
Sabine Maria Teufl

Seamless Model-based

Requirements Engineering:

Models, Guidelines, Tools

Institut für Informatik
der Technischen Universität München

Seamless Model-based Requirements

Engineering: Models, Guidelines, Tools

Sabine Maria Teufl

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Prof. Gudrun J. Klinker, Ph.D.

Prüfer der Dissertation:

1. Prof. Dr. Dr. h.c. Manfred Broy

2. Prof. Dr. Barbara Paech

Universität Heidelberg

Die Dissertation wurde am 23.05.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 02.09.2017 angenommen.

Abstract

Quality factors of development artifacts are characteristics that positively or nega-
tively influence the development of a system or the system itself. Negative quality
factors we call quality issues. Early detection of quality issues saves resources and
leads to better products. Requirements engineering (RE) provides the means to avoid
and detect quality issues in the requirements specification. In a seamless develop-
ment approach, RE also aids the identification of quality issues during the process-
ing of requirements in subsequent development artifacts. In model-based RE, models
are constituents in the development process. A broad variety of model-based quality
assurance (QA) techniques have been developed; each of which addresses specific as-
pects in the prevention and identification of quality issues in the requirements speci-
fication and in the processing of requirements. However, these techniques have been
researched and evaluated in isolation; little effort has been undertaken to integrate
them.

The integration of a set of model-based QA techniques into a common approach has
several benefits. Combining QA techniques increases the coverage of relevant qual-
ity factors. Furthermore, the specification effort can be reduced by reusing common
information between the QA techniques. The integration yields four challenges: The
selection of QA techniques to address relevant quality factors; practitioners demand
the specification of requirements both as unconstrained prose and using a formal rep-
resentation; an integration in a seamless development approach; an adequate guid-
ance and tool support, which is indispensable for advanced QA techniques. As both
the benefits and challenges of the integration are still present when focusing on meth-
ods specific for functional requirements, this thesis narrows its scope to functional
requirements.

The first contribution of this thesis is a systematic investigation of essential char-
acteristics of a model-based RE approach to enable effective and efficient model-
based QA. The development of the individual QA techniques is not part of the thesis.
The second contribution is the construction of a seamless model-based RE approach
called Model-based Integrated Requirements Analysis1 (MIRA). MIRA addresses the
four challenges and operationalizes the essential characteristics identified in the first
contribution. MIRA combines a set of model-based specification and QA techniques
and integrates them in a seamless development approach. MIRA provides guidance
and tool support to address the adequacy, consistency, completeness and unambigu-
ousness of functional requirements and the adequacy of their realization. The third
contribution is the application of MIRA in case studies in the embedded software
and systems domain. These case studies were conducted in collaboration with in-
dustrial partners and are based on industrial specifications. A case study of a train
control system demonstrates the effective applicability of MIRA for quality assurance
with concrete findings and the scalability of MIRA to the size of a system function.
MIRA is designed to be extensible in order to compensate the limitation to functional
requirements. A second case study in the avionics domain demonstrates this exten-
sibility of MIRA with further types of requirements. Additional case studies indicate
that MIRA is also applicable in a broader context.

1The term ‘requirements analysis’ is often used as a synonym for ‘requirements engineering’.

Acknowledgements

I would like to thank all the people who supported me in many ways during the
work on this thesis.

First of all, I would like to thank my supervisor, Prof. Manfred Broy, for advice and
feedback on the thesis and for providing support whenever I needed it. I also would
like to thank Prof. Barbara Paech for her help as second supervisor.

Furthermore, I thank all my colleagues from the fortiss research institute and the
research group Software & Systems Engineering for their collaboration, interesting
discussions and a pleasant working environment. In particular, I want to thank
Dongyue Mou, Daniel Ratiu, Maged Khalil, Florian Hölzl, Vincent Aravantinos, Se-
bastian Voss, Levi Lúcio, and Bernhard Schätz from fortiss and Andreas Vogelsang,
Wolfgang Böhm, Veronika Bauer, Henning Femmer, Jakob Mund, Max Junker, Jonas
Eckhardt and Daniel Mendez Fernandez from the research group Software & Sys-
tems Engineering. I would like to thank all the administrators at fortiss and TUM, in
particular Silke Müller, Helge Hansemann and Monika Glashauser. Special thanks
to the research partner Siemens Rail and in particular to Ralf Pinger for the collabo-
ration in our research project.

Last but not least, my friends and family who supported me in every possible way
deserve a very warm thanks, especially my parents Edeltraud and Günther, my
brother Toni and sister Anna, Johanna Fink and Mav.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Solution . 5
1.4 Contribution . 6
1.5 Integrated Approaches . 8
1.6 Running Example . 10
1.7 Outline . 11

2 Background 13
2.1 Requirements Engineering . 13
2.2 Quality Assurance . 16
2.3 Model-based Requirements Engineering 18

3 Related Model-based RE Approaches 39
3.1 Research Method . 39
3.2 Study Results . 44
3.3 Discussion of Related Work . 45
3.4 Threats to Validity and Limitations . 51
3.5 Conclusion . 52

4 Model-based Quality Assurance in RE 55
4.1 Research Method . 57
4.2 Threats to Validity and Limitations . 60
4.3 System Quality Factors . 62
4.4 Concepts of the Requirements Specification 66
4.5 Automated Analytical Quality Assurance 69
4.6 Constructive Quality Assurance . 74
4.7 Related Work . 78
4.8 Conclusion . 78

5 Requirements for Model-based RE Tools 81
5.1 Research Method . 82
5.2 Study Results . 87
5.3 Discussion: Tool Support for Quality Assurance 95
5.4 Threats to Validity and Limitations . 98

5.5 Related Work . 100
5.6 Conclusion . 102

6 The MIRA Artifact Reference Structure 103
6.1 Related Work . 104
6.2 The MIRA Artifact Reference Structure 104
6.3 The MIRA Artifact Reference Structure in the System and Software

Development . 123
6.4 Summary and Discussion . 125

7 The MIRA Guideline 129
7.1 Integrated Approaches . 129
7.2 Overview . 130
7.3 Textual Specification . 131
7.4 Formal Specification . 137
7.5 Quality Assurance . 141
7.6 Summary and Discussion . 149

8 The MIRA Tool 153
8.1 Implementation Context . 153
8.2 Implementation of the MIRA Tool . 154
8.3 Summary . 165

9 Industrial Case Studies 167
9.1 Case Study on Applicability and Effectiveness 168
9.2 Case Study on Extensibility . 186
9.3 Further Studies with MIRA . 189
9.4 Conclusion . 190

10 Summary and Outlook 193
10.1 Summary . 193
10.2 Outlook . 198

Bibliography 213

Chapter 1
Introduction

The topic of this thesis is the development of a model-based requirements engineer-
ing approach for specifying functional requirements. The aim of the approach is
to improve the quality of functional requirements and their realization in the archi-
tecture using model-based quality assurance techniques. The approach integrates
existing, proven methods and models in order to address a broad range of quality
issues.

1.1 Motivation

A major goal of Requirements Engineering (RE) is to obtain a consolidated agreement
of all relevant stakeholders of a system under development on what the system
should accomplish. A requirements specification documents the results of RE. The re-
quirements specification is not an end in itself. The requirements specification is an
input document for further development activities; the system is designed, imple-
mented and tested. The system should conform to the requirements specification
in order to obtain a system that corresponds to the stakeholders’ expectations. As
the requirements specification is a central document in the development process, its
quality is of crucial importance.

The quality of a requirements specification can impact development activities.
Through the development activities it can even impact subsequent development ar-
tifacts. A low-quality requirements specification may for example increase the de-
velopment effort. An incomplete requirements specification may lead to missing
functionality of the developed product. If these problems are detected late in the de-
velopment process, then subsequent development artifacts may have to be revised
and corrected, for example, tests and documentation. Development activities such
as testing may have to be repeated. Boehm and Papaccio [BP88] claim that fixing or
reworking software in late phases of the software life cycle is 50 to 200 times more
expensive than in early phases. Therefore, a high quality requirements specification
and a high quality transition of information contained in the requirements specifica-
tion to subsequent artifacts can save resources and lead to better products.

The quality of an artifact can be captured by quality factors. A quality factor, or syn-

1

1.1 Motivation

onymously called quality attribute, is a “feature or characteristic that affects an item’s
quality” [ISO10]. Quality factors with a negative impact on development activities
or subsequent artifacts are called quality issues. Quality Assurance (QA) is a common
means in RE to improve the quality of the system under development at the require-
ments level. QA can be addressed constructively and analytically. Constructive QA
uses adequate means during the specification of requirements to avoid the introduc-
tion of quality issues. Analytical QA aims to detect quality issues by investigating the
requirements specification and subsequent development artifacts after their creation.
Analytical QA activities on the requirements specification are:

• The analysis aims to detect quality issues within the documented requirements
that effect subsequent development activities such as inconsistencies [CA07].

• The validation aims to ensure that the documented requirements correspond to
the actual needs of the involved stakeholders.

• The verification aims to ensure that a subsequent development artifact imple-
ments the documented requirements adequately.

To increase the quality of the system under development at the requirements level,
the requirements specification should be designed to support these QA activities. In
model-based RE, a broad variety of approaches has been developed to support QA.
Model-based RE approaches provide structural rules and a vocabulary in a modeling
language for the documentation of the entities, relationships, behavior, and con-
straints of the problem being modeled [CA07]. In the model-based specification, the
defined structural rules and vocabulary are applied to create models. The process of
creating precise models can uncover details that were missed in the initial elicitation
and help to raise the level of abstraction in the description of requirements [CA07].
Model-based QA refers to the application of model-based QA techniques that make use
of the structural rules and the vocabulary by applying precise rules for the interpre-
tation of the models.

While model-based approaches promise an effective quality assurance, such an ap-
proach faces four major challenges. Model-based techniques are typically limited in
their expressiveness due to a restricted syntax and semantics. A model-based RE
approach needs to overcome this limitation. Quality assurance has many facets and
should ensure that: quality issues in the requirements specification do not adversely
affect or even impede subsequent development activities; that the documented re-
quirements correspond to the actual needs of the involved stakeholders; and that
subsequent development artifacts implement the documented requirements ade-
quately. An operationalization of model-based RE requires guidance and tool sup-
port to apply a model-based RE approach effectively and efficiently.

The state of the art in RE is a collection of technologies like modeling languages and
techniques for either requirements analysis, validation or verification. This broad va-
riety of models and model-based methods often has been “researched and evaluated
in isolation, with little knowledge of how to combine techniques effectively” [CA07].

2

1 Introduction

1.2 Problem Statement

The following challenges exist for the model-based specification and QA of require-
ments. Isolated solutions for these challenges have been developed in research or
are already applied in practice. Nonetheless, a holistic solution that addresses all of
these challenges is still missing.

Challenge 1: Supporting the Textual and Formal Representation of Require-
ments. Many practitioners in the embedded systems domain are dissatisfied with
using natural language for the specification of requirements [STP12]. One of the main
reasons for the dissatisfaction is the high effort for QA. Model-based techniques, par-
ticularly formal techniques, have been proven suitable to enable an effective and
efficient QA. However, practitioners “do not wish to replace natural language re-
quirements with requirement models, but that they wish to amend them" [STP12],
as natural language enables the negotiation of requirements amongst the various
stakeholders [STP12]. Furthermore, formal techniques are limited in their expres-
siveness. RE research should provide methods enabling the joint use of natural lan-
guage requirements and requirement models [STP12]. In a heterogenous requirement
specification, requirements can be represented in different forms, for example, in natu-
ral language or formally. Where necessary, this also allows for the same requirement
to be represented in more than one representation form in the requirements speci-
fication. Hence, an effective model-based RE approach for quality assurance must
also recognize and support heterogeneity. Currently, few approaches provide sup-
port for the quality assurance on heterogeneous requirement specifications. These
approaches provide only limited or no solutions for the remaining challenges.

Challenge 2: Covering the Analysis, Validation and Verification of Require-
ments. In the field of semi-formal and formal modeling languages, a broad vari-
ety of techniques and approaches has been developed for the various QA activities
[Eza15]. Only few of these approaches cover all QA activities; the analysis, validation
and verification of requirements. For each model-based QA technique, the require-
ments specification has to exhibit specific characteristics. For example, the require-
ments specification has to contain specific information or has to be represented using
a modeling language with specific characteristics. These characteristics are quality
factors with respect to quality assurance. For an effective combination of QA tech-
niques, a systematic investigation and consolidation of these quality factors and their
combined impacts on QA activities in an industrial context is required.

Challenge 3: Integrated in a Seamless Development Approach. Model-based
development approaches often either do not define the artifacts that are to be created
during the system development, or the artifacts are based on separate and unrelated
modeling theories [BFH+10]. This impedes the transition from one artifact to an-
other in the development process [BFH+10]; the transition is unclear and error-prone.
When the transition is unclear, requirements cannot be incorporated systematically
into subsequent development artifacts. This negatively impacts the verification of
subsequent development artifacts against their requirements. Seamless model-based

3

1.2 Problem Statement

development provides mechanisms for a systematic transition in the development pro-
cess: a) A comprehensive system modeling theory serves as a semantic domain for
the formal definition of the system under development; b) an integrated architec-
tural model describes the detailed structure of the product (the product model) and
the process to develop it; and c) a mechanism to build tools that conform to the mod-
eling theory and allow the authoring of the product model [BFH+10].

1.2.1 Challenge 4: Providing Guidance and Tool Support for
Challenges 1 - 3

Sikora et al. [STP12] showed in a study that practitioners have a strong demand
for model-based approaches for requirements quality assurance. Such an approach
should provide guidance about how to use models in the RE process. Participants
stated that the "lack of appropriate method guidance” [STP12] is a major hindrance
to the more intensive use of models in RE and, in addition, a lack of commercial
tool support integrating these models in a seamless development process. Further-
more, model-based QA techniques can and often must be automated by tools to be
efficiently applicable [vL09, p. 145]. A systematic investigation of the requirements
from industry on such guidance and tool support is still missing.

1.2.2 Problem

We miss a comprehensive RE approach for the model-based specification, analysis,
validation and verification of requirements for both textual and formal representa-
tions that is integrated in a seamless development approach and provides method
and tool support.

Solving this problem would help practitioners in developing high quality artifacts
at early development phases. Furthermore, such a model-based RE approach would
enable tool vendors to build a comprehensive tool to increase the efficiency of QA.

The main objective of this thesis is to investigate the different facets of model-based
RE for quality assurance, to develop a holistic approach that incorporates these facets
and to demonstrate that the resulting approach is effectively applicable in industry.
As the benefits and challenges are still present when focusing on functional require-
ments, this thesis narrows its scope to improving the quality of functional require-
ments. The functional requirements investigated in this thesis are those requirements
that define the required logical interface behavior of the system under development.
Furthermore, this thesis has a scope on embedded software and systems. Summariz-
ing the four challenges, the guiding research question for this thesis is:

How to specify functional requirements in a seamless model-based development ap-
proach for embedded software and systems engineering in order to enable the model-
based analysis, validation and verification for both textual and formal representa-
tions?

4

1 Introduction

1.3 Solution

This thesis investigates the four challenges and constructs and evaluates a solution
to these challenges in the form of a model-based RE approach that provides concrete
step-by-step guidance and that is supported by a tool. The resulting approach is
called Model-based Integrated Requirements Analysis (MIRA).

This thesis investigates and integrates three very different kinds of model that can be
applied for RE. An artifact reference structure defines a blueprint of the contents and
dependencies of the results elaborated and documented during software and systems
engineering. These results are materialized in artifacts. A system model abstracts from
the system under development. This thesis is based on the mathematical and logical
system modeling theory FOCUS [BS01]. Specification techniques provide rules on a
concrete syntax and semantics for the representation of parts of the requirements
specification.

The MIRA approach consists of such an artifact reference structure, a guideline, and
a tool.

• The MIRA artifact reference structure defines a set of concepts, their attributes,
representation forms and dependencies to be specified during RE. Instantiating
the artifact reference structure results in a requirements specification. The ar-
tifact reference structure includes the main concepts and modeling paradigms
recommended by the integrated approaches.

• The MIRA guideline provides instructions for the requirements specification and
quality assurance of functional requirements. The guideline consolidates the
activities and model-based QA techniques recommended by the integrated ap-
proaches and tailors them to the MIRA artifact reference structure.

• The MIRA tool implements support to instantiate the artifact reference struc-
ture and to conduct the guideline. It demonstrates the feasibility to implement
the MIRA approach. The tool provides automation for the model-based QA
techniques.

The MIRA approach addresses the four challenges as follows:

Challenge 1 (Textual and Formal Representation). The MIRA artifact reference
structure incorporates both the textual and formal representation of functional re-
quirements. The MIRA tool provides model-based techniques for the quality assur-
ance of both textual and formal requirements. Their application is described in the
MIRA guideline.

Challenge 2 (Quality Assurance). We conducted a study to systematically inves-
tigate model-based techniques to cover the different QA activities. The implementa-
tion of the MIRA artifact reference structure as a data model in the MIRA tool pro-
vides mechanisms to check a requirements specification for syntactic aspects of com-
pleteness and consistency [MF11]. Formal specification techniques promise greater
precision in the formulation of statements. Formal specification techniques addition-
ally offer precise rules for their interpretation, thereby enabling a formal analysis. A

5

1.4 Contribution

system model that is underlying the formal specification techniques enables a formal
verification of architectural models against their functional requirements.

Challenge 3 (Seamless Development). MIRA is defined as a part of a system
modeling framework that structures the artifacts developed during software and
systems engineering. Based on this framework, the MIRA artifact reference struc-
ture defines how functional requirements are embedded in a seamless development
approach.

Challenge 4 (Guidance and Tool Support.) In a study, we investigated the re-
quirements for a model-based RE approach in practice. By providing a solution for
these requirements, the MIRA guideline and the MIRA tool addresses the challenge
for guidance and tool support.

By providing an operationalization of seamless model-based RE in a holistic ap-
proach, we aim to uncover gaps in existing approaches that address the four chal-
lenges. We also seek to identify open research questions with respect to model-based
RE. This thesis discusses these gaps and, whenever possible, suggests a potential
solution.

1.4 Contribution

The first part of this thesis systematically analyzes the essential characteristics that
a model-based RE approach should possess in order to address the four challenges.
The first study investigates model-based quality assurance. The second study inves-
tigates the requirements for a model-based RE approach in practice. The second part
of this thesis introduces the MIRA approach that was developed based on the results
of the studies. We used the results of the initial two studies to choose and adopt a set
of established and proven RE approaches. In an explorative bottom-up method, we
integrated the main RE concepts, modeling paradigms, model-based QA techniques
and activities suggested by these approaches in the seamless model-based RE ap-
proach called MIRA. The third part of this thesis presents how the MIRA approach
has been technically validated in a feasibility analysis and evaluated in a set of case
studies.

1.4.1 Systematic Investigation of Model-based RE for Quality
Assurance

Contribution 1: Quality Factors of a Requirements Specification that Enable
Model-based Quality Assurance. The first contribution of this thesis consists of
a literature study of evidence for positive impacts of quality factors on model-based
quality assurance. The study aims to increase the effectiveness and efficiency of qual-
ity assurance. Effectiveness is addressed by investigating which information has to
be contained in the requirements specification for the analysis, validation and ver-
ification of requirements. Efficiency is addressed by investigating constructive and
automated analytical model-based QA techniques. The study focuses on qualitative

6

1 Introduction

quality, as studies [MMFFE15] indicate that quantitative quality is highly dependent
on project characteristics. The study result is a list of quality factors and their im-
pact on QA activities. The model-based QA activities should support the analysis,
validation and verification in order to address Challenge 2.

Contribution 2: Requirements for a Model-based RE Approach. The second
contribution of this thesis is a study of the requirements for a model-based RE tool.
The requirements have been elicited from scientific RE research literature and evalu-
ated and amended in a questionnaire by RE practitioners. These requirements rein-
force that a collection of RE concepts and modeling languages without a clear guid-
ance is not sufficient for practitioners. The study confirms and details Challenges 1 to
4 by providing concrete requirements for a model-based RE approach, for example,
for representation forms and QA activities.

1.4.2 Development of the Model-based RE Approach

Contribution 3: An Artifact Reference Structure for Model-based Quality Assur-
ance. The third contribution of this thesis is the MIRA artifact reference structure.
The artifact reference structure consolidates the quality factors of a requirements
specification that were investigated in the first contribution. Hence, each element de-
fined in the artifact reference structure has a clear impact on the QA activities. Due
to this impact, the conformance of a requirements specification to the MIRA artifact
reference structure should enable effective quality assurance (Challenge 2).

The fundamental RE concepts integrated in the MIRA approach are

• Requirement sources, the origin of all requirements

• Glossary terms that define terms used in the requirement specification

• Goals that define the intent of the systems’ stakeholders

• Use cases that define user-visible system functions by describing required and
undesired interactions of the system under development with its actors

• Scenarios that describe single interaction sequences

• Interface requirements that define the required and undesired behavior of the
system under development on its interfaces

• Trace links that document specific dependencies within requirements and from
requirements to subsequent development artifacts.

The artifact reference structure defines a textual and an adequate formal representa-
tion for functional requirements, i.e., for use cases, scenarios, and interface require-
ments, and their dependencies using the formal system modeling theory FOCUS
[BS01] (Challenge 1). Due to this system modeling theory, MIRA targets embedded
software and systems engineering. The artifact reference structure includes depen-
dencies to subsequent development artifacts (Challenge 3). Thereby, the artifact ref-
erence structure covers discipline-independent requirements on the system and its
subsystems as well as discipline-specific requirements on embedded software.

7

1.5 Integrated Approaches

Contribution 4: A Guideline for the Model-based Specification and Quality As-
surance of Functional Requirements. This thesis contributes the MIRA guideline
that defines a coherent set of steps describing how to conduct the requirements spec-
ification and the quality assurance of functional requirements (Challenge 4). The
guideline provides instructions to create a requirements specification that is confor-
mant to the artifact reference structure. Furthermore, the guideline describes how to
apply a set of model-based techniques to the requirements specification to analyze,
validate and verify the functional requirements contained therein.

1.4.3 Validation and Evaluation of the Model-based RE Approach

Contribution 5: Feasibility Analysis of the MIRA Approach. The thesis con-
tributes a feasibility analysis of the MIRA approach through the implementation in
a tool. The MIRA tool implements the MIRA artifact reference structure as a data
model. The data model enforces the creation of a conformant requirements specifica-
tion. To automate some of the actions which are defined in the guideline, the MIRA
tool offers a set of operations on the artifact reference structure. Candidates for au-
tomation in an operation are, for example, actions with a deterministic and repetitive
nature. The tool automates some of the quality assurance techniques presented in
the guideline. The data model is also the basis for further operations to manipulate
and visualize the requirements specification. Thereby, the MIRA tool supports con-
ducting the MIRA guideline (Challenge 4). The tool also embeds the MIRA approach
in a seamless development environment (Challenge 3).

Contribution 6: Case Study on the Effective Application of the MIRA Approach.
The last contribution of this thesis is a case study that evaluates the effective applica-
tion of the MIRA approach in an industrial setting and demonstrates the scalability
of MIRA to the size of a system function. The case study applied MIRA to the door
control of an automated train control system. The case study was based on indus-
trial specifications. The case study covers all four challenges. The case study aimed
to demonstrate the effective application of MIRA. Effectiveness was measured by
concrete findings in the input documents that were identified by model-based spec-
ification and QA techniques. These concrete findings confirm or extend some of the
positive impacts identified in the first contribution. Another case study in the avion-
ics domain shows that researchers can extend the MIRA artifact reference structure
to other requirement types than functional requirements. The case studies and fur-
ther feedback from MIRA users led to an improvement of the MIRA approach. A
number of further case studies indicate that the MIRA approach is also applicable
in a broader context; for software requirements, by other researchers and in a broad
variety of domains.

1.5 Integrated Approaches

This section provides a brief overview of the approaches that have been integrated
into MIRA. More details to the integrated approaches are provided in Chapter 2.

8

1 Introduction

1.5.1 Fundamental RE Concepts and Basic Specification Techniques

Fundamental literature of often cited authors provides established practices for RE.
For example, Zave and Jackson [ZJ97] provide the basics for RE in general and in
particular for model-based RE. Although not very recent, the works of Zave and
Jackson still remain relevant as the number of recent citations suggests. Fundamen-
tal specification and QA techniques are described in van Lamsweerde [vL09]. Pohl
[Poh10] classifies and describes a set of common requirement sources, the origin of
all requirements. Cockburn [Coc00] provides basics for documenting use cases and
scenarios. Gotel et al. [GCHH+12b] document the fundamentals for traceability.

1.5.2 System Modeling Framework

The SPES modeling framework [PHAB12] (SPES) is a model-based software and sys-
tems engineering approach. SPES was developed in the Software Platform Embed-
ded Systems 2020 (SPES 2020) project with 21 partners from industry and science. It
defines development artifacts, their representation and their relationships for differ-
ent engineering concerns and different levels of system granularity. The framework
was developed to support ’seamless’ engineering of embedded systems. MIRA is
based on the concepts, relationships, engineering concerns and system level granu-
larities defined in SPES.

1.5.3 Formal System Modeling Theory

FOCUS [BS01, Bro10b, Bro13a] is a formal system modeling theory especially suitable
for functional requirements of discrete, multifunctional systems. FOCUS provides a
theory and formal specification techniques to describe a system under development
in terms of its logical input/output behavior. The system behavior is described in terms
of histories of messages that are exchanged at the interfaces of the system. Both the
interaction of the system with its environment and internal interactions of system
components can be described. Furthermore, FOCUS provides the mathematical and
logical background for the refinement and verification of requirements. FOCUS is
the basis for the formal representation of requirements in MIRA.

1.5.4 Guidance

MIRA builds on AutoRAID [SFGP05], [Sch09, p. 21ff]. AutoRAID provides an ar-
tifact reference structure for requirements that integrates requirements tightly with
model elements of subsequent development artifacts. A guideline supports the re-
quirements engineer in the textual specification of requirements and their integra-
tion. AutoRAID does not provide a formal representation for requirements that is
independent of subsequent design models. MIRA adopts the guideline provided by
AutoRAID.

Cimatti [CRST09, CRST13] provides an RE modeling theory for hybrid systems. It in-
cludes a modeling language, a set of analysis methods, an artifact reference structure

9

1.6 Running Example

for the requirements specification and a guideline for the formalization and analy-
sis of requirements. Whilst the modeling language, the analysis techniques and the
artifact reference structure differ to some extent to those integrated in MIRA, the
guideline is incorporated.

Broy [Bro10b] proposes an approach to structure and formalize functional require-
ments for multifunctional systems based on the formal modeling theory FOCUS.
MIRA adopts this guideline for the formal specification of functional requirements.

1.5.5 Tool Support

AutoFOCUS3 [HF10, AVT+15] is a scientific open source tool for model-based devel-
opment. It instantiates a subset of the FOCUS modeling theory and thereby provides
a set of graphical specification techniques. Furthermore, AutoFOCUS3 provides a
wide range of formal QA techniques. AutoFOCUS3 is conformant to the SPES model-
ing framework. MIRA is implemented as a plug-in to AutoFOCUS3. MIRA facilitates
the application of the specification and QA techniques provided by AutoFOCUS3 to
RE.

1.6 Running Example

Whenever necessary, examples illustrate models and model-based techniques. The
running example is a traffic light controller that is used to control all lights of a sim-
ple pedestrian crossing with a pedestrian light and a traffic light, as illustrated in Fig-
ure 1.1. A model of the example is included in the release 2.7 of AutoFOCUS3 with
the name ’Simple Traffic Light AF3 Tour Example’.

Figure 1.1: Crossing with pedestrian lights and traffic lights

10

1 Introduction

1.7 Outline

Figure 1.2 illustrates the outline of the main body of this thesis. Chapter 2 presents the
relevant background knowledge. Chapter 3 provides an overview of model-based
RE approaches that are related to the approach developed in this thesis. Chapter 4
investigates model-based quality assurance in requirements engineering. In Chap-
ter 5, the requirements for a model-based RE tool are investigated. In Chapter 6, the
MIRA artifact reference structure is presented that results from the investigations.
Chapter 7 constructs the MIRA guideline based on the integrated approaches. The
MIRA tool is presented in Chapter 8. In Chapter 9, the case studies conducted with
MIRA are presented. Finally, Chapter 10 concludes the thesis by summarizing the
contributions of this thesis and the open research questions.

Figure 1.2: Outline of the main body of this thesis; the arrows indicate how the chapters
relate to each other

Previously Published Material. Parts of the contributions presented in this thesis
have been published in [TMR13], [TKM13], [TBP14], [BJV+14], [VEH+14], [TH15],
[RTVH15], and [AVT+15].

11

Chapter 2
Background

This chapter introduces to the fundamental concepts and terms used in this thesis.
Relevant background knowledge on RE is provided in Section 2.1. Section 2.2 in-
troduces the background knowledge on quality and quality assurance. Section 2.3
introduces the terms and modeling paradigms for model-based RE used in this the-
sis.

Contents
2.1 Requirements Engineering . 13

2.2 Quality Assurance . 16

2.3 Model-based Requirements Engineering 18

2.1 Requirements Engineering

Requirements engineering (RE) is a development phase in the lifecycle of a system. RE
is concerned with understanding and defining the problem that needs to be solved by
the system under development, more precisely, “what problem should be solved, why
such a problem needs to be solved, and who should be involved in the responsibility
of solving that problem” [vL09].

Jackson [Jac95] introduced the concepts of world and machine to explore the role
of RE. The problem to be solved pertains to an organizational, technical or physical
world. The aim of the developed solution, called machine by Jackson [Jac95], is to
solve a problem of the world. This work focuses on the development of embedded
systems. SPES [BDH+12] defines embedded systems as “microcontrollers, which are
connected to complete systems via sensors, actors, operator controls, and communi-
cation devices, while interworking diversely with their environment, offering a vari-
ety of functions by comprehensive software.” RE for embedded systems spans over
different levels of granularity, from detailed hardware and software requirements for
the embedded system to (hardware- and software-independent) requirements for the
system that is controlled by the embedded system. Systems controlled by embedded
systems may range from simple systems such as a coffee machine to complex sys-
tems like a train. The machine is the system under development at a particular level

13

2.1 Requirements Engineering

of granularity. The world is the system context according to the level of granularity.
For example, if the machine is embedded software, the world includes the execution
platform of the software. The world of an embedded system includes the controlled
system.

The world and the machine interact with each other [Jac95] by sharing ‘phenomena’.
These shared phenomena define the interface through which the machine interacts
with the world. The machine monitors some of the phenomena of the world while
controlling others in order to solve the problem. For example, the passenger ex-
change of a train in a train station are phenomena in the world. The train speed, its
exact stopping point in the station and the train door status can be measured and
shared with the machine, a control software of the train. The door commands for
the doors can then be calculated in the control software and shared with the world
to control the train doors. The example is visualized in Figure 2.1. RE is concerned
with the machine’s effect on the world and the assumptions made about that world
[vL09, p. 4], especially with the shared phenomena of world and machine.

Figure 2.1: The world and the machine (following Jackson [Jac95]) on an example of a train
control software

Requirements describe the problem to be solved solution-neutral in terms of proper-
ties of the world, or solution-oriented in terms of shared properties of the world and
the machine. Conventionally, solution-oriented requirements are distinguished into
functional requirements that define what the system should do and extra-functional
requirements (also called non-functional requirements) that define how the system
should do something [RR06, KS98]. Functional requirements “are statements of ser-
vices the system should provide, how the system should react to particular inputs
and how the system should behave in particular situations” [Som11]. Functional re-
quirements express that “a system offers a particular functional feature such that it
can be used for a certain purpose (use case), or a system’s function (a specific instance
of a functional feature) has a property formulated in terms of the system’s interface
behavior” [Bro15a]. Functional requirements include required and undesired inter-
face behavior of the system under development as well as wanted and unwanted
interaction of the system with its environment.

14

2 Background

This thesis applies the FOCUS system modeling theory as presented in Section 2.3.5
to rigorously define and express functional requirements. FOCUS has the means
to model required histories of interactions between a system and its environment.
FOCUS facilitates the expression of requirements on the syntactic system interface
(the system inputs and outputs) and requirements on the system interface behav-
ior (which history of system inputs leads to which histories of system responses).
The correct system response may even be nondeterministic, if the set of histories
of system responses has more than one element. Extensions of the modeling theory
[Neu12] facilitate the expression of quantitative interface behavior by assigning prob-
abilities to each possible system response. These extensions can be used to express
requirements on the quality of the system under development, such as availability
[JN12]. These extensions are outside the scope of this work.

The main artifact developed in RE is the requirements specification. The requirements
specification comprises requirements and additional information about the problem
to be solved. For example, some standard or some activity that is executed on the
specification may require to document further information in addition to the require-
ments in the requirements specification. According to van Lamsweerde [vL09, p.
17], a requirements specification can contain descriptive and prescriptive statements.
Descriptive statements state properties and describe assumptions about the world.
These statements are indicative, so they hold regardless of the system behavior, for
example, physical constraints. Prescriptive statements state desirable properties of the
system under development. They are optative, so they may hold or not, depending
on the system behavior. Such statements need to be enforced by components of the
system. Prescriptive statements may need to be negotiated, weakened and changed
or alternatives may be found. The prescriptive statements constitute the actual re-
quirements. By contrast, descriptive statements cannot be negotiated, weakened,
changed, alternatives cannot be found.

Different RE phases can be distinguished according to distinct activities to be con-
ducted, see also Cheng and Atlee [CA07], Kotonya and Sommerville [KS98] and van
Lamsweerde [vL09]:

Domain understanding and elicitation. The system-as-is is studied within its social and
technical context. The stakeholders of the system are identified and the requirements
imposed by the stakeholders are elicited. RE literature [KS98, vL09] proposes a va-
riety of techniques such as interviews, questionnaires, or workshops for eliciting re-
quirements from persons. Requirements stemming from relevant laws, certifications
and standards have to be identified and existing documentation on the system-as-is
studied. The elicitation may lead to alternative or even conflicting requirements.

Evaluation and negotiation. Requirements are elicited from different sources and view-
points. These requirements reflect the needs of different stakeholders that might be
conflicting. This set of requirements has to be consolidated and agreements have to
be achieved. The requirements analysis consolidates the different views on the system
under development and thereby identifies quality issues in the requirements specifi-
cation resulting from these different views, for example, inconsistent requirements.

Specification. The specification phase is concerned with creating the requirements
specification. The information to be contained in a requirements specification is doc-
umented. The information to be contained in the requirements specification can be

15

2.2 Quality Assurance

documented informally as prose or formalized by applying a semi-formal or formal
modeling language. Documenting associations between development artifacts, for
example, between requirements, is called tracing.

Validation and Verification. The requirements specification has to be validated in order
to ensure that the documented requirements correspond to the actual stakeholder
needs. The ISO 29148 [ISO11b] defines validation as “confirmation by examination
that requirements (individually and as a set) define the right system as intended
by the stakeholders”. The aim of verification is to ensure that subsequent develop-
ment artifacts satisfy the requirements. The IEEE 12207 [IEE08] defines verification
as “confirmation, through the provision of objective evidence, that specified require-
ments have been fulfilled”.

As Figure 2.2 depicts, these phases are often conducted iteratively.

Figure 2.2: Iterations through the RE phases, see also van Lamsweerde [vL09]

Over all these phases requirements have to be managed. Requirements management is
the task of managing requirements, especially changes to the requirements [KS98],
[vL09]. Requirements management should keep track of these changes. Further-
more, requirements management should ensure that changes are made to the re-
quirements document in a controlled way by change control and change impact as-
sessment [KS98, p. 11].

This work focuses on activities of the late phases of RE, the specification, analysis,
validation and verification of functional requirements. It investigates the information
to be contained in the requirements specification that is necessary for conducting
these activities.

2.2 Quality Assurance

Quality assurance is defined as “1. a planned and systematic pattern of all actions neces-
sary to provide adequate confidence that an item or product conforms to established technical
requirements 2. a set of activities designed to evaluate the process by which products are de-
veloped or manufactured. 3. the planned and systematic activities implemented within the
quality system, and demonstrated as needed, to provide adequate confidence that an entity

16

2 Background

will fulfill requirements for quality. 4. part of quality management focused on providing con-
fidence that quality requirements will be fulfilled” [ISO10]. Hence, quality assurance can
be product-centered, process-centered or focus on quality requirements. This thesis
investigates product-centered quality assurance. The products in scope of this the-
sis are the requirements specification and subsequent development artifacts. In this
thesis, RE quality assurance seeks to improve the quality of the system under devel-
opment by improving the quality of the requirements specification and by assuring
a correct processing of the requirements.

Analytical Quality Assurance aims to detect quality issues by investigating existing ar-
tifacts. It comprises activities performed only on the requirements specification and
activities that are performed on the requirements specification and other develop-
ment artifacts. The activities concerned with quality assurance are analysis, valida-
tion and verification. Requirements management provides the means to change the
requirements specification in a controlled way to resolve quality issues. Figure 2.3
provides an overview of the analytical quality assurance activities in the scope of
this work and the RE phases to which they belong. Analytical techniques differ in
their degrees of automation. A technique is manual when conducted by a human; it is
semi-automated when it is conducted by a human and a machine; it is automated when
it is conducted by a machine.

Figure 2.3: Activities in the RE phases in scope of this thesis for analytical quality assurance

Constructive quality assurance aims to achieve desired characteristics of an artifact and
to prevent the introduction of quality issues during the development of an artifact.
Constructive quality assurance can be applied during all phases of the development
of the requirements specification. This work specifically focuses on rules and guide-
lines to improve the quality of the requirements specification constructively during
the specification phase. Figure 2.4 summarizes the activities of the specification phase
in the scope of this work for constructive quality assurance activities.

In an activity-based view, the quality of an artifact is not an end in itself. The quality
of an artifact can be investigated from the activities performed on it. A quality fac-
tor of a requirements specification “impacts the stakeholder’s ability to perform his
specific activity efficiently and effectively” [FMF15]. The impact of a quality factor of
the requirements specification on these activities can be positive or negative. Hence,
quality factors can be divided into quality characteristics with a positive impact and its
opposite, quality issues with a negative impact. Through the impacts on development

17

2.3 Model-based Requirements Engineering

Figure 2.4: Activities in the RE phases in scope of this thesis for constructive quality assur-
ance

activities, the quality factors can have an effect on the system under development.

This thesis investigates the constructive and analytical quality assurance of func-
tional requirements.

2.3 Model-based Requirements Engineering

Following the main characteristics of a model defined by Stachowiak [Sta73], models
are developed for pragmatic reasons and are a reduction of the original that they rep-
resent. Models should be developed for a particular purpose, even if they are some-
times only valid within a particular time interval or restricted to particular mental or
actual operations. A model is an abstraction of the original that eliminates unneces-
sary details and concentrates on the core problem [Bro15b].

A modeling language defines the elements and their relations captured in a model by a
set of concepts and their dependencies. A modeling language defines the syntax and
semantics of the actual model. The model results from the instantiation of a model-
ing language. A modeling language can comprise different specification techniques to
define the syntax of particular parts of the model. The model or parts of it can be
represented graphically in diagrams, in tabular form, or textually. Modeling languages
can be distinguished by their degree of formality [BS01, p. 9]. Informal techniques docu-
ment requirements as prose in unrestricted natural language. Semi-formal techniques
are based on modeling languages that “seemingly are formal, but lack a precisely
defined syntax or contain constructs with an unclear semantics” [BS01, p. 9]. Formal
techniques require modeling languages with formal syntax and formal semantics,
based on a rigorous mathematical theory. To support the refinement over differ-
ent levels of abstraction, a formal modeling language may offer support for logical
deduction of implementations from specifications and, in addition, a mathematical
notion of refinement and a calculus for the verification of refinement steps.

Model-based engineering is an approach to the development of software and systems
where models are seen as constituents of the development process. In model-based
engineering, models are used to support development activities. These activities
may, but not necessary have to include the transformation of a model to software

18

2 Background

code that is centric to model-driven development [FR07]. Model-based engineering
can also be used to gain a better understanding of the system to be developed, to
successively increase the understanding of the system under development. Model-
based engineering promises to achieve significant improvements in both productiv-
ity and quality. It can support the engineer in managing or even reducing system
complexity by removing unnecessary details. Finally, model-based engineering can
provide models that enable advanced model-based techniques for quality assurance.

Model-based engineering is most often associated with the design or implementation
phase of the systems and software development. However, greater rigor can also be
introduced into RE by applying model-based engineering principles leading to an
increase of structure and precision in the requirements specification [Sch09, p. 21].
In turn, structure and precision facilitate sophisticated analysis techniques earlier in
the development process, increasing the quality and efficiency of the development
process.

In model-based requirements engineering, models can support RE activities and those
activities that use the models developed during RE as an input. Models can support
all RE phases. For example, domain modeling [Bro13b] and goal modeling [vL01]
provide support for domain understanding and elicitation. As soon as the first draft
of the requirements specification is documented, models may help to analyze the
specification, for instance, in order to detect inconsistencies between stakeholder in-
tentions. Another potential use of models is to ease the understanding and communi-
cation of requirements. As detailed in Section 2.1, this thesis investigates the late RE
phases and models to support these phases. This thesis uses model-based require-
ments engineering in order to improve the effectiveness and efficiency of quality
assurance.

We investigate three complementary forms of models, an artifact reference structure
for the requirements specification, specification techniques and a system model for
seamless model-based development. The artifact reference structure defines a blue-
print of the requirements specification. Specification techniques provide the rules for
representing the elements defined in the artifact reference structure. Seamless model-
based development provides abstractions and views of a system under development
together with a system modeling theory that facilitates the definition and analysis of
the RE artifact reference structure with respect to the system under development.

As many current approaches either focus on artifact-orientation, specification tech-
niques or a system modeling theory, the modeling paradigms are introduced sepa-
rately. The model-based RE approach presented in this thesis integrates these mod-
eling paradigms into a holistic approach.

2.3.1 Artifact Reference Structures in Requirements Engineering

Artifact-orientation establishes a blueprint of the created RE results, their contents, and
their dependencies. Artifact-orientation abstracts from the activities and processes
that dictate how to undertake RE in order to create results [MFPKB10]. Artifact-
orientation concentrates on the method outcomes in order to specify what has to be
achieved [MFP14].

An artifact is an input or output of a development phase that has value to someone

19

2.3 Model-based Requirements Engineering

involved in that phase [MF11]. An artifact can be described by the following charac-
teristics [MFBT]:

The physical representation is determined by the data carrier. The information stored
in an artifact can be for example stored on paper or in electronic form (in files or
databases); the same information can have different physical representations, for ex-
ample a file and its printout.

The syntactic structure can be distinguished in several formats such as natural lan-
guage, formal language, images, tables and diagrams, or a mixture of these. “An
artefact can be a composition of a number of sub-artefacts, being artefacts them-
selves. This composite structure can be described by a grammar or a meta model.
As an example, consider the structure of a specification document by chapters and
sub-chapters, which may be represented by a table of content. For the composition
of artefacts, we need to consider (1) that there exists a least granularity of (sub-) arte-
facts, and (2) that sub-artefacts have relations and dependencies” [MFBT].

“The semantic content of an artefact represents its meaning. We distinguish two ways
of capturing and interpreting the content; a pragmatic way where we provide a real-
world reference and understand the content as statements on the real world, and a
way where we interpret the content as a reference to the semantic theory via ontolo-
gies, mathematical system models, and so on. That is, if a semantic universe exists
onto which the content can be mapped, then the relationships between the syntac-
tic and the semantic content of artefacts and their sub-artefacts can be formalized
including consistency, redundancy, and dependency. Finally, the semantic content
of the artefacts might not be understood without additional context information”
[MFBT].

This thesis investigates the requirements specification as the main artifact, its syn-
tactic structure and semantic content. The physical representation is not relevant for
this thesis. An artifact reference structure provides the means to define the syntactic
structure and the semantic content of an artifact from an RE perspective grounded
in the concepts and processes of the RE domain. The following elements define an
artifact reference structure as described in [MF11, MFP14]:

A set of content items organizes the artifact. Content items categorize the contents
of an artifact by responsibilities and tasks; a content item should be the outcome of
one task and have a single responsibility. For example, content items can be used
to divide a requirements specification into chapters. Hence, content items map the
artifact to the RE perspective as they are defined according to the RE processes.

For each content item, RE concepts are defined that represent the concern of this con-
tent item. Concepts have a specific type. Concepts can be hierarchically decomposed
to concept items. A differentiation of concept items is made if different items of a
concept can be described with different techniques. For example, the concept ’use
case’ has concept items ’scenario’ and ’scenario steps’. Concepts can be detailed by
attributes.

The syntax of each concept can be defined by various specification techniques with
different degrees of formality.

Trace links denote dependencies between artifacts, content items and concepts. Trace
rules can pre-define trace links, their semantics and representation.

20

2 Background

A user that instantiates the artifact reference structure developed in the course of
this thesis produces a graph of the requirements specification. The nodes of this
graph are the objects that instantiate the RE concepts. The edges of the graph are
the references to other objects documented in the trace links. Whenever this thesis
uses the term requirements specification, it refers to this graph. In order to obtain a
requirements specification document, a user has to transform the graph or a subset of it
into a document, adding an outline with chapters and sub-chapters.

2.3.2 Specification Techniques in Requirements Engineering

In RE, a variety of techniques have been proposed to represent the information to
be documented for the various RE concepts. A structured description constrains
and guides the documentation, thereby providing greater rigor compared to an un-
constrained documentation. In the following, specification techniques are presented
that are used in this work.

Semi-formal Specification. Templates provide named fields for the attributes of an
RE concept. Templates define unrestricted fields to fill with natural text or provide
more guidance through controlling the content by a selection from a predefined list.

Controlled natural language (CNL) is a way to bridge the gap between a natural lan-
guage and a formal language and can mediate between these languages [Sch10]. Re-
quirements that are represented using CNL are semi-formal requirements. CNLs re-
strict the syntax and/or the semantics of a sentence. A CNL that restricts both syntax
and semantics may even define a formal specification language (as described in more
detail below). CNLs can be transformed directly to templates, as an example shows:
The template in Figure 2.5 corresponds to the following CNL pattern [MW10]
<preconditions> <optional trigger> the <system name> shall <system response>

Figure 2.5: Template based on a pattern [MW10] for CNL

Formal Specification. Formal specification techniques can be applied to RE con-
cepts and their dependencies. For instance, a formal requirement is a requirement
that is represented using a formal specification technique. Formal specification tech-
niques can be distinguished into two categories: Formal description techniques (FT)
have “a formally defined syntax and a semantics expressed in well-understood math-
ematical notation” [BS01, p. 9]. Examples for these techniques are I/O assertions

21

2.3 Model-based Requirements Engineering

[BS01], state automata [Bro10b], or message sequence charts (MSC) [ITU11a]. Formal
description and development techniques (FDDT) “differ from the FDTs in their sup-
port for logical deduction of implementations from specifications. FDDTs contain
one or several FDTs for specification purposes: for example, one FDT for require-
ments capture and another FDT for design. FDDTs offer, in addition, a mathematical
notion of refinement and a calculus for the verification of refinement steps” [BS01,
p. 9].

2.3.3 Seamless Model-based Development

Seamless model-based development of embedded software-intensive systems enforces a
deep, coherent and comprehensive integration of models and tools in order to de-
crease redundancy, inconsistency and increase automation [BFH+10]. According to
Broy et al. [BFH+10], this can be achieved by 1) integrating a comprehensive system
modeling theory that serves as a semantic domain for the models, 2) an integrated
architectural model that describes the detailed structure of the product (the prod-
uct model) as well as the process to develop it, and 3) a mechanism to build tools
that conform to the modeling theory and allow the authoring of the product model
according to the defined process. Benefits results from their use through the entire
product development in a seamless way. “For instance, requirements are the inputs
for an initial system design and for test case generation. This workflow requires a
deep integration of the requirements, the system design, and the tests” [BFH+10].
“Instead of working with isolated models, engineers access via dedicated views a
common model repository that explicitly stores the overall product model. All re-
quired views are formally defined and based on one comprehensive modeling the-
ory, which enables the construction and unambiguous semantic interpretation of the
product architecture” [BFH+10].

An architectural model provides viewpoints on and abstraction layers of the system.
Viewpoints [BDH+12] separate the different concerns of stakeholders during the engi-
neering process. A viewpoint serves as a construct for managing the artifacts related
to the different stakeholders of the engineering process. Abstraction layers [BDH+12]
facilitate the definition of a system at different levels of granularity.

A system modeling theory provides an abstraction of the system under development
with clearly defined syntax and semantics. The system modeling theory provides the
theoretical basis for the formalization of all artifacts produced during the develop-
ment of a system [BFH+10]. A system modeling theory suitable for seamless model-
based development should provide concepts to model the different viewpoints of a
system under development at different levels of abstraction. Furthermore, it should
be able to describe the dependencies between different viewpoints and levels of ab-
straction in order to support a systematic development and verification/test of the
system under development. To reduce the complexity of the system development,
a suitable system modeling theory should incorporate mechanisms to capture a de-
composition of the system into subsystems and a composition of subsystems to a
system. Formalizing requirements determines its level of abstraction and eliminates
the ambiguity of prose. A formal modeling language enables a precise specification
of requirements [Bro13a].

22

2 Background

2.3.4 SPES System Modeling Framework

The SPES 2020 project [PHAB12] developed the SPES modeling framework for soft-
ware and systems engineering that integrates and consolidates existing model-based
approaches for embedded systems.

Two prominent software engineering principles incorporated in this framework are
viewpoints and abstraction layers for software and systems engineering. The SPES ma-
trix visualizes the relation of viewpoints and abstraction layers as shown in Fig-
ure 2.6.

Figure 2.6: The SPES matrix (taken from [BDH+12])

Viewpoints separate the different concerns of stakeholders during the engineering
process. A viewpoint serves as a construct for managing the artifacts related to
the different stakeholders of the engineering process. The SPES 2020 modeling
framework recommends distinguishing four viewpoints in the development process
[BDH+12, DTW12]:

Requirements viewpoint defines the concepts and techniques for systematic RE.

Functional viewpoint defines the concepts and techniques to specify and model the
system functions and their relationships based on the functional requirements
in a functional architecture.

Logical viewpoint defines the concepts and techniques required to decompose the
system functions into a system architecture of logical components. The result-
ing logical architecture is based on the functional viewpoint and incorporates the
quality requirements.

Technical viewpoint defines the concepts and techniques required to detail the log-
ical architecture into a physical architecture that, amongst other things, specifies

23

2.3 Model-based Requirements Engineering

the hardware components of the system and the deployment of the software
on those components. The technical viewpoint implements the requirements
on the physical architecture.

This list of viewpoints is not exhaustive; some application scenarios require addi-
tional viewpoints.

Abstraction layers [BDH+12] facilitate the definition of an embedded system at dif-
ferent levels of granularity. In the development of complex systems, it is common
practice to decompose a system into parts in order to tackle system complexity. The
different layers of the decomposition are called abstraction layers. A system is de-
composed into subsystems, the lowest level is called implementation or construction.
The concrete abstraction layers chosen for a particular system vary over the diverse
application domains. Whenever the scope of the system development changes to a
lower level of decomposition, each of the subsystems becomes a system under de-
velopment, that either itself has a decomposition into subsystems or is a software or
hardware component.

For the requirements viewpoint, SPES recommends a set of RE concepts and speci-
fication techniques. A strict separation between the solution-neutral intentions of the
stakeholders and solution-oriented requirements is made. The RE concepts suggested
by SPES are:

Context A context model describes the part of the environment that influences or is
influenced by the system under development.

Goal A goal model documents the intentions of the system stakeholders.

Scenario Examples of interactions of the system with its environment can be speci-
fied as scenarios.

Solution-oriented requirement is a solution-specific description of behavior, oper-
ations, and the information structure of the developed solution concept.

Following the recommendations of SPES [DTW12], at each abstraction layer the same
RE concepts are developed in the requirements viewpoint. The RE concepts provided
by the SPES modeling framework are domain-independent, but specific for embed-
ded systems. The SPES modeling framework gives suggestions to represent RE con-
cepts and their dependencies as diagrams, but does not provide a concise definition
which specification technique to use for which RE concept.

This work investigates the RE concepts suggested by SPES for their impact on quality
assurance and proposes precise specification techniques for their representation.

2.3.5 System Modeling Theory FOCUS

FOCUS provides a system model for discrete systems. A discrete system is defined
as a system with clear cut boundaries that “interacts with its environment over this
boundary by exchanging messages representing discrete events” [Bro13a]. FOCUS
provides a formal technique to represent functional requirements, techniques to model
the interfaces and interface behavior of a system in a system design and furthermore
a technique to establish a formal refinement specification, both between requirements,
and between requirements and system design. Refinement here means to add in-

24

2 Background

formation to an artifact, for example, in order to derive the design of a system from
its requirements. Furthermore, FOCUS provides means for the formal verification of
requirements based on the formal refinement specification. The mathematical foun-
dations provided by FOCUS are introduced in Broy and Stølen [BS01].

FOCUS comprises logical (as in set theory) and probabilistic behavior models to de-
scribe interface behavior [Bro15a]. This thesis uses the logical behavior models as
the formal foundation for the model-based RE approach developed in this work.
Probabilistic extensions of the FOCUS modeling theory facilitate to capture and ex-
press specific kinds of system quality, for example, performance and reliability, and
corresponding quality requirements in terms of system interface behavior [Bro15a].
Probabilistic extensions are not in scope of this work.

The system modeling theory FOCUS was chosen for two reasons. Firstly, the mod-
eling theory has many relevant characteristics that are necessary in this work; it pro-
vides a theory for the formal representation of functional requirements in embedded
systems based on a formal system model. Additionally, it has been proven especially
suitable to model embedded systems from different views and at different levels of
abstraction; it provides the means for a logical description of distributed interac-
tive systems. The second reason to select FOCUS is more pragmatic. The theory is
widely used within the author’s research group. FOCUS is the foundation for the re-
search tool AutoFOCUS3 (introduced in Section 2.3.6) developed within that group.
AutoFOCUS3 instantiates the FOCUS system modeling theory and provides a set of
formal quality assurance techniques. Tool support for the model-based RE approach
developed in this thesis has been implemented as a plug-in for AutoFOCUS3. This
enables the use of these quality assurance techniques for RE. Other system modeling
theories with similar characteristics may be equally suitable for the model-based RE
approach. Investigating alternative theories is outside the scope of this work.

In the following, the modeling theory FOCUS is introduced based on the publications
[BS01, Bro10b, Bro13a]. All definitions and formulas are literal quotes and not labeled
as such to aid readability.

2.3.5.1 FOCUS Basics

In FOCUS, systems are defined by their interfaces. The syntactic interface is defined
by its input ports and output ports. Channels connect interfaces via the ports and ex-
change streams of messages. Each instance of sending or receiving a message is a dis-
crete event. Data types are assigned to each channel including the input and output
ports to restrict the messages to be transmitted via the channels. The semantic inter-
face of a system represents its black box behavior, also called interface behavior. The
behavior is modeled as a function. This function maps streams of messages given on
the input ports to streams of messages given on the output ports of the system.

A data type is defined by a set of values. Elementary types are for example the Boolean
data type B and the set of natural numbers N. Furthermore, enumeration types T with
values e1, . . . , en may be introduced through type declaration of the form

type T = e1|...|en

A syntactic interface is a set of typed input ports I and typed output ports O. The syn-

25

2.3 Model-based Requirements Engineering

tactic interface is denoted by
(I I O)

Given a message set M of data elements of type T . The set of finite sequences of
messages over M is denoted by M?. By (M?)∞ we denote the set of timed streams.

For a timed stream s in each time interval t ∈ N \ {0} a sequence s(t) of messages is
given. A timed stream s of type T is represented by a function

s : N \ {0} →M?

In each time interval t an arbitrary, but finite number of messages may be communi-
cated.

Let C be a set of typed channels. A total channel history is a mapping

x : C → (M?)∞

For each channel c ∈ C a stream x(c) is of type T (c). We denote the set of all channel
histories for the channel set C by

−→
C . ℘(

−→
C) denotes the power set of

−→
C . The function

F represents an I/O-behavior of a system

F :
−→
I → ℘(

−→
O)

By IF [I I O] we denote the set of all (total and partial) I/O behaviors with syntactic
interface (I I O) and by IF the set of all I/O behaviors. The black box behavior, also
called interface behavior, is given by an I/O-behavior.

An I/O-behavior F ∈ IF [I I O] can be specified by a formula in predicate logic,
called interface assertion, with the channels as logical identifiers for streams. It for-
malizes the interface behavior of a system in a descriptive logical style.

Definition. Given a syntactic interface (I I O) with a set I of typed input channels
and a set O of typed output channels, an interface assertion is a logical formula with
the channel identifiers in I and O as free logical variables denoting streams of the
respective types.

2.3.5.2 Formal System Specification by Interface Assertions

The formal system specification of a system consists of distinct views on the system,
following the viewpoints defined in the SPES matrix (see Section 2.3.4).

Requirements Viewpoint. FOCUS understands functional requirements at the
system level as a set

A = {Ai : 1 ≤ i ≤ m}

of logical assertions Ai about the interface behavior of the system. Each assertion Ai

describes a property that the system must fulfill. With respect to the system modeling
theory, an assertion defines required observations of behavior between a system and
its environment. The observations are defined over the channel histories of a system:

Ai :
−→
I ×
−→
O → B

26

2 Background

The system interface behavior F is then specified by the functional requirements. The
requirement specification of a system S with the expected functionality F ∈ IF [I I
O] consists of the description of its syntactic interface (I I O) and of an interface
assertion A. The requirements can be composed into one large assertion:

∧{Ai : 1 ≤ i ≤ m}

Functional Viewpoint. The functional viewpoint provides a consolidated view on
the functional requirements of a system. In a multifunctional system, the system
can be decomposed according to its functionality into hierarchical sub-functions, also
called services. The function hierarchy structures the functional requirements for that
multifunctional system in a structured specification.

A system S with syntactic interface (I I O) and interface assertions ∧A can be de-
composed a set W of sub-systems Fw with w ∈W with syntactic interface (Iw I Ow)
and specifications by interface assertions Bw such that

∧{Bw : w ∈W} ⇒ ∧A

Each sub-system assertion Bw specifies a specific sub-function of the system.

The functional specification of the system S in terms of its subfunctions is captured
by a set of assertions

B = {Bw : w ∈W}

The assertion ∧B is the functional specification of the behavior of the sub-functions of
the system.

Logical Viewpoint. A system S may be decomposed into a logical sub-system archi-
tecture. This decomposition yields a set K of subsystems Sk with syntactic interface
(Ik I Ok). The architecture is specified by interface assertions Ck for each subsystem
k ∈ K. The decomposition is governed by the principle to decompose a system into
an architecture consisting of a number of sub-systems called components, which can
be implemented and deployed independently.

Then by
C = {Ck : k ∈ K}

the set of specifications of the subsystems is denoted. The assertion ∧C is the specifi-
cation of the logical behavior of the architecture of the system.

The SPES matrix also defines the technical viewpoint that is out of the scope of this
work and therefore not presented here.

2.3.5.3 Correctness of a Specification

Correctness of the functional specification B with respect to the requirements speci-
fication A is captured by the formula

∀[∧B ⇒ ∧A]

It expresses that ∧B is a refinement of requirements specification ∧A.

27

2.3 Model-based Requirements Engineering

Analogously, the correctness of the logical architecture C with respect to the func-
tional specification B is described by

∀[∧C ⇒ ∧B]

2.3.5.4 Consistency of Requirements

A logical view on requirements facilitates a precise definition of some aspects of con-
sistency of requirements. It is assumed that all functional requirements can be repre-
sented as logical assertions. Then logical inconsistency between logical assertions and
sets of assertions can be defined as follows: Two assertions P , Q are inconsistent if

¬∃(P ∧Q)

It may be the case that two requirements are pairwise consistent, but more than two
requirements might be inconsistent. As a simple example, the parameter x ∈ N shall
fulfill all three assertions (x ≤ 5), (5 ≤ x ≤ 10) and (x ≤ 1 ∨ 10 ≤ x). These are
pairwise consistent. But x ∈ N cannot fulfill (x ≤ 5)∧ (5 ≤ x ≤ 10)∧ (x ≤ 1∨10 ≤ x).
Therefore, the definition has to be extended to a set of requirements. A set R of
assertions is called logically consistent, if the following proposition holds

∃(∧R)

2.3.5.5 Formal Refinement Specification

In FOCUS, a refinement link between two formal interface specifications can be rep-
resented formally as a formal refinement specification [Bro10a]. A formal refinement
specification consists of a representation and an interpretation function. Based on
these functions, the formal refinement specification defines the relations between the
input and output ports of the formal representations, see Figure 2.7. The represen-
tation function defines how the input ports of an abstract interface specification (for
example of a requirement) are mapped to the input ports of a concrete interface spec-
ification (for example of a service). Vice versa, the interpretation function defines
how the output ports of a concrete interface specification are mapped to the output
ports of an abstract interface specification. Formal refinement specifications form the
basis for the application of formal verification and test between abstract and concrete
specifications.

FOCUS defines three types of refinement:

Behavioral refinement “relates specifications of the same syntactic interface. The
refined (more concrete) specification may impose further functional and non-
functional requirements in addition to those imposed by the given (more ab-
stract) specification” [BS01, p. 241].

Interface refinement facilitates to document refinements of the interface of a sys-
tem. It “relates specifications of different syntactic interfaces. The refined spec-
ification is a ’behavioral refinement’ of the given specification with respect to a
translation of its I/O histories” [BS01, p. 241]. For instance, a channel can be
refined by two channels, or a message may be refined by several messages.

28

2 Background

Figure 2.7: A refinement specification specifies how a concrete interface specification is re-
lated to an abstract interface specification

Conditional refinement “is a generalization of both behavioral and interface refine-
ment making the strengthening of input assumptions easier and more flexible.”
[BS01, p. 245]. It “generalizes the relations of behavioral and interface refine-
ment by allowing the introduction of additional input assumptions” [BS01, p.
241]. Conditional refinement includes for example the addition of timing con-
straints and the replacement of unimplementable data types such as real num-
bers to implementable data types.

2.3.6 Implementation of FOCUS in AutoFOCUS3

The tool AutoFOCUS3 [HF10, KRSV13, AVT+15, Sch09]1 is a scientific open source
tool for the component-based development of reactive, software-intensive, embed-
ded systems. AutoFOCUS3 offers a set of graphical specification techniques and
formal quality assurance techniques based on the semantics of FOCUS. AutoFO-
CUS3 was developed to perform research on tool concepts for model-based devel-
opment as well as on pragmatic aspects of formal verification and synthesis. While
FOCUS permits to define untimed, timed, and time-synchronous specification tech-
niques, AutoFOCUS3 is limited to a time-synchronous notion of streams. A time-
synchronous notion of streams is a discrete notion of time based on globally syn-
chronized clocks.

In AutoFOCUS2, the predecessor of AutoFOCUS3, a model-based RE tool (Au-
toRAID) was implemented, see Section 2.3.7. AutoRAID did not investigate a sys-
tematic application of the formal specification and quality assurance techniques of
AutoFOCUS3 to the requirements specification. This work investigates this applica-
tion.

Data Type Definition. AutoFOCUS3 provides a set of elementary data types such
as a Boolean data type and a set of natural numbers. In addition, AutoFOCUS3 pro-

1http://af3.fortiss.org/

29

2.3 Model-based Requirements Engineering

vides a data dictionary to define complex data types such as enumerations.

Visual Specification Techniques. Syntactic interfaces (I I O) and channels be-
tween syntactic interfaces are visualized by a component diagram with input ports
and output ports as depicted in Fig. 2.8.

Figure 2.8: The syntactic interface specification of a system as a component diagram with
input and output ports

Components can be composed through typed input and output ports which are con-
nected by channels. An example for a component architecture is given in Figure 2.9.

Figure 2.9: Example for a component architecture in AutoFOCUS3

The interface behavior IF [I I O] of a component can be further detailed:

1. Components can be described by a hierarchy of subcomponents, where the
ports of subcomponents are connected with the main component and/or with
each other.

2. An atomic component is defined by an interface behavior specification. The
interface behavior specification defines the system behavior that needs to be
fulfilled by the implementation. If the responses for all potential stimuli are
defined, this is called full behavior. An incomplete subset of these stimuli and
reactions is called partial behavior.

To specify interface behavior, AutoFOCUS3 provides the specification techniques I/O
assertions and Message Sequence Charts (MSC) to specify partial behavior and state
automata or simple imperative code (see Fig. 2.10) to specify full behavior.

30

2 Background

Figure 2.10: Code specification in AutoFOCUS3

The following I/O assertions can be specified in AutoFOCUS3. Assumption/guarantee
specifications define the environment in which an interface specification is executed
(see [BS01, p. 213]). Assumptions represent invariants over the input ports of an inter-
face. Assumptions describes properties of the environment that have to be satisfied.
Guarantees represent invariants over the output ports of an interface. Guarantees rep-
resent conditions that are required to fulfill by an interface, in an environment where
the assumptions are fulfilled. Basic contracts represent logical expressions on the in-
puts and outputs of an interface specification of the form “if assumption A holds then
guarantee holds”. Advanced contracts represent complex conditions on the inputs and
outputs of an interface specification. A temporal logics specification consists of one or
more contracts (assumptions, guarantees, basic/advanced contracts). All these con-
tracts specify input/output traces of system behavior. The contracts are expressed
in temporal logics. AutoFOCUS3 offers temporal logics specification patterns as intro-
duced by Dwyer et al. [DAC99] and as depicted in Fig. 2.11. AutoFOCUS3 translates
these specification patterns automatically to temporal logic formulas.

Figure 2.11: Specification pattern for formulas P and Q

AutoFOCUS3 proposes Message Sequence Charts (MSC) to formalize the interac-
tions between interface specifications, more precisely, a dialect of the MSC standard
[ITU11a] that matches FOCUS. Each MSC consists of the following elements: MSC
entities define the actors that are interacting. Each MSC entity is an autonomous exe-
cution entity and represents an interface specification. The interaction between MSC
entities is described by messages at defined entry and exit points. Entry and exit points
denote the syntactic interface of an MSC entity. An example for an MSC is given in
Figure 2.12.

A simple input / output state automaton model may be used to define stateful inter-
face behavior. The state automaton is described by a set of control states, internal
data state variables and state transition functions. One of the states is defined as the

31

2.3 Model-based Requirements Engineering

Figure 2.12: Example for an MSC

initial state. Each data state variable has a defined initial value. Each state transition
function has a source state and a target state. Each state transition function defines
the conditions for a transition from the active source state to a target state depending
on the current values of input and data state variables. Furthermore, the transition
function can assign values for output variables and data state variables. An example
for a state automaton is given in Figure 2.13.

Figure 2.13: Example for a state automaton

AutoFOCUS3 implements formal refinement specifications as introduced in Sec-
tion 2.3.5.5, see also [MR12]. The formal refinement specification can be applied to
test cases on executable models on different levels of abstraction [BMR12]. Further-
more, the formal refinement specification can be applied to transform I/O assertions
and state automatons.

Modeling the Functional and Logical Viewpoint. In the following, the most im-
portant artifacts of SPES and their representation in AutoFOCUS3 are summarized.
In AutoFOCUS3, the functional and logical viewpoint of a system under develop-

32

2 Background

Figure 2.14: Schematic overview of the functional viewpoint

ment can be modeled by a component architecture. The component architecture decom-
poses the system following functional or logical decomposition criteria into atomic
components representing functional services or logical components. The behavior of
each atomic component can be defined by state automata or simple code as presented
above.

The functional viewpoint provides a functional architecture, a decomposition of a sys-
tem according to its functions. The functional viewpoint structures the functional
requirements for a system under development into user functions; these user func-
tions may be decomposed hierarchically into user functions. User functions may be
further decomposed into smaller units of functionality that provide an abstract re-
alization of the user function. In AutoFOCUS3, these functions are represented in a
component hierarchy, where each function can be modeled as a component. The hierar-
chy of the functions is represented in the component hierarchy. If a function is not
further decomposed, the behavior of a function can be defined; for modeling the behav-
ior, AutoFOCUS3 offers for example state automata. Dependencies between functions
on the same hierarchical level are modeled as mode channels; in AutoFOCUS3, mode
channels are represented as channels between components. A schematic overview of the
artifact reference structure of the functional viewpoint is given in Figure 2.14.

In the logical viewpoint, the system under development is decomposed into subsys-
tems. The result is a system architecture. The system architecture refines the functional
architecture by considering not only functional requirements, but additionally extra-
functional requirements and architectural constraints; for example, safety require-
ments may be realized in redundant subsystems. Therefore, the logical architecture
usually differs from the functional architecture. The system architecture structures
the system under development in hierarchical logical components that represent the
system and its subsystems. In AutoFOCUS3, the behavior of a (sub-)system is modeled
as a state machine. Dependencies between subsystems are represented as channels. A

33

2.3 Model-based Requirements Engineering

Figure 2.15: Schematic overview of the logical viewpoint

schematic overview of the logical viewpoint is given in Figure 2.15.

Formal Quality Assurance Techniques. AutoFOCUS3 provides a set of formal
quality assurance techniques based on the formal specification techniques. Some
formal quality assurance techniques require an executable model, i.e., a model with
execution semantics. In AutoFOCUS3, an executable model refers to the component
architecture or parts of it: State machines and code specifications can be used to de-
fine the (executable) interface behavior of a component. Components with executable
behavior can be hierarchically composed by connecting components via channels.

Simulation executes and animates executable models.

Non-determinism check is performed on a state automaton in order to prove that
the state automaton has a deterministic behavior.

Unreachable state check identifies unreachable states in a state automaton.

Assume/guarantee (A/G) reasoning can be applied in two settings: 1) For a com-
ponent, guarantees on the output ports and (optional) assumptions on its input
ports are defined. The component has an implemented interface behavior. A/G
reasoning checks that the implemented interface behavior fulfills the guaran-
teed output values (under the assumed input values). 2) Outputs of component
A are connected via channels c(OA, IB) with inputs of component B. It can be
checked that the guaranteed output values of component A have value ranges
that are compatible to the assumed input values of component B.

Formal verification check checks that a component model of the system under de-
velopment fulfills a set of properties specified as contracts. The component
model has to be represented as an executable model. The verification is per-
formed by an automatic transformation of the contract and the executable
model to a model-checker. If a counter-example is provided, that counter-

34

2 Background

example can be simulated.

MSC conformity check (based on Autili et al. [AIP07]) verifies, whether an MSC is
satisfied in a component model. In order to conduct this check, the entry and
exit points of each MSC entity of the MSC have to be assigned to the input and
output ports to the corresponding components in the component model.

Model-based testing [MR12, BMR12] provides test-suites with specific coverage
criteria. The test-suites are generated from an executable model.

These formal analyses are automated by a precise translation from AutoFOCUS3 into
the language of the NuSMV2 [CCGR00] model checker. For details on the integration
see Campetelli et al. [CHN11]. The communication of AutoFOCUS3 with the model
checker is transparent for the AutoFOCUS3 users. The call and the translations to
the model checker and back are done in the background. In cases, in which the
model checker found a counter example (for example an infringement of a property),
the counter example can be simulated in the AutoFOCUS3 simulator. This thesis
investigates how these techniques can be applied in RE.

2.3.7 Requirements Specification with AutoRAID

AutoRAID [SFGP05], [GGS06], [Sch09, p. 21ff] is a model-based approach for RE in
the embedded systems domain. The goal of AutoRAID is to avoid the quality issues
inconsistency and ambiguity and to improve traceability and increase verifiability. Au-
toRAID was implemented as a plug-in of the predecessor of AutoFOCUS3, in Auto-
FOCUS2. AutoRAID provides a process for the formalization of requirements from
prose to structured text and analysis techniques for structured text requirements. The
structured text can be mapped and traced to model elements of the system architec-
ture.

AutoRAID provides an artifact reference structure for requirements that is integrated
with subsequent development artifacts. AutoRAID facilitates the documentation of
source documents [GGS06]. Requirements are differentiated in architectural require-
ments on the structure of a system, modal requirements of the operation modes of a sys-
tem, data requirements of the data communicated or stored in a system, and functional
requirements on the functions provided by a system. AutoRAID defines attributes for
requirements like an ID, title, a patron (the owner of that requirement) and a textual
description. Various trace links can be documented: Requirements can be refined to
more detailed requirements, associated with each other or motivate architectural deci-
sions. Requirements are differentiated according to their impact on the architectural
model; each requirements type motivates a specific model element in the architecture
model of the system under development. For example, architectural requirements
motivate components in a component architecture describing the logical viewpoint
of a system.

AutoRAID [Sch09, p. 21ff] proposes a guideline for the review-based step-wise for-
malization from requirements written in prose to requirements that are structured
and detailed by attributes. The approach supports the specification, tracing and
analysis of textual requirements by providing an artifact reference structure of the

2http://nusmv.fbk.eu/NuSMV/

35

http://nusmv.fbk.eu/NuSMV/

2.3 Model-based Requirements Engineering

requirements specification. It traces the attributed requirements to a formal design
model. The approach comprises the following actions:

1. Individual requirements are identified by breaking down the requirements
specification into coherent parts. These requirements are iteratively broken
down into sub-requirements until the requirements can be classified with re-
spect to the different requirement types defined by AutoRAID.

2. The break-down relationship of requirements is documented as refinement
links. Furthermore, requirements addressing a common issue can be traced.

3. Requirements are classified into four different types (architectural, modal, data,
and functional requirements). For each requirement type, specific attributes are
defined that have to be documented.

4. The attributes of the requirements are associated with model elements of a de-
sign model by specifying a motivated-by association.

5. Each requirement type motivates specific model elements of the design model.
In the example of a typed port, an architectural requirement motivates the port;
a data requirement motivates the data type. Both requirements are integrated
in the design model.

6. Automated conformance checks indicate whether the resulting requirements
specification conforms to rules defined on the AutoRAID artifact reference
structure. An example for such a conformance check is “Each requirement must
be classified or refined by a further requirement” [Sch09, p. 45].

Inconsistencies are successively removed by successively breaking down require-
ments into a detailed model with linked elements. Ambiguity is addressed by using
a detailed artifact reference structure, expressing the requirements in terms of this
model successively leads to elimination of ambiguities, for example, by classifying
and detailing the steps of a scenario. Linking requirements to elements of the de-
sign ensures traceability is automatically. Through the restricted expressiveness for
requirements, the description of a requirement is design-like, thereby reducing the
risk of infeasibility and increasing verifiability.

AutoRAID does not provide a formal representation of requirements that is inde-
pendent of the system architecture. Furthermore, AutoRAID does not specifically
support the validation of functional requirements.

2.3.8 Requirements Formalization and Analysis for Hybrid Systems

Cimatti et al. [CRST09, CRST13] have developed a model-based RE approach for hy-
brid systems, where discrete and continuous components are tightly intertwined. It
includes a modeling language called OTHELLO for the requirements specification.
The expressiveness of OTHELLO has been tailored to represent functional require-
ments. Based on the modeling language, a guideline directs the formalization and
analysis of requirements.

OTHELLO is a self-developed visual formal modeling language adopted from UML
and enriched with a subset of the property specification language PSL [Eis07]. OTH-
ELLO defines a set of RE concepts and their formal representation. OTHELLO fa-

36

2 Background

cilitates a set of formal analysis techniques. The approach provides methods for
consistency checks (a set of behavior constraints under given value constraints are
satisfiable), scenario compatibility check (a set of scenarios is compatible with a set
of behavior and value constraints) and property checks (a property is implied by a
set of behavior and value constraints).

Cimatti et al. propose conducting three steps for the specification and quality assur-
ance (QA) of requirements. The approach assumes that the requirements specifica-
tion is documented as unstructured text. From this starting point, three main actions
are recommended:

1. Informal Analysis. The requirements specification is split into requirement frag-
ments. requirement fragments are classified into different RE concepts (glossary,
architecture, functional, communication, behavioral, environmental, scenario,
property, annotation). The approach provides a question for each type that
leads the categorization. Between the classified requirement fragments, links
can be defined: strong dependency link (“A cannot exist without B”), weak de-
pendency link (“A can exist without B”), refinement link (“A redefines some
notions of B at a lower level of abstraction”). An inspection identifies flaws in
the informal requirement fragments.

2. Formalization. The fragments are formalized following predefined target nota-
tions. For each RE concept, Cimatti et al. propose a specific modeling notation.
For example, functional requirements should be formalized to state automata.
Glossaries should be formalized to classes and class diagrams. The resulting
models are either directly derived from a requirements fragment or include
several requirement fragments. The requirements fragments are linked to the
resulting model elements.

3. Formal Analysis. The resulting formal models are checked syntactically. Then,
an analysis expert selects a subset of the formalized requirement fragments and
selects automatic checks in order to identify quality issues in the requirements.
The selected subset is analyzed to identify possible flaws.

The approach provides a modeling language and guidance for the formalization and
the formal analysis of functional requirements in order to detect quality issues. The
approach does not address the validation and verification of functional requirements.
Operationalization is only provided by setting up a tool-chain [CRST13]. This thesis
integrates the specification and formal analysis activities proposed in the guideline.

37

Chapter 3
Related Model-based RE Approaches

This chapter presents those works that are related to MIRA, the model-based RE
approach developed in this thesis. Work is related, if it presents a model-based RE
approach that addresses the four challenges stated in Chapter 1 and if it addresses
functional requirements. A vast number of literature on model-based RE approaches
has been published since the beginnings of model-based RE in the late 1970s. We
chose a systematic approach to investigate these publications. We defined two sets
of criteria to characterize related work. The first set serves to identify related work.
The second set is used to discuss related work. We applied a Systematic Mapping
Study (SMS) [PFMM08] to identify and structure the literature on model-based RE
according to the first set of criteria. From this pool of work, we filtered the papers
that match the characteristics for related work. We identified further related work
that was outside the scope of the SMS. The related work is discussed in detail based
on the second set of characteristics.

This chapter is based on an SMS performed by Ezaga [Eza15] in the course of his
Master thesis. The Master thesis was supervised by the author.

Contents
3.1 Research Method . 39

3.2 Study Results . 44

3.3 Discussion of Related Work . 45

3.4 Threats to Validity and Limitations 51

3.5 Conclusion . 52

3.1 Research Method

The goal of the study is to identify the works that are related to the MIRA ap-
proach developed in this thesis. We identified related work using an SMS, a re-
search methodology that reviews a number of works in order to structure a research
area. The SMS was conducted by adapting the guidelines provided by Peterson et
al. [PFMM08]. A search process identified papers about model-based RE. We then
defined the characteristics of related work. We elaborated a scheme to categorize the

39

3.1 Research Method

identified papers into those that meet the characteristics and those that do not. We
applied this scheme on the papers identified in the search. The result of the SMS is a
categorized list of papers. We down-selected the related work from this list. Finally,
we assessed the related work regarding detailed characteristics for a comparison with
MIRA.

3.1.1 Search Process

The search process has the goal to identify work in the field of model-based RE. In
the following, we describe the inclusion and exclusion criteria we applied for the
identification and the search databases we used.

Inclusion and Exclusion Criteria. In this study, we considered approaches that
focus on the requirements for a system under development and not on other re-
quirements, for example, requirements for the development process. In addition,
approaches should use models to provide a) specification techniques to represent re-
quirements, b) a system modeling theory to interpret requirements, or c) model(s)
that define the contents of a requirements specification and their representation (ar-
tifact reference structures).

The search process was guided by inclusion and exclusion criteria. A publication
was included when it:

• applied, proposed, evaluated, discussed, opined, reviewed and/or envisaged
for the future, novel or existing models (or model-based approaches) on RE;

• uses models that match the properties stated above;

• is either a paper from a journal, conference or international symposium;

• contains enough information to be classified according the criteria for related
work;

• was published up to 2014.

A publication was excluded when it

• did not explicitly address RE;

• is not from a journal, conference or international symposium;

• did not provide access to full text of research work for some reason;

• was not written in English language.

Search Databases and Search Strings. We searched five online publication
databases, the IEEE Explore Digital Library, the ACM Digital Library, Springer Link,
ScienceDirect and Google Scholar. Each of the five databases was searched with a
search string. For IEEE and Science Direct the same search string was used. Google
Scholar had minor modifications of this search string while ACM and Springer had
different variations of search string as show in Section 3.1.1. The search string for
IEEE, Springer and ACM databases resulted in around 2000 papers. Google Scholar
and Science Direct provided access to around 1000 publications each. During the

40

3 Related Model-based RE Approaches

Table 3.1: Search databases and search strings
Database Search String
IEEE, Science
Direct, Google
Scholar

((Requirement engineering) AND (*based OR *oriented OR
model-driven OR content model OR concept model OR formal
specification OR requirement structuring OR requirement clas-
sification OR formal approach OR mathematical model OR high
level abstract model))

ACM (requirements engineering) and (Key-
words:requirements/specifications, OR Key-
words:requirements/analysis, OR Key-
words:requirement/framework, OR Keywords:model/based,
OR Keywords:model/driven/requirements, OR Key-
words:content/model, OR Keywords:concept/model,
OR Keywords:requirement/development, OR
Keywords:requirement/modeling, OR Key-
words:formal/requirement/ model)

Springer Link requirement AND engineering AND (requirements OR model-
based OR approach OR model-driven OR concept OR content
OR model OR formal OR specification OR classification OR
mathematical OR system OR development)

search and study selection process, a researcher screened a total of 8000 papers in
their titles and abstracts, applying the inclusion and exclusion criteria. Where insuf-
ficient information was given to judge on the inclusion and exclusion criteria, the
conclusion (and in some cases the entire publication) was read before deciding to in-
clude or exclude papers. A second researcher, the author, reviewed these papers and
performed manual search to add more papers. The search resulted in a final set of
336 publications.

3.1.2 Definition of the Characteristics of Related Work

The scope of this thesis infers the initial characteristics for related work: Firstly, re-
lated work presents a model-based RE approach. Secondly, the model-based RE ap-
proach handles functional requirements.

The first challenge is to support heterogenous requirements specifications. Related
work should facilitate the representation of both textual and formalized require-
ments.

The second challenge is to cover the analysis, validation and verification of require-
ments. As names for the different quality assurance activities differ in literature,
related work should facilitate any quality assurance of requirements. We then as-
sess related work in more detail for the various quality assurance activities to see,
whether the approach covers the analysis, validation and the verification of func-
tional requirements.

The third challenge is to be integrated in a seamless model-based development ap-
proach. A necessary precondition for related work is to be classified as formal, since

41

3.1 Research Method

seamless development requires defined semantics. We then assess in detail whether
the related work is integrated in a seamless model-based development approach.

The fourth challenge is guidance and tool support. Hence, we investigate the related
work in more detail according to these two characteristics.

3.1.3 Identify Related Work

We identify related work using the characteristics discussed in Section 3.1.2. Sum-
marizing, related works have the following characteristics:

• The work presents a model-based RE approach.

• The model-based RE approach handles functional requirements.

• The model-based RE approach facilitates the representation of both textual and
formalized (heterogenous) requirements.

• The model-based RE approach facilitates a quality assurance of requirements.

• The model-based RE approach is formal.

We proposed a classification for each of these characteristics (see below). We mapped
the 336 publications to these classifications. This provided quantitative insights into
the characteristics. Using the classification, we then down-selected the publications
to the related work. After down-selecting the papers to the related work, we ap-
plied snowball sampling [BW81] to identify additional related work. In addition, we
identified and added related work that was published after 2014. Furthermore, we
extracted tools that were mentioned in the papers.

Criteria for a Model-based RE Approach. A publication can be classified accord-
ing to the seven different research type facets, six of which are described by Wieringa
et al. [WMMR05]:

Solution proposals present one or more techniques with descriptions and ratio-
nale, as a solution to a problem.

Validation research papers are a subset of solution proposals, which are not yet
implemented in practice. They would have been described and explained with
illustrative examples.

Evaluation research papers present solution techniques which have been evalu-
ated in practice. Solutions which have been tested in an academic setting such
as a university with students or in an industrial setting qualify as those evalu-
ated in practice. In addition, non-solution proposals which mainly review and
evaluate some existing technology also qualify as evaluation research papers.

Philosophical papers are unique in that they introduce some new paradigm or con-
ceptual framework for structuring investigative activities, for example, a new
way of looking at requirements.

Opinion papers present the authors’ opinions and views concerning how certain is-
sues should be approached, the true meaning of concepts or reveal their view-
point about past events such as reasons behind the software crisis.

42

3 Related Model-based RE Approaches

Experience papers are useful in presenting the experiences of practitioners in try-
ing out a particular technique.

Vision (or Road-map) papers undertake a review of current state of research and
then propose one or more directions to which it should be focused in the future.

We classified the identified papers according to this scheme. Overlaps were taken
into account, i.e. there were papers which qualified into more than one facet, to
a maximum of three facets. Related work should present an approach. Hence, we
selected only solution proposals, validation and evaluation research and experience
papers as related work.

Criterion for Functional Requirements. We extracted the requirements type that
an approach addresses from each of the papers. We classified these types as func-
tional and extra-functional. Based on this information, we could assign each paper
to the group of approaches that handles functional requirements, extra-functional re-
quirements or both. We assigned work to both, if it explicitly was applicable to both
or if the approach did not limit its applicability to a specific type of requirement. We
selected approaches for functional requirements and for both as related work.

Criterion for Heterogenous Requirements. We investigated whether contribu-
tions facilitate the conversion of textual requirements into a semi-formal or for-
mal representation. The conversion can be automatic, semi-automatic or manual,
then provided with explanations for the conversion. Approaches could be classi-
fied as heterogenous or not heterogenous. Related work comprises heterogenous
approaches.

Criterion for Quality Assurance. In a bottom-up-approach, we extracted the pur-
poses from the papers. A purpose indicates an activity or RE phase that a model-
based approach aims to support. These purposes have been grouped into quality
assurance and other purposes to identify related work. Related work targets quality
assurance, but additionally may also target other purposes.

Criterion for a Formal Approach. We extracted the modeling languages that the
approaches use and classified them as formal or semi-formal according to our defini-
tion of these terms and using further information in the papers. We identified three
categories: Semi-formal approaches use semi-formal languages, formal approaches
use formal languages, hybrid approaches combine semi-formal and formal modeling
languages. Related work consists of approaches that are formal or hybrid.

3.1.4 Discussion of Related Work

According to Section 3.1.2, we discussed the related work in detail with respect to
these characteristics:

• The model-based RE approach covers the analysis, validation and verification
of functional requirements.

43

3.2 Study Results

• The model-based RE approach is integrated in a seamless model-based devel-
opment approach.

• The model-based RE approach provides a method and tool support.

Related work that covers these criteria addresses the same challenges as MIRA.

3.2 Study Results

The SMS identified 336 original research papers in the field of model-based RE from
1976 until 2014. Details on the case study and its results can be found in Ezaga
[Eza15]. We limit the presentation of study results to the classification and down-
selection of related work. We provide some examples for excluded work that are
either well-known (according to the opinion of the author) or that match some of the
criteria. Then, we discuss related work in detail in Section 3.3.

272 papers presented solution papers. Another 36 papers present validations, evalu-
ations and experiences of and with model-based RE approaches. Hence, in total 308
papers are subject to further investigation.

199 papers handle functional requirements, and further 50 handle functional and
extra-functional requirements. The remaining papers handle only extra-functional
requirements.

Only 37 papers present approaches that include both textual and semi-formal/formal
requirement models. The down-selection excludes those papers which start with
modeling or whose inputs are models. This criterion excludes approaches such as the
Software Cost Reduction (SCR) approach [HJL96, HJ07], the Analysis and Descrip-
tion of Requirements and Architecture (ADORA) approach1 [GBJ02], RAT [BCP+07],
and RATSY [BCG+10]. This criterion also excludes the commercial tool STIMULUS2

[GJ16] that provides capabilities to model and simulate functional real-time system
requirements and test scenarios.

208 papers present formal or hybrid approaches. Semi-formal approaches that do
not provide an underlying formal system model are excluded. Examples for semi-
formal modeling languages are the Unified Modeling Language (UML) [OMG11]
and the System Modeling Language (SysML) [OMG12]. UML was the most pre-
dominant modeling language in the SMS with over 100 publications. This criterion
also excludes UML- and SysML-based approaches such as Rational Unified Process
(RUP) [Jac92, Sof11] or COMPASS (Comprehensive Modeling for Systems of Sys-
tems) [HPP+15]. Included are hybrid approaches that tailor UML to a formal model-
ing language. For example, fUML [Gro13] extends a subset of UML to be executable.
Romero et al. [RSF14] use fUML for a formal analysis applying theorem proofing.

218 papers claim to address quality assurance. The other approaches state purposes
like negotiation, code generation, or traceability or do not explicitly name a specific
purpose other than specification.

Taking into account all these characteristics at once, the SMS identified 24 papers

1http://www.ifi.uzh.ch/rerg/research/adora.html, last accessed 10-29-2016
2http://argosim.com, last accessed 10-29-2016

44

http://www.ifi.uzh.ch/rerg/research/adora.html
http://argosim.com

3 Related Model-based RE Approaches

that constitute related work. Snowball sampling and an investigation of work newer
than 2014 revealed additional related work. In total, we identified 29 approaches
described in 39 papers that constitute related work.

3.3 Discussion of Related Work

In the following, we discuss the related work with respect to the four challenges
stated in Chapter 1. Table 3.2 summarizes the extent to which each of the discussed
approaches addresses each challenge.

3.3.1 Challenge 1: Heterogenous Requirements Specifications

Many approaches such as Rockwell Collins [MTWH06, Hei07] provide a means to
represent requirements using natural language and a formal language. A variety of
approaches such as Cimatti et al. [CRST13] and KAOS [vL01] do not limit hetero-
geneity to requirements, but even provide other contents of the requirements spec-
ification in different representation forms. Two approaches [KJL09], [SBC10] limit
heterogeneity to domain knowledge. Therefore, these two approaches do not fully
address the first challenge.

3.3.2 Challenge 2: Analysis, Validation and Verification of Functional
Requirements

We investigated whether an approach covers the analysis, validation and verification
of functional requirements. A variety of approaches are limited to explicitly support
one or two of these quality assurance activity, whereas MIRA comprises all three ac-
tivities. We present the approaches grouped by the number of activities they support.

One Quality Assurance Activity. A variety of model-based RE approaches pro-
vide support for the analysis [LCK98, JMM99, CRST13, Ili07, dSAVP10, KP11, KC05b,
KJL09, FMK+11, GBC+07, FdS12, NEA12], validation [HD98, PDC+11], or verifica-
tion [SJV12, JHLR10, BCMW15] of functional requirements. In the following, we
present some of these approaches in more detail.

Some earlier approaches developed methods to perform a quality assurance activ-
ity on a specific type of requirement. Heymans and Dubois [HD98] investigate the
formalization of scenarios to a formal, MSC-like notation and its validation through
simulation. Lee et al. [LCK98] formalize use cases to petri nets to then analyze them.

The approach by Cimatti et al. [CRST13] was introduced in Chapter 2. It is designed
for hybrid systems and therefore could be applied for embedded systems. The ap-
proach uses the OTHELLO language. It proposes a method for the formalization
and the analysis of requirements and other contents of the requirements specifica-
tion (e.g., glossary) to detecting flaws in the requirements specification. The Cimatti
approach does not cover the validation or verification of requirements.

45

3.3 Discussion of Related Work

Table 3.2: Summary of related approaches with respect to the challenges (C.1) heterogene-
ity, (C.2) coverage of analysis, validation and verification, (C.3) seamless and (C.4)
guidance and tool support. The table lists the name or the first author of the ap-
proach, and the papers in which the approach was presented. “+” means that
the approach fully addresses that challenge. “o” indicates that the approach ad-
dresses some aspects of the challenge, but does not completely cover it. The last
row of the table provides the sum of challenges that were fully addressed

Name / Author Paper(s) C.1 C.2 C.3 C.4 Sum
Kroha [KJL09] o o o o 0
Sanyal [SBC10] o o o o 0
SOLIMVA [SJV12] + o o o 1
Jastram [JHLR10] + o o o 1
Backes [BCMW15] + o o o 1
HiLiTE [BS10, BBB+12] + o o o 1
Heymans [HD98] + o o o 1
Pires [PDC+11] + o o o 1
Lee [LCK98] + o o o 1
Juristo [JMM99] + o o o 1
Cimatti [CRST13] + o o o 1
Ilic [Ili07] + o o o 1
De Sousa [dSAVP10] + o o o 1
Kof [Kof10, KP11] + o o o 1
Njonko [NEA12] + o o o 1
SPS [KC05b, PMHP12] + o o o 1
DODT [FMK+11, SW14] + o o o 1
Gorse [GBC+07] + o o o 1
RSL-IL [FdS12] + o o o 1
AutoRAID [SFGP05, GGS06, Sch09] + o o o 1
BTC [Jus13, ESH14] + o o o 1
Kim [KS04] + o o o 1
Sengupta [SD15] + o o o 1
General Motors [RG11] + + o o 2
Rash [RHR+06] + o + o 2
FOCUS [BS01] + o + o 2
ARIES [JFH91] + + + o 3
KAOS [vL01, LvL02, vL03, DDR03] + + + + 4
Rockwell Collins [MTWH06, Hei07] + + + + 4

Ilic [Ili07] introduces an approach to formalize requirements to the B Method. To
support the transformation, he proposes requirements templates with structured text
for events, data and timing requirements. Requirements are classified as events, data

46

3 Related Model-based RE Approaches

or timing requirements. The templates are mapped to corresponding B language
constructs. For example, a requirement in an event template is formalized to an event
in B. The field determines which information becomes which part in the B event
specification. This approach is very similar to the formalization proposed in this
thesis. The publication does not discuss the validation or verification of requirements
or investigates tool support. De Sousa et al. [dSAVP10] formalize use cases to the B
method and perform consistency analysis.

Several approaches investigate the automation of the formalization of natural lan-
guage requirements to formal specifications, for example, from scenarios to message
sequence charts [KP11]. Njonko and el Abed [NEA12] proposed an approach for the
automated formalization from natural language requirements to executable models.
The formalization reveals inconsistencies and incompleteness in requirements. An-
other goal of the formalization could be to generate test-cases from the formal repre-
sentation of requirements [SJV12]. Konrad and Cheng proposed a specification pat-
tern system (SPS) [KC05b] for controlled English grammar that can be transformed
to logics automatically. A case study [PMHP12] applied SPS to automotive require-
ments of BOSCH in order to analyze sets of requirements for errors. The case study
formalized 289 requirements and indicated that SPS is applicable for the formaliza-
tion when adding three further patterns. The paper did not report on concrete bene-
fits or usefulness of SPS for the requirements analysis.

Jastram [JHLR10] uses the WRSPM reference model [GGJZ00] as a basis for the for-
malization from natural language requirements to specifications in Event B. This
could be a good starting point for a systematic verification of a system against its
requirements. Nonetheless, the approach as presented in the paper only provides
details on how to verify formal requirements against their textual representation.

Kroha et al. [KJL09] propose the use of ontologies for consistency checking. Ontolo-
gies are also applied in the DODT tool [FMK+11] for the requirements analysis.

Pires et al. [PDC+11] combine controlled natural language with UML and ontologies
to promote the understanding of requirements amongst stakeholders.

Backes et al. [BCMW15] provide an approach to formalize and verify requirements
using compositional verification. They extended the Architecture Analysis and De-
sign Language (AADL) [FG12] that was designed for embedded real-time distributed
systems. The approach has been applied on a Quad-redundant Flight Control System
within NASA’s Transport Class Model. The validation and analysis of requirements
is not addressed in this approach.

Two Quality Assurance Activities. Some approaches provide support for the
analysis and validation [KS04, SBC10, SD15].

Kim and Sheldon [KS04] present a method to analyze and validate requirements us-
ing two formal representations. The formalization identified incomplete and incon-
sistent requirements. The authors apply fault-injection to obtain a more fault-tolerant
system. Sanyal et al. [SBC10] propose an automated method to formalize a domain
model from textual requirements. This domain model facilitates the analysis and
validation of the requirements. Sengupta and Dasgupta [SD15] propose a method
that combines formal and semiformal techniques to model software requirements

47

3.3 Discussion of Related Work

for analysis and validation.

Three Quality Assurance Activities. Some approaches [JFH91, vL01, RG11,
MTWH06] promise to cover all three activities.

ARIES [JFH91] envisions an approach and tool support for the analysis, validation
and verification of the requirements specification. The core idea is that the require-
ments phase defines textual requirements that are integrated in a formal require-
ments model. This formal model is then mechanically transformed into an optimized
program. We could not identify a follow-up publication that fully demonstrates these
capabilities.

KAOS [vL01] is a modeling language that facilitates to semi-formally model goals,
their refinement to requirements, operations and objects. KAOS facilitates the de-
scription of entities as prose and a formal definition in temporal logic. KAOS
supports the elicitation, validation and analysis of requirements. KAOS pro-
vides a method to derive operational software specifications from a goal model
[LvL02, vL03].

General Motors developed a model-based approach for the formalization from re-
quirements specified in controlled natural language to a formal representation that is
then analyzed and verified by simulation, model checking and generated test cases
[RG11]. The publication presents test case generation supported by a tool called Re-
MOTGen. The publication does not provide details on the concrete formalization
process and how to perform the transition from requirements to design, or on other
quality assurance techniques than test case generation, so we cannot evaluate this
approach in detail.

Rockwell Collins report on successful experiments with the application of formal
methods in RE in the avionics and aerospace domain and its benefits for verifica-
tion and certification, especially in the context of domain-specific certification stan-
dards. In an industrial context, Rockwell Collins [MTWH06] report on the success-
ful application of the formal analysis and verification of requirements for a flight
guidance system. Natural language requirements for a flight guidance system are
written in ’shall’ form using a formal specification language. The formalization, the
formal analysis and the formal verification revealed errors in the natural language
requirements and the formal models. The case study demonstrates the applicabil-
ity and effectiveness of formal analysis tools to real systems. Based on that case
study, Heimdahl [Hei07] describes the formalization process and current challenges
for safety-critical systems.

3.3.3 Challenge 3: Seamless Model-based Development

Generally, it cannot be assumed that requirements are expressed with the same vo-
cabulary and the same level of abstraction as the system design. An integration of
the model-based RE approach in a seamless model-based development approach fa-
cilitates a coordinated transition from requirements to subsequent design models.

Some approaches such as Backes et al. [BCMW15] or Justice [Jus13] assume that re-
quirements are expressed at the same level of abstraction as the system architecture.

48

3 Related Model-based RE Approaches

For example, in the approach presented by Backes et al. [BCMW15], the authors can
apply formalized requirements directly to verify system components. This suggests
that the requirements might contain architectural decisions that have been under-
taken to obtain the architectural model of the system under development and are
therefore not independent of these design decisions. Similarly, AutoRAID [SFGP05]
avoids an explicit refinement from requirements to the design. Requirements are
formalized as part of a system model at the level of abstraction of the system design.

Santiago Junior et al. [SJV12] leave the transformation of abstract test cases on the re-
quirements level to executable test cases to the user of their approach. The refinement
from the level of abstraction of the requirements to the system architecture remains
implicit and undocumented.

Some approaches such as ARIES [JFH91], KAOS [LvL02, vL03] and Rockwell Collins
[MTWH06] propose the transformation of requirement models to subsequent design
models of the software under development by pre-defined rules or transformation
patterns. Ideally, these models are then correct by construction and do not require
any verification. These pre-defined transformation rules need to include all potential
design decisions that have to be undertaken during the system development. Au-
tomated model transformation seems feasible for narrow, well-understood domains,
but the modeling languages require significant customization before the languages
can be applied in practice [WHR14]. Therefore, this thesis takes a different approach.
We do not prescribe whether subsequent design models are created automatically.
We do allow for design decisions that are not encoded in rules. Therefore, a ver-
ification of the subsequent design model against its requirements is necessary and
supported by the approach.

The formal modeling theory FOCUS provides a solution to close the gap between
functional requirements and subsequent development artifacts. FOCUS defines a
formal refinement specification that documents how system inputs and outputs are
refined over different levels of abstractions. Formal refinement specifications are for
example applied in model-based testing [MR12]. In test-driven development, test
cases are generated from executable requirements. These test cases can be automat-
ically converted and run a model of the system architecture or code. In order to
address seamless model-based development, MIRA integrates the system modeling
theory FOCUS.

3.3.4 Challenge 4: Guidance and Tool Support

As discussed above, most approaches are generally limited with respect to quality
assurance. Only few approaches address the analysis, validation and verification
of requirements. Therefore, guidance and tool support for these approaches is also
limited to a subset of the quality assurance activities. Tool support includes a range
of research prototypes [RHR+06, KP11, HD98, KC05a] and more mature tools that
we will present in the following.

Guidance for analysis, validation and verification is given in two approaches, in
KAOS [vL01, LvL02, vL03, DDR03] and by Rockwell Collins [MTWH06, Hei07].
KAOS is supported by a dedicated tool, the Objectiver tool3. FAUST [DDR03] is

3www.objectiver.com, last accessed 8-31-2015

49

www.objectiver.com

3.3 Discussion of Related Work

an extension to the Objectiver tool that facilitates a formal analysis of requirements.
Rockwell Collins used a tool chain with a commercial RE tool as a front end.

The DODT tool [FMK+11] supports to formalize requirements using controlled nat-
ural language and domain knowledge using ontologies. The domain ontology in
DODT includes a thesaurus, facilitates the documentation of relations between terms
in the thesaurus and enables interference checks. DODT also provides a set of anal-
yses on requirements expressed by controlled natural language and the domain on-
tology, including a check for missing requirements and inconsistent requirements.
DODT was successfully applied to improve the quality of requirements by reducing
ambiguities and inconsistent use of terminology, removing redundant requirements,
and improving partial and unclear requirements [SW14]. DODT does not specifi-
cally support the validation of requirements by stakeholders or the verification of
the system under development against the requirements.

The Honeywell Integrated Lifecycle Tools & Environment (HiLiTE) [BS10] is an in-
house tool of Honeywell for the requirements-based verification of aerospace system
components that are designed using MATLAB Simulink/Stateflow [ABR05] models.
HiLiTE has been applied in the analysis and verification of control systems of several
commercial avionics production programs. Using HiLiTE, Honeywell report on a
reduction of the cost and time of certain component-level verification tasks that are
required by the domain-specific safety standard by a factor of 20 - 50 compared to
traditional methods [BS10]. The analysis and validation of requirements is not in
scope of HiLiTE.

The BTC EmbeddedSpecifier4 [Jus13] is a tool that supports creating and managing
semi-formal and formal requirements. Starting with informal textual requirements, a
formal and machine-readable specification can be derived step-by-step. This specifi-
cation is at the same level of abstraction as the architecture models [Jus13, p. 11] and
can be used for an automated formal verification. Ellen et al. [ESH14] developed an
extension for the analysis of requirements, where requirements are formalized inde-
pendently of the design. The BTC EmbeddedSpecifier differs from MIRA as it does
not provide a notion of refinement. Furthermore, the validation of requirements is
not in scope of the BTC EmbeddedSpecifier.

Current dedicated commercial RE tools belong mostly to the group of modeling tools
or to the group of requirements management tools. Requirements management tools
such as IBM Rational DOORS5 do not specifically support model-based RE. Require-
ments management tools typically concentrate on the documentation, management
and tracing of requirements. In the example of DOORS, a formal representation of
requirements is not explicitly supported. Models can be integrated via the Ratio-
nal DOORS Analyst Add On. This tool allows supplementing textual requirements
with pictures for the visualization and simulation of complex systems based on UML
and SysML. Rockwell Collins [MTWH06] used DOORS for the formal specification
of requirements by defining a separate column for the formal representation of a re-
quirement.

Several commercial modeling tools such as the Enterprise Architect6 or Papyrus

4https://www.btc-es.de/index.php?idcatside=52&lang=2, last accessed 5-3-2016
5http://www-03.ibm.com/software/products/en/ratidoor, last accessed 8-31-2015
6http://www.sparxsystems.de/uml/ea-function/, last accessed 5-3-2016

50

https://www.btc-es.de/index.php?idcatside=52&lang=2
http://www-03.ibm.com/software/products/en/ratidoor
http://www.sparxsystems.de/uml/ea-function/

3 Related Model-based RE Approaches

[GDTS07] are available. Papyrus [GDTS07] is a modeling tool that can be combined
with Moka7 to define and execute fUML models. These two tools support a range
of modeling languages such as UML and SysML. Both tools offer a broad range of
features related to modeling, but lack of specific methodical support for model-based
RE. Nevertheless, UML/SysML and the corresponding modeling tools typically can
be configured and extended in many aspects. Therefore, they should be able to sup-
port artifact-orientation and seamless model-based development by customization.
First discussions with a tool vendor confirmed this, but revealed that the adapta-
tion would definitely require significant additional efforts. For example, for the
operationalization of their model-based RE approach, Cimatti [CRST13] combined
the requirements management tool IBM Rational RequisitePro, Microsoft Word and
UML modeling tool IBM Rational Software Architect with an extended version of the
NuSMV model checker [CCGR00].

3.4 Threats to Validity and Limitations

In the following, we discuss the main threats to validity and limitations of this liter-
ature study.

Construct Validity. Construct validity concerns establishing assurance that the
study design reflects the objectives of the study. A crucial point is the search string
used to identify the primary studies. Different search strings may yield fundamen-
tally different results. We identified and investigated potential search keywords in
several iterations. Potential synonyms were extracted from related publications and
books of this field. Finally, the search string was fine-tuned according to the capabil-
ities of the search engines. Nonetheless, the list of resulting papers might be incom-
plete and additional search terms might increase the list of resulting papers. In order
to maintain a high quality of the publications, only journal articles and main confer-
ence papers have been included to the study. Workshop papers have been excluded.

The search databases also influence the number and quality of papers. The chosen
databases include renowned RE journals and conferences, for example, the Require-
ments Engineering Journal published by Springer, or the IEEE Requirements Engi-
neering Conference.

Some publications extend existing approaches and elaborate certain aspects of an
approach. These publications do not provide a coherent overview. This means that
where a complete approach may exist, it could be spread over several publications.
Hence, some of these approaches may offer solutions to all four challenges. Nonethe-
less, if each of the publications only covers certain aspects of an approach, it remains
unclear whether these aspects can be put together effectively. In order to be able to
evaluate such an approach, a publication still needs to summarize the various solu-
tions in a coherent approach.

Internal Validity. Internal validity deals with the data extraction and the data anal-
ysis. The paper identification and the mapping of the papers was carried out by

7https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

51

3.5 Conclusion

one researcher. This means that researcher bias could influence the study results.
Nonetheless, the results of each step of the study have been discussed with a second
researcher, especially those where doubts in the inclusion/exclusion criteria or the
mapping existed.

The mapping from papers to the research questions could also result in misclassifi-
cations. This threat was partly addressed by using a widely accepted classification
scheme on research facets [WMMR05]. For other classifications, we relied on the
terms used by the authors, and avoided misclassifications by aggregating terms with
contradicting usage. Another threat to validity stems from the broad scope of the
study. The resulting high number of results makes the evaluation an elongated task,
which also may lead to misclassifications.

In order to mitigate researcher bias, an iterative approach was taken to minimize
misclassifications. The papers have been evaluated several times to reduce researcher
bias. A second researcher (the author) controlled the results in random samples on
10% of the papers, thereby identifying only few (less than three) changes.

External Validity. External validity is concerned with the generalizability of the
results. The SMS was performed on a 38-year horizon. This means that the SMS
is representative in terms of time for model-based RE. The search string comprises
relevant terms related to model-based RE and the number of identified papers is
extensive with 336 papers. The complete list of all the papers incorporated in this
study is provided online 8. This list and the classification scheme can be used to
extend the study with additional papers in the future.

Limitations. Some approaches are spread over various publications, which makes
it difficult to identify them as related work. Furthermore, the analysis, validation
and verification activities are named completely differently by different authors. For
example, some authors call the identification of problems within the requirements
specification analysis (like in this thesis) while others call it verification or even check.
This increases the difficulty of a comparison. Finally, some publications that seem
relevant do not give enough details for an in-depth comparison. Due to these limita-
tions, there might be related work that is missing from this study.

3.5 Conclusion

Related works are model-based RE approaches with a scope on functional require-
ments that solve at least some of the four challenges that MIRA poses. From the
challenges, we extracted a set of characteristics to identify and discuss the work re-
lated to MIRA. Related work

• presents a model-based RE approach.

• handles functional requirements.

8https://drive.google.com/file/d/0B77ALaznd8SBTmhvN2RQRUVtZ1U/view?usp=
sharing, last accessed 11-29-2016

52

https://drive.google.com/file/d/0B77ALaznd8SBTmhvN2RQRUVtZ1U/view?usp=sharing
https://drive.google.com/file/d/0B77ALaznd8SBTmhvN2RQRUVtZ1U/view?usp=sharing

3 Related Model-based RE Approaches

• facilitates the representation of both textual and formalized (heterogenous) re-
quirements.

• facilitates a quality assurance of requirements.

• is classified as formal.

In a systematic mapping study, we screened more than 8000 papers on our inclusion
and exclusion criteria to identify 336 papers on model-based RE. From these, 24 pa-
pers present related work. We identified a further 15 papers by snowballing and a
search on new papers. Nonetheless, due to the threats and limitations of this study as
described in Section 3.4 we could have missed related work. We discussed all related
approaches in more detail.

Challenge 1: Heterogenous Requirements Specifications. Only 37 of the 336
papers in the SMS cover heterogenous requirements specifications. Two of the in-
vestigated approaches only facilitated the heterogenous representation of domain
knowledge. The other papers covered the heterogenous representation of require-
ments similarly to MIRA.

Challenge 2: Analysis, Validation and Verification of Functional Requirements.
Many of the examined related approaches focus on the analysis, validation or verifi-
cation of requirements, whereas MIRA covers all three aspects of quality assurance.

Challenge 3: Seamless Model-based Development. The challenge that distin-
guishes MIRA most from its related work is the integration into a seamless model-
based development approach. The related work either propagates an automated
transformation from requirements to design or completely lacks an integration into
a seamless development approach. MIRA proposes a manual transformation from
requirements to design, thereby not forcing to predefine all design decisions.

Challenge 4: Guidance and Tool Support. Some papers present or discuss tool
support for model-based RE. Nonetheless, as many approaches only focus on one or
two aspects of quality assurance, guidance and tool support of these approaches is
also limited to these aspects. The RE method support of many commercial modeling
tools is typically limited to the RE capabilities of the supported modeling languages.
Requirements management tools typically do not support requirements modeling.
This requires practitioners and researchers to customize and connect requirements
management and modeling tools to support model-based RE, which costs time and
may lead to problems at the tool interfaces. MIRA contains a dedicated guidance and
tool support for model-based RE.

The study could not identify an approach that covers all four challenges to the same
extent as MIRA.

53

Chapter 4
Model-based Quality Assurance in RE

A requirements specification is not an end in itself, but the basis to develop a system
that ideally meets the expectations of all of its stakeholders. A requirements specifi-
cation documents these expectations so that it can serve as an input for the further
development activities of the system under development. Through these develop-
ment activities, the requirements specification can impact the quality of the system
under development. We call those characteristics of a requirements specification that
impact the system under development system quality factors. For example, complete-
ness is a system quality factor because its absence (incompleteness) can lead to miss-
ing system behavior. Other characteristics of the requirements specification affect the
development effort and associated risks, see also [vL01, p. 35].

Quality assurance (QA) aims at increasing the quality of an artifact. From an RE
perspective, QA can investigate the quality of the requirements specification and it
can ensure that the realization in the architecture and implementation conforms to
the requirements. Model-based techniques promise to increase the effectivity and
efficiency of QA, but require that the requirements specification has specific char-
acteristics, for example, is represented formally. We call those characteristics of a
requirements specification that have an impact on the effectivity and efficiency of
QA activities QA quality factors.

Designing the requirements specification so that model-based techniques can be ap-
plied increases the effectivity and efficiency of QA. Effective and efficient QA may
increase the quality of the system under development. A schematic overview of the
impacts of QA quality factors on the system quality is given in Figure 4.1.

The aim of this thesis is to increase the quality of the system under development
by supporting model-based QA. Therefore, in this chapter we perform a study to
investigate the QA quality factors of a requirements specification that enable model-
based techniques. The QA quality factors in scope comprise the contents of a require-
ments specification, their structure and representation form. This thesis has a scope
on functional requirements, i.e., requirements on the system behavior. This leads to
the following main research question:

RQ1: What are quality factors of a requirements specification with a positive im-
pact on the effective and efficient model-based quality assurance of functional re-
quirements?

55

Figure 4.1: A schematic overview of the impacts between QA quality factors and system
quality

The contribution of this chapter is a systematic investigation of QA quality factors
of the requirements specification. The study investigates which information should
be documented in a requirement specification to conduct QA in order to increase the
effectiveness of QA. The efficiency of quality assurance should be increased by apply-
ing constructive QA to avoid quality issues already during the specification and by
facilitating an automation of QA. For example, a formal representation does not only
enable formal QA techniques that can be automated; a second, direct effect of the
formalization are less ambiguous requirements. The study result are three matrices
that capture the impacts of the QA quality factors on the QA activities.

The study results are the foundation to develop a model-based RE approach that
enables quality assurance by supporting the impacts determined in this study. The
model-based RE approach should provide rules and guidelines to ensure the QA
quality factors in the requirements specification. A second essential aspect to be sup-
ported by the model-based RE approach is the automation of QA activities. Au-
tomation requires an adequate tool support. Therefore, Chapter 5 investigates the
requirements of practitioners for a model-based RE tool.

Contents
4.1 Research Method . 57

4.2 Threats to Validity and Limitations 60

4.3 System Quality Factors . 62

4.4 Concepts of the Requirements Specification 66

4.5 Automated Analytical Quality Assurance 69

4.6 Constructive Quality Assurance . 74

4.7 Related Work . 78

4.8 Conclusion . 78

56

4 Model-based Quality Assurance in RE

4.1 Research Method

Study Design. The study instantiates an activity-based RE quality model. A quality
model is “an abstraction of the relationships of attributes of the artefacts, process, and
people and one or more quality attributes [here called quality factors] of the product”
[Wag07]. An activity-based RE quality model [FMF15] investigates the quality of arti-
facts or entities contained in an artifact from the perspective of the activities performed
on these artifacts. The entities have quality factors that can impact the activities pos-
itively (quality characteristics) or negatively (quality issues). The argumentation for
the impact of a quality factor on an activity should be provided in a rationale.

In this study, the artifact under investigation is the requirements specification. An
entity of a requirements specification could be for example a chapter or, more fine-
grained, an RE concept. The more detailed the definition of an entity is, the more
precisely we can discuss its impact on quality. An outline only facilitates to discuss
whether a chapter might be relevant for QA. RE concepts facilitate a more detailed
discussion about impacts. Therefore, this study investigates entities on the level of
concepts. The activities under investigation are the QA activities discussed in Sec-
tion 2.2, e.g., the validation of requirements. The impacts under investigation are
effectivity and efficiency of a QA activity regarding the system quality factors, hence
positive impacts. For example, an executable representation of a requirement has
a positive impact on the validation of requirements, because it enables an effective
simulation.

In the course of this study, the activity-based RE quality model is instantiated in
a series of tables. An example of such a table is given in Figure 4.2. On the left
hand side of the table, artifacts and concepts are listed. To its right, the QA quality
factors of the artifacts and concepts are listed. In the upper part of the table, QA
activities and subactivities are provided. In the middle part of the table, the impacts
of QA quality factors on QA activities are documented. ‘+’ or ‘++’ capture a positive
impact, the number in brackets provides the section in which the impact is discussed.
‘+’ means that the impact is discussed in this thesis. ‘++’ indicates an external source
for the impact. Optionally, the impacted system quality factor can be documented.
Figure 4.2 can be read as ‘an executable requirement has a positive impact on the
simulation, a subactivity of the validation, and can thereby increase the adequacy of
the requirement (see Section 4.5.2).’

Figure 4.2: Example of a table that instantiates the activity-based RE quality model

57

4.1 Research Method

Research Questions. The research question addressed by this study help to elab-
orate the quality model, see Figure 4.3:

RQ1.1: What are system quality factors of the requirements specification?

In the first step, we investigated the system quality factors that the QA activities
should improve. We limited the study to those factors that impact the system under
development, leaving out factors that only effect development efforts.

RQ1.2: Which concepts of a requirements specification enable which quality assur-
ance activity?

In the second step, we searched for concepts to be contained in the requirements
specification that enable QA activities or subactivities. The result of this investigation
is a table that captures the impacts of these concept on QA activities.

RQ1.3: Which QA quality factors of a requirements specification facilitate which
automated analytical quality assurance activity with which impact on a system qual-
ity factor?

In the next step, we investigated model-based techniques that can be used to au-
tomate the QA activities in order to increase their efficiency. We determined the QA
quality factors that are necessary for conducting the techniques and the activities that
can be automated. Furthermore, we investigated the effectiveness with respect to the
system quality factors. A table documents the impacts of QA quality factors on QA
activities through automated model-based techniques.

RQ1.4: What are the constructive impacts of the QA quality factors that facilitate
automated quality assurance on the system quality factors?

Creating a requirements specification that has certain QA quality factors may not
only enable an automation of QA, but may also have a constructively improve the
system quality factors. We investigate this impact for those QA quality factors that
facilitate automated quality assurance. The result is a table that captures the impacts
of the QA quality factors discussed in research question RQ 1.3 on constructive QA.

Figure 4.3 shows which parts of the quality model are filled by which research ques-
tion. The set of system quality factors in scope is determined in RQ1.1. In RQ1.2
to RQ1.4 we investigate these system quality factors or subsets thereof. For each of
the research questions RQ1.2 to RQ1.4 we develop a partial quality model. We then
consolidate the partial models into one quality model that presents the study result.

Data Collection. The study is based on a set of well-established system quality
factors defined by van Lamsweerde [vL09] with a clear impact on the quality of the
system under development.

The main QA activities were introduced in Chapter 2. Van Lamsweerde [vL09]
presents a set of model-based QA techniques that can automated and that support

58

4 Model-based Quality Assurance in RE

Figure 4.3: The research questions for elaborating the quality model

QA activities together. He also presents necessary QA quality factors to conduct
these techniques. These QA activities, techniques and quality factors are the input
for this study. The main RE concepts have been investigated based on the concepts
defined in AutoRAID [Sch09] and in the SPES requirements viewpoint [DTW12].
The impacts of QA quality factors on QA activities and thereby on the system qual-
ity factors have been elaborated based on a literature review and amended with own
work. Evidences for impacts of the quality factors on activities are extracted from
literature and amended with own work. For traceability and to facilitate refutability,
the sources of evidences are provided in the argumentations. It is labeled when ev-
idences stem from case studies or experiments. Benefits of similar approaches have
been aggregated, for example, benefits of similar modeling languages. Nonetheless,
the differences are made clear in the description of the results. An overview of the
data sources is provided in Figure 4.4.

Figure 4.4: The sources for elaborating the quality model

The resulting tables summarize quality factors, activities and impacts, where sup-
porting evidence was identified in the course of this study. There may exist further
impacts between QA quality factors and activities, even if they are not discussed in
this study.

The study investigates a limited set of quality factors, activities and impacts and
faces some threats, see Section 4.2. Section 4.3 discusses the set of system quality
factors in scope of this study (research question RQ 1.1). The subsequent chapters in-
stantiate the activity-based RE quality model with respect to the research questions.
Section 4.4 investigates the concepts that should be documented in a requirements

59

4.2 Threats to Validity and Limitations

specification for quality assurance (research question RQ 1.2). Based on these con-
cepts, Section 4.5 investigates quality factors with an impact on analytical quality
assurance (research question RQ 1.3). Section 4.6 investigates quality factors with an
impact on constructive quality assurance (research question RQ 1.4). Related work is
provided in Section 4.7.

4.2 Threats to Validity and Limitations

The study faces the following threats to internal and external validity and limitations.

4.2.1 Internal Validity

Heterogeneous Definition of Quality Factors and Activities. A threat to valid-
ity is the heterogeneous definition of quality factors and activities. For example, the
terms ’validation’ and ’verification’ may have an inverted definition in some publi-
cations compared to the definition in this work. The threat is addressed by refining
quality factors and activities in this study and by mapping the terms to the defini-
tions provided in this work.

Reliability of Impacts. A threat to validity concerns the impacts of quality factors
on activities. These impacts may be wrong. This study could identify case studies
and experiments that investigated impacts empirically, but not for all impacts. This
threat of the reliability of impacts is addressed by providing the argumentation and,
whenever available, the sources in literature on impacts. To decrease researcher bias
and to increase the reliability of the impacts, all argumentations have been discussed
with several experienced practitioners and researchers. Furthermore, an industrial
case study in the train automation domain in Chapter 9 confirms some of the pre-
sented impacts using the model-based RE approach developed in this thesis to pro-
vide further evidence.

4.2.2 External Validity

Generalizability. The generalizability of the impacts differs. Some impacts are triv-
ially true whenever a quality factor is mandatory for a QA technique. Some impacts
are based on an argumentation that provides a rationale why a quality factor has an
impact on an activity; this argumentation may only hold in a specific environment.
Some impacts have been investigated in studies for a specific specification model-
ing language, environment or system. The generalizability of the findings of these
studies to other modeling languages, environments, or systems needs further investi-
gation. Sources for all studies and the rationales have been presented. As mentioned
above, a case study presented in Chapter 9 confirms some of the presented impacts
for a specific modeling language for a train automation system. Nevertheless, the
generalizability remains an open research question.

60

4 Model-based Quality Assurance in RE

4.2.3 Limitations

Limited Set of QA Activities. This study investigates constructive and analyti-
cal quality insurance. For constructive QA, the study investigated the requirements
specification, comprising the documentation, formalization and tracing, see Chap-
ter 2. Constructive QA for the elicitation was excluded. Analytical quality assurance
comprises the analysis, validation and verification.

Further supporting activities for quality assurance have been excluded consciously:
For example, human-centered activities concerned with collaboration and communi-
cation might influence the success of quality assurance. A pragmatic reason to not
apply formal techniques is the lack of time of skilled requirements engineers. Stake-
holders that are not trained on a formal modeling language may find it difficult to
express, read and understand these requirements; they need a natural language rep-
resentation.

Furthermore, the quality factors discussed in this study can impact activities aside
quality assurance. The quality factors discussed in this study may also impact the
maintainability of the requirements specification. A well-structured specification
may have a positive impact on the change impact analysis.

As future work, the impact of the quality factors on these activities may be analyzed
and included into the study results.

Limited Set of Analytical Quality Assurance Techniques. The set of analytical
QA techniques is limited to those techniques listed in [vL09, p. 187ff]. These tech-
niques require structuring the requirements specification according to rules that can
be captured in models. Other approaches have been developed for the automatic QA
in unstructured text, for example, to detect redundant requirements [FCC13]. Explor-
ing QA quality factors that impact this kind of automatic QA is outside the scope of
this work.

Limited Set of Concepts. The concepts discussed in this work are limited to a
subset of the concepts presented in ARAMiS [PE12] and SPES [DTW12]. Further
concepts may be required to conduct specific quality assurance techniques other than
the ones presented by van Lamsweerde [vL09] or to address further system quality
factors.

Limited Set of Quality Factors. The QA quality factors are limited to those fac-
tors that enable the QA techniques presented by van Lamsweerde [vL09, p. 187ff].
The system quality factors are limited to those factors presented by van Lamsweerde
[vL09, p. 36ff] that affect the quality of the system under development. This list
excludes system quality factors that only may influence development effort and risk.

Limited Set of Impacts. This study investigates a limited set of impacts. If no
impact is provided between a QA quality factor and an QA activity that does not
imply that no impact exists. It only means that here no impact has been identified in
the course of this study.

61

4.3 System Quality Factors

Limitation to Project-Independent Quality. The relevance of the quality of the re-
quirements specification depends on particular project characteristics [MMFFE15].
This means that the project context influences costs and risks of quality issues com-
pared to the benefits of a high quality. However, the RE research community still
lacks a deep understanding of the usage of requirements specifications in practice
and the degree to which the quality of a requirements specification impacts sub-
sequent development activities [MMFFE15]. Therefore, this work investigates the
quality factors of a requirements specification independent of a specific project con-
text. As this work does not focus on a specific project context, the investigation of
costs, risks and benefits of a high quality in the requirements specification are out-
side the scope of this work.

4.3 System Quality Factors

In answer to research question RQ1.1., this section classifies a set of factors from two
sources into quality factors, impacts and activities as defined in the activity-based
RE quality model introduced in Section 4.1. We discuss and detail the factors pre-
sented by van Lamsweerde [vL09, p. 36ff] and the widely used [SB13] standard
ISO/IEC/IEEE 29148:2011 [ISO11b]. We will see that some of the factors consti-
tute system quality factors, other factors only define activities that need to be con-
ducted during the system development or impacts on these activities that need to be
achieved.

4.3.1 Adequate

“The requirements must address the actual needs for a new system – explicitly ex-
pressed by stakeholders or left implicit. The software requirements must be adequate
translations of the system requirements [. . .]. The domain properties must correctly
describe laws in the problem world. The environmental assumptions must be realis-
tic” [vL09, p. 35]. Other authors call this quality factor correct [ZG03]. An inadequacy
may lead to an implementation that meets its requirements, assumptions and domain
properties, but that are not the right ones [vL09, p. 37].

4.3.2 Unambiguous

“The requirements, assumptions and domain properties must be formulated in a
way that precludes different interpretations. Every term must be defined and used
consistently” [vL09, p. 35]. Ambiguity may prevent stakeholders to understand the
meaning that was intended by the author. Following van Lamsweerde [vL09, p.
37], ambiguous entities of the requirements specification allow an interpretation of
statements contained in the requirements specification in different ways; ambiguous
statements in the requirements specification may result in an implementation of a sys-
tem built on the interpretation of requirements, assumptions or domain properties
that are different from the intended interpretation.

62

4 Model-based Quality Assurance in RE

In the field of linguistics, a distinction is made between different types of ambigu-
ity [Cona]:

• Lexical ambiguity means that a word has multiple meanings. An example is the
term bank which can denote a financial institution or a river side.

• Syntactic ambiguity of a sentence caused by alternative interpretations of the
structure of that sentence. An example is the phrase We saw the man with the
telescope.

• Semantic ambiguity occurs when a sentence contains a word or a phrase with
multiple possible interpretations in the context of that sentence. The sentence
We saw her duck allows to interpret her duck either as a bird or as an activity
[HHS07].

This distinction facilitates to further specify the ‘different interpretations’ of a reader
of a requirements specification.

4.3.3 Complete

“The requirements, assumptions and domain properties, when taken together, must
be sufficient to ensure that the system-to-be [the system under development] will
satisfy all its objectives. These objectives must themselves be fully identified, includ-
ing quality-related ones. In other words, the needs addressed by the new system
must be fully covered, without any undesirable outcomes. In particular, we must
have anticipated incidental or malicious behavior of environmental components so
that undesirable software effects are ruled out through dedicated requirements. A
requirement on software behavior must prescribe a desired output for all possible
inputs. The specification of requirements and assumptions must also be sufficiently
detailed to enable subsequent software development” [vL09, p. 35]. Omitting state-
ments in the requirements specification may result in an implementation that does not
take into account these statements [vL09, p. 36].

The definition of van Lamsweerde indicates the notion of external completeness.
Zowghi and Gervashi define external completeness as “external completeness ensures
that all of the information required for problem definition is found within the speci-
fication” [ZG03]. This notion of completeness “clearly demonstrates why it is impos-
sible to define and measure absolute completeness of specifications. The only truly
complete specification of something would be the thing itself” [ZG03].

Behavioral completeness describes the completeness of a system with respect to its
input-output behavior. Behavioral completeness can be defined by a formal descrip-
tion of input-output relations that prescribe expected behavior. Van Lamsweerde
[vL09, p. 203] suggests to require such relations to be functions where for every input
situation should exist at most one corresponding output to avoid non-deterministic
behavior. Requiring such functions to be total [vL09, p. 203] ensures that an output
for every input situation exists (surjective function). Often, input-output relations
are defined on the input history [HL96, BS01].

The activity-based view on the requirements specification adds a third notion of com-
pleteness: Activity completeness assesses completeness from the perspective of soft-
ware and systems engineering activities. A requirement or requirements specifica-

63

4.3 System Quality Factors

tion is activity complete with respect to a specific development activity if it comprises
sufficient information to perform that activity. For example, ’performance comple-
tion’ of a specification implies that it contains enough information to evaluate the
performance of a system [WPS02]. The required information is highly dependent on
the concrete development activity. Development activities comprise activities per-
formed in RE as well as activities from other development phases such as design, im-
plementation and test. Activity incompleteness may lead to the inability to perform
an activity or may influence its effectivity. Depending on the activity, both may im-
pact the system under development. Other activities may only impact development
effort and risks. It depends on the concrete activity, whether activity completeness
represents a system quality factor. This chapter discusses the activity completeness
for quality assurance activities. A reduced effectivity of quality assurance can affect
the quality of the system under development. Therefore, activity completeness for
quality assurance is a system quality factor.

4.3.4 Consistent

Requirements are elicited from different sources and viewpoints. These diverse
sources and viewpoints can include contradicting expectations on the system un-
der development. “The requirements, assumptions and domain properties must be
satisfiable when taken together. In other words, they must be compatible with each
other” [vL09, p. 35]. If a set of requirements, assumptions or domain properties con-
tradicts each other, then it is impossible to produce a correct implementation [vL09, p.
36].

Logical conditions for logical consistency and inconsistency can be precisely defined
when expressing requirements, assumptions and domain properties as logical asser-
tions [GKvdBV11], [Bro13a], see also Chapter 2. These conditions reveal statements
that may not be implementable. Nonetheless, if the source of a conflict, for example
a domain property, is not documented (not externally complete), or is an unrealistic
assumption, then logical conditions may not identify inconsistencies.

Feldmann et al. [FHK+15] describe type inconsistencies as arising from using incom-
patible values and types. They also include improper type conversions and impos-
sible type conversions. A prominent example for the negative impact of type incon-
sistencies is the failure of the Mars Climate Orbiter; conversion errors from English
imperial units to metric units resulted in a loss of the orbiter1.

4.3.5 Investigation of Further Quality Factors

Besides the system quality factors discussed above, van Lamsweerde introduces fur-
ther factors. These factors do not directly impact the system under development and
therefore do not constitute system quality factors. Pertinence requires that all require-
ments contribute to a goal. The absence of pertinence could lead to increased effort
when finding out that a requirement is not needed. All other quality factors can
be directly related to activities: Measurability means that the requirements are stated
in a way that enables their testing/verification; feasibility facilitates the realization

1https://mars.jpl.nasa.gov/msp98/orbiter/

64

4 Model-based Quality Assurance in RE

in budget, schedule and technical constraints; comprehensibility directly refers to the
comprehension by the users of the requirements when reading and processing the
requirements; good structuring defines the organization of the requirements specifica-
tion; modifiability defines a set of modification activities; traceability directly refers to
the tracing activity.

The ISO 29148 also provides definitions for all system quality factors, for an unam-
biguous, complete and consistent requirement as well as for complete and consistent
sets of requirements. Similar to the notion of an adequate requirement, the stan-
dard defines the quality factor necessary. Further factors do not directly impact the
quality of the system under development, but rather impact the development efforts
and risks. The quality factor bounded relates requirements to the scope of the system,
similar to the notion of a pertinent requirement. Related to the implementation of
the system under development, the standard defines implementation free and feasible
requirements. Related to the costs of implementation is the quality factor affordable.
Other quality factors are directly related to activities, namely verifiable and traceable
requirements. The definition of a singular requirement does not provide any hints on
its benefits for any activity.

Without the notion of an activity-based RE quality model, the effects of many of these
quality factors on the system under development remain unclear. Most quality fac-
tors discussed here define and describe an activity on the requirements specification
(e.g., traceable) that should be performable. In an activity-based quality model, the
quality factors that define activities would rather be defined as activities and could
be refined to sub-activities and tasks. Pertinence is a quality factor in the sense of the
activity-based quality model with a clear impact (increased effort) on the implemen-
tation. In an activity-based quality model, the quality factor affordable would be a
type of impact, not a quality factor. To map the quality factor singular to the activity-
based quality model requires further information.

4.3.6 Summary

The investigation answered research question RQ1.1 and identified a set of four sys-
tem quality factors. Van Lamsweerde [vL09, p. 36f] provides an argumentation about
the effects of these factors. We further detailed these system quality factors:

• Adequacy

• Lexical, syntactic, and semantic unambiguity

• External, behavioral, and activity completeness

• Logical and type consistency

This list is relevant, as many scientific publications in the last decades discuss these
system quality factors [JLHM91, HJL96, ZG02, NER00, SBHW03, Fir05, dSAVP10].
Furthermore, an extensive interview study with experts from 30 German companies
[FW13] revealed that incomplete / hidden requirements and inconsistent require-
ments are two problems in the (German) industry that have been acknowledged by
most of the participating practitioners (indicated by a mean and mode value of 4 on
an ordinal scale, where 5 is “I agree” and 1 “I disagree”). Nonetheless, the list of
quality factors is non-exhaustive; other quality factors may exist that have an equally

65

4.4 Concepts of the Requirements Specification

severe impact on the system under development.

An interesting finding of the investigation is that some of the factors mentioned by
van Lamsweerde or in the ISO 29148 would not be classified as a quality factor in
an activity-based quality model. They would rather be classified as activities or im-
pacts. As future work, a broader systematic investigation could be conducted using
the activity-based quality model. This investigation could a) classify factors from lit-
erature to the activity-based quality model on a bigger scale, and b) identify more
quality factors of the requirements specification that impact the quality of the system
under development.

4.4 Concepts of the Requirements Specification

In order to answer research question RQ 1.2, a set of RE concepts are introduced.
Each concept has an immediate impact on specific QA activities when it is instanti-
ated. Explicitly pre-defining these RE concepts supports the person that creates the
requirements specification or parts thereof to document these. Thereby, the person
that performs QA can benefit from these impacts. Furthermore, defining RE concepts
has immediate merits on constructive and automated QA. With corresponding tool
support, the contents of a requirements specification can be stored according to these
definitions. This facilitates to automatically access and evaluate the information. The
precise definition of RE concepts facilitates to define further essential characteris-
tics that are necessary to conduct automated QA, for example, representation forms.
These benefits are explicated in the subsequent chapters. In the following, we present
the RE concepts and describe their impact on the QA activities.

4.4.1 Goals

A goal is “an objective the system under consideration should achieve" [vL01].
Thereby, goals are stakeholder intentions that “represent a first manifestation of the
stakeholders’ system vision” [DTW12, p. 55]. For example, the goal of a pedestrian
using a traffic light system is to safely cross the street. Documenting goals can sup-
port the quality assurance: Goals provide a criterion for the external completeness of
system requirements [vL01]. Assuming that the set of goals is complete, then the re-
quirements are complete, if all goals can be achieved from the requirements and the
considered domain properties. Unrefined goals may indicate missing requirements.
“Goals give rationales and justifications for the functionality and features a system
must possess” [DTW12, p. 55]. Access to these rationales and justifications enables
the stakeholders to understand the rationale of a system requirement. Thereby, goals
support the validation of requirements.

4.4.2 System Requirements

A system requirement is a prescriptive statement to be enforced by the system under
development. System requirements form the basis for the design, implementation
and quality assurance of the system under development. Defining and documenting

66

4 Model-based Quality Assurance in RE

system requirements is a precondition for their (semi-)automated analysis, valida-
tion and verification that is discussed in Section 4.5. It is commonly distinguished
between requirements concerning the functionality of a system and others [Gli07]. A
study [EVMF16] investigated why practitioners distinguish between functional and
extra-functional requirements. According to the study, the main differences in QA
processes are: 1.) Different stakeholders are involved in development activities on
the requirements; 2.) the quality assurance techniques differ; 3.) extra-functional
requirements need to be monitored continuously during the implementation in con-
trary to functional requirements. Practitioners distinguish them because they want
to achieve more complete and less ambiguous requirements. The study could not
confirm a clear positive impact of a distinction on quality assurance. Practitioners
that distinguish functional and extra-functional requirements, claim that this leads to
missing testability; others state that this results in focused tests and explicit test for
extra-functional requirements. Practitioners that do not distinguish them, claim that
validation and verification suffer; other state that the tests are more comprehensive.
Summarizing, from a project-independent viewpoint, the impact of distinguishing
functional and extra-functional requirements on quality assurance needs to be inves-
tigated further for specific QA techniques.

4.4.3 Use Cases and Scenarios

(System) use cases describe an excerpt of interactions of a system under development
with its actors for a certain case of use. The system thereby responds to the request
of one of the actors in order to achieve a particular goal. Use cases can be detailed
by scenarios. Scenarios describe the steps from the trigger to goal delivery, inclusive
any “clean-up” [Coc00] afterwards. They can be described depending on the partic-
ular requests and conditions surrounding the requests. A use case collects together
those different scenarios [Coc00]. For example, a use case may collect all scenarios
that describe how a pedestrian uses (or missuses) the traffic light system to cross the
street. Use cases and scenarios help stakeholders to validate the goals that they cover
[vL01].

4.4.4 Refinement Links

A refinement link documents the refinement from and within goals, use cases
and system requirements. As discussed above, the refinement from goals to use
cases, scenarios and system requirements enables specific quality assurance activi-
ties. When these refinements are documented explicitly as refinement links, every-
body who conducts quality assurance on the requirements specification can access
the information about refinements at all times.

4.4.5 External Trace Links

External trace links connect requirements with other development artifacts, for ex-
ample, a concept of the system architecture. Thereby, external trace links enable ver-
ification: When requirements are derived from other artifacts, this link can be evalu-

67

4.4 Concepts of the Requirements Specification

ated to verify the requirements against this artifact. When an artifact is derived from
requirements, the link can be evaluated to verify the artifact against its requirements.

4.4.6 Glossary

A glossary provides definitions of the domain-specific terms that are used in the
requirements specification. Thereby, a glossary supports persons involved in the
quality assurance activities to have a common understanding of the concepts be-
hind these terms. Lexical ambiguity can be caused by a word with different meanings
(homonyms) and by different words with the same meaning (synonyms) [Poh10].
Defining the meaning of terms used in the requirements specification in a glossary
can decrease these kinds of ambiguity [Poh10].

4.4.7 Requirement Sources

Each requirement has a source from where it origins. These sources can be docu-
mented as requirement sources. The requirement sources can be differentiated in
three types: Stakeholders, documents and external systems [Poh10]. A stakeholder is
anyone with an interest in or an effect on the outcome of the system under devel-
opment [RR06]. An instantiation of a stakeholder of the traffic light system is the
pedestrian that uses this system to cross a street. To elaborate all instantiations of a
stakeholder, all persons with an interest in or an effect on the outcome of the system
under development have to be identified. Documents include for example standards
or specifications of similar or preceding systems. Further requirements can stem
from those external systems that the system under development should interact with.
Pohl [Poh10] discusses the positive impact of requirements sources on a more ex-
ternally complete requirements specification. Documenting requirement sources can
also be valuable during the manual quality assurance of requirements as they may be
the rationale for a requirement. Analogously to glossary terms, when stakeholders
have access to a definition for each requirement source, then this can decrease lexical
ambiguity [Poh10] and ensure a common understanding of the relevant requirement
sources amongst the stakeholders.

4.4.8 Cross-References

Glossary terms and requirement sources provide term definitions on the domain-
specific context of a system under development. These term definitions can help
to improve the understanding of those persons that are reading the requirements.
Stakeholder read requirements as part of a manual quality assurance. A cross-
reference connects the domain-specific terms used in a requirement with their term
definition as glossary terms and requirement source. For example, goals state the
intent of one or more stakeholders and may document this stakeholder. Therefore,
a goal could have a cross-reference to this stakeholders. An alternative would be
to have redundant term definitions in the specification. Less redundant information
may lead to less inconsistencies, because each piece of information has to be docu-
mented and changed only once. A study [JDF+10] investigated the impact of redun-

68

4 Model-based Quality Assurance in RE

dant information in form of clones on development activities. The study was per-
formed on 28 software requirement specifications from various domains including
embedded systems. The authors of the study concluded that cloning significantly in-
creases the effort for activities that involve reading the requirements specification, for
instance, during inspections. Changing duplicated information is costly and error-
prone. Cloned fragments of the requirements specification can lead to clones in the
code or developing the same functionality repeatedly; cloned code may lead to in-
consistent changes that may even lead to system failures. The authors concluded that
to prevent the negative consequences of clones, redundancy in a requirements spec-
ification should be avoided.

4.4.9 QA Results

After the application of a quality assurance technique, the QA results have to be docu-
mented if they are not resolved immediately. For example, QA checklists that capture
the applied activity and its results could be defined in addition to the requirements
specification. These checklists should be traced to the investigated contents. Specific
trace link types can be used to document quality issues affecting several require-
ments for further processing. An example are inconsistency trace links to document
inconsistent requirements.

4.4.10 Summary

In answer to research question RQ 1.2, we investigated a set of RE concepts such
as goals and use cases that enable specific quality assurance activities. The activi-
ties are concrete quality assurance checks, for example, check the completeness of
requirements, or are subactivities, for example, to understand the rationale of a re-
quirement. Pre-defining the RE concepts facilitates the requirements engineer (or any
person that writes a specification) to instantiate them and make use of the positive
impact on the quality assurance activities. The impacts of these concepts on quality
assurance activities are summarized in Figure 4.5.

4.5 Automated Analytical Quality Assurance

In order to answer research question RQ 1.3, we analyze the model-based quality as-
surance techniques presented by van Lamsweerde [vL09]. We investigate the factors
that the requirements specification must exhibit in order to enable an automation of
these techniques.

Analytical quality assurance consists of several subactivities, where one or all of these
subactivities can be automated: Firstly, the objects are selected from the requirements
specification that should be investigated. Secondly, we need to apply the concrete
quality assurance technique on these objects. Simulation, database queries and for-
mal techniques are some of the main analytical techniques for quality assurance in
RE that can be automated [vL09, p. 187ff]. According to a survey amongst 419 soft-
ware projects [FGZ15], the majority of these projects used manual inspections and

69

4.5 Automated Analytical Quality Assurance

Figure 4.5: Summary of the impacts (++, +) of pre-defining RE concepts on QA activities;
in brackets behind the impacts are the sections where the impacts are discussed

reviews, 8% of the projects applied simulation and 7% automated checking on a for-
mal specification of the system. This survey did not include database queries into the
list of answers to select. Finally, the results are documented; this is necessary, if the
technique is automated or the resolution of the detected issues should be decoupled
from the resolution. The resolution of detected quality issues is out of scope of this
work. The quality assurance techniques and the subactivities to perform them are
depicted in Figure 4.6.

Automated techniques require a specific structure and representation of the informa-
tion contained in the requirements specification. For example, a requirement has
to be represented using a formal modeling language to apply formal techniques.
This structure and representation directly positively impacts the quality assurance
activities as it enables automated analysis, validation and verification techniques.
Therefore, the structure and representation of a requirements specification are the
QA quality factors under investigation.

4.5.1 Automated Queries on a Requirements Database

Automated queries on a requirements database require that the requirements specifi-
cation is structured by an underlying data model and that the requirements specification
is stored in a database according to that data model. A machine-readable definition of

70

4 Model-based Quality Assurance in RE

Figure 4.6: Applying automated quality assurance techniques

the requirements specification facilitates queries (with corresponding tool support).
Queries on the database can then automate inspection tasks that otherwise would
have to be conducted manually. This machine-readable definition of the structure of
the requirements specification can be achieved by several means. A means to enable
queries is to pre-define the entities contained in the requirements specification. Fur-
thermore, representing the entities using a semi-formal or formal modeling language
enables syntactic or semantic checks via database queries.

Select Contents. A subactivity common to all QA activities is to select the objects
contained in the requirements specification that should be investigated. Queries can
automate the task of extracting and preparing the data needed for further inspection.
The definition of RE concepts enables to store the contents of a requirements speci-
fication according to these definitions. If each object is annotated with its type, a
query can refer to these entities. A query then can select objects based on the defini-
tions. Section 4.4 discussed a set of concepts to support QA activities that are candi-
date inputs for such a query. Trace links capture the dependencies within the entities
contained in a requirements specification and from the requirements specification
to other development artifacts. Trace links include cross-references from stakehold-
ers to their requirements, refinement links between requirements, and external trace
links between requirements and the system architecture specification. These trace
links can be evaluated in queries. For instance, the definition of goals, system re-
quirements and refinement links between them supports the completeness check on
system requirements. To support this analysis, a query can extract all system require-
ments that refine a goal by evaluating the refinement links. The result of this query is
the input to check the system requirements for completeness. A second example are
stakeholders that want to validate their requirements using simulation. Stakehold-
ers and requirements are documented including cross-references from stakeholders
to their requirements. Then the stakeholders could identify the relevant subset of
requirements using these links. If the information is stored so that it is machine-
readable, then the relevant set of requirements can be extracted by a query. The def-
inition of RE concepts facilitates to define attributes on these concepts to increase the
preciseness of queries. For example, a quality assurance status enables to determine
only those entities that need further analysis.

71

4.5 Automated Analytical Quality Assurance

Analyze Consistency and Completeness. Queries can be used to automatically
perform conformance constraints that analyze the structural conformance of the require-
ments specification to a set of rules. A language to define conformance constraints
is OCL [OMG06]. Schätz [Sch09] defines conformance constraints for automating
completeness and consistency analyses. Schätz defines consistency conditions on the
RE concepts to be contained in the requirements specification, their attributes and
trace links. Similarly, conformance constraints can be defined on the RE concepts, in-
cluding the trace links discussed in Section 4.4. In addition, van Lamsweerde [vL09,
p. 241f] discusses queries on semi-formal and formal representations of parts of the
requirements specification.

4.5.2 Semi-automated Simulation

If parts of the requirements specification are executable or can be transformed into
an executable form, then this part can be simulated [vL09, p. 187ff]. Simulation is
a common means for the animation-based validation of the requirements specification.
With the help of an animation tool, various events to which the system could be ex-
posed can be re-enacted in order to validate whether the response of the model is
adequate. For instance, Gaucher and Jeannet [GJ16] report on the successful applica-
tion of simulation for the validation of requirements in the STIMULUS tool, detecting
ambiguities and omissions.

4.5.3 Formal Techniques

Mathematical techniques that can be performed on a formal specification are called
formal techniques. To use advanced mathematical quality assurance techniques, re-
quirements need to be expressed in a formal modeling language that uses a precise,
mathematical notation and forms part of a formal system modeling theory. The sys-
tem modeling theory enables a formal reasoning that can be automated with corre-
sponding tool support. For automated formal analysis and verification, the modeling
language needs to be translated into the input language of a model-checker, for ex-
ample NuSMV2, or a theorem prover such as Isabelle3.

Analyze Consistency and Completeness and Verify Adequacy. Formal tech-
niques enable checks such as type consistency checks [vL09, p. 202f], logical consis-
tency and behavioral completeness checks [vL09, p. 203] and deductive verification
that a behavioral model satisfies a desired property [vL09, p. 205ff]. A formal veri-
fication of requirements and subsequent development artifacts prerequisites a com-
mon comprehensive system modeling theory that spans both the formal represen-
tation of requirements and subsequent development artifacts. This system model-
ing theory is “the theoretical basis to ensure a thorough formalization of all artifacts
produced during the development of a system” [BFH+10]. A modeling paradigm
that enforces this comprehensive modeling theory is seamless model-based development
[BFH+10].

2Available at http://nusmv.irst.itc.it/, last accessed 9.5.2016
3Available at https://isabelle.in.tum.de/, last accessed 9.5.2016

72

https://isabelle.in.tum.de/
http://nusmv.irst.itc.it/

4 Model-based Quality Assurance in RE

Formal techniques have been used for example by Rockwell Collins for the formal
analysis and verification of requirements for a flight guidance system [MTWH06]
based on a formalization to the Architecture Analysis and Design Language (AADL)
[FG12]. They identified a logical inconsistency between requirements and a mis-
match between requirements and the implementation. As a consequence of discus-
sions with domain experts, the requirements had to be changed in order to corre-
spond to the implementation.

A comprehensive system modeling theory does not require to formalize require-
ments and design at the same level of detail. A formal refinement specification [BS01]
is a means to define the mapping of the syntactic interfaces of two formal mod-
els. A formal refinement specification is a means to connect formal requirements
on different levels of detail or to connect formal requirements and a formal model
of the architecture. For example, at the requirements level, an input of the system
would be defined as ‘the user activates the traffic light system’, formalized in the
Boolean variable tlc_activated. At the architectural level, the according system input
stems from a sensor, a button (button1), and is modelled as the integer input variable
sensor_value_button1. The formal refinement specification would define the map-
ping between tlc_activated and sensor_value_button1. By providing the mapping
from requirements to design, a formal refinement specification facilitates a design-
independent formal representation of requirements. A design-independent formal
representation facilitates an early formal analysis of requirements before any archi-
tectural model is developed. Design-independent formal requirements do not need
to be adjusted, when the architecture changes. Nevertheless, the formal refinement
specification needs to be adjusted in this case.

4.5.4 Document Results

Automated quality techniques often only detect quality issues, but do not resolve
them automatically. Therefore, the identification and resolution are decoupled and
quality assurance results need to be documented automatically.

4.5.5 Summary

This section discussed three model-based techniques, database queries, simulation
and formal techniques. For each technique, the necessary QA quality factors have
been discussed that the requirements specification or some of its concepts must ex-
hibit. In answer to research question RQ 1.3, the table provided in Figure 4.7 sum-
marizes the study results for automated QA. The table summarizes the concepts and
their QA quality factors that enable automated model-based QA. The impacts show,
which QA factors enable which activities and which system quality factors can be
improved.

73

4.6 Constructive Quality Assurance

Figure 4.7: Summary of the positive impacts (++, +) of QA quality factors on automated QA
techniques; in brackets behind the impacts are the sections where the impacts are
discussed

4.6 Constructive Quality Assurance

The QA quality factors discussed in Section 4.5 impact the effectivity and efficiency
of QA by automation. Creating a requirements specification with defined concepts,
attributes and representation forms may already have a positive effect on the system
quality factors. Hence, this section investigates these QA quality factors to determine
those positive impacts in answer to research question RQ 1.4.

4.6.1 Pre-defined Entities

Pre-defining a set of mandatory RE concepts can increase activity completeness of the
requirements specification with respect to development activities. Each of these RE
concepts to be contained in a requirements specification should be related to a de-
velopment activity. A thorough analysis of all RE concepts with respect to their use
in the development process reduces unnecessary documentation effort. A thorough
analysis of the development process with respect to undefined RE concepts reduces
the risk of undocumented or unconsolidated information. Furthermore, for each RE
concepts, the QA quality factors can be determined that are necessary for a specific
QA technique. For example, formal verification of requirements requires a formal
representation. The precise definition of RE concepts that should be instantiated as
concrete objects in the requirements specification facilitates a guided documentation;
the contents of the requirements specification are elaborated according to these defi-
nitions. For example, VOLERE defines the main entities to be contained in a require-
ments specification; the authors recommend the use of this template as a checklist in
manual reviews to determine missing requirements [RR06, p. 323ff].

74

4 Model-based Quality Assurance in RE

4.6.2 Pre-defined Attributes

“To support requirements analysis, well-formed requirements should have de-
scriptive attributes defined to help in understanding and managing the require-
ments” [ISO11b]. Attributes guide and restrict the instantiation of each concept of
the requirements specification, ensuring that it has the necessary constituents for the
development activities performed on an entity. A structured description of a concept
by pre-defined attributes can further improve activity completeness of development
task by defining the concrete information to be documented for a concept. Tiwari
[TG14] gives indications by a comparative study that a template that defines a more
detailed set of attributes for use cases yields more complete and less redundant use
cases in comparison to a less detailed template. An example for a positive impact
on QA efficiency is an attribute that defines the QA status of a requirement. This
status indicates whether a requirement has been fully specified, analyzed, validated
or verified.

Enumerations and other more rigorous data types can further increase the quality of a
requirements specification constructively by avoiding type inconsistencies. A uniform
definition of data inputs is particularly valuable when data is entered by multiple
users.

4.6.3 Pre-defined Trace Links

The fundamental concepts for the entities concerned in the tracing activity are based
on Gotel el al. [GCHH+12b]. A trace artifact is a “traceable unit of data (e.g., a
single requirement, a cluster of requirements, a UML class, a UML class opera-
tion, a Java class or even a person)” [GCHH+12b]. A trace artifact may be fur-
ther described by its type. A trace artifact type is “a label that characterizes those
trace artifacts that have the same or similar structure (syntax) and/or purpose (se-
mantics). For example, requirements, design and test cases may be distinct artifact
types” [GCHH+12b]. A trace link is defined as a “specified association between a
pair of artifacts” [GCHH+12b]. This work extends the definition by allowing for
more than one source or target artifacts, depending on the trace link type. A trace
link can be directed from source artifact to target artifact, otherwise it is undirected.
A trace link can be annotated with its trace link type or other semantic attributes.
A trace link type is “a label that characterizes those trace links that have the same or
similar structure (syntax) and/or purpose (semantics). For example, ’implements’,
’tests’, ’refines’ and ’replaces’ may be distinct trace link types” [GCHH+12b]. A trace
consists of the triplet source artifacts, target artifacts, and trace link. Precisely defin-
ing RE concepts facilitates to define trace artifacts and trace links as a subset of these
concepts; this definition of trace artifacts and trace links directly impacts tracing pos-
itively. For example, based on the definition of stakeholders and goals, it can be
defined to establish a trace link between a stakeholder and its goals. Documenting
the refinement links from goals to detailed system requirements may reveal missing
requirements, hence improving external completeness. Similarly, for cross-references,
the referenced entity must exist.

75

4.6 Constructive Quality Assurance

4.6.4 Semi-formal and Formal Representation

The contents of the requirements specification are often documented as uncon-
strained prose. A textual description of requirements is a commonly agreed specifi-
cation formalism and understandable by all stakeholders of the system [Sch09]. The
down-side is the lack of precision that may lead to quality issues like inconsistencies
or ambiguities [Sch09].

A means to add rigor to natural language requirements that is still understandable
by all stakeholders is controlled natural language. For example, a series of experi-
ments showed that EARS patterns reduced many common requirements quality is-
sues [MW10]. EARS patterns define a simple sentence structure for system require-
ments. The patterns improve the behavioral completeness of a requirement by reduc-
ing missing preconditions, triggers and system responses; they helped to identify-
ing missing requirements, thereby improving external completeness; and they reduce
vagueness, hence improving unambiguity. Controlled natural language that restricts
both syntax and semantics may even facilitate an automatic transformation to logical
expressions, thereby enabling formal techniques [Sch10].

An experiment compared use case templates with two simple templates to define
system interfaces and system functions [MMGD10]. Students used a set of templates
to document system requirements for a study object. Students using the case tem-
plates documented more interactions of the system with its environment and more
information about the required system behavior. The study indicates that using use
case templates to document system functions can improve the behavioral and external
completeness of a requirements specification compared to more simple templates.

Templates and controlled natural language add rigor to natural language require-
ments, without having the same negative impact on understandability as a graphi-
cal or a math-based representation of requirements. As a side effect, a semi-formal
representation can also support the formalization of an RE concept to a formal repre-
sentation: Mapping rules from the semi-formal specification technique to the formal
technique can guide the formalization, thereby supporting the transition from a tex-
tual to a formal representation. If the template defines the information required for a
formalization, this increases activity completeness.

When a requirement is formalized, it not only facilitates advanced analytical QA
techniques; it also directly adds to constructive quality assurance. The formaliza-
tion of requirements eliminates the ambiguity of prose [Bro13a]. A formal modeling
language enables a precise specification of requirements [Bro13a]. Heimdahl [Hei07]
also reports on the constructive benefits of formalizing functional requirements as
properties in temporal logics (more precisely, in CTL [CGP99]): “The process of cre-
ating a model from the English prose requirements caused us to go back and clarify
the English statement of the requirements. In the same way, translating the English
statements into SMV [a tool for symbolic model checking4] also prompted us to go
back and clarify the English statement” [Hei07].

When setting up a formal refinement specification, the stimuli and reactions defined
in the involved requirements are mapped. Setting up such a formal refinement spec-
ification can identify stimuli or reactions that are missing in the refining or refined

4http://www.cs.cmu.edu/~modelcheck/smv.html,lastaccessed9.5.2016

76

http://www.cs.cmu.edu/~modelcheck/smv.html, last accessed 9.5.2016

4 Model-based Quality Assurance in RE

requirements, thereby revealing behavioral incompleteness.

Modeling languages and their modeling notations have limitations regarding their
expressivity. Typically, not all requirements of a system can be formalized due to
a lack of an appropriate modeling notation. For example, real life case studies on
formalizing requirements to use cases and contracts using logical expressions could
only formalize 79% of the requirements due to the missing support for arithmetic
and real-time aspects [NFTJ06]. A classification of requirements into requirement
types could indicate which requirement type can be expressed with which modeling
notation. Therefore, distinguishing requirements into more fine-grained RE concepts
can have a positive impact on the formalization. For example, SPES distinguishes
requirement types according to different SysML notations [DTW12]. The FOCUS
system modeling theory facilitates to formalize interface requirements, requirements
on the syntactic interface of a system and on its logical interface behavior. Auto-
FOCUS3 provides a set of specification techniques to model interface requirements.
For example, a state automaton is suitable to model the required interface behavior
of a system. However, a state automaton is not an appropriate means to model the
communication of a system and its environment. AutoFOCUS3 provides message
sequence charts that are suitable to model communication (in terms of sequences of
messages). For details on FOCUS and AutoFOCUS3 see Section 2.3.

4.6.5 Summary

Creating a requirements specification with the QA quality factors discussed in Sec-
tion 4.5 can indeed have a positive effect on the system quality factors. In answer
to research question RQ 1.4., the table in Figure 4.8 provides an overview of the QA
quality factors of the various RE concepts, it lists the activities where these QA qual-
ity factors are created and it lists the positive effects on the system quality factors.

Figure 4.8: Summary of the constructive impacts (++, +) of the QA quality factors for auto-
mated QA; in brackets behind the impacts are the sections where the impacts are
discussed

77

4.7 Related Work

4.7 Related Work

Quality Models. The quality of a requirements and requirements specifications has
been widely discussed in RE. Nonetheless, many approaches [ISO11b, KS98, LSS94]
focus on the intrinsic quality of RE artifacts rather than quality with respect to a par-
ticular activity. This work instantiates the activity-based quality model (ABREQM)
[FMF15] that relates the notion of quality always with activities. In this study, the
ABREQM is used to investigate impacts of (target) quality factors on the develop-
ment of a system and impacts of (QA) quality factors on the quality assurance of a
requirements specification. A similar approach to the ABREQM is the Requirements
Quality Assessment Framework (RQAF) [TBB+13]. The RQAF facilitates a system-
atic derivation of quality factors and QA techniques from quality assurance objec-
tives rather than a systematic investigation of impacts. The RQAF does not provide
means to explicitly document impacts of quality factors on activities.

Model-based Approaches. The artifact-oriented approach AMDiRE [MF11, p.
142] only briefly discusses the different variations of artifact reference structures or
similar artifact-oriented models and their use for quality assurance. SPES [DTW12]
also does not discuss quality assurance in the requirements viewpoint, but focuses
more on elicitation, specification and communication activities. SPES only presents
rules to ‘check’ the documented contents. Work towards systematic quality assur-
ance was undertaken in the SPES XT project, the successor of SPES, by defining
the RQAF that was presented above. AutoRAID [Sch09] investigated the impacts
of structuring and formalizing requirements on four the quality factors consistency,
unambiguity and on the activities tracing, implementation and verification. The im-
pacts are based on argumentation without pointing to other studies performed in
this field. This study incorporates the investigations of AutoRAID, adding empiri-
cal evidence when possible. This work integrates these investigations with further
empirical and argumentative work on quality assurance.

4.8 Conclusion

Instantiating an activity-based RE quality model for QA facilitates a systematic doc-
umentation of impacts of the QA quality factors of the requirements specification on
QA activities. To systematically document these impacts, the quality model defines
the following elements: Artifacts and RE concepts, QA quality factors, the impact of
QA quality factors on QA activities including a rationale, and the QA activities and
their impacts on the system quality factors.

In RQ 1.1, system quality factors were identified whose absence in the requirements
specification can impact the quality of the system under development. The system
quality factors that this study investigated are:

• Adequacy

• Lexical, syntactic, and semantic unambiguity

• External, behavioral, and activity completeness

78

4 Model-based Quality Assurance in RE

• Logical and type consistency

The study result of RQ 1.2 is a list of RE concepts whose definition can positively im-
pact QA. For example, validation can be positively impacted by specifying require-
ment sources or a dictionary. Verification can be impacted positively by trace links
that document the implementation of a requirement in a subsequent development
artifact. The concepts that this study investigated are:

• Goal

• Use case / scenario

• System requirement

• Refinement link

• External trace link

• Glossary

• Requirement source

• Cross-reference

• QA result

In RQ 1.3, the study investigated QA quality factors that structure and represent RE
concepts. These QA quality factors enables model-based QA techniques to support
the analysis, validation and verification of requirements. The discussed QA tech-
niques can be conducted more efficient by automation. For an automation of QA, it
is necessary to provide an automated access to the contents to be investigated and to
accessibly store the results of the QA.

In the course of the study, modeling techniques were discussed that facilitate auto-
mated quality assurance. Artifact-orientation provides the means to define an ar-
tifact reference structure of the contents to be elaborated during RE. Implementing
the artifact reference structure as a data model enables database queries on the data
model. These queries can be used for the automated selection of the contents to be
investigated and to apply conformance constraints on the requirements specification.
Modeling languages provide the means for a semi-formal or formal representation
of these contents. Last, but not least, a common system modeling theory for require-
ments and subsequent development artifacts enables a formal verification.

RQ 1.4 investigated the constructive impacts of the QA quality factors resulting from
RQ 1.3 on the quality of the requirements specification. Impacts on system quality
factors that emerge during the specification were investigated. QA quality factors al-
ready have a positive impact during the specification on unambiguity, completeness
and consistency.

As discussed in the limitations in Section 4.2, we do not claim the lists of concepts,
impacts and activities to be complete. An unmentioned impact does not imply that
there is no impact. Other positive and negative impacts of the concepts on the ac-
tivities are possible. The concepts, impacts, and activities could be subject to further
investigations outside this thesis.

The instantiation of the activity-based RE quality model lead to some interesting find-
ings: 1. Many quality factors from literature would be rather classified as activities or

79

4.8 Conclusion

impacts according to the quality model. A systematic investigation of system quality
factors was found in the work of van Lamsweerde [vL09]. Nonetheless, he does not
claim to provide an exhaustive list of these quality factors. 2. The activity-based RE
quality model manifests the notion of activity completeness as one aspect of activity: A
requirement or requirements specification is activity complete with respect to a specific
development activity if it comprises sufficient information to perform that activity.

The study results clarify the impact of QA quality factors of the requirements specifi-
cation on quality assurance. The study results can be used as an input for developing
a model-based RE approach that supports achieving this impact. This thesis devel-
ops such a model-based RE approach, the MIRA approach. MIRA consists of three
key parts according to the constituents of the quality model. 1.) RE concepts and QA
quality factors from the quality model are summarized in an artifact reference struc-
ture in Chapter 6. 2.) A guideline provides guidance for the activities discussed in this
study in Chapter 7. The guideline provides step-by-step instructions to instantiate
the artifact reference structure and to conduct quality assurance on the artifact refer-
ence structure. 3.) The artifact reference structure can be used to derive rules to guide
the specification. A second, more strict way to apply the artifact reference structure is
to operationalize it as a data model in a tool. This forces a user to develop a require-
ments specification that is conformant to the artifact reference structure. Further-
more, this operationalization enables the automation of quality assurance activities
as discussed in the study. The tool is presented in Chapter 8. Figure 4.9 provides an
overview how the model-based RE approach relates to the study results. An indus-
trial case study in the train automation domain presented in Chapter 9 demonstrate
how to apply MIRA in an industrial context to 4.) meet the discussed system quality
factors.

Figure 4.9: MIRA instantiates the 1) RE concepts and QA quality factors in the MIRA artifact
reference structure, 2) activities of the study results in the MIRA guideline, and
provides 3) an operationalization for the various parts in the MIRA tool; the ap-
plication in a case study demonstrates how MIRA achieves some of the 4) system
quality factors

80

Chapter 5
Requirements for Model-based RE Tools

This chapter investigates high-level requirements for a model-based RE tool required
by the embedded systems industry. In a former study by Sikora et al. [STP12] on the
industry needs of RE for embedded systems, practitioners mentioned a lack of tool
support for model-based RE. “Experienced practitioners in requirements engineering
in the embedded systems (ES) domain agree that models often or always help them
understand complex requirements more easily and express a strong wish for using
models more intensively in RE. One major obstacle for using models more intensively
in RE is the lack of appropriate tool support” [STP12]. The study mentioned some
of these requirements and indicated that further requirements for model-based RE
tools exist in industry that should be considered in a model-based RE tool. A first
search did not reveal a work that systematically investigates the requirements for a
model-based RE tool. This lead to the main research question for this chapter:

RQ2: What are the requirements for model-based requirements engineering tools
for embedded systems in practice?

The contribution of this chapter is a two-stage study. In the first stage, we gathered an
initial set of requirements for model-based RE tools by a systematic literature review.
The needs and challenges described in various papers were transformed into require-
ments and consolidated into a list of requirements. In the second stage, we validated
the relevance of these requirements by expert feedback via a questionnaire. More-
over, we collected additional requirements considered important by practitioners.

The study results were used as an input for the development of the model-based RE
approach MIRA in Chapter 6 to Chapter 8.

Contents
5.1 Research Method . 82

5.2 Study Results . 87

5.3 Discussion: Tool Support for Quality Assurance 95

5.4 Threats to Validity and Limitations 98

5.5 Related Work . 100

5.6 Conclusion . 102

81

5.1 Research Method

5.1 Research Method

The goal of this exploratory study was to obtain a core set of requirements of practi-
tioners that a model-based RE tool for the embedded systems domain should fulfill.
Special focus was placed on those requirements that are independent of a concrete
modeling language. The requirements should furthermore be independent of a par-
ticular development method such as agile development or V-model. Requirements
for a concrete language and method could be elicited in a next step based on the re-
sults of this work. The requirements have to be specific for model-based RE. This
excludes requirements that have a broader scope on model-based development or
RE tools. Therefore, requirements for model-based development tools, for instance,
concerning the layout of graphical modeling languages, are out of the scope of this
study. General requirements for software and system development tools that are
neither specific for RE nor for modeling tools, such as version or configuration man-
agement, are also out of the scope of this study. The study was conducted by three
researchers including the author.

The main research question of this study was

RQ2: What are the requirements for model-based requirements engineering tools for the em-
bedded systems domain in practice?

The study was performed in two parts. Firstly, a systematic literature review was
conducted in order to obtain an initial set of requirements stated in literature an-
swering

RQ2.1: What are the requirements of model-based requirements engineering tools for embed-
ded systems in literature?

In order to consolidate and evaluate the list of requirements collected in the first step,
we conducted a survey amongst practitioners from the embedded systems domain.
This survey was conducted in the form of an online survey. Target participants were
practitioners with experience in RE from the embedded systems domain. To assess
the participant’s context and background, we collected some demographic informa-
tion such as experience, industrial sector, or company size. We devised the following
research questions for experts in the field.

RQ2.2: How do practitioners rate the requirements for model-based requirements engineering
tools from literature?

We asked the practitioners to rate the initial set of requirements independently by
importance on a 4-point scale from must-have to not relevant or unclear if they did
not understand the requirement. The participants were not limited in the number
of requirements they can rate as a must-have. To gain further insights into the pri-
oritization of the requirements, each participant was asked to provide the five most
important requirements.

RQ2.3: What are additional requirements from practice?

In order to obtain a more complete set of requirements, each practitioner could com-
plement the set of requirements with additional requirements.

82

5 Requirements for Model-based RE Tools

5.1.1 Paper Selection and Requirements Extraction

A systematic literature review is a means of identifying, evaluating, and interpreting
all the available research that is relevant to a particular research question, topic area,
or phenomenon of interest [KC07]. As we had a fairly specific idea of what we were
searching for, we conducted a systematic literature review as described in [KC07] to
answer the first research question RQ2.1.

Inclusion and Exclusion Criteria. As our starting batch of papers, we investigated
the papers in the sources listed in Table 5.1. As sources for relevant literature, we
used Google, Google Scholar (G), and scientific conferences (C), journals (J), a sym-
posium (S), and workshops (W) on RE, software and systems engineering and em-
bedded systems. The range of years for the publications was limited to relatively
recent publications. The ISO 26262 safety standard was included as an additional
source for requirements potentially highly relevant for the embedded systems do-
main.

Table 5.1: Literature review sources

Type Name from to
G Google and Google Scholar – –
C IEEE International Requirements Engineering Conference

(RE)
2006 2011

C International Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ)

2007 2011

C International Conference on Advanced Information Sys-
tems Engineering (CAiSE)

2009 2011

C International Conference on Software Engineering (ICSE) 2006 2011
C IEEE Signature Conference on Computers, Software, and

Applications (COMPSAC)
2007 2010

C Embedded Real Time Software and Systems (ERTS2) 2004 2010
J Innovations in Systems and Software Engineering 2005 2011
J Requirements Engineering 2006 2011
J Software and Systems Modeling 2007 2011
J IEEE Transactions on Software Engineering 2009 2011
J Transactions on Software Engineering and Methodology 2007 2011
J Journal of Systems and Software 2009 2011
S The Future of Software Engineering (FOSE) 2007 2007
W Dagstuhl-Workshop: Model-Based Development of Em-

bedded Systems
2006 2011

W Model-based Methodologies for Pervasive and Embedded
Software

2005 2010

ISO ISO 26262 Road vehicles – Functional safety 2011 –

83

5.1 Research Method

Originally, only papers that contain the keywords "model-based" AND "require-
ments engineering" AND "embedded systems" (or synonyms thereof) in the title or
abstract should be included. Only few papers included all three keywords. Due to
the few hits, we relaxed this initial inclusion criterion. We included papers which
handle the tool needs and requirements of model-based RE without limitation to
embedded systems. To cover the embedded systems aspect, we also included pa-
pers that cover tool needs and requirements for model-based software or systems
engineering in embedded systems without special emphasis on RE. We included all
papers on problems including open questions that could be solved by a tool, needs
from practitioners for a tool, or tool requirements.

From this set of included papers, we excluded papers on existing RE methods, tools
and their application. We excluded papers of this group, as the requirements they in-
clude are generally at a very detailed level, specific to a concrete solution and based
on numerous assumptions. This is in contrast with the high-level requirements iden-
tified in this study, which are independent of a particular solution.

Summarizing, the following criteria were applied:

• The paper contains the keywords (“model-based” AND (“requirements engi-
neering” OR “embedded systems”)) or synonyms thereof in the title or abstract

• The paper does not explicitly exclude embedded systems

• The paper describes problems, needs, or tool requirements in RE

• The paper does not present existing RE methods, tools or their application

Resulting Requirements from the Literature Study. The starting batch contained
around 3300 papers. We manually analyzed the title and abstract of these papers on
the keywords. Based on the keywords, we identified 130 papers for a deeper analysis
with respect to the inclusion and exclusion criteria. Finally, we identified 11 sources.
From these 11 sources, we extracted 46 statements that constitute requirements, chal-
lenges, and problems in scope, transformed them into requirements and then consol-
idated them into 23 requirements. Most of the statements we collected were phrased
as a description of problems or needs. We rephrased these statements into require-
ments. Where a reformulation as a requirement was not possible, the original state-
ment was omitted. Due to their diverse sources, the collected statements did not
use homogeneous wording. Thus, we harmonized the statements by introducing a
common terminology, consolidating similar requirements, deleting duplicates and fi-
nally reformulating them into concise statements. This last step was taken to prevent
longer statements causing disinterest in the survey. The 11 sources and the resulting
list of 23 requirements for model-based RE tools is presented in Table 5.2 and Ta-
ble 5.3. We used these requirements as the input for the survey with practitioners in
industry.

5.1.2 Participants Selection

The target group for the questionnaire was experts from industry, preferably with
high experience in RE and model-based software engineering. The population is
large enough to warrant the use of a sample for our study. We invited around 100

84

5 Requirements for Model-based RE Tools

Table 5.2: The requirements for model-based RE tools and their sources in literature (1/2)

Source Requirement

ISO 26262
[ISO11a]

Support the whole life-cycle of an embedded system inclusive
change management
Providing mechanisms for documenting the results of validation
and verification tests
Support the specification of requirements in such a way that the
test cases can be derived (semi-)automatically
Support the representation and propagation of software critical-
ity levels (e.g., SIL2, ASIL-C)

Sikora et al.
[STP11]

Support for different, well-defined system abstraction layers
(product, system function and component views)
Support refinement, traceability, and consistency checking
across different abstraction layers
High level of automation in creating and maintaining traceabil-
ity links between RE and design

Matulevičius
and

Support different representation forms of requirements: infor-
mal, semi-formal like UML, formal (mathematics-based)

Strašunskas
[MS03]

Support document-generation

Egyed et al.
[EGHB07]

Support of tracing activities: creation, utilization (e.g., support
change impact analysis), maintenance, enhancement
Allow different tracing granularities (within requirements, be-
tween requirements and design)

international experts in software and systems engineering from our contact lists. We
chose participants matching our target criteria, with a high affinity to RE and model-
based software engineering to increase the quality of the survey results and our con-
fidence in them independently of the number of respondents. The research method
and first results were summarized in a technical report [TKM13] that was also sent
to all participants who provided their email.

5.1.3 Feedback Elicitation

We implemented our survey in the form of an online questionnaire, based on the
guidelines described in [Bra08], consisting of the two blocks participant information
and tool requirements.

Participant information included the participants’ country, company size, sector and
working experience. Their working experience in years, working experience in RE in
years, and the level of involvement with RE were mandatory questions. The follow-
ing answers to the level of involvement were possible: that RE is one’s main task, that
the respondent is involved, but not as a main task or that it is part of everyday work, but
not directly involved. The respondents were also asked to list the models and modeling

85

5.1 Research Method

Table 5.3: The requirements for model-based RE tools and their sources in literature (2/2)

Source Requirement

Pretschner et
al. [PBKS07]

Support the representation of non-functional requirements
(safety, security, reliability, maintainability, etc.)
Support platform-specific legacy constraints
Support the creation and reuse of requirements with varying lev-
els of detail, e.g., requirements to reuse ECUs, reliability, main-
tainability, etc.
Support variant management

Berenbach
[Ber10]

High level of automation in creating and maintaining traceabil-
ity links within requirements

Berenbach and
Borotto [BB06]

Support requirements metrics, e.g., quality metrics like use case
completeness

Fabbrini et al.
[FFLS08]

Support for the integration of tools and their artifacts (for exam-
ple domain specific tools integrated by import/export interfaces)
Deep integration of the model-based RE tool in an existing de-
velopment process (direct support for interactions between ac-
tivities, consistency checks)

Streitferdt et
al. [SWN+08]

Context specific tool tailoring, e.g., through UML profiles, new
plug-ins, . . .

Heimdahl
[Hei07]

Support high level of automation of the validation and verifica-
tion of requirements
Support model validation through tight integration of require-
ments and design

Schmid et al.
[SRB+00]

Support simulation of (executable) requirements

languages they have already used in RE. This answer further evaluates the experi-
ence of the participants regarding the research question. For additional background
information, the participants were asked whether they are involved in safety-critical
product development.

Tool requirements: this block contains all 23 requirements identified in the literature
review and an ordinal scale [FP99] to evaluate them. The scale is rated with the
following, self-explanatory options, as an answer to research question RQ2.2:

• Unclear requirement, hereafter shortly referenced as unclear

• Not relevant

• Nice to have, but not necessary, hereafter shortly referenced as nice to have

• Important, but could live without it, hereafter shortly referenced as important

• Must-have

To prioritize the requirements, the respondents were asked to select the five high-
est priority requirements in their opinion. Finally, in a free text form, we asked for

86

5 Requirements for Model-based RE Tools

additional requirements and comments to cover RQ2.3.

5.1.4 Data Analysis

The participants’ data was filtered by exclusion criteria. To focus on our target group,
we excluded responses from participants for whom RE is part of everyday work, but
they are not directly involved. The information on the working sector was used to fo-
cus on responses from participants with practical industrial experience by excluding
participants from the applied research and education sectors.

We evaluated the participants’ rating. For each requirement, we counted the number
of answers for each option. For each requirement, we furthermore calculated the per-
centage of answers for each option. For each requirement, we counted the number of
participants who included this requirement in their priority list. All requirements in
the priority list of a participant were treated equally in the evaluations, for example, a
list containing requirements D1, D2 and D3 is equivalent to a list containing require-
ments D2, D3, D7. The number of unclear requirements indicates whether practition-
ers understood the requirements. Furthermore, we analyzed whether importance
rating and prioritization correlate, or whether there is a deviation. We extracted the
most important and most prioritized requirements to give an overview of the most
highly rated requirements. Finally, we checked, how many participants considered
a requirement as a must-have or important. If the majority of participants considers
a requirement at least important, we see this as an indication that the requirement
should be considered in the development of a model-based RE tool.

The additional requirements were categorized into requirements in scope of the sur-
vey (language and method independent requirements for a model-based RE tool)
and requirements not in scope.

Finally, we consolidated the initial requirements with the additional requirements
stated by the practitioners.

5.2 Study Results

The first result of the study was that we did not identify a paper with a concise
list of requirements for model-based RE tools in existing literature. As described in
Section 5.1, the 11 papers in scope of the study resulted in a list of 23 requirements
that were to be rated by practitioners in a questionnaire.

5.2.1 Sample Demographics

The study received answers from 29 participants. From these, the answers of partic-
ipants without industrial experience were excluded; the remaining 22 answers were
filtered by desired criteria regarding experience in RE and industry relevance. The
demographics of the 22 participants are summarized in Table 5.4. The majority of
the participants came from Germany. The main sector with 12 participants is the au-
tomotive industry. There was no predominant company size or a clear inclination
towards safety-critical products in the demographics.

87

5.2 Study Results

Table 5.4: The demographics of the participants

Criterion No. of
answers

Results

Working expe-
rience

22 Between 5 and 29 years, average: 17 years

Working expe-
rience in RE

22 Between 1 and 25 years, average: 9.4 years

Countries 22 Germany: 16, France: 3, U.S.A: 1, Austria: 1, UK: 1
Company size 20 10 participants from small and medium sized enter-

prises with up to 250 employees, 10 persons from
large companies with at least 1,000 employees

Sectors 22 Automotive: 12, consulting: 3, systems engineer-
ing: 2, aerospace: 2, aeronautics: 1, telecommunica-
tions: 1, information technology: 1

Safety-critical
products

21 12 persons work on safety-critical products, 9 persons
on non-safety-critical products

19 participants provided information about the modeling languages they already
used for RE. These participants gave a list of the different models and modeling lan-
guages. Most common languages are SysML mentioned by 8 persons, UML with 7,
MATLAB/Simulink with 6 and EAST-ADL with 4 persons. The participants stated
several other languages including BPMN, Event-B, or domain-specific-languages;
each of these languages was only stated by one person.

5.2.2 Rating of the Requirements by Practitioners

22 participants rated all 23 requirements, so in total 506 ratings have been provided.
In the questionnaire, we asked the participants to prioritize five requirements. 19
participants provided a priority list of requirements that included between one and
seven requirements, on average each participant prioritized 4.5 requirements. An
overview of the requirements with the number of participants rating each option
and the number of participants that included the requirement into the prioritized list
is given in Table 5.5 and Table 5.6.

The brief description of requirements entails the risk that the practitioners are not
able to understand a requirement. In 12 cases, a participant rated a requirement as
unclear. The maximum number of unclear ratings for one requirement is 3. Due to this
relatively low number, we do not believe that this has significantly influenced our
results. Nevertheless, we included this threat into our threats analysis in Section 5.4.

We investigated whether the prioritization of the requirements and their rating corre-
late. Practitioners selected 98 times a requirement in their prioritization list. In 88% of
the cases, a practitioner that prioritized a requirement also considered it a must-have.
9% of the prioritized requirement are also considered important. 3% of the priori-
tized requirements are rated as nice-to-have. The distribution indicates a correlation
between rated importance and appearance on the priority list.

88

5 Requirements for Model-based RE Tools

Table 5.5: Number of ratings as must-have (1), important (2), nice to have (3), not relevant
(4) and unclear (?) and prioritizations (P) for each requirement (1/2)

ID 1 2 3 4 ? P Requirement

D1
14 7 1 0 0 7 Support the representation of non-functional require-

ments (safety, security, reliability, maintainability, etc.)

D2
6 5 5 3 3 2 Support platform-specific legacy constraints

D3
15 4 2 0 1 3 Support the whole life-cycle of an embedded system

inclusive change management

D4
12 5 3 0 2 8 Support different representation forms of require-

ments: informal, semi-formal like UML, formal
(mathematics-based)

D5
20 2 0 0 0 8 Support document-generation

D6
11 10 1 0 0 5 Support for different, well-defined system abstrac-

tion layers (product, system function and component
views)

D7
15 7 0 0 0 3 Support refinement, traceability, and consistency

checking across different abstraction layers

D8
7 7 6 0 2 2 Support the creation and reuse of requirements with

varying levels of detail, e.g., requirements to reuse
ECUs, reliability, maintainability, etc.

D9
12 8 2 0 0 7 High level of automation in creating and maintaining

traceability links within requirements

D10
13 6 3 0 0 5 High level of automation in creating and maintaining

traceability links between RE and design

D11
11 7 3 0 1 4 Support of tracing activities: creation, utilization (e.g.,

support change impact analysis), maintenance, en-
hancement

D12
6 7 6 1 2 1 Allow different tracing granularities (within require-

ments, between requirements and design)

The following requirements were ranked by the most participants as a must-have, see
also Figure 5.1:

1. (D5) document generation

2. (D7) support of refinement, traceability and consistency checking across differ-
ent abstraction levels

3. (D3) support the whole life cycle of an embedded system including change
management

4. (D1) support the representation of non-functional requirements (safety, secu-
rity, reliability, maintainability, etc.)

5. (D13) support for the integration of tools and their artifacts (for example do-
main specific tools integrated by import/export interfaces)

89

5.2 Study Results

Table 5.6: Number of ratings as must-have (1), important (2), nice to have (3), not relevant
(4) and unclear (?) and prioritizations (P) for each requirement (2/2)

ID 1 2 3 4 ? P Requirement

D13
14 6 2 0 0 5 Support for the integration of tools and their artifacts

(for example domain specific tools integrated by im-
port/export interfaces)

D14
8 8 4 0 2 2 Deep integration of the model-based RE tool in an ex-

isting development process (direct support for inter-
actions between activities, consistency checks)

D15
6 6 4 3 3 2 Context specific tool tailoring, e.g., through UML pro-

files, new plug-ins, . . .

D16
7 10 3 1 1 4 Support high level of automation of the validation

and verification of requirements

D17
7 8 6 0 1 2 Support model validation through tight integration of

requirements and design

D18
11 6 5 0 0 3 Providing mechanisms for documenting the results of

validation and verification tests

D19
5 6 8 3 0 1 Support simulation of (executable) requirements

D20
6 11 5 0 0 3 Support the specification of requirements in such a

way that the test cases can be derived (semi-) auto-
matically

D21
7 7 7 1 0 0 Support requirements metrics, e.g., quality metrics

like use case completeness

D22
9 7 3 1 2 2 Support the representation and propagation of soft-

ware criticality levels (e.g., SIL2, ASIL-C)

D23
10 7 3 0 2 3 Support variant management

The following requirements were prioritized by the most participants, see also Fig-
ure 5.2:

1. (D4) different representation forms of requirements: informal (flowing text de-
scription), semi-formal (UML diagrams), formal (mathematics-based)

2. (D5) document generation

3. (D1) support the representation of non-functional requirements (safety, secu-
rity, reliability, maintainability, etc.)

4. (D9) a high level of automation in creating and maintaining traceability links
within requirements

Between 50% and 100% of the participants rated each requirement important or must-
have. This percentage is even higher for participants working on safety-critical prod-
ucts, with 59% of the participants considering all of the requirements important or
a must-have. We conclude that all requirements identified in the literature review
can be considered relevant by practitioners and therefore have to be addressed when
developing a model-based RE tool.

90

5 Requirements for Model-based RE Tools

20
15
15

14
14

13
12
12

11
11
11

10
9

8
7
7
7
7

6
6
6
6

5

2
7

4
7

6
6
8

5
10

7
6

7
7

8
10

8
7
7

11
7

6
5

6

0
0

2
1

2
3

2
3

1
3
5

3
3

4
3

6
7

6
5

6
4

5
8

0
0

0
0
0
0
0

0
0

0
0

0
1

0
1

0
1

0
0

1
3
3

3

0
0

1
0
0
0
0

2
0

1
0

2
2
2

1
1

0
2

0
2

3
3

0

0 11 22
D5
D7
D3
D1

D13
D10

D9
D4
D6

D11
D18
D23
D22
D14
D16
D17
D21

D8
D20
D12
D15

D2
D19

Must-have Important Nice to have Not relevant Unclear
Figure 5.1: Bar chart of the rating of the requirements sorted by number of ratings as must

have

5.2.3 Additional Requirements from Participants

10 participants stated 27 additional requirements from which 14 requirements are in
scope of the survey. Requirements for concrete modeling languages, for roles and
responsibilities of the resulting specification, for example interfacing and requirement
handshake features from customer to supplier, and extra-functional requirements such as
easy to use or well affordable have been excluded as they are not specific for a model-
based RE tool and hence not in the scope of this study. The resulting additional
requirements in scope of our study are listed in Table 5.7.

Two of the additional requirements are refinements of D1, the requirement for sup-
port of different representation forms: A1 requires the provision of prose as addi-

91

5.2 Study Results

0 1 2 3 4 5 6 7 8 9
D21
D12
D19
D22
D14
D17
D8
D15
D2
D7
D3
D18
D23
D20
D11
D16
D13
D10
D6
D1
D9
D5
D4

Figure 5.2: Bar chart of the number of prioritizations of each requirement

tional information to models; A3 requires that models should be directly created in
the tool. In A2, a practitioner argues that patterns to control natural language are
more appropriate than requirement models when communicating with customers,
as patterns would reduce the risk of misunderstandings at a very early stage. He
also suggests that requirement models are more appropriate to communicate with
developers. Therefore, there is a need for correlating different notations for different
stakeholders. Requirement A4 indicates the need to support the elicitation work-
flow. This additional requirement could also be partly addressed by offering differ-
ent representation forms within the tool (D1); prose for brainstorming, a more formal
representation form for precise requirements.

Practitioners provided additional requirements for tracing. Requirement A5 empha-
sizes the need to predefine and check trace links. Requirement A6 emphasizes the
traceability between requirements and models. A7 emphasizes the need to trace re-
quirements and verification and validation artifacts.

Another prominent topic was the compatibility with other tools. Although tool in-
tegration was mentioned in the original list (D13), support for data import in A8
and specific interchange formats, especially ReqIF, was required in the additional re-
quirements A9, A10 and A11. In A13, a practitioner explicitly identified the need
for structured guidance for data input. Requirement A14 also aims at the support of
documenting requirements.

92

5 Requirements for Model-based RE Tools

Table 5.7: Additional requirements for model-based RE tools as stated by practitioners

ID Requirement

A1
Combination of model based and “natural language” requirements as addi-
tional information

A2
Ability to create models directly in the tool

A3
Support by text shapes (compare CPRE-Foundation Level or Sophists REgel-
werk). There need to be support in the documentation of requirements be-
tween requirement analyst (RA) and the customer. Model based require-
ments tend to support the interface between RA and development. When
the requirements of “interface 1” are misunderstood, you going to “translate”
them also misunderstand with the model based language.

A4
Support requirements elicitation workflow, i.e. from brainstorming up to hi-
erarchical, precise documented requirements

A5
Providing mechanisms for defining and verifying the traceability data model
between expected artifacts (e.g., a traceability rule checker)

A6
Ability to trace components of a model to requirements (e.g., a step in a pro-
cess flow)

A7
Creating and maintaining traceability links between requirements and verifi-
cation and validation artifacts

A8
Ability to import data from other tools

A9
Support of “ReqIF”

A10
Support for standard model and requirement interchange formats (e.g., Re-
qIF, XMI)

A11
Support standard (ReqIF) for interchange Requirement Format

A12
Flexibility in generating documents and reports

A13
Structured guidance for data input

A14
Provide text highlighting of keywords, help in formulation like text proposals
and automatic correction. I.e. usability during the documentation step

5.2.4 Consolidation of the Requirements

The requirements identified in this study have been rephrased in order to match
the vocabulary used in the remainder of this work and consolidated with the ad-
ditional requirements from the practitioners. Thereby, the requirements have been
grouped into topics. Table 5.8 shows the mapping of the draft and additional require-
ments to the consolidated requirements. The resulting set of requirements yielded 31
language- and method-independent requirements for a model-based RE tool. An
overview of all requirements is given in Table 5.9 to Table 5.11.

93

5.2 Study Results

Table 5.8: Mapping of draft and additional requirements to the consolidated requirements

Draft and Additional Requirement IDs ID Consolidated Requirement
D4, A2, A4 R1
A1 R2
A3 R3
D11 R4
A5 R5
A6 R6
D12 R7
D9 R8
D10 R9
A7 R10
D5, A12 R11
D13, A8 R12
A9, A10, A11 R13
D16 R14
D17 R15
D20 R16
D19 R17
D18 R18
D21 R19
D6 R20
D7 R21
A13 R22
A14 R23
D14 R24
D3 R25
D1 R26
D2 R27
D23 R28
D15 R29
D22 R30
D8 R31

94

5 Requirements for Model-based RE Tools

Table 5.9: The consolidated requirements for model-based RE tools grouped by topics (1/3)

ID Requirement

Representation Forms

R1
The tool should support the representation of requirements as uncon-
strained prose, semi-formally (UML-based or as constrained natural lan-
guage) and using a formal (math-based) modeling language.

R2
The tool shall facilitate the documentation of a natural language descrip-
tion for requirement models in order to give additional information to the
models.

R3
Models should be created directly in the tool.

Tracing

R4
The tool shall facilitate the creation, utilization (e.g. support change impact
analysis), maintenance, enhancement of trace links.

R5
The tool shall provide mechanisms for defining and analyzing trace links
between expected artifacts such as a traceability rule checker.

R6
The tool shall facilitate to trace model elements to requirements

R7
The tool shall enable to document traces at different tracing granularities
(within requirements, between requirements and design).

R8
The tool shall provide a high level of automation in creating and maintain-
ing trace links within requirements.

R9
The tool shall provide a high level of automation in creating and maintain-
ing trace links between RE and design.

R10
The tool shall facilitate to create and maintain trace links between require-
ments and verification and validation artifacts.

Interfaces

R11
The tool shall facilitate to generate documents.

R12
The tool shall be capable to be integrated with other tools and their artifacts,
for example by import/export interfaces.

R13
The tool shall support standard requirement interchange formats such as
ReqIF.

5.3 Discussion: Tool Support for Quality Assurance

The requirements for model-based RE tools contain concrete quality assurance ac-
tivities as well as entities and their characteristics with concrete impacts on quality
assurance. Thereby, the study indicates that quality assurance is an important issue
for model-based RE tools. The requirements concretize the activity-based RE quality
model elaborated in Chapter 4.

95

5.3 Discussion: Tool Support for Quality Assurance

Table 5.10: The consolidated requirements for model-based RE tools grouped by topics (2/3)

ID Requirement

Quality Assurance

R14
The tool shall provide a high level of automation of the validation and veri-
fication of requirements

R15
The tool shall support the verification of the system design through tight
integration of requirements and design.

R16
Requirements shall be specified in such a way that the test cases can be de-
rived (semi-)automatically

R17
The tool shall provide a simulation of (executable) requirements

R18
The results of validation and verification tests shall be documented in the
tool.

R19
The tool shall calculate and display requirements metrics, for example to
measure use case completeness.

Abstraction Layers

R20
The tool shall provide different, well-defined system abstraction layers for
the system.

R21
The tool shall facilitate to document refinement links and other trace links
as well as consistency checking across different abstraction layers

Guidance

R22
The tool shall provide a structured guidance for the data input.

R23
The tool shall address the usability of the documentation by providing ca-
pabilities such as highlighting keywords in text, help in the formulation like
text proposals and automatic correction.

R24
The tool shall be integrated in an existing development process.

R25
The tool shall support the whole life-cycle of an embedded system inclusive
change management

5.3.1 Analytical Quality Assurance

The list of requirements includes a set of analytical quality assurance activities that
the tool should support and a set of objects that should be subject to quality assur-
ance. These are requirements (R14, R16, R17, R19), trace links (R5) including refine-
ment links (R21), and system design (R15). The quality assurance activities include
the analysis (R5, R17, R21), validation (R14, R16) and verification (R14, R15) of these
concepts. A model-based RE tool should support quality assurance activities by au-
tomation (R14, R16, R17, R19). The tool should furthermore be able to capture quality
assurance results (R18).

The study showed the need for a model-based RE tool to exchange information with
its environment through interfaces. These interfaces include document generation

96

5 Requirements for Model-based RE Tools

Table 5.11: The consolidated requirements for model-based RE tools grouped by topics (3/3)

ID Requirement
Requirement Types

R26
The tool shall support the documentation of extra-functional requirements.

R27
The tool shall support the documentation of requirements for platform-
specific legacy constraints

Others

R28
The tool shall support variant management.

R29
The tool shall facilitate a context specific tailoring of the tool, for example
through UML profiles or new plug-ins.

R30
The tool shall support the documentation and propagation of software crit-
icality levels, for example the safety integrity levels SIL 1 to SIL 4.

R31
The tool shall support the creation and reuse of requirements with varying
levels of detail.

(R11) and interfaces to other tools (R12, R13). These interfaces can also become rel-
evant in the validation and verification of the requirements specification. A manual
validation and verification requires the access of the stakeholders to the documented
information; document generation is a means to achieve this access. An automated
verification requires an automated connection of requirements and the verification
object.

5.3.2 Constructive Quality Assurance

Representation Forms. The study confirmed that practitioners demand a tool that
supports prose as well as a formalization of requirements to a semi-formal and a
formal representation (R1, R2, R3). The study in Chapter 4 discussed the impact of
representation forms on quality assurance.

Tracing. The study yielded a set of requirements for the specification and (auto-
mated) evaluation of trace links (R4, R5, R6, R7, R8, R9, R10). A practitioner pointed
out the need for clearly defined trace rules that can be checked by a trace rule checker
(R5). Some practitioners also demanded that links are not only relevant between re-
quirements or requirements and design, but also from a requirement documented
as prose to its semi-formal representation in a model (R6), and to verification and
validation artifacts (R10).

Abstraction Layers. The study showed the need to define different abstraction
layers for the system (R20), for example for the entire system or only parts of the
system. These abstraction layers are required in order to document and check (R21)
the refinement across these abstraction layers.

97

5.4 Threats to Validity and Limitations

5.3.3 Guidance

Practitioners stated requirements on the guidance to be provided by a model-based
RE tool: Practitioners highlighted the need to guide the tool users in the application
of the tool (R22). This requirement implies that also the constructive and analyti-
cal quality assurance should be guided. A means to provide constructive support
in a tool are keyword highlighting, text proposals and automatic correction (R23).
An integration in an existing development process (R24) supports the verification of
requirements against subsequent development artifacts.

5.3.4 Requirements without Impact on Quality Assurance

Requirement Types. The study did not specifically emphasize the need to doc-
ument functional requirements, presumably as the support for these requirements
is so fundamental that it seemed obvious to the participants. The study showed the
need to document extra-functional requirements (R26, R27). The requirements do not
discuss an impact of distinguishing these requirement types on quality assurance.

Others. Further requirements without a direct impact on the quality assurance
have been provided. These comprise the support of variant management (R28), a
context-specific tailoring of the tool (R29), the support for safety criticality levels
(R30) and the support for reuse of requirements (R31).

5.4 Threats to Validity and Limitations

The study faces the following threats to internal and external validity.

Internal Validity. The choice and design of a research method influences the qual-
ity of the result. The quality of a systematic literature review depends highly on
the search parameters. A systematic literature review can only identify the publica-
tions that are available in the data sources that are investigated. Therefore, this study
includes the most renown journals and conferences in RE and software engineer-
ing as data sources, for example, the Requirements Engineering journal published at
Springer, or the IEEE Requirements Engineering Conference. Adding further sources
might increase the number of publications identified in the search at the risk of re-
ducing the quality of the papers.

The search string can crucially influence the results of the literature research. Addi-
tional search terms might increase the list of resulting papers. Therefore, we com-
plemented our search by a manual investigation, taking into account potential syn-
onyms used by the authors.

The exclusion criteria applied in the review might lead to missing requirements, that
could be relevant to practitioners. Furthermore, authors of these papers stem not
only from industry, but also from academia. Practitioners might have a different
perspective on the requirements for a model-based RE tool than researchers. We

98

5 Requirements for Model-based RE Tools

addressed this threat by combining the systematic literature review with a survey
amongst practitioners.

Extracting requirements from the publications is a highly subjective task. Different
researchers may extract different requirements. By reviewing the extraction process
by a second researcher we mitigated this threat.

The systematic literature review resulted in a set of requirements with a significantly
different level of detail. Different levels of detail make it more difficult to rank and
compare the requirements. We had two options to process these requirements. We
could align these requirements by interpreting and refining them. These changes
would have inferred new threats. We chose to accept the different levels of detail,
thereby accepting a limitation for the users of the study results.

The quality of a survey via a questionnaire is influenced by the design of the ques-
tionnaire. We chose to limit the questionnaire: Practitioners could rate every require-
ment according to their relevance by a predefined set of values. In order to make sure
this limitation did not lead to an oversight the participants could also add missing
requirements. The results might be influenced by the layout and order of questions
in the questionnaire.

All requirements have been ranked as important or must-have by at least 50 percent
of the participants. This could also be seen as a threat to validity as preferences of
participants are not visible at this level of detail. This threat was partly mitigated by
a) providing a fine-grained scale, where important requirements are distinguished
from must-haves and b) including a prioritization of the requirements.

Any questionnaire always carries the risk of misunderstandings. The respondents
may have a different understanding of the requirements and the terms used in the
requirements. This may lead to a false ranking of the requirements. Therefore, we
tried to use a homogeneous set of commonly understood terms throughout the entire
survey. To further mitigate this risk, requirements could be rated by the respondents
as unclear. The number of participants that rated a requirement as unclear is listed
in Table 5.5 and Table 5.6; unclear requirements indicate that, for further processing,
these requirements should be reassessed. Nevertheless, none of the requirements
were considered as unclear by the majority of the participants. The same risk of mis-
understandings also relates to the additional requirements that were stated by the
participants. This threat could not be resolved, but by providing the literal require-
ments in Table 5.7, we tried to make this transparent to the reader.

External validity. Self-administered surveys are generally threatened by low re-
sponses and response rates [Bra08], which leads to a statistically insignificant num-
ber of results. The number of participants directly influences the generalizability. We
chose to target a group of participants with high experience in RE and model-based
software engineering to increase the quality of the survey results and the confidence
in them, independent of the number of respondents. Only participants with a high
affinity to the target topics and a high experience in the subject of the study were
chosen. By achieving a high quality of the responses, we intended to compensate the
low number of responses.

Most, but not all of the respondents are located in Germany, which may threaten the

99

5.5 Related Work

transferability to other countries. However, many of these German respondents work
in companies acting globally with experience in internationally distributed projects.
Finally, the various company sizes of the respondents may affect the results, as the
RE needs and activities of small and medium enterprises may be different from those
of large companies with well-established processes.

Limitations. The requirements resulting from this study are high-level stakeholder
goals. The requirements have a varying level of detail as they are kept on the level of
detail that they were extracted from the literature and as they have been given by the
practitioners. These requirements catch essential characteristics a model-based RE
tool should have, but they are not detailed system requirements that can be directly
implemented in a model-based RE tool. To obtain a detailed, atomic, and measurable
system requirements specification would require to break down these requirements
further and to tailor them to a specific context and to specific modeling languages
and their capabilities and constraints. Therefore, we recommend the users of the
study results to perform a refinement of the requirements to the level of detail nec-
essary for their purpose. Another reason might infer the need to revise the list of
requirements. Some tool user groups may have very specific tool requirements, for
instance, opposed by standards and regulations. Therefore, we recommend tool ven-
dors to perform an additional survey of practitioners from specific target groups to
complement the list of requirements.

5.5 Related Work

Roadmaps and Challenges. Several academic studies exist enumerating the
many challenges and problems facing model-based software development in gen-
eral, as well as model-based RE, and providing visions for improvement. They often
do not discuss tools or tool requirements for model-based RE in depth. Cheng and
Atlee [CA07] discuss challenges and research directions in RE, including modeling
activities, but without any focus on tools. Nuseibeh and Easterbrook [NE00] present
an overview of modeling in RE, but aside from presenting requirements management
tools they do not discuss any tool-specific topics further. France and Rumpe [FR07]
provide a research roadmap on model-driven development of complex software, but
without focus on RE. Broy [Bro06] discusses challenges in automotive software en-
gineering, pointing out the importance of tools in model-based development, also
in RE. Heimdahl [Hei07] points out challenges in safety for software-intensive sys-
tems like medical devices, which were extracted and transformed into requirements.
Domain-specific analysis of challenges, requirements, or key activities in model-
based RE are presented in Streitferdt et al. [SWN+08] and Fabbrini et al. [FFLS08].
Pretschner et al. [PBKS07] provide an overview of current challenges of model-based
RE in their roadmap on software engineering for the automotive domain.

The roadmap of Gotel et al. [GCHH+12a] from 2012 investigates software and sys-
tems traceability research, thereby presenting and discussing potential solutions for
the model-based RE tool requirements related to tracing presented in this chapter,
including solutions for trace data models (A5), automated tracing (D9, D10) and han-
dling different tracing granularities (D12). In a case study at six companies from 2014,

100

5 Requirements for Model-based RE Tools

Bjarnson et al. [BRB+14] identified challenges and practices in aligning requirements
with verification and validation; the challenges mentioned by industry experts con-
firmed the tracing requirements A7 (tracing between requirements and validation
and verification artifacts) and R7 (tracing across abstraction layers, here called ab-
straction levels).

Needs and Requirements. The standard ISO/IEC TR 24766:2009 [ISO09] gives
general tool requirements for RE without addressing the challenges of model-based
development. The recommendation Z.150 [ITU11b] specifies the language require-
ments for a user requirements notation in the field of telecommunications. Matule-
vičius and Strašunskas [MS03] present an evaluation framework for verification and
validation that contains requirements in scope of this study. Sikora et al. [STP11,
STP12] conducted an industrial study with 17 representatives from large, interna-
tionally operating companies in the domain of embedded systems in Germany on
industry needs for RE, including model-based RE. This work is not specifically fo-
cused on requirements for tools but contains needs for tools and thereby was an
important source for our initial set of requirements. Domain-specific standards such
as the DO-178C standard [DO112] for avionics and the ISO 26262 automotive safety
standard [ISO11a] contain domain-bound, implicit and disjoint requirements for RE
activities and development tools.

In the work from 2013, Hesari et al. [HBY13] investigate industrial challenges and
needs for requirement-based test generation, emphasizing the need for an integrated
computer-based solution for reusing test artifacts; some of the specific challenges
for requirement-based test generation such as tracing to test artifacts and variability
management also have been identified in other papers as challenges and needs for
model-based RE tools.

Tool Capabilities. The ISO/IEC TR 24766:2009 standard [ISO09] provides 157 tool
capabilities that can be used as evaluation criteria for RE tools. This standard pro-
vides an overview of potential features of a tool, including features for the model-
based specification of requirements. Schmid et al. [SRB+00] compares tools and their
capabilities with respect to simulation. Matulevičius and Strašunskas [MS03] present
an evaluation framework for RE tools with respect to verification and validation, in-
cluding but not limited to model-based RE.

In 2012, Gea et al. [CDGNFA+12] assessed RE tools based on the capabilities de-
scribed in the ISO/IEC TR 24766:2009 standard. They report that current RE tools
support best capabilities for the elicitation of requirements whereas requirements
modeling and management are the least supported group of capabilities. The capa-
bilities have not yet been rated with respect to their importance for users in the field
of model-based RE. A next step would be to align the capabilities with user require-
ments for model-based RE tools.

We could find no source that holistically presents, discusses, or evaluates a collection
of requirements for a practical model-based RE tool of embedded systems. We found
very few sources that target almost all focus points such as RE tool requirements.

101

5.6 Conclusion

5.6 Conclusion

This study investigated language- and method-independent requirements for a
model-based RE tool. The study included a literature review and a questionnaire
amongst practitioners. The literature review showed that only a few related studies
in this field exist that were incorporated in this work. The literature review revealed
23 draft requirements that were used as an input for a survey amongst practition-
ers working in the field of RE. The result of the survey in industry was a rating of
these requirements for importance and a set of additional draft requirements from
practitioners. 22 practitioners participated in the study. The number of participants
may not be representative, but is comparable with similar studies in this field such
as [STP11]. The participants’ high average experience of 9.4 years indicates that the
study results are trustworthy. Each of the 23 draft requirements was rated as a must-
have or important by at least 50% of the practitioners. The practitioners stated 14
additional requirements. The draft requirements and the additional requirements
have been consolidated in a core set of 31 requirements for model-based RE tools.

The survey confirmed and detailed the four challenges that motivate the MIRA ap-
proach, see Section 1.2. The study results indicate that practitioners have a demand
for a tool that supports heterogeneous representation forms of requirements (R1 –
R3), that provides support for the quality assurance of requirements (R14 – R19), and
that is tightly embedded in the system development (R7, R9, R15, R20, R21, R24). The
study results also indicate that practitioners not only require a simple modeling tool
that facilitates the application of a modeling language such as UML. The tool should
provide guidance (R22 – R25), for example, for the data input and for the process
from brainstorming to precisely formulated requirements.

The requirements have been considered in the development of the MIRA approach
in Chapter 6 to Chapter 8. Some requirements had to be excluded from the MIRA
approach as they a) are not concerning the quality assurance of requirements and b)
are too high-level and treat extensive and advanced topics. The requirements that
are excluded concern variability (R28), a systematic reuse of requirements (R31) and
change management (R4, R25). Only after the basics of model driven development
have been comprehensively worked out, these additional dimensions can be investi-
gated.

Further similar studies in industry on requirements for model-based RE approaches
would facilitate the understanding of actual industrial needs. These studies could
for example investigate more concrete requirements for a model-based RE tool from
industry based on the results of this study.

102

Chapter 6
The MIRA Artifact Reference Structure

An artifact reference structure is a blueprint of the contents to be elaborated during
RE. Instantiating the artifact reference structure yields a requirements specification.
An artifact reference structure defines a set of RE content items, concepts, their at-
tributes, representation forms and dependencies. An artifact reference structure can
be implemented in a set of rules that guide the specification. Additionally, the arti-
fact reference structure can be implemented as a data model in a tool to restrict the
specification.

The research question that drove the development of the MIRA artifact reference
structure is:

RQ3: What is a minimal, but extensible artifact reference structure for model-
based RE that supports the effective and efficient model-based quality assurance of
functional requirements?

The contribution of this chapter is the MIRA artifact reference structure, where each
concept, attribute, representation form and dependency has an impact on the effec-
tiveness or efficiency of model-based quality assurance of functional requirements.
These impacts have been investigated in a study in Chapter 4. The MIRA artifact
reference structure is developed constructively by integrating the concepts and QA
quality factors from this study. To enable the verification of functional requirements,
the MIRA artifact reference structure is embedded in a modeling framework for soft-
ware and systems engineering, see Section 2.3.4. However, these integrations high-
lighted some gaps in the artifact reference structure. Therefore, in addition to inte-
grating existing work, MIRA also adds further elements where necessary.

Contents
6.1 Related Work . 104

6.2 The MIRA Artifact Reference Structure 104

6.3 The MIRA Artifact Reference Structure in the System and Soft-
ware Development . 123

6.4 Summary and Discussion . 125

103

6.1 Related Work

6.1 Related Work

A broad variety of blue prints of a requirements specification has been developed,
from rough outlines [ISO11b] to more detailed artifact reference structures [RR06],
[PE12], [DTW12], [MFP14].

The ISO/IEC/IEEE 29148:2011 standard [ISO11b] provides example outlines for a
stakeholder requirements specification, a system requirements specification and a
software requirements specification. The VOLERE template [RR06, p. 226ff] pro-
vides a detailed outline of a requirements specification. Furthermore, the main con-
tents described in the VOLERE template are related in an artifact reference structure,
there called requirements knowledge model. The AMDiRE approach [MF11, MFP14]
defines the main elements of an artifact reference structure and provides a domain-
independent (for embedded systems and information systems) instantiation of this
artifact reference structure. The ARAMiS model [PE12] is an artifact-oriented RE
approach developed specifically for the cyber-physical systems domain. These ap-
proaches do not define in detail how the requirements specification is embedded
into the system development. AutoRAID [Sch09] provide such an embedding, but
does not specifically support the validation of requirements or a design-independent
formalization (see Chapter 3). None of these approaches provides a precise, design-
independent formal representation of the functional requirements. The MIRA artifact
reference structure defines such a formal representation and embedding in a seam-
less development approach.

6.2 The MIRA Artifact Reference Structure

For the description of the structure of the MIRA artifact reference structure, UML
class diagrams [OMG11] are used1. Abstract classes are named in italic in the dia-
grams and denote umbrella terms used in the thesis. A generic class defines the set
of attributes that is common for all concepts of a content item. Every concept is a
specialization of this generic class, thereby inheriting all its attributes. Additional at-
tributes can be added to each specialized concept. This inheritance mechanism facil-
itates the extension of the MIRA artifact reference structure with additional concepts
and attributes, as demonstrated in a case study in Section 9.2.

Keys facilitate to identify objects. Unique keys facilitate an unambiguous identifica-
tion. A unique key ukey defines a set of attributes of a class that provides a unique
identification of every object of that class. If two objects have the same unique key,
they are identical.

The concept of a candidate key is a relaxation of the unique key. It accommodates
for the fact that terms used in RE may not have a single meaning as they stem from
different sources. For example, an external system may have the same identifier
as the organization that is developing it; two departments of a company may use
the same term for two completely different domain concepts. A candidate key ckey
defines a subset of attributes of a class. The attribute values of that candidate key
identify an object of that class non-uniquely; other objects of that class may contain

1The tool used is Papyrus (https://eclipse.org/papyrus/)

104

https://eclipse.org/papyrus/

6 The MIRA Artifact Reference Structure

the same candidate identifier. The identification has to be performed externally, for
example, by a person.

The main characteristics of the MIRA artifact reference structure have been presented
in [TH15] and [AVT+15].

6.2.1 Content Items

The concepts of MIRA are grouped into four content items. The system context de-
scribes relevant elements in the context of the system under development; a require-
ment list defines the different conditions and capabilities that the system under devel-
opment should meet; a trace link list documents the associations between concepts; a
QA collection facilitate to document QA activities and results.

6.2.2 System Context

The system context is the operational and business environment of the system under
development [PE12]. It does not belong to the system and therefore cannot be in-
fluenced during development, but surrounds the system once it has been deployed
[DTW12].

Descriptive Element. A descriptive element defines the common informa-
tion for all concepts in the context of the system under development, see Figure 6.1.

Figure 6.1: Attributes of a descriptive element

Each descriptive element has an identifying name along with optional synonyms and
abbreviations. Each element is further described by a mandatory definition of this term
in the problem domain and by optional (informal) images. A status defines whether
the elements are New, In Consolidation, or Consolidated with the stakeholders of the
system, see Figure 6.2.

Descriptive elements may stem from different domains, companies or departments.
These different people may name different concepts identically. For example, stake-
holders from different companies may have the same name, and therefore two dif-
ferent stakeholder objects with the same name are instantiated. A term might have
various meanings, depending on the department that uses this term. Two documents

105

6.2 The MIRA Artifact Reference Structure

Figure 6.2: Status of a descriptive element

may have the same name in different companies. Therefore, the name of a descrip-
tive element cannot be assumed to be unique. The same yields for synonyms and
abbreviations. Candidate keys to identify a descriptive element are its name, the set
of synonyms and the set of abbreviations.

A descriptive element is an abstract concept that is not instantiated. In Figure 6.3, it is
therefore modeled as a generic class. This figure provides an overview of all special-
izations of the descriptive element. As all of these concepts are descriptive elements,
they have the attributes of a descriptive element that were defined above. Some con-
cepts have additional specific attributes. Descriptive elements are specialized to the
following concepts:

Figure 6.3: Concepts specialized from the descriptive element

Glossary Term. A glossary term records a domain- or project-specific term and
its definitions. Glossary terms are used to capture the vocabulary of the problem
domain. Glossary terms have all attributes of a descriptive element, but no further,
specific attributes.

Requirement Source. A requirement source is the origin of a requirement
[Poh10]. Following Pohl [Poh10], the requirement sources are differentiated in three
types:

Stakeholder. A stakeholder is anyone with an interest in or an effect on the
outcome of the system under development [RR06]. For each stakeholder, his/her

106

6 The MIRA Artifact Reference Structure

contact information can be documented (for example name, email, telephone number),
see Figure 6.4.

Figure 6.4: Attributes specific to stakeholders

Document. (Existing) documents such as standards or external system specifica-
tions are another important source of requirements. Documents include a list of files
(the actual documents), see Figure 6.5. Each file has a short description, version in-
formation, and a path to the file.

Figure 6.5: Attributes specific to a document

External System. Another important source of requirements are the external
systems that the system under development should interact with.

In the example of a traffic light controller, stakeholders are for example the client of
the traffic light controller that is the company that builds the traffic light system and
therefore commissions the traffic light controller, the pedestrians and car drivers that
interact with the traffic light system, but also the persons involved in the develop-
ment of the traffic light controller such as software and test engineers. Documents
include for example preliminary requirement collections or relevant regulatory doc-
uments and safety and security standards that apply to the system under develop-
ment. External systems for the traffic light controller are the traffic lights that the
traffic light controller has to control, the request buttons for the pedestrians and in-
dicators that provide feedback to the pedestrian about their request.

6.2.3 Requirements

Requirement. A requirement is the generic concept for the content item ’require-
ment list’. In the MIRA artifact reference structure, each requirement contains typi-
cal requirement management information as proposed in Robertson and Robertson
[RR06] and Kotonya and Sommerville [KS98]. The attributes of a requirement are
summarized in Figure 6.6 and defined in the following.

107

6.2 The MIRA Artifact Reference Structure

Figure 6.6: Attributes of a requirement

The ID, the unique key of a requirement, is needed for further references to this re-
quirement [RR06, p. 15]. IDs are used to reference requirements, for example in trace
links. The description is “a one sentence statement of the intention of the requirement”
[RR06, p. 15]. A rationale gives a justification/explanation why the requirement has
been included [KS98, p. 121], [RR06, p. 15]. A requirement should contain “a refer-
ence to one or more of the sources of the requirement. This helps with analysis when
changes to the requirements are proposed” [KS98, p. 121]. The source of a require-
ment should refer to an instantiation of the concept requirement source as defined in
the previous section. The author is the person that documented the requirement.

The lifecycle status depends on project specific processes and is therefore config-
urable. MIRA proposes the status values New, Documented, Formalized, Analyzed, Val-
idated, Verified and Rejected, see Figure 6.7, as these status values reflect the activities
of the MIRA guideline.

Figure 6.7: Status of a requirement

The priority of a requirement is "a rating of the customer value" [RR06, p. 15]. Instead
of using the semantically imprecise high, medium, low-scale, a semantically more ex-
pressive scale like the Kano-model [Conb] may be chosen that is presented in the
following. Must-be: The requirement is so basic that it is taken for granted when it
is fulfilled; it causes dissatisfaction when the requirement is not fulfilled. Satisfier:
The requirement results in satisfaction when fulfilled and dissatisfaction when not
fulfilled. Delighter: The requirement results in satisfaction when fulfilled, but not in
dissatisfaction when not fulfilled. Figure 6.8 summarizes the priority scale.

108

6 The MIRA Artifact Reference Structure

Figure 6.8: The priority of a requirement

Each requirement contains a QA checklist that proposes the action items that have to
be conducted during the manual inspections of a requirement and stores the results of
these action items. QA checklists are defined in detail in Section 6.2.5. Each require-
ment contains a QA checklist to store the results of automated quality analyses. The
comment is an unrestricted field to document useful information that is not covered
by the other fields.

Many approaches, for example, Cockburn [Coc00] or SPES [PHAB12], distinguish
between solution-independent requirements, also referred to as business require-
ments, and solution-oriented requirements, also referred to as system requirements.
Business requirements are independent of a concrete system. System requirements
presume that the decision to realize a concrete system has been made. MIRA concen-
trates on solution-oriented functional requirements that define the required
behavior of the system under development and the interactions with its environment.
Therefore, in MIRA, requirements can be specialized to specific functional require-
ment types corresponding to their content (similar to [RR06, p. 15]). The functional
requirement types defined in MIRA are scenario, interface requirement and
user function. Furthermore, goals can be specified as they provide a rationale
for the functional requirements. A requirement can remain unclassified, so that it
is possible to document requirements of all other requirement types in MIRA. Fig-
ure 6.9 summarizes the requirement types of the MIRA approach.

Figure 6.9: Requirement types

Each functional requirement can be described semi-formally by templates that
provide attributes to structure the description and formally using modeling nota-
tions whose interpretation is based on the system modeling theory FOCUS, see Sec-
tion 2.3.5. Goals are documented as unconstrained prose.

109

6.2 The MIRA Artifact Reference Structure

Goal. A goal captures "an objective the system under consideration should
achieve" [vL01]. Goals "represent a first manifestation of the stakeholders’ system
vision. Goals give rationales and justifications for the functionality and features a
system must possess” [PHAB12, p. 55]. As goals are prescriptive, they possess all
generic attributes of requirements. As goals define the intent of stakeholders, they
should include a reference to the intending stakeholders.

Figure 6.10: Attributes specific to a goal

For example, a goal of a pedestrian is to cross the street. A safety goal of the pedes-
trian (and of other stakeholders) for a traffic light system is that the traffic light sys-
tem avoids collisions between pedestrians and cars by ensuring that they are never
allowed to enter the crossing at the same time. Hence, the ‘stakeholder’ of this goal
is ‘pedestrian’, the informal ‘description’ of the goal is ‘The traffic light system shall
prevent the collision of pedestrians and cars to ensure that pedestrians can cross the
street safely’.

Scenario. A scenario describes a sequence of interactions of a system under de-
velopment with its actors.

In MIRA, scenarios are defined as a requirement type, see Figure 6.11. Strictly speak-
ing, a scenario is not necessarily a single requirement, but it can summarize both
descriptions of the system environment and requirements on the system under de-
velopment.

Figure 6.11: Attributes specific to a scenario

A success scenario describes the interactions between the actors and the system under
development in case of success. Scenarios can also be used to document possible fail-
ures of the system and their handling in failure scenarios. Scenarios allow furthermore
to document interactions that should not occur in forbidden scenarios. An overview of
the scenario types is given in Figure 6.12.

Figure 6.12: Scenario type

An example success scenario for the traffic light controller is the activation of the
pedestrian light. The informal description allows for documenting the content of

110

6 The MIRA Artifact Reference Structure

the scenarios at different levels of granularity and does not constrict it further. A
potential ‘description’ of this scenario is ‘The pedestrian activates the pedestrian light
of the traffic light system’. A more precise informal description is ‘The pedestrian
pushes a request button. The indicator of the traffic light is activated. In the next
steps, the traffic light switches to yellow-red and then to red. Finally, the pedestrian
light switches from ‘go’ to ‘no-go’.

MIRA provides a semi-formal documentation of a scenario. A semi-formal scenario
description consists of a course of scenario steps, see Figure 6.13. Each scenario step

Figure 6.13: Semiformal representation of a scenario

describes an action. Each action is either controlled by an actor of the environment
of the system or by the system itself and has an impact on one or more actors. Each
action can have an effect either on the environment or on the system. Zave and Jack-
son [ZJ97] distinguish actions into shared and unshared actions. Shared actions are
at the interface of the system and its environment, here input and output actions. An
unshared action in the environment is not observable by the system and vice versa.
Based on this classification, MIRA distinguishes four action types, see Figure 6.14: An
external action is in the environment and is unobserved by the system; an input ac-
tion describes a stimulus from the environment to the system; an internal action is
within the system; an output action is a system response in the system environment.
An optional branch of a scenario step points to a scenario step of the or another sce-
nario. For example, a success scenario may branch to a failure scenario. This branch
provides a simple means to model variations of action sequences.

Figure 6.14: Scenario action type

The semi-formal representation of the pedestrian-light-activation scenario intro-
duced above is provided in Table 6.1. This representation form leads to an increase
in the preciseness of information by defining the action types and visualizes the lack
of information about branches, for example, potential failures of the system under
development.

Each scenario can be represented formally as a Message Sequence Chart (MSC). An

111

6.2 The MIRA Artifact Reference Structure

Table 6.1: Example for a semi-formal scenario for the traffic light controller

Step Action Actor Action Type Branch

1 The pedestrian pushes a request
button.

Pedestrian Input

2 The indicator of the traffic light
is activated.

Indicator Output

3 The traffic light switches to
yellow-red and then to red.

Traffic light Output

4 The pedestrian light switches
from ‘go’ to ‘no-go’.

Pedestrian
light

Output

example for a scenario formalized as MSC is given in Figure 6.15.

Figure 6.15: Example for a formal scenario for the traffic light controller

Interface Requirement. An interface requirement defines the required in-
terface behavior of the system under development and the stimuli and reactions that
are visible at the system interface.

An example for an interface behavior requirement of the traffic light controller is the
requirement ‘accident prevention’: While the traffic light is ‘green’, the pedestrian
light shall be ‘no go’.

Figure 6.16 presents the semi-formal representation of an interface requirement.
MIRA distinguishes between the syntactic interface and the interface behavior.

An interface requirement defines the syntactic interface of the system under devel-
opment. This syntactic interface can be explicitly described by the list of stimuli and
responses of the system under development. The stimuli include desired and unde-
sired effects on a system from its environment. The responses comprise desired and
undesired system behavior. Data elements capture the stimuli and reactions of a sys-

112

6 The MIRA Artifact Reference Structure

Figure 6.16: Semi-formal representation of interface requirements

tem under development. Data elements are documented by a name and a value of
a data type. Optionally, the actors that cause a stimulus or should receive a system
response can be documented. The data type is defined by a name and a set of values.

Figure 6.17: Data element

For instance, the data type ‘traffic light signal’ has the values ‘green’, ‘yellow’, ‘red’,
and the ‘pedestrian light signal’ has values ‘go’ and ‘no go’. Two system responses
of the traffic light controller are the signals for the actor traffic light and for the actor
pedestrian light, for example, ‘red’ for the traffic light and ‘go’ for the pedestrian
light.

The interface behavior relates a set of stimuli with the required system responses. A
means to structure interface behavior semi-formally are patterns for constraint nat-
ural language such as EARS [MWHN09]. An interface behavior can be ubiquitous,
or its applicability can be restricted by subordinators, see Figure 6.18. Subordinators
denote whether the requirement is event-driven (when), state-driven (while), or de-
noting unwanted behavior (if). These subordinators come with optional preconditions
and triggers. Each interface requirement describes required system responses.

Figure 6.18: Subordinators

113

6.2 The MIRA Artifact Reference Structure

In the example of the interface requirement on accident prevention, the semi-formal
representation distinguishes between the actual system stimulus / response and the
actors. Therefore, in this representation we distinguish between the stimulus ‘traffic
light signal’ and the actor traffic light, see Table 6.2. Furthermore, we distinguish be-
tween the system response ‘pedestrian light signal’ and the actor ‘pedestrian light’,
see Table 6.3. This differentiation facilitates to express the actual requirement for the
traffic light controller more precisely on the system boundaries. The interface behav-
ior is modeled in Table 6.4. For a more precise definition of the system boundaries
under investigation read also on ‘design scope’ in Section 6.2.4.

Table 6.2: Example for a semi-formal representation of a stimulus of an interface require-
ment for the traffic light controller

Stimulus Data Type Values Actor

Traffic light
signal

TrafficLightSignalValue
(green, yellow, red)

green Traffic light

Table 6.3: Example for a semi-formal representation of a system response of an interface
requirement for the traffic light controller

Response Data Type Values Actor

Pedestrian
light signal

PedestrianLightSignalValue
(go, no-go)

no-go Pedestrian light

Table 6.4: Example for a semi-formal interface behavior of an interface requirement for the
traffic light controller

Subordinator Precondition Trigger System Response

While – The traffic light signal
is green or yellow

The pedestrian light
signal shall be no-go.

Interface requirements can be represented formally, see Figure 6.19. The syntactic
interface can be represented as a component with typed ports that represent the stim-
uli and reactions. Input ports model stimuli, output ports model reactions. Formal
assumptions and guarantees formalize value restrictions for stimuli and reactions. The
interface behavior of the component can be formalized with I/O assertions or state
automata.

An example for a formal representation is given in Figure 6.20. A component defines
the stimuli and reactions of the traffic light system. A logical formula defines the
interface behavior.

User Function. A user function defines a user-visible function that the system
under development offers. A user function captures a set of solution-oriented re-
quirements [VEFR12], such as scenarios and interface requirements. Each user func-
tion realizes a piece of black-box functionality and is defined by its syntactic interface
and its behavioral specification.

114

6 The MIRA Artifact Reference Structure

Figure 6.19: Formal representation of an interface requirement

Figure 6.20: Example for a formal representation of an interface requirement for the traffic
light controller

Use cases can be used to describe instances of using a system and its features in sce-
narios [Bro10b]. Therefore, the MIRA approach facilitates a semi-formal description
of a user function by the “fully dressed use case” format presented in [Coc00]. A
use case describes, how the system under development responds to one of the actors
in order to achieve a particular goal. This includes all steps from the trigger to goal
delivery, inclusive any “clean-up” [Coc00] afterwards. These steps form a scenario.
Optionally, a use case can contain one or more scenarios. MIRA uses the same repre-
sentation for scenarios in a use case as for the concept scenario that was introduced
above. Figure 6.21 presents the semi-formal representation of user functions.

Figure 6.21: Semi-formal representation of a user function

Actors are those stakeholders and external systems that interact with the system un-
der development in the course of using the user functions. The actors are a subgroup
of the stakeholders and external systems that have been defined in the system con-
text. Therefore, the user function should refer to them. The precondition states the

115

6.2 The MIRA Artifact Reference Structure

conditions under which a user function can be executed. The trigger describes how
a user function is initiated. The MIRA approach facilitates to assign scenarios to use
cases. Stimuli and reactions describe the syntactic interface for the interactions of the
system under development with its environment on the system boundaries. Docu-
menting stimuli and reactions is an extension to the “fully dressed” [Coc00] format.
Minimal guarantees describe the “fewest premises the system makes to the stakehold-
ers, particularly when the primary actor’s goal cannot be delivered” [Coc00]. The
success guarantees describe the conditions under which a user function terminates in
case of success. Success guarantees add to the minimal guarantees.

A main user function of the traffic light system is the ‘traffic light circuit function’.
Use cases describe the different uses of the system that use this function. The use
case ‘pedestrian crossing’ describes the use by a pedestrian, refining the example
goals provided above. Table 6.5 presents a use case describing this user function
semi-formally. The ’activate the pedestrian light’ scenario introduced above is the
main success scenario of this use case that leads to the success guarantee. An al-
ternative success scenarios can describe, how the system reacts when the pedestrian
light is already ‘go’. Failure scenarios describe the interactions of the system with its
environment in case of failures.

Table 6.5: Example for a semi-formal user function of the traffic light controller

Actors Pedestrian, request button, pedestrian light, traffic
light, indicators

Precondition The traffic light system is in operating mode.

Trigger The pedestrian pushes the request button.

Stimuli Request button signal

System Response Signals to the indicators, the traffic light and the
pedestrian light

Minimal Guarantee The traffic light remains ’green’ and pedestrian light
is ’no go’.

Success Guarantee The traffic light is ’red’ and pedestrian light is ’go’.

Figure 6.22 presents the formal representation of a user function. A component rep-
resents the user function. Typed input and output ports represent the stimuli and
reactions of the user function. Each scenario of a user function can be modeled as an
MSC. The required system behavior defined in a user function can also be modeled
in a state automaton.

An example for the formal representation of a user function in a state machine is
given in Figure 6.23.

6.2.4 Trace Links

Trace Link. The MIRA artifact reference structure facilitates tracing requirements
to other requirements, to other RE concepts, and to results of the subsequent sys-

116

6 The MIRA Artifact Reference Structure

Figure 6.22: Formal representation of a user function

Figure 6.23: Formal representation of a user function

tems or software engineering phases that are documented in the functional, logical
or technical viewpoint. In MIRA, a trace link documents these associations.

A trace link has the following attributes, see Figure 6.24: The status of a trace link

Figure 6.24: Trace link management attributes

corresponding to the traceability process. MIRA proposes a status concept (see Fig-
ure 6.25) based on a simple process: Retrieving a trace link leads to a New link. After
the creation or a potential update, the requirements engineer decides whether the
link needs validation and consolidation of the concerned stakeholders. For that pur-
pose, the link has the status In Consolidation. After the consolidation, the link has
the status Consolidated. The author indicates who created the link. In the actual ver-

117

6.2 The MIRA Artifact Reference Structure

sion of MIRA, all links are created manually. In the RE literature, complementary
approaches for the semi-automatic or automatic link generation exist (see for exam-
ple [GCHH+12b]), where the author may be an algorithm. The comment is an unre-
stricted field to document useful information that is not covered by the other fields.

Figure 6.25: Status of a trace link

A link source is “the artifact from which a trace originates” [GCHH+12b]. In extension
to [GCHH+12b], not only one artifact but a set of artifacts may denote the origin. A
link target is “the artifact at the destination of a trace” [GCHH+12b]. The destination
can be one or more artifacts. Sources and targets of trace links should be documented
as a reference to the source and target artifacts. The unique key to identify a trace
link consists of the triple type, sources and targets. No reason could be identified to
distinguish between trace links where these three pieces of information are identical.

On the coarse grain level, MIRA distinguishes trace links depending on the type of
their sources and targets, see Figure 6.26. When both sources and targets are require-
ments, trace links are called requirement trace links. External trace links link require-
ments to other viewpoints. The link semantics define “the purpose or a meaning

Figure 6.26: Trace links

of the trace link” [GCHH+12b] and are specified by the trace link type. More fine-
grained, MIRA distinguishes trace links according to their meaning. Depending on
the type, a link may be directed or undirected. In extension to the fundamental litera-
ture on trace links [GCHH+12b], depending on the trace link type, trace links cannot
only be defined bilateral, for example, between two requirements, but also multilat-
eral.

118

6 The MIRA Artifact Reference Structure

Requirement Trace Link. When source and target artifacts of a link are require-
ments, then this link is called a requirement trace link. Requirement trace
links can be distinguished into refinement and conflict links.

Refinement. Refinement, see Figure 6.27, is the “stepwise process of adding more
information” [BS01, p. 6]. Refinement links are always directed links from the
refined requirements to the refining requirements. In MIRA, a refinement trace link
can be defined between requirements of the same type and between the following
requirement types: Goals are refined by functional requirements. For example, a
user function should always refine the goal of a stakeholder (see Cockburn [Coc00]).
Functional requirements can be refined by further functional requirements. In MIRA,
a refinement link between functional requirements expresses one of the three types
of refinement defined in FOCUS, behavioral refinement, interface refinement and
conditional refinement (see Section 2.3.5.5). MIRA facilitates a refinement with more
than one requirement as a source or a target. Nonetheless, the formal representation
of a refinement is limited to one source and one target, see below.

Figure 6.27: Refinement link

Conflict. A conflict link, see Figure 6.28, between a set of requirements is an
undirected trace link that means that the linked requirements cannot be fulfilled at
the same time in the system under development. For instance, conflicts with a tech-
nical background may hinder a fulfillment: A car might drive up to 200 km/h and
might turn within two meters of radius but not at the same time. Another reason may
be a logical inconsistency between requirements, where requirements state assertions
that can never be true at the same time. A conflict can be a temporary inconsistency
that has to be analyzed further in order to resolve it. For example, a conflict can be
resolved by adding further preconditions to a requirement or by rejecting a require-
ment. If a conflict is irresolvable, the requirements are (indefinitely) contradicting
each other.

Figure 6.28: Conflict link

External Trace Link. When a requirement is linked with a model element from
another viewpoint, the link is called external trace link. In MIRA, potential
trace links between functional requirements and the functional and logical viewpoint

119

6.2 The MIRA Artifact Reference Structure

are defined. Further details on the dependencies to these viewpoints are provided in
Section 6.3. MIRA distinguishes between design scope and realization.

Design Scope. The design scope of a requirement is the current system under
development. The design scope determines the “size of the system under discus-
sion” [Coc00]. The design scope, see Figure 6.29, can be defined by the name of the
system under development; if the system is not yet determined, it is described by the
project name. The current system under development may itself be a subsystem of
a surrounding system. A system decomposition into subsystems is typically defined
in the functional, logical or technical viewpoint [DTW12]. This system decomposi-
tion is the basis for developing the various subsystems in the next lower abstraction
level. This system decomposition also determines the design scope for subsystem re-
quirements. If the system decomposition has been explicitly modeled, the subsystem
requirement can be linked to the component that represents the subsystem in the
surrounding system.

Figure 6.29: Design scope

Realization. A requirement can be realized in one or more components in the sub-
sequent viewpoints. For example, a function in the functional viewpoint or a sub-
system in the logical viewpoint realizes the behavior required by a use case or an in-
terface requirement. The realization link, see Figure 6.30, connects the source,
the requirement that is realized, to the target component that realizes this require-
ment. The link expresses that each of these components realize the requirement. A
realization link indicates the need for verification: The target model element has to
be verified against the requirement(s).

Figure 6.30: Realization

We exemplify the trace links that are introduced above using a set of requirements
on accident prevention. For this example, we distinguish the two systems ‘traffic
light system’ that includes the traffic lights and the pedestrian lights and all neces-
sary hardware and software, and the ‘traffic light controller’ including software and
hardware that controls the lights. The first requirement with ID ‘R1’ has the descrip-
tion ‘While the traffic light is ‘green’, the pedestrian light shall be ‘no-go”. R1 has a
design scope on the traffic light system. The second requirement with ID ‘R2’ has the
description ‘While the traffic light signal is ‘green’, the pedestrian light signal shall

120

6 The MIRA Artifact Reference Structure

be ‘no-go”. R2 has a design scope on the traffic light controller. R1 is a refinement of
R2. Requirement R3 has the description ‘While the traffic light signal is ‘green’, the
pedestrian light signal shall be ‘go”. R3 is in conflict with R2, as both can never be
realized at the same time. To solve this conflict, R3 is rejected. R2 is realized in the
traffic light controller function ‘pedestrian light function’. The various links that can
be documented for this example are summarized in Table 6.6.

Table 6.6: Example for trace links for the traffic light controller

Type Source(s) Target(s)

Design Scope R1 Traffic light system

Design Scope R2 Traffic light controller

Refinement R1 R2

Conflict R2 R3

Realization R2 Pedestrian light function

MIRA provides means to represent refinement links and realization links by a formal
refinement specification. The precondition for formalizing a refinement link is that
source and target requirements have to be functional requirements and must have a
formal representation. The precondition for formalizing a realization link is that the
target of a realization link, the target requirement or target component, has to be rep-
resented formally. Due to limitations of the modeling language, a refinement link can
only be formalized, when it has one source. A formal refinement specification defines
the transformations between the formal representations of source and target, the rep-
resentation function that defines the mapping from the input ports of the source to
the target and the interpretation function from the output ports of the target to the
source. For details on the formal refinement specification see Section 2.3.5.

Cross-Reference. An association between the system context and a requirement
is documented in a cross-reference.

Term Definition. The terms of descriptive elements, their name, abbreviation and
synonym, should be referenced at every occurrence of that term in other objects.
These terms are used as a part of an attribute of the type String, for example, the
name of a glossary entry is used in the definition of another glossary entry. A term
definition cross-link documents this association.

Figure 6.31: Term definition reference

121

6.2 The MIRA Artifact Reference Structure

Actor – Requirement Source. The actor of a scenario or user function is somebody
with an interest in the system under development and therefore should be an actor
- requirement source cross-reference to a requirement source.

Figure 6.32: Actor - requirement source reference

6.2.5 QA Collection

The content item ‘QA collection’ summarizes all concepts for documenting QA ac-
tivities and results. QA check lists facilitate to document activities and results for a
single requirement. ‘Conflict’ links as introduced above document QA results that
comprise more than one requirement.

QA Check List. A QA check list provides a means for the detailed documen-
tation of QA activities and their results. In the current version of MIRA, QA check
lists contain check items for the analysis, validation and verification of requirements.
An overview is given in Figure 6.33. Every requirement has a unique check list. De-
pending on further QA activities, QA check lists could also be offered for other con-
tent items or groups of content items. The QA check list can be used both for manual
inspections and automated checks. In the case of manual inspections, it guides the
inspections. It documents the results for both manual inspections and automated
checks.

Figure 6.33: Check list with check items

A check item documents a check and its results. A check item consists of an action
that defines the check that has to be performed. An author documents the results of
these actions. The author of the results is either the person performing the check or
an automated QA technique. The QA check status, see Figure 6.34, gives an overview
whether the check described in the action has been performed (to be checked). If the
check is automated and cannot be performed due to technical reasons, the resulting
status is a checker error. When the check can be performed, it either approves the action,
or the check fails. When the check has been performed, the result can be documented.
Such a result could be for example a counter example that demonstrates why a check

122

6 The MIRA Artifact Reference Structure

failed. A check item is identified by the unique key consisting of the pair action item
and author.

Figure 6.34: Status of a QA check list item

6.2.6 Grouping

When content items are imported from external documents, they often have a prede-
fined grouping. It may be beneficial to retain this grouping for pragmatic usability
reasons and to increase the recognition factor of the requirements specification.

Package. MIRA facilitates an optional grouping of the instantiations of all concepts
in user-defined packages according to the content items, see Figure 6.35. The number
of packages per content item is not restricted. In the traffic light example, require-
ments are grouped according to their design scope, thereby distinguishing require-
ments for the traffic light system from requirements on the traffic light controller.

Figure 6.35: Grouping using packages

6.3 The MIRA Artifact Reference Structure in the System
and Software Development

The SPES modeling framework (introduced in Section 2.3.4) defines the context of
the MIRA artifact reference structure with respect to system development. The SPES

123

6.3 The MIRA Artifact Reference Structure in the System and Software
Development

modeling framework defines the different viewpoints on a system under develop-
ment and the abstraction layers of this system. SPES furthermore defines a set of
artifacts for each viewpoint. MIRA provides an artifact reference structure for the
requirements viewpoint. The MIRA artifact reference structure has to be embedded
into the development context defined by SPES.

Following the recommendations of SPES [DTW12], at each abstraction layer the same
concepts are developed in the requirements viewpoint. For requirements with a
design scope on a subsystem, the surrounding system and its requirements be-
come part of the ’system context’. The subsystem becomes the system under devel-
opment. Other subsystems are documented as external systems.

The design scope of a requirement defines the concrete system under develop-
ment that the requirement describes. The design scope corresponds to a system,
a subsystem, hardware or software as documented in the logical viewpoint.

In multifunctional systems, requirements may be elicited based on an initial de-
composition of the system into its user functions; a function hierarchy documents
this decomposition in the functional viewpoint. While MIRA facilitates to document
each user function independently in the requirements viewpoint, the functional
viewpoint consolidates the user functions into a coherent system architecture of the
functional behavior of the system. A realization link documents the realiza-
tion of a functional requirement in a specific user function in the functional
viewpoint. In the logical viewpoint, user functions are assigned to subsystems. Non-
functional requirements can influence the system decomposition. For example,
a safety requirement may lead to redundant subsystems, where each subsystem is
capable to deliver the same user function. A realization link documents the
realization of a requirement in a subsystem.

The dependencies between requirements in the requirement viewpoint and other
viewpoints in SPES over the abstraction layers are depicted in Figure 6.36.

Figure 6.36: Dependencies between functional requirements and the functional and logical
viewpoints

124

6 The MIRA Artifact Reference Structure

6.4 Summary and Discussion

The MIRA artifact reference structure provides a set of model elements that support
the quality assurance of functional requirements. This means that each model ele-
ment has a positive impact on the investigated quality assurance activities (construc-
tive quality assurance, analysis, validation, verification). How each of these elements
support quality assurance, has been investigated in Chapter 4. The model elements
that are integrated in the MIRA artifact reference structure are:

1. RE content items

• System context

• Requirement list

• Trace link list

• QA collection

2. RE concepts

• Glossary term, stakeholder, document, external system

• Requirement, Goal, scenario, interface requirement, user
function

• Refinement link, conflict link, design scope, realization
link, term definition, actor - requirement source

• QA check list

• Abstract concepts that cannot be instantiated and denote umbrella terms

3. Attributes

• Attributes to manage concepts

• Attributes to define the contents of the concepts

4. Representation forms

• Informal, semi-formal and formal representation of functional require-
ments, refinement and realization links

• Informal and semi-formal representation of other concepts

• Semi-formal representation by attributes

• Formal representation in FOCUS

In MIRA, trace links are defined as first class entities in the MIRA artifact reference
structure; trace links are seen as an original RE concept. This has the advantage that
trace links have defined attributes and that they may be formalized, if necessary.

The MIRA artifact reference structure facilitates to specify functional requirements
as unconstraint prose, semi-formally and formally. Furthermore, the MIRA artifact
reference structure is integrated in a seamless model-based development framework
provided by the FOCUS modeling theory that is underlying the semi-formal and
formal representation of functional requirements and is embedded in the SPES mod-
eling framework.

125

6.4 Summary and Discussion

6.4.1 Granularity

The granularity of the RE concepts defined in the MIRA artifact reference structure
determines the level of detail in which the documented information is defined. For
example, the artifact reference structure could define a stakeholder, but it also could
define the various stakeholder groups in more details; each requirement may be
traced independently or traces may link groups of requirements. Generally, we as-
sume that a more coarse-grained artifact reference structure reduces the effort for
specification and the effort for training of the persons that apply the artifact refer-
ence structure. A more detailed model may yield additional benefits with respect to
quality such as more efficient analysis methods.

To give an example for more efficient analysis methods, we compared the efficiency
for impact analysis of artifact reference structures with different levels of granularity
in the classification of RE concepts [TH15]. An RE artifact reference structure that
precisely defines trace links, source and target artifacts can impact the efficiency of
the analysis of changes of requirements on the requirements specification. We applied
an RE artifact reference structure to exclude those requirement types from a change
impact analysis that cannot be impacted by a change. This can reduce the number
of requirements that need to be investigated in the analysis. Thereby the artifact
reference structure makes the analysis more efficient in comparison to an unclassified
list of requirements where all requirements have to be investigated. Furthermore, we
demonstrated that a more detailed artifact reference structure can further increase the
efficiency of the analysis.

Ingram and Riddle [IR12] investigated the granularity of trace links and its influ-
ence on costs and benefits of traceability. They state that varying the granularity of
trace links can influence trace costs and the quality of traceability. Determine an ideal
granularity of trace links is out of scope of MIRA, as the authors assumed that deter-
mining costs and benefits of trace links depends on the project context, for example
on the expected maintenance period.

6.4.2 Requirements on the System Boundary

In RE literature, it is often assumed as a best practice that requirements are docu-
mented on the system boundary [ZJ97], often also referred to as ’black-box’ require-
ments. Nonetheless, sometimes a system under development has to be decomposed
functionally already on the requirements level into modes of operation. This decom-
position may stem from domain-specific standards that prescribe system modes or
solution-independent characteristics of the domain.

For example, some requirements for a control software such as the traffic light con-
troller may only be applicable if the surrounding system is not only provided with
electricity, but if the control software has previously performed a ’start up’ of the
system. This start up may not be measurable by a sensor from outside the control
software, but influences the perceptible black-box behavior of a system.

126

6 The MIRA Artifact Reference Structure

6.4.3 Standards on Trace Links

Some domains have standards that constrain the definition of a trace link and pre-
scribe a specific workflow on trace links. For example, in avionics the DO 178C stan-
dard [DO112] defines trace links in the context of software requirements: Trace links
either indicate a refinement of requirements or they associate requirements with ar-
tifacts in the further software development process (test and implementation). In
cases where such standards apply, trace links that are prescribed by the standard
have to be clearly distinguished from other links that are not prescribed by the stan-
dard. When applying MIRA in such an environment, the naming and definition of
all trace link concepts have to be tailored to the definitions in the standard.

6.4.4 Validity

A model is valid (see [Bro13a]) with respect to a system, if the questions answered
based on the model provide the same answers as asking the questions on the system.
Investigations concerning an invalid model, especially the identification, correction
and consequences of invalid underlying models, is not addressed in this work. The
MIRA artifact reference structure is valid, if it effectively and efficiently supports
the quality assurance of functional requirements. The individual model elements of
MIRA and their impact on quality assurance were investigated in Chapter 4. The
MIRA guideline in Chapter 7 provides rules to instantiate the MIRA artifact refer-
ence structure in a conformant requirements specification. The validation reflects
whether the MIRA artifact reference structure is sufficient to support quality assur-
ance, measured through a predefined set of workflows that tackle quality assurance.
To implement the MIRA artifact reference structure in a tool, it has to be adopted to
a Data Base Management System (DBMS), for example, a document-oriented DBMS
or a relational DBMS. The implementation of the MIRA artifact reference structure
in an open source tool shows the feasibility of the MIRA artifact reference structure,
see Chapter 8. The case studies in Chapter 9 evaluate the effective application of the
MIRA artifact reference structure on industrial specifications.

127

Chapter 7
The MIRA Guideline

MIRA provides a guideline for the creation and the quality assurance of a require-
ments specification. This guideline describes how to apply the MIRA artifact refer-
ence structure that was introduced in Chapter 6.

The research question addressed in this chapter is:

RQ4: How to apply the MIRA artifact reference structure for the specification and
quality assurance of functional requirements?

The contribution of this chapter is the integration of existing guidelines for the spec-
ification and quality assurance of functional requirements and a tailoring of these
guidelines to the MIRA artifact reference structure. The resulting MIRA guideline is
not an exhaustive ’how-to’ guide. Instead, MIRA describes step-by-step the actions
to instantiate the MIRA artifact reference structure in a requirements specification.
Furthermore, it provides guidance on the model-based quality assurance making use
of the MIRA artifact reference structure. Hence, the research question asks how to ap-
ply the MIRA artifact reference structure rather than how to perform these activities.

Contents
7.1 Integrated Approaches . 129
7.2 Overview . 130
7.3 Textual Specification . 131
7.4 Formal Specification . 137
7.5 Quality Assurance . 141
7.6 Summary and Discussion . 149

7.1 Integrated Approaches

The MIRA guideline integrates three guidelines for model-based RE from AutoRAID,
the approach of Cimatti et al. and FOCUS. Each of the guidelines has a different em-
phasis. Further details on these approaches are given in Chapter 2. In the following,
we describe how they are integrated in MIRA.

129

7.2 Overview

AutoRAID proposes a classification of requirements with respect to predefined con-
cepts, a formalization of informal requirements to attributed requirements and analy-
ses with automated conformance checks [Sch09, p. 21ff]. MIRA adopts these actions,
the classification of requirements in Section 7.3.2, the formalization to attributed re-
quirements in Section 7.4.1 and the conformance checks in Section 7.5.2.1.

Cimatti et al. [CRST09, CRST13] propose a classification of fragments of the require-
ments specification according to pre-defined concepts. For each of these concepts,
Cimatti et al. propose a distinct modeling notation to use for the formalization. MIRA
adopts the classification in Section 7.3.2 and the proposition of modeling notations in
Section 7.4.2. Cimatti et al. present a set of QA techniques and leaves the selection of
requirements and techniques to the quality assurance expert depending on concrete
needs. MIRA adopts this procedure, see Section 7.5.

The formal modeling theory FOCUS provides the basis for the formal specification
of functional requirements, see Section 7.4. Furthermore, FOCUS facilitates the in-
terpretation of the formalized functional requirements regarding a system model.
Thereby, FOCUS enables formal quality assurance techniques that are applied in Sec-
tion 7.5. FOCUS proposes to elaborate a hierarchy of user functions as part of the
requirements specification [Bro10b]. We see this hierarchy as part of the functional
viewpoint (see Chapter 2) and therefore it is not part of the requirements viewpoint.
Nonetheless, as an input to develop the function hierarchy, MIRA facilitates to doc-
ument functional requirements including user functions. These functional require-
ments serve to ensure that all functional aspects are correctly implemented in the
function hierarchy. The MIRA guideline provides actions to verify the function hier-
archy against the functional requirements in Section 7.5.4.

7.2 Overview

The MIRA guideline gives instructions for the documentation of the requirements
specification as prose in Section 7.3, a formalization of requirements in Section 7.4
and the application of the quality assurance techniques in Section 7.5.

The MIRA guideline defines a set of actions for each activity. Each action is described
by steps that lead to the desired outcome of the action. Preconditions define the
mandatory sequence of the actions. The sequence of actions does not oppose a pro-
cess. For instance, when following a waterfall process, an action could be completed
before conducting the next action. When following an incremental or agile process,
the sequence of action can be repeated for each increment or sprint with a small set
of requirements.

The activities presented in this guideline can be conducted by different roles. We as-
sume the following simple roles: The requirements engineer manages and controls
the overall RE process. Either the stakeholders or, as a stand-in, the requirements
engineer documents the requirements specification. To simplify the guideline, we
assume that the requirements engineer documents them. The architect uses the re-
quirements specification as an input to further develop the system under develop-
ment. Many approaches such as [CRST09] introduce the roles of a domain experts
and an expert for quality assurance techniques. The quality assurance expert is re-

130

7 The MIRA Guideline

sponsible for selecting appropriate quality assurance techniques for each quality as-
surance activity and conducts all techniques, where no specific domain-knowledge is
required. The quality assurance expert calls in a domain expert whenever necessary.
The domain expert typically validates the requirements and corrects issues that have
been identified in the analysis and verification of requirements. Due to their pro-
fessional background, domain experts are often not familiar with formal languages.
This limitation has to be considered by the quality assurance expert.

Early versions of parts of this guideline have been published in [TBP14], [BJV+14],
and [RTVH15].

7.3 Textual Specification

In the textual specification, the requirements engineer elaborates the requirements
specification as prose (Section 7.3.1). As part of the documentation, the require-
ments engineer classifies each piece of information as one of the RE concepts defined
in the MIRA artifact reference structure (Section 7.3.2). The requirements engineer
documents the requirement sources (Section 7.3.3) and the requirements
(Section 7.3.4). The requirements engineer refines the requirements (Section 7.3.5)
and documents the refinement links that result from the refinement (Sec-
tion 7.3.6). The requirements engineer defines the domain-specific terms used
in the requirements by designating glossary terms (Section 7.3.7). A re-
quirements engineer or an architect document realization links that associate
requirements with the artifacts that realize them (Section 7.3.8). Figure 7.1 gives
an overview of these actions.

Figure 7.1: Textual Specification

131

7.3 Textual Specification

7.3.1 Elaborate the Requirements Specification in Prose

The requirements engineer elaborates a coherent set of requirements. The require-
ments engineer documents the requirement sources and their relation to the require-
ments. Refined requirements are traced by refinement links. The requirements are
documented using prose. For each requirement, the requirements management at-
tributes are documented.

Preconditions. As a starting point, the requirements engineer has to identify the
problem statement and some initial stakeholders of the system under development.
There may also exist an undocumented candidate list of requirement sources and
some draft requirements.

Outcome. The requirements specification contains a set of requirements,
requirement sources and refinement links.

Steps.

1. Elicit the requirement sources and document them, see Section 7.3.3.

2. Elicit the requirements from the requirement sources, classify them, see Sec-
tion 7.3.2, and document them, see Section 7.3.4.

• Concrete techniques, such as interviews, to elicit requirements from the
stakeholders can be found, for example, in [vL09, p. 76ff].

• Documents may contain requirements that have to be incorporated
in the requirements specification. An example is a system requirements
specification as an input for a software requirements specification. If the
requirement source is a document, classify the contents of this document,
see Section 7.3.2, and document them according to the classification.

• Requirements pertaining from external systems are often elicited
from the responsible stakeholders or documents.

3. Refine requirements (Section 7.3.5) and document the refinement links
(Section 7.3.6).

4. The actors of the scenarios and user functions may impose further re-
quirements. Actors therefore have to be added as a (potential) requirement
source to the list of requirement sources. An actor can be a stakeholder or
an external system.

5. Document the refinement of requirements as a refinement link, see Sec-
tion 7.3.6.

7.3.2 Classify the Elements of a Document

The requirements engineer breaks-down and assigns the contents of a document to
the RE concepts defined by the MIRA artifact reference structure.

132

7 The MIRA Guideline

Preconditions. Unclassified contents.

Outcome. Contents are classified and documented.

Steps.

1. Break down the unclassified contents into individual objects until they match
to the definitions for RE concepts provided in the MIRA artifact reference struc-
ture.

2. If an object matches a definition, document it with the management attributes
that are defined for this RE concept in the MIRA artifact reference structure.
If the object is a requirement, it has to be further classified as a concrete
requirement type if possible.

3. If a stakeholder has a concrete requirement on the behavior of a system that
matches a definition of one of the functional requirements, classify it accord-
ingly as a scenario, interface requirement, or user function.

The requirements engineer might encounter contents that have to be documented,
for example, because they are required in a development activity, and that cannot
be matched distinctively to a definition of an RE concept even after breaking them
down. Either none or too many definitions may be suitable. This indicates that the re-
quirements engineer has to adapt the MIRA artifact reference structure to the project
context.

7.3.3 Document a Requirement Source

Preconditions. The requirements engineer identified a requirement source, but
has not yet documented it.

Outcome. The requirement source is documented.

Steps.

1. Classify the requirement source as a stakeholder, external system
or document.

2. Create a stakeholder, external system or document object and assign a
name to it.

3. Set the status to New.

4. Document the definition of the requirement source.

5. If the name of the requirement source has synonyms or abbreviations, docu-
ment them.

6. Fill in additional information, if required: For stakeholders, add the contact
information. For documents, add file information.

133

7.3 Textual Specification

7. When the information of a requirement source is documented, set the sta-
tus of the requirement source to In Consolidation.

7.3.4 Document a Requirement

Preconditions. The requirements engineer identified a requirement, but has not
yet documented it.

Outcome. The requirement is documented as prose, including the management
information and trace links to its source and to its design scope.

Steps.

1. Create a requirement object and assign an ID to the requirement.

2. Document the description of the requirement as prose in the description field.

3. Add a rationale of the requirement, the author and the priority of the require-
ment.

4. Classify each requirement as a scenario, an interface requirement, a user func-
tion, if the requirement matches the definition of these requirement types. If it
does not match, classify it as a requirement.

5. The requirement source object is referenced in the source field of the
requirement. If the requirement source is not documented yet, a new
requirement source object has to be created.

6. Document the design scope for each requirement:

• Create a design scope link. Document the system name to which the
requirement refers as the source in the design scope link. Document the
requirement as the target.

• Define the design scope as a glossary term in the glossary.

7. Set the status of the requirement to New.

7.3.5 Refine Requirements

Goals can be further refined to a set of functional requirements. These can
be manually synthesized into user functions.

Preconditions. A set of goals, interface requirements or scenarios are
defined.

Outcome. Parts of the required behavior of the system are consolidated in a user
function. If the complete behavior of that functional aspect is given, the user
function can be formalized as an executable formal model, for example, a state
automaton.

134

7 The MIRA Guideline

Steps.

1. Refine goals to scenarios and interface requirements. This refine-
ment requires decisions on the system scope including system boundaries. Use
scenarios to define, how the system under development interacts with ac-
tors. Use interface requirements to define the black-box system behav-
ior necessary to fulfill these scenarios.

2. If necessary, refine the required system behavior, the system interfaces or by
introducing additional input assumptions (see Section 2.3.5.5). Document the
refinement in additional scenarios and interface requirements and
document the refinement link.

3. Interface requirements and scenarios with the same level of de-
tail of their interfaces can be synthesized as a user function. The user
function provides the user-visible function that is necessary to fulfill these
requirements. The user function must fulfill all dedicated interface
requirements and scenarios. While interface requirements and
scenarios typically only describe a partial system behavior with respect to
system inputs and outputs, a user function can be used to describe the to-
tal behavior of a this set of inputs and outputs. In MIRA, a decomposition of
a system into user functions is subject to the decisions of the functional archi-
tect, see Section 6.3. Hence, also the synthesis of interface requirements
and scenarios to user functions is subject to these decisions and therefore is
performed manually.

4. Document the synthesis from interface requirements and scenarios
to user functions as a refinement link, see Section 7.3.6.

The MIRA approach does not explicitly define the targeted level of detail of the re-
finements.

7.3.6 Document a Refinement Link

Preconditions. The requirements engineer documented requirements and re-
fined them.

Outcome. The refinement link is documented.

Steps.

1. Create a refinement link object.

2. Document the refined requirements as the source and the refining requirements
as the target.

3. Document the author of the refinement link.

135

7.3 Textual Specification

7.3.7 Designate Terms Used in the Requirements

“The only way to establish the meaning of a primitive term is to provide an informal
explanation of it” [ZJ97]. Zave and Jackson [ZJ97] call documenting the meaning of
a term ‘designation’. They argue that a designation grounds formal representations
of a requirement in the real world.

Preconditions. Requirements are specified as prose.

Outcome. The meaning of all domain-specific terms that are used in the require-
ments is documented as glossary terms or requirement sources.

Steps. Identify all domain-specific terms used in the description and the attributes
of a requirement. Domain-specific terms comprise at least the following: Actors,
the design scope and all system stimuli and responses in the description of the re-
quirement. All domain-specific terms in the semi-formal and formal representation
of a requirement should be added. Domain-specific terms can be requirements
sources, or are documented as glossary terms. For example, an actor consti-
tutes a potential requirement source.

1. Classify the term as a requirement source or a glossary term.

2. If the term constitutes a requirement source, see Section 7.3.3.

3. If the term constitutes a glossary term, create a glossary term object.

4. Describe the glossary term by a clear and precise description.

5. If required, add abbreviations and synonyms.

6. Set the status of the glossary term to In Consolidation.

7.3.8 Document a Realization Link

This activity documents the realization of functional requirements in subsequent de-
velopment artifacts.

Preconditions. Requirements are specified textually, classified and realized in a
subsequent development artifact.

Outcome. For each functional requirement, the architect documents
realization links that indicate which subsequent development artifact realizes
the requirement.

Steps.

1. Document the realization of functional requirements as a
realization link. Document the requirements as the source and the

136

7 The MIRA Guideline

development artifact or a part of it as the target. Document the author of the
link.

7.4 Formal Specification

The requirements engineer formalizes the functional requirements, their
refinement links and realization links that were documented in the tex-
tual specification Section 7.3 according to the MIRA artifact reference structure.

In the first step, the requirements engineer augments each functional
requirement by a set of attributes that structure and detail the requirement’s de-
scription (Section 7.4.1). This intermediate step facilitates documenting the informa-
tion required for the formalization independently from any formal modeling lan-
guage. Hence, this information can be understood and validated by all stakeholders.

In the next step, the requirements engineer formalizes the attributed functional
requirements (Section 7.4.2). Rules define how to transform the attributes into ele-
ments of the formal specification. The functional requirements are formalized
independently from each other. Every functional requirement is represented
by one or more formal specification.

In a non-trivial project, not all requirements can be represented as a formal specifi-
cation. This is not possible for example, if the modeling language or its tool support
are not suitable for a certain requirement type (in the case of the current AutoFO-
CUS3 version for example many types of extra-functional requirements) or if quality
issues cannot be resolved. Therefore, textual requirements need to co-exist with for-
mal requirements.

In order to verify a formal functional requirement or a formal develop-
ment artifact against a formal functional requirement, the functional
requirement has to be mapped to the development artifacts. A formal refinement
specification provides this mapping for refinement links and realization
links (Section 7.4.3). Figure 7.2 gives an overview of these actions.

7.4.1 Structure Functional Requirements

Structure and detail the informal description of a functional requirement by
attributes and documented this structured information.

Preconditions. Functional requirements are described by prose (Sec-
tion 7.3.2).

Outcome. Functional requirements are documented as structured text as
defined in the MIRA artifact reference structure.

Steps. The informal description of a functional requirement is manually an-
alyzed in order to extract the information that should be documented in the type-

137

7.4 Formal Specification

Figure 7.2: Formalization of a functional requirement: In an intermediate step, natu-
ral language requirements are structured and detailed by attributes using a tem-
plate. The attributes can then be transformed to the formal representation of the
requirement

specific attributes of the functional requirement. If a piece of information is
not contained in the informal description, this piece of information has to be elicited
and documented. For example, the piece of information can be elicited from the
refined requirements or the source of the requirement. New domain-specific
terms have to be designated (Section 7.3.7). An example for the step of an informal
description to a structured requirement is given in Figure 7.3.

Figure 7.3: A scenario is structured by filling a template. The template guides the formal-
ization by extracting and explicitly documenting the information contained in
the description

7.4.2 Formalize Functional Requirements

Represent functional requirements as a formal specification using an AutoFO-
CUS3 modeling notation. Please refer to Chapter 2 for details of the formal modeling
notations and their elements.

138

7 The MIRA Guideline

Preconditions. The information of a functional requirement has been struc-
tured (Section 7.4.1).

Outcome. Parts of the information documented in a scenario, interface
requirement, or user function are represented formally. As the result of a suc-
cessful formalization, quality issues of a functional requirement that hinder a
formalization are resolved. These quality issues include ambiguous textual require-
ments and logical incompleteness.

Steps.

1. In the first step, the requirements engineer formalizes the functional
requirement depending on its type. For each requirement type, transfor-
mation rules guide the transformation from the structured requirement to its
formal representation.

A scenario is formalized by a Message Sequence Chart (MSC):

a) For each actor of the scenario, an MSC entity is created.

b) For each action of the scenario, where the action type is an input or output,
a message with entry and exit points to the MSC entities is created.

c) In preparation of the MSC compability check between MSC and a com-
ponent model, the entry and exit points of each MSC entity have to be
assigned to the input and output ports to the corresponding components
in the component model.

Fig. 7.4 gives an example for a formalization of a scenario to an MSC.

Figure 7.4: The scenario is formalized by mapping rules based on the template. For ex-
ample, the entries in the column ‘actor’ are transformed to the entities of the
MSC

139

7.4 Formal Specification

For each interface requirement, its syntactic interface is modeled by a
component diagram. The required interface behavior is modeled as I/O asser-
tions.

a) For each stimulus and reaction defined in the syntactic interface of the
interface requirement, create or select a data type. If a stimulus or
reaction A is expected, the data type is documented with the values A and
notA. All data types are collected in a data dictionary.

b) Formalize the syntactic interface of the interface requirement by
modeling each stimulus as an input port, each reaction as an output port
of a component diagram and associate the ports with the corresponding
data types.

c) Model the required interface behavior as an I/O assertion.

User functions that are described by a use case with scenarios can be formal-
ized by MSCs. Alternatively, a user function can be formalized as a state
automaton.

2. The quality assurance expert has to be manually verified that the formal repre-
sentation of a functional requirement corresponds to the representation
as structured text.

3. The requirements engineer replicates information during the formalization.
Depending on domain- and project-specific settings, the requirements engineer
must eliminate this redundancy in some settings by removing the correspond-
ing description and the structured text specification. Redundant information in
the different representation forms of a requirement is discussed in Section 7.6.

4. The status of the requirement is set to Formalized.

7.4.3 Specify Formal Refinements

In Section 7.3, the requirements engineer documented refinement links between
functional requirements and in Section 7.3.8, he requirements engineer docu-
mented realization links from functional requirements to subsequent
design artifacts. The requirements engineer formalizes these refinement links
and realization links. This constructively identifies quality issues in the re-
finements and enables formal techniques such as refinement testing [BMR12]. For
more information on formal refinement specifications see Chapter 2.

Preconditions. A refinement link between functional requirements or
a realization link between a functional requirement and a subsequent
development artifact is documented. Source and target of these links are both speci-
fied formally and have both a design scope on the same system, subsystem, hardware
or software.

Outcome. The mapping rules between source and target are specified formally. The
representation function defines the transformation of the stimuli of the source to the
stimuli of the target. The interpretation function defines the transformation from the

140

7 The MIRA Guideline

responses of the target to the responses of the source. Quality issues occurring during
the formalization are resolved. Figure 7.5 illustrates how a formal refinement specifi-
cation maps a requirement and its realization, a logical model of the system under
development, by a representation function and an interpretation function.

Figure 7.5: Schema of a formal refinement specification

Steps.

1. Create a formal refinement specification for the refinement link or the
realization link.

2. Define the representation and interpretation functions.

If a stimulus or response of a source cannot be matched to its counterpart in the target, it
has to be checked whether the refinement link / realization link is correct.
For the formal refinement specification, the following conditions should hold: Input
and output ports defined in the formal representation of the source or target should be
used in the functions of the formal refinement specification. An uncovered port of the
source indicates a missing interface refinement of the system under development and
subsequently missing interface behavior. An uncovered port of the target indicates
missing information in the source requirement.

7.5 Quality Assurance

Depending on the representation of a functional requirement as prose, struc-
tured text or as a formal specification, and with corresponding tool support, different
quality assurance techniques are enabled. An informal specification can only be man-
ually reviewed. Structured text or a formal representation facilitates model-based
techniques. Structured text or a formal representation enable to perform automated
database queries. A formal representation is the precondition for formal techniques.
Figure 7.6 gives an overview of these techniques. This guideline presents a set of

141

7.5 Quality Assurance

model-based techniques for the analysis (Section 7.5.2), validation (Section 7.5.3) and
verification (Section 7.5.4) of functional requirements. Depending on concrete
project-specific needs, the quality assurance expert chooses the set of techniques that
have to be applied in a specific projects context whenever required or instructed and
complements them with instructions for manual reviews.

Figure 7.6: Depending on the degree of formalization of a functional requirement, the
quality assurance expert can choose from a set of quality assurance techniques

7.5.1 Perform Quality Assurance

The quality assurance expert selects the checks to be performed on the requirements
specification.

Preconditions. Functional requirements are specified.

Outcome. The functional requirements are checked.

Steps. For each functional requirement, the quality assurance expert cre-
ated a QA checklist. The quality assurance expert defines the QA check items,
the author (person or automated technique) that conducts a check and the action to be
performed. The action should include the precondition, under which the check is to
be performed. For example, a functional requirement may only be validated
after it is analyzed.

For each QA check item, the author performs the quality assurance check that the
quality assurance expert assigned, documents the result and sets the QA check status.
Inconsistencies between requirements are documented as conflict links.

Tool Support. A tool can facilitate to store and manage the QA checklists.

142

7 The MIRA Guideline

7.5.2 Analyze Functional Requirements

The quality assurance expert performs the requirements analysis to reduce the num-
ber of quality issues in the requirements specification. The status of all successfully
analyzed functional requirements is set to Analyzed.

7.5.2.1 Check Conformance to the MIRA Artifact Reference Structure

Conformance constraints check whether the requirements specification conforms to
the MIRA artifact reference structure. This conformance ensures that a requirements
specification has the characteristics with a positive impact on model-based quality
assurance as discussed in Chapter 4.

Preconditions. The requirements specification is documented.

Outcome. The requirements specification is conformant to the MIRA artifact refer-
ence structure.

Checks. Completeness constraints [Sch09, p. 51] enforce that certain elements are
present in the requirements specification in order to be considered as conformant to
the MIRA artifact reference structure. The quality assurance expert could conduct
these checks before defining the QA checklists.

• Defined RE concepts. The MIRA artifact reference structure defines a set of RE
concepts. Each of these RE concepts should be instantiated in the requirements
specification. An exception are trace links; constraints on trace links are defined
below.

• Defined Attributes. Each mandatory attribute of an RE concept should be de-
fined. If the attribute is not applicable in the project, the requirements engineer
can either tailor the artifact reference structure, or document “N/A” (not appli-
cable) in that field.

Consistency constraints [Sch09, p. 52] require that the elements obey specific rela-
tionships in a requirements specification to be considered conformant to the MIRA
artifact reference structure.

• Defined Refinement Links. Each functional requirement should be refined
from a requirement.

• Defined Realization Links. Each functional requirement should either re-
fine to another functional requirement, documented in a refinement
link, or should be realized in a subsequent development artifact, documented
in a realization link.

• Defined Cross-references to Terms. The source of each functional
requirement should be contained in the list of requirement sources.
Domain-specific terms used in functional requirement should be de-
fined as a descriptive element, as a glossary term or a requirement

143

7.5 Quality Assurance

source. Domain-specific terms of functional requirements comprise
at least the design scope, stimuli and responses. Each of the descriptive
elements should include a definition.

• Defined Cross-references to Actors. Each actor defined in a scenario or user
function should reference to a requirement source.

• Scenario Consistency. The action types of a scenario can be used for quality as-
surance: An external action should not imply requirements on the system. Input
actions and output actions should be refined by a functional requirement.
Following good RE practices, requirements should always describe a desired
effect in the environment [ZJ97]. Therefore, internal actions should be checked
whether they have to be included in a scenario.

• User Function Consistency [VEH+14]. A scenario of a user function should
start with the precondition and trigger as stated by the user function. Ev-
ery user function should have at least one success scenario that ends with
the success guarantee. If success guarantee and minimal guarantee differ, at least
one failure scenario should end with the minimal guarantee. The list of actors de-
fined in the user function should be consistent with the actors in the stimuli
and responses. The information contained in an input action should be consistent
with the list of stimuli of a user function and correspondingly the output ac-
tion with the list of responses.

Tool Support. Many conformance checks can be automated as simple database
queries on the MIRA artifact reference structure.

7.5.2.2 Perform a Formal Analysis on Functional Requirements

A formal analysis uses the formal representation of functional requirements
and their refinement links.

Preconditions. The functional requirements, respectively its refinement
link is formalized.

Outcome. Formal analysis can detect quality issues.

Checks. A state automaton that represents a user function can be analyzed
with respect to a set of quality factors:

• Non-determinism check. A non-determinism check analyzes whether a user
function has a deterministic behavior. A non-determinism indicates missing
interface requirements.

• Unreachable states. An unreachable state of a user function may indicate
missing or inconsistent interface requirements.

The formal refinement links of a functional requirements can be ana-
lyzed for missing functional requirements and refinement links:

144

7 The MIRA Guideline

• Each stimulus or response (modeled as input ports or output ports) of a
functional requirement should be refined to a stimulus or response of a
refined requirement.

• Each stimulus or response of a functional requirement should originate
from a stimulus or response of a refining functional requirement.

Tool Support. A tool can support the efficient application of formal analysis
techniques by automation. For example, the list of analysis techniques for user
functions is an overview of the formal analyses enabled by the tool AutoFOCUS3.

7.5.3 Validate the Functional Requirements

The validation ensures that the requirements specification corresponds to the ac-
tual stakeholder needs. Therefore, a set of representative reviewers have to exam-
ine the requirements specification. The validation is performed on all functional
requirements that have the status Analyzed. A means to support the valida-
tion is the simulation of executable models. After the validation, the status of all
functional requirements that pass the validation is set to Validated. Alterna-
tively, requirements can be rejected by the stakeholders and thereby marked with the
corresponding status Rejected. Only validated requirements have to be considered in
the subsequent development activities and are subject to verification and testing.

7.5.3.1 Consolidate the Context Information Used in the Functional
Requirements

Ensure that all stakeholders have the same understanding of the context information
used in the functional requirements.

Preconditions. Glossary terms and requirement sources have the status
New.

Outcome. The set of glossary terms and requirement sources is consoli-
dated by the stakeholders.

Steps.

1. Select all glossary terms and requirement sources that are used in the
functional requirements that are to be validated.

2. Set these glossary terms and requirement sources to In Consolidation.

3. Stakeholders have to agree on the definition of each term, or the definition has
to change accordingly. Deviations in the meaning of a term have to be docu-
mented.

4. Stakeholders have to confirm synonyms, abbreviations and other documented
information.

145

7.5 Quality Assurance

5. If all stakeholders agree on the description of the glossary terms and
requirement sources, set its status to Consolidated.

7.5.3.2 Validate Functional Requirements

Ensure that the refinement from stakeholder goals to functional
requirements conforms to the expectations of the stakeholders.

Preconditions. Textual specification performed as defined in Section 7.3. The set
of functional requirements to be validated has the status Analyzed.

Outcome. The requirements are validated and therefore set to the status Vali-
dated.

Steps.

1. Select all goals that are refined to the set of functional requirements
under validation. The stakeholders have to agree on each of the goals. When
the stakeholders agree, set their status to Validated.

2. Select all refinement links from the goals to the set of functional
requirements. The stakeholders have to agree on the refinement
links and the functional requirements. When the stakeholders agree,
set the status of the functional requirements to Validated and the
refinement links to Consolidated.

Tool Support. A tool could support the stakeholders in the validation by select-
ing the goals that are refined to a set of functional requirements and to vi-
sualize the refinement links. Furthermore, a tool could provide access to all
requirement sources and to the definition of the domain-specific glossary
terms during the validation. The tool could simulate those functional
requirements that are represented as an executable model.

7.5.4 Verify Functional Requirements

Verification ensures that the functional requirements are implemented cor-
rectly in the subsequent development artifacts.

In the model-based verification, both the functional requirements and subse-
quent development artifacts are represented as formal models. Model-based verifi-
cation can detect two kinds of fault: Engineering faults are contained in a model due
to design decisions of an engineer who develops the system. Modeling faults occur,
when a model does not reflect the intentions of an engineer and can occur both in the
model of a requirement or another development artifact. Identifying an engineering
fault gives the engineer the possibility to revise the underlying design decision and

146

7 The MIRA Guideline

correct it. When identifying a fault, the corresponding model needs to be corrected
and the verification has to be rerun.

A syntactic verification of a refinement link between functional
requirements or a realization link from a functional requirement to a
design model is achieved by modeling a formal refinement specification. A semantic
verification can be done using a formal verification technique. After a successful
verification, the status of the functional requirement is set to Verified.

Tool Support. A prerequisite for applying model-based verification efficiently is
a tool that supports the formal modeling notations including the formal refinement
specification and the formal techniques. Further tool support can be provided for the
analysis of the results in order to identify a fault. AutoFOCUS3 provides three formal
techniques, MSC conformity check, formal verification of I/O assertions, and test
case generation and execution. These three techniques are presented in the following.

7.5.4.1 Perform Formal Verification of I/O Assertions

Ensure that a development artifact (a user function or a model of the func-
tional or logical viewpoint) that is represented as a component model conforms to
an interface requirement that is represented as an I/O assertion.

Preconditions. The interface requirement is represented as an I/O asser-
tion. The interface requirement is refined or realized by a development arti-
fact that is modeled as a component model, that means, a (hierarchical) component
with specified interface behavior. If the I/O assertion is a subset of the syntactic inter-
face of the component model, the component model can be verified directly to check
that it fulfills the I/O assertion. If the I/O assertion is not specified at the same level
of detail as the component model, a formal refinement specification is necessary that
maps the syntactic interfaces of I/O assertion and component model.

Outcome. The formal verification either confirms that the I/O assertion is fulfilled
by the design model or it detects a fault. If the formal verification detects a fault, it
generates a counter example that can be simulated and thereby analyzed.

Figure 7.7 shows the synthesis of interface requirements into a user
function and the verification of the synthesis. The syntactic interface of Require-
ment 1 is Input1, Input2, Output3. The syntactic interface of Requirement 2 is Input4,
Output3. Both syntactic interfaces are a subset of the syntactic interface of the user
function Requirement1_2_x that is Input1, Input2, Input4, Output3. The verification
result is ‘SUCCESS’. This means that the I/O assertions both hold in the state automa-
ton of Requirement1_2_x. The verification can be seen as a proof, if the verification
is not constraint by some boundary.

147

7.5 Quality Assurance

Figure 7.7: Manual synthesis and formal verification of two interface requirements
in a user function

7.5.4.2 Perform MSC Conformity Check

The MSC Conformity Check checks that the sequence of messages defined in a
scenario or user function that is represented as an MSC is executable in a de-
velopment artifact that is represented as a component model, for example, in a user
function, a model of the functional or logical viewpoint.

Preconditions. The scenario or user function is represented as an MSC. The
development artifact is represented as a component model. The syntactic interface
defined in the MSC is a subset of the syntactic interface of the component model.

Outcome. The MSC conformity check either confirms that the MSC is executable in
the model of the development artifact, or it detects a fault. If the check is successful,
the tool provides an example that can be analyzed.

7.5.4.3 Generate and Execute Test Cases

Test that a development artifact (a user function, a model of the functional or
logical viewpoint) represented as a component model is conforming to a given user
function represented as a component model. It checks that the sequence of mes-
sages defined in an MSC is executable in the development artifact.

148

7 The MIRA Guideline

Preconditions. The user function is represented as a component model. The
user function is refined or realized by a development artifact that is repre-
sented as a component model. A formal refinement specification formalizes the
refinement link or realization link.

Outcome. The execution of the test cases checks, whether the input-output behav-
ior defined in the user function can be fulfilled in the development artifact. The
coverage of the test cases is pre-set in coverage criteria.

7.6 Summary and Discussion

The major activities contained in the MIRA guideline have been taken from three
guidelines, see Section 7.1, and adapted to the MIRA artifact reference structure and
to the quality assurance techniques provided by AutoFOCUS3. The MIRA guideline
describes the textual specification and the formalization of functional requirements
on the MIRA artifact reference structure. Furthermore, a set of model-based quality
assurance activities for the analysis, validation and verification are presented. The
guideline shows that the MIRA artifact reference structure is sufficient to support
these quality assurance activities. The quality assurance expert can choose and tailor
those activities that are relevant for the projects context. Defining the MIRA guideline
revealed the following topics that constitute open research questions.

7.6.1 The Ratio of Requirements to Formal Models

MIRA formalizes each requirement independently from other requirements in one or
more formal specifications. The ratio of requirement to formal models here is 1:n. In
a second step, formal requirements may be synthesized into a state automaton. The
ratio of requirements to state machines is m:n.

Other approaches such as ADORA [GBR+00] integrate a set of requirements (or other
contents of the requirement specification) directly into one or more common models.
An ADORA model integrates all modeling aspects (for example, structure, data, be-
havior, user interaction) in one coherent model. The ratio of textual requirements to
this model then is n:1.

Both approaches have advantages and disadvantages. The independent formaliza-
tion of requirements as propagated in MIRA has the advantage to decrease model
complexity: A model that represents a requirement or even only parts of a require-
ment contains less model elements than a model that integrates several of these re-
quirements. This low number of model elements simplifies to verify whether the
model corresponds to the textual requirement. Also verifying the state automaton
that has been synthesized from I/O assertions becomes less difficult, as it does not
have to be checked manually; the state automaton can be verified automatically us-
ing formal verification techniques to check whether it fulfills all I/O assertions. A
formalization of requirements independently from other requirements has a second
advantage. The requirements can be formalized in an incremental manner. If a re-
quirement is not formalized, then the quality of the models does not suffer.

149

7.6 Summary and Discussion

Following [GBR+00], a coherent model over all requirements allows to "develop a
strong notion of consistency and provides the necessary basis for developing pow-
erful consistency checking mechanisms in tools". They claim that the model con-
struction becomes more systematic, reduces redundancy and simplifies complete-
ness checking.

In SPES and FOCUS, an integration of functional requirements into a coherent model
is not part of the requirements viewpoint. In these approaches, the functional view-
point provides a coherent model of the required system behavior. The reason for sep-
arating the requirements viewpoint and the functional viewpoint is the necessity of
architectural decisions that are taken in the functional viewpoint. These architectural
decisions are for example on the functions the system should offer, the interfaces of
these functions and the dependencies between these functions.

A detailed comparison of advantages and disadvantages of independent models
compared to coherent models in the requirements viewpoint has to be investigated
further and remains an open research question.

7.6.2 Redundancy in the Representations of a Requirement

A requirement can be represented as an informal description, as structured text or
formally. A step-wise formalization of a requirement that includes either all three
representations or from structured text to the formal representation has been prop-
agated in many approaches, for example in [CRST09] or [KC05a]. A requirement
represented in more than one representation contains redundant information. How
to deal with this redundancy has to be resolved before a project starts.

Redundancy in the formal representation was discussed by Heimdahl [Hei07]. In
the discussed approach [MTWH06], analogously to MIRA, natural language require-
ments, temporal logic and an executable formal model were documented. He argues
that formal models of any substantial system are likely to be incorrect with respect
to the real needs of the system. To obtain correctness, the models have to be checked
against each other in a rigorous validation process. In this approach, document-
ing natural language requirements and temporal logic requirements, and not only
the executable models, detected significant flaws in the requirements. Modeling the
executable model helped to improve the understanding of the real needs of his cus-
tomers.

Redundant information can be avoided for example by deleting the less formal repre-
sentation, as soon as the information is represented more formally. Another possibil-
ity to resolve this redundancy problem is to declare the more formal representation
as the single source of truth. Depending on the domain and project-specific settings,
the information has to be stored redundantly as informal text, structured text and in
the formal representation. If more than one representation of a requirement is docu-
mented, the consistency between the representations must be ensured each time after
changing one of these representation forms. The most efficient solution for a specific
domain is an open issue that requires further investigation.

150

7 The MIRA Guideline

7.6.3 Formal Refinement Specifications for Verification

The specification of a formal refinement specification can be a complex task as a case
study [TBP14] confirmed. In this case study, a formal refinement specification was
used to explicitly document the refinement from high level requirements to more de-
tailed requirements. The case study indicates that the formal refinement specification
is straightforward for a refinement of the required system interface and system be-
havior, but it can become quite difficult in other cases. The case study investigates
the difficulties of specifying a formal refinement that includes both a refinement of
the interface behavior and a decomposition of a system into subsystems. In this case,
the high level requirement is described at the system level; the detailed requirement
not only describes a more detailed system behavior, but describes this refined be-
havior on a subsystem level. The MIRA approach recommends to set up refinement
specifications only between artifacts with the same design scope.

Many approaches such as [RRH93] avoid the difficulties of the specification of a for-
mal refinement by proposing to formalize requirements at the same level of detail
as the subsequent design models. This means that the formal representation of a
requirement uses the syntactical interface of the design. This implies explicit knowl-
edge about the system design already during the formalization of requirements. It
also means that the formalization of the requirements has to be performed after
building the design model. As a consequence, such a late formalization impedes
the use of formal analysis techniques before their implementation. Flaws can only be
identified after building the design model.

An alternative to setting up a formal refinement specification and to a late formal-
ization would be to have two formal representations of the requirement. An early
formalization that is independent of the design enables formal analysis techniques.
Formalization at the design level enables formal verification. This redundant spec-
ification would lead to an increased specification effort. Further investigations are
required in order to determine the most efficient solution.

151

Chapter 8
The MIRA Tool

The MIRA tool implements the MIRA artifact reference structure that was presented
in Chapter 6 and provides operations on the artifact reference structure. These op-
erations are derived from an initial investigation of essential characteristics of the
MIRA approach presented in Chapter 5, from a systematic investigation of the MIRA
guideline that is introduced in Chapter 7, and from feedback of the MIRA users that
applied MIRA in various case studies that are presented in Chapter 9.

The research question addressed in this chapter is:

RQ5: What operations on the MIRA artifact reference structure are necessary in a
tool for conducting the MIRA guideline?

The main contribution of this chapter is the demonstration of how the MIRA tool
implements the MIRA artifact reference structure and supports the MIRA guideline.
The implementation of the MIRA approach shows that it is technically feasible to
implement the MIRA artifact reference structure.

The context of the implementation of the MIRA tool is given in Section 8.1. The MIRA
tool is presented in Section 8.2. Section 8.3 summarizes the chapter.

Contents
8.1 Implementation Context . 153
8.2 Implementation of the MIRA Tool 154
8.3 Summary . 165

8.1 Implementation Context

The MIRA tool [TMR13, AVT+15] is implemented as an extension to the computer-
aided development tool AutoFOCUS31. AutoFOCUS3 is presented in detail in Chap-
ter 2. The integration in AutoFOCUS3 yields several benefits. MIRA adds require-
ments engineering capabilities to AutoFOCUS3. Therefore, AutoFOCUS3 benefits

1http://af3.fortiss.org

153

http://af3.fortiss.org

8.2 Implementation of the MIRA Tool

from the integration, since with the MIRA tool "seamless model-based develop-
ment" [BFH+10] from requirements to code generation can be provided by Auto-
FOCUS3. The AutoFOCUS3 tool provides an implementation of the formal system
modeling theory FOCUS and a set of complementary formal quality assurance tech-
niques. Through MIRA, these techniques can be applied in the RE context.

The MIRA tool has been implemented in a collaboration of the author with Dongyue
Mou and Daniel Ratiu. Dongyue Mou was responsible for the architecture of the
MIRA tool, and developed formal refinement specifications and requirements-based
testing in AutoFOCUS3. Daniel Ratiu contributed the formal representation of re-
quirements and user-friendly formal quality assurance techniques to the MIRA tool.

A short overview of the used technologies: The MIRA tool is implemented as a plug-
in to AutoFOCUS3. AutoFOCUS3 provides an elaborated framework2 for the devel-
opment of a model-based development tool based on Java/Eclipse. The MIRA arti-
fact reference structure was instantiated as a data model using the Eclipse Modeling
Framework (EMF)3 model. The user interface was implemented using the Standard
Widget Toolkit (SWT)4.

8.2 Implementation of the MIRA Tool

The MIRA tool implements the MIRA artifact reference structure as presented
in Chapter 6. To document the system context, the MIRA tool implements
glossary terms, requirement sources (documents, external systems,
and stakeholders).

On the requirements level, the MIRA tool implements generic requirements, user
functions and scenarios as use cases and interface requirements as inter-
face behavior requirements. Goals can be documented as generic requirements in
the MIRA tool. For every requirement, the MIRA tool offers QA check lists.

The MIRA tool facilitates to document refinement links, conflict links,
external trace links, and actor - requirements source cross refer-
ences. Cross references for term definitions are generated by MIRA. Figure 8.1
gives an overview of the concepts implemented in MIRA.

8.2.1 Textual Specification

The MIRA artifact reference structure defines a set of concepts and their attributes.
These concepts are visualized and edited through templates. Each template is di-
vided into sections that group the displayed information.

Glossary Terms and Requirement Sources. Glossary terms and requirement
sources are descriptive elements. Each template for a descriptive element consists of

2https://af3-developer.fortiss.org/projects/autofocus3/wiki/Tooling_
Kernel_Concepts_and_Services

3https://eclipse.org/modeling/emf/
4http://www.eclipse.org/swt/

154

https://af3-developer.fortiss.org/projects/autofocus3/wiki/Tooling_Kernel_Concepts_and_Services
http://www.eclipse.org/swt/
https://eclipse.org/modeling/emf/
https://af3-developer.fortiss.org/projects/autofocus3/wiki/Tooling_Kernel_Concepts_and_Services

8 The MIRA Tool

Figure 8.1: An example menu with all concepts that are implemented in the MIRA tool

four sections: The general section defines the name, definition and status of a descrip-
tive element. The synonyms section contains a list of synonyms, and the abbreviations
section a list of abbreviations. The last section is to document a comment. Glossary
terms as shown in Figure 8.2, documents, stakeholders, and external systems use
the generic template for descriptive elements and extend it with additional fields as
defined in the artifact reference structure.

Figure 8.2: Template for a glossary term

Requirements. The MIRA tool provides a template for generic requirements. The
requirements template can be used to document all those requirements where the

155

8.2 Implementation of the MIRA Tool

MIRA tool does not implement a specific template. Figure 8.3 shows an example
where the requirements template is used to document a goal. Requirements man-
agement attributes and the informal description of the requirement are bundled in
the general section. Informal descriptions of a requirement may be supplemented
with images. Relations between requirements and to architecture are managed in the
traces section. The last section is to document a comment.

Figure 8.3: Template for requirements

Templates for use cases and interface behavior requirements are specializations from
the generic requirements template introduced above. Both templates include all sec-
tions with all attributes from the requirements template. In addition to the require-

156

8 The MIRA Tool

ments template, a template for a specific type of requirement can provide additional
attributes in an optional detail section. The detail section of the use case template is
shown in Figure 8.4. Use cases can be further described by scenarios, see Figure 8.5.
The detail section of an interface behavior requirement template is given in Figure 8.6.

Figure 8.4: Detail section of a use case template

Figure 8.5: Template for a scenario

Categorization of Requirements. The type of a requirement can be changed us-
ing a drop-down menu in the field type. As a result, the type has the new value
and the detail section for the chosen type is created. This operation supports the cat-
egorization of requirements: Before the requirements type is determined, the user
documents the requirements as a generic requirement. When the user classified the
requirement, then the user can change the requirements type, for example, to a use
case. Thereby, the tool changes the type to use case and adds the detail section of a
use case that is shown in Figure 8.4.

157

8.2 Implementation of the MIRA Tool

Figure 8.6: Detail section of an interface behavior requirement template

Traceability of Context Elements. MIRA offers a set of operations to create and
access terms of the system context in order to reduce the risk of lexical ambiguity.
MIRA supports the designation of terms: The user can select a term, for example,
from the requirements template, and add it to the context elements by right-clicking
on that term. Then the user chooses whether to create a glossary term or to add a
requirements source. This choice creates the template for the selected term. In the
template, the user now can add the term definition, synonyms and abbreviations.
The correct use of context elements is supported by auto-completion. MIRA offers
operations that guarantee a quick access to the terms: MIRA highlights all terms
that are documented as context elements. MIRA highlights the name of a context
element and its abbreviations in blue. Synonyms are highlighted in red. When a
user moves the mouse over a term, an instant display as a pop-up facilitates a quick
access to the definition of a term. For example, the term ’pedestrian’ is defined in
the glossary and used in a requirement and therefore highlighted. A pop-up gives
the definition of ’pedestrian’, see Figure 8.7. Clicking on the highlighted term in the
pop-up opens the object ’pedestrian’. The links between context elements and their
use are generated. In some settings, an automated generation of these links might
not be sufficient. For example, the glossary can provide two definitions of the same
term. To avoid misunderstandings, it might be necessary to ensure that only the
correct definition is displayed. Another example is abbreviations that coincidentally
correspond to wide-spread terms like ’or’. In these cases, MIRA would have to be
extended with technology to explicitly document and manipulate these links.

Traceability of Requirements. The trace section of a requirement lists all docu-
mented trace links that contain this requirement as a source or target artifact; it lists
requirement trace links, i.e., links to other requirements and external trace links, i.e.,
links from the requirement to a component of a component architecture. Realiza-
tion links that indicate that a component realizes a requirement are documented as
a trace link between requirement and component. Traces to other development ar-
tifacts have not been implemented, as they were not considered to be relevant for
functional requirements in the course of our studies. Besides the template, the MIRA
tool implements further support for the specification and quality assurance of trace
links: The MIRA artifact reference structure facilitates predefined queries. A query
can pre-select a set of potential sources and targets of a trace link. The user then can

158

8 The MIRA Tool

Figure 8.7: When holding the mouse cursor on a highlighted term, a pop-up shows addi-
tional context information

choose the sources and targets from the pre-selected artifacts. For example, when the
user creates an external trace link from a requirement, MIRA pre-selects the compo-
nents from the component architecture as a target. Other objects, for example, other
requirements, are not shown and cannot be selected. This pre-selection supports the
specification of trace links. Requirement trace links and external trace links can be
visualized. MIRA offers a hierarchical view of the requirement trace links, see Fig-
ure 8.8. This view supports the quality assurance of trace links and can be used for
example in an impact analysis of requirements.

Figure 8.8: The requirements hierarchy visualizes trace links between requirements

159

8.2 Implementation of the MIRA Tool

Actor – Requirement Source Cross References. The MIRA artifact reference
structure defines a cross reference between requirement sources and use case. Ev-
ery actor in a scenario step of a use case has to be defined as a requirement source.
Therefore, actors have to be chosen from the list of requirement sources or a new
requirement source has to be created. Figure 8.9 shows the selection dialog in the
foreground and the edited scenario in the background. On the left side of the se-
lection dialog all documented requirement sources are displayed. From this list, the
requirement source can be selected and used as an actor of a scenario step by drag-
ging them to the right. With the buttons on the left border of the selection dialog, new
requirement sources can be added or existing sources can be edited. This mechanism
ensures that actors are listed in the requirement sources and are considered in other
RE activities, for example the elicitation of requirements.

Figure 8.9: The actor of a scenario step is selected from the list of requirement sources

Change Support. MIRA offers operations that support the user in the case of
changes to the requirements specification. These operations are based on the pre-
definition of trace links in the MIRA artifact reference structure. MIRA propagates
changes in the ID or title of a requirement immediately to the requirement trace links
and external trace links of this requirement. MIRA applies and visualizes changes in
the source and target artifacts of a trace link immediately in the trace sections of all
concerned requirements. MIRA offers a simple copy-and-paste operation for context
elements and requirements to support changes. When a user copies a requirement,
MIRA does not copy the requirement trace links and external trace links of this re-
quirement, but it informs the user that these links have to be recreated if necessary.
When the user changes a glossary term or the name of a requirements source, he/she
should document the previous name in the synonym list. Then the user can identify
outdated terms manually, as MIRA highlights each synonym in red.

Advanced Overview and Search. A model-based approach facilitates advanced
overview and search operations. The objects of the requirements specification can be
displayed in an overview. In MIRA, this overview is available on several levels:

• All objects contained in the requirements specification;

160

8 The MIRA Tool

• All objects in a package (a package groups a set of glossary terms, requirement
sources or requirements);

• All occurrences of a name, synonym or abbreviation of a context element in
other context elements or requirements;

• All trace links.

This overview provides a model-based search that filters and sorts by concepts and
object attributes. To enhance this capability, the model-based search can be com-
bined with text-based search. To demonstrate this, MIRA includes a search for simi-
lar terms. Statistics provide a quick overview on the number of documented objects.
The model-based overview and search was used in the course of the case studies to
analyze requirements, to trace the current quality assurance status of objects and to
create trace links.

Figure 8.10: An overview and search dialog

Navigation by Cross References. Whenever possible, objects are referenced in-
stead of documented as prose. In MIRA, every object that is referenced is also nav-
igable. Clicking on the reference of an object opens the object itself. To give two
examples: Search results are a list of references. The source and target objects of a
trace link are references. Documenting a trace link therefore automatically facilitates
navigation to the traced objects.

161

8.2 Implementation of the MIRA Tool

8.2.2 Formal Specification

A data dictionary is used in AutoFOCUS3 in order to document data types and their
values. The formal specification of requirements is attached directly to each require-
ment. In Figure 8.11, the menu of a use case and a requirement with their formal
representation is shown. The tool can strictly enforce the application of the guide-
line with respect to the allowed modeling languages: Depending on the requirement
type, only certain modeling notations are available. To provide an example, In the
MIRA tool, only use cases can be structured by scenarios and formalized by MSCs.
Interface behavior requirements cannot be formalized by MSCs. The different selec-
tion dialogs are shown in Figure 8.12.

Figure 8.11: Formal representation for use cases and requirements

Figure 8.12: Selection dialog for use case and requirement

8.2.3 Quality Assurance

Overview of the Quality Assurance Status. In MIRA, each object has a quality
assurance status. The search dialog presented in Figure 8.10 displays the status of
each object and facilitates to filter and sort the objects according to their status. This
gives a quick access on the current quality assurance status.

Manual Reviews. For each requirement, user-defined and project-specific check-
lists for manual reviews and their results can be created, see Figure 8.13.

Automated Reviews. The MIRA artifact reference structure facilitates predefine
checks on the requirements specification through database queries for an automatic

162

8 The MIRA Tool

Figure 8.13: Manual review checklist and results

review. Syntactic checks inspect whether templates are filled out completely and
point out missing information. For example, a syntactic check of a requirement may
reveal an empty author field and a missing description. By contrast, to-do fields are
checked to be empty. The second group of checks are simple semantic checks on the
values of fields. These checks can identify objects that require further treatment. For
example, requirements that are not yet in the status ’analyzed’ are marked. The third
group of checks analyze trace links. For example, actors defined in a use case have
to be used in at least one scenario step of this use case. Use cases and functional
requirements have to be either refined to functional requirements or realized by a
component. An example for results of such checks are given in Figure 8.14.

Figure 8.14: Database queries are used to perform automated checks on the data model

Formal Quality Assurance Techniques. The formal specification of requirements
and their realization in subsequent development artifacts enables advanced tool-
supported analyses. The automation directly impacts the time-efficiency of the anal-
yses. MIRA formalizes scenarios as MSCs, interface requirements as I/O assertions

163

8.2 Implementation of the MIRA Tool

and user functions as executable models. For these formal representations, Auto-
FOCUS3 offers the following automated quality assurance methods (see also Sec-
tion 2.3.6:

Non-determinism check analyzes the transitions of a state automaton. A non-
determinism check can identify non-deterministic behavior of a user function
modeled as a state automaton. This means that a system may respond differ-
ently in the same situation at different times. It should be checked that any
non-deterministic behavior is intended and that the cause is not missing or in-
correct requirements.

Unreachable state check can identify unreachable states of a user function mod-
eled as a state automaton. The unreachable state check addresses the qual-
ity attribute logical completeness and consistency. An unreachable state may be
caused by missing transitions to that state. In the case that a transition to that
state exists, inconsistent requirements may be the cause. Another possibility is
that the state and its corresponding requirements are unnecessary and may be
removed.

Simulation of an executable model is a common means for the validation of require-
ments [vL09, p. 198 ff]. In AutoFOCUS3, an executable model, i.e. a state au-
tomaton or a code specification, can be simulated. MIRA facilitates to simulate
user functions that are represented by executable models.

Requirements verification checks that a model of the system under development,
here a user function, fulfills a set of interface requirements or scenarios. In
AutoFOCUS3, the verification can be performed on requirements specified as
I/O assertions, assumption/guarantee specifications or MSCs.

Model-based testing (see for example Mou and Ratiu [MR12] or Blech et al.
[BMR12]) provides test-suites with pre-defined coverage criteria. In AutoFO-
CUS3, a test-suite can be generated from a user function modeled as an exe-
cutable model. It can then be tested that an executable model of the system
under development, for example in the logical viewpoint, fulfills this test-suite.

8.2.4 Interfaces of MIRA

Document Generation. Practitioners often prefer to have a requirements specifica-
tion in the form of a document. A rationale for document generation mentioned by
practitioners is the validation of requirements. For conducting the validation, stake-
holders need access to the requirements specification. Access may be impeded due to
costs like licensing, administration and tool-specific training. Some commercial tools
provide support for the validation of requirements via a web interface. Nevertheless,
in some settings document generation is currently indispensable, for example, when
project-specific security issues do not allow the stakeholders to use RE specific tools.
An advantage of generating a document is that no additional training is required for
stakeholders that are used to standard office software. MIRA implements an export
of the requirements specification to the formats ’doc’ and ’html’.

164

8 The MIRA Tool

Model Export. Exchanging requirements between tools requires an exchange for-
mat. A current, wide-spread format is the Requirements Interchange Format (Re-
qIF) [OMG13]. This format is XML-based. For exporting the complete requirements
specification, not only the artifact reference structure, but also the formal specifica-
tion language has to be mapped to XML. In a seamless development environment
such as AutoFOCUS3, a model export is not necessary for system development.
However, MIRA supports an export with the ReqIF format.

8.3 Summary

The MIRA tool provides a technical solution for the MIRA artifact reference struc-
ture, thereby demonstrating its feasibility. The MIRA tool complements the MIRA
approach with operations for the specification and quality assurance of functional
requirements in accordance to the MIRA artifact reference structure.

165

Chapter 9
Industrial Case Studies

This chapter reports on the use of MIRA in two case studies in an industrial setting.
Both case studies had requirements specifications developed in industry as an input.
The first case study answers the research question:

RQ8: Is the MIRA approach effectively applicable in an industrial setting?

The case study demonstrates that the MIRA approach is applicable for an indus-
trial specification in the domain of train automation. It shows the scalability of the
MIRA approach to the size of several user-visible system functions. The case study
improved the quality of the industrial specification and additionally resulted in an
improved guideline for the MIRA approach.

The main research question that is answered with the second case study is:

RQ9: Is the MIRA approach extensible with project-specific requirement types in
an industrial setting?

The second case study uses MIRA for documenting and tracing a set of quality re-
quirements for a flight control system. The case study confirms the extensibility of
the MIRA artifact reference structure with additional requirement types to document
quality requirements and trace link types that facilitate the tracing from requirements
to the technical viewpoint.

The case studies are presented and discussed based on the structure recommended
by Runeson and Höst [RH09].

The case study on the effective application of MIRA in train automation is presented
in Section 9.1. The case study on extensibility in the flight control system domain is
introduced in Section 9.2. Section 9.3 gives an overview of further case studies that
extended or applied MIRA successfully.

Contents
9.1 Case Study on Applicability and Effectiveness 168
9.2 Case Study on Extensibility . 186
9.3 Further Studies with MIRA . 189
9.4 Conclusion . 190

167

9.1 Case Study on Applicability and Effectiveness

9.1 Case Study on Applicability and Effectiveness

This case study was part of an industrial research project [BJV+14] that was executed
in a one-year collaboration between Siemens Rail Automation, fortiss GmbH and the
Technical University of Munich. The research objective of the project was to evaluate
the applicability of the SPES modeling framework (see Chapter 2) to a real-life pro-
ductive system in the context of rail automation. In the course of the project, parts of a
Siemens train automation system were modeled for the various viewpoints proposed
by the SPES modeling framework from requirements to code generation. For model-
ing the requirements viewpoint, the MIRA approach was used. As tool support for
the case study, AutoFOCUS3 was used in its release version 2.6 in which the MIRA
tool is implemented as a plug-in. The resulting models for the viewpoints were veri-
fied against each other. The benefits and efforts were discussed with Siemens.

This case study reports on the first part of the project, the specification and quality
assurance of functional requirements using the MIRA approach including the veri-
fication of the models of the functional architecture against the functional require-
ments. Further information on functional architectures can be found in Chapter 2;
further details on constructing the functional architecture in the course of this project
can be found in [Vog15, p. 93ff].

The study design of the research project and some of the study results have been
previously published in [BJV+14, TBP14].

9.1.1 Study Goal

The goal of this case study was to evaluate the effective applicability of the MIRA
approach based on industrial textual specifications for an existing, safety-critical sys-
tem. Despite the high quality of the input documents, we aim to demonstrate that the
application of the MIRA approach leads to an improvement of the quality of these
documents.

9.1.2 Study Object

The Trainguard MT (TGMT)1 system is a modern automatic train control system for
metros, rapid transit, commuter and light rail systems. The TGMT system provides a
large number of protection and automation functions for railway operation and uses
components on the wayside and on-board the trains.

TGMT consists of two major subsystems: The wayside subsystem calculates the move-
ment authority, the authority of the train to enter and travel through a specific part
of track in a given travel direction. The on-board subsystem supervises the train op-
eration within the given movement authority limit. The wayside and on-board sub-
systems use a track database, which stores railway track topography descriptions
such as speed and gradient profiles. The on-board subsystem supervises and con-
trols the train movement based on train localization, the information received from
the wayside subsystem and the information stored in the track database.

1http://sie.ag/1aHfP1J

168

http://sie.ag/1aHfP1J

9 Industrial Case Studies

Figure 9.1: Platform screen doors installed in Paris

The TGMT system concept is based on a cyclical exchange of position report tele-
grams sent from trains to the wayside subsystem and on movement authority tele-
grams sent from the wayside subsystem to the trains. Telegrams are standardized
records that are transmitted digitally and used for control purposes of the system.

The project scope was to model the Platform Screen Doors (PSD) function of the TGMT
system. PSDs are installed in some platforms of metro systems. Figure 9.1 shows a
typical PSD installation. The purpose of the PSD function is to control and protect the
passenger exchange at the platforms. The PSD function supervises the on-board train
doors and, if present, the wayside platform screen doors. It synchronizes the opening
and closing of platform doors and train doors. To guarantee passenger safety, the
following protective mechanisms are part of the PSD function:

• The train doors as well as the PSDs are only allowed to be opened if the train is
stationary.

• The train doors as well as the PSDs are only allowed to be opened on the correct
side.

• The PSDs are only allowed to be opened when there is a train in the correct
position at the platform (the train doors have to match the related PSDs).

• Only PSD sections that match the train length are allowed to be opened.

• During passenger transfer (open doors) the train must remain stationary.

• If a platform screen door is open unintentionally, no train is allowed to ap-
proach the platform.

• If there is a malfunction of the train doors, the PSDs must not open.

9.1.3 Study Design and Data Collection

As an input for the study, Siemens provided the following documents: A glossary
describes the terms of the application domain. A system requirements specification
(SYS_RS) defines requirements for the TGMT system. In the system architecture spec-

169

9.1 Case Study on Applicability and Effectiveness

ification (SYS_AS), requirements are given on subsystem level. These documents
were taken directly from the PSD development.

The MIRA approach was applied to these documents to specify the requirements
specification of the PSD and to perform the quality assurance of the functional re-
quirements. A functional architecture was developed by modeling the functional
behavior of the system as a component architecture. This part of the project was con-
ducted over a time period of six months by four researchers including the author.
The total effort spent on modeling the requirements specification and the functional
architecture in this time period was approximately six person months in total.

The data obtained in the case study was:

1. The resulting models of the TGMT specification, including a model of the require-
ments specification and a model of the functional architecture.

2. The study results discussed in the workshops in terms of findings and insights
of the project and documented as (non-public) slides and reports.

9.1.4 Project Execution

At the start of the project, two fundamental decisions on the execution of the project
were made. Firstly, the modeling should be performed by the research partners
that were already experts in the methods, the modeling language and the AutoFO-
CUS3 tool used in this project. The project was accompanied by workshops and
regular phone conferences, where the industrial partners provided the necessary do-
main knowledge. Secondly, the approach and the data provided in the input docu-
ments should remain unchanged for the project. Neither the approach (in this part
of the project MIRA) nor the input documents should be adapted to fit each other.
The requirements provided by the original input documents have not been adapted
to MIRA; AutoFOCUS3 and the MIRA artifact reference structure and tool have not
been adapted during the project in order to cope with these documents. However,
the MIRA guideline was refined in the course of the project. The study results, mod-
els and findings, have been presented to and discussed with experts from Siemens in
three full-day workshops.

9.1.5 Data Analysis Process

By applying the MIRA guideline, the input documents from the TGMT were trans-
formed into a requirements specification according to the MIRA artifact reference
structure. The researchers elaborated different parts of the requirements specifica-
tion independently. It was agreed beforehand for each step which researcher would
work on which part of the model. If a modeling step led to different results for dif-
ferent researchers, the cause was investigated. This led to an improvement of the
MIRA guideline. Findings that positively influenced the quality of the requirements
specification were documented, indicating the effectiveness of the approach. For an
assessment of the applicability, the resulting models in AutoFOCUS3 and the find-
ings were discussed with the domain experts.

170

9 Industrial Case Studies

9.1.6 Instantiation of the MIRA Approach

To develop the requirement model, the following steps as proposed by the MIRA
approach were conducted. Figure 9.2 gives an overview of the approach.

Figure 9.2: The activities performed in the case study on the original documents provided
by Siemens follow the MIRA guideline

Elaborate the Requirements Specification in Prose. In the first step, we trans-
ferred the informal information from the SYS_RS document and the SYS_AS docu-
ment to AutoFOCUS3. This information included requirements as well as trace links
between requirements and cross references from requirements to their source. The
information was structured and classified according to the RE concepts provided by
the MIRA approach. The attributes for each RE concept were filled as far as informa-
tion was provided by the input documents.

We documented the input documents, the SYS_RS document and the SYS_AS doc-
ument, as documents in the MIRA tool. On the system level, we documented sys-
tems that interact with the TGMT as external systems. On the subsystem level,
we documented system functions that interact with the PSD function as external
systems.

We analyzed the SYS_RS and SYS_AS documents to identify all functional
requirements related to the PSD function. We checked each of these requirements
whether we could classify it as a scenario, an interface requirement or a
user function according to the definitions provided by the MIRA approach.

From the SYS_RS and SYS_AS documents, we transferred all functional
requirements in scope and their description unchanged as prose to the MIRA tool.

171

9.1 Case Study on Applicability and Effectiveness

We added the requirements management information such as ID, title, and the au-
thor. An example is given in Figure 9.3. We documented the source document as the
requirement source for each functional requirement.

Figure 9.3: Textual description of a requirement

The input documents contained information about the refinement from system to
subsystem requirements. These were modeled as refinement links, see Fig-
ure 9.4. Furthermore, the documents contained so called cross-references between
requirements. These were documented as unclassified trace links.

Figure 9.4: Tree view on the refinement links

Designate Terms. For each domain-specific term used in the requirements for the
PSD system, a glossary term was created. An example is given in Figure 9.5.
Whenever available, the definition of the term was included from the input glos-
sary. We checked the designation using the term highlighting functionality offered
by MIRA.

Formalize Functional Requirements. We analyzed the description of each
interface requirement to identify and document its design scope, i.e., the sys-
tem under development in scope of the requirement. The input documents contained
requirements at different levels of abstraction. Requirements from the SYS_RS doc-
ument had a design scope on the TGMT system. The design scopes of requirements

172

9 Industrial Case Studies

Figure 9.5: Glossary term

contained in the SYS_AS document were the wayside subsystem and the on-board
subsystem.

For each interface requirement, we analyzed their description to identify the
stimuli and responses of the system under development according to the design scope.
We created corresponding data types for each stimulus and response. When we iden-
tified data types for the same domain concept, i.e., the same glossary term, in
different requirements, we homogenized them into one data type. Figure 9.6 gives
an example for such a data type that stems from two requirements that stated under
which conditions the propulsion of the train has to be cut off and reactivated. We
then formalized the stimuli and responses as inputs and outputs of a component in a
component diagram. The component represents the relevant system boundaries for
this requirement. We specified the required behavior as an I/O assertion. Figure 9.7
provides an example for the formalization of a requirement on propulsion release.

Figure 9.6: Data type that was created based on the interface requirements on propulsion
cut off and activation

Figure 9.7: Formalization of an interface requirement to a formal interface specification (left)
and a formal specification of the interface behavior (right)

We structured the scenario according to the scenario template provided by MIRA,

173

9.1 Case Study on Applicability and Effectiveness

see Figure 9.8. Using the information contained in the scenario template, the
scenario was formalized to a Message Sequence Chart (MSC), see Figure 9.9.

Figure 9.8: ‘Door open and supervision’ scenario structured according to the scenario tem-
plate provided by MIRA

Figure 9.9: ‘Door open and supervision’ scenario formalized as an MSC

Validate Formal Requirements. We validated the formal representation of the
functional requirements in a manual review. Goal of the validation was to
ensure that the formal representation expressed the required behavior as defined by
the textual representation. The check was performed by a different researcher than
the one who did the formalization. To obtain confirmation by the domain experts,
we presented some of the formalized requirements to them in a workshop.

Analyze the Refinements from System Requirements to Subsystem Require-
ments. We analyzed the refinements between system requirements and subsystem

174

9 Industrial Case Studies

requirements based on the refinement links to reveal missing refinements, and
missing or incomplete system or subsystem requirements.

The documented refinement links facilitated automated structural checks on
the refinement. We performed the following syntactical checks on the documented
refinement links:

• Is every system requirement linked to a subsystem requirement?

• Is every subsystem requirement linked with a system requirement?

In the next step, we set up formal refinement specifications based on the refinement
links to further check the syntactic and semantic contents of the refinement. An ex-
ample for such a formal refinement specification is sketched in Figure 9.10.

Figure 9.10: A formal refinement specification defines the mapping of input ports (left) and
the output ports (right) of the refinement from the requirement on door man-
agement to the requirement on door release

We performed the following checks on the formal refinement specifications:

• Is each stimulus or response (modeled as inputs or outputs) of a system require-
ment refined to a stimulus or response of a subsystem requirement?

• Does each stimulus or response (modeled as inputs or outputs) of a subsystem
requirement originate from a stimulus or response of a system requirement? If
not, could it origin from another system requirement?

Synthesize Interface Requirements into User Functions. We manually synthe-
sized the interface requirements for the onboard and wayside subsystems to
user functions. Therefore, we identified all interface requirements that
described the same response. For these requirements, we created a user function
that realizes all requirements. Each user function was represented as an exe-
cutable model, for example, a state automaton or a code snippet. We synthesized the
formal representations of the interface requirements to obtain this executable

175

9.1 Case Study on Applicability and Effectiveness

model. We used these user functions as the input to construct the functional
architecture of the PSD function.

For example, the case study contained two interface requirements on the
propulsion release of the train, a safety mechanism that avoids that the train can
move as long as the train and PSD doors are allowed to be opened. The first re-
quirement was formalized to two I/O assertions, the second requirement was for-
malized to one I/O assertion. These two requirements were synthesized into the
user function ‘propulsion function’. Figure 9.11 shows the syntactic interface
of the interface requirements that we synthesized into the syntactic interface
of the ‘propulsion function’. In the functional viewpoint, the user functions,
respectively their executable models, were composed into a coherent model of the
functional architecture of the system, see also B’́ohm et al. [BJV+14].

Figure 9.11: The syntactical interface of the user function ‘propulsion function’ is synthe-
sized from the syntactical interfaces of the two requirements on propulsion re-
lease

176

9 Industrial Case Studies

Analyze User Functions. We analyzed the formal representation of user functions
that were modeled as state automata on non-determinism and unreachable states.

Document and Formalize Realization Links. We linked each interface
requirement by a realization link to the components of the functional archi-
tecture that realize the required interface behavior. An example for a realization
link is given in Figure 9.12.

We specified these realization links as a formal refinement specification which
defines the mapping between the input and output ports of the component diagram
that represents the syntactic interface of the interface requirement and the
component that realizes this requirement. Figure 9.13 shows a simple example of
such a mapping. Here an input port of the formal requirement (denoted as source)
can be mapped directly to an input port of the component of the functional architec-
ture (denoted as target) that satisfies this requirement.

Verify User Functions against Interface Requirements. The formal refinement
specification facilitated an automated transformation of the I/O assertions to the user
functions. Thereby, the model of each user function could be verified against
the I/O assertions of the interface requirements using formal verification. If
the formal verification failed, it provided a counter example, that we simulated to
investigate how the I/O assertion was violated.

Figure 9.12: Specification of a realization link from a requirement to the door release func-
tion

Figure 9.13: Specification of a formal refinement
specification

Validate the User Functions. Both the researchers and the domain experts simu-
lated the user functions and their composition in the functional architecture to vali-
date the required system behavior.

Verify the Functional Architecture against the Scenario. We applied the MSC
Conformity Check provided by the AutoFOCUS3 tool to investigate whether the
‘Door open and supervision’ scenario in its formal representation as an MSC can
be executed in the model of the functional architecture of the system.

177

9.1 Case Study on Applicability and Effectiveness

9.1.7 Study Results

Coverage of the MIRA Approach. The contents of the input documents
were classified as glossary terms, documents, external systems, a
scenario, interface requirements, refinement links and unclassified
trace links. The interface requirements were manually synthesized into
user functions. We created realization links between the functional
requirements and the functional architecture. During the quality assurance ac-
tivities, we documented the results in the form of conflict links between re-
quirements and in QA check lists. The case study did not instantiate goals. We
applied model-based techniques for the analysis, validation and verification, but we
did not generate and execute test cases on the RE level (but in subsequent develop-
ment steps).

Elaborate the Requirements Specification in Prose. From the input documents,
we extracted in total 29 requirements which were in scope of the study. One require-
ment was classified as a scenario. 25 requirements were classified as interface
requirements. These requirements contained required interfaces and interface be-
havior of the PSD as well as required communication with the environment of the
PSD. Three requirements remained unclassified, as they did not did prescribe behav-
ior.

Designate Terms. All researchers working on the requirements specification con-
sidered the designation of glossary terms as a useful support. The quick access
to the glossary improved the understanding of the domain. As the academic partners
were not experts in the domain of rail automation, the lack of domain knowledge of
important concepts could to a certain extent be mitigated by the integrated glossary.

The designation of terms revealed undocumented domain knowledge as some term
definitions were missing in the input documents.

Formalize Functional Requirements. We formalized the scenario and the 25
interface requirements. The scenario was formalized to an MSC. Each of
the interface requirements was formalized to one to five I/O assertions. The
reason for this is that some of the requirements contained more than one statement
on required interface behavior or more than one I/O assertion was necessary to cover
a statement. Six interface requirements were only partly formalized, as they
contained real-time behavior that was out of scope for this project, included infor-
mation other than interface behavior or described behavior that was too abstract or
vague to be formalized. Table 9.1 gives an overview of the formalization and Table 9.2
gives examples of information that could not be formalized.

Two observations in the course of the formalization process showed the need for a
strict guidance of the formalization process and subsequently led to improvements
of the MIRA approach.

The first observation was that without a strict guideline on the formalization, every
person that formalized requirements applied a different modeling notation (MSC,

178

9 Industrial Case Studies

Table 9.1: Numbers from the Case Study
Input doc-
ument

Requirements
in scope

Classified Re-
quirements

Formalized Thereof only
partly formal-
ized

Sys_RS 7 4 4 2
Sys_AS 22 22 22 4

Table 9.2: Reasons and examples of pieces of information that could not be formalized
Reason Requirements in scope
Too vague “The TGMT system shall support run authorization zones.”
No interface
behavior

"The train position allowing the door opening and the subset of
doors allowed to open have to be defined by engineering."

Real time “The on-board subsystem shall use TP DOOR COMMAND DELAY
to synchronize the control of the train doors and the PSDs.”

I/O assertion, state automaton) and thereby formalized different aspects of the re-
quirements. Therefore, the MIRA guideline now recommends concrete modeling
notations for functional requirements.

Our second observation concerned the number of requirements we could formalize.
We performed the formalization in two iterations. In the first iteration, we could
only formalize 21 system and subsystem requirements. The second iteration yielded
26 formalized requirements, an increase of 24%. The increase could be achieved by
explicitly defining to extract the design scope, stimuli, responses and interface behav-
ior from the textual requirements and by defining explicit mapping rules from this
information to the formal representation. A literature search revealed that several
model-based RE approaches recommend controlled natural language as an inter-
mediate step in the formalization to extract information before formalizing it. As
a consequence, the MIRA artifact reference structure was extended for interface
requirements in order to be able to document the results of this structuring activ-
ity.

The formalization of requirements revealed an ambiguity in a requirement; a phrase
could be interpreted in two ways and the correct meaning had to be clarified in a
workshop.

Validate Formal Requirements. The validation confirmed that the formal require-
ments reflect the textual requirements.

Analyze the Refinements from System Requirements to Subsystem Require-
ments. Checks on the refinement links did not reveal any quality issue. For
more detailed investigations, we specified formal refinement specifications of the
refinement links. The case study revealed that setting up the formal refine-
ment links between requirements on the two levels of abstraction, the system and
subsystem level, was a difficult task and could not be performed in the first place.
In Section 9.1.7, we discuss our results of analyzing the underlying problem and the

179

9.1 Case Study on Applicability and Effectiveness

solution that we applied to overcome this difficulty.

Setting up and analyzing the formal refinement specifications identified three qual-
ity issues. A refinement from system to subsystem requirements was incomplete.
Stimuli defined on the system level were not documented explicitly on the subsys-
tem level. We stated the stimuli explicitly in the subsystem requirements. In another
case, a stimulus at the subsystem level did not originate from any system require-
ment. We added a system requirement in order to complete the refinement. In a
third case, a refinement from a system requirement to a subsystem requirement was
missing and we added a refinement link.

We performed the refinement analyses manually, as the MIRA tool did not offer auto-
mated checks. Some of these checks could be automated, for example, using database
queries or model-checking.

Gap between System and Subsystem Requirements. One of the main results of
the case study was that the formal refinement specifications between the given sys-
tem and subsystem requirements may become very complex. A detailed discussion
of this finding and our solution is provided in [TBP14]. In the following, we provide
a summary of our investigations.

An analysis of the refinement revealed that the complexity results from the fact that
two refinement operations, namely interface refinement and decomposition, were per-
formed in one step.

By interface refinement, we understand a refinement of requirements on the system
interface (without adding architectural decisions). For example, the system require-
ment defines an abstract stopping window in which the train has to stop. The subsys-
tem requirement defines detailed interval boundaries for the stopping window.

By decomposition of system requirements to subsystems, we refer to the break-down
of requirements to subsystems (without changing the system interface) that results in
a change of the design scope of a requirement. For example, the system requirement
doors management defines an abstract stopping window within which the train has to
stop. The subsystem requirement doors release details the stopping window to a stop-
ping point for the train endpoints with tolerances, while at the same time assigning
the calculation of the stopping window to the on-board subsystem.

We call the inclusion of both refinement operations in one refinement step a "gap"
between system and subsystem requirements. There are several consequences of
such a gap:

Specification: In the case of a gap defining the formal refinement specification is a
challenging task: The information of all other subsystem requirements belonging to
one decomposition has to be included in the formal refinement specification and to
be integrated with the interface refinement. This results in complex representation
and interpretation functions and is a possible source of errors.

Quality assurance: If there is no formal refinement specification, as a consequence
formal analysis and verification cannot be performed automatically. Decomposing
requirements may lead to a scattering of system requirements (i.e. system behavior)
over several subsystem requirements. In this case, analyzing requirements regard-

180

9 Industrial Case Studies

Figure 9.14: Detailed system requirements close the gap between system and subsystem re-
quirements

ing their interface refinement is more challenging, as it is necessary to identify and
consider all relevant subsystem requirements for the analysis.

For example, the validation of the interface refinement against the expectations of
stakeholders is complex, as the stakeholders also have to incorporate the decompo-
sition. Manual checks on whether the behavior of subsystem requirements conforms
to the behavior required in the refined system requirement are challenging as the
decomposition has to be considered.

Reuse: Documenting system interface refinement only on subsystem level also hin-
ders reuse of the refinement information when the architecture changes. In contrast,
if the interface refinement is already documented on the system level, then reuse of
concretization information is possible even when the decomposition of the system
into subsystems changes.

In order to close the gap, we introduced a new level of requirements called detailed
system requirements that have a design scope on the system, but contain the inter-
face refinements of the subsystem requirements. The detailed system requirements
contain all interface refinement information of the subsystem requirements that are
visible at system level. These detailed system requirements connect the abstract sys-
tem requirements with the detailed subsystem requirements. Figure 9.14 depicts the
refinement from system requirements to subsystem requirements. We introduced a
bottom-up restructuring approach that provides transformation operations for sub-
system requirements in order to obtain the detailed system requirements. The re-
structuring approach resulted in 14 detailed system requirements.

The restructuring approach required additional specification effort as we had to spec-
ify more requirements and more refinement links. This also increased the overall
number of formal requirements and formal refinement specifications. Nonetheless,
the introduction of the detailed system requirements could overcome the problems
related to the gaps:

Specification: By separating interface refinement and decomposition, information on
subsystems is not integrated with interface refinement when specifying representa-
tion and interpretation functions. Therefore, these functions become easier to specify.
This eliminates a possible source of specification errors.

Quality assurance: Quality assurance of the interface refinement, such as the valida-
tion against the expectations of the stakeholders, or the verification of requirements
against the implementation, can now be performed on system level independent
from the system decomposition.

181

9.1 Case Study on Applicability and Effectiveness

Reuse: Detailed knowledge of the system interface is now available not only at sub-
system level, but also on system level. This shift of knowledge from subsystem to
system level enables reuse of the interface refinement information when changing
the decomposition of the system into subsystems. The new requirements layer fa-
cilitates the understanding of the rationale behind decisions by separating interface
refinement and decomposition. An additional benefit is the possibility to introduce
exception/fault scenarios on system level based on the detailed system requirements.

From our point of view this justifies the additional specification effort. The investiga-
tion also revealed an open research question. In our case study, some of the detailed
system requirements were composed of numerous subsystems requirements. This
led to bloated requirements, in terms of extensive input and output port definitions.
These requirements also summarized several statements on the interface behavior of
the system. The size of these requirements made it labor extensive to validate that
the formalization of each requirement conformed to the textual specification and to
analyze the formal refinement specifications regarding completeness. This points to
the open research question regarding the size of requirements that is best suited for
the various activities performed on them.

Synthesize Interface Requirements into User Functions. The 22 interface
requirements on the subsystem level were synthesized into nine user
functions, thereof five for the onboard system, and four for the wayside system.
We composed these user functions into a model of the functional architecture of the
PSD function.

The synthesis revealed that two requirements contained conflicting conditions on
the same system response. A discussion with the domain experts revealed that both
requirements had to be synthesized into one requirement to overcome this conflict.

An interesting finding in developing the functional architecture was that the stimuli
of some requirements were responses defined in other requirements, leading to func-
tional dependencies between requirements. We called these dependencies “modes”.
Modes summarize conditions on sequences or sequence histories of stimuli that affect
the system behavior. Defining dedicated modes for these conditions avoids to spec-
ify them redundantly in the requirements. For example, a requirement defined the
conditions, under which the ‘door open command’ is stated. Another requirement
referred to this ‘door open command’. Without this mode, all condition would have
to be defined repeatedly in the second requirement. Modes are not visible at the sys-
tem boundary. Thereby, the notion of modes challenges the idea of pure black-box
requirements on the system interfaces. Vogelsang [Vog15] provides a deep investiga-
tion of the occurrences of these functional dependencies and their consequences in
practice, suggesting solutions on how to approach them.

Analyze User Functions. The analysis did not identify any quality issues.

Verify User Functions against Interface Requirements. The formal verification
of the user functions against the subsystem interface requirements con-
firmed that the functional architecture fulfilled 18 of the 22 formalized subsystem re-

182

9 Industrial Case Studies

quirements. Five requirements could not be verified because of tool issues. For three
requirements, the verification failed. A failed verification points to possible quality
issues that needs to be discussed with the stakeholders. The researchers investigated
the failed verifications and revealed that requirements were conflicting. Discussions
with the domain experts revealed that the requirements were conflicting, because
certain properties in the context of the PSD function were not explicitly documented
in the requirements. Furthermore, the verification revealed that we made a mistake
in the model of a user function, which we then corrected.

Validate the User Functions. The simulation of the user functions revealed
that an interface requirement was missing. This missing requirement was re-
lated to a condition for closing the train doors before train departure. After adding
this requirement, the PSD function reacted as expected.

Verify the Functional Architecture against the Scenario. The MSC Conformity
Check proved that the ‘Door open and supervision’ scenario is feasible in the func-
tional architecture of the system.

9.1.8 Benefits of the MIRA Approach

Despite the high quality of the input documents, the application of the MIRA ap-
proach resulted in concrete findings that could be used to improve the input docu-
ments. The application of the MIRA approach yielded several findings in the input
documents during the designation of terms, formalization, analysis, validation and
verification of requirements. The quality improvements obtained by applying the
MIRA approach are summarized in Table 9.3. Ambiguities, inconsistencies and in-
complete requirements were identified that prompted discussions with the domain
experts. The discussions revealed that the main reason for these quality issues was
undocumented domain knowledge. The case study confirmed some of the results of
the study on model-based quality assurance in RE that was presented in Chapter 4.
The case study even provided new insights that were not identified in Chapter 4.
The case study provided evidence that a synthesis of formal interface requirements
into a formal user functions can detect inconsistencies and that specifying a formal
refinement specification can identify missing requirements and trace links, thereby
increasing completeness.

The MIRA approach revealed a gap between system requirements and subsystem re-
quirements that could be analyzed based on the underlying formal system modeling
theory. The suggested approach for closing this gap can result in a less error-prone
specification, has a positive impact on the verification and can ease the reuse of re-
quirements when the system architecture changes.

The MIRA approach was also beneficial for subsequent development activities. Most
of the effort in the project was spent on requirements modeling. This included the
creation of the glossary and the formalization of requirements. However, this effort
facilitated other activities. The formalization of requirements greatly sped up the cre-
ation of the functional architecture, as its structure could be extracted directly from
the requirements. The functional architecture could, to a large degree, be derived

183

9.1 Case Study on Applicability and Effectiveness

Table 9.3: Quality improvements achieved in the case study by applying the MIRA approach
Quality Improvements
Adequacy
The MIRA approach increased the adequacy of system and subsystem re-
quirements by identifying missing refinement links between system and
subsystem requirements and a missing system requirement.
The MIRA approach increased the adequacy of user functions to their func-
tional requirements by identifying a fault made by a researcher in the model
of a user function.
Unambiguity
The MIRA approach decreased lexical ambiguity of the terms used in func-
tional requirements by identifying domain terms without description.
The MIRA approach removed a syntactical ambiguity caused by alternative
interpretations of the description of a functional requirement.
Completeness
The MIRA approach increased the logical completeness of functional re-
quirements by identifying a missing requirement for closing the train doors.
Consistency
The MIRA approach increased the logical consistency of functional require-
ments by identifying requirements with conflicting conditions on the same
system response.
The MIRA approach increased the logical consistency of functional require-
ments by identifying conflicting requirements because of undocumented
properties of the context of the PSD function.

from the formalized requirements in a straightforward manner. The development
from a logical architecture to implementation code could be conducted with approx-
imately the same effort as it was needed for the development of a requirements spec-
ification and the functional architecture. During these phases, no quality issues were
detected that originated from functional requirements or an inadequate system be-
havior.

9.1.9 Threats to Validity and Limitations

The case study was faced with the following threats to validity and limitations.

Quality Assurance. The study object is an industrial specification of a system that
had already been implemented. This might be a threat to internal validity, as the input
specifications already had a very high quality and only minor issues could be de-
tected during the quality assurance. This high quality of the input specification also
influenced the classification and formalization of requirements, as this step might
have been more difficult with an input specification with lower quality.

184

9 Industrial Case Studies

Application by Researchers. The application of the MIRA approach has been con-
ducted by a group of researchers with a profound knowledge of the MIRA approach,
the AutoFOCUS3 tool and the modeling language. This had an effect on the re-
sults with respect to the applicability of the MIRA approach. It represents a threat to
the external validity of the case study, when results should be generalized to domain
experts. The researchers demonstrated and discussed the application of the MIRA
approach to the domain experts in regular workshops. Nonetheless, the case study
is not designed to demonstrate the applicability by domain experts. The reliability of
the case study can be influenced by this decision, as it is possible that other persons
might interpret the MIRA guidelines differently.

Time Estimates. Realistic effort estimations and time consumptions cannot be de-
duced from this case study. The study was not performed in the context of the
Siemens organization. The time frame did not correspond to a realistic environment
with tight deadlines. Furthermore, the time period for conducting the project in-
cluded the time required for modeling, but additionally also the time to research,
present and discuss the study findings and document the case study results. A way
to investigate usability and realistic time estimates would be to train experts from
industry in the MIRA approach and tool and then perform the case study by the
trained domain experts in a realistic environment.

Domain. The case study applied the MIRA approach to a study object from the
train automation domain. The generalizability with respect to other domains cannot
be guaranteed by this study.

Other case studies with different settings have applied MIRA in the context of em-
bedded systems (see Section 9.3). The generalizability of the sum of these studies is
discussed below.

Usability. The modeling was undertaken by the academic partners, who were ex-
perts in the MIRA approach, the tool and the modeling language. Therefore, the
usability of the MIRA approach could not be assessed in the case study.

9.1.10 Summary

The case study showed that the MIRA approach was applicable for this study ob-
ject. We could model the PSD by applying the MIRA approach. The MIRA approach
was applied on two levels of abstraction, the system level and the subsystem level.
We validated the textual and formal requirements with the Siemens project mem-
bers in the workshops. We analyzed the requirements and their refinement. The
formal requirements and the formal refinement specifications were used to verify
subsystem requirements against system requirements and the functional architec-
ture against subsystem requirements. The application of MIRA improved the quality
of the Siemens documents. Furthermore, the application refined the MIRA approach
and resulted in an improved and more detailed guideline and attributes for the de-
scription of interface requirements.

185

9.2 Case Study on Extensibility

9.2 Case Study on Extensibility

The Liebherr Case Study was conducted within the SPES-XT project2. The study
object was a flight control system. The purpose of the collaboration between Lieb-
herr and fortiss was to develop methods that facilitate the synthesis of deployments
for flight control systems. In particular, the automatic deployment generation for
Liebherr flight controls was investigated. This deployment must fulfill various re-
quirements with respect to safety, communication, storage and timing. For modeling
and deployment generation, AutoFOCUS3 was used.

9.2.1 Study Object

Modern aircraft must satisfy strict requirements on safety, performance and secu-
rity. New functionality in their software often requires additional hardware. Any
increase in hardware must be accommodated within limited space. Furthermore, it
increases production costs, aircraft weight and power requirements. To address these
challenges, modern aircraft architectures include complex embedded cyber-physical
systems. An example is the flight control system, which is responsible for the mov-
able surfaces that control the aircraft’s direction in flight. The study object is a flight
control system developed by Liebherr. For this case study, Liebherr provided a set
of requirements that constrain the deployment of the flight control system. Based on
these requirements, deployments had to be synthesized for different configurations
of software applications and execution platforms.

9.2.2 Research Objectives

The goal of the part of the case study presented here was to show the extensibility
of the MIRA artifact reference structure and tool. The Liebherr Case Study extended
the MIRA artifact reference structure and its implementation in the MIRA tool to be
able to specify domain-specific requirements and to trace these requirements to sub-
sequent component architectures. In order to document the respective requirements,
MIRA was extended with a set of templates for project-specific requirement types.
The extensibility of the MIRA artifact reference structure and tool regarding new re-
quirement types was evaluated. This case study is presented more briefly compared
to the first case study, as it only demonstrates this specific aspect of MIRA.

9.2.3 Study Design

The case study was conducted using the tool AutoFOCUS3. The MIRA tool is im-
plemented as a plug-in for AutoFOCUS3. Accordingly, the requirement types were
implemented and the requirements were modeled using AutoFOCUS3. A staff mem-
ber of the same research group as the author conducted the implementation of the
extensions.

2http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html

186

http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html

9 Industrial Case Studies

9.2.4 Results

MIRA Extensions. In the scope of the Liebherr case study, four requirement types
were distinguished; communication, storage, safety and timing. The MIRA artifact
reference structure (implemented in the MIRA tool as an EMF model) for the new re-
quirement types was developed by inheriting from the generic requirement. Fig-
ure 9.15 shows the definition of the Liebherr requirements. The new requirement
types were annotated with specific attributes, for example, a communication require-
ment should contain the communication type and the amount of bandwidth needed.
No additional changes on the artifact reference structure were necessary.

Figure 9.15: EMF models for the Liebherr requirements

GUI Extensions. The new requirement types were included in the GUI of Auto-
FOCUS3 by defining those elements which were required by the AutoFOCUS3 mod-
eling framework. For the GUI representation of requirements only the detail section
of the existing requirements template had to be extended with the specific Liebherr
attributes. Figure 9.16 shows the requirement menu that includes the Liebherr re-
quirements.

Extension of MIRA Operations. No further extensions on the MIRA operations
were necessary.

Size of the Case Study. Each software component of the Liebherr study object
must satisfy several requirements and often more than one requirement of a particu-
lar type. Figure 9.17 shows the requirements created for a software application. This
component claims bandwidth on three distinct interconnects and also requires three

187

9.2 Case Study on Extensibility

Figure 9.16: Requirement menu

separate blocks of memory. In the Liebherr model, a component is always associated
with at least seven to eight requirements. Based on these requirements, deployments
could be synthesized for several configurations of software applications and execu-
tion platforms. The largest configuration contained 25 software applications with 190
requirements and 25 execution platforms.

Figure 9.17: Requirements of a control loop software application

Perceived Difficulty of the Extension. The work needed to extend the require-
ment framework was simple and intuitive, mostly driven by the AutoFOCUS3 devel-
opment conventions. It was sufficient to extend the requirements data model and the
GUI as described above. No new functions needed to be implemented in AutoFO-
CUS3 for the integration of the new requirement types. Moreover, for this case study
the existing tracing links between requirements and components could be used. The
case study could benefit from the fact that requirements of the same type could be
modeled easily, which was an important feature that the MIRA framework offered.

9.2.5 Threats to Validity and Limitations

Experience with the MIRA Approach. The researcher was familiar with the MIRA
approach, but not particularly experienced in the MIRA approach, in AutoFO-
CUS3 development or involved in the previous development activities of MIRA.

188

9 Industrial Case Studies

Implementation Support. During the implementation, the researcher was sup-
ported by the developers of the MIRA tool. The collaboration helped the researcher
to identify the extension points more quickly. This may influence the perceived facil-
ity of the extension.

Domain. The researcher evaluated the extensibility in one case study in the flight
control system domain. In order to generalize the results, several case studies in
different domains would need to be conducted.

Coverage of the MIRA Approach. The case study reflects the extensibility of new
kinds of requirement types by adding additional templates for these types. No ad-
ditional formal models or new kinds of operation on the artifact reference structure
were added. The case study did not formalize requirements to a formal representa-
tion. In order to generalize the results, several case studies would need to be con-
ducted that extend different aspects of MIRA.

9.2.6 Summary

The Liebherr Case Study showed that an extension of MIRA with new requirements
types is possible within few steps. The use of the MIRA tool facilitated the devel-
opment and specification of domain-specific templates for requirements (commu-
nication, storage, safety, timing) as well as tracing them to subsequent component
architectures.

9.3 Further Studies with MIRA

Researchers extended the MIRA approach with respect to safety information.

Safety Attributes for Requirements. A group of researchers extended MIRA with
capabilities to specify safety-relevant information on the requirements level. Anno-
tating a safety-level for each requirement provides the capability to track and trace
this information in the system development and use these requirements as an input
for safety analysis. How to integrate a safety analysis in MIRA and its implementa-
tion in AutoFOCUS3 is for example described in [VSKC13].

Researchers applied MIRA in the following case studies:

Pacemaker Software. Gareis [Gar12] modeled the requirements for a pacemaker
software in AutoFOCUS3 using MIRA. Requirements were specified textually and
modeled as state automata or I/O assertions. Based on the state automata, test cases
were generated and performed on the model of the system architecture. The I/O
assertions were verified by applying model-checking. The model of the architecture
was tested against a Matlab/Simulink model of a heart.

189

9.4 Conclusion

Monitoring and Control System for a Desalination Plant. Campetelli et al.
[CJB+15] applied MIRA to model parts of a desalination plant. The study object
was a monitoring and control system that supervises the water level of the seawater
tank of the desalination plant. MIRA was applied to specify the textual and formal
functional requirements. The formal requirements were verified at an early stage in
the development process. The authors reported that the tool support was suitable.
The authors reported benefits of the formalization of requirements: Obtaining more
precise requirements with defined semantics and avoiding errors and incomplete re-
quirements. The case study furthermore confirmed the conformance of MIRA with
the SPES development method.

Canal Monitoring and Control System. AutoFOCUS3 together with the MIRA
tool has been used in a series of master-level practical courses on model-based en-
gineering for students at the Technische Universität München. Vogelsang et al.
[VEH+14] report on the results of two consecutive courses. They describe the set
of artifacts and the concrete process that was applied in these two courses. The case
that was modeled in these two courses is a canal monitoring and control system. The
courses developed a system model from requirements to an architecture model from
which code could be generated. The students worked in two groups: The first group
developed the requirements specification and the second group developed the sys-
tem architecture. MIRA enabled the continuous conformance assessment between
requirements and architecture, leading to a high confidence that requirements and
architecture conform to each other. The requirements were specified textually based
on an input specification. The case study applied the use case and scenario templates
provided by MIRA. Scenarios were formalized by MSCs. A set of rules was provided
to check the formalization results. MSCs were finally used to automatically check the
resulting architecture model for conformance with the scenarios.

9.4 Conclusion

The case studies presented in this chapter indicate that the MIRA approach is effec-
tively applicable in different domains and by different user groups.

User Groups of MIRA. The case studies reported in this chapter were either con-
ducted by researchers in collaboration with the author, by researchers independently
of the author, or by students guided by other researchers.

Quality Assurance. The application of MIRA in case studies yielded concrete find-
ings in the resulting requirement models that increased the quality of the requirement
models, especially the functional requirements. The MIRA approach scaled to the
size of several user-visible system functions in industry and to the size of academic
examples of monitoring and control systems.

Domains. Case studies with MIRA were conducted on a set of cases from industry
and academia. These cases covered the domains train automation system, pacemaker

190

9 Industrial Case Studies

software and a desalination plant, thereby covering some parts of the embedded
systems domain.

In a second type of projects, researchers provided extensions of MIRA with further
requirement types and attributes, demonstrating its extensibility.

Nevertheless, some aspects of the MIRA approach remain subject to further investi-
gations. We did not investigate the application of MIRA by practitioners in realistic
circumstances. This could provide insights into costs and benefits of the MIRA ap-
proach. A systematic investigation of the scalability of the MIRA approach could
alleviate the application of MIRA in industry. As MIRA includes a variety of man-
ual activities, these aspects are highly intertwined with research on the usability of
model-based RE approaches. In the investigation of usability, engineering aspects
are influenced by psychological aspects and therefore require a carefully designed
research strategy that goes beyond the research objective of this work.

191

Chapter 10
Summary and Outlook

This chapter summarizes the contributions of this thesis and provides possible direc-
tions for further research.

10.1 Summary

This thesis is based on the research question “How to specify functional requirements
in a seamless model-based development approach for embedded software and sys-
tems engineering in order to enable the model-based analysis, validation and veri-
fication for both textual and formal representations?’ (see Section 1.3). This thesis
systematically investigates this problem, presents a suitable solution, and validates
and evaluates this solution.

10.1.1 Challenges

In this thesis, we suggest the MIRA approach for the model-based specification and
quality assurance of functional requirements. The MIRA approach provides a solu-
tion for the four challenges listed in Section 1.2:

Challenge 1: Supporting the Textual and Formal Representation of Require-
ments. The MIRA approach supports heterogenous requirements specifications
where a user can specify functional requirements as informal prose or using a semi-
formal or formal representation. Furthermore, MIRA provides support for the qual-
ity assurance of both textual and formal representations.

Challenge 2: Covering the Analysis, Validation and Verification of Require-
ments. MIRA enables model-based quality assurance of the functional require-
ments. The MIRA guideline defines specification activities on the artifact reference
model that aim at avoiding quality issues constructively. Furthermore, the specifica-
tion enables a set of analytical model-based techniques to support quality assurance:

• Analysis by database queries and formal techniques,

193

10.1 Summary

• Validation by database queries and simulation,

• Verification by database queries and formal techniques.

Challenge 3: Integrated in a Seamless Development Approach. MIRA is inte-
grated in a seamless model-based development approach and thereby enables the
model-based verification of functional requirements. The model-based development
approach consists of the formal system modeling theory FOCUS and the SPES mod-
eling framework that structures the system under development into viewpoints and
abstraction layers. The MIRA artifact reference model defines a reference for the
contents of a requirements specification, relates these to FOCUS and integrates the
contents into SPES.

Challenge 4: Providing Guidance and Tool Support for Challenges 1 - 3 The
MIRA guideline offers method support for the MIRA approach by defining the nec-
essary steps to instantiate a requirements specification according to the MIRA artifact
reference model. The MIRA tool is embedded in the model-based software and sys-
tems development tool AutoFOCUS3. MIRA uses the model-based specification and
quality assurance capabilities of AutoFOCUS3 for requirements engineering.

10.1.2 Contributions

In the following, we present the contributions of this thesis.

10.1.2.1 Systematic Investigation of Model-based RE for Quality Assurance

The first part of this work was a systematic analysis of the characteristics that a
model-based RE approach should possess. The investigations determined the es-
sential characteristics that MIRA should meet.

Contribution 1: Quality Factors of a Requirements Specification that Enable
Model-based Quality Assurance. The goal of the first study was to identify the
means to improve the effectiveness and efficiency of quality assurance of functional
requirements through model-based RE. System quality factor are those characteristics
of an artifact, for example, of an RE concept, that have an effect of the quality of
the system under development. Quality factors with a negative effect are the so-
called quality issue. The system quality factors that we investigated in the study are
completeness, consistency, unambiguity and adequacy. The corresponding target quality
issues are incompleteness, inconsistency, ambiguity and inadequacy. The study investi-
gated two means to increase the quality of functional requirements with respect to
the system quality factors. Firstly, the quality can be increased constructively dur-
ing the specification through rules that ensure the absence of specific quality issues.
Secondly, the quality can be increased analytically through the analysis, validation
and verification of requirements. Improving the efficiency and effectiveness of these
quality assurance activities directly affects the quality of the requirements. We call

194

10 Summary and Outlook

those characteristics of the requirements specification with an impact on the quality
assurance activities QA quality factors.

The study investigates how a set of RE concepts and their QA quality factors pos-
itively impact a set of system quality factors of the system under development
through quality assurance. The contribution of this study is a literature study of
evidence for these positive impacts. The study identified a set of RE concepts whose
definition can positively impact quality assurance. Furthermore, the study investi-
gated QA quality factors that structure and represent these RE concepts in order to
enable analytical model-based quality assurance. Each of the concepts and their QA
quality factors lead to a more effective or efficient quality assurance of functional
requirements. Thereby, they lead to an improvement in the quality of these require-
ments with respect to the system quality factors. The results of this study have been
incorporated directly in the MIRA approach: RE concepts and QA quality factors in
the MIRA artifact reference structure; the activities in the MIRA guideline; impacts
on efficiency through automation in the MIRA tool.

Contribution 2: Requirements for a Model-based RE Approach. The contribu-
tion of this study is a list of 31 requirements for a model-based RE tool. The require-
ments result from a systematic literature research and consolidated and amended
in a questionnaire amongst RE practitioners. The requirements include the various
representation forms of requirements that a tool should support. Furthermore, the
requirements include tracing abilities of the tool, interfaces of the tool and quality
assurance techniques. The last two categories of requirements, requirements on ab-
straction layers that the tool should support and requirements on guidance, go be-
yond tool capabilities. These requirements indicate that practitioners not only require
a simple modeling tool that facilitates the application of a modeling language such
as UML, but that practitioners need an RE approach that includes a tool. The study
result confirmed the main challenges addressed by MIRA and was used as an input
to develop the MIRA approach.

10.1.2.2 Development of the Model-based RE Approach

The thesis presented the MIRA approach that was developed based on the results
from the first part of this thesis.

Contribution 3: An Artifact Reference Structure for Model-based Quality Assur-
ance. This thesis contributes the MIRA artifact reference structure that integrates
the RE concepts and QA quality factors resulting from the first study. Thereby, each
of the model elements has a clear positive impact on the quality assurance of func-
tional requirements. The artifact reference structure defines the concepts to be spec-
ified during RE. Attributes structure the information of each concept. MIRA distin-
guishes three RE concepts to describe functional requirements: Scenarios, interface
requirements, and user functions. These RE concepts can be represented formally
based on the FOCUS modeling theory. The MIRA artifact reference structure is em-
bedded into the SPES modeling framework for system and software development.

195

10.1 Summary

Contribution 4: A Guideline for the Model-based Specification and Quality As-
surance of Functional Requirements. A contribution of this thesis is the MIRA
guideline that defines a coherent set of steps describing how to conduct the specifi-
cation and quality assurance of functional requirements. The specification includes
the textual specification and the formalization of functional requirements. Quality
assurance activities comprise the analysis, validation and verification of functional
requirements. The RE concepts, attributes and formal representations defined in the
MIRA artifact reference structure facilitate syntactical analyses on the structure of the
requirements specification. These checks can even detect some quality issues, when
a requirement is documented as prose. A formal representation of a functional re-
quirement facilitates formal analysis techniques such as checks on non-determinism.
An executable representation enables a simulation of functional requirements.

10.1.2.3 Validation and Evaluation of the Model-based RE Approach

This thesis presented the technical validation of the MIRA approach in a feasibility
analysis and its evaluation in case studies.

Contribution 5: Feasibility Analysis of the MIRA Approach. The thesis con-
tributes a feasibility analysis of the MIRA approach through the implementation in
a tool. The MIRA tool implements the MIRA artifact reference structure as a data
model and offers operations on the data model to support the MIRA guideline. The
MIRA tool facilitates data manipulation to create, delete, and change the require-
ments specification and parts thereof. The MIRA tool provides automated reviews
on the structure of the requirements specification, formal techniques for the analysis
and verification, and an animation-based simulation of functional requirements. Dif-
ferent views on the data, for example, a tree view on the documented trace links, vi-
sualize and filter the requirements specification based on the MIRA artifact reference
structure. These views support manual reviews of the requirements specification.

Contribution 6: Case Study on the Effective Application of the MIRA Approach.
The first case study applied the MIRA approach to develop a part of a train control
system. The case study demonstrates that the MIRA approach is indeed applica-
ble for an industrial specification. The case study applies MIRA to the door control
of an automated train control system. Hence, the case study shows that the MIRA
approach scales to the size of several user-visible system functions. The case study
contains requirements for the train and for train controller subsystems. Therefore,
the case study also demonstrates that MIRA is applicable to both system and sub-
system level. The case study identifies findings in the requirements specification that
substantiate some of the expected benefits of the MIRA artifact reference structure.
Another result of this case study is an improvement of the MIRA approach, resulting
in a refined guideline for the formalization of requirements and refinement links and
in the introduction of interface requirements in the MIRA artifact reference structure.

The MIRA approach was applied in several other case studies. The second case study
presented in this thesis demonstrated the extensibility of MIRA with a set of require-
ment types specific for a flight control system. The case study was based on an in-

196

10 Summary and Outlook

dustrial specification from the domain of flight control systems. Further case studies
were presented briefly; they indicate that the MIRA approach is also effectively ap-
plicable in different domains and by different user groups. Additionally, they show
that the MIRA approach facilitates other researchers in this field to carry out research
that builds on MIRA. For example, researchers investigated questions concerning
seamless model-based development. Other researchers developed approaches for
extra-functional requirements such as safety requirements.

10.1.3 Scientific Approach

In the following we discuss the scientific soundness of the MIRA approach.

Novelty. Cheng and Atlee stated in their paper on research directions in RE "Most
research projects focus on a single RE problem, such as elicitation or traceability. As
a result, the state of the art in RE research is a collection of technologies that have
been researched and evaluated in isolation, with little knowledge of how to com-
bine techniques effectively" [CA07]. To increase the "knowledge of how to combine
techniques effectively" [CA07], MIRA uses well-known and proven RE concepts and
model-based specification and quality assurance techniques. This thesis showed a
systematic way to investigate combinations of these concepts and techniques with
respect to a comprehensive and clear impact on quality assurance. Furthermore, this
thesis showed how to integrate these techniques based on the study results. In addi-
tion, this thesis yielded new insights on the nature of RE quality factors (Chapter 4)
and on the refinement of system to subsystem requirements (Chapter 9). With respect
to the concrete approaches used in this thesis, MIRA closes a gap between these. Cur-
rently, the SPES modeling framework [PHAB12] focuses on supporting elicitation of
requirements and communication between the stakeholders. MIRA defines the con-
tents of the requirements viewpoint using the FOCUS system modeling theory [BS01]
and provides method and tool support. The integration of SPES and FOCUS for the
requirements viewpoint is new.

Effectiveness. MIRA is effective in the sense that each of the model elements in
MIRA has a positive impact on the quality of requirements. This effectivity is ad-
dressed by construction through a detailed investigation and argumentation that
each model element has a positive impact on the specification, analysis, validation
or verification of functional requirements as investigated in the first study presented
in this thesis. For example, the MIRA artifact reference structure contains a glossary
entry, because defining glossary terms and their definition decreases term ambiguity.
Ambiguous terms might influence the validation of requirements negatively, as dif-
ferent stakeholders could understand this term differently. Therefore, glossary terms
have a positive impact on the validation of requirements. These impacts could be
substantiated by literature to a varying degree of proof. The main positive impacts
of MIRA were confirmed in a case study.

Well-grounded. Each of the model elements integrated in the MIRA approach is
well-grounded, it references either to an established RE practice or is based on a log-

197

10.2 Outlook

ical approach. The references are given in Chapter 6 that presents the MIRA artifact
reference structure and in Chapter 7 that presents the guideline.

Relevance. The initial need for an approach like MIRA was stated in a survey con-
ducted by Sikora et al. [STP12]. The authors pointed out that an adequate method
and tool support for model-based RE that supports both the textual and formal rep-
resentation of requirements is still missing. This need was confirmed and refined in
a study into requirements for a model-based RE requirements that the author con-
ducted in collaboration with Dongyue Mou and Maged Khalil. The results of this
study are presented in Chapter 5.

Applicability and Scalability. This work showed that the MIRA approach can be
applied to the specification and quality assurance of requirements. The MIRA guide-
line provides a theoretical validation of the applicability of the MIRA artifact ref-
erence structure. The MIRA tool provides mechanisms to apply the MIRA guide-
line and demonstrates the feasibility of the MIRA artifact reference structure. The
case study on a train control system evaluates the applicability and scalability of the
MIRA approach to functional requirements for a system function. Other case stud-
ies indicate that MIRA is also applicable for other domains. The case studies are
presented in Chapter 9.

10.2 Outlook

This section presents the main open research questions that we identified during the
development of the MIRA approach.

Extra-functional Requirements. The MIRA artifact reference structure has been
extended with extra-functional requirements in case studies. Nevertheless, an
activity-based investigation of extra-functional requirements with respect to quality
assurance for the integration in the MIRA approach is still missing.

Systematic Handling of Modes. Modes are a means to describe dependencies be-
tween system functions. The theoretical foundation for modes in RE has been pro-
vided by Vogelsang [Vog15]. As the case study of a train control system showed, this
theoretical foundation is compatible with the MIRA approach. Hence, a next logi-
cal step would be to extend the MIRA approach so that it incorporates the explicit
handling of modes.

Further Automation. Automation could provide further potential savings. For ex-
ample, the redundancy in the different representation forms could be handled by
automated transformations from the formal representation to a textual representa-
tion of a requirement and vice versa. This automation promises savings, but at the

198

10 Summary and Outlook

same time restricts the expressiveness of the less formal representation. Further au-
tomation could be the subject of detailed studies to establish its advantages and dis-
advantages.

Impacts of QA Quality Factors. This thesis investigated the positive impacts
of QA quality factors on system quality factors through quality assurance. To
strengthen the findings from the study results, further investigations on the impacts
are necessary. Further research on the evidence for the positive impacts in different
settings would improve the reliability of the study. Negative impacts should be in-
vestigated and balanced with the positive impacts. As the study was limited to a set
of QA activities, the positive and negative impacts of the QA quality factors on other
activities could be studied, for example regarding collaboration and communication.

Costs and Benefits. The benefit of the MIRA approach investigated in this thesis
is the effective and efficient quality assurance of functional requirements. This thesis
did not quantify this benefit, investigate further benefits, or relate the benefits of
the approach to the costs of applying the MIRA approach. The author performed
a first step towards an investigation of further benefits of the MIRA approach by
investigating the impact of the granularity of an artifact reference structure on the
change impact analysis [TH15].

199

Bibliography

[ABR05] Anne Angermann, Michael Beuschel, and Martin Rau. Matlab -
Simulink - Stateflow. Mit erweiterter CD-ROM. Grundlagen, Toolboxen,
Beispiele. Oldenbourg, 2005. (cited on p 50)

[AIP07] M. Autili, P. Inverardi, and P. Pelliccione. Graphical scenarios for spec-
ifying temporal properties: an automated approach. Automated Software
Engineering, 2007. (cited on p 35)

[AVT+15] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, and Bern-
hard Schätz. Autofocus 3: Tooling concepts for seamless, model-based
development of embedded systems. In Proceedings of the 8th International
Workshop on Model-based Architecting of Cyber-Physical and Embedded Systems
(ACES-MB@MODELS), 2015. (cited on pp 10, 11, 29, 105, 153)

[BB06] Brian Berenbach and Gail Borotto. Metrics for model driven requirements
development. In Proceedings of the 28th International Conference on Software
Engineering (ICSE), 2006. (cited on p 86)

[BBB+12] Jiri Barnat, Jan Beran, Lubos Brim, Tomas Kratochvíla, and Petr Ročkai.
Formal Methods for Industrial Critical Systems, chapter Tool Chain to Support
Automated Formal Verification of Avionics Simulink Designs, pages 78–92.
Springer Berlin Heidelberg, 2012. (cited on p 46)

[BCG+10] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek,
Robert Könighofer, Marco Roveri, Viktor Schuppan, and Richard Seeber.
Ratsy - a new requirements analysis tool with synthesis. In Computer Aided
Verification, 2010. (cited on p 44)

[BCMW15] John Backes, Darren Cofer, Steven Miller, and MichaelW. Whalen. Re-
quirements analysis of a quad-redundant flight control system. In NASA
Formal Methods. Springer International Publishing, 2015. (cited on
pp 45, 46, 47, 48, 49)

[BCP+07] Roderick Bloem, Roberto Cavada, Ingo Pill, Marco Roveri, and Andrei
Tchaltsev. Rat: A tool for the formal analysis of requirements. In Computer
Aided Verification. Springer Berlin Heidelberg, 2007. (cited on p 44)

[BDH+12] Manfred Broy, Werner Damm, Stefan Henkler, Klaus Pohl, Andreas Vogel-
sang, and Thorsten Weyer. Model-based Engineering of Embedded Systems:
The SPES 2020 Methodology, chapter Introduction to the SPES Modeling
Framework, pages 31–49. Springer Berlin Heidelberg, 2012. (cited on
pp 13, 22, 23, 24)

[Ber10] Brian Berenbach. Requirements engineering for industrial systems: No
easy answers. In Proceedings of the 18th IEEE International Requirements En-

201

Bibliography

gineering Conference (RE), 2010. (cited on p 86)

[BFH+10] Manfred Broy, Martin Feilkas, Markus Herrmannsdoerfer, Stefano
Merenda, and Daniel Ratiu. Seamless model-based development: From
isolated tools to integrated model engineering environments. Proceedings
of the IEEE, 2010. (cited on pp 3, 4, 22, 72, 154)

[BJV+14] Wolfgang Böhm, Maximilian Junker, Andreas Vogelsang, Sabine Teufl, Ralf
Pinger, and Karsten Rahn. A formal systems engineering approach in prac-
tice: An experience report. In Proceedings of the 1st International Workshop on
Software Engineering Research and Industrial Practices (SER&IPs), 2014. (cited
on pp 11, 131, 168, 176)

[BMR12] Jan Olaf Blech, Dongyue Mou, and Daniel Ratiu. Reusing test-cases on
different levels of abstraction in a model based development tool. In Pro-
ceedings of the Seventh Workshop on Model-Based Testing (MBT), 2012. (cited
on pp 32, 35, 140, 164)

[BP88] Barry W. Boehm and Philip N. Papaccio. Understanding and controlling
software costs. IEEE Transactions on Software Engineering, 1988. (cited on
p 1)

[Bra08] Ian Brace. Questionnaire Design: How to Plan, Structure and Write Survey
Material for Effective Market Research (Market Research in Practice). Kogan
Page, 2nd edition, September 2008. (cited on pp 85, 99)

[BRB+14] Elizabeth Bjarnason, Per Runeson, Markus Borg, Michael Unterkalm-
steiner, Emelie Engström, Björn Regnell, Giedre Sabaliauskaite, Annabella
Loconsole, Tony Gorschek, and Robert Feldt. Challenges and practices in
aligning requirements with verification and validation: A case study of six
companies. Empirical Software Engineering, 2014. (cited on p 101)

[Bro06] Manfred Broy. Requirements engineering as a key to holistic software qual-
ity. In Computer and Information Sciences – ISCIS, 2006. (cited on p 100)

[Bro10a] Manfred Broy. A logical basis for component-oriented software and sys-
tems engineering. The Computer Journal, 2010. (cited on p 28)

[Bro10b] Manfred Broy. Multifunctional software systems: Structured modeling and
specification of functional requirements. Science of Computer Programming,
2010. (cited on pp 9, 10, 22, 25, 115, 130)

[Bro13a] Manfred Broy. Engineering Dependable Software Systems, chapter A Logi-
cal Approach to Systems Engineering Artifacts and Traceability: From Re-
quirements to Functional and Architectural Views, pages 1–48. IOS Press,
2013. (cited on pp 9, 22, 24, 25, 64, 76, 127)

[Bro13b] Manfred Broy. Perspectives on the Future of Software Engineering: Essays in
Honor of Dieter Rombach, chapter Domain Modeling and Domain Engineer-
ing: Key Tasks in Requirements Engineering, pages 15–30. Springer Berlin
Heidelberg, 2013. (cited on p 19)

[Bro15a] M. Broy. Rethinking nonfunctional software requirements. Computer, 2015.
(cited on pp 14, 25)

[Bro15b] Manfred Broy. Logische und Methodische Grundlagen der Programm- und
Systementwicklung. Vorlesungsskript, 2015. (cited on p 18)

[BS01] M. Broy and K. Stølen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Springer, 2001. (cited on
pp 5, 7, 9, 18, 21, 22, 25, 28, 29, 31, 46, 63, 73, 119, 197)

202

Bibliography

[BS10] Devesh Bhatt and Kirk Schloegel. Effective verification of flight critical soft-
ware systems: Issues and approaches. Presented at NSF/Microsoft Research
Workshop on Usable Verification., 2010. (cited on pp 46, 50)

[BW81] Patrick Biernacki and Dan Waldorf. Snowball sampling: Problems and
techniques of chain referral sampling. Sociological methods & research, 1981.
(cited on p 42)

[CA07] B.H.C. Cheng and J.M. Atlee. Research directions in requirements engi-
neering. In Proceedings of the International Conference on the Future of Software
Engineering (FOSE), 2007. (cited on pp 2, 15, 100, 197)

[CCGR00] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco
Roveri. NUSMV: a new symbolic model checker. International Journal on
Software Tools for Technology Transfer (STTT), 2000. (cited on pp 35, 51)

[CDGNFA+12] Juan M. Carrillo De Gea, Joaquín Nicolás, José L. Fernández Alemán, Am-
brosio Toval, Christof Ebert, and Aurora Vizcaíno. Requirements engineer-
ing tools: Capabilities, survey and assessment. Inf. Softw. Technol., 2012.
(cited on p 101)

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
(cited on p 76)

[CHN11] A. Campetelli, F. Hölzl, and P. Neubeck. User-friendly model checking inte-
gration in model-based development. In Proceedings of the 24th International
Conference on Computer Applications in Industry and Engineering (CAINE),
2011. (cited on p 35)

[CJB+15] Alarico Campetelli, Maximilian Junker, Birthe Böhm, Maria Davidich,
Vasileios Koutsoumpas, Xiuna Zhu, and Jan Christoph Wehrstedt. A
model-based approach to formal verification in early development phases:
A desalination plant case study. In Gemeinsamer Tagungsband der Work-
shops der Tagung Software Engineering 2015, Fünfter Workshop zur Zukunft der
Entwicklung softwareintensiver, eingebetteter Systeme (ENVISION 2020), 2015.
(cited on p 190)

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Longman
Publishing Co., Inc., 2000. (cited on pp 9, 67, 109, 115, 116, 119, 120)

[Cona] Wikipedia Contributors. Ambiguity. Accessed April 30, 2015. (cited on
p 63)

[Conb] Wikipedia Contributors. Kano model. Accessed June 1, 2015. (cited on
p 108)

[CRST09] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta. From
informal requirements to property-driven formal validation. In Formal
Methods for Industrial Critical Systems. Springer Berlin Heidelberg, 2009.
(cited on pp 9, 36, 130, 150)

[CRST13] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta. Vali-
dation of requirements for hybrid systems: A formal approach. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 2013. (cited on
pp 9, 36, 37, 45, 45, 46, 51, 130)

[DAC99] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property speci-
fications for finite-state verification. In Proceedings of the 21st International
Conference on Software Engineering (ICSE), 1999. (cited on p 31)

[DDR03] Emmanuelle Delor, Robert Darimont, and André Rifaut. Software qual-
ity starts with the modelling of goal-oriented requirements. In Proceedings

203

Bibliography

of the 16th International Conference Software & Systems Engineering and their
Applications, 2003. (cited on pp 46, 49)

[DO112] DO-178C, software considerations in airborne systems and equipment cer-
tification, 2012. (cited on pp 101, 127)

[dSAVP10] Thiago C. de Sousa, Jorge R. Almeida, Jr., Sidney Viana, and Judith Pavón.
Automatic analysis of requirements consistency with the b method. SIG-
SOFT Software Engineering Notes, 2010. (cited on pp 45, 46, 47, 65)

[DTW12] Marian Daun, Bastian Tenbergen, and Thorsten Weyer. Model-based Engi-
neering of Embedded Systems: The SPES 2020 Methodology, chapter Require-
ments Viewpoint, pages 51–68. Springer Berlin Heidelberg, 2012. (cited on
pp 23, 24, 59, 61, 66, 77, 78, 104, 105, 120, 124)

[EGHB07] Alexander Egyed, Paul Grünbacher, Matthias Heindl, and Stefan Biffl.
Value-based requirements traceability: Lessons learned. In Proceedings of
the 21st IEEE International Requirements Engineering Conference (RE), 2007.
(cited on p 85)

[Eis07] Cindy Eisner. Psl for runtime verification: Theory and practice. In Pro-
ceedings of the 7th International Conference on Runtime Verification (RV), 2007.
(cited on p 36)

[ESH14] Christian Ellen, Sven Sieverding, and Hardi Hungar. Detecting consisten-
cies and inconsistencies of pattern-based functional requirements. In Pro-
ceedings of the 19th International Conference on Formal Methods for Industrial
Critical Systems (FMICS), 2014. (cited on pp 46, 50)

[EVMF16] Jonas Eckhardt, Andreas Vogelsang, and Daniel Méndez Fernández. Are
non-functional requirements really non-functional? An investigation of
non-functional requirements in practice. In Proceedings of the 38th Inter-
national Conference on Software Engineering (ICSE), 2016. (cited on p 67)

[Eza15] Elijah Ezaga. Model-based requirements engineering: A systematic map-
ping study. Master thesis, Techische Universität München, Sep. 2015. Su-
pervisor: Prof. Manfred Broy, Advisor: Sabine Teufl. (cited on pp 3, 39, 44)

[FCC13] Davide Falessi, Giovanni Cantone, and Gerardo Canfora. Empirical prin-
ciples and an industrial case study in retrieving equivalent requirements
via natural language processing techniques. IEEE Transactions on Software
Engineering, 2013. (cited on p 61)

[FdS12] David de Almeida Ferreira and Alberto Rodrigues da Silva. Formally
specifying requirements with rsl-il. In Proceedings of the Eighth Interna-
tional Conference on the Quality of Information and Communications Technology
(QUATIC), 2012. (cited on pp 45, 46)

[FFLS08] Fabrizio Fabbrini, Mario Fusani, Giuseppe Lami, and Edoardo Sivera. Soft-
ware engineering in the european automotive industry: Achievements
and challenges. In Proceedings of the 32nd Annual IEEE International Com-
puter Software and Applications Conference (COMPSAC), 2008. (cited on
pp 86, 100)

[FG12] Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language. Addison-
Wesley Professional, 2012. (cited on pp 47, 73)

[FGZ15] Samuel A. Fricker, Rainer Grau, and Adrian Zwingli. Requirements Engi-
neering for Digital Health, chapter Requirements Engineering: Best Practice,
pages 25–46. Springer International Publishing, 2015. (cited on p 69)

204

Bibliography

[FHK+15] Stefan Feldmann, Sebastian J.I. Herzig, Konstantin Kernschmidt, Thomas
Wolfenstetter, Daniel Kammerl, Ahsan Qamar, Udo Lindemann, Helmut
Krcmar, Christiaan J.J. Paredis, and Birgit Vogel-Heuser. Towards effective
management of inconsistencies in model-based engineering of automated
production systems. Proceedings of the15th IFAC Symposium on Information
Control Problems in Manufacturing (INCOM), 2015. (cited on p 64)

[Fir05] Donald Firesmith. Are your requirements complete? Journal of Object Tech-
nology, 2005. (cited on p 65)

[FMF15] Henning Femmer, Jakob Mund, and Daniel Méndez Fernández. It’s the
activities, stupid! A new perspective on re quality. In Proceedings of the
IEEE/ACM 2nd International Workshop on Requirements Engineering and Test-
ing (RET), 2015. (cited on pp 17, 57, 78)

[FMK+11] S. Farfeleder, T. Moser, A. Krall, T. Stålhane, H. Zojer, and C. Panis. DODT:
Increasing requirements formalism using domain ontologies for improved
embedded systems development. In Proceedings of the IEEE 14th Inter-
national Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS 2011), 2011. (cited on pp 45, 46, 47, 50)

[FP99] Iris Fahrmeir and Ludwig Pigeot. Statistik. Der Weg zur Datenanalyse.
Springer, Heidelberg, 1999. (cited on p 86)

[FR07] R. France and B. Rumpe. Model-driven development of complex software:
A research roadmap. In Proceedings of the International Conference on the Fu-
ture of Software Engineering (FOSE), 2007. (cited on pp 19, 100)

[FW13] Daniel Méndez Fernández and Stefan Wagner. Naming the pain in require-
ments engineering: Design of a global family of surveys and first results
from germany. In Proceedings of the 17th International Conference on Evalua-
tion and Assessment in Software Engineering (EASE), 2013. (cited on p 65)

[Gar12] Stefanie Gareis. Model-based development of a pacemaker, 2012. Bache-
lor’s thesis. (cited on p 189)

[GBC+07] N. Gorse, P. Bélanger, A. Chureau, E.M. Aboulhamid, and Y. Savaria. A
high-level requirements engineering methodology for electronic system-
level design. Computers & Electrical Engineering, 2007. (cited on pp 45, 46)

[GBJ02] Martin Glinz, Stefan Berner, and Stefan Joos. Object-oriented modeling
with ADORA. Journal Information Systems, 2002. (cited on p 44)

[GBR+00] Martin Glinz, Stefan Berner, Johannes Ryser, Stefan Joos, Nancy Schett,
Reto Schmid, Yong Xia, and Robert Bosch Gmbh. The ADORA approach
to object-oriented modeling of software. In Proceedings of the 13th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE), 2000.
(cited on pp 149, 150)

[GCHH+12a] Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman,
Alexander Egyed, Paul Grünbacher, and Giuliano Antoniol. The quest for
ubiquity: A roadmap for software and systems traceability research. In
Proceedings of the 20th IEEE International Requirements Engineering Conference
(RE), 2012. (cited on p 100)

[GCHH+12b] Orlena Gotel, Jane Cleland-Huang, JaneHuffman Hayes, Andrea Zisman,
Alexander Egyed, Paul Grünbacher, Alex Dekhtyar, Giuliano Antoniol,
Jonathan Maletic, and Patrick Mäder. Traceability fundamentals. In Soft-
ware and Systems Traceability. Springer London, 2012. (cited on pp 9, 75, 118)

[GDTS07] Sébastien Gérard, Cédric Dumoulin, Patrick Tessier, and Bran Selic. Pa-

205

Bibliography

pyrus: A UML2 tool for domain-specific language modeling. In Model-
Based Engineering of Embedded Real-Time Systems - International Dagstuhl
Workshop, Dagstuhl Castle. Revised Selected Papers, 2007. (cited on p 51)

[GGJZ00] C.A. Gunter, E.L. Gunter, M. Jackson, and P. Zave. A reference model for
requirements and specifications. IEEE Software, 2000. (cited on p 47)

[GGS06] Eva Geisberger, Johannes Grunbauer, and Bernhard Schatz. Interdisci-
plinary requirements analysis using the model-based RM tool AUTORAID.
In Proceedings of the International Automotive Requirements Engineering Work-
shop (AURE), 2006. (cited on pp 35, 46)

[GJ16] Fabien Gaucher and Bertrand Jeannet. Debugging real-time systems re-
quirements with STIMULUS: A case-study from the automotive industry.
White Paper, 2016. (cited on pp 44, 72)

[GKvdBV11] Arda Goknil, Ivan Kurtev, Klaas van den Berg, and Jan-Willem Veldhuis.
Semantics of trace relations in requirements models for consistency check-
ing and inferencing. Software & Systems Modeling, 2011. (cited on p 64)

[Gli07] M. Glinz. On non-functional requirements. In Proceedings of the 15th IEEE
International Requirements Engineering Conference (RE), 2007. (cited on p 67)

[Gro13] The Object Management Group. Semantics of a Foundational Subset for Exe-
cutable UML Models (FUML). Pearson Higher Education, 2013. (cited on
p 44)

[HBY13] S. Hesari, R. Behjati, and T. Yue. Towards a systematic requirement-based
test generation framework: Industrial challenges and needs. In Proceedings
of the 21st IEEE International Requirements Engineering Conference (RE), 2013.
(cited on p 101)

[HD98] Patrick Heymans and Eric Dubois. Scenario-based techniques for support-
ing the elaboration and the validation of formal requirements. Requirements
Engineering, 1998. (cited on pp 45, 46, 49)

[Hei07] Mats P. E. Heimdahl. Safety and software intensive systems: Challenges
old and new. In Proceedings of the International Conference on the Future of Soft-
ware Engineering (FOSE), 2007. (cited on pp 45, 46, 48, 49, 76, 86, 100, 150)

[HF10] Florian Hölzl and Martin Feilkas. Autofocus 3: A scientific tool prototype
for model-based development of component-based, reactive, distributed
systems. In Proceedings of the International Dagstuhl Conference on Model-
based Engineering of Embedded Real-time Systems (MBEERTS), 2010. (cited
on pp 10, 29)

[HHS07] James R. Hurford, Brendan Heasley, and Michael B. Smith. Semantics: A
Coursebook, 2nd ed. Cambridge University Press, 2007. (cited on p 63)

[HJ07] Constance L. Heitmeyer and Ralph D. Jeffords. Applying a formal require-
ments method to three nasa systems: Lessons learned. In In Proceedings of
the IEEE Aerospace Conference, 2007. (cited on p 44)

[HJL96] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Auto-
mated consistency checking of requirements specifications. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 1996. (cited on
pp 44, 65)

[HL96] M.P.E. Heimdahl and N.G. Leveson. Completeness and consistency in hi-
erarchical state-based requirements. IEEE Transactions on Software Engineer-
ing, 1996. (cited on p 63)

206

Bibliography

[HPP+15] J. Holt, S. Perry, R. Payne, J. Bryans, S. Hallerstede, and F.O. Hansen. A
model-based approach for requirements engineering for systems of sys-
tems. IEEE Systems Journal, 2015. (cited on p 44)

[IEE08] ISO/IEC/IEEE 12207-2008 Standard for Systems and Software Engineering
– Software Life Cycle Processes, 2008. (cited on p 16)

[Ili07] D. Ilic. Deriving formal specifications from informal requirements. In Pro-
ceedings of the 31nd Annual IEEE International Computer Software and Applica-
tions Conference (COMPSAC), 2007. (cited on pp 45, 46)

[IR12] Claire Ingram and Steve Riddle. Cost-benefits of traceability. In Software
and Systems Traceability. Springer London, 2012. (cited on p 126)

[ISO09] ISO/IEC TR 24766:2009, Information technology – Systems and software
engineering – Guide for requirements engineering tool capabilities, 2009.
(cited on p 101)

[ISO10] ISO/IEC/IEEE 24765:2010, Systems and software engineering – Vocabu-
lary, 2010. (cited on pp 2, 17)

[ISO11a] ISO 26262 Road vehicles – Functional safety, 2011. (cited on pp 85, 101)

[ISO11b] ISO/IEC/IEEE 29148:2011(E) Systems and software engineering –
Life cycle processes –Requirements engineering, 2011. (cited on
pp 16, 62, 75, 78, 104)

[ITU11a] Recommendation Z.120 (02/11): Message Sequence Chart (MSC) - Lan-
guage Requirements and Framework, February 2011. approved February
2011. Editor: D. Amyot. (cited on pp 22, 31)

[ITU11b] Recommendation Z.150 (02/11): User Requirements Notation (URN) - Lan-
guage Requirements and Framework, February 2011. approved February
2011. Editor: D. Amyot. (cited on p 101)

[Jac92] Ivar Jacobson. Object Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison-Wesley Professional, 1992. (cited on p 44)

[Jac95] Michael Jackson. The world and the machine. In Proceedings of the 17th Inter-
national Conference on Software Engineering (ICSE), 1995. (cited on pp 13, 14)

[JDF+10] Elmar Juergens, Florian Deissenboeck, Martin Feilkas, Benjamin Hummel,
Bernhard Schaetz, Stefan Wagner, Christoph Domann, and Jonathan Streit.
Can clone detection support quality assessments of requirements specifi-
cations? In Proceedings of the 32nd International Conference on Software Engi-
neering (ICSE), 2010. (cited on p 68)

[JFH91] W. Lewis Johnson, Martin S. Feather, and David R. Harris. Integrating do-
main knowledge, requirements, and specifications. Journal of Systems Inte-
gration, 1991. (cited on pp 46, 48, 49)

[JHLR10] Michael Jastram, Stefan Hallerstede, Michael Leuschel, and Aryldo G.
Russo, Jr. An approach of requirements tracing in formal refinement. In
Proceedings of the Third International Conference on Verified Software: Theories,
Tools, Experiments (VSTTE), 2010. (cited on pp 45, 46, 47)

[JLHM91] M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B.E. Melhart. Software
requirements analysis for real-time process-control systems. IEEE Transac-
tions on Software Engineering, 1991. (cited on p 65)

[JMM99] Natalia Juristo, José L Morant, and Ana M. Moreno. A formal approach for
generating oo specifications from natural language. Journal of Systems and
Software, 1999. (cited on pp 45, 46)

207

Bibliography

[JN12] Maximilian Junker and Philipp Neubeck. A rigorous approach to availabil-
ity modeling. In Proceedings of the 4th International Workshop on Modeling in
Software Engineering (MiSE), 2012. (cited on p 15)

[Jus13] Benjamin Justice. Natural language specifications for safety-critical sys-
tems. Master’s thesis, Carl von Ossietzky Universität Oldenburg, 2013.
(cited on pp 46, 48, 50)

[KC05a] S. Konrad and B.H.C. Cheng. Facilitating the construction of specification
pattern-based properties. In Proceedings of the 13th IEEE International Con-
ference on Requirements Engineering (RE), 2005. (cited on pp 49, 150)

[KC05b] Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In
Proceedings of the 27th International Conference on Software Engineering (ICSE),
2005. (cited on pp 45, 46, 47)

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for performing Sys-
tematic Literature Reviews in Software Engineering. Technical Report
EBSE 2007-001, Keele University and Durham University Joint Report,
2007. (cited on p 83)

[KJL09] P. Kroha, R. Janetzko, and J.E. Labra. Ontologies in checking for inconsis-
tency of requirements specification. In Proceedings of the Third International
Conference on Advances in Semantic Processing (SEMAPRO), 2009. (cited on
pp 45, 45, 46, 47)

[Kof10] Leonid Kof. From requirements documents to system models: A tool for
interactive semi-automatic translation. In Proceedings of the 18th IEEE Inter-
national Requirements Engineering Conference (RE), 2010. (cited on p 46)

[KP11] Leonid Kof and Birgit Penzenstadler. From requirements to models:
Feedback generation as a result of formalization. In Advanced Informa-
tion Systems Engineering. Springer Berlin Heidelberg, 2011. (cited on
pp 45, 46, 47, 49)

[KRSV13] Antoaneta Kondeva, Daniel Ratiu, Bernhard Schätz, and Sebastian Voss.
Seamless model-based development of embedded systems with AF3
phoenix. In Proceedings of the 20th IEEE International Conference and Work-
shops on the Engineering of Computer Based Systems (ECBS), 2013. (cited on
p 29)

[KS98] Gerald Kotonya and Ian Sommerville. Requirements Engineering - Processes
and Techniques. John Wiley & Sons, 1998. (cited on pp 14, 15, 16, 78, 107, 108)

[KS04] Hye Yeon Kim and Frederick T. Sheldon. Testing software requirements
with z and statecharts applied to an embedded control systemt0t1. Software
Quality Journal, 2004. (cited on pp 46, 47)

[LCK98] Woo Jin Lee, Sung Deok Cha, and Yong Rae Kwon. Integration and analysis
of use cases using modular petri nets in requirements engineering. IEEE
Transactions on Software Engineering, 1998. (cited on pp 45, 46)

[LSS94] O. I. Lindland, G. Sindre, and A. Solvberg. Understanding quality in con-
ceptual modeling. IEEE Software, 1994. (cited on p 78)

[LvL02] Emmanuel Letier and Axel van Lamsweerde. Deriving operational soft-
ware specifications from system goals. SIGSOFT Software Engineering Notes,
2002. (cited on pp 46, 48, 49, 49)

[MF11] Daniel Méndez Fernández. Requirements Engineering: Artefact-Based Cus-
tomisation. PhD thesis, Institut für Informatik, Technische Universität
München, 2011. (cited on pp 5, 20, 78, 104)

208

Bibliography

[MFBT] D. Méndez Fernández, M. Broy, and S. et al. Teufl. What is an artefact?
Unpublished Draft, 27th of February 2015. (cited on p 20)

[MFP14] Daniel Méndez Fernández and Birgit Penzenstadler. Artefact-based re-
quirements engineering: the AMDiRE approach. Requirements Engineering,
2014. (cited on pp 19, 20, 104, 104)

[MFPKB10] Daniel Méndez Fernández, Birgit Penzenstadler, Marco Kuhrmann, and
Manfred Broy. A meta model for artefact-orientation: Fundamentals and
lessons learned in requirements engineering. In Model Driven Engineering
Languages and Systems. Springer Berlin / Heidelberg, 2010. (cited on p 19)

[MMFFE15] J. Mund, D. Mendez Fernandez, H. Femmer, and J. Eckhardt. Does quality
of requirements specifications matter? combined results of two empirical
studies. In Proceedings of the ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2015. (cited on pp 7, 62)

[MMGD10] I. Menzel, M. Mueller, A. Gross, and J. Doerr. An experimental comparison
regarding the completeness of functional requirements specifications. In
Proceedings of the 18th IEEE International Requirements Engineering Conference
(RE), 2010. (cited on p 76)

[MR12] Dongyue Mou and Daniel Ratiu. Binding requirements and component
architecture by using model-based test-driven development. In Proceedings
of the IEEE First International Workshop on theTwin Peaks of Requirements and
Architecture (Twin Peaks), 2012. (cited on pp 32, 35, 49, 164)

[MS03] Raimundas Matulevičius and Darijus Strašunskas. Evaluation framework
of requirements engineering tools for verification and validation. In Ad-
vanced Conceptual Modeling Techniques. Springer Berlin / Heidelberg, 2003.
(cited on pp 85, 101)

[MTWH06] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P. E. Heim-
dahl. Proving the shalls: Early validation of requirements through for-
mal methods. International Journal on Software Tools for Technology Transfer
(STTT), 2006. (cited on pp 45, 46, 48, 49, 50, 73, 150)

[MW10] A. Mavin and P. Wilkinson. Big ears (the return of "easy approach to re-
quirements engineering"). In Proceedings of the 18th IEEE International Re-
quirements Engineering Conference (RE), 2010. (cited on pp 21, 76)

[MWHN09] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy approach to
requirements syntax (ears). In Proceedings of the 17th IEEE International Re-
quirements Engineering Conference (RE), 2009. (cited on p 113)

[NE00] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a
roadmap. In Proceedings of the International Conference on the Future of Soft-
ware Engineering (FOSE), 2000. (cited on p 100)

[NEA12] P.B.F. Njonko and W. El Abed. From natural language business require-
ments to executable models via sbvr. In Proceedings of the International Con-
ference on Systems and Informatics (ICSAI), 2012. (cited on pp 45, 46, 47)

[NER00] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Leveraging
inconsistency in software development. Computer, 2000. (cited on p 65)

[Neu12] Philipp Neubeck. A Probabilitistic Theory of Interactive Systems. Dissertation,
Technische Universität München, München, 2012. (cited on p 15)

[NFTJ06] C. Nebut, F. Fleurey, Y. Le Traon, and J. M. Jezequel. Automatic test genera-
tion: a use case driven approach. IEEE Transactions on Software Engineering,
2006. (cited on p 77)

209

Bibliography

[OMG06] OMG Object Constraint Language (OMG OCL): OMG available specifica-
tion Version 2.0, 2006. (cited on p 72)

[OMG11] OMG Unified Modeling Language (OMG UML), Superstructure v2.4.1,
OMG document number formal/2011-08-06, 2011. (cited on pp 44, 104)

[OMG12] OMG Systems Modeling Language (OMG SysML) v1.3. OMG document
number formal/2012-06-01, 2012. (cited on p 44)

[OMG13] OMG Requirements Interchange Format (ReqIF), v1.1, October 2013. (cited
on p 165)

[PBKS07] A. Pretschner, M. Broy, I.H. Kruger, and T. Stauner. Software engineer-
ing for automotive systems: A roadmap. In Proceedings of the International
Conference on the Future of Software Engineering (FOSE), 2007. (cited on
pp 86, 100)

[PDC+11] Paulo F. Pires, Flávia C. Delicato, Raphael Cóbe, Thais Batista, Joseph G.
Davis, and Joo Hee Song. Integrating ontologies, model driven, and cnl
in a multi-viewed approach for requirements engineering. Requirements
Engineering, 2011. (cited on pp 45, 46, 47)

[PE12] B. Penzenstadler and J. Eckhardt. A requirements engineering content
model for cyber-physical systems. In Proceedings of the IEEE Second Work-
shop on Requirements Engineering for Systems, Services and Systems-of-Systems
(RES4), 2012. (cited on pp 61, 104, 105)

[PFMM08] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-
tematic mapping studies in software engineering. In Proceedings of the 12th
International Conference on Evaluation and Assessment in Software Engineering
(EASE), 2008. (cited on p 39)

[PHAB12] Klaus Pohl, Harald Hönninger, Reinhold Achatz, and Manfred Broy, edi-
tors. Model-based Engineering of Embedded Systems: The SPES 2020 Methodol-
ogy. Springer, 2012. (cited on pp 9, 23, 109, 110, 197)

[PMHP12] Amalinda Post, Igor Menzel, Jochen Hoenicke, and Andreas Podelski. Au-
tomotive behavioral requirements expressed in a specification pattern sys-
tem: a case study at BOSCH. Requirements Engineering, 2012. (cited on
pp 46, 47)

[Poh10] Klaus Pohl. Requirements Engineering - Fundamentals, Principles, and Tech-
niques. Springer, 2010. (cited on pp 9, 68, 106)

[RG11] S. Ramesh and A. Gadkari. Rigorous model-based design & verification
flow for in-vehicle software. In Proceedings of the 48th Design Automation
Conference (DAC), 2011. (cited on pp 46, 48)

[RH09] Per Runeson and Martin Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering,
2009. (cited on p 167)

[RHR+06] James L. Rash, Michael G. Hinchey, Christopher A. Rouff, Denis Gracanin,
and John Erickson. A requirements-based programming approach to de-
veloping a nasa autonomous ground control system. Artificial Intelligence
Review, 2006. (cited on pp 46, 49)

[RR06] Suzanne Robertson and James Robertson. Mastering the Requirements
Process (2nd Edition). Addison-Wesley Professional, 2006. (cited on
pp 14, 68, 74, 104, 106, 107, 108, 109)

[RRH93] A.P. Ravn, H. Rischel, and K.M. Hansen. Specifying and verifying require-

210

Bibliography

ments of real-time systems. IEEE Transactions on Software Engineering, 19(1),
1993. (cited on p 151)

[RSF14] Alessandro Gerlinger Romero, Klaus Schneider, and Mauricio
Goncalves Vieira Ferreira. Using the base semantics given by fUML
for verification. In Proceedings of the 2nd International Conference on Model-
Driven Engineering and Software Development (MODELSWARD), 2014.
(cited on p 44)

[RTVH15] Susanne Rösch, Sabine Teufl, and Birgit Vogel-Heuser. Model-based qual-
ity assurance in machine and plant automation using sequence diagrams
- a comparison of two research approaches. In Proceedings of the 13th In-
ternational Conference on Industrial Informatics (INDIN), 2015. (cited on
pp 11, 131)

[SB13] Florian Schneider and Brian Berenbach. A literature survey on interna-
tional standards for systems requirements engineering. Procedia Computer
Science, 2013. (cited on p 62)

[SBC10] A. Sanyal, S.S. Basu, and S. Choudhury. A requirement framework for
enablement of automatic generation of domain model. In Proceedings of
the International Conference on Computer Information Systems and Industrial
Management Applications (CISIM), 2010. (cited on pp 45, 46, 47)

[SBHW03] B. Schätz, P. Braun, F. Huber, and A. Wisspeintner. Consistency in model-
based development. In Proceedings of the 10th IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems, 2003. (cited on
p 65)

[Sch09] Bernhard Schätz. Model-Based Development of Software Systems: From Models
to Tools. Habilitation thesis, Technische Universität München, 2009. (cited
on pp 9, 19, 29, 35, 36, 46, 59, 72, 76, 78, 104, 130, 143)

[Sch10] Rolf Schwitter. Controlled natural languages for knowledge representa-
tion. In Proceedings of the 23rd International Conference on Computational Lin-
guistics (COLING): Posters, 2010. (cited on pp 21, 76)

[SD15] Souvik Sengupta and Ranjan Dasgupta. Use of semi-formal and formal
methods in requirement engineering of ILMS. SIGSOFT Software Engineer-
ing Notes, 2015. (cited on pp 46, 47)

[SFGP05] Bernhard Schätz, Andreas Fleischmann, Eva Geisberger, and Markus Pis-
ter. Model-based requirements engineering with AUTORAID. In Proceed-
ings of INFORMATIK, 2005. (cited on pp 9, 35, 46, 49)

[SJV12] Valdivino Alexandre de Santiago Júnior and Nandamudi Lankalapalli Vi-
jaykumar. Generating model-based test cases from natural language re-
quirements for space application software. Software Quality Journal, 2012.
(cited on pp 45, 46, 47, 49)

[Sof11] Rational Software. Rational unified process best practices for software
development teams. Technical report, Rational Software White Paper,
TP026B, Rev 11/01, 2011. (cited on p 44)

[Som11] Ian Sommerville. Software Engineering. Pearson Education, 9th edition,
2011. (cited on p 14)

[SRB+00] Reto Schmid, Johannes Ryser, Stefan Berner, Martin Glinz, Ralf Reutemann,
and Erwin Fahr. A survey of simulation tools for requirements engineering.
Technical report, 2000. (cited on pp 86, 101)

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, Wien, 1973.

211

Bibliography

(cited on p 18)

[STP11] Ernst Sikora, Bastian Tenbergen, and Klaus Pohl. Requirements engineer-
ing for embedded systems: An investigation of industry needs. In Proceed-
ings of the 17th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ), 2011. (cited on pp 85, 101, 102)

[STP12] Ernst Sikora, Bastian Tenbergen, and Klaus Pohl. Industry needs and re-
search directions in requirements engineering for embedded systems. Re-
quirements Engineering, 2012. (cited on pp 3, 4, 81, 101, 198)

[SW14] T. Stalhane and T. Wien. The DODT tool applied to sub-sea software. In
Proceedings of the 22nd IEEE International Requirements Engineering Confer-
ence (RE), 2014. (cited on pp 46, 50)

[SWN+08] D. Streitferdt, G. Wendt, P. Nenninger, A. Nyssen, and H. Lichter. Model
driven development challenges in the automation domain. In Proceedings of
the 32nd Annual IEEE International Computer Software and Applications Con-
ference (COMPSAC), 2008. (cited on pp 86, 100)

[TBB+13] Bastian Tenbergen, Peter Battram, Thomas Buell, Martin Hiller, Mark
Rzepka, Thorsten Weyer, and Philipp Bohn. Description of the require-
ments quality assessment framework. Technical Report Version 1.1, 2013.
(cited on p 78)

[TBP14] S. Teufl, W. Böhm, and R. Pinger. Understanding and closing the gap
between requirements on system and subsystem level. In Proceedings of
the 4th IEEE International Model-Driven Requirements Engineering Workshop
(MoDRE), pages 77–86, Aug 2014. (cited on pp 11, 131, 151, 168, 180)

[TG14] Saurabh Tiwari and Atul Gupta. Does increasing formalism in the use case
template help? In Proceedings of the 7th India Software Engineering Conference
(ISEC), 2014. (cited on p 75)

[TH15] Sabine Teufl and Georg Hackenberg. Efficient impact analysis of changes
in the requirements of manufacturing automation systems. In Proceedings
of the15th IFAC Symposium on Information Control Problems in Manufacturing
(INCOM), 2015. (cited on pp 11, 105, 126, 199)

[TKM13] Sabine Teufl, Maged Khalil, and Dongyue Mou. Requirements for a model-
based requirements engineering tool for embedded systems: Systematic
literature review and survey. White paper, 2013. (cited on pp 11, 85)

[TMR13] Sabine Teufl, Dongyue Mou, and Daniel Ratiu. Mira: A tooling-framework
to experiment with model-based requirements engineering. In RE, 2013.
(cited on pp 11, 153)

[VEFR12] Andreas Vogelsang, Sebastian Eder, Martin Feilkas, and Daniel Ratiu.
Model-based Engineering of Embedded Systems: The SPES 2020 Methodology,
chapter Functional Viewpoint, pages 69–83. Springer Berlin Heidelberg,
2012. (cited on p 114)

[VEH+14] Andreas Vogelsang, Sebastian Eder, Georg Hackenberg, Maximilian
Junker, and Sabine Teufl. Supporting concurrent development of require-
ments and architecture: A model-based approach. In Proceedings of the 2nd
International Conference on Model-Driven Engineering and Software Develop-
ment (MODELSWARD), 2014. (cited on pp 11, 144, 190)

[vL01] A. van Lamsweerde. Goal-oriented requirements engineering: a guided
tour. In Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering, 2001. (cited on pp 19, 45, 46, 48, 49, 55, 66, 67, 110)

212

Bibliography

[vL03] A. van Lamsweerde. From system goals to software architecture. Formal
Methods for Software Architectures, 2003. (cited on pp 46, 48, 49, 49)

[vL09] Axel van Lamsweerde. Requirements Engineering - From System Goals
to UML Models to Software Specifications. Wiley, 2009. (cited on
pp 4, 9, 13, 14, 15, 15, 16, 58, 61, 62, 63, 64, 65, 69, 72, 80, 132, 164)

[Vog15] Andreas Vogelsang. Model-based Requirements Engineering for Multifunc-
tional Systems. PhD thesis, Institut für Informatik, Technische Universität
München, 2015. (cited on pp 168, 182, 198)

[VSKC13] Sebastian Voss, Bernhard Schätz, Maged Khalil, and Carmen Carlan. To-
wards modular certification using integrated model-based safety cases. In
VeriSure: Verification and Assurance Workshop, 2013. (cited on p 189)

[Wag07] Stefan Wagner. Cost-Optimisation of Analytical Software Quality Assurance.
PhD thesis, Institut für Informatik, Technische Universität München, 2007.
(cited on p 57)

[WHR14] J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in
model-driven engineering. IEEE Software, 2014. (cited on p 49)

[WMMR05] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Require-
ments engineering paper classification and evaluation criteria: A proposal
and a discussion. Requirements Engineering, 2005. (cited on pp 42, 52)

[WPS02] M. Woodside, D. Petriu, and K. Siddiqui. Performance-related completions
for software specifications. In Proceedings of the 24rd International Conference
on Software Engineering (ICSE), 2002. (cited on p 64)

[ZG02] Didar Zowghi and Vincenzo Gervasi. The three Cs of requirements: Con-
sistency, completeness, and correctness. In Proceedings of the 8th Interna-
tional Workshop on Requirements Engineering: Foundation for Software Quality,
(REFSQ), 2002. (cited on p 65)

[ZG03] Didar Zowghi and Vincenzo Gervasi. On the interplay between consis-
tency, completeness, and correctness in requirements evolution. Information
and Software Technology, 2003. (cited on pp 62, 63)

[ZJ97] Pamela Zave and Michael Jackson. Four dark corners of requirements
engineering. ACM Transactions on Software Engineering and Methodology
(TOSEM), 1997. (cited on pp 9, 111, 126, 136, 144)

213

	Introduction
	Motivation
	Problem Statement
	Solution
	Contribution
	Integrated Approaches
	Running Example
	Outline

	Background
	Requirements Engineering
	Quality Assurance
	Model-based Requirements Engineering

	Related Model-based RE Approaches
	Research Method
	Study Results
	Discussion of Related Work
	Threats to Validity and Limitations
	Conclusion

	Model-based Quality Assurance in RE
	Research Method
	Threats to Validity and Limitations
	System Quality Factors
	Concepts of the Requirements Specification
	Automated Analytical Quality Assurance
	Constructive Quality Assurance
	Related Work
	Conclusion

	Requirements for Model-based RE Tools
	Research Method
	Study Results
	Discussion: Tool Support for Quality Assurance
	Threats to Validity and Limitations
	Related Work
	Conclusion

	The MIRA Artifact Reference Structure
	Related Work
	The MIRA Artifact Reference Structure
	The MIRA Artifact Reference Structure in the System and Software Development
	Summary and Discussion

	The MIRA Guideline
	Integrated Approaches
	Overview
	Textual Specification
	Formal Specification
	Quality Assurance
	Summary and Discussion

	The MIRA Tool
	Implementation Context
	Implementation of the MIRA Tool
	Summary

	Industrial Case Studies
	Case Study on Applicability and Effectiveness
	Case Study on Extensibility
	Further Studies with MIRA
	Conclusion

	Summary and Outlook
	Summary
	Outlook

	Bibliography

