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Abstract—We have developed a multi-phase SPH method to
simulate arbitrary interfaces containing surface active agents
(surfactants) that locally change the properties of the interface,
such the surface tension coefficient [1]. Our method incorporates
the effects of surface diffusion, transport of surfactant from/to
the bulk phase to/from the interface and diffusion in the bulk
phase. Neglecting transport mechanisms, we use this methodto
study the impact of insoluble surfactants on drop deformation
and breakup in simple shear flow.

I. I NTRODUCTION

Exposing drops to extensional flows such as e.g. a simple
Couette flow, the viscous forces along the interface tend to
deform the drop and elongate it to an ellipsoid-type shape. The
balancing force to stop the deformation due to the shearing
is the surface tension. When two pure fluids of different
types are in contact, the resulting surface tension force is
only proportional to the local curvature and normal to the
interface. Depending on the strength of this force and the
viscosity ratio between the two fluidsλ, drops are deformed to
a steady ellipsoid shape or break up. The correlation between
the breakup behaviour and the flow parameter is known as the
Grace curve [2].

Adding surface active agents (surfactants) to a multiphase
system can strongly alter the flow phenomena. Neglecting
the effect of such an additive on other material properties,
surfactants mainly change the surface tension coefficients
between two fluids when replacing fluid molecules at the
interface with surfactant molecules. Hence, surface tension
gradients along the interface can occur resulting in the so-
called Marangoni forces [3].

Here, we only focus on the case of insoluble surfactants,
i.e. surfactants are initially added to the interface and cannot
dissolve to the adjacent fluid phases. Bazhlekov et al. [4]
studied the effect of insoluble surfactants on drop deformation
and breakup in simple shear flow with a boundary-integral
method and clearly describe the different breakup modes.
But due to the nature of their method, an interface capturing
scheme is required and breakup is detected manually. By the
use of a Lagrangian particle method we avoid these algorithms
and handle interface deformations naturally.

In the following section we briefly introduce the governing
equations for multiphase flows with surfactants. Exemplarywe

show a 3D simulation with steady deformation and validate it
against analytical data. Finally we present a detailed study of
the different breakup modes where we focus on the effect of
tip streaming.

II. GOVERNING EQUATIONS

The isothermal Navier-Stokes equations are solved on a
moving Lagrangian frame

dρ

dt
= −ρ∇ · v , (1)

dv
dt

= g +
1

ρ

[

−∇p + F(ν) + F(s)
]

, (2)

whereρ, p, v, and g are material density, pressure, velocity
and body force, respectively.F(ν) denotes the viscous force
andF(s) is the interfacial surface force.

Following the weakly-compressible approach [5], an equa-
tion of state (EOS) is used to relate the pressure to the density

p = p0

(

ρ

ρ0

)γ

+ b , (3)

with γ = 7, the reference pressurep0, the reference density
ρ0 and a parameterb. These parameters and the artificial
speed of sound are chosen following a scale analysis presented
by Morris et al. [6] which determines the threshold of the
admissible density variation.

Assuming incompressibility, the viscous forceF(ν) simpli-
fies to

F(ν) = η∇2v , (4)

whereη is the dynamic viscosity. Following the continuum-
surface-tension model [7], the surface force can be expressed
as the gradient of the surface stress tensor with the surface
tension coefficientα

F(s) = ∇ · [α (I− n ⊗ n) δΣ] = − (ακn + ∇sα) δΣ . (5)

The Capillary forceακnδΣ is calculated with the curvatureκ,
the normal vector of the interfacen and the surface delta func-
tion δΣ. This expression describes the pressure jump condition
normal to an interface. In case of surface tension variations
along the interface (e.g., due to non-uniform temperature or
surfactant concentration) the Marangoni force∇sαδΣ results
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in a tangential stress acting along the interface (∇s is the
surface gradient operator∇s = (I− n ⊗ n)∇).

Assuming insolubility in the phases, the evolution of sur-
factant on the interface is governed by a diffusion equation

dΓ

dt
= ∇s · Ds∇sΓ , (6)

whereΓ andDs are the interfacial surfactant concentration and
the diffusion coefficient matrix (in case of isotropic diffusion
Ds = Ds · I), respectively.

To close our model, we relate the interfacial surfactant
concentrationΓ to the surface-tension coefficientα by a
constitutive equation. Widely used in literature, the Frumkin
isotherm or the Langmuir model [8]–[12] are known to agree
reasonably well with experimental data. But since we want to
study the effect of surfactants very generally, here we use a
simple linear relation betweenα andΓ.

III. N UMERICAL METHOD

We discretize our computational domain with Lagrangian
SPH particles and solve the governing equations for these
points using a quintic spline kernel. Here, we only briefly
recall the main aspects and refer to Adami et al. [1] for the
details of our method.

To ensure mass conservation in our multiphase SPH method
we do not solve the continuity equation (1) but calculate the
actual density of a particle via the sum

ρi = mi

∑

Wij . (7)

The indicesi and j refer to the particle of interesti and its
neighboursj, where the weighting functionW (xi − xj , h)
is non-zero. The smoothing lengthh is set as constant and
we usually chooseh = 1.5 ∗ ∆x (∆x is the initial particle
spacing).

Following Hu and Adams [13], the acceleration of particle
i due to the pressure and viscous force can be calculated from
interactions with neighbouring particles according to

dv(p)
i

dt
= −

1

mi

∑

j

(

V 2
i + V 2

j

) ρjpi + ρipj

ρi + ρj

∇W (xi − xj)

(8)
and

dv(η)
i

dt
=

1

mi

∑

j

(

V 2
i + V 2

j

) 2ηiηj

ηi + ηj

vi − vj

|xi − xj |
∇W (xi − xj)

(9)
with m, V , η and∇W (xi − xj) denoting the mass, volume,
dynamic viscosity and the gradient of the kernel function,
respectively.

To distinguish between particles of different fluid types we
introduce a simple color functionc that defines if a particle
belongs to a phase (ci = 1) or not (ci = 0). Whenever
particle i interacts with particles of another type, interface
forces between them are calculated via

dv(s)
i

dt
= −

1

mi

(αiκi −∇sαi)Ai , (10)

where κi = ∇ · n and Ai = |∇ci|Vi are the curvature
and the interfacial length of a particle near an interface. The
color gradient∇ci is obtained by an usual SPH gradient
approximation and we find the normal direction at an interface
from the normalized color gradients. For details of the surface
tension force formulation we refer to [14].

Finally, we solve the surfactant diffusion equation on par-
ticles which have a non-zero color gradient, i.e. particles
with neighbouring particles of another type. This ensures
automatically the insolubility condition and surfactant remains
on the interface during the entire simulation. Following [1] we
find

dmsi

dt
=

∑

j

(

λiV
2
i + λjV

2
j

)

∇W (xi − xj) , (11)

where λ = (I − n ⊗ n)Ds∇Γ |∇c| is the surfactant flux
projected in tangential surface direction andDs is the surface
diffusivity of surfactant. For numerical reasons we further
introduce a surfactant diffusion term in surface normal di-
rection with the diffusion coefficientDn, which helps to
ensure smooth concentration profiles normal to the interface.
This additional diffusion equation is required since a physical
singularity at the interface is approximated numerically with
a certain width and gradients in normal direction should be
diffused.

Time integration is performed with a velocity-verlet scheme,
where the time-step is chosen as the minimum of a CFL-
condition, a viscous condition and a surface-tension condition,
see [5], [15]. We use the Parallel Particle-Mesh (PPM) Library
of Sbalzarini et al. [16] in our implementation which allows
for large-scale simulations on parallel computer architectures.

IV. N UMERICAL EXAMPLES

In our first example we show a three-dimensional simulation
of a drop that is exposed to a shear flow and deforms to a
steady ellipsoid. At this sub-critical conditions the deforma-
tion can be calculated from a small-deformation theory by
Taylor [17] and we show good agreement with our method.
Introducing surfactants on the interface, we show that the
deformation is strongly influenced and can completely change
the behaviour of the droplet in the flow.

To visualize the results of our simulations we use the
softwarepv-meshless [18]. We extended this powerful open-
source package with some additional features to extract the
deformation parameter of three-dimensional simulations.

A. Sub-critical drop deformation

We put a drop of sizeR = 1 in the middle of a periodic
rectangular channel of sizeLx = 8R, Ly = 4R andLz = 4R
and move the upper and lower wall boundaries with a velocity
of ±u∞. At the boundaries inx-,y- and z-direction we use
periodic, symmetric and no-slip conditions, respectively. The
drop and the bulk phase have both the same densityρd =
ρb = 1. The capillary numberCa and the Reynolds number
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Re are defined based on the shear rateG = 2u∞/Lz, i.e.

Ca =
GηR

α
, Re =

ρGR2

η
. (12)

At small capillary and Reynolds numbers, the drop deforms
to a steady ellipsoid. The deformation parameterD = (a −
b)/(a + b) with the transverse diametera and the conjugate
diameter b of the ellipsoid is used to quantify the steady
deformation.

Fig. 1: Three-dimensional drop deformation in shear flow at
Re = 1, Ca = 0.2 and a resolution of3h = 0.15 at T = 25.

In Fig. 1 we show the steady-state solution atT = 25 for
a simulation with a resolution of3h = 0.15, i.e. a total of
1,024,000 particles. The capillary number isCa = 0.2, hence
the surface tension is strong compared to the shear forces and
the drop deforms to a steady ellipsoid. The viscosity ratio
Φη = ηd/ηb is set to one with a Reynolds number ofRe = 1.
The left half in Fig. 1 shows the actual particles and in the right
half we show the extracted surface contour of the interface.
Using this contour, we calculate the deformationD and plot
it over time, see Fig. 2.
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Fig. 2: Deformation parameterD over time for a drop in shear
flow with and without surfactant atCa = 0.2 andRe = 1.

The horizontal line in Fig. 2 shows the steady deformation
predicted from the analytic expression of Taylor [17]

D = Ca
16 + 19Φη

16 + 16Φη

(13)

with the parameterCa = 0.2 andΦη = 1. At early stages of
the simulation, the initially spherical drop deforms transiently
to an ellipsoid. Later, the steady deformation agrees well with
the analytical prediction.

Now we study the effect of the presence of surfactants
on a deforming interface for a drop in a shear flow at sub-
critical conditions, i.e. where a steady deformation is reached.
Therefore we simulate the same case with an initially uniform
surfactant concentration on the interface ofΓ = 1. The
correlation between the surfactant concentration and the local
surface tension coefficient is

α (Γ) = α̂ (1 − βΓ) . (14)

To avoid unphysical negative surface tension coefficients in Eq.
14 we useα (Γ) = max (α (Γ) , 0). In literature, other forms
for this correlation are available with asymptotic behaviour at
Γ >> 1, but for the purpose of general studies the simple
piecewise defined function is appropriate.

The slope of the surface tension functionβ is taken to be
1/3 and the maximum surface tension coefficientα̂ is 1.5-
times the surface tension coefficient of the clean interfaceα0.
Hence, at an initial surfactant concentration ofΓ = 1 the
capillary number for the drop with surfactant isCa = 0.2.
The surface Peclet numberPes is defined as

Pes =
GR2

Ds

, (15)

which is the ratio of surfactant advection with the flow and
diffusion along the interface with a diffusion coefficientDs.
Here, we usePes = 10.

In Fig. 3 we compare the x-z plane through the center of
the drop with and without surfactant atT = 10. The arrows
denote the velocity field and are coloured with the magnitude
of the velocity. For visibility we scaled all of them with a
constant factor.

Due to the deformation of the drop, surfactant accumulates
near the tips of the ellipsoid and the local concentration
increases. Consequently, the surface tension is reduced and to
balance the shear forces at the tips a higher curvature develops.
That results in a higher deformation, see also the evolutionof
the deformation parameter with time for this case in Fig. 2.
The more, the presence of the interfacial surfactant affects
the internal flow and the inclination angle with the x-axis
decreases.

At very low Peclet numbers, which is not shown here, an
effect called “surface dilution ”occurs. In that case diffusion is
stronger than advection of surfactant to the tips, i.e. surfactant
gradients are smoothed out very fast resulting in a nearly
uniform surfactant concentration along the interface. As the
total mass of surfactant does not change but the interfacial
area increases, the uniform surfactant concentration is lower
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(a) Clean interface

(b) Initial surfactant concentrationΓ = 1, Pes = 10, β = 1/3 and α̂ =

1.5 α0

Fig. 3: Velocity field and interfacial surfactant concentration
in a x-z plane through the center of the drop withCa = 0.2
andRe = 1 at T = 10.

than the initial concentration. Consequently, surface tension
increases and the deformation is lower compared to the clean
drop.

B. Super-critical drop deformation

When the shear forces are high compared to the surface
tension force, the drop does not deform to a steady ellipsoid
but breaks up into several smaller droplets. As a reference,
we simulated a clean droplet in a large box withLx = 18R,
Ly = 4R andLz = 4R at Ca = 0.4.

Fig. 4: Drop breakup in shear flow atT = 50 for a clean drop
with Ca = 0.4 andRe = 1.

Fig. 4 shows a snapshot of the drop particles atT = 50
for the reference case. After initially forming a long neck,the
drop breaks into several smaller droplets. These droplets are
then steadily deformed since the length-scale of these droplets,
hence the capillary number, is smaller.

Now we expose a surfactant enriched droplet withΓ = 1
andPes = 1 to the same shear flow. In Fig. 5 three snapshots
at T = 10, 30 and50 show the extracted surface contour with
a color map of the local surfactant concentration.

(a) T=10

(b) T=30

(c) T=50

Fig. 5: Drop deformation and breakup in simple shear flow
at Ca = 0.4, Re = 1 and Γ = 1: Extracted surface contour
with a color-map of the local surfactant concentration at three
different time steps.

Initially, the droplet strongly deforms and a neck is pro-
duced. As the interface is stretched but the total mass of surfac-
tant does not change, the maximum surfactant concentrationis
lower than the initial concentration, see Fig. 5a. At later times,
the neck becomes unstable and finally breaks up, see Fig. 5b
and 5c. Note also that now the highest surfactant concentration
occurs at the smallest droplet.

To further discuss the effect of surfactant during breakup we
compare two snapshots of the droplet atT = 35 with a clean
interface and a surfactant enriched interface. Fig. 6 shows
the velocity field and the surfactant concentration in the x-z
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(a) Clean interface

(b) [Initial surfactant concentrationΓ = 1, Pes = 1, β = 1/3 and α̂ =

1.5 α0

Fig. 6: Velocity field and interfacial surfactant concentration
in a x-z plane through the center of the drop withCa = 0.4
andRe = 1 at T = 35.

plane through the center of the drop for the two simulations.
The drop with a clean interface is much further stretched
and the unstable neck starts to narrow down. In contrast, the
surfactant enriched drop already split up and three separate
drops are formed. This example shows clearly the effect of
the Marangoni force, which is the tangential force due to
surface tension gradients on the interface. Initially surfactant
is advected to the tips resulting in surfactant gradients. The
resulting Marangoni forces try to retard the deformation,
hence the extensional stretch is smaller compared to the clean
interface. But as the neck becomes unstable like seen in Fig.
6a, the Marangoni effect amplifies the increasing curvatureat
the neck and the drop breaks up earlier. Not shown here, but
note that on the other hand the fragments of the drop with
surfactant are less deformed due to the surface dilution effect.

C. Tip streaming

When the Peclet numberPes is very high, diffusion of
surfactant along the interface is negligible and mostly allof
the surfactant is advected to the tips of the drop. Accordingly,
surface tension at the tips drops to zero and there is no force
to balance the viscous stress. This results in an unstable drop
that breaks into very small droplet filaments at the tips.

Fig. 7: tip streaming atT = 11

Fig. 7 shows a snapshot of the drop particles atT = 11.
The surface Peclet number in this example isPes = 100,

thus surface diffusion is very small. Accordingly, most of
the surfactant is advected to the tips of the drop leading to
locally very high concentrations. The maximum concentration
is Γ ≈ 3, see the legend in the figure. From the surface tension
correlation α (Γ) = α̂ (1 − βΓ) with β = 1/3 it follows
that the surface tension at the tips is zero. As the viscous
stress at the tips is not balanced by the surface tension force,
the drop breaks at the tips and a filament of small droplets
separates. This phenomenon is calledtip streaming. As the
tip stream carries a large portion of the surfactant mass away,
the concentration on the main drop is strongly decreased thus
surface tension is more dominant now. As a consequence,
the remaining slightly smaller drop is steadily deformed at
a smaller Capillary number compared to the initial status.

To explore the dominating effects duringtip streaming and
the breakup phenomenon, we performed several simulations
at various Peclet numbers and different surface tension corre-
lations. Fig. 8 shows the parameter range we studied and the
corresponding breakup behaviour. Starting from the reference
case withPes = 100, Γ = 1, β = 1/3, Ca = 0.4 and
Re = 1 we increase the surface diffusion and monitor the
breakup behaviour. The smaller the Peclet number, the stronger
is the surface diffusion to smooth out surfactant concentrations
along the interface. AtPes = 20 a mixture of the tip streaming
and drop breakup occurs and further decreasingPes shows a
pure breakup of the drop. Similar, with an increasing slope of
the surface tension correlationβ at the fixed Peclet number
Pes = 100 we can manipulate the tip streaming and get a
pure drop breakup. Note, the other parameter are adjusted to
start with the same initial reference conditions. A high slope
β means that small surfactant concentration gradients result in
strong Marangoni forces. Atβ > 0.125 this effect is strong
enough to retard the drop deformation and tip streaming does
not occur even though surface diffusion is very small.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  20  40  60  80  100

β

Pes = G R2 / Ds

Tip streaming
Breakup

Fig. 8: Breakup behaviour at various Peclet numbers and
different surface tension correlations.



5th international SPHERIC workshop Manchester, UK, June, 23-25 2010

V. CONCLUSION

We have developed a multiphase SPH method to simulate
interfacial flows with surfactant dynamics. In the present study
we only consider surface diffusion of insoluble surfactants, but
even more complex transport phenomena as adsorption and
coupling with bulk diffusion can be included. Our method
conserves mass of surfactant exactly, which is of special
importance for realistic long-term simulations. Comparison
with analytic solutions shows validity of our method and the
fully MPI-parallel implementation enables us to run complex
large-scale simulations. Using this method, we have studied
the three-dimensional drop deformation and breakup in simple
shear flow with and without surfactants.
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