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Abstract—We have developed a multi-phase SPH method to show a 3D simulation with steady deformation and validate it
simulate arbitrary interfaces containing surface active @ents against analytical data. Finally we present a detailedystid

(surfactants) that locally change the properties of th_e inerface, the different breakup modes where we focus on the effect of
such the surface tension coefficient [1]. Our method incorpates tip streaming

the effects of surface diffusion, transport of surfactant fom/to
the bulk phase to/from the interface and diffusion in the buk 0 G
phase. Neglecting transport mechanisms, we use this methad - GOVERNING EQUATIONS

study the impact of insoluble surfactants on drop deformaton The isothermal Navier-Stokes equations are solved on a
and breakup in simple shear flow. moving Lagrangian frame

. RODUCTION d
[. INT dp  _ Vv )
Exposing drops to extensional flows such as e.g. a simple Ellf/ 1
Couette flow, the viscous forces along the interface tend to o = 9+- [7vp+ FO) 4+ F&)| 2)
P

deform the drop and elongate it to an ellipsoid-type shape. T
balancing force to stop the deformation due to the shearindperep, p, v, andg are material density, pressure, velocity
is the surface tension. When two pure fluids of differernd body force, respectivelfe”) denotes the viscous force
types are in contact, the resulting surface tension force dadF(® is the interfacial surface force.

only proportional to the local curvature and normal to the Following the weakly-compressible approach [5], an equa-
interface. Depending on the strength of this force and thien of state (EOS) is used to relate the pressure to thetgensi
viscosity ratio between the two fluids drops are deformed to

vy
a steady ellipsoid shape or break up. The correlation betwee P =po (ﬁ) +0b, (3)
the breakup behaviour and the flow parameter is known as the Po
Grace curve [2]. with v = 7, the reference pressugg, the reference density

Adding surface active agents (surfactants) to a multiphagsg and a parameteb. These parameters and the artificial
system can strongly alter the flow phenomena. Neglectisgeed of sound are chosen following a scale analysis pesbent
the effect of such an additive on other material propertiesy Morris et al. [6] which determines the threshold of the
surfactants mainly change the surface tension coefficiemi$missible density variation.
between two fluids when replacing fluid molecules at the Assuming incompressibility, the viscous forg&” simpli-
interface with surfactant molecules. Hence, surface ¢ensifies to
gradients along the interface can occur resulting in the so- F) = nV3v | (4)
called Marangoni forces [3].

Here, we only focus on the case of insoluble surfactant¥herer is the dynamic viscosity. Following the continuum-
i.e. surfactants are initially added to the interface anuhoa Surface-tension model [7], the surface force can be expdess
dissolve to the adjacent fluid phases. Bazhlekov et al. [8f the gradient of the surface stress tensor with the surface
studied the effect of insoluble surfactants on drop defdiona te€nsion coefficient:
and breakup in simple shear flow with a boundary-integral —(s
method ané) clearlypdescribe the different breaku)p/) mo?jes.F( '=V la(I-n@n)s] =~ (arn+V.a)ds . (5)

But due to the nature of their method, an interface capturifitne Capillary forcexxndy, is calculated with the curvature
scheme is required and breakup is detected manually. By the normal vector of the interfaaeand the surface delta func-
use of a Lagrangian particle method we avoid these algosithition dx;. This expression describes the pressure jump condition
and handle interface deformations naturally. normal to an interface. In case of surface tension variation

In the following section we briefly introduce the governinglong the interface (e.g., due to non-uniform temperature o
equations for multiphase flows with surfactants. Exemplagy surfactant concentration) the Marangoni fof¢gads, results
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in a tangential stress acting along the interfakg (s the wherex; = V - n and 4, = |V¢]|V; are the curvature
surface gradient operat®s = (I —n®n) V). and the interfacial length of a particle near an interfadee T
Assuming insolubility in the phases, the evolution of sureolor gradientVe; is obtained by an usual SPH gradient
factant on the interface is governed by a diffusion equationapproximation and we find the normal direction at an intexfac
dr from the normalized color gradients. For details of the atef
— = V- DsViI', (6) tension force formulation we refer to [14].

dt . i .
wherel' andDyg are the interfacial surfactant concentration and Finally, we solve the surfactant diffusion equation on par-

S - L . Lo ticles which have a non-zero color gradient, i.e. particles
the diffusion coefficient matrix (in case of isotropic défon . : . .
. with neighbouring particles of another type. This ensures
Dy = D; - 1), respectively.

. . matically the insolubili ndition an rf in
To close our model, we relate the interfacial surfactarqyto atically the insolubility condition and surfactaetnains

concentrationl’ to the surface-tension coefficient by a oh the interface during the entire simulation. Following\ide

constitutive equation. Widely used in literature, the Fkim find

isotherm or the Langmuir model [8]-[12] are known to agree dms; AV2 40V VIV

. . . —_— = iV iV Xi —Xj) 11
reasonably well with experimental data. But since we want to dt Z ( A ) ( i) (11)
study the effect of surfactants very generally, here we use a !
simple linear relation betweem andT". where A = (I —n®n)D,VI'|Vc| is the surfactant flux

projected in tangential surface direction abd is the surface
diffusivity of surfactant. For numerical reasons we furthe
We discretize our computational domain with Lagrangiaftroduce a surfactant diffusion term in surface normal di-
SPH particles and solve the governing equations for theggtion with the diffusion coefficientD,,, which helps to
points using a quintic spline kernel. Here, we only brieflénsure smooth concentration profiles normal to the interfac
recall the main aspects and refer to Adami et al. [1] for thehis additional diffusion equation is required since a ptais
details of our method. singularity at the interface is approximated numericaligphw
To ensure mass conservation in our multiphase SPH methp@ertain width and gradients in normal direction should be
we do not solve the continuity equation (1) but calculate theffused.
actual density of a particle via the sum Time integration is performed with a velocity-verlet sclem
0 = miZWij _ @) Wher_e_ the time-step is ghosen as the minimum of_a C_ZFL-
condition, a viscous condition and a surface-tension ¢mrgi
The indicesi and j refer to the particle of interestand its see [5], [15]. We use the Parallel Particle-Mesh (PPM) Lipra
neighbours;j, where the weighting functio® (x; — «;,h) of Sbalzarini et al. [16] in our implementation which allows
is non-zero. The smoothing lengthis set as constant andfor large-scale simulations on parallel computer archibess.
we usually choosé = 1.5 x Az (Ax is the initial particle
spacing). IV. NUMERICAL EXAMPLES
Following Hu and Adams [13], the acceleration of particle . . . . .
1 due to the pressure and viscous force can be calculated fro[ﬁn our first exz_ample we show a three-dimensional simulation
a drop that is exposed to a shear flow and deforms to a

. . . . . . . 0
interactions with neighbouring particles according to . . . . e
¢ gp 9 steady ellipsoid. At this sub-critical conditions the defa-

I1l. NUMERICAL METHOD

dvl(.p) 1 9 o\ PiPi + piD; tion can be calculated from a small-deformation theory by

a om, Z (V> +V7) i + VIV (xi = %)) Taylor [17] and we show good agreement with our method.

J (8) Introducing surfactants on the interface, we show that the

and deformation is strongly influenced and can completely ckang

- the behaviour of the droplet in the flow.
dv;" 1 2nim; Vi — V; cuali i i

i _Z (V2+V2) j LW (% — X;) To visualize the results of our simulations we use the

dt mi = ’ T mi oy X =X ! softwarepv-meshless [18]. We extended this powerful open-

(9) source package with some additional features to extract the
with m, V, n and VW (x; — X;) denoting the mass, volume,deformation parameter of three-dimensional simulations.
dynamic viscosity and the gradient of the kernel function,
respectively. A. Sub-critical drop deformation
. To distingui.sh between partiples of diffe.rent f_Iuid types we g put a drop of sizek — 1 in the middle of a periodic
introduce a simple color function that defines if a particle rectangular channel of size, = 8R, L, = 4R and L. = 4R
belongs to a phaser( = 1) or not {; = 0). Whenever o4 move the upper and lower wall boundaries with a velocity
particle ¢ interacts with particles of a_nother type, interfacgy +u... At the boundaries in--,y- and z-direction we use
forces between them are calculated via periodic, symmetric and no-slip conditions, respectiv@lye

dvz(.s) 1 drop and the bulk phase have both the same density=

a  my (airi = Vsai) 4; (10) py» = 1. The capillary numbet’a and the Reynolds number
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Re are defined based on the shear r@te- 2u,/L., i.e. The horizontal line in Fig. 2 shows the steady deformation
) predicted from the analytic expression of Taylor [17]
Ca= G g PCE (12) b g L6+ 190, 13
@ " 16 + 16®,,

At small capillary and Reynolds numbers, the drop deformgith the paramete€a = 0.2 and ®,, = 1. At early stages of

to a steady ellipsoid. The deformation paramefer= (a — the simulation, the initially spherical drop deforms trizmsly
b)/(a + b) with the transverse diameterand the conjugate to an ellipsoid. Later, the steady deformation agrees with w
diameterb of the ellipsoid is used to quantify the steadyhe analytical prediction.

deformation. Now we study the effect of the presence of surfactants
on a deforming interface for a drop in a shear flow at sub-
critical conditions, i.e. where a steady deformation i<hesl.
Therefore we simulate the same case with an initially unifor
surfactant concentration on the interface Iof = 1. The
correlation between the surfactant concentration andaba! |
surface tension coefficient is

a(T)=a(1 - 6r). (14)

To avoid unphysical negative surface tension coefficienEj.
14 we usex (T") = max (« (T"),0). In literature, other forms
for this correlation are available with asymptotic behaviat
I' >> 1, but for the purpose of general studies the simple
piecewise defined function is appropriate.

The slope of the surface tension functiGnis taken to be
Fig. 1: Three-dimensional drop deformation in shear flow aY3 and the maximum surface tension coefficients 1.5-
Re =1, Ca=0.2 and a resolution o8h = 0.15 at "= 25.  times the surface tension coefficient of the clean interface

Hence, at an initial surfactant concentration Iof= 1 the

In Fig. 1 we show the steady-state solutioniZat= 25 for capillary number for the drop_ with _surfactant % = 0.2.
a simulation with a resolution ofh = 0.15, i.e. a total of 1he surface Peclet numbete; is defined as
1,024,000 particles. The capillary numberCis = 0.2, hence GR?

the surface tension is strong compared to the shear foreks an Pes = D, (15)

the drop deforms to a steady ellipsoid. The viscosity r""tlﬁhich is the ratio of surfactant advection with the flow and

Dy = na/m i_s SF‘_'t to one with a Reynolds _number]@_é =1 . diffusion along the interface with a diffusion coefficief;.
The left half in Fig. 1 shows the actual particles and in tigatri Here. we usePe. — 10

hallf Weh§h0W the extractelzd Isurfa<r:]e Zorfltour o_f thedmtierface.In Fig. 3 we compare the x-z plane through the center of
Using this contour, we calculate the deformatibnand plot . drop with and without surfactant @t
it over time, see Fig. 2.

= 10. The arrows
denote the velocity field and are coloured with the magnitude
of the velocity. For visibility we scaled all of them with a

0-35 Ca=0.2, Re=1, ® =1, clean interface o constant factor. .
Tayior (1934), A = 1 Due to the deformation of the drop, surfactant accumulates
037 om0z I.?e,:l’ n=h Peszlo_’ﬁ_zl-m. o near the tips of the ellipsoid and the local concentration
g 0.25 | . R S < increases. Consequently, the su_rface t_ension is reducktban
X . balance the shear forces at the tips a higher curvatureajeel
& o2t S PrgeerSie T BT S e E That results in a higher deformation, see also the evoluifon
2 S the deformation parameter with time for this case in Fig. 2.
g o015 F 1 The more, the presence of the interfacial surfactant affect
g o1l f | the internal flow and the inclination angle with the x-axis
a T decreases.
0.05 - i At very low Peclet numbers, which is not shown here, an
effect called “surface dilution "occurs. In that case diffon is
0 —= 5 . . . " " stronger than advection of surfactant to the tips, i.e.catiaint

Time t[] gradients are smoothed out very fast resulting in a nearly
) ) _ ) uniform surfactant concentration along the interface. Be t
Fig. 2: Deformation parametep over time for a drop in shear o1a] mass of surfactant does not change but the interfacial
flow with and without surfactant af'a = 0.2 and Re = 1. area increases, the uniform surfactant concentrationvigrio
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Fig. 4 shows a snapshot of the drop particlesl'at 50
for the reference case. After initially forming a long netike
drop breaks into several smaller droplets. These droplets a
then steadily deformed since the length-scale of thesdeatsp
hence the capillary number, is smaller.

Now we expose a surfactant enriched droplet with= 1
and Peg; = 1 to the same shear flow. In Fig. 5 three snapshots
atT = 10, 30 and50 show the extracted surface contour with
a color map of the local surfactant concentration.

Gamma
P.B 16986

0.675174

(b) Initial surfactant concentratiof’ = 1, Pes = 10, § = 1/3 and& =
1.5 ag

Fig. 3: Velocity field and interfacial surfactant concetitra
in a x-z plane through the center of the drop witla = 0.2
andRe =1 atT = 10.

0.778817
0.76
0.72
0.68

0.640853

than the initial concentration. Consequently, surfacesiten
increases and the deformation is lower compared to the clei
drop.

B. Super-critical drop deformation (c) T=50

When the shear forces are high compared to the surfggg 5. prop deformation and breakup in simple shear flow

tension force, the drop does not deform to a steady ellipsQiff~, — 04 Re — 1 andT = 1: Extracted surface contour

but breaks up into several smaller droplets. As a referengey, 5 color-map of the local surfactant concentration atéh
we simulated a clean droplet in a large box with = 18R,  qitterent time steps.

L,=4R andL, =4R atCa = 0.4.

Initially, the droplet strongly deforms and a neck is pro-
duced. As the interface is stretched but the total mass &sur
tant does not change, the maximum surfactant concentrigtion

’ "‘ - lower than the initial concentration, see Fig. 5a. At |aberets,
the neck becomes unstable and finally breaks up, see Fig. 5b
and 5c. Note also that now the highest surfactant concéarirat
occurs at the smallest droplet.
To further discuss the effect of surfactant during breakep w
i ) compare two snapshots of the dropletlat 35 with a clean
Fig. 4: Drop breakup in shear flow @t = 50 for a clean drop jnterface and a surfactant enriched interface. Fig. 6 shows
with Ca = 0.4 and Re = 1. the velocity field and the surfactant concentration in the x-
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thus surface diffusion is very small. Accordingly, most of
the surfactant is advected to the tips of the drop leading to
locally very high concentrations. The maximum concentrati
isT =~ 3, see the legend in the figure. From the surface tension
correlation o (T") & (1—gr) with 5 = 1/3 it follows

that the surface tension at the tips is zero. As the viscous
stress at the tips is not balanced by the surface tensior,forc
the drop breaks at the tips and a filament of small droplets
/m emma  Separates. This phenomenon is caltgd streaming. As the

oo tip stream carries a large portion of the surfactant masy,awa
- ) 060 the concentration on the main drop is strongly decreasesl thu
(b) [Initial surfactant concentratiof = 1, Pes = 1, 8 = 1/3 and& = . . .
15 ao surface tension is more dominant now. As a consequence,

) o . ) ) the remaining slightly smaller drop is steadily deformed at
Fig. 6: Velocity field and interfacial surfactant concetite 5 smaller Capillary number compared to the initial status.

in a x-z plane through the center of the drop witla = 0.4 o . .
andRe = 1 atT = 35. To explore the dominating effects duritig streaming and

the breakup phenomenon, we performed several simulations
at various Peclet numbers and different surface tensiome€or

plane through the center of the drop for the two simulation&tions. Fig. 8 shows the parameter range we studied and the
The drop with a clean interface is much further stretché&®responding breakup behaviour. Starting from the refeze
and the unstable neck starts to narrow down. In contrast, @S¢ WithPe, = 100, I' = 1, 5 = 1/3, Ca = 0.4 and
surfactant enriched drop already split up and three separ&¢ = 1 We increase the surface diffusion and monitor the
drops are formed. This example shows clearly the effect Bféakup behaviour. The smaller the Peclet number, thegsron
the Marangoni force, which is the tangential force due t§ the surface diffusion to smooth out surfactant concéntia
surface tension gradients on the interface. Initially actdnt @l0ong the interface. APe,; = 20 a mixture of the tip streaming

is advected to the tips resulting in surfactant gradients T&nd drop breakup occurs and further decreaging shows a
resulting Marangoni forces try to retard the deformatioffUre breakup of the drop. Similar, with an increasing slope o
hence the extensional stretch is smaller compared to tiaa cld€ surface tension correlatigh at the fixed Peclet number
interface. But as the neck becomes unstable like seen in Figis = 100 we can manipulate the tip streaming and get a
6a, the Marangoni effect amplifies the increasing curvaatre PUré drop breakup. Note, the other parameter are adjusted to
the neck and the drop breaks up earlier. Not shown here, Bt With the same initial reference conditions. A highpslo
note that on the other hand the fragments of the drop wifhmeans that small surfactant concentration gradientstriesul

surfactant are less deformed due to the surface dilutieceff Srong Marangoni forces. A > 0.125 this effect is strong
enough to retard the drop deformation and tip streaming does

C. Tip streaming not occur even though surface diffusion is very small.

When the Peclet numbePe, is very high, diffusion of
surfactant along the interface is negligible and mostlyoéll

the surfactant is advected to the tips of the drop. Accotlging 0.4 : : : : :
surface tension at the tips drops to zero and there is no force 035 | |
to balance the viscous stress. This results in an unstabfe dr ' X ® O © ©
that breaks into very small droplet filaments at the tips. 03 r 1
0.25 | 1
Q 0.2 | 1
[©)
s : TR 0.15 | i
Gamma et
3163631071 01 Tipstreaming O ]
3 Breakup X
‘o 0.05 - 1
0 1 1 1 1 1
0 20 40 60 80 100
Pe,=GR?/ D,
Fig. 7: tip streaming af" = 11 Fig. 8: Breakup behaviour at various Peclet numbers and

different surface tension correlations.
Fig. 7 shows a snapshot of the drop particles'at 11.
The surface Peclet number in this exampleHs; = 100,
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V. CONCLUSION [15] X. Hu and N. Adams, “A multi-phase SPH method for macopsc
) ) and mesoscopic flowsJ. Comput. Phys., vol. 213, no. 2, pp. 844-861,
We have developed a multiphase SPH method to simulate 2006. _ '
interfacial flows with surfactant dynamics. In the presentlg [16] |- Sbalzarini, J. Walther, M. Bergdorf, S. Hieber, E. talis, and

. . . . P. Koumoutsakos, “PPM - a highly efficient parallel particiesh library
we only consider surface diffusion of insoluble surfacsabtit for the simulation of continuum systemsl’ Comput. Phys., vol. 215,

even more complex transport phenomena as adsorption and no. 2, pp. 566-588, 2006.

coupling with bulk diffusion can be included. Our methodit?7] G. Taylor, “The formation of emulsions in definable figlaf flow,”
. . . Proc. Roy. Soc. London Ser. A, pp. 501-523, 1934.
conserves mass of surfactant exactly, which is of specjg; ; Biddiscombe, D. Graham, and P. Maruzewski, “Visation and

importance for realistic long-term simulations. Companis analysis of SPH dataFRCOFTAC Bulletin, vol. 76, pp. 9-12, 2008.
with analytic solutions shows validity of our method and the

fully MPI-parallel implementation enables us to run comple

large-scale simulations. Using this method, we have studie

the three-dimensional drop deformation and breakup inlgmp

shear flow with and without surfactants.
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