stress as an effect of action is shown in Figure 5.10 (in green).

As intended by the categorization from Eurocode 0 and recently reworked
in Stranghöner et al. [136] and Uhlemann et al. [144], the factoring of the
effect of action is on the "safe side", i.e. the linear extrapolation yields
higher design stresses than an equivalent increase of the load would do.
However Figure 5.10 also shows that the extrapolated design stress is only
slightly larger than it would have been for an increased load (orange). If
the partial factor γ was 1.75 or even higher, factoring the stresses under
the characteristic load would not be conservative anymore.

This effect – just like it has been the case for the example of the reduced
cable net – becomes even more accentuated when the second principal
stressesσII in the compression arch (point 396 in Figure 5.8) are considered.
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Under a load of s ≈ 0.33, corresponding to a load factor of γF ≈ 1.375,
the compression arch is not fully taut anymore since σII drops below 0.
These negative stresses in general are to be avoided in order to prevent
wrinkles and the accompanying change of the structural system, see e.g.
Stranghöner et al. [136], as already discussed for the cable net example
above.

Conclusions from the reduced cable-net and the four-point sail

From these two examples, several conclusions can be drawn with regard
to a future standardization of the verification of structural membranes:
In general it can be stated that the current design practice of factoring
the stresses and other effects of action computed under a characteristic
load resp. load scenario is in line with the general prescriptions of the
Eurocode 0 [106] and its classification in under- and over-linear structural
behavior. However – depending on the load factor γF to be applied – this
classification and the resulting prescriptions for factoring might only be
applicable in a narrow range of the load intensity.

Consequently comparisons with factored loading scenarios could be envis-
aged: On the one hand these would allow to gain more insight on whether
the extrapolation is safe-sided. On the other hand these comparisons
would help to avoid effects like parts of the membrane going slack, en-
tailing a change of the load-bearing behavior. Looking at the non-linear
effects and at the example from Figure 5.7, the resulting change of the
load-bearing behavior cannot be covered by a factoring of the effect of
action and has to be avoided at least for any loading scenario that may
occur regularly.

Sensitivity analysis for assessing non-linear structural behavior

As the discussions in the previous sections have shown, tensile structures
cannot be uniformly classified into one of the categories for non-linear
behavior according to Eurocode 0 [36]. In consequence an individual as-
sessment of each structure could become necessary. However, the determi-
nation of the whole E (F )-graph by multiple evaluations for different load
levels is very time-consuming, motivating the need for simpler methods.

In that regard Uhlemann et al. [144] propose a one-step sensitivity analysis
as displayed in Figure 5.11 in orange. Starting from the dimensioning point

155



5 Safety verification of membrane structures

E
ff

ec
t

o
fa

ct
io

n
E

Ftest = f · Fk Action FFk

f
η

Etest =η ·E k

Dimensioning
point (Fk, Ek)

Rcurvature

E increases

linearly to F

Determination of
the curvature by a
two-step sensitivity
analysis

Determination of
the slope by a
one-step sensitivity
analysis

E (F )-graph

Figure 5.11: Classification according to Eurocode 0 with the
help of a one- or two-step sensitivity analysis illustrated in orange
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(Fk, Ek) a second point on the E (F )-graph is determined by evaluating the
system with an increased load Ftest = f · Fk, where f is an "arbitrary load
increase factor" [144, p.5]. The resulting effect of action Etest is normalized
with the characteristic value to give the "stress increase factor" [144, p.5]
η = Etest/Ek. Comparing the ratio η/ f to 1 allows a classification of the
structure:

– For η/ f > 1 the structure behaves over-linearly,

– for η/ f < 1 the structure behaves under-linearly, and

– a ratio of η/ f = 1 is equivalent to linear structural behavior and
corresponds to the gray dotted linearization in Figure 5.11.

This one-step sensitivity analysis as proposed by Uhlemann et al. [144]
corresponds to the determination of the slope with the help of a secant. As
can be seen by comparing the blue E (F )-graph to the gray dotted linear
relation, this determination of the slope through a discrete differential
quotient strongly depends on the evaluation interval and can thus be
misleading.

A more complete image can be obtained by including second-order infor-
mation with the help of a two-step sensitivity analysis as proposed in [119]:
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As illustrated in Figure 5.11 in green, evaluating two more points reveals
information on the curvature of the graph, i.e. whether it is concave or
convex. In addition to the slope, this information considerably increases
the conclusive range for a classification of the type of non-linearity.

5.3.3 Further aspects related to verification

As has been discussed in the previous section, already the classification
of a structure into over- or under-linear behavior is delicate to be made.
Whether it is possible to come to a unique classification for a structure,
independent of the range of extrapolation, is highly questionable. Addi-
tionally, several other aspects related to the verification of structural mem-
branes should be mentioned in this context and considered on the way
towards a standardization of the verification of architectural membranes
as representatives for structures with highly non-linear behavior.

The existence of a predominant action

By following category b) of Eurocode 0 for under-linear behavior (see Fig-
ure 5.2) and consequently factoring the effects of action E under a combi-
nation of characteristic actions Fi , only one uniform partial factor γmay
be applied, leading to

Ed = γ ·Ek

�

F1,k⊕ F2,k⊕ F3,k⊕ ...
�

. (5.13)

Thus the possibility to apply different partial factors to the respective ac-
tions Fi within a load combination is lost. One prerequisite for the applica-
tion of the classification in Eurocode 0 [36, §6.3.2(4)] is the existence of "a
single predominant action".

In general snow and wind-loads are the most important variable loads
acting on structural membranes. Since these loads are commonly factored
by the same partial factor of γQ = 1.5, they may be considered as one
single "combined" action Q in this context. Besides from snow and wind,
the stress in the membrane mainly results from the prestress P , which is
introduced during the mounting of the structure.

In that context Uhlemann et al. [144] argue that the contribution of pre-
stress to the overall stress level in a fully utilized membrane is small com-
pared to the influence of the variable loads. Consequently the requirement
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of the existence of a predominant action is considered fulfilled and the
rules from Eurocode 0 may be applied. This assumption may be true in
many cases, however it can certainly not be generalized. Therefore, the
contribution of the different actions should be carefully judged for each
new application.

Load transfer to the supporting structure

The problem of not being able to separate different actions is even more ac-
centuated when it comes to the interaction of different types of structures.
Membrane structures are mounted on some kind of primary structure,
supporting the textile membrane. This primary structure has to be verified
at its turn, applying the material specific code (for the case of steelwork
this would be Eurocode 3 [104]). These established material-specific codes
prescribe the use of adapted load combinations with individual partial
factors for the different actions. Here the problem becomes obvious: If for
the membrane the load factor has been applied globally on the stresses
computed for characteristic loads, the necessary individual load factors for
the verification of the primary (steel) structure cannot be applied anymore
and in consequence the separation of different effects is not possible any
longer.

Looking at the load transfer from the textile membrane to the underlying
structure, two aspects may be observed. As the membrane transfers the
surface loads to the primary structure through tensile forces, this transfer
includes the magnitude of the force on the one hand and its orientation
on the other hand, as illustrated in Figure 5.12. The question of the force
orientation may seem of little importance, but when considering the large
deflections that may occur, it might be of interest for the dimensioning of
the primary structure. Thus, the question is: Which load from the mem-
brane should be applied to the structure? In which orientation? As stated
above, the approach usually taken for the membrane – i.e. simulating the
membrane with characteristic loads and applying the load factor on the
effects of actions E – generally leads to reasonable values for the mem-
brane design. This approach should then be continued consistently for the
primary structure. In addition to the load, the effects of the deformed ge-
ometry and with it the altered orientation of the interaction forces between
membrane and primary structures have to be examined.
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Figure 5.12: Schematic example of the impact of membrane
deformation on eccentricities of the primary structure

In Figure 5.12 a schematic example of the load transfer from membrane
to primary structure is presented. In order to determine the design value
Msteelworks,d between the fixation profile and the general steelworks, the
tension from the membrane has to be multiplied with its respective lever
arm. It is obvious that even when assuming the same tensile force n for both
the undeformed and the deformed state, the moment also depends on the
lever arm∆x . While even for the design geometry an eccentricity∆xdesign

may have to be taken into account, this∆x might increase substantially
during deformation.

It should be noted that for the case of hybrid structures as introduced in Sec-
tion 4.1.2 the classification in a stiff primary structure and the prestressed
secondary structure is not applicable any longer. In consequence, their
analysis and assessment have to be realized for the integral structure as
presented in Chapter 4. Being comparatively soft structures, the changing
geometry under load (see Figure 5.12) may be even more important for
hybrid structures. In that context robust and complete methods for the
analysis of the mounting procedure of those hybrid structures as discussed
in Section 4.3 and presented e.g. in Bauer et al. [15] and Philipp et al. [117]
are necessary.
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5.4 Methodological approach for the verification of
safety with numerical models

To close this chapter, a different approach to the verification of safety
is sketched, based on the example of the consideration of prestress for
structural membranes.

Note that for the examples discussed in Section 5.3.2, a factoring of the
prestress has not been taken into account. The prestress P has been applied
as a characteristic value and only the snow load s has been multiplied by
the corresponding load factor γQ.

5.4.1 Treatment of prestress in the context of safety verification

A priori it is clear that – just like all other parameters of a structure – the level
of prestress cannot be guaranteed exactly. Whereas geometric deviations
can be controlled rather easily, already the measurement of prestress in a
mounted membrane is very difficult. Hence deviations12 from a desired
level of prestress have to be considered.

If the partial factors γF for actions are applied on the several single ac-
tions as described in Equation (5.4), the consideration of prestress requires
special attention: As documented by Stranghöner et al. [136], two funda-
mentally different positions exist concerning the nature of prestress and
consequently its treatment.

One position states that prestress P should be treated as an action since
it contributes to the stresses in the structure. Consequently it has to be
increased by a partial factor γP,unfavorable > 1.0 for the consideration in a
load combination. To give an order of magnitude, most standards propose
a factor γP,unfavorable in the range of 1.2 to 1.35, see [103, 105, 106].

On the other hand prestress is fundamental for the load-bearing ability
of structural membranes in combination with curvature. Therefore the
opposed position states that prestress should be treated as a resistance
and consequently rather be reduced by a factor γP,favorable ≤ 1.0. Whereas
some guidelines like the French Recommendations [12] propose a factor
γP,favorable = 1.0, other propositions even reduce the prestress, by using a
factor of e.g. γP,favorable = 0.8 see the German National Annex to [106].

12 Here time-dependent effects like loss of prestress due to creep are still neglected.
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A detailed review of the different positions in this open discussion with
their reasonings can be found in Stranghöner et al. [136]. As presented in
Section 5.2.2, EN 1993-1-11 [105] gives prescriptions on that matter for the
case of cable net structures.

5.4.2 Exploiting the numerical model for safety verification

A more general understanding of the nature of prestress can be found if
prestress is not considered an input variable, but resulting from the as-
sembly and mounting from separated cutting patterns to the completed
structure, see Figure 2.18 and Section 2.5.2. Consequently prestress is the
result of a process, which at its turn is influenced by various factors like
material properties or the execution accuracy. Nevertheless this process
can be simulated in the powerful analysis environments available nowa-
days. Thus in the context of verification of safety a treatment of non-linear
behavior beyond general classifications and the discussion of factors could
be reached.

Based on contemporary simulation environments, an approach to obtain
meaningful verifications of safety could consist of the following combina-
tion of methods:

(i) A structural model including all relevant construction stages (see
Section 4.2) is able to reliably analyze the structure13. Here both the
mounting procedure and relevant verification scenarios as listed
in Section 5.3.1 need to be modeled. While setting up the model,
the engineer implicitly defines the model parameters, i.e. relevant
and possibly varying entities like geometric dimensions and mate-
rial properties. These parameters are defined based on codes, early
investigations and experience.

(ii) Based on this structural model, a sensitivity analysis as proposed
in Section 5.3.2 helps to gain insight on the sensitivity of structural
responses (e.g. stresses or deflections) w.r.t. varying model param-
eters. Hence effects and sources of uncertainties can be identified:
How would less stiff material influence the resulting stresses? What

13 In general obviously also non-linear material behavior should be included in this
model, although it is not within the scope of this thesis.

161



5 Safety verification of membrane structures

is the relation between a geometric deviation in the cutting pattern
and the stresses under a snow load? With the help of the sensitivity
analysis, these relations can be quantified (within the limit of the
modeled parameters). Thus the impact and – consequently – the
importance of different parameters can be indicated.

(iii) The obtained sensitivities then need to be reflected against the "real"
situation of the structure. In reality the model parameters correspond
to scattering variables that often can be described with probability
distributions.

Together with the determined sensitivities these distributions yield
"model combinations", where unfavorable deviations of the vari-
ables might occur simultaneously.

Eventually for these combinations safety resp. an acceptable probability of
failure (see Section 5.1.1) will have to be verified. In that context for each
variable a combination of a high sensitivity (corresponding to an important
impact) with a wide distribution (corresponding to important scattering
of the variable of interest; e.g. a load intensity) requires more attention,
whereas variables with a low sensitivity resp. a narrow distribution (e.g. the
self weight of steel) might even be considered as fully determined.

For the first of these cases – high sensitivity and wide distribution – different
conclusions can be drawn: Either a higher safety margin has to be accepted
or the permissible tolerances need to tightened (if possible).

It is obvious that economically it is – at least up to now – not possible
to realize the entire proposed approach for every structure to be built.
However, for more complex structures as discussed e.g. in Schmidt et al.
[130] and especially in preparation of a future standard, see e.g. Gosling
et al. [64], this combination of structural modeling, sensitivity analysis
and the quantification of scattering variables in reality can help to gain
substantial insight into the structural behavior which ultimately helps to
provide safer and more meaningful verification requirements.
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Summary and conclusion of Chapter 5

Currently developments towards a unified standard for the design and
safety verification of structural membranes are made. In that regard the
basic concepts of safety verification considering non-linear structural be-
havior have been reviewed, focusing on tensile structures and the basic
concepts of the Eurocodes.

As a contribution to the "Prospect for European Guidance for the Structural
Design of Tensile Membrane Structures" [136], the following aspects have
been elaborated and discussed more in detail:

– a presentation and comparison of currently existing verification
guidelines for structural membranes;

– the classification of non-linearity according to Eurocode 0 [36]with
an analytical example of a prestressed cable net;

– the different approaches to the application of partial factors with a
full scale example of a prestressed structural membrane.

The development towards a Eurocode for structural membranes currently
is focused quite much on the application of partial factors and the values
to be applied for these factors. As has been discussed, the fixation of values
still requires further investigations and discussion, whereas the scenarios
to be considered are accepted more or less unanimously. In my opinion
the most consistent approach towards reliable and economic verification
concepts is a combination of sensitivity analysis and model calibration
against real scattering of variables.

In general, the advances in analysis and modeling tools nowadays enable
tension structure engineers to fulfill a more holistic part in the simula-
tion and prediction of the structural behavior. The consideration of whole
scenarios seems to better suit these possibilities than fixing all load com-
binations in prescribed verification cases, thus limiting the engineer in his
responsibility and his freedom at the same time.
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CONCLUSIONS AND OUTLOOK

Lightweight structures are highly efficient solutions to structural chal-
lenges. They often dispose of pleasing aesthetics, characterized by their
smooth curved shapes and an impressive slenderness as it is the case for
the tensile structures and gridshells presented within this thesis. There-
fore, lightweight structures offer an attractive playground for structural
engineering, for which the following definition of James E. AMRHEIN [41, p.
16] holds especially true:

"Structural Engineering is the art and science of
molding Materials we do not fully understand;
into Shapes we cannot precisely analyze;
to resist Forces we cannot accurately predict;
all in such a way that the society at large is given no reason to
suspect the extent of our ignorance."

Putting material modeling aside, AMRHEIN addresses the fields of geomet-
rical design, structural analysis and verification of safety. In the case of
lightweight structures, especially their geometrically non-linear behavior
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entails considerable challenges compared to most conventional structures
in civil engineering.

Within the present thesis, this non-linear behavior of lightweight structures
and its impact on the design, analysis and verification have been discussed.
For each of these fields, new developments and investigations have been
made and critically assessed.

In order to enable an in-depth integration of geometry (within CAD) and
structural behavior (with FEM) for the design and analysis of lightweight
structures, isogeometric B-Rep analysis (IBRA) as a new analysis technique
has been extended to the simulation of structural membranes. The devel-
oped components – notably a prestressed membrane element and a cable
element following the novel paradigm of B-Rep edge elements – have been
implemented in Carat++ [29] and integrated in a plug-in to Rhinoceros3D
[95] named TeDA [23]. In various applications the accuracy, robustness and
ease of handling have been successfully demonstrated. At the same time
the potential of IBRA for the design and analysis of lightweight structures
has been critically assessed. (Chapter 3)

Lightweight structures and their load-bearing behavior are very sensitive
w.r.t. their mounting procedure. In order to reliably simulate the state
of the mounted structure in terms of deformed geometry resp. internal
stresses, the deformation in the construction stages has to be tracked and
their impact on the structure must be considered. Different established
techniques for the configuration update between these stages have been
presented, compared and discussed in detail, focusing on the application
for geometrically non-linear behavior. Within selected examples, a me-
chanically consistent update method has been elaborated and evaluated
in terms of accuracy and robustness. The introduction of side constraints
– realized by the concept of contracting cables – has been discussed as
an alternative approach together with its advantages in terms of conver-
gence and handling in the application to highly deformable structures.
(Chapter 4)

Existing concepts and guidelines for the verification in the presence of
geometric non-linearity have been reviewed along with the underlying
principles of the Eurocodes. As a contribution to the development of a
future Eurocode for Membrane Structures, the classification of types of
non-linearity and corresponding possible verification scenarios have been
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investigated. The discussed examples, ranging from an analytical cable-
net structure to a full scale structural membrane, have allowed to make
propositions for future guidelines for the analysis and verification of tensile
structures. (Chapter 5)

Of course this thesis cannot cover all aspects related to the non-linear
behavior of lightweight structures resp. provide a perfect solution to all
raised challenges, hence further research is required.

In the design process of lightweight structures, especially of structural
membranes, the generation of cutting patterns is a crucial part. Here, the
determination of cutting patterns on the basis of an isogeometric geome-
try description and making use of the applied B-Rep edge elements could
bring substantial progress. The concept sketched in Section 3.3.3 of op-
timizing the cutting lines on the textile – corresponding to moving the
trimming curves on the flat surface – seems very promising in this context.

For the assembly of different structural members in a mounting simula-
tion of the structure to be built, the data handling and robustness of the
coupling still require further enhancement. A more general interpretation
of the side constraints for geometric coupling as proposed by Bauer in [15]
has already provided convincing first results.

Interpreting prestress as the resulting stress state from the mounting pro-
cess could also be an important step towards a more consistent consid-
eration of uncertainty and possible verification approaches: A sensitivity
analysis of the mounting process can help to identify sensitivities of the
structure w.r.t. variations in the model parameters like the material prop-
erties, the geometric execution accuracy or external loads. Based on these
sensitivities and the distribution of the corresponding scattering variables
in reality, a consistent and reliable verification approach could be estab-
lished, beyond pure negotiations of values for partial factors.

Thus the structural engineer is placed in an active and creative position.
In a long term this thesis shall have contributed to that aim by providing
methods and investigations towards a more accurate and deeper integrated
design, analysis and verification of lightweight structures.
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