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Abstract

In this thesis we investigate the impact of current experimental precision measurements on the param-
eter spaces of concrete models for new physics. For this we consider two different but well motivated
extensions of the Standard Model: composite Higgs models and leptoquark models.

We perform an extensive numerical analysis of composite Higgs models featuring partial compos-
iteness. For this we concentrate on models in which the Higgs boson is implemented as a pseudo-
Nambu-Goldstone boson of a broken global symmetry. Of particular interest in this work is a realistic
description of electroweak symmetry breaking taking into account the recent discovery of the Higgs
boson. Using Markov Chain Monte Carlo techniques we sample the parameter spaces of a mini-
mal model, based on the symmetry breaking SO(5)/SO(4), and a next-to-minimal model based on
the larger coset SO(6)/SO(5). We take into account a large variety of constraints including indirect
searches (as e.g. electroweak precision observables, Higgs physics, Z couplings and flavour physics) as
well as direct searches at hadron colliders. This marks the first combined numerical analysis of com-
posite Higgs models that takes into account all relevant constraints while, at same time, generating
a realistic electroweak symmetry breaking. With the found results we are able to assess the allowed
parameter spaces of the models which allows us to make statements about the possible fine-tuning in
these models and to make predictions for yet unobserved processes and promising experimental tests.

We further investigate leptoquarks in b→ s transitions. In the light of current experimental tensions
in b → s`+`− transitions we investigate the role of leptoquarks in the related modes B → K(∗)νν
and Bs → µ+µ−. For this we pay particular attention for how the related modes can be used to
disentangle possible new physics contributions from leptoquarks.

Zusammenfassung

In dieser Arbeit untersuchen wir den Einfluss aktueller, experimenteller Präzisionsmessungen auf
die Parameterräume von konkreten Modellen Neuer Physik. Dazu betrachen wir zwei verschiedene
aber gut motivierte Erweiterungen des Standardmodells: Composite Higgs Modelle and Leptoquark
Modelle.

Wir führen eine umfassende numerische Analyse von Composite Higgs Modellen durch, welche über
Partial Compositeness verfügen. Hierbei konzentrieren wir uns auf Modelle, in denen das Higgs Boson
ein pseudo-Nambu-Goldstone Boson einer gebrochenen globalen Symmetrie ist. Dabei sind wir beson-
ders an einer realistischen Beschreibung der elektroschwachen Symmetriebrechung interessert, wobei
wir die kürzliche Entdeckung des Higgs Bosons berücksichtigen. Mit Hilfe von Markov Ketten wird der
Parameterraum eines minimalen Modelles, welches auf der Symmetriebrechung SO(5)/SO(4) basiert,
und eines nicht-minimalen Modelles, basierend auf SO(6)/SO(5), untersucht. Dieses ist die erste
globale, numerische Analyse von Composite Higgs Modellen, welche alle relevanten Einschränkungen
einbezieht und gleichzeitig zu einer realistischen Brechung der elektroschwachen Symmetrie führt.
Mit den gefundenen Datenpunkten ist es möglich, Aussagen über das mögliche Feintuning in diesen
Modellen zu treffen und Vorhersagen zu machen für bis jetzt ungemessene Observablen wie auch für
weitere experimentelle tests.

Weiterhin betrachen wir Leptoquarks in b → s Übergängen. In Anbetracht von momentanen
experimentallen Hinweisen für mögliche neue Physik in b→ s`+`− Übergängen untersuchen wir Lep-
toquarks in den verwandten Moden B → K(∗)νν und Bs → µ+µ−. Hierbei geben wir ein besonderes
Augenmerk der Frage, wie diese verwandten Moden helfen koennen, mögliche Leptoquarkbeiträge zu
unterscheiden.
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Introduction1
Mankind has always been driven by the desire to know what lies beyond. This work is no exception
to this as it joins the hunt for the answer to the question of what lies beyond our present knowledge
of physics at the smallest scales. By now, we have an extraordinary understanding of particle physics
down to the level of quarks and leptons. The mathematical framework for this, the Standard model,
is magnificently successful in passing the tests of it conducted at high energy experiments such at the
Large Hadron Collider (LHC). But it is not enough to understand what we see. We want to know if
this is everything and if not, we want to know what it is that lies beyond.

Such a question cannot be answered by theory alone. What is important is an interplay between
theoretical ideas and experimental observation since only nature itself can tell us what it is. Such an
interplay is at the heart of this work as we will investigate what experimental data can tell us about
concrete models of physics beyond the Standard model. In principle, observations can impact theory
through different ways. If something unexpected if measured then it can serve as a guiding light of
which theory model might be the right one. But also if nothing new is measured, these null results
but important constraints on the parameters of any model. In the following we will proceed from both
direction.

1.1. The Standard Model

What today is known as the Standard Model of particle physics (SM) is a gauge theory describing
the strong interactions as well as the electroweak unification. Quantum Chromodynamics (QCD), the
theoretical description of the strong interactions, is based on the quark model proposed by Gell-Mann,
Ne’eman and Zweig and was put into the mathematical framework of a non-abelian gauge theory by
Fritzsch, Gell-Mann and Leutwyler [7] in the 1970s. The electroweak sector of the SM was proposed
in the 1960s by Glashow [8], Weinberg [9] and Salam and has to be equipped with the mechanism
of a spontaneous breaking of the gauge symmetries. The latter was also discovered in the 1960s
independently by several groups [10, 11, 12, 13] and is today widely known as the Higgs mechanism.

Let us dive right away into the Lagrangian,

LSM = −1

2
tr [GµνG

µν ]− 1

2
tr [WµνW

µν ]− 1

4
BµνB

µν (1.1a)

+
∑

f

{
qfL i/DqfL + ufR i/DufR + d

f

R i/DdfR + l
f

L i/DlfL + `
f

R i/D`fR
}

(1.1b)

+ (DµΦ)
†

(DµΦ) (1.1c)

+ Y d
ij

(
qiL · Φ

)
djR + Y u

ij

(
qiL · ε · Φ∗

)
ujR + Y `ij

(
l
i

L · Φ
)
`jR + h.c. (1.1d)

− V (Φ†Φ) (1.1e)

and explain the individual ingredients on the fly.
The SM is a gauge theory built on the symmetry

GSM = SU(3)c × SU(2)L ×U(1)Y. (1.2)

This includes the strong interactions via QCD based on the group SU(3)c as well as the electroweak
sector with the symmetries SU(2)L×U(1)Y that correspond to weak isospin and hypercharge, respec-
tively. Eq. (1.1a) shows the kinetic terms for the gauge fields of this theory. In the case of the SM these
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#1\Introduction\The Standard Model

are gluon fields Gµ corresponding to the SU(3)c symmetry transmitting the strong interactions, Wµ

bosons connected to SU(2)L and also an abelian gauge field Bµ for the U(1)Y symmetry. As the first
two gauge components are non-abelian groups the kinetic terms include gauge boson self-interactions,
which are of particular importance for the strong interactions as these are the origins of asymptotic
freedom and confinement [14, 15].

Eq. (1.1b) shows the matter sector of the SM. An important feature of the SM is that it is a chiral
theory meaning that it differentiates between left- and right-handed components of Dirac spinors,

ψ = ψL + ψR =
1

2
(1− γ5)ψ +

1

2
(1 + γ5)ψ, (1.3)

where in the last step we used the chiral projectors PL,R = 1
2 (1∓ γ5) such that ψL,R = PL,Rψ.

This now means that under the electroweak interactions left- and right-handed components behave
differently which is synonymous to assigning different representations under the SM gauge symmetry
(1.2) to them. An important consequence of the chiral structure is that by gauge invariance no mass
terms for the fermion fields are allowed. Putting the SM matter content into one table gives the
following:

Quarks q1
L =


 uL

dL


 q2

L =


 cL

sL


 q3

L =


 tL

bL


 ∈ (3,2) 1

6

uR cR tR ∈ (3,1) 2
3

dR sR bR ∈ (3,1)− 1
3

Leptons l1L =


 νe

eL


 l2L =


 νµ

µL


 l3L =


 ντ

τL


 ∈ (1,2)− 1

2

eR µR τR ∈ (1,1)−1

This already reveals much of the structure of the SM. Matter fields can be divided according to their
participation in the strong interactions, such that quarks couple to gluons while leptons are unaffected
by them. Left-handed chiral fields always appear as SU(2)L doublets, while right-handed fields are
always singlets. Consequently, it is only the left-handed fields that interact with Wµ bosons and right-
handed ones are neutral under weak isospin interactions. Another important feature is the fact that
nature seems to repeat itself in a threefold way such that quarks as well as leptons can be grouped
into generations (or families). This is of great relevance to this work, as we will deal extensively
with transitions between the different generations. In (1.1b) we introduced generational (or flavour-)
indices such that we write right-handed up-type and down-type quarks as well as charged leptons in
generational space as ufR = (uR, cR, tR), dfR = (dR, sR, bR) and `fR = (eR, µR, τR), respectively. Note
that there are no right-handed neutrinos in the SM.

As a last ingredient the SM contains the Higgs field Φ with the kinetic and gauge interaction term
(1.1c). This is implemented as scalar doublet under SU(2)L with quantum numbers Φ ∈ (1,2) 1

2
, such

that it couples to the electroweak sector but not to the strong interactions.
The Higgs can couple via the Yukawa interactions (1.1d) to the fermion sector of the SM. Phe-

nomenologically, these terms are of utmost importance as these are the only terms in the SM distin-
guishing between the different fermion generations and therefore these terms are the sources of flavour
transitions.

The last term (1.1e) shows one of the most important but at the same time most mysterious terms
of the SM. Through the potential

V (Φ†Φ) = µ2Φ†Φ − λ
(
Φ†Φ

)2
= −λ

(
Φ†Φ− v2

)2
(1.4)

the Higgs field receives a non-vanishing vacuum expectation value (vev),

〈0 |Φ| 0〉 =
1√
2

(
0
v

)
, (1.5)

that does not respect the symmetries and therefore leads to a spontaneous breakdown of gauge in-
variance meaning that the Higgs potential induces electroweak symmetry breaking (EWSB). As a

10



consequence, masses for the gauge bosons and fermions are generated that were forbidden before by
gauge invariance. To see this, consider the interactions (1.1c) of the Higgs field with with the gauge
bosons. After the Higgs assumes its vev (1.5) mass terms are generated,

L ⊃ v2

8

(
Bµ
W 3
µ

)t(
g2

1 −g1g2

−g1g2 g2
2

)(
Bµ
W 3
µ

)
, (1.6)

that have to be diagonalized by a transformation

(
Bµ
W 3
µ

)
→
(

cos(θw) − sin(θw)
sin(θw) cos(θw)

)(
Aµ
Zµ

)
(1.7)

as physical states are the ones that possess a diagonal mass matrix. One of the two eigenvalues of the
mass matrix (1.6) vanishes which means that due to the interactions with the Higgs vev (1.5) there is
a rearrangement of gauge degrees of freedom into a massless and a massive mode. The massless mode
can be identified with the photon corresponding to the unbroken electromagnetic subgroup generated
by a linear combination of the original generators,

Q = T3 + Y. (1.8)

In the same manner, one sees that also masses for W boson are generated and (ignoring quantum
corrections) one expects

mZ =
1

2

√
g2

1 + g2
2 v, mW =

1

2
g2v such that

mW

mZ
= cos(θw), (1.9)

where the weak mixing angle tan(θw) = g1/g2 was introduced.
In a similar way fermion masses are generated through Yukawa interactions (1.1d) with the Higgs

vacuum. Considering for simplicity only quarks1, these masses are non-diagonal in flavour-space and
have to be diagonalized via unitary transformations of the quarks in flavour space,

uiL → VijuLu
j
L, diL → VijdLd

j
L, uiR → VijuRu

j
R, diR → VijdRd

j
R. (1.10)

This also affects the couplings of the quarks to gauge bosons. Considering for example the couplings
to the W boson, these also have to be rotated into the mass basis

W+
µ u

i
Lγ

µdiL → V† aiuL VibdL︸ ︷︷ ︸
=:V abCKM

W+
µ u

a
Lγ

µdbL, (1.11)

showing that the flavour off-diagonal Yukawa couplings induce flavour transitions via W boson in-
teractions. This is the famous Cabibbo-Kobayashi-Maskawa (CKM) mechanism [16, 17]. The SM
contains CP violation through a single complex phase in CKM matrix. Note however that neutral
vector bosons such as the photon, the Zµ as well as gluons do not induce flavour violations.

1.2. Shortfalls of the Standard Model

Although the SM is spectacularly successful in describing the present-day experimental data in high
energy physics2, which includes the experimental confirmation of the Higgs boson in 2012 at the LHC
[18, 19], it cannot be the end of the story of particle physics. There are several reasons to believe that
there has to be some form of New Physics (NP) beyond the SM. These reasons can roughly be grouped
into three categories. The first one regards the origin of the SM and its structure. Second there are
concrete experimental observations that show that the SM, at least in its minimal version, does not
describe all of the low energy degrees of freedom. And last, the SM suffers from inconsistencies due to
the presence of an elementary scalar field. In what follows we will discuss these shortfalls of the SM.

1In the SM neutrinos are strictly massless such that unitary transformations in the lepton sector do not have a physical
effect. Experimentally, it is, however, by now well established that neutrinos have small masses. Therefore there
actually are flavour structures in the lepton sector. We will not consider this modification in this work.

2There are actually some tensions between experimental results and SM predictions in particular in flavour transitions.
We will neglect them for the time being due to the overall success of the SM and come back to this issue in section
1.3
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Origin of the SM The structure of the SM which in particular means its gauge group (1.2) and the
matter content were motivated by observation, but no explanation is given as to why nature has
chosen this particular option. Furthermore, the SM depends on a number of free parameters
whose values are known only by observation. That in itself does not pose a problem, but the
structure of the SM parameters can be seen as suggesting that there might be something going
on beyond the SM. For this let us consider the Yukawa interactions (1.1d) which give rise the two
different kinds of observables: After diagonalization the singular values of the Yukawa matrices
determine the masses of the fermions in the SM, such that after EWSB the fermion ψ obtains the
mass mψ = 1√

2
yψv, where yψ denotes the diagonal Yukawa coupling and v is the Higgs vev. The

fermion masses show large hierarchies starting with the up- and down-masses in the MeV range
all the way up to the large top mass of around 173 GeV. These large ranges of Yukawa couplings
call for a dynamical explanation beyond the SM. Further, the Yukawa matrices determine the
CKM matrix and therefore induce flavour transitions. Experimentally the CKM matrix is known
to to be strongly dominated by its diagonal elements.

A very important but not very well understood piece of the SM is the Higgs potential (1.1e). In
the usual formulation this is introduced “by hand” as a parametrization of renormalizable Higgs
self-interactions. Its origin and therefore the source of EWSB is currently unknown.

Conflicts with observations There are experimental observations that are in direct conflict with the
SM that directly show that at least small extensions have to be added to it. Most and for
all these are the observations of neutrino oscillations that directly show that, contrary to the
assumptions of the SM, neutrinos are massive. This further necessitates an analogue of the
CKM in the lepton sector, which is given by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [20, 21] and which is completely absent in the SM.

Another open question in the SM is the nature of dark matter. By now there is a lot of
observational evidence, ranging from galactic rotation curves to the formation of large scale
structure, that some form of dark matter should exist. SM degrees of freedom alone cannot
generate the needed effects [22].

Hierarchy and fine-tuning For many decades the problem of the stability of the electroweak scale has
been the main motivation to construct models of NP. Deep inside this consists of two separate
problems that are however intimately connected.

1. Nature seems to contain at least two vastly different energy scales. One is the electroweak
scale v = 246 GeV that dictates the mass scale of all known elementary particles. In the
SM this scale is determined by the bilinear term in the Higgs potential and, therefore, it
is deeply connected to the Higgs mass. As a second scale there exists the Planck mass
mPl ∼ 1019 GeV which is the naive scale where one expects quantum gravity effects to
set in. These two scales differ by many orders of magnitude leading to the question what
determines the hierarchy vSM � mPl. Assuming the Planck scale to be the fundamental
one, this is the question of what is the mechanism that sets the value of the second scale and
why is it so different [23]. This is the so-called hierarchy problem, which is not a problem
per se but it is an open question to which one would like to have an answer. A different
way to pose this question is by asking why the gravitational force is so much weaker than
the electroweak force.

2. The second problem is more technical. It regards the consistency of the calculation of the
electroweak scale (i.e. of the Higgs mass) and its robustness under very small variations in
the fundamental UV parameters. Being a fundamental scalar that is not protected by a
symmetry, the Higgs mass parameter receives highly UV-dependent quantum corrections
[24, 25]. A priori, this is no problem as the SM is a renormalizable QFT such that the Higgs
mass can consistently be calculated to all orders in the perturbative expansion. Even better,
the measured Higgs mass takes a special value such that the theory can be extrapolated to
high energies without running into problems such as Landau poles. However, as we have
argued above the SM is not the whole story. For sure we know that there has to be some
form of physics beyond the SM. Inevitably, this introduces a new energy scale. Even if
this were not the case, there is at least the Planck scale that has to be considered. Having
another energy scale leads to a problem for the Higgs mass as it will also get renormalized
by the NP sector (at least by quantum gravity). Due to the strong sensitivity on UV
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physics the Higgs mass renormalization will be of the order of the NP scale. Having a light
Higgs mass then is only possible if there is a fragile conspiracy between the SM and the NP
contributions. This is the so-called fine-tuning problem. Either there is the SM and some
NP sector such that accidentally there is a cancellation fine-tuned to many digits such that
the correct Higgs mass comes out or there is some mechanism that correlates the SM and
NP contributions in such a way that a cancellation occurs naturally [26]. In this sense the
fine-tuning problem can be understood as a guidepost for the shape of NP.

Both problems are connected, but they are not identical. While the first one is not a problem in
the literal sense it is an important question to which at some point it there should be an answer,
even if this is in the distant future. The second problem is more acute. Of course, it is a logical
possibility that nature just is fine-tuned and that the value of the electroweak scale really just
is a coincidence, but this is not really satisfactory. Also, it seems hard to believe that EWSB,
which is a necessary condition for the structure formation of the universe from very small to
very large scales, would be hanging on a thread in such a delicate way. Therefore it is widely
believed3 that NP should come in a form rendering the electroweak scale natural.

1.3. New Physics

This work deals with the search for New Physics beyond the Standard Model. There are many
different approaches to this task either from the theory side or from experiment. We will try to
deal with this undertaking from a few well-motivated but different angles. In general, the goal of
phenomenology in particle physics is to find correlations between observables such that experimentally
verifiable predictions can be made given some input data. This goes hand in hand with the notion of
a parameter space which gets constrained by experimental data.

On the theory side NP effects can be investigated either in concrete models or in effective theories.
Concrete models are usually fully-fledged frameworks that are designed to solve some “big problem”
as for example the fine-tuning problem. For this there are many models on the market. Although
there are many more, the mainstream ones can be grouped into roughly two classes: There are
weakly interacting models of which supersymmetric theories are the most prominent example, and
there are models of new strong interactions which can often be described dually by theories on extra-
dimensions. For large parts of this work we will concentrate on the second possibility and consider
Composite Higgs Models (CHMs) which solve the fine-tuning problem by assuming that the Higgs
boson is no fundamental object such that it decomposes into its constituents at high enough energies.
The phenomenological success of such a model can even be ameliorated if the Composite Higgs is a
pseudo-Nambu-Goldstone boson (pNGB) of a broken global symmetry. We are primarily interested
in EWSB and flavour transitions of this kind of models.

A different theoretical approach to NP is abandoning a concrete model and the ability to solve
a problem like the fine-tuning problem and supplementing the SM only with a minimal insertion of
NP. In this simplified model approach one can add a single NP field or even just a single effective
operator. The advantage of this approach is a loss of model-dependence but one has to assume that in
the fundamental theory there is some mechanism that suppresses the effects of the remaining model.
We will consider such a simplified mode by investigating leptoquark (LQ) models in which in addition
to the SM there is only one extra field whose presence is one possibility that helps to explain certain
experimental tensions in flavour physics.

The experimental program for searches of NP also proceeds from different angles. The obvious way
is to search for NP particles directly in particle collisions at collider experiments. These searches are
very important as in the end a NP particle has to be detected directly in order to be sure about its
existence. However, direct searches are limited to mass ranges given by the collision energies of the
accelerators. A complementary path is given by indirect searches through precision measurements
of, for example, flavour changing neutral current (FCNC) processes in the flavour sector. In the
SM such a processes are strongly suppressed by the Glashow-Iliopoulos–Maiani (GIM) mechanism
[27]. Therefore, already very small NP contribution can lead to visible effect and hence this approach
can, in principle, test much higher mass ranges than direct searches. However, the drawback is that
without seeing direct evidence for NP it is hard to differentiate between models such that the hope
is that signals will show up in several observables which would allow to disentangle NP contributions

3Here, we ignore anthropic reasoning.
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#1\Introduction\Outline of this work

via correlations. In this work we will concentrate on indirect constraints on NP models. Direct
constraints will be included in the analyses as they give valuable complementary bounds but for a
detailed discussion we refer to [28].

1.4. Outline of this work

This work is based on two pillars:

1. The investigation of the impact of the Higgs discovery and flavour physics on models of a
composite pNGB Higgs with partial compositeness. This will be done through an extensive
numerical analysis which takes into account all relevant data from direct and indirect searches
as well as a realistic breaking of the electroweak symmetries. For this we first set the stage
and introduce CHMs in a detailed manner in chapter 2. In particular, we will discuss radiative
EWSB through the Coleman-Weinberg potential and how such theories can emerge from extra-
dimensional gauge theories. We will lay out our numerical strategy in chapter 3 and present
all the bounds that we impose in the analyses. The results of the analyses will be given in
chapters 4 and 5 where we will concentrate on the minimal model and a next-to-minimal variant,
respectively.

2. In the last chapter 6 we will investigate the role of leptoquarks in b→ s transitions. While there
are experimental tensions observed in b → s`+`− decays which can be understood in terms of
leptoquarks, we will investigate the impact on the related modes B → K(∗)νν and Bs → µ+µ−.
We further discuss direct bounds on leptoquark masses through collider searches for the relevant
scenarios.
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Composite Higgs Models2
One of the main motivations for considering CHMs is that they give a solution to the fine-tuning
problem of the electroweak scale. Solutions to this problem usually embed the SM in some larger
framework that explains why NP contributions to the Higgs mass should be correlated to the SM
ones such that, naturally, there is a cancellation and the correct mass is generated. In the literature
this problem is mostly tackled by addressing the fact that the Higgs is a fundamental scalar particle
such that there is no symmetry which protects its mass (as e.g. a chiral symmetry for fermions or a
gauge symmetry for gauge bosons). In supersymmetric models one considers the attribute “scalar”
and introduces a symmetry that relates the Higgs to fermion degrees of freedom such that it inherits
part of their properties (in particular, a mechanism to protect its mass). In CHMs, on the other hand,
one looses the attribute “fundamental” by assuming that the Higgs is a composite object that at high
enough energies decomposes into its constituents for which no fine-tuning problem exists.

Let us discuss this in greater detail and follow the arguments presented in [24]. The whole point
of the fine-tuning or naturalness problem is desiring a stability of the electroweak scale under small
changes in the fundamental UV parameters. If an unnatural fine-tuning up to many decimal digits
takes place this clearly would not be the case. The idea behind CHMs is to reproduce the success of
a theory that is known to exhibit light scalar particles without suffering from a fine-tuning problem.
This theory is QCD with its hadron spectrum. The hadronic mass scale ΛQCD is generated by the
mechanism of dimensional transmutation, such that the value of this scale is insensitive to small
changes in the fundamental QCD parameters. By itself QCD does not have any mass scale, but due
to the non-abelian self-interactions quantum effects break conformal invariance such that a mass scale
is generated “out of nothing”. One can see this by considering the renormalization group evolution
(RGE) of the strong coupling constant that relates the value of the coupling measured at some arbitrary
scale µ0 to the value at some other scale Q,

g2
s(Q) =

g2
s(µ0)

1− 2β g2
s(µ0)ln

(
Q
µ0

) . (2.1)

For QCD one finds that β = 1
16π2

(
−11 + 2

3nF
)
< 0. [29] The hadronic mass scale ΛQCD is given as

the value of Q at which the strong coupling constant gets large and the theory becomes confining.
Although the above expression (which was calculated in a perturbative expansion) is not valid anymore
in that limit, one can use it to estimate the size of ΛQCD as the scale at which the denominator vanishes,

ΛQCD ∼ µ0 exp

(
1

2β g2
s(µ0)

)
∼ 200 MeV. (2.2)

Of course, this expression does not depend on which scale µ0 one chooses but only on what value the
coupling constant takes at that scale. Choosing µ0 in the high UV, one sees that the value of the
confining scale does not violently depend on the value of the coupling at high energies, in the sense
that the coupling does not have to be tuned to many decimal digits. A tuning to only a few digits
might be enough. Therefore, a scale generated via dimensional transmutation is reasonably insensitive
to UV physics.

The mass scale of the QCD hadron spectrum is roughly given by ΛQCD. There are, however,
also mesons which are systematically lighter than the other hadrons: the pions. The reason for
this lies in the fact that pions can be interpreted as the Nambu-Goldstone bosons (NGBs) of the
spontaneously broken chiral symmetry. As the quark masses break chiral symmetry explicitly, the
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#2\Composite Higgs Models\General structure of composite pNGB-Higgs models

(a) (b)

Figure 2.1.: Schematical structure of pNGB-CHMs. Left: without composite-elementary mixings. Right:
with composite-elementary mixings.

pions are actually pseudo-Nambu-Goldstone bosons (pNGBs) that obtain a small mass proportional
to the explicit symmetry breaking.

The main motivation behind composite Higgs models now lies in reproducing these structures at
higher energies in such a way that the fine-tuning problem of the Higgs sector is solved. Imagine some
non-abelian Yang-Mills theory invariant under some some new strong interactions at high enough
energies. By quantum effects, dimensional transmutation will generate a mass scale that is reasonably
insensitive to the detailed UV physics. Then, below that mass scale the theory will appear as being
“hadronized” into bound states whose masses are roughly given by the hadronization scale. These
masses have to be large enough to circumvent experimental constraints. If we also assume that the
UV sector is invariant under some global symmetry that is broken by some mechanism, pNGBs will
appear with masses parametrically lighter than the other bound states. These Goldstone degrees of
freedom can be identified with the Higgs field and its mass determines the electroweak scale that is
naturally suppressed with respect to the scale where NP shows up. This scale, being generated through
dimensional transmutation, is reasonably insensitive to UV physics and the fine-tuning problem is
solved.

2.1. General structure of composite pNGB-Higgs models

In this section we introduce the general structure of Composite Higgs Models in which the Higgs is
implemented as a pNGB and which feature partial compositeness. For this, the basic idea is the
following: Imagine that there was a theory similar to the SM, but without a Higgs field. In addition,
we assume that there is a whole sector of new physics which is confining at ‘low’ energies and will
appear as a bunch of ‘hadrons’ at energies assessable to us. If both sectors interact in a suitable
way we can think of the Higgs boson as one of the new hadrons and its interactions with the SM are
induced by the interactions of both sectors.

Let us describe the structure of this construction using figure 2.1. Imagine the case of figure 2.1a:
At high energies we assume the presence of some confining, strongly-interacting NP sector. We do not
specify what it is exactly, but we will assume that this sector is well-behaved in the UV. One can think
of it as some conformal theory, maybe similar to a technicolor model, or one can look at it through
the dual picture of an extra-dimensional theory. No matter what this theory is, we will assume it
to be invariant under a global symmetry group G. At an energy scale Λ we will furthermore assume
that something similar the chiral symmetry breaking will occur, namely that by some not further
discussed mechanism this global symmetry G will we broken down spontaneously to its subgroup H.
As a consequence, below the scale Λ the spectrum will contain massless NGB degrees of freedom
corresponding to the coset G/H. Also, at low energies because of the confining character of the UV
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interactions we expect the UV degrees of freedom to be “hadronized down” into composite resonances.
As a next step, we can think about adding a second sector to the theory. This we will call the

“elementary sector”, since we will assume it to be neutral under the interactions of the strong sector.
Consequently, there will be no resonances of the elementary fields. The elementary sector should be
chiral and look similar to the SM without the Higgs boson. As a last ingredient, we will allow the
elementary sector to interact weakly with the confining sector in such a way that the global symmetry
G is subject so a weak explicit breaking, but the elementary gauge symmetries are still preserved.
Below the energy Λ we will then have only an approximate coset G/H and the corresponding NGBs
turn into pseudo-NGBs that are still massless but not protected anymore by the Goldstone shift
symmetry. At this point the theory will look just like the SM in the unbroken phase supplemented
with heavy NP fields. Quantum corrections will now be able to generate a potential for the pNGBs
that, given the right conditions, induces a vacuum expectation value (vev) leading to a spontaneous
breaking of the remaining symmetries as in the SM. The pNGBs we will, thus, identify with the Higgs
doublet and the newly generated scale is the scale of electroweak symmetry breaking. Below this
energy scale, the theory should look like the SM in the broken phase embedded into a large theory
with heavy composite resonances and a composite pNGB Higgs.

For the further course of this work we will be mostly indifferent to the way the theory looks in the
far UV. We will work in a bottom-up approach considering only composite resonances, but not the
fields they are composed from. Some model aspects can be motivated having a certain UV theory in
mind, but they will proof to be more general. For example, we will motivate partial compositeness by
consideration of technicolor-like theories, but as we will see in section 2.3 this feature also naturally
arises in other theories such as extra dimensions. The advantage of this approach is less model
dependence which allows us to investigate the general idea of compositeness and its compatibility
with current experimental data. If the model does not work in the bottom-up approach then it also
will not work top-down, regardless of which UV theory one is thinking about. Analyses of concrete
UV completions can be found in [28].

2.1.1. The composite and the elementary sector

The basic structure of such a model consists of an elementary sector and composite resonances; one
of which we can identify with the Higgs field. In order for the elementary particles to interact with
the composite Higgs there has to be a connection between these two sectors. Schematically, the
Lagrangian then has the following form:

L = Lelementary + Lcomposite + Lint. (2.3)

These composite-elementary interactions then allow the elementary particles to interact indirectly
with the composite Higgs, via mixing with composite fields which directly interact with the Higgs. As
a consequence of this mixing with composite states the elementary particles acquire a mass and the
electroweak symmetry is broken.

Let us go into detail and consider the various sectors of this kind of models.

Elementary sector

The elementary part of the above model should resemble the well-known structure of the SM. In
particular, we assume the elementary sector to be invariant under an elementary version1 of the
SM gauge symmetry G0

SM = SU(3)0
c × SU(2)0

L × U(1)0
Y. We have to remark here that although the

elementary gauge group looks just like the SM gauge group, it actually is not the SM gauge group. As
we will see later, all SM particles will be a mixture of elementary and composite fields, such that the
SM gauge group has to be identified with the diagonal group of the elementary and some composite
gauge symmetry.

The same is also true for the elementary fermion sector. This will also look just like the SM,
meaning that there are left-handed doublets and right-handed singlets under SU(2)0

L and QCD and
hypercharge quatum numbers will be just as usual.

The only thing that is missing is a scalar field, as the Higgs is assumed to be a part purely of the
composite sector. Therefore, there are no masses for the elementary fermions and also all gauge bosons

1In the following we will denote elementary fields and symmetries with the index ‘0’. The SM will be denoted without
an index.
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#2\Composite Higgs Models\General structure of composite pNGB-Higgs models

are strictly massless, as there are is no breaking of gauge symmetries as long as the interactions with
the composite sector are turned off.

Summarizing, the elementary Lagrangian looks like the following,

Lelementary =
1

2
tr
[
G0
µνG

0µν
]

+
1

2
tr
[
W 0
µνW

0µν
]

+
1

4
B0
µνB

0µν

+
∑

quarks,leptons

∑

flavour

ψ0 /Dψ0, (2.4)

where the covariant derivatives are the usual ones for ψ0 = q0
L, u

0
R, d

0
R, l

0
L, `

0
R containing weak elemen-

tary gauge couplings. Note that as there are no Yukawa couplings there is nothing that distinguishes
between different generations.

The freedom in model-building for the elementary sector is limited. To see why, one could think
about what would happen if the elementary sector did not look just like the SM. For example, one
could could consider the possibility of enlarging the symmetries and/or the matter content for the
elementary fields. But, inevitably, this would introduce rather light or even massless states to the
spectrum, depending on whether and how these new states interact with the composite sector. As such
a scenario is phenomenologically challenging, this is not something we will pursue in the following. As
an alternative the elementary sector could contain less matter than the SM. In this case, the missing
SM degrees of freedom have to be purely parts of the composite sector. Consequently, these states
will interact strongly with the composite Higgs, such that this option might only be viable for the top
quark [30].

Composite sector

While the elementary sector is more or less fixed, the strongly interacting NP sector offers a lot of
freedom for model-building. We ignore what might happen at very high energies and just accept the
fact that there are composite states, which we will simply call resonances. In the approach used by
us the details of the composite sector are determined by its global symmetry structures. As stated
above, the composite sector is subject to a symmetry breaking G/H. But as it turns out, this is
not enough. We will see later that it is necessary to introduce couplings between the composite and
elementary sectors that are linear in the fields. These couplings are only possible if the elementary
quarks and the heavy quark resonances carry the same gauge quantum numbers. In particular, we
refer here not only to electroweak quantum numbers but also to color and hypercharge. That is to
say, the heavy fermion resonances that mix with the elementary quarks should be color triplets of the
same QCD. To achieve this, one uses the following construction that naturally emerges in the models
we are considering. Imagine, therefore, that the elementary sector is invariant under an elementary
version of the SM gauge group, G0

SM = SU(3)0
c × SU(2)0

L × U(1)0
Y. The composite sector we assume

to be invariant under a coset Gbig/Hbig of global symmetries, such that

Gbig ⊃ Hbig ⊃ Gcomp
SM = SU(3)comp

c × SU(2)comp
L ×U(1)comp

Y . (2.5)

By introducing linear couplings between the two sectors one then effectively breaks the SM-like sym-
metries down to their diagonal group,

G0
SM ×Gcomp

SM → G0+comp
SM ≡ GSM, (2.6)

which is then identified as the SM gauge group. This means that one is effectively gauging the GSM

subgroup of the composite global symmetries. This is a point that will become important later when
discussing the Higgs potential. As a consequence, the resulting theory is SM gauge invariant and the
heavy quark resonances carry QCD charges just as the SM quarks.

The easiest way to form such a structure is by just supplementing the coset G/H, that in the
end is supposed to reproduce the electroweak sector, by a composite global SU(3) symmetry. As in
general, the coset G/H might not suffice to generate the correct hypercharge quantum numbers for
the composite fermions we also include a global U(1), such that ultimately hypercharge will be given
as a linear combination of this U(1) and some generators of H. Summarizing, we will take the global
symmetries to be2

Gbig/Hbig = [SU(3)comp
c ×U(1)X × G] / [SU(3)comp

c ×U(1)X ×H] . (2.7)

2 This choice is the minimal one. An example of an non-minimal example in which the composite SU(3) is embedded
in a Pati-Salam symmetry is given in [31].
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The extended global symmetries are a way to transmit the elementary gauge interaction to the com-
posite sector.

Composite scalars

As already indicated above, the Higgs scalar in this model is implemented as a NGB3 of a broken
global symmetry G/H. This is already enough to determine most of the dynamics of the NGBs. The
general structure of theories of spontaneously broken global symmetries was worked out in [32, 33] and
is today known as the Callan, Coleman, Wess and Zumino (CCWZ) formalism. The basics of these
constructions are given in appendix II. One of the main points of this is that the spontaneous breaking
of a global symmetry corresponds to a non-linear realization of G that gets linear when restricted to
the subgroup H. In this case, the NGB modes are parametrized through matrices

U = exp

[
i

√
2

f
πâTâ

]
(2.8)

where Tâ are the broken coset generators and f is the Goldstone decay constant (similar to the pion
decay constant). Under a general G-transformation, the NGB fields πâ transform non-linearly as4

U g→ g U h(U , g)−1 with g ∈ G and h(U , g) ∈ H. (2.9)

According to the CCWZ formalism, a Lagrangian for the NGB fields is best expressed in terms of the
Maurer-Cartan form,

ωµ = iU†∂µU =: dµ + Eµ = dâµT
â + EaµT

a, (2.10)

whose components transform under the unbroken subgroup H via

Eµ → h (Eµ + i∂µ)h†, dµ → h dµ h
†. (2.11)

Using this the Goldstone kinetic Lagrangian is given as

Lσ =
f2

4
tr [dµd

µ] . (2.12)

From this one can see the important fact that NGBs interact only through derivative terms.

Composite vectors

Just as there are vector mesons in hadron physics one expects spin-1 resonances connected to the
global symmetries to appear in the composite sector. A priori, it is not clear how these should
be implemented into the theory as composite objects of some strong interactions. In the bottom-up
description used in this work which stresses the similarities of the model to hadron physics one can use
the same techniques as are used for introducing massive ρ mesons into low-energy strong interactions.
The method builds on so-called hidden local symmetries (HLS) [34, 35, 36], that were developed in
the late 1970s and early 80s. First investigated in the context of supersymmetry, it was soon realized
that HLS are a general phenomenon in non-linear sigma models based on a coset G/H [37]. The basic
idea here is that a coset G/H can be shown to be gauge equivalent to a structure Gglobal × Hlocal,
namely a theory with a global symmetry G and a gauge symmetry H. Heavy vector resonances can be
introduced as dynamical gauge bosons that receive mass terms via the Higgs mechanism associated
to the breaking (Gglobal ×Hlocal)→ Gglobal.

Let us consider this in a little bit more detail. For this we closely follow [36]. Assume that we have
a theory respecting a Gglobal×Hlocal symmetry structure consisting of a global symmetry group G and
a gauge group H. For this, we can introduce a field ξ transforming under these symmetries as

ξ(x)→ g ξ(x)h(x)−1 with g ∈ Gglobal, h(x) ∈ Hlocal. (2.13)

If we introduce gauge fields ρµ of Hlocal then a gauge covariant derivative can be defined,

Dµ = ∂µ − igρ ρµ, (2.14)

3 Later, an explicit breaking of the symmetries will be introduced turning the NGBs into pNGBs with a potential and
a small mass. But for our purposes right now we will just consider them as true NGBs for the time being.

4 Note that this transformation becomes linear for g ∈ H ⊂ G.
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which we use to write a Maurer-Cartan form similar to (II.15). It can then be shown that this
transforms in the usual way as in (II.19). Furthermore, we are free to fix the Hlocal gauge such that
ξ(x) reduces to

ξ(x) = exp

[
i

f
σa(x)Ta

]
exp

[
i

f
πâ(x)Tâ

]
gauge fixing−→ exp

[
i

f
πâ(x)Tâ

]
(2.15)

and takes the form of a NGB matrix (5.3). There is, however, a caveat since this gauge fixing is not
respected by the global Gglobal symmetry, such that in general a g-transformation can spoil the above
picture. This can be circumvented by performing only simultaneous g- and h(x)-transformations,
under which ξ(x) transforms as

ξ(x)→ g ξ(x)h(ξ, g)−1, (2.16)

making the analogy to the CCWZ Lagrangian [33] complete.
Let us recapitulate. By introducing the field ξ(x) and fixing the symmetries in a particular way,

it can be shown that the Lagrangian and the transformation properties of a theory with coset G/H
are the same as those of one with Gglobal × Hlocal symmetries, such that both theories appear to be
equivalent descriptions of the same physics. Composite vector resonances appear as gauge bosons of
the hiddenHlocal symmetry. The gauge fixing can be understood as a breaking of the gauge symmetries
Gglobal × Hlocal down to a global G. Connected with this is a Higgs mechanism that generates mass
terms for the vector resonances. This can readily be seen by considering the kinetic terms of the ξ
field. In analogy with the CCWZ construction a Cartan-Maurer form (II.15) can be defined,

ωµ = iξ†Dµξ = dâµT
â + EaµT

a, (2.17)

that has transformation properties (II.22). Under the above gauge fixing with transformations (2.16)
of ξ the Lagrangian5

L =
f2

4
tr [dµd

µ] +
1

4
tr [ρµνρ

µν ] +
f2
ρ

2
tr
[
(gρρµ − Eµ)2

]
(2.18)

leads to mass terms for the vector resonances,

mρ = gρfρ. (2.19)

This is exactly what one would expect from a Higgs mechanism; the mass scale of the vector resonances
is given by fρ ∼ f . In this gauge, the σ-fields in (2.15) are eaten by the gauge bosons rendering them
massive.

As seen from (2.7) also the composite SU(3)comp
c × U(1)X symmetries belong to the unbroken

directions of the coset. Therefore, utilizing HLS one also expects the presence of heavy resonances
connected to these symmetries, namely heavy gluon resonances and a heavy neutral vector boson
Xµ. As the unbroken group is a direct product of several Lie groups, one has to introduce different
couplings for each component. Also the mass scales can in general differ from fρ, but we will assume
them to be all of the same order fG ∼ fX ∼ fρ ∼ f up to O(1) factors. Then, we can write the masses
of these heavy vector resonances as

mG = gρ3 fG, mX = gX fX . (2.20)

Composite Fermions

Heavy fermion resonances appear in these theories just like baryons in the hadron spectrum. They are
introduced in a straight-forward way as multiplets of the unbroken global symmetries of the composite
sector, namely SU(3)comp

c ×U(1)X ×H. As a first consequence, the composite fermion resonances can
be divided into composite quarks and composite leptons depending on their representations under the

5 Note here, that we introduced a new scale fρ. In principle, both relevant operators in (2.18) are independent
structures, so one could also write

L ⊂ f2

4
tr [dµd

µ] + a
f2

2
tr
[
(gρρµ − Eµ)2

]
and then define fρ :=

√
af . This was e.g. done in [36].
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global composite colour symmetry. For giving a heavy mass to the fermions these have to be vector-
like. Then, these composite fermions are supplied with Dirac mass terms, which naturally should be
of the order of f .

In the light of HLS the couplings between fermion and vector resonances are given by covariant
derivatives (II.28), such that we can write the Lagrangian

L =
∑

i

Ψi

(
i /∇−mΨ

)
Ψi. (2.21)

In this work we are interested in the effect of composite partners for the SM quarks. Therefore, we
concentrate on that case and neglect the possibility of composite leptons.

2.1.2. Composite-elementary mixings

Up to now both the elementary and the composite sector of this model have been separate theories.
In this section we will show how introducing composite-elementary mixing terms will push the model
a far way towards phenomenological viability.

To understand the structure of these terms it is convenient to temporarily return to the picture
of a strongly interacting UV theory for the composite sector. At very high energies the interactions
between elementary and technifermions will appear at the non-renormalizable level in the form of
4-fermion-operators. These can take two forms that are reasonable and which are schematically given
as follows:

a) b)

at high energies: L ∼ g
M2

(
f0f0

) (
FF
)

L ∼ g
M2

(
f0F

) (
FF
)

f 0

f 0

F

F

f 0

F

F

F

at low energies: L ∼ mf0f0 L ∼ ε f0B
〈
FF

〉

f 0f 0 f 0
B

a) In this case there is a bilinear mixing of elementary and technifermions. This is the scenario
usually considered in models of extended technicolor (see e.g. [38]). As always the case in
technicolor models, EWSB is considered as being induced by some condensate of technifermions〈
FF
〉
6= 0, whose interactions at low energies will introduce mass terms for the elementary

fermions that depend on the techni-condensate. However, such a construction always has to
struggle with strong constraints from flavour observables as these effects lead to large amounts
of FCNCs, such that in practice such a construction is phenomenologically ruled out.

b) In this case there is an interaction that mixes one elementary with three techni-fermions. As at
low energies the strong sector should be confining and the techni-fermions should “hadronize”
into resonances, this induces an effective linear mixing between the elementary sector and strong
sector “baryons” B, i.e. quark and lepton partners. Such a mixing between the elementary and
composite sectors is called partial compositeness [39], since in the end, all states (including the
SM particles) will be mixtures of elementary states and composite resonances. Such a scenario
has many advantages coming from the phenomenology side as well as from model building.
Thus, partial compositeness will be the framework adopted for the remainder of this work.

Let us consider the mechanism of partial compositeness in further detail and for the time being
concentrate on fermions. As we have seen above, the elementary sector by construction is invariant
under a SM-like gauge symmetry, such that there are no mass terms. In the composite sector, on

21



#2\Composite Higgs Models\General structure of composite pNGB-Higgs models

the other hand, the fermions are vector-like, such that all resonances will have large masses of the
order of the NP hadronization scale. Due to the interaction of both sectors the elementary states get
admixtures from the composite ones and thus obtain a mass of the order of the mixing scale. To see
this explicitly, let us write down a toy model for partial compositeness [40]. The elementary sector will
contain left- and right-handed Weyl-fermions (ψ0

L and ψ0
R) that transform as a doublet and singlet,

respectively, under an elementary SU(2)0 symmetry. Now, one wants to write down mixing terms
with composite resonances. As these are vectorlike, we will have to consider two different states (Ψ

and Ψ̃), that are a doublet and a singlet under a composite SU(2)comp symmetry, respectively.

SU(2)0 × SU(2)comp

elementary sector ψ0
L ∈ (2,1) chiral

ψ0
R ∈ (1,1) chiral

composite sector Ψ ∈ (1,2) vectorlike

Ψ̃ ∈ (1,1) vectorlike

Mixing terms can be written down if spurion fields,

ε̂L ∈ (2,2∗), ε̂L → εL

(
1 0
0 1

)

ε̂R ∈ (1,1), ε̂R → εR 1,

are introduced in such a way that the elementary and composite symmetries are broken down to the
diagonal group that is then identified as the SM symmetry, SU(2)0 × SU(2)comp → SU(2)SM. The
Langrangian for this then looks like

L = ψ0i/∂ψ0 + Ψ
(
i/∂ −M

)
Ψ + Ψ̃

(
i/∂ − M̃

)
Ψ̃ (2.22)

+ ψ0
L ε̂L ΨR + ψ0

R ε̂R Ψ̃L + h.c. , (2.23)

In this case the fermion mass matrix has a non-diagonal form,

M̂φ =




ψ0
R ΨR Ψ̃R

ψ0
L 0 −εL 0

ΨL 0 M 0

Ψ̃L −ε†R 0 M̃



. (2.24)

As physical states are defined in such a way that they possess a diagonal mass matrix, one has to
diagonalize the above matrix such that the physical states will be linear combinations of elementary
and composite fields. In general, this is done via a bi-unitary transformation,




ψ0
L

ΨL

Ψ̃L


→




cos(φL) − sin(φL) 0
sin(φL) cos(φL) 0

0 0 1






ψ0
L

ΨL

Ψ̃L


 (2.25a)




ψ0
R

ΨR

Ψ̃R


→




cos(φR) 0 − sin(φR)
0 1 0

sin(φR) 0 cos(φR)






ψ0
R

ΨR

Ψ̃R


 (2.25b)

that transforms left- and right-handed fermions separately by mixing angles that are determined by
the composite-elementary-mixings and the heavy masses,

tan(φL) =
εL
M
, tan(φR) =

εR

M̃
. (2.26)

As suggested by the mixing Lagrangian (2.23), the left-handed elementary fermions mix with the

composite doublet fields Ψ, while the right-handed ones mix with the fields Ψ̃. This is now the key
ingredient of partial compositeness, the SM fields are mixtures of elementary and composite fields,

|SM〉 = cos(φ) |elementary〉 − sin(φ) |composite〉 , (2.27a)

|NP〉 = sin(φ) |elementary〉 + cos(φ) |composite〉 , (2.27b)
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while NP fields form the orthogonal combination. The admixture is described by a mixing angle whose
sine we will call degree of compositeness.

Let us now consider the Higgs interactions. By construction the Higgs is part only of the composite
sector and the elementary fields do not couple to it. There are only interactions of the composite
Higgs with the composite resonances. For our toy model it is easiest to think of the Higgs H as being
a doublet of SU(2)comp such that Yukawa terms can be written,

Lcomp ⊃ Lyuk = ycomp Ψ.H Ψ̃ + h.c. . (2.28)

Performing the transformations (2.25), interaction terms between SM states and the Higgs are intro-
duced,

Lyuk → ySM ψ0
L.Hψ0

R + h.c. + . . . , (2.29)

where the SM Yukawa coupling is determined by the composite coupling and the degrees of compos-
iteness,

ySM = ycomp sin(φL) sin(φR). (2.30)

This is now the SM Yukawa sector describing the interactions between the SM fermions and the Higgs
boson. If one now assumes that (by whichever mechanism) a potential for the Higgs is generated in
such a way that it obtains a vacuum expectation value, the masses of the SM fermions are generated in
the usual way via interaction with the Higgs vacuum. Physically, the picture here is very transparent.

high energy low energy

H

ψ0
L ψ0

RΨR Ψ̃L

sin(φL) sin(φR)ycomp

H

ψ0
L ψ0

R

ySM = ycomp sin(φL) sin(φR)

The elementary fields have to “oscillate” into a composite state in order to be able to interact with the
Higgs. This oscillation is given by the composite-elementary-mixings and, therefore, the interactions
of the Higgs with the SM fermions are governed by the degree of compositeness of the latter. If one
considers more than one generation this construction allows to explain the observed flavour patterns
in a natural way: The SM Yukawa couplings are determined by the degrees of compositeness of the
SM fermions and the couplings of the composite fermion resonances to the composite Higgs. One
could imagine that at some high scale these couplings and mixings are anarchic, meaning that they
show no large hierarchies. By the RGE flow down to low energies, hierarchies in the composite-
elementary mixings can be exponentially enhanced if there are sizable anomalous dimensions which
is not unreasonable in a strongly interacting theory [41]. This is a further main motivation for CHMs
as a dynamical explanation for flavour hierarchies can be given.6 In this picture, the heavier the
fermions are the more strongly they mix with states from the composite sector. However, as we will
discuss in section 2.2.3 this simple picture of anarchic composite Yukawa couplings does not withstand
phenomenological scrutiny such that either the scale of vector resonances has to be unnaturally high
or flavour symmetries in the composite sector have to be introduced to obtain enough control over
flavour transitions.

As already stated above we do not consider composite leptons in this work. The reason for this
is that including composite-elementary mixings for leptons would make the model significantly more
complex as the PMNS matrix would have to be reproduced. As we are mainly interested in quark
flavour physics we consider the limiting case of vanishing composite-elementary mixings and treat the
leptons as purely elementary.

As for the fermions, there will also be partial compositeness in the spin-1 sector that is less model-
dependent since it is fixed mostly by symmetry considerations. In the spirit of HLS the couplings
to the elementary sector are introduced by gauging the G0 subgroup of Gglobal. Then, the covariant
derivative of the pNGBs changes [36],

DµU = ∂µU − igρ ρµ + ig0A
(0)
µ , (2.31)

6A similar picture arises in dual theories on extra dimensions. In a strongly warped geometry, flavour hierarchies
can be understood as being due to localizations of bulk fermion fields in the extra dimensionand therefore they are
determined as wavefunction-overlaps [42].
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and the Lagrangian (2.18) leads to mass matrices

M2
V = f2

ρ

(
g2

0 −g0gρ
−g0gρ g2

ρ

)
. (2.32)

Going to the mass basis, this mass matrix is diagonalized by a rotation

(
ASM
µ

ρNP
µ

)
=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

) (
A0
µ

ρµ

)
, (2.33)

where the degree of compositeness is given by the relative sizes of elementary and composite gauge

couplings, tan(φ) = g0

gρ
. In this physical basis, one linear combination will obtain a large mass while

the orthogonal combination remains massless,

m2
SM = 0, (2.34)

m2
ρ =

(
g2

0 + g2
ρ

)
f2
ρ . (2.35)

The massless combination we will identify with the SM fields whose gauge symmetries are still pre-
served.

2.2. Phenomenological features

The above basic construction is successful in solving open questions as the fine-tuning problem or the
origin of flavour hierarchies. However, to obtain a model that can be phenomenologically realistic, a
few aspects have to be added. In particular, these include the notion of custodial symmetry, which will
have profound consequences for the choice of the symmetry breaking patterns, electroweak symmetry
breaking via the Coleman-Weinberg mechanism and the introduction of flavour symmetries that are
necessary in order to have control over the flavour sector.

2.2.1. Custodial symmetry

The SM is a gauge theory invariant under a group GSM = SU(3)c× SU(2)L×U(1)Y. Considering the
Higgs sector alone, one sees that an additional global symmetry is hidden. It is easy to show that the
Higgs kinetic term and its potential can be written in an SU(2)L × SU(2)R symmetric form [43]. For
this one introduces a Higgs bidoublet,

H = (ε · Φ∗,Φ) =
1√
2

(
φ3 − iφ4 φ1 + iφ2

−φ1 + iφ2 φ3 + iφ4

)
, (2.36)

which transforms as H → LH R† under SU(2)L × SU(2)R. A manifestly invariant term is given as

tr
[
H†H

]
= φ2

1 + φ2
2 + φ2

3 + φ2
4 = Φ†Φ, (2.37)

such that the SM Higgs sector is easily seen to be invariant as well,

LHiggs = (DµΦ)
†

(DµΦ)− V (Φ†Φ)

= tr
[
(DµH)

†
(DµH)

]
− V (tr

[
H†H

]
).

After EWSB, H → vSM√
2

12×2, these global symmetries are broken down to their diagonal subgroup,

SU(2)L×SU(2)R → SU(2)L+R. This pattern is called custodial symmetry. One important consequence
is the well-known relation between the vector boson masses and the electroweak mixing angle (see e.g.
[44]),

ρ =
m2
W

m2
Z cos(θw)

= 1. (2.38)

Looking at the full SM, the custodial symmetry is explicitly broken by hypercharge as well as the
Yukawa couplings. This breaking introduces violations of (2.38) through quantum corrections. Devi-
ations are however small due to the small explicit breaking of custodial symmetry.
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Embedding the SM into a more fundamental theory might introduce new sources of custodial sym-
metry breaking. These can be controlled by the use of electroweak precision observables (EWPO) [45]
which have been measured to a high accuracy at LEP [46] (The precision observables will be dis-
cussed in more detail in section 3.3.2). Working in an EFT approach, these correspond the to Wilson
coefficients of dimension-6 operators [47],

LEWPO =
cS
Λ2
OS +

cT
Λ2
OT ,

with

OS = Φ† σi ΦW i
µν Bµν = tr

[
H† σiH σ3

]
W i
µν Bµν , (2.39a)

OT =
∣∣Φ†Dµ Φ

∣∣2 = tr
[
H† (DµH)σ3

]
tr
[(
DµH†

)
H σ3

]
. (2.39b)

After EWSB, these operators determine the electroweak precision observables via

S = 4
sin(θW ) cos(θW )

α

v2
SM

Λ2
cS , T = − 1

2α

v2
SM

Λ2
cT . (2.40)

While the operator OS is invariant under custodial symmetry, the operator OT is not and, therefore,
the T parameter measures the amount of explicit breaking of custodial symmetry. Reversing this
argument, if the NP sector is invariant under the custodial symmetry, there will be no pure NP
contributions to the T parameter7. As the constraints on EWPOs are very tight, it appears to be
well motivated to include custodial symmetry in the NP sector in order to prevent dangerously large
contributions to the T parameter while at the same time retaining an acceptable amount of fine-tuning.
In CHMs, custodial symmetry is explicitly broken by the composite-elementary mixings. However,
assuming the composite sector to be invariant under an SO(4) ∼= SU(2)L × SU(2)R symmetry assures
the protection of the T parameter at tree level. NP contributions will only appear at the loop level
via the exchange of heavy resonance pairs. This puts constraints on the coset of the broken global
symmetries of the composite sector, as the unbroken subgroup should at least be as large as SO(4).
Demanding then that the coset is large enough to accommodate a complex doublet of Goldstone
bosons gives the minimal coset for CHMs as SO(5)/SO(4) [48]. This features exactly four pNGBs
that can be identified with the complex Higgs doublet.

As another feature of custodial symmetry, it was found in [49] that under certain circumstances cus-
todial protection can also prevent dangerously large contributions to ZbLbL couplings. The couplings
of the Z boson to a SM fermion ψ are given by

g

cos(θW )

[
Q3

L −Qem sin2(θW )
]
Zµ ψγµψ. (2.41)

Being interested only in non-universal corrections, NP could possibly change this coupling by con-
tributing to the electric charge Qem or to weak isospin Q3

L. As the electric charge is protected by
the electromagnetic gauge symmetries, this cannot be changed. In the SM one has Q3

L = T3
L, i.e.

Q3
L = ± 1

2 for doublets or Q3
L = 0 for singlets. In CHMs, however, this can be changed since due to

partial compositeness the SM fermions will mix with fields with different SU(2)L quantum numbers
after EWSB. These mixings are determined by the representations of the composite resonances under
global symmetries and by the way in which the SM fields are embedded into incomplete representa-
tions. As shown in [49], the corrections to Q3

L can be protected by discrete PLR symmetries if the
embedding of ψ satisfies T3

L = T3
R. This leads to constraints on the possible representations of the

resonances under SO(4) = SU(2)L × SU(2)R. One can look at the smallest representations of SO(5)
and how they decompose into SO(4),

spinorial 4 = (2,1)⊕ (1,2), (2.42a)

fundamental 5 = (2,2)⊕ (1,1), (2.42b)

anti-symmetric 10 = (3,1)⊕ (1,3)⊕ (2,2), (2.42c)

symmetric 14 = (3,3)⊕ (2,2)⊕ (1,1). (2.42d)

If the left-handed fermion doublets can be embedded into bi-doublets of SO(4), then their couplings
to the Z boson are protected. This is not the case for the spinorial representation and, hence, we will

7There might however be a contribution due to the interaction of the NP sector with the SM in which custodial
symmetry is broken explicitly.
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#2\Composite Higgs Models\Phenomenological features

not consider it in the following. This leaves the fundamental as the smallest representation. In the
same way, it can then be seen that couplings ZtLtL and WtLbL are not protected allowing for large
NP corrections.

Summarizing, measurements of the electroweak sector have profound consequences for model-
building in CHMs. Getting rid of large contributions to the T parameter forces the existence of
a custodial symmetry and by that fixes the minimal coset to SO(5)/SO(4). Also protecting the cou-
plings of the electroweak Z boson constraints the possible choice of representations of the composite
resonances under this coset, such that the minimal choice is given by the fundamental 5.

2.2.2. Electroweak symmetry breaking

A crucial point for the validity of this class of models is electroweak symmetry breaking. Experi-
mentally, the SM and, in particular, the breaking of gauge symmetries SU(2)L × U(1)Y → U(1)em is
very well established and every model of NP has to incorporate a mechanism to generate this pattern.
In the SM the electroweak symmetry is broken by the Higgs mechanism, i.e. by a scalar degree of
freedom that gets a non-vanishing vacuum expectation value through the non-trivial structure of its
potential. Although the discovery of the Higgs boson at the LHC in 2012 marked a magnificent tri-
umph for the Higgs mechanism, it by itself does not give any explanation about the origin of EWSB
as the symmetry breaking potential is merely introduced “by hand” such that it most probably is a
parametrization of more fundamental physics. All we know is that the potential is there, but where
it comes from is presently unknown. In CHMs with a pNGB Higgs the origin of the potential can
be described in a dynamical way due to the breaking of global symmetries. Even further, the Higgs
potential can actually be calculated such that predictions for the Higgs mass and the scale of EWSB
can be made for a given model.

In the following sections we will review EWSB in CHMs and consider its important impact on a
detailed analysis of such models. For this we first review the general notion of vacuum misalignment
and then discuss the general calculation of the effective Higgs potential through the Coleman-Weinberg
mechanism. After that the phenomenological consequences of the potential will be highlighted for the
coset structure SO(5)/SO(4) which will be the subject of the analysis in chapter 4.

Vacuum misalignment

In CHMs a solution to this question is given through the mechanism of vacuum misalignment [50],
which allows the potential to be generated dynamically through quantum corrections. The basic idea
here is that the Goldstone shift symmetry of the composite sector is explicitly broken via interactions
with the elementary fields, which allows the true vacuum of the theory to deviate from the directions
respecting the GSM-symmetry, thus breaking it down to U(1)em. In turn, the SM particles receive
their masses and a Higgs boson emerges as a massive scalar particle.

To see this in more detail, consider the basic structure of CHM. There is an elementary sector
invariant under a G0

SM = SU(2)0×U(1)0 gauge symmetry. Furthermore, we have a confining, strongly
interacting sector that we assume to be “hadronized” into an effective theory with heavy vector and
fermion resonances. This sector is subject to a global symmetry breaking G/H such that NGB states
πâ, implemented through the combination

U(x) = exp

(
i

√
2

f
πâ(x)Tâ

)
, (2.43)

appear in the spectrum, which we later identify with the Higgs. By the general construction of
appendix II Goldstone bosons are subject to a shift symmetry, πâ(x)→ πâ(x) + c, such that they can
only appear via derivative terms. In particular, this means that no mass term and no potential can
arise as long as this shift symmetry is exact. The physical vacuum exhibits an infinite degeneracy
that is characterized by

〈U〉 = exp

(
i

√
2

f
〈πâ(x)〉Tâ

)
, (2.44)

where the the vevs 〈πâ(x)〉 can take any real value. By the shift symmetry it then follows that in this
case 〈πâ(x)〉 = 0 in full generality.
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So, one sees that if both sectors are separated no breaking of the electroweak symmetry occurs.
This changes if one turns on interactions between both sectors. In CHMs there are two sources of
explicit symmetry breaking:

1. In the gauge sector there are linear interactions between elementary gauge bosons and composite
vector resonances. This means that the elementary gauge symmetry G0

SM = SU(2)0×U(1)0 and
the SU(2)× U(1) subgroup of the unbroken composite global symmetry H are broken down to
their diagonal group,

G0
SM ×Gcomp

SM︸ ︷︷ ︸
⊂H

→ G0+comp
SM ≡ GSM, (2.45)

that we then identify with the SM gauge group. Effectively this means that one is gauging a
subgroup of the global symmetries of the composite sector. This inevitably leads to a breaking
of the global symmetries. At first sight, this might seem counter-intuitive, but the point is
just that if one assumes the gauging of the subgroup to be exact then the global symmetry of
the larger group cannot be present anymore, as a global symmetry transformation would break
gauge invariance.8

2. The fermions of the elementary sector do not appear in full H representations, but rather
in SU(2) doublets and singlets according to their quantum numbers. As a consequence, one
has to couple the composite fermion resonances to elementary states embedded into incomplete
representations of the composite global symmetries. Later, this will turn out to be the dominant
mechanism for generating EWSB.

In conclusion, the effect of the interactions between the composite and elementary sector is that the
global symmetries are explicitly broken and the theory is invariant only under a gauge symmetry that
we identify with the SM gauge symmetry. The explicit breaking of global symmetries turns the NGB
fields into pNGBs such that, in particular, a potential and mass terms are allowed for them. The
potential, of course, has to respect the GSM gauge symmetry, but the crucial point is that the true
vacuum of the theory does not. In general, the degeneracy in (2.44) is lifted and the physical vacuum
picks some 〈πâ〉 = 〈π∗â〉 6= 0, such that

〈U〉 = exp

(
i

√
2

f
〈π∗â(x)〉Tâ

)
6= 1, (2.46)

and no shift symmetry is present that forces the vevs to vanish. This is the mechanism of vacuum
misalignment [50]: One can interpret the vevs 〈π∗â〉 as parameterizing the deviation between the
physical vacuum of the theory and the symmetry restoring vacuum 〈U〉 = 1.

The Coleman-Weinberg effective potential

On the classical level there is no potential for the pNGBs. Therefore, vacuum misalignment is a
quantum phenomenon in this case, in the sense that the potential is only generated dynamically
through radiative corrections. The framework for this was developed in the early 80s as the Coleman-
Weinberg (CW) potential [52] (see also [53]). The idea of it is that in contrast to the ordinary action
(which gives the dynamics on the classical level) the effective action gives the full quantum corrected
dynamics. As a lowest order in a derivative expansion the effective action contains the effective
potential which determines the physical vacuum of the theory. Its general form is given as [52]

Veff(ϕ) =
1

V
∑

n

1

n!

∫

V

d4x1 . . . d
4xn Γ(n)(x1, . . . , xn)ϕ(x1) . . . ϕ(xn), (2.47)

which shows that, essentially, the coefficient of the ϕn-term in the effective potential is given by the 1-
particle irreducible vertex Γ(n) with vanishing external momentum. This also shows how to calculate

8In general, gauging of a subgroup breaks the global symmetries down to the largest subgroup that contains the gauged
subgroup as an ideal (see [51, Footnote 2]). This will become important in the later parts of this work (see chapter 5)
when we will consider non-minimal CHMs.

27



#2\Composite Higgs Models\Phenomenological features

the effective potential in a loop-expansion: For the one-loop result one simply has to calculate all
one-loop vacuum diagrams with an arbitrary number of external legs, such that, schematically,

Veff(ϕ) ∼ + + + . . . . (2.48)

The vertex functions contain an arbitrarily large number of scalar fields as external legs and therefore
must consist of vertices involving pNGB fields. In CHMs there are fermion and vector boson fields
interacting with the pNGBs. Therefore, such vertices are best encoded in pNGB-dependent mass
matrices M2(πâ) and one can generally write the relevant Lagrangian as

L =
∑

i

(∂µΦi) (∂µΦi) −
∑

ij

[
M2(πâ)

]
ij

ΦiΦj , (2.49)

where we used the symbol Φi to denote fermion as well as vector fields. For this general Lagrangian
one can make use of the standard Coleman-Weinberg formula involving terms of the form

M2(πâ)

M2(πâ)

M2(πâ)

∼
∫

d4`

(2π)4

(
tr
[
M2(πâ)

]

`2

)m
, (2.50)

where m denotes the number of mass matrix insertions. Integrating up to a momentum cutoff Λ one
finds a quadratically as well as a logarithmically divergent expression while all higher order terms are
not UV sensitive. Following the standard Coleman-Weinberg calculation one arrives at [54]

Veff(πâ) =
∑ ci

64π2

(
2 tr

[
M2
i (πâ)

]
Λ2 − tr

[
M4
i (πâ)

]
log
[
Λ2
]

+ tr
[
M4
i (πâ) log

[
M2
i (πâ)

]])
, (2.51)

where the coefficients ci count the degrees of freedom such that

ci =





3 for neutral gauge bosons
2× 3 = 6 for charged gauge bosons

(−1)× 3× 4 = −12 for (coloured) Dirac fermions

and the sum ranges over all particle species. In general, the above expression is strongly cutoff-
dependent such that the effective potential is not calculable and predictivity of the model is lost. This
can only be restored by explicitly demanding that all cutoff-dependent terms in the above expression
are in fact vanishing. Using that fact that the constant part of the effective potential is not a physical
quantity, this amounts to imposing the so-called Weinberg sum rules (WSRs) [55],

tr
[
M2
i (πâ)

]
− tr

[
M2
i (πâ = 0)

]
= 0, (2.52a)

tr
[
M4
i (πâ)

]
− tr

[
M4
i (πâ = 0)

]
= 0, (2.52b)

separately for each particle species.
In general CHMs imposing the WSRs is a rather arbitrary endeavor as it only depends on our lack

of knowledge about UV physics. In section 2.3, however, we will introduce a class of CHMs that
satisfy these relations naturally as they are built upon structures inspired by extra-dimensional gauge
theories. Therefore, we will in the following exclusively consider such extra-dimensional-like theories
solely because of the fact that they by default allow for a calculable Higgs potential. In such a case
one can simply calculate the potential from the eigenvalues of the mass matrices and (2.51) reduces
to

Veff(πâ) =
∑ ci

64π2
m4
i (π

â) log
[
m2
i (π

â)
]
. (2.53)

In this work we will only consider the effective potential calculated at one-loop level. Including higher
order correction is beyond the scope of this analysis (see also the discussion at the end of section 2.4).
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Figure 2.2.: Allowed values for γ and β that can reproduce the experimental values for for the Higgs vev
and its mass. In this plot the scale f is varied between 500 GeV and 1500 GeV. The black line
indicates the points where both constraints are satisfied on the same time.

Structure of the potential for SO(5)/SO(4)

Let us now discuss the structure of the effective potential in greater detail. For this we choose as an
example the minimal option based on the coset SO(5)/SO(4) which will be the subject of investigation
in chapter 4. Using the generators of SO(5) which are given in appendix I.1 and going to SM unitary
gauge, in which πâ = (0, 0, 0, h) such that the Higgs field is the only remaining scalar degree of
freedom, one can write the Goldstone-matrix as follows

U := exp

[
i

√
2

f
πâ(x)Tâ

]
=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 cos
(
h
f

)
sin
(
h
f

)

0 0 0 − sin
(
h
f

)
cos
(
h
f

)



. (2.54)

This explicitly demonstrates the role of h/f as an angle of misalignment between the physical vacuum
and the symmetry restoring vacuum 〈U〉 = 1.

As we will see later on, the hierarchy between the NP scale f and the Higgs vev vSM in the SM
will be given by the value s∗h of sh at the minimum of the potential, i.e. vSM = f s∗h. Therefore,
assuming f to be of O(TeV) one generally expects that s∗h is a number smaller than 1, which suggests
an expansion of the effective potential in terms of sh such that one can write the potential as [55]

Veff(sh) =
(
−γ s2

h + β s4
h + . . .

)
f4. (2.55)

In this expansion the minimum of the potential and the Higgs mass can be calculated as

s∗h =

√
γ

2β
, m2

h =
∂2Veff(sh)

∂h2

∣∣∣∣
sh=s∗h

= 4γ

(
1− γ

2β

)
f2. (2.56)

Figure 2.2 shows the allowed ranges for the coefficients γ and β that are needed to generate the correct
values for the two measured parameters of EWSB: the SM Higgs vev vSM and the Higgs mass mh.
Generally, one needs β & γ to trigger EWSB and a rather small γ to explain the hierarchy mh � f .

As discussed above, the effective potential for the pNGBs is generated by the explicit breaking of
the global symmetries. Because of this, a large amount of information about the qualitative structure
of the potential can be obtained utilizing a so-called spurion analysis. For this one promotes the
symmetry breaking parameters in the Lagrangian to fictitious fields with well-defined transformation
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properties under the given symmetries. In this formalism the symmetry breaking is parametrized by
“vacuum expectation values” that one allows the spurions to obtain. Such a spurion analysis for the
given effective composite Higgs potential has been performed extensively in the literature (see e.g.
[56, 57, 58, 59]); we will repeat the results here as in the following they will be important in many
occasions.

From the discussion above we know that there are two qualitatively very different sources of explicit
symmetry breaking for the considered theories: gauging the GSM-subgroup of the global symmetries
and coupling the composite fermion resonances to elementary fermions that do not form full SO(5)
multiplets. Let us consider both contributions separately in greater detail.

Gauge contributions: In the gauge sector the global symmetries are broken explicitly by the couplings
of the pNGBs to the elementary gauge fields, such that effectively only a subgroup of larger global
symmetries is gauged. Therefore, it is instructive to elevate the elementary gauge fields to a
fictitious complete SO(5) adjoint by writing [60],

gρ Vµ = gaAW
a
µ TA + g′ABµ T

A, (2.57)

where A and a are SO(5)- and SU(2)-indices, respectively. The original theory is obtained if the
spurions take the vevs

gaAT
A → g0T

a
L, g′AT

A → g′0T
3
R. (2.58)

The whole point of the spurion analysis is that before taking their vevs the spurions can only
appear in symmetry-preserving combinations which allows to deduce the qualitative structure of
the potential in an expansion in terms of the (presumably small) symmetry breaking parameters
ε,

Veff(sh) = f4
∑

n

cn In(sh) εn. (2.59)

In this notation, the coefficients cn cannot be fixed by the spurion analysis and have to be
determined by an explicit calculation, but naturally they are assumed to be O(1) numbers.
For the case at hand, the symmetry breaking parameters ε ∼ g0/gρ are given by the relative
strength of composite and elementary gauge couplings. This also shows that there are no gauge
contributions to the potential in the limit of vanishing elementary gauge couplings. The functions
In(sh) are given by invariant structures between pNGBs and spurion fields and lead to a non-
trivial form of the potential after the spurions take their vevs. To lowest order these invariant
structures appear with two insertions of spurions and are given as [60, 55]9

I2(sh) =
(
U t gaAT

A gaBT
B U
)

55
→ 3

4
s2
h, (2.60a)

I2(sh) =
(
U t g′AT

A g′BT
B U
)

55
→ 1

4
s2
h. (2.60b)

One observes that at this order in the spurion expansion only the coefficient γ of the potential
(2.55) is generated, such that the coefficient β only appears with one further suppression by
elementary gauge couplings [55],

γgauge ∼ c2
(
g0

gρ

)2

, βgauge ∼ c4
(
g0

gρ

)4

∼
(
g0

gρ

)2

γ � γ, (2.61)

which shows that gauge contributions alone are not enough to satisfy the necessary condition
β & γ to generate a non-trivial minimum for the potential. Therefore, fermion contributions are
essential to trigger EWSB.

Fermion contributions: In (4.12) the global symmetries are broken explicitly by embedding the ele-
mentary fermions into incomplete SO(5) representations. In the language of spurions an alter-
native formulation is useful by introducing spurion fields ∆ such that the Lagrangian is written
as

L ⊃ q0
L∆uLΨuR + q0

L∆dLΨdR + u0
R∆uRΨ̃uL + d

0

R∆dRΨ̃dL + h.c., (2.62)

9 Note that the In become sh-independent if the spurions take vevs in SO(5)-preserving directions,

g(′) → g
(′)
0 1,

showing that in this case the symmetry is not explicitly broken and no potential for the pNGBs is generated by the
gauge sector.
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where the appearing fields have the following quantum numbers under SU(2)0
L×U(1)0

Y×SO(5)×
U(1)X :10

q0
L ∈

(
2 1

6
,10

)
, u0

R ∈
(
1 2

3
,10

)
, d0

R ∈
(
1− 1

3
,10

)
, (2.63a)

Ψu ∈
(
10,5 2

3

)
, Ψd ∈

(
10,5− 1

3

)
, Ψ̃u ∈

(
10,5 2

3

)
, Ψ̃d ∈

(
10,5− 1

3

)
, (2.63b)

∆uL ∈
(
2 1

6
,5∗− 2

3

)
, ∆dL ∈

(
2 1

6
,5∗1

3

)
, ∆uR ∈

(
1 2

3
,5∗− 2

3

)
, ∆dR ∈

(
1− 1

3
,5∗1

3

)
, (2.63c)

where the spurions carry elementary as well as composite charges such that they can communi-
cate with both sectors.

The original Lagrangian is reproduced if the spurions take the vevs

∆uL →
1√
2

(
0 0 1 i 0
1 −i 0 0 0

)
εuL, ∆uR →

(
0 0 0 0 1

)
εuR, (2.64a)

∆dL →
1√
2

(
1 i 0 0 0
0 0 −1 i 0

)
εdL, ∆dR →

(
0 0 0 0 1

)
εdR. (2.64b)

Just as for the gauge boson case one finds that also the lowest order in the fermionic spurion
expansion for this case only gives contributions to the γ coefficient of the potential,11

IL
2 (sh) =

(
U t∆†L∆LU

)
55

= −1

2
|εL|2 s2

h + (u↔ d) (2.65a)

IR
2 (sh) =

(
U t∆†R∆RU

)
55

= |εR|2 (1− s2
h) + (u↔ d) (2.65b)

Terms of order s4
h (that correspond to the β-coefficient in (2.55)) only appear with a higher

number of spurion insertions12

ILL
4 (sh) = IL

2 (sh)IL
2 (sh) =

1

4
|εL|4 s4

h + (u↔ d) (2.66a)

IRR
4 (sh) = IR

2 (sh)IR
2 (sh) = |εR|4 (1− s2

h)2 + (u↔ d) (2.66b)

ILR
4 (sh) = IL

2 (sh)IR
2 (sh) = −1

2
|εL|2|εR|2 (1− s2

h)s2
h + (u↔ d) (2.66c)

As a consequence, formally sub-leading terms in the spurion expansion have to become com-
parable to leading order terms in order to satisfy the necessary condition β & γ for having a
non-trivial minimum of the potential. Contrary to the gauge sector, where the amount of explicit
symmetry breaking is always small (g0 � gρ), this is possible in the fermion sector as the more
complicated parametric dependencies allow for a certain amount of fine-tuning to be present.
This strongly depends on the details of the confining UV theory, but is accessible for explicit
calculations in the EFT. Therefore, one can identify a source of necessary fine-tuning needed in
this model [61]. This tuning is less severe for large composite-elementary mixings, such that one
expects the potential to be generated mostly by the heavy top quark (and to a lesser degree by
the bottom quark).

Summarizing, the above spurion analysis shows that the effective potential,

Veff(sh) =
(
−(γfermion + γgauge) s2

h + βfermion s
4
h + . . .

)
f4, (2.67)

gets contributions from the fermion as well as from the gauge sector. While EWSB is induced by
loops of quarks with a large degree of compositeness an interplay between the gauge and fermion
sectors is necessary to determine the exact location of the minimum as well as the value of the
Higgs mass. Assuming all massive parameters of the strong sector to be roughly of the same order

10 The fermion contributions are model-dependent since they depend on the representations of the fermion resonances
under the global symmetries. In this section we only consider the simplest case of fundamentals under SO(5), but
larger representations are possible and can lead to different conclusions, in particular about fine-tuning. For a review
see e.g. [56, 59].

11 This is not true in general. If the fermion resonances are e.g. embedded into a symmetric 14-representation of SO(5)
then s4h-terms appear already at this level in the spurion expansion and no further tuning is necessary. [56, 59]

12 Terms of the form Ut∆†∆∆†∆U either vanish or give sh-independent contributions to the potential.
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mΨ ∼ mΨ̃ ∼ f one would expect that the potential also gets contributions of that order such that
γ = γfermion+γgauge = O(1). This, however, is in tension with a light Higgs mass that by (2.56) instead

forces γ ∼ m2
h

f2 � 1. To achieve the needed suppression of γ parameter, an unnatural cancellation
between the a priori largely uncorrelated gauge and fermion contributions has to take place such that

γfermion ≈ −γgauge and γfermion + γgauge � 1. (2.68)

Phenomenologically, this is of great relevance as including the Higgs mass leads to non-trivial cor-
relations between the gauge and fermion sectors of the theory. For our work, this has profound
consequences as because of these correlations it is not possible to constrain the different sectors of the
theory separately, but one has to perform a global analysis including all constraints at the same time
to account for the interplay between the different parts of the theory. In the end, such different things
as flavour observables and EWPOs could be connected in a subtle way.

For composite pNGB Higgs models with fermions in the fundamental representation of SO(5) there
are two sources of fine-tuning. The first one originates from generating the hierarchy between the
electroweak scale vSM and the NP scale f . This is the minimal tuning which is present in all cases. It

is usually estimated as ∆min ∼ f2

v2SM
, so for 1 TeV ≤ f ≤ 2.5TeV this roughly corresponds to a tuning

at the 10%− 1% level. As discussed above, for fermions in the fundamental representation a further
source of tuning is given due to the fact that formally sub-leading terms in the spurion expansion
should become of the order of the leading terms in order to induce EWSB. Because of this the real
tuning is actually parametrically enhanced such that the so-called double-tuning is estimated as

∆double-tuning ∼ 1

ε2
f2

v2
SM

, (2.69)

where ε is a generic spurion expansion parameter. This is hard to quantify, but due to the presence of
the top quark contributions this parameter should not be too small, and it also should not be too large
for the spurion expansion to make sense. For the remainder of this work we will make an educated
guess and use an example value ε = 0.5. This corresponds to a tuning at the 10%− 1% level only for
smaller values of 0.5 TeV ≤ f ≤ 1.2TeV.

We have to note that the above conclusions can be significantly relaxed if one considers a lepton
sector with significant degrees of compositeness [59]. In this case the leptons can give non-negligible
contributions to the effective potential that can soften the strong correlations between the quark and
vector sector. As remarked above, we do not consider composite leptons in this work.

2.2.3. Flavour symmetries

If one wants to investigate a realistic model it is inevitable to include flavour. Effectively this means
that the above parameters (like masses and composite-elementary mixings) become 3× 3 matrices in
flavour space. In the end, their flavour structure will have to reproduce the known CKM structures
of the SM. This can be done in manifold ways, but it has to be ensured that no new unobserved large
deviation from the experimental measurements occur. A major motivation for CHMs is their ability
to explain flavour hierarchies in a dynamical way (see the discussion in section 2.1.2) with an anarchic
flavour structure in the composite sector. Although such a setup is very elegant it was realized that
this scenario notoriously leads to problems with CP observables in the flavour sector such as e.g. εK ,
the measure of indirect CP violation in the kaon system [62, 63], calling for compositeness scales of
O(20 TeV). Therefore, to avoid dangerously large flavour effects while still keeping an acceptable level
of fine-tuning it is well-motivated to assume the presence of some flavour symmetry that is only weakly
broken such that the observed flavour pattern can be traced back to this breaking [64]. In this section
we will briefly introduce the concept of flavour symmetries and explain how these are implemented
in this work. For this we will closely follow [65] and use their description of flavour symmetries for
CHMs.

The concept of flavour symmetries is introduced most easily using models of Minimal Flavour
Violation (MFV) [66, 67], where we will concentrate on quark flavour. We will also, for the time
being, only consider SM degrees of freedom and discuss CHMs only at the end of this section. If
the SM did not include the Higgs there was nothing that distinguishes between between the quark
generations and therefore it would be subject to a global symmetry

GMFV = U(3)3 = U(3)qL ×U(3)uR
×U(3)dR (2.70)
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which acts on the flavour indices of the quarks in the following way:

[qL]i =

[(
uL

dL

)
,

(
cL
sL

)
,

(
tL
bL

)]
∈ (3,1,1), (2.71a)

[uR]i = [uR, cR, tR] ∈ (1,3,1), (2.71b)

[dR]i = [dR, sR, bR] ∈ (1,1,3). (2.71c)

However, in the presence of Yukawa interactions with the Higgs this symmetry can only be approximate
as it gets broken explicitly. In MFV models one assumes that the SM Yukawa couplings are the only
source of such a breaking.

Bilinears of the quark fields can be formed if one introduces spurion fields that transform under
GMFV in the following way:

Yu ∈ (3,3,1) and Yd ∈ (3,1,3). (2.72)

Yukawa couplings to the Higgs are then written as GMFV-singlets involving the spurions,

Lyuk = qL · Yd · dR H + qL · Yu · uR H̃ + h.c.. (2.73)

This symmetry is broken by the large top mass and in a weak way by the observed flavour hierarchies
and CKM patterns. To parametrize this breaking the spurions take the following vevs

Yu → V †CKM diag(yu, yc, yt), Yd → diag(yd, ys, yb), (2.74)

where we went into a flavour basis that is convenient for processes involving down-type quarks and
used the experimental input for the Yukawa couplings and CKM mixings.

The assumption of MFV has profound consequences on the flavour structure of higher dimensional
operators. In the spirit of the above construction, these operators have to be formally invariant under
GMFV before the spurions take their vevs. Assuming MFV this has to be true even including NP
contributions. As an example, let us consider a dim-6 operator from the SMEFT [68],

L6−dim ⊃
[C`d]ij;kl

Λ2

(
d
i

Rγ
µdjR

)(
`
k

Lγµ`
l
L

)
. (2.75)

Neglecting the lepton flavour and assuming GMFV-invariance, the Wilson coefficient has to be written
as

[C`d]ij = a0 1ij + a2

[
Y †d Yd

]
ij

+ a4

[
Y †d YdY

†
d Yd

]
ij

+ a′4
[
Y †d YuY

†
uYd

]
ij

+ O(Y 6). (2.76)

This is an expansion of the Wilson coefficients in terms of the symmetry breaking spurion fields.
Note that FCNC couplings only appear starting with the a′4-term when the spurions take their vevs.
Assuming that the ai coefficients take O(1) values this determines the hierarchy of the flavour violating
couplings which is given solely in terms of the CKM matrix.

As a flavour symmetry, U(3)3 is the maximal example. Considering the large mass splitting between
the first two and the third generation, a alternative is given by a smaller flavour group [65]

Gf = U(2)3 = U(2)qL ×U(2)uR
×U(2)dR , (2.77)

under which one assumes only the first two generations to form a doublet while the third generation
is a singlet,

[qL]i =




qL =

[(
uL

dL

)
,

(
cL
sL

)]
∈ (2,1,1)

q3
L =

(
tL
bL

)
∈ (1,1,1)


 , (2.78)

[uR]i =

[
uR = [uR, cR] ∈ (1,2,1)
tR ∈ (1,1,1)

]
, (2.79)

[dR]i =

[
dR = [dR, sR] ∈ (1,1,2)
bR ∈ (1,1,1)

]
. (2.80)
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Analogously to the U(3)3 case spurion fields have to be introduced to write down bilinears in the
quark fields [65],

Yu ∈ (2,2,1), Yd ∈ (2,1,2), V ∈ (2,1,1). (2.81)

With the help of these, Yukawa terms are given as

Lyuk = qL ·Yd · dRH + qL ·Yu · uR H̃ + h.c. (2.82)

=
(
a1
d q

3
LbR + a2

d qL ·V bR + a3
d qL · Yd · dR + . . .

)
H

+
(
a1
u q

3
LtR + a2

u qL ·V tR + a3
u qL · Yu · uR + . . .

)
H̃

+ h.c., (2.83)

where we neglected terms of higher order in the spurion expansion, such as e.g. q3
LV† · Yd ·dR. It was

found in [65] that the spurion vevs that are necessary to reproduce the observed flavour pattern are
given as

Yu → R(αu)Y diag
u , Yd → diag(eiφd , 1)R(αd)Y

diag
d , V = (0, ε)t, (2.84)

where unphysical parameters and phases have been rotated away by Gf rotations. With R(α) we
denote a 2× 2 rotation matrix by the angle α. Absorbing the O(1) coefficients aiu,d into the spurion
vevs, the Yukawa matrices can then be written as

Yu =




cu Y
1
u −su Y 2

u 0
su Y

1
u cu Y

2
u ε

0 0 Y 3
u


 ,Yd =




cd Y
1
d e

iφ −sd Y 2
d e

iφ 0
sd Y

1
d cd Y

2
d ε

0 0 Y 3
d


 , (2.85)

where su,d = sin(αu,d) and cu,d = cos(αu,d).
In the end, we want to consider CHMs with full flavour structure. For this we consider the above

introduced flavour symmetries and assumed the whole composite sector to be exactly invariant under a
flavour symmetry group Gf, which we take to be either of U(3)-type or of U(2)-type. Only the couplings
of the composite sector to the elementary fields will in the end break this symmetry explicitly, therefore
generating the known CKM structure. The idea of implementing flavour symmetries in CHMs was
introduced in [69, 64] and further worked out in [65, 70].

To discuss this in further detail let us write down the schematic Lagrangian of a CHM (where we
neglect the gauge and Higgs interactions as these do not influence the considerations here), 13

L = Lelem + Lcomp + Lmix

⊃ q0
L i/∂ q0

L + u0
R i/∂ u0

R + d0
R i/∂ d0

R + Ψu

(
i/∂ −Mu

)
Ψu + Ψd

(
i/∂ −Md

)
Ψd

+ Lmix. (2.86)

If Lmix = 0 then the above theory is invariant under a flavour symmetry14

Gf = U(n)3
elem ×U(n)2

comp = U(n)qL ×U(n)uR ×U(n)dR ×U(n)U ×U(n)D, (2.87)

where n = 2, 3 depending on which flavour scenario one wants to look at. This symmetry contains
a direct product of the U(n)3

elem flavour symmetry of the chiral elementary sector and the U(n)2
comp

symmetry for the vector-like composite sector.
If Lmix 6= 0 then the above symmetry is explicitly broken. Schematically, the mixing Lagrangian

can be written as

Lmix = ∆uL q0
L ΨuR + ∆dL q0

L ΨdR + ∆uRu0
RΨuL + ∆dRd0

RΨdL + h.c., (2.88)

showing that the symmetry breaking can either come from left- or right-handed mixings, or from both.
As (2.30) suggests it is enough that the breaking stems only from one chirality to reproduce the SM
flavour patterns. This means there are two distinct scenarios:

13Note that in this notation Ψu and Ψd do not have to be a single multiplet. It could contain several different fermion
states with the same quantum numbers arising e.g. in composite models with more than two sites. In this case,
the matrices Mu and Md are general mass mixing matrices. As an example consider the scenario which will be
investigated in chapter 4: left- and right-handed elementary fermions mix different composite resonances Φ and Ψ̃.
In an abuse of notation we denote both by Ψ as mixing terms of the form ΨΨ̃ will enforce the same transformation
properties under flavour symmetries for both fields.

14In general, the flavour symmetry depends on the representations of the composite resonances under the global sym-
metry of the composite sector. Here, we have a particular scenario in mind which will be investigated in chapter 4:
we consider the minimal coset in which fermion resonances appear as singlets and bidoublets of SO(4).
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• left-compositeness (LC): In this scenario one assumes the left-handed composite-elementary
mixings to be flavour-diagonal, such that effectively the flavour symmetry reduces to

U(n)3
LC = U(n)qL+U+D ×U(n)uR

×U(n)dR (2.89)

and all the flavour breaking will be given by the right-handed mixings.

• right-compositeness (RC): In this scenario one assumes the right-handed composite-elementary
mixings to be flavour-diagonal, such that effectively the flavour symmetry reduces to

U(n)3
RC = U(n)qL ×U(n)uR+U ×U(n)dR+D (2.90)

and all the flavour breaking will be given by the right-handed mixings.

This means there are 4 scenarios to be considered: LC and RC for U(3) and U(2).
Including flavour symmetries has a profound impact on the compositenesses of the SM quarks. In

general, (2.30) must hold such that, assuming nearly flavour degenerate composite Yukawa couplings
as in an anarchic scenario, the SM mass hierarchies have to be generated by the product of left- and
right-handed degrees of compositeness, yiSM ∼ sin(φiL) sin(φiR). A flavour structure implemented in
the above way can have two effects: First, and this is particularly relevant for U(2) symmetries, a
flavour structure can enforce also a structure on the composite Yukawas such that the SM hierarchies
do not have to be generated by the degrees of compositeness alone anymore. Second, choosing either
LC or RC gives a hierarchy between the left- and right-handed degrees of compositeness. Generally,
one would expect the spurions to transmit a not too large breaking of the flavour symmetries for
the whole framework to make sense. This then implies that the degrees of compositeness responsible
for flavour breaking should be small compared to the symmetry conserving ones. This justifies the
nomenclature introduced above: In LC the left-handed composite-elementary mixings respect the
flavour symmetries while the right-handed ones break them. Therefore, one expects the left-handed
degrees of compositeness to be larger than the right-handed ones. For RC the opposite scenario is
true. In U(3) scenarios the degrees of compositeness of the light quarks are directly linked to that of
third generation quarks. Hence, to generate the masses of the heavy quarks one expects also for light
quarks in this scenario that one chirality is significantly composite while the other chirality is mostly
elementary such a degree that a mass low enough is generated. In U(2) scenarios this only holds to a
much weaker degree, since here the third generation is effectively decoupled from the first two.

2.2.4. Connecting flavour and the potential

If light quarks can have one significantly composite chirality then it is an interesting question what
influence this has on the effective Higgs potential. As this potential is induced by the composite-
elementary mixings which break the global symmetries explicitly one would expect the contributions
to the potential to be correlated to the mixings. Also, as the composite-elementary mixings are
responsible for both, EWSB and flavour, it is interesting whether this leads to correlations between
both sectors. To assess this question we generalized the spurion analysis of eqs. (2.62) – (2.66) for the
example of SO(5)/SO(4) to include also the breaking of flavour symmetries. Such a spurion analysis
can only give a rough qualitative understanding of the effects which can be very helpful. A proper
analysis of the effective potential, however, can only be done numerically. This we will perform in
chapter 4, but the results obtained in this section will help to interpret the numerical results.

Starting from the general mixing Lagrangian (2.62) we can introduce flavour indices transforming
under the flavour symmetries in addition to the quantum numbers (2.63a). Considering first the U(3)
case15 we assign representations under Gf = U(3)qL×U(3)uR

×U(3)dR×U(3)U×U(3)D in the following
way

q0
L ∼ ((3,1,1), (1,1)) , u0

R ∼ ((1,3,1), (1,1)) , d0
R ∼ ((1,1,3), (1,1)) ,

Ψ̃u ∼ ((1,1,1), (3,1)) , Ψ̃d ∼ ((1,1,1), (1,3)) , ΨuR ∼ ((1,1,1), (3,1)) , ΨdR ∼ ((1,1,1), (1,3)) ,

∆uL ∼
(
(3,1,1), (3,1)

)
, ∆dL ∼

(
(3,1,1), (1,3)

)
, ∆uR ∼

(
(1,3,1), (3,1)

)
, ∆dR ∼

(
(1,1,3), (1,3)

)
.

This means the spurions carry four indices,

[∆uL]ijab = [εuL]ab ⊗ [PuL]ij f, (2.92)

15The U(2) case works in complete analogy with obvious replacements 3↔ 2.
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where i, j are indices under SU(2)0
L × SO(5) and a, b are indices for the elementary and composite

flavour groups. Note that we factored out the mass scale f to obtain dimensionless spurions. Although
the composite-elementary mixings parametrize the breaking of both the global/gauge symmetries as
well as the flavour symmetries, these are independent, such that the 4-index tensor factorizes into a
part ε describing flavour breaking and a part PL,R describing the breaking of the Goldstone symmetries
responsible for generating the effective potential. When assuming the spurion vevs the PL,R will be
given by the matrices written in (2.64) while the ε parts will take the vevs dictated by the assumed
flavour structure. The explicit forms are given in appendix IV.

For the given vevs we can now identify the scalar invariants contributing to the effective potential
in analogy to eqs. (2.65) and (2.65). Due to the factorization (2.92) we find that qualitatively the
form of the invariants stays the same but one has to replace |ε|2 → tr

[
ε†ε
]
. In terms of the invariants

the effective potential can be written as

V (sh) ∝
∑

X

cXIX(sh), (2.93)

where cX are unknown coefficients that have to be determined by an explicit calculation. From these
expressions we can determine the parametric dependence of the parameters γ and β in the expansion
(2.55),

γ ∼
[

1

2
cuL
2 tr

[
ε†uLεuL

]
+ cuR

2 tr
[
ε†uRεuR

]
+ 2cuRR

4 tr
[
ε†uRεuR

]2
+

1

2
cuLR
4 tr

[
ε†uLεuL

]
tr
[
ε†uRεuR

]
+ (u↔ d)

]

β ∼
[

1

4
cuLL
4 tr

[
ε†uLεuL

]2
+ cuRR

4 tr
[
ε†uRεuR

]2
+

1

2
cuLR
4 tr

[
ε†uLεuL

]
tr
[
ε†uRεuR

]
+ (u↔ d)

]
.

Using these expressions we can obtain the following very rough estimate: Assuming either LC or RC
one could make use of the hierarchies between left-handed and right-handed composite-elementary
mixings and neglect the small ε’s while setting the larger ones to ε = 1 which seems to be justified at
least for the top quark. In this case one finds

LC γ ∼ 1

2
cL2 ,

γ

β
∼ 2cL2
cLL
4

,

RC γ ∼ cR2 + 2cRR
4 ,

γ

β
∼ cR2 + 2cRR

4

cRR
4

.

Assuming that the coefficients are of O(1) and keeping in mind that in order to obtain EWSB and a
light Higgs mass one needs γ � 1 and β & γ, this seems to suggest that LC fulfills these requirements
more naturally, thus one would expect that the fine-tuning of the effective potential in the case of LC
could be less severe. This is of course only a very rough estimate as factors of a few could easily be
present in the c coefficients changing the whole picture. Therefore, an explicit calculation is essential
and this will be done in section 4.3.1.

Going back to the scalar invariants of (2.93) we can calculate the factors of tr
[
ε†ε
]

using the explicit
expressions of appendix IV.1. This gives for the U(3) case:

LC:

tr
[
ε†uLεuL

]
f2 = 3

(
∆123
uL

)2
, tr

[
ε†dLεdL

]
f2 = 3

(
∆123
dL

)2
, (2.95a)

tr
[
ε†uRεuR

]
f2 =

(
∆1
uR

)2
+
(
∆2
uR

)2
+
(
∆3
uR

)2
, tr

[
ε†dRεdR

]
f2 =

(
∆1
dR

)2
+
(
∆2
dR

)2
+
(
∆3
dR

)2
,

(2.95b)

RC:

tr
[
ε†uLεuL

]
f2 =

(
∆1
uL

)2
+
(
∆2
uL

)2
+
(
∆3
uL

)2
, tr

[
ε†dLεdL

]
f2 =

(
∆1
dL

)2
+
(
∆2
dL

)2
+
(
∆3
dL

)2
,

(2.95c)

tr
[
ε†uRεuR

]
f2 = 3

(
∆123
uR

)2
, tr

[
ε†dRεdR

]
f2 = 3

(
∆123
dR

)2
. (2.95d)

Similarly for the U(2) flavour symmetries we find:
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LC:

tr
[
ε†uLεuL

]
f2 = 2

(
∆12
uL

)2
+
(
∆3
uL

)2
, tr

[
ε†dLεdL

]
f2 = 2

(
∆12
dL

)2
+
(
∆3
dL

)2
, (2.96a)

tr
[
ε†uRεuR

]
f2 =

(
∆1
uR

)2
+
(
∆2
uR

)2
+ (1 + ε2u)

(
∆3
uR

)2
, tr

[
ε†dRεdR

]
f2 =

(
∆1
dR

)2
+
(
∆2
dR

)2
+ (1 + ε2d)

(
∆3
dR

)2
,

(2.96b)

RC:

tr
[
ε†uLεuL

]
f2 =

(
∆1
uL

)2
+
(
∆2
uL

)2
+ (1 + ε2u)

(
∆3
uL

)2
, tr

[
ε†dLεdL

]
f2 =

(
∆1
dL

)2
+ (∆dL)

2
+ (1 + ε2d)

(
∆3
dL

)2
,

(2.96c)

tr
[
ε†uRεuR

]
f2 = 2

(
∆12
uR

)2
+
(
∆3
uR

)2
, tr

[
ε†dRεdR

]
f2 = 2

(
∆12
dR

)2
+
(
∆3
dR

)2
. (2.96d)

From this we can see several things. Assuming again the dominance of the flavour symmetry conserving
composite-elementary mixings, there is an additional factor of 3 compared to the one-flavour case for
the U(3) scenario. Keeping in mind that there has to be a cancellation between fermion and vector
contributions to the effective potential, an increase in the fermion contributions also means an increase
of needed fine-tuning with the vector sector. This is however not so severe for the U(2) symmetry
as in this case the contributions from the symmetry preserving couplings are the sum the sum of
the contributions from the first two and the third generation. As for this flavour structure the third
generation is decoupled, the first two generations can contribute at a weaker level. This leads to the
expectation of a milder fine-tuning in U(2) theories.

A further point we observe is that the parameters describing flavour mixing cancel in the combination
tr
[
ε†ε
]
. Taking the spurion expansion serious this leads to the expectation that the effective potential

is correlated to mass of the quarks and in particular to the top quark mass but one might not expect
to see correlations with flavour observables. This is of course a only a rough qualitative estimate that
has to be validated by explicit calculations in chapter 4.

2.3. Composite Higgs models from extra dimensions

In this section let us pursue a seemingly totally different road to composite Higgs models, namely
a construction inspired by extra dimensions. This has several advantages. Embedding a CHM into
an extra-dimensional theory allows to inherit all the benefits of the higher-dimensional model. In
particular, this includes having a framework to explain the gauge hierarchy problem by geometry.
Also the vastly different couplings that in the end lead to the measured flavour patterns can have
a simple geometrical origin if there are additional spatial dimensions [42]. The main advantage for
this work is of a slightly more technical nature. It is possible to implement the pNGB Higgs as a
component of an extra-dimensional gauge field such that its potential becomes calculable. In other
words, the main reason for considering such theories in this work is that the extra-dimensional gauge
symmetry ensures that the Weinberg sum rules (2.52) are satisfied, because otherwise the predictive
power of such a model would rather low.

At this point we want to stress explicitly that what we are investigating are CHMs inspired by extra
dimensions, but we are not considering actual extra-dimensional theories. The important point in this
work is that the models considered have a structure suggested by extra dimensions that ensures
the calculability of the Higgs potential. In the following we analyze the models by sampling their
parameter spaces. At no point do we want to make the statement that the found parameter points
translate into a concrete extra-dimensional model with some given geometry. In this sense we are
even more general, we want to judge the status of CHMs while ignoring possible correlations between
parameters that would be present in a higher-dimensional framework.

The idea of supplementing the known spacetime by additional space dimensions is already quite old.
More than 100 years ago Nordström started an idea [71] that a few years later would become the so-
called Kaluza-Klein theory [72]. Herein, an additional space dimension was introduced as an auxiliary
construct to unify gravitation and electromagnetism into the metric of a hypothetical five-dimensional
manifold. Physical sense could be made from these additional dimensions by compactifying them to
small ‘circles’ and thus reconciling them with the observed four spacetime dimensions [73]. Then, for
quite a long time extra dimensions were rather marginal appearing only as an artifact in string theory
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constructions. The big reintroduction of extra dimensions into the mainstream started in the late
1990s with the formulation of the AdS/CFT conjecture [74], which allowed to mathematically connect
four-dimensional strongly interacting theories (like the composite Higgs) with perturbative theories
on higher dimensional spacetimes. Shortly after, it was realized the extra dimensions can give natural
solutions to the hierarchy problem via geometrical mechanisms. In these scenarios the apparent
weakness of gravitation is explained by the assumption that it penetrates the whole extra-dimensional
spacetime while all the SM fields are confined to four-dimensional subspaces, so-called branes. The first
model of this kind was the Arkani-Hamed - Dimopoulos - Dvali (ADD) model [75] using large, flat extra
dimensions. As a more elegant approach the idea of a highly-curved spacetime was introduced in the
Randall-Sundrum (RS) models [76, 77]. In this scenario of warped extra dimensions the electroweak
scale is connected to the Planck-scale purely by the geometry of spacetime itself,

mEW ∼ e−krcπmPl, (2.97)

via an exponential factor depending only on the scale of warping k and the radius of the fifth dimension
rc, such that effectively the hierarchy problem is reduced to a problem of order krc ≈ O(10).

Very shortly after that it was also realized that extra dimensions can solve yet another open question
of the SM, namely the flavour puzzle. The important ingredient for solving the hierarchy problem is
that the Higgs is localized on (or at least near) a brane, but the other fields can propagate through
the entire higher-dimensional spacetime. This opens the possibility to localize the fermions along the
extra dimension giving effective control over how strongly they interact with the Higgs field and thus
over the values for the entries of the Yukawa matrices [42, 78, 79].

In the following we will briefly review extra-dimensional theories and the Hosotani mechanism
which is the crucial ingredient for models of Gauge-Higgs unification (GHU). Using the procedure
of dimensional deconstruction, the extra-dimensional theory can be approximated by a CHM in four
spacetime dimensions. In the end, this leads to the so-called Minimal 4d Composite Higgs Model
(M4dCHM) which will be the subject of investigation for the remainder of this work. In this section
we will give a review about such constructions and show how these are related to the models that will
be subject of the analyses performed in this work. Thus, this section does not contain new results
but we think that it is important for understanding the detailed structure and our motivation for the
considered model.

2.3.1. Gauge-Higgs unification and the Hosotani mechanism

In extra-dimensional theories one considers the four-dimensional Minkowski spacetime as part of
a higher-dimensional manifold. Therefore, every spacetime point can be described by coordinates
xM = (xµ, xm), where the first ones are the usual 4d coordinates and the last ones are in the extra
dimensions. As the known world obviously only has 4 dimensions the others have to be compactified
to be somewhat “small”, such that at low energies (large wavelengths) these small extra dimensions
cannot be resolved and the spacetime effectively appears four-dimensional.16 Simple examples for
these “compactified spaces” are a circle S1 for one extra-dimension, a sphere S2 or a torus S1 × S1

for two dimension, and so on. But also much more complicated objects are possible.
The geometric structure of the spacetime is encoded in its metric ds2 = gMNdxMdxN . As simple

examples for this with only one extra-dimension, one can consider the ADD model [75] or the RS
model [76] (which uses a non-factorizable geometry):

ds2 = ηµν dxµ dxν − r2
c dφ2 ADD model (2.98)

ds2 = e−2krcφ ηµν dxµ dxν − r2
c dφ2 RS model (2.99)

Here, φ denotes the coordinate on an extra dimension that takes the form of a circle with compacti-
fication radius rc.

One further ingredient is of a slightly more technical nature, namely the fact that the SM as the
low energy limit is a chiral theory. For extra-dimensional models with an odd number of dimensions
it is well known that the Dirac representation of the Poincaré group is not reducible such that the
Dirac spinors do not decompose into chiral Weyl spinors. Formally, these higher-dimensional spinors
can still be projected onto their left- and right-handed components via PL/R = 1

2

(
1± γ5

)
, but these

16In full generality, this statement is not true. One can have an infinite extra dimension which then has to be strongly
curved as for example in the RS2 scenario [77].
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components will not be independent and one certainly cannot assign different quantum numbers to
them. Such a theory can only contain vector-like fermions. A way out is given by introduction of
certain discrete symmetries. As an example let us consider the case of only one extra dimension having
the form of a circle S1. By the circular periodicity one has to identify fields at the coordinates φ and
φ+ 2π,

Ψ(x, ψ) = Ψ(x, φ+ 2π). (2.100)

In addition, one can introduce a Z2 symmetry connecting the points φ↔ −φ, giving rise to a special
kind of geometry (for a review see e.g. [80]). Since this symmetry operation connects the region
φ ∈ [0, π] to the region φ ∈ [π, 2π] in a unique way, we can restrict ourselves to the former. Effectively,
this reduces the circle S1 to the line element S1/Z2, a process called orbifolding. On this orbifold the
Z2 acts as a parity operation, such that for an invariant theory one can classify fields as being odd or
even,

Ψ(x,−φ) = Ψ(x, φ) even, (2.101a)

Ψ(x,−φ) = −Ψ(x, φ) odd. (2.101b)

A special emphasis has to be given to the points φ = 0 and φ = π as these remain invariant under the
orbifold parity operation, they are orbifold fixed points. For an orbifold odd field this means that it
has to vanish at the fixed points. If the field is orbifold even one can always construct an odd field by
acting on it with a derivative along the extra dimension. Thus, we can identify two different boundary
conditions for field on orbifolds,

Ψ(x, φ)|φ=0,π = 0 odd, (2.102a)

∂φΨ(x, φ)|φ=0,π = 0 even. (2.102b)

In a Kaluza-Klein (KK) decomposition, in which one performs a Fourier transformation in the discrete
extra-dimensional component of momentum such that the effective theory takes the form of an infinite
tower of four-dimensional theories, one can easily see that zero modes, which are identified with SM
fields, vanish in case of an odd orbifold parity. Consequently, one can obtain a chiral low-energy limit
from extra-dimensional vector-like fermions by imposing orbifold parities in a particular way such that
the KK spectrum is given by

RH odd: ψL,0i/∂ψL,0

LH odd: ψR,0i/∂ψR,0



+

∞∑

n=1

∫
d4x

[(
ψL + ψR

)
n

i/∂ (ψL + ψR)n − mn

(
ψL,nψR,n + ψR,nψL,n

)]
.

(2.103)
This now allows to construct chiral theories, but one does not have one 5d fermion per SM fermion,
but rather one extra-dimensional field for each SM chirality. In a minimal example for describing, say,
a u-quark one needs two 5d fermions. One will be part of an SU(2) doublet and RH odd. Its zero
mode will be identified with the left-handed uL chiral field. In addition, one will also need a 5d SU(2)
singlet which has LH odd boundary conditions. That zero mode than describes the right-handed
uR component of the u-quark. So, for each SM fermion there will be four separate towers of KK
resonances.

Hosotani mechanism

In the following we shortly review the Hosotani mechanism [81] which acts as the source of EWSB in
GHU theories. This discussion is based on the review [82].

Let us now go further and consider the case when there is a (non-abelian) gauge symmetry G in the
extra dimension. This means one has to introduce gauge fields [83, 84, 85],

AM (x, φ) = AaM (x, φ)Ta =
(
Aaµ(x, φ), Aa5(x, φ)

)
Ta. (2.104)

As is well known, these carry a group index a and a space-time index M . Since by definition the theory
is invariant under four-dimensional Lorentz-transformations, the higher-dimensional gauge field has
to decompose into representations of the 4d Poincaré group. In 5 dimensions we thus get a four-vector
field Aµ and additionally a scalar A5, both of which have different towers of KK modes,

Aaµ(x, φ) =

∞∑

n=0

Aaµn (x)
h(a),n(φ)
√
rc

, Aa 5(x, φ) =

∞∑

n=0

Aa 5
n (x)

h5
(a),n(φ)
√
rc

. (2.105)
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Note here that there is also an independent KK tower for each generator of the gauge field. Given
some geometry gMN , one can write the Lagrangian as

L = −1

4

∫
d4x

∫
rcdφ

√
|g|gMRgNStr [FMNFRS ] , (2.106)

where the field-strength tensor of the (non-abelian) gauge field takes the usual form

FMN (x, φ) = ∂MAN (x, φ)− ∂NAM (x, φ) + ig [AM (x, φ), AN (x, φ)] . (2.107)

Regarding the orbifold parities of the gauge boson field, one can observe that the above Lagrangian
contains terms of the form 17

L ⊃ g5νgµ5F5µFν5 ⊃ g5νgµ5
(
∂φA

a
µ

)
(∂νA

a
5) , (2.108)

which shows that for each group component the vector Aaµ and the scalar component Aa5 have to have
the opposite parities for the Lagrangian to be invariant under orbifold parity. As a consequence, only
one of both can have a zero mode appearing in the spectrum. But what does it mean when there are
no massless gauge bosons appearing? For this let us take a closer look at the boundary conditions.

The Hosotani mechanism [81, 86] is the observation that on spacetimes that are not simply-
connected18 a dynamical rearrangement of gauge symmetries can occur. Similarly to the Aharonov-
Bohm effect, phases of the gauge field along non-contractible paths can become physical, leading to
a breaking of symmetries. The key point here is that on a periodic spacetime, quantum fields do
not have to be single-valued if there is a symmetry in the theory. Only physical observables have to
have a definite value. To see this, one has to remember that a circle actually is the covering space R
equipped with an identification f(x+2πrc) = f(x). If there is e.g. a gauge symmetry then field values
at identified points do not have to coincide; all that is required in order to get well-defined observables
is that quantum fields coincide up to a gauge transformation [86, 87]:

AM (x, y + 2πrc) = g AM (x, y) g†,

ψ(x, y + 2πrc) = exp(iβ) ρ̂(g)ψ(x, y),

where g ∈ G and ρ̂(g) is a transformation of g in the appropriate representation of ψ. Thus, boundary
conditions on the fields can be labeled by (g, β). Of course, field values change under gauge trans-
formations, and therefore also boundary conditions. If sets of boundary conditions are connected by
such a gauge transformation they lead to the same physics and so, one can define equivalence classes
of boundary conditions (g, β) ∼ (g′, β′). A physical symmetry is now given by transformations that
leave the boundary conditions invariant, all other symmetries are broken by choosing an explicit set
of conditions. In general, these symmetries differ from the whole set of gauge transformations, leading
to an effective reduction of symmetries by the choice of boundary conditions.

In addition, Wilson lines

WC = P exp


ig

∫

C

dxM AM


 = P exp

(
ig

∫
dz A5

)
(2.109)

along non-contractible paths C in the extra dimension do not vanish and thus become dynamical
quantities. Then, the physical vacuum of the theory is determined by the expectation values of these
Wilson line phases.

This is of course not the whole story, since the above statements are subject to quantum corrections.
For this it is more convenient to change to boundary conditions that are (semi-)trivial [88] using the
above gauge equivalence. Then the dynamical symmetry reduction is described by the Wilson lines,
which develop a Coleman-Weinberg-like effective potential on the quantum level (which depends on the
boundary conditions (g, β)) that determines the physical vacuum. For an orbifolded extra dimension

17Remember that a metric tensor has to be symmetric g5ν = gν5 and that g5µ and g5ν have to have the same orbifold
parity due to Lorentz invariance. So, a structure of the form g5νgµ5 has to be orbifold even.

18The definition of simply-connected is given in many textbooks on topology: A simply-connected space is a topological
space in which every loop can be contracted to a point. For example, on a 2d-sphere S2 every loop on the surface
can be shrunk to a point, but on a circle S1 this cannot be done for a loop winding along the circle. Effectively, a
simply-connected space is a space without “holes”.

40



Figure 2.3.: Illustration of symmetry reduction via boundary conditions. On the boundaries the bulk gauge
group G gets broken down to subgroups H0 and Hπ. Only for (++) boundary conditions there
will be massless gauge fields in the spectrum. Goldstone bosons correspond to (−−) conditions.

it is not possible, in general, to switch to totally trivial boundary conditions. One still has orbifold
parities which leads to a kind of explicit reduction of the symmetries at the orbifold fixed points [88].

To be more concrete, let us start with a G gauge theory on a five-dimensional spacetime M4 ×
S1/Z2. The most general boundary conditions compatible with the orbifold can be of the following
forms [41, 80] 19

(++) : ∂zA
a
µ(x, z)

∣∣
z=0

= 0, ∂zA
a
µ(x, z)

∣∣
z=πrc

= 0, (2.110a)

(+−) : ∂zA
a
µ(x, z)

∣∣
z=0

= 0, Aaµ(x, z)
∣∣
z=πrc

= 0, (2.110b)

(−+) : Aaµ(x, z)
∣∣
z=0

= 0, ∂zA
a
µ(x, z)

∣∣
z=πrc

= 0, (2.110c)

(−−) : Aaµ(x, z)
∣∣
z=0

= 0, Aaµ(x, z)
∣∣
z=πrc

= 0. (2.110d)

These boundary conditions can be chosen independently for each group component Aa. So, one
sees that by appropriate choices of boundary conditions one can reduce the number of gauge fields
appearing on the two sides of the extra-dimensional interval. Note that for consistency the symmetries
on the boundary still have to form a group. Effectively, what is done is a reduction (i.e. a breaking)
of the bulk gauge group G down to subgroups H0 and Hπ at the boundaries located at z = 0 and
z = πrc, respectively. For an illustration see figure 2.3.

This amounts to an actual breaking of symmetries. Since a gauge transformation should not change
the boundary conditions of the fields, the theory is not invariant anymore under the group G, but
rather under the somewhat smaller group

G′ = {g(x, z) ∈ G| g(x, z = 0) ∈ H0, g(x, z = πrc) ∈ Hπ} . (2.111)

So, we cannot consider general G-transformations anymore, but only transformations that reduce the
respective subgroups at the boundary.

The physical spectrum of the theory depends on the above boundary conditions. For the (+,+)-
fields, the spatial components will have zero modes giving rise to massless gauge bosons. For the coset
fields with (−−)-boundary conditions there will be zero modes for the scalar components appearing
as Wilson lines. Due to quantum effects, there will be an effective potential that (depending on
the detailed boundary conditions (g, β) as well as on the matter content of the theory) can lead to
a non-trivial vacuum expectation value for the scalars and thus to a dynamical breaking of gauge
symmetries.

In this setup one can now describe the structure of electroweak symmetry breaking. The Wilson
lines are what has to be identified with the Higgs bosons. Then the Higgs mechanism is described via
the dynamical symmetry reduction of the Hosotani mechanism. Since one wants at least four massless

19For a very nice, more formal discussion in terms of orbifold parities we refer to [82].
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gauge bosons in the unbroken phase, one has to embed H0 ∩ Hπ ⊃ GSM. The remaining symmetries
will lead to additional heavy resonances in the spectrum. This setup is what is called Gauge-Higgs
unification [81].

Holographic gauge fixing

For making the connection between extra-dimensional GHU models and four-dimensional models with
a composite Higgs a powerful tool is given by holography. We will review this in the following where
we will make extensive use of [89] and [90]. In holography the key element is to separate bulk from
boundary degrees of freedom, such that the latter ones are interpreted as four-dimensional fields
interacting with the bulk fields living inside the extra dimension. Thinking more formally in terms of
partition functions, the extra-dimensional theory is described via a path integral [89]

Z =

∫
DΦ|b.c. exp (iS[Φ]) , (2.112)

where the integral is understood as ranging over all field configurations on the extra-dimensional
spacetime that satisfy the given boundary conditions. In the spirit of holography one can single out
the field values at, say, the z = 0-boundary and treat them as source fields for the bulk degrees of
freedom. This means that the measure of the path integral in some sense ‘factorizes’ into a boundary
and a bulk part, such that

Z =

∫
Dφ
∫
DΦ|Φ(z=0)≡φ exp (iS[Φ]) , (2.113)

where now φ is a four-dimensional field living on the boundary z = 0. For consistency with the
above boundary conditions of the extra-dimensional field Φ, the integral measure Dφ of the boundary
field has to be understood in such a way that only the fields allowed by the boundary conditions are
propagating while all others are set to zero.

When considering an extra-dimensional gauge theory as above, the gauge field can likewise be
separated into boundary and bulk field. We can also think of the the gauge symmetry G as decomposing
into a bulk part GB and a symmetry H0 at the boundary, namely

G = H0 × GB, (2.114)

where (cf. (2.111))
GB = {g(x, z) ∈ G|g(x, z = π) ∈ Hπ, g(x, z = 0) = 1} . (2.115)

To make the physical spectrum of the theory manifest, it is convenient to adopt a gauge where in
particular the scalar degrees of freedom, Aa5(x, z), take a rather simple form. Pretending for the
time being that the symmetries are not reduced at the boundaries then the extra-dimensional gauge
component, Aa5(x, z), can be made to vanish everywhere if the corresponding gauge transformation is
chosen to be the Wilson line stretching from one boundary to the other. However, for general boundary
conditions this is not possible, since then the Wilson lines do not reduce to the correct subgroups at
the boundary and thus, such a transformation is not an element of the bulk gauge symmetry. This
drawback can be circumvented by modifying the boundary conditions in such a way that superficially
the whole G-invariance is restored all over the extra dimension. To this end, non-linear σ-model fields
are introduced at the z = π boundary, such that the new boundary conditions now read

[
F

(Σ−1)
µ5 (x, z = π)

]a
= 0 for the unbroken directions and (2.116)

[
A(Σ−1)
µ (x, z = π)

]â
= 0 for the broken directions. (2.117)

Here, A
(Σ−1)
µ = Σ−1 (Aµ + i∂µ) Σ denotes the boundary gauge field transformed by Σ−1 ∈ G, which

transforms like a Goldstone boson (II.12)

Σ→ gΣh−1(g,Σ), (2.118)

such that the boundary conditions are invariant under general transformations g ∈ G. Having done
this, it is now possible the adopt the gauge where A5 ≡ 0 everywhere, such that is vanishes completely
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from the spectrum. The price one has to pay for this was the introduction of Goldstone-like fields on
the z = π boundary.

In the following it will be convenient to perform one further gauge transformation that moves the
Σ-fields from z = π to the other boundary, i.e. to the location where the holographic fields live [90].
Effectively, this gauge amounts to setting

A5(x, z) =

{
“Σ(x)” at z = 0
0 everywhere else.

(2.119)

2.3.2. Realistic GHU models

Putting the above arguments together one can now write down a realistic GHU model. For this we
will very closely follow [48].

Some important points were already discussed in the preceding sections. One of the most impor-
tant was that the necessity to have a chiral low-energy theory forces us to consider orbifolded extra
dimensions, the simplest one being S1/Z2. Hence, let us in the following consider the case of a five-
dimensional space M = M4 × S1/Z2. Regarding the metric, we do not want to be too specific, as
for our general purposes this will not be of much importance. In principle, one can consider flat or
warped geometries; we will have some curved spacetime in our mind due to the ability to explain the
flavour hierarchies by localization in the extra dimension (see e.g. [42]).

The symmetry breaking structure determines the particle spectrum. So, let us recapitulate what
requirements one has. In our setup some extra-dimensional gauge group G is broken to the subgroups
H0 and Hπ by boundary conditions at the orbifold fixed points. SM fields corresponding to gauge
boson zero modes appear for gauge components with (+,+) boundary conditions, i.e. for elements of
the subgroup H0 ∩Hπ. Then the simplest possibility is choosing Hπ ⊃ H0 = GSM. Restrictions from
electroweak precision observables suggest to include a custodial protection of oblique corrections (see
section 2.2.1). Therefore, we consider an enlarged symmetry and impose SU(2)R×SU(2)L ⊂ Hπ. The
simplest choice is then given by Hπ = SO(4) ∼= SU(2)R × SU(2)L. The coset G/ (H0 ∩Hπ) = G/Hπ
determines the Goldstone boson fields. For these the minimal requirement is that they include an
SU(2)L doublet, which can be identified with the Higgs. A minimal group satisfying this is SO(5), as
for this the coset contains four real degrees of freedom transforming as a bidoublet (2,2) under the
custodial symmetry group.20 To summarize, this fixes the coset to be SO(5)/SO(4).

The gauge bosons are determined by the SO(5) gauge theory in the bulk, that gets reduced to GSM

and SO(4) at the two boundaries, such that there is a bulk gauge field in the adjoint representation.
It is convenient to group the generators into the SO(4) ∼= SU(2)L×SU(2)R subgroups. Schematically,
the gauge field then ‘decomposes’ into

SO(5) ∼ [SU(2)L × SU(2)R × SO(5)/SO(4)] , (2.120)

i.e. into left and right SU(2) fields and coset fields,

ρAµ =
(
ρaLµ, ρ

a
Rµ, a

â
µ

)
, (2.121)

and similarly for the 5-component. Here, the indices range over a = 1, 2, 3 and â = 1, 2, 3, 4, giving 10
gauge components in total.

These symmetries are not enough to obtain a realistic theory. First of all one also has to include
SU(3)c as a bulk gauge symmetry to obtain colored fields. This symmetry should not be broken at
the boundaries such that SM particles feel the strong interaction. Furthermore, as we will see shortly,
an additional U(1)X symmetry has to be included to get the correct hypercharges for the fermions.
Hypercharge quantum numbers will correspond to a linear combination of the U(1)X charge and the
T3

R component of SO(5). Therefore, it is more convenient to express the corresponding gauge bosons
by the same combination, (

ρ3
Rµ, Xµ

)
↔

(
Bµ, ρ

′3
Rµ

)
, (2.122)

such that we can assign boundary conditions in such a way that hypercharge has a zero mode.
Effectively, this means that the bulk gauge symmetry G = SU(3)c × SO(5) × U(1)X is broken to
H0 = SU(3)c × SU(2)L × U(1)Y and Hπ = SU(3)c × SO(4) × U(1)X at the boundaries. The
boundary conditions are given in table. 2.1. The low-energy spectrum consists of zero modes for the

20In particular, this implies that some components transform as a doublet under SU(2)L.
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colour SU(3)c Gaµ(+,+) Ga5(−,−)

electroweak SO(4)×U(1)X ρLµ(+,+) ρL 5(−,−)

ρ±Rµ(−,+) ρ±R 5(+,−)

Bµ(+,+) B5(−,−)

ρ′3Rµ(−,+) ρ′3R 5(+,−)

coset SO(5)/SO(4) aâµ(−,−) aâ5(+,+)

Table 2.1.: Boundary conditions for gauge boson fields.

vector components corresponding to GSM = SU(3)c × SU(2)L × U(1)Y as well as zero modes for the
extra-dimensional scalars for the coset fields. The latter are identified with the complex Higgs doublet.

After choosing the symmetries let us now consider the matter content the theory should have.
As already discussed earlier, every SM chirality should be embedded into its own five-dimensional
field. So, for each generation we introduce four bulk fermions. Fermions should come in irreducible
representations of the bulk gauge group G = SO(5). In principle, one is free to choose whatever
representation one likes, but there is the restriction to reproduce the SM fermion content, in the sense
that doublets and singlets of SU(2) should emerge. In addition to this, it turns out that there is
a subset of representations that is favorable as they provide a built-in mechanism protecting from
dangerous corrections of Zbb-vertices (see section 2.2.1). An overview of the smallest representations
of SO(5) is given in eq. (2.42). The simplest one providing the needed features is given by the
fundamental 5, as under the SO(4) subgroup it decomposes as 5 = (2,2)⊕ (1,1) into a bidoublet and
a singlet.

As mentioned above in order to obtain realistic hypercharges an additional U(1)X symmetry is
included such that

Ŷ = T̂3
R + X̂, (2.123)

similar to the definition of the electric charge. Introducing such a U(1) charge now has profound
implications on the embedding of the SM fields into higher-dimensional bulk fields. In order to match
the weak interactions at low energies, right-handed chiralities have to be parts of the singlet component
of SO(5) fundamentals. By the same reasoning, the left-handed SM fermions have to be embedded
into the bi-doublet components. Assigning the U(1)X charges in such a way that hypercharge is
reproduced then leads to the fact that one will not be able the write down Higgs interactions for
up-type as well as down-type quarks, if the left-handed SM doublet qL is identified with only one
extra-dimensional fermion multiplet [91]. This means that for one generation of SM quarks the fields
will be embedded as follows,

q0
L ∼

{
Ψu ∈ 5 2

3

Ψd ∈ 5− 1
3

, u0
R ∼ Ψ̃u ∈ 5 2

3
, d0

R ∼ Ψ̃d ∈ 5− 1
3
, (2.124)

meaning that the SM quark doublet is identified with the zero mode of the linear combination Ψu +
Ψd.

21 Later, when matching to a CHM, this will reflect in the fact that the left-handed elementary
quarks will both be embedded into two different separate incomplete SO(5) representations ξuL and
ξdL.

Discrete Composite Higgs model

Let us use this opportunity and consider a different possibility for constructing GHU models. In the
above construction each SM chirality was embedded into its own extra-dimensional SO(5)-multiplet.
But as an alternative one could think of embedding for each SM fermion both chiralities into the same
multiplet. This can e.g. easily be done for a fundamental 5 = (2,2) ⊕ (1,1) when the right-handed

21The zero mode of the orthogonal combination we do not want to have in the low-energy spectrum. One can get rid
of this via giving it a large mass by introducing right-handed localized fermion fields that that have mass mixings
with it [91]. The exact mechanism is not important at this point. We just assume these fields to be absent.
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Figure 2.4.: Comparison of the basic structures of the fermion mixings of M4dCHM and DCHM. The black
lines denote mass mixings of the fermion which are realized either as composite-elementary
mixings or as couplings inside the composite sector. In the M4dCHM chiral elementary quarks
mix with separate resonances of the composite sector while in the DCHM both elementary
chiralities couple to the same composite fermion resonance.

singlet is identified with the zero mode of the singlet component and the LH fermions are part of
the bidoublet. In this case only one u- and one d-type partner are needed in the extra dimension for
each quark generation. This is the structure used in the so-called Discrete Composite Higgs Model
(DCHM) [60]. The basic structure of the mixing terms in the M4dCHM, which we will use in the
resent work, and the DCHM are compared in figure 2.4. The DCHM only gives a finite (i.e. calculable)
Higgs potential if there are at least three sites. At each site a separate level of composite resonances is
introduced for fermion as well as boson fields. The fermions only interact with the vector resonances
of the corresponding site22.

2.3.3. Dimensional deconstruction

There are different ways to perform calculations in field theories on extra dimensions. For example, one
can directly work in the higher-dimensional setup and define propagators through the extra dimension.
For this one typically works in a mixed momentum/position framework where position space is used
for the extra dimensions. Calculations of this kind have been performed (see e.g. [85, 92, 93, 94, 95, 96]
for calculations in the RS geometry with one extra-dimension), however they calculations are rather
involved. Therefore it is often more convenient to transform the higher-dimensional theory into a
four-dimensional one and perform the calculation using ordinary Feynman diagram techniques. The
standard approach for doing so is the above mentioned KK reduction, where the higher-dimensional
fields are expanded in a generalized Fourier series with respect to the discrete extra-dimensional
momentum and the four-dimensional Fourier coefficients are interpreted as ordinary four-dimensional
quantum fields. Proceeding this way, a higher-dimensional field takes the form of an infinite tower of
four-dimensional fields, which one can tackle using standard techniques.

In the following we will review an alternative approach that is more suited to holography and
allows to construct models with partial compositeness and a pNGB Higgs that are inspired by extra-
dimensional theories and inherit a lot of advantages from them. In particular, these models feature a
calculable Higgs potential which is necessary to make predictive calculations. This idea of dimensional
deconstruction was developed by Arkani-Hamed, Cohen and Georgi [97, 54] in the beginning of this
century. The basic idea is to discretize the extra dimensions into individual points and then use
lattice gauge theory to describe the physics. Schematically this is visualized in figure 2.5. At each
discrete point in the extra dimension one encounters a separate 4d theory that corresponds to one
level of composite resonances. The complete higher-dimensional theory is restored in the continuum
limit when the spacing between the discrete points vanishes, but the approximation of the whole extra
dimension by only a few lattice points is already enough to construct a theory that resembles all the
important properties of the extra dimensions.

22In the original paper [60] a slightly different construction is used which not really corresponds to a dimensionally
deconstructed model: They treat the U(1)X symmetry as external to the cosets. So, the B fields interacts with every
site. See footnote 9 therein.
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Figure 2.5.: Method of dimensional deconstruction. A continuous extra dimensionis is discretized into in-
dividual points. Gauge invariance is restored by connecting the spacetime points through link
fields Ωi. At each point zi there is a 4d theory with gauge fields Aiµ(x) ≡ Aµ(x, zi).

In gauge theories on a discrete spacetimes one usually encounters the problem that fields at dif-
ferent lattice points transform differently under the gauge symmetry such that interactions cannot
be introduced in a consistent way. To circumvent this, one has to introduce so-called link fields
Ωi = Ω(zi−1, zi) which are Wilson lines (2.109) connecting lattice points zi−1 and zi [98]. Under the
gauge symmetries the link fields transform as Ωi → g(zi−1) Ωi g(zi)

−1, such that they can be used
to connect fields at neighboring points. The picture that dimensional deconstruction gives for an
extra-dimensional gauge theory then is the following: Due to discretization one obtains a tower of N
different 4d gauge theories that are connected by link fields (see figure 2.5). In the 4d theory with
gauge symmetry GN these link fields then encode the information about the extra-dimensional gauge
invariance.

In the context of CHMs, the procedure to implement such a structure was described in [99, 100],
which we want to follow in this section. For every discrete extra-dimensional coordinate point a coset
(GL × GR) /GL+R of global symmetries is introduced with a NGB-like field Ω transforming as

Ω→ gL Ω g−1
R . (2.125)

Let us now consider the situation depicted in the first diagram of figure 2.6 in which we have a total
number N of such cosets; then the Lagrangian is manifestly invariant under 2N global symmetries
GiL,R with i = 1 . . . N . Resonances can be introduced by gauging the diagonal groups of GiR and Gi+1

L

to form a site, i.e. a gauge theory that describes one level of composite resonances. These sites are
connected by the fields Ωi that function as the link fields from lattice gauge theory. By the gauging,
the global symmetries GiR and Gi+1

L are broken down to their diagonal group. The occurring Goldstone
bosons from this breaking will be eaten by the gauge fields at each site in order to obtain a mass.

Subtleties arise at the boundaries as the second diagram of 2.6 shows. Using the holographic point
of view, we identify the left boundary with the elementary sector of the theory. For the time being,
we do not specify this, leave it open and just treat the fields in the leftmost σ-model as source fields
for the rest of the theory. At the right boundary, as we know, the symmetry is reduced to H = Hπ
by the boundary conditions of the higher-dimensional gauge fields. Therefore we introduce a σ-model
parameterizing the breaking G/H by the Goldstone matrix Ω∗ transforming as usual as

Ω∗ → gΩ∗ h−1. (2.126)

From (2.125) one can infer the transformation properties of the Ω-fields under the symmetries,





Ω1 → g1
L Ω1 g

−1
1 (x),

Ωi → gi−1(x) Ωi g
−1
i (x) for 2 ≤ i ≤ N,

Ω∗ → gN (x) Ω∗ h−1,

(2.127)

where g1
L ∈ G1

L is the remaining global symmetry at the left boundary and gi(x) ∈ Gi are the gauge
symmetries at the sites. From these it follows that in addition to the gauge symmetries at each site
the theory gives rise to a global symmetry breaking G1

L/H parametrized by

U := Ω1 Ω2 . . .ΩN Ω∗, (2.128)
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which transforms as
U → g1

L U h−1. (2.129)

This corresponds to the Wilson line along the extra dimension.
These symmetries are exact for vanishing source fields at the left boundary and thus the Goldstone

bosons are exactly massless. But eventually we want to introduce SM-like elementary fields on this
boundary. This means we gauge the SU(2) × U(1) subgroup of the global G1

L and introduce matter
fields in incomplete representations. As a consequence, the global pattern G/H gets explicitly broken
by the interactions with the elementary sector at the left boundary, turning U into a pseudo-Goldstone
matrix.

Using this construction, the pure bosonic Lagrangian then takes the form

Lboson =
1

4
tr
[
Fµν0 F 0

µν

]
︸ ︷︷ ︸

elementary

+
1

4

N−1∑

i=1

tr [ρµνi ρi µν ]

︸ ︷︷ ︸
composite

+
f2

4
tr
[
dâµd

â µ
]

︸ ︷︷ ︸
symmetry breaking

+

N∑

i=1

f2
i

4
tr
[
(DµΩi)

−1
(DµΩi)

]

︸ ︷︷ ︸
link fields

.

(2.130)
It consists of kinetic terms for the elementary gauge bosons as well as for the composite vector
resonances ρiµ. The symmetry breaking G/H is described by the d-symbols for Ω∗ of the CCWZ
formalism (see appendix II) and furthermore, there are the link fields Ωi that encode the higher-
dimensional gauge invariance. The gauge covariant derivatives are given as




DµΩ1 = ∂µΩ1 − ig0A

0
µΩ1 + ig1

ρΩ1ρ
1
µ

DµΩi = ∂µΩi − igi−1
ρ ρi−1

µ Ωi + igiρΩiρ
i
µ for 2 ≤ i ≤ N

(2.131)

in accordance with (2.127) and where A0
µ denotes the collection of elementary gauge fields.

In this construction one can easily draw a connection to the holographic gauge fixing discussed in
section 2.3.1. Making use of the transformation rules (2.127) a gauge at every site can be chosen in such
a way that Ω∗ = ΩN = · · · = Ω2 = 1. There are, however, not enough gauge symmetries to set every
Goldstone matrix to 1. At the leftmost site the above gauge choices lead to Ω1 → Ω1Ω1 . . .ΩNΩ∗ = U ,
where (2.128) was used. One further finds that under the remaining global symmetries this Goldstone
matrix transforms exactly via (2.129), which shows that the whole Goldstone structure is moved to
one boundary. This is in exact accordance with holography as discussed in (2.119) which makes the
connection to extra-dimensional theories transparent. We will use this gauge choice in the following
and refer to it as holographic gauge,

Ω1 = U(x) = exp

(
i

√
2

f1
πâ(x)Tâ

)
, Ω2 = · · · = ΩN = Ω∗ = 1. (2.132)

Including fermions in this set-up is straightforward. The value of the higher-dimensional fermion at
each discrete point of the extra dimension Φi(x) ≡ Φ(x, zi) is interpreted as a four-dimensional, vector-
like resonance transforming under the symmetries of the corresponding site. From the holographic
point of view it is then clear that one 5d fermion decomposes into a bunch of resonances (which we will
call composite) and possibly a chiral elementary field. Hence, all the fermion resonances belonging to
the same 5d field have to be in the same representation at each site.

The elementary sector is introduced as source fields on the leftmost site. On this site there formally
is a global G invariance. But also, a subgroup was gauged down to the H0 ⊃ G0

SM gauge group. This
means that the H0 multiplets have to be embedded into incomplete G representations, introducing an
further source of explicit symmetry breaking.

Having chosen a representation for the resonances it is then clear how to build the Lagrangian
of the composite sector: One simply has to write down the most general terms invariant under the
symmetries given the bosonic and fermionic fields. Then the fermion Lagrangian has the form,

Lfermion = L(elem)
kin (2.133a)

+

N∑

i=1

Ψ
(r)

i

(
i/D(r) −m(r)

i

)
Ψ

(r)
i (2.133b)

+ ε(r) q
(r)
0 Ω1 Ψ

(r)
1 +

N∑

i=1

∆
(r)
L Ψ

(r)

iL Ωi+1 Ψ
(r)
i+1 R + h.c. . (2.133c)
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Figure 2.6.: Schematic of the symmetry structure. a) Inside the bulk there are a number of cosets
(GL × GR) /GL+R. Diagonal subgroups are gauged in order to form a site with vector reso-
nance ρiµ. The Ω-matrices act as link fields between the sites. b) Including the boundaries
the symmetry breaking G/H is introduced at the right boundary. Gauging the elementary GSM

subgroup of G1
L introduces an explicit breaking of the global G symmetry causing massive pseudo

Goldstone bosons.
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This is a rather compressed notation, so let us explain this in a bit more detail. There are kinetic terms
for the massless elementary fields, interacting as in the SM with the gauge bosons of the elementary,
SM-like gauge group. The composite resonances were all combined into one symbol Ψ(r) where r is
an index ranging over different particle species as well as over different representations of H.23 They
interact with the vector resonances via covariant derivatives

DµΨ
(r)
i = ∂µΨ

(r)
i − ig(i)

ρ ρiµΨ
(r)
i . (2.134)

Furthermore, as the fermion resonances are vector-like, one can write down mass terms for them. The
last line of the above Lagrangian describes the interactions between different sites. As this means,
interactions between different discrete points in the extra dimension, link fields Ωi, have to be involved.
The first term describes the mixing between the elementary fermions and the composite resonances
of the second site. Additionally, there can be mixing terms between fermion resonances.

2.4. Summary and a word of caution

In this chapter we gave a review about Composite Higgs models, their advantages and their structure.
The main motivation in considering such models lies in the fine-tuning problem since if the Higgs is
a composite object whose ingredients are well-behaved at high energies then its mass does not get
too large quantum corrections. More formally, in analogy to QCD, one expects the NP scale to be
generated via dimensional transmutation such that it is stable against small changes in the initial
parameters. The separation between the electroweak scale and the NP scale can be explained if the
Higgs is a pNGB of an explicitly broken global symmetry. In models of partial compositeness there is
a linear coupling between the composite and the elementary sector that transmits the needed explicit
symmetry breaking. SM fields are mixtures of elementary and composite fields in this framework and
their coupling strengths to the Higgs boson are determined by the amount of composite admixtures
they carry.

To have a phenomenologically successful model one has to introduce some further structures. Dan-
gerous contributions to EWPOs and Z boson couplings can be avoided if the model contains custodial
symmetry SU(2)L × SU(2)R, which gives constraints on the possible symmetry breaking structures
such that the minimal coset is given by SO(5)/SO(4). Flavour transitions can be brought under
control by assuming that the composite sector respects a flavour symmetry that is broken only by
interactions with elementary fields such that the complete flavour structure is determined by the
composite-elementary mixings. In this work we consider U(3)3 and U(2)2 flavour structures that get
broken by either left-handed or right-handed mixings.

Great emphasis is given in this work on EWSB. This is generated in CHMs radiatively through
the Coleman-Weinberg mechanism. In general, it depends on the details of the model whether the
effective potential can be calculated consistently. Considering the potential at the one-loop order, we
ensure calculability by considering models whose structure is inspired by theories in which the Higgs
is implemented as a component of an extra-dimensional gauge field. By this the predictivity of the
potential is guaranteed by gauge invariance.

There is, however, a word of caution that is in order. CHMs are in general non-renormalizable such
that the results can be strongly affected by UV contributions. These theories are usually expected
to have a low cutoff Λ ∼ 4πf = O(10 TeV), such that considerable theoretical uncertainties are to
be expected. In this work we only include constraints that can be calculated without a strong UV
sensitivity and thus we are able to apply the experimental bounds in a meaningful way. Further, one
should keep in mind that in the construction of the above model some truncations were made. This
means a truncation in the number of levels of resonances as well as a truncation in the derivative
expansion of the non-linear σ-model. Also the fact that CHMs are strongly interacting theories might
lead to considerable uncertainties in perturbatively calculated observables. This could in particular
affect the Higgs potential such that two-loop contributions can be important. In the course of this
work we assume rather conservative estimates for theory uncertainties to cope with possibly relevant
higher-order contributions. It will be the general philosophy of these analyses that we carefully try
not to exclude model points that might predict the correct experimental observables when taking into
account higher orders in the theory calculation.

23For example, an SO(5) fundamental field decomposes into a fundamental 4 and a singlet 1 under SO(4). The the
index r is supposed to range over both representations.
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Numerical strategy3
In this chapter we present the details of the numerical analyses performed in this work. The central
objects are parameter points

~Θ = (g0, . . . , f, . . . , gcomp, . . . ,mcomp, . . . , ε, . . . ) , (3.1)

which are collections of all real numbers necessary to characterize the model parameters, such as sym-
metry breaking scales, elementary and composite couplings, composite mass matrices or composite-
elementary mixing matrices. A given parameter point defines a concrete instantation of the model
that allows to calculate all observables.

The main goal of this analysis is generating large sets of parameter points that are compatible with
all available experimental data. Such parameter points we will denote as ‘viable’ in the following.
With these as input it will then be possible to identify the allowed parameter space of the model.
Furthermore we will be able to give predictions for yet unobserved processes and classify observables
that are very sensitive probes of these models, such that future measurements might help to efficiently
reduce the allowed parameter space or (in the best case) find a signal. This section is devoted to
laying out the approach used by us to efficiently find viable parameter points.

This chapter is organized as follows: In section 3.1 we discuss our general numerical approach for
finding viable parameter points. In the following section 3.2 we describe how given a certain parameter
point, we calculate physical observables. But we will wait until section 3.3 to be specific and list all
the physical observables implemented in the analysis.

3.1. Generating viable parameter points

In general, putting constraints on the parameter space of CHMs is a non-trivial task. Due to partial
compositeness the parameter space is heavily ‘entangled’, meaning that is does not factorize into a SM
and a NP part that can be constrained separately. This is generally the case in models with partial
compositeness. A further source of entanglement stems from including the effective Higgs potential
(see section 2.2.2). Via this, strong correlations between the fermion and gauge sectors will have to be
fulfilled, although a priori they are (to a certain degree) independent in our approach. Remember that
the position s∗h of the minimum of the effective potential profoundly depends on cancellations between
spin-1 and spin- 1

2 contributions. In turn, the particle masses and couplings in the mass basis depend
on the exact value of s∗h and, therefore, in the end all observables will depend on it. This leads to the
fact that effectively every observable is a complicated function of basically all the model parameters.
As a consequence, partial compositeness necessitates performing a global analysis that simultaneously
takes into account all constraints at once. Including a realistic EWSB even strengthens this demand.

The traditional approach for such an analysis is to scan the parameter space on the grid or to
draw random numbers. Both procedures become inapplicable if the parameter space has a high
dimensionality and is entangled in the above ways. In the models investigated in this work there
are around 30-50 free parameters, and so demanding a sufficient coverage of parameter space would
require an extraordinary large number of points which is not doable using present computing power.
Also, finding solutions that are fine-tuned to a certain degree appears to be a hard task as by large
volume effects in the high-dimensional parameter space it gets increasingly improbable to pick such
a point. For these reasons we are forced to use a numerically much more sophisticated approach.
Our method is based on an idea put forward in [101]. In that reference the parameter space of a
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#3\Numerical strategy\Generating viable parameter points

CHM was sampled using Markov Chain Monte Carlo (MCMC) techniques as implemented in the
Metropolis-Hastings algorithm [102, 103]. A MCMC is a standard tool for optimization, numerical
integration and Bayesian statistical inference. It is a simple algorithm that performs a random walk in
the parameter space that is strongly pulled towards the region of viable points. Therefore, the Markov
chain finds viable parameter points automatically and subsequently samples that region to efficiently
generate a large number of viable points. We present some details of MCMCs in appendix V.

A key element for using MCMCs is defining a scalar measure that quantifies how well a given parame-

ter point ~Θ agrees with the experimental data. This is given by the likelihood L(~Θ) = exp
(
−χ2(~Θ)/2

)
,

where the so-called χ2-function is defined in analogy with the method of least-squares,

χ2(~Θ) ∼
∑

O∈observables

(
Otheo(~Θ)−Oexp

)2

σ2
O

. (3.2)

Here, σ2
O denotes the uncertainty of the observable O. We are interested in finding parameter points

~Θ that maximize the likelihood which is equivalent to minimizing the χ2. These are the points for
which the theory predictions Otheo(~Θ) are generally close to the experimental measurements Oexp.

This means our problem of finding viable parameter points generalizes to finding the minima of χ2(~Θ)
on the parameter space. This optimization problem can be solved using MCMCs.

What (3.2) does not take into account yet are possible correlations between different observables.
These can come either from experiment or from theory. In practice, we will account for correlations
only in a few cases, but for these the correlations are very important. Effectively this means that one
has to replace the uncertainties σ2

O by the full covariance matrix C2, so that the χ2 takes the form

χ2(~Θ) ∼
∑

Oi,Oj∈observables

(
Oitheo(~Θ)−Oiexp

) [
C2
]−1

ij

(
Ojtheo(~Θ)−Ojexp

)
. (3.3)

An observable is subject to two types of uncertainties. First, there is the error of the experimental
measurement. Furthermore, also the theoretical calculation is subject to uncertainties. These can
be uncertainties of input parameters (such as e.g. CKM elements or hadronic parameters calculated
by lattice QCD) or also neglected higher-order terms (which can be particularly relevant in strongly-
interacting theories). Therefore, what we want to investigate is the convolution of the experimental
and theoretical likelihood that takes into account both types of uncertainties simultaneously. For this,
we take the covariance matrix C2 in (3.3) to be the sum of experimental and theoretical covariance,

C2 = C2
exp + C2

theo. (3.4)

We will describe the observables which enter the χ2 function in section 3.3.
After having defined the χ2 in (3.3), what is left to do is to find its minima and sample the parameter

space around them. A priori it is not clear how many different minima there are, as this depends
on the detailed model and the detailed constraints. There could be only one continous region of
good χ2, but also it could be the case that there are several regions scattered all over the parameter
space. To account for this it is necessary to start a number of chains which is large enough to find
all regions. Even if there is only one region starting a large number of chains gives good accesss to
different subregions within this region. We found it practical to separate the optimization and the
sampling into different steps. In our experience the Markov chains did not perform very well for
points very far away from a minimum. That is why we used the global optimization tool NLopt[104]
to burn in into a region of ‘reasonably good’ χ2 and used that as a starting point for the Markov
Chain. In general, global optimizers need some starting point provided by the user. For this we
randomly generated parameter points until we found one that fulfilled some very basic requirements.
Most random points do not feature EWSB for example, as for this the parameters of the boson and
fermion sectors have to be correlated to a certain degree. It usually takes O(5 − 10 min) to find a
random point with non-vanishing s∗h and some other rudimentary consistency conditions such as e.g.
g0 < gcomp. Such a point can in principle have an arbitrarily high χ2-value; in our scans it usually
was χ2 = O(106). With this as input the global optimizer is able to find regions of parameter space
where the χ2-value is as low as O(5000).1 This usually takes O(30 min). The package NLopt offers a

1In our final numerics we will include around 60 individual χ2-contributions from different observables and we will
have 30-50 parameters.
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Figure 3.1.: Example of the behaviour of Markov chains in 2d. We show some χ2 function with maxima
(white) and minima (black). Two Markov chains are started. The deep minimum is found by
the blue chain right away and the region of good χ2 is sampled. The other local minimum,
which is not so deep, takes longer to be found, but in the end it is also sampled efficiently by
the red chain.

variety of different optimization algorithms, each best suited for a certain problem. In our experience
the ‘subplex’ algorithm NLOPT LN SBPLX [105] worked best for our task. In such a region of parameter
space it is now possible to start the Markov chain. We used adaptive Markov chains implemented
in the package pypmc [106]. In long runs of O(50 h) the Markov chain samples the parameter space
and finds viable points with χ2 as low as O(30), which given the number of observables and free
parameters marks a very good agreement with the experimental data.

The main purpose of the Markov chain is not finding the minimum, but sampling the χ2 around
it. An example for this is shown in figure 3.1. We show an example of a χ2 function in 2d that
is sampled by Markov chains. One sees that after a certain burn-in phase the Markov chains find
regions of good χ2. For our purposes it is not enough to simply find the minima, we also want to
extract many points in the neighbourhood of the minimum as all of them could in principle be of
interest for us. Furthermore, it is not clear what a minimum looks like in 30 dimensions. It could be
strongly constraining in one direction of the parameter space but flat in another direction. Therefore,
qualitatively different solutions could be reached while sampling one minimum.

Figure 3.1 also shows a different characteristic of adaptive Markov chains. If the chain is burned-in
into a certain local minimum, then it samples that particular minimum, but it is not very probable
that the chain leaves the minimum again to find another one. In the limit of infinitely many steps
the chain should show this behaviour but for a finite run time the transition probability gets smaller
the further apart the two minima are from each other. In practice, we do not have any a priori
information about the shape and the number of disjoint minima. This is an inherent problem of
Markov chains, but it can easily be solved by simply starting a large number of different chains all
starting at random initial points and in the end combining the results of all chains. Another reason
for starting a large number of different chains is that the approach described above does not always
succeed. Only in about one third of attempts does the global minimizer achieve a reduction of χ2 in
a sufficient way such that Markov chains can be started. Also the chain itself can get stuck in a local
minimum that does not allow for points good enough to be considered in our analysis. This need for
extensive computational power is the reason we performed the numerics at the Computational Center
for Particle and Astrophysics (C2PAP) [107] which is part of the Excellence Cluster Universe located
in Munich. At this high-performance computing cluster we were able to start O(1000) scans per model
giving us a reasonable coverage of the parameter space.

For a Markov chain subsequent points always lie somewhat ‘close’ to each other. As a consequence,
performing an MCMC scan will inevitably introduce a large autocorrelation between the found points.
This is cured in part by starting many different scans, but to deal with autocorrelation in one chain,
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we thin out the data and consider only every 10th point in our analysis.
In principle, there are many different ways to define a criterion for determining when a point is

‘good enough’ to be considered in our analysis. One could, for example, define a cut on the total
χ2 and only consider points with χ2 below that value. This, however, theoretically allows for large
deviations in one single observable at the price of agreeing with all the other ones very well. We
decided to pose conditions on individual χ2 contributions. As stated above, the covariance matrix in
(3.3) is mostly diagonal such that we can write the total χ2 as a sum over individual contributions

χ2(~Θ) =
∑

O∈observables

χ2
O(~Θ). (3.5)

For these we impose the conditions
χ2
O(~Θ) < 9 ∀O (3.6)

on all viable parameter points which roughly corresponds to considering only points that satisfy the
constraints on every observables at the 3σ-level.2 It is a property of MCMCs that the found points
will be statistically distributed according to the sampled likelihood. Therefore, the viable points will
only have a small number of individual constraints violated by more then 2σ. We will quantify this
later when discussing the concrete analyses.

To summarize our approach for generating large sets of viable parameter point includes the following
steps:

1. Generate a random point that only fulfills basic requirements such as e.g. a non-vanishing Higgs
vev.

2. Run a global optimization algorithm to reduce the χ2.

3. Burn in into regions of good χ2 and sample the parameter space using Markov chains.

4. Thin out the found point and keep every parameter points which respects all individual con-
straints on the 3σ level.

Let us note at this place that although MCMCs are a technique often used in statistics, we do
not intend to make any statistical statements about probabilities of model parameters. We only use
the Markov chains as efficient tools for generating large numbers of viable points. We cannot make
statistical statements as for this the coverage of the global parameter space is far too low.

3.2. Calculating observables

In the above chapter 2 the Lagrangian of the CHMs was defined in the interaction basis which is the
natural description dictated by the given symmetry structures. But partial compositeness as well as
EWSB leads to mixings between particles in the form of non-diagonal mass matrices. Having said
that, physical observables are always defined in the physical basis where all mass matrices are diagonal.
Therefore, in order to calculate physical observables one has to rotate the Lagrangian to the physical
mass basis which, in the end, will lead to massive SM fields and flavour mixings in interactions. As
spin and electromagnetic charge are good quantum numbers even after EWSB, the mass matrices can
be grouped into separate matrices for charged and neutral vector bosons and also up- and down-type
quarks.

The schematic procedure for calculating the physical masses and couplings is shown in figure 3.2. A
parameter point is given by a collection of parameter values ~Θ, which include dimensionless parameters
(such as gauge couplings etc.) as well as massive parameters (resonance masses, composite-elementary
mixings, symmetry breaking scales, etc.). Given all these values the Lagrangian of the model deter-
mines the mass and coupling matrices in the gauge basis (gb). To illustrate this, let us consider
collections of fields

Ψ(gb) =
(
ψ0

1 , ψ
0
2 , . . . ,Ψ

comp
1 ,Ψcomp

2 , . . .
)t
, (3.7)

V(gb)
µ =

(
A0

1µ, A
0
2µ, . . . , ρ

comp
1µ , ρcomp

2µ , . . .
)t
, (3.8)

2Quantifying the cut by 3σ is technically not accurate if the individual χ2 contains two correlated observables (this is
e.g. the case for electroweak precision observables as will be discussed in section 3.3.2). In that case a 3σ (= 99.73%
CL) bound would mean χ2 < 11.83 [108]. We will ignore this and continue calling it a ‘3σ bound’ although meaning
(3.6).
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Figure 3.2.: Schematic algorithm for calculating physical masses and couplings.
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that are vectors containing elementary as well as composite fields all of the same charge. For these
fields one can write a general Lagrangian in the gauge basis in the following form

Lgb = Ψ̄
(gb)
i i/∂Ψ

(gb)
i −

[
MΨ

(gb)(
~Θ; sh)

]
ij

Ψ̄
(gb)
i Ψ

(gb)
j

− 1

4
tr
[
V(gb)
µν

i
V(gb)µν

i

]
+

1

2

[
MV

(gb)(
~Θ; sh)

]
ij

V
(gb)
i

µ
V

(gb)
j µ (3.9)

+
[
gLL

(gb)(
~Θ)
]
ijk

Ψ̄
(gb)
L i γµΨ

(gb)
L j V

(gb)
k

µ
+
[
gRR

(gb)(
~Θ)
]
ijk

Ψ̄
(gb)
R i γµΨ

(gb)
R j V

(gb)
k

µ
,

where the precise form of the mass matrices and the couplings is dictated by the particular theory
and its symmetries. The mass matrices depend on the parameters ~Θ and on the pNGB fields through
sh. A possible dependence of the couplings on sh is not considered, as this will not appear in the
concrete models considered in this work. After EWSB the pNGBs get a vev sh → s∗h, such that the
mass matrices are given as

M(gb)(~Θ) = M(gb)(~Θ; sh = s∗h).

The pNGB-vev can be calculated as the minimum of the effective potential (2.53), which is again a

function of the parameters ~Θ. So, after the intermediate step of minimizing the effective potential the
mass matrices and couplings are completely determined by the parameters ~Θ.

In general, the mass mixing matrices M(gb)(~Θ) contain particle mixings and have to be diagonalized
to go to the mass basis (mb) for the fields. Just as in the SM, this can be done via bi-unitary
transformations for the fermions and orthogonal rotations for the vector bosons,

Ψ
(gb)
L i = [VΨ L]ia Ψ

(mb)
L a , (3.10a)

Ψ
(gb)
R i = [VΨ R]ia Ψ

(mb)
R a , (3.10b)

V
(gb)
i = [VV ]ia V(mb)

a , (3.10c)

such that the physical masses are given as the eigenvalues or singular values of the mixing matrices.
In this basis the above Lagrangian takes the form

Lmb = Ψ̄(mb)
a

(
i/∂ −

[
MΨ

(mb)(
~Θ)
]
aa

)
Ψ(gb)
a

− 1

4
tr
[
V(mb)
µν

a
V(mb)µν

a

]
+

1

2

[
MV

(mb)(
~Θ)
]
aa

V(mb)
a

µ
V(mb)
aµ (3.11)

+
[
gLL

(mb)(
~Θ)
]
abc

Ψ̄
(mb)
L a γµΨ

(mb)
L b V(mb)

c

µ
+
[
gRR

(mb)(
~Θ)
]
abc

Ψ̄
(mb)
R a γµΨ

(mb)
R b V(mb)

c

µ
,

where the mass basis couplings are defined as
[
gLL

(mb)(
~Θ)
]
abc

=
[
gLL

(gb)(
~Θ)
]
ijk

[V†Ψ L]ia [VΨ L]jb [VV ]kc , (3.12)

[
gRR

(mb)(
~Θ)
]
abc

=
[
gRR

(gb)(
~Θ)
]
ijk

[V†Ψ R]ia [VΨ R]jb [VV ]kc . (3.13)

This Lagrangian can now be used to extract the Feynman rules for a given parameter point and with
these, one can calculate observables.

For calculating observables given a parameter point we developed the package pypngb in the pro-
gramming language Python. This automatically performs the operations laid out in figure 3.2. For
this the couplings and mass matrices in the gauge basis are calculated from the given parameters, the
effective potential is calculated and minimized, the mass matrices are diagonalized and all the cou-
plings are rotated into the mass basis. With these as input, all observables (which will be discussed
in the next section) can be calculated and combined into a χ2 function (3.3).

At this place let us remark on the parameters and the ranges in which we allow them to vary. We
give this information in table 3.1. The symmetry breaking scales are bound to lie in a reasonable
region suggested by naturalness arguments. Further, we impose consistency conditions motivated by
the partial unitarization of Goldstone boson scattering [55]. An important fact it that we do not
scan the massive parameters of the composite sector directly. We rather use their logarithms as input
parameters, since otherwise we would have a strong bias for large values and it would be difficult to
draw random values is small as it is needed to reproduce the hierarchies in the SM flavour parameters.
Additionally, we constrain all massive parameters to be below the cutoff of the EFT which we identify
with 4πf .

56



parameter scanning method range remark
elementary
couplings

g0, g′0
g0

3
linear

0− 1
0− 2

symmetry breaking
scales

f
f1, fX , fG

linear (250− 3000) GeV
1 < f1

f <
√

3
1
2 ≤

fX,G
f1
≤ 2

composite
couplings

gρ, gX , gG linear 1− 4π mρ,X,G < 4πf

composite
masses

mQ, mQ̃,

mYQ , mYQ + YQ
logarithmic

(
e1 − e10

)
GeV < 4πf

composite-elementary
mixings

∆L, ∆R

angles & phases
logarithmic

linear

(
e−30,−10 − e+10

)
GeV

−π −+π
< 4πf

Table 3.1.: Details on the model parameters. We show the considered ranges, the scanning method (i.e.
whether we scanned the parameters or their logarithms) and we show further consistency condi-
tions.

3.3. Constraints

In the following we will discuss in detail the experimental constraints that will be imposed in the
analyses that are presented in chapters 4 and 5. These are investigations of a minimal (chapter 4) and
a next-to-minimal CHM (chapter 5) that were conducted in 2015 and 2016, respectively. In the time
between the two analyses many observables received updates. Either new experimental data were
presented or more precise theoretical input data (e.g. results from lattice QCD) became available. If
this is the case, we will present both numbers in the following.

3.3.1. SM parameters

Electroweak symmetry breaking

In this analysis much attention is given to a realistic electroweak symmetry breaking. As discussed
in section 2.2.2 the effective Higgs potential is generated dynamically at loop-level via the Coleman-
Weinberg mechanism. We calculate the potential using (2.53) and determine its minimum numerically.
The minimum is what in the end will determine the electroweak scale vSM and, in particular, the
hierarchy vSM � f . As an example, in the M4dCHM one has

vSM = s∗h f, (3.14)

where s∗h = sin (〈h〉 /f) denotes the minimum of the effective potential. Depending on the model the
potential will not only be a function of the Higgs boson alone but also of a (possibly) extended scalar
sector, such that the electroweak scale is a function depending on each scalar vev. Experimentally,
the vev of the Higgs field is extracted through the Fermi constant Gµ = 1

2
√

2
1
v2SM

via muon decay

µ± → e± νµ νe. In the SM this process is mediated at tree-level via the exchange of a W boson. In
extensions of the SM NP can also contribute to this process such that the extraction of vSM is affected
by NP contaminations. In CHMs these NP contributions are also present on tree level and come
from the exchange of heavy charged vector resonances as well as effective right-handed W couplings.
Since we only consider a trivial lepton sector in our setup, we do not have to care about the second
possibility and we can define

Gµ =
1

2
√

2

∑

a

|gWaµνg
∗
Waeν |

m2
Wa

, (3.15)

where the index a sums over the SM W as well as over contributions from heavy charged vectors. This
observable can be compared to the experimental value which is measured to an extreme precision [108],

Gexp
µ = (1.1663787± 0.0000006)× 10−5. (3.16)
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We conservatively add a theory uncertainty of 1% to account for ignored loop corrections to Gµ.

A second observable that is determined by the effective potential is the mass of the Higgs boson,
which is given as the curvature at the minimum of the potential. In the general case Veff depends on
a variety of scalar fields φi, such that the curvature is described by the Hessian matrix

Hmn = ∂m∂nVeff(φi)|φi=〈φi〉 . (3.17)

This matrix then represents the full leading-order mass mixing matrix for the scalar fields such that
the Higgs mass is identified with the smallest eigenvalue of the Hessian. Going back to the case of the
M4dCHM, the problem is much simpler and the Higgs mass is simply given as the second derivative
of the potential,

m2
h = ∂2

hVeff(h)
∣∣
h=〈h〉 =

1− s2
h

f2
∂2
sh
veff(sh)

∣∣∣∣
sh=s∗h

. (3.18)

Experimentally the Higgs mass has been by now well established by the LHC and its value is cited
as [108]

mexp
h = (125.09± 0.24) GeV. (3.19)

We interpret the calculated Higgs mass as a running mass at the scale µ = mt. By this we neglect
higher order corrections which can be substantial in the strongly interacting theory. For this we add
a theory uncertainty of 5%, which means that effectively we allow for Higgs masses in quite a large
range mh ∈ [106, 144] GeV.

Particle masses

The most salient constraint is, of course, reproducing the masses, couplings and CKM mixings of
the SM. As already discussed above, due to partial compositeness elementary fermions mix with
composite resonances, which is described by large mass mixing matrices. These mixings depend on the
minimum of the effective Higgs potential. After diagonalization the SM fields are linear combinations
of composite and elementary fields. We interpret the masses in this basis as MS running masses at
the scale µ = mt.

The masses of the lighter quarks are measured not at the electroweak scale, but at some hadronic
scale µlow. Although they are fundamental parameters of the theory, they cannot be measured directly
as quarks are confined into hadrons. Therefore, quark masses have to be extracted indirectly by fits to
hadronic observables. This is particularly difficult for the first generation quarks since they are small.
However, due to chiral symmetry breaking masses and mass differences of pNGBs (pions, kaons and
etas) are sensitive to up- and down-quark masses. Thus, they can be determined with the help of
lattice QCD computations; we use the values provided in [109]. For the masses of the other quarks we
use the PDG averages [110]. A further subtlety arises for the top quark mass. This is determined by
fitting to the outcome of Monte Carlo parton shower generators. Therefore, what is actually measured
is mMC

t , a parameter of the Monte Carlo generators. Rigorously it is not precisely known how this is
related to the pole mass, but both are estimated to coincide within 1 GeV [111]. We add this as an
additional theory uncertainty.

The values of the masses at µ = µlow and µ = mt are related via the RGE running. We use the
4-loop RGE results as implemented in the code RunDec [112] to obtain the masses at the low scale
from the eigenvalues of the mass matrices, which then can be compared to the measured values. The
masses of t, Z and W we directly interpret as masses at µ = mt. The used experimental values are
shown in table 3.2.

We calculate the masses at tree-level. One could, in principle, calculate the one-loop corrections to
the masses, but for this we would have to calculate the full one-loop corrections to the mass mixing
matrices. Unfortunately, as the fermion mass matrices are quite large (27× 27 in the simplest case),
this approach is not feasible for us because of computations times in the numerical scans. Therefore,
we add a relative theory error of 5% for t, Z and W and 1% for the light quarks.

Couplings

In models with partial compositeness the elementary gauge group and the SM-like subgroup of the
global symmetries are broken down to their diagonal subgroup, which is then identified with the SM

58



low scale µlow m(µlow) m(µhigh)

mu 2 GeV (2.16± 0.11) MeV [109] (1.18± 0.06) MeV

md 2 GeV (4.68± 0.16) MeV [109] (2.55± 0.09) MeV

mc mc (1.275± 0.025) GeV [110] (0.613± 0.012) GeV

ms 2 GeV (95± 5) MeV [110] (52± 3) MeV

mb mb (4.18± 0.03) GeV [110] (2.58± 0.02) GeV

mt — — (173.21± 0.87± 1.00) GeV [110]

mW — — (80.385± 0.015) GeV [110]

mZ — — (91.1876± 0.0021) GeV [110]

mh — — (125.09± 0.24) GeV [108]

Table 3.2.: Experimental input values for SM masses. Quark masses (except for the top mass) are evolved
up to the high scale µhigh = mt while the top and vector boson masses are interpreted as masses
at the high scale.

gauge symmetry 2.2.2. Therefore, the SM gauge couplings are determined by the elementary and
composite gauge couplings,

1

g′ 2
=

1

g′ 20

+
1

g2
ρ

+
1

g2
X

,
1

g2
=

1

g2
0

+
1

g2
ρ

. (3.20)

In the SM, these couplings are of utmost importance for the shape of the electroweak sector and are
extracted from electroweak observables. Assuming the SM tree-level relation

ρ =
mZ cos(θw)

mW
= 1 (3.21)

to hold, it would in principle suffice to fix mW /mZ and mW /vSM for demanding to reproduce the
correct values for the gauge couplings. Beyond the SM this relation is not ensured. This is why one
has to constrain the electroweak couplings redundantly, and we add the electromagnetic coupling

αem =
e2

4π
=

1

4π

(
gL
γee + gR

γee

2

)2

(3.22)

as an additional observable.3 This observable has been measured very accurately at LEP and Tevatron.
Since the RGE running of the electromagnetic coupling is rather small for the considered energy ranges
we can simply use the measured value at µ = mZ [113]

α−1
em(µ = mt) ≈ α−1

em(µ = mZ) = 128.962± 0.014. (3.23)

To include the uncertainty due to the RGE running (and due to possible NP contributions to the
RGE running) we conservatively add a theory error of 2%. Note that quantum corrections to ρ (3.21)
are effectively brought under control by the (loop-induced) T parameter (rf. section 3.3.2).

CKM mixings

In CHMs reproducing the measured values of the CKM matrix is a powerful constraint. Due to partial
compositeness the SM quarks are mixtures of elementary and composite fields. Therefore, including
the full flavour sector, does not lead only to a mixing of the 3 SM generations. There are also mixings
of SM fields with composite resonances, such that the CKM matrix is embedded as a 3× 3 submatrix

3Note that the above relation is only valid when considering a purely elementary lepton sector, as we will do in this
work.
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di

uj

eL

νL
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L

uj
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W±

= + di
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uj
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eL

νL

ρ±

Figure 3.3.: Extraction of CKM matrix elements in CHMs from tree-level W mediated decays. There is a SM
contribution as well as a NP contamination with heavy resonance exchange and/or right-handed
currents.

into the large W couplings matrix. Writing down the interaction Lagrangian in the mass basis gives

Lint =
[
V†uL

]
iI

[VdL]jJ [VW ]KW
[
gL
Wψψ

]
IJK

U
i

Lγ
µDj

LW
+
µ

+
[
V†uR

]
iI

[VdR]jJ [VW ]KW
[
gR
Wψψ

]
IJK

U
i

Rγ
µDj

RW
+
µ + h.c. (3.24a)

=
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2√
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uSM
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]
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Ψ
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V SM
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]
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∗

∗ ∗
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dSM
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ΨNP
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+
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R
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i[

Ψ
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)
γµ
[
V total

CKM, R

]( [
dSM

R

]
j[

ΨNP
dR

]
J

)
W+
µ + h.c., ‘ (3.24b)

where left-handed as well as right-handed couplings are generated. Both couplings are are described
by large CKM-like matrices, V total

CKM, L and V total
CKM, R, that by construction have to be unitary. The

SM CKM matrix V SM
CKM, being a submatrix, is not unitary, so the only thing we can demand is that

it looks ‘unitary enough’ to pass all experimental constraints such as e.g. the unitary triangle. This
puts strong constraints on the mixings between quarks and quark partners and accordingly acts as an
upper bound on the quark degrees of compositeness.

Experimentally, the CKM elements are extracted from decays that are mediated at tree-level via
a W -exchange, or from meson-antimeson mixing. Both extractions are plagued by NP contamina-
tions that affect the determination of the SM parameters. For the tree-level decay there are also
contributions from the exchange of heavy vector resonances as well as right-handed charged currents.
Although they are suppressed by the heavy resonance mass and the quark degrees of compositeness we
include these effects. We define CKM matrix element which can be compared to the values measured
in experiment via ratios of W couplings,

|Vij | =

∣∣∣gL
Wuidj

∣∣∣
∣∣gL
Weν

∣∣ . (3.25)

For the extraction of Vud and Vus the above expression is sufficient as possible right-handed NP con-
tributions are negligible. In the case of CKM elements involving the third generation we numerically
include the right-handed NP contributions. Note that the above definition explicitly only holds for a
trivially modeled lepton sector as considered in this work.

Using this prescription, we can compare the calculated CKM elements to the experimental values:

• The CKM elements |Vud| and |Vus| are extracted from the superallowed 0+ → 0+ nuclear β-
decay and from K → π`ν, respectively. Their values are strongly constrained by first-row CKM
unitary, which is strongly supported by experiment,

1 = |Vud|2 + |Vus|2 + |Vub|2 ≈ |Vud|2 + |Vus|2 , (3.26)

where |Vub| is negligibly small.

• For both |Vub| and |Vcb|, there is the long-standing issue of a discrepancy between the deter-
minations from inclusive and exclusive B decays. The matrix element |Vub| can be extracted
from inclusive B → Xu`ν decays as well as from exclusive B → π`ν. Similarly, |Vcb| is obtained
from B → Xc`ν inclusively and from B → D(∗)`ν exclusively. Currently, the determinations
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2015 2016

Vud (0.97417± 0.00021) [117]

Vus (0.2249± 0.0008) [109] (0.2243± 0.0010) [118]

V excl
ub (3.72± 1.9× 0.16)× 10−3 [119] (3.62± 2.3× 0.14)× 10−3 [118]

V incl
ub (4.33± 1.9× 0.28)× 10−3 [120] (4.33± 2.3× 0.28)× 10−3 [120]

V excl
cb (3.904± 2.9× 0.075)× 10−2 [121] (3.927± 2.7× 0.074)× 10−2 [118]

V incl
cb (4.221± 2.9× 0.078)× 10−2 [121] (4.221± 2.7× 0.078)× 10−2 [118]

Vtb (0.998± 0.041) [122]

γ (72.85± 6.65)◦ [123]

Table 3.3.: Experimental input for the CKM matrix used in the scans. We give the data for scans performed
in 2015 and 2016. For Vub and Vcb the experimental uncertainties are scaled to account for
tensions in the inclusive vs. exclusive determination.

from both channels differ by several σ for both CKM elements (see e.g. the discussion in [114]).
These tensions cannot be resolved in our model, which is why we include the inclusive and ex-
clusive determinations as separate observables. For this we implemented the model-independent
contributions from NP given in [114] (which includes right-handed W couplings) for the theory
calculation and used the PDG prescription to rescale the uncertainties of discrepant measure-
ments [108].

• Since top-quarks do not form bound states, the above method cannot be applied to extract |Vtb|.
This CKM element is determined from the t-channel single-top-quark production cross section
at the LHC. In this process the top quark is produced in association with a b quark and light
quarks. Therefore, one is sensitive only to the combination Vud Vtb.

• We include the angle γ of the unitary triangle [108]. A particularly clean way to obtain this
observable experimentally is via the interference of b → cūs and b → uc̄s amplitudes in B →
DK [115, 116]. Neglecting possible contributions from right-handed W couplings, we calculate
this CKM angle through

γ = −arg



∑
a

(
gL
Wacb g

L ∗
Waus

)
/m2

Wa

∑
a

(
gL
Waub g

L ∗
Wacs

)
/m2

Wa


 . (3.27)

• The CKM elements |Vtd| and |Vts| cannot be determined from tree-level t decays. Having fixed
the value of |Vtb|, these matrix elements can be included indirectly through B(s) mixing and rare
B decays (see section 3.3.5).

During the time the scans were performed the experimental values were updated such that we give
values from 2015 used in the scan of the M4dCHM as well as values used in the analysis of the
NM4dCHM in Tab. 3.3.

3.3.2. Electroweak precision observables

As already mentioned in section 2.2.1, modifications to the electroweak sector can be parametrized
by the so-called electroweak precision observables (EWPO) [45, 124]. These describe the oblique
corrections, i.e. the vacuum polarizations, of the electroweak vector bosons. EWPOs are an impor-
tant constraint for strongly-coupled models of EWSB and, in particular, they put high tension on
technicolor models. Therefore, it is important to include these constraints in an analysis of CHMs.

As a first step one defines the transverse parts of the vacuum polarizations4 of the SM electroweak

4Here, the vacuum polarizations include only NP contributions.
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vector bosons,

Πγγ(q2) = q2Π′γγ(q2 = 0) + . . . ,

ΠZγ(q2) = q2Π′Zγ(q2 = 0) + . . . ,

ΠZZ(q2) = ΠZZ(p2 = 0) + q2Π′ZZ(q2 = 0) + . . . ,

ΠWW (q2) = ΠWW (p2 = 0) + q2Π′WW (q2 = 0) + . . . ,

which then allows to give a definition for the S and T parameters,5

αemS = 4 sin2(θW ) cos2(θW )

[
Π′ZZ(q2 = 0)− cos2(θW )− sin2(θW )

sin(θW ) cos(θW )
Π′Zγ(q2 = 0)−Π′γγ(q2 = 0)

]
,

(3.28a)

αemT =
ΠWW (q2 = 0)

m2
W

− ΠZZ(q2 = 0)

m2
Z

, (3.28b)

which coincide with the definitions given in (2.39a).
By construction, the T parameter does not receive tree-level corrections as we imposed a custodial

protection through the used coset (rf. section 2.2.1). On the one-loop level there are several different
contributions. As Yukawa couplings and the gauging of hypercharge break custodial symmetry explic-
itly, loops of quark vector resonances will contribute to the T parameter. In [55] these contributions
have been estimated in a general parametrization of CHMs and the vector loops have been found to be
subdominant with respect to the fermion ones. Therefore, we will only include the fermion one-loop
contributions to the transverse vacuum polarizations, which are given as

−16π2ΠV V =
∑

fi,fj

H
(
m2
fi ,m

2
fj

)(
|gLV fifj |2 + |gRV fifj |2

)
+ 4mfimfjB0

(
m2
fi ,m

2
fj

)
Re
(
gL∗V fifjg

R
V fifj

)
,

where one sums over all SM fermions and quark resonances. The Passarino-Veltman function is defined
as in [125] and the function H can be found e.g. in [126]. We explicitly checked that for the considered
models the above one-loop contributions lead to a finite result. Further, in CHMs there are also
corrections to the couplings of the Higgs to SM vector bosons that contribute to oblique corrections
with Higgs loops. As a consequence, there appears an incomplete cancellation between Higgs and
Goldstone diagrams [127, 128],

g log

(
Λ

mZ

)∣∣∣∣
Goldstones

+ (g + δg) log

(
Λ

mh

)∣∣∣∣
Higgs

∼ g log

(
mh

mZ

)
+ δg log

(
Λ

mh

)
, (3.29)

such that an explicit UV dependence through the cutoff Λ remains. As this ‘IR-log’ contribution is
not straight-forwardly calculable (but it has been estimated in [70]), we will later include it as an
uncertainty of the calculation.

The S parameter is not protected by custodial symmetry and therefore it already appears at tree-
level. For this it is not useful to work with the vacuum polarizations (3.28), but fortunately the
tree-level S parameter can be related to the shift in the coupling of the Z boson to leptons,

gZee =
√
g2

1 + g2
2

(
T3

L − sin2(θeff)Q
)
,

in models that feature a vanishing T parameter a tree-level. Then, the NP contribution to the S is
given numerically as

αemS |T=0 = 4
(
s2
W − sin2(θeff)

)
, (3.30)

where s2
W = 1 − m2

W /m
2
Z and the effective weak mixing angle is defined via the leptonic forward-

backward asymmetry,6

sin2 θeff =
1

4

(
1 +

gRZee + gLZee
gRZee − gLZee

)
. (3.31)

5One could also define the so-called U parameter, but this one is suppressed in NP models as it corresponds to a
dimension-8 operator.

6 We have to note that this approach is only possible since we modeled the lepton sector in a trivial way as purely
elementary. If the lepton were partially composite then the Zee coupling would receive non-oblique corrections, such
that the S parameter could not be extracted.
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Figure 3.4.: Allowed 1σ-, 2σ-, 3σ-regions for the electroweak precision observables S and T . Blue: Values
allowed by the global electroweak fit [46]. Red: Allowed region used by us. The uncertainties
were blown up to account for theory uncertainties. The black star marks the SM prediction.

Experimentally, the S and T parameters are extracted from a global electroweak fit [46], which
finds

S = 0.05± 0.11, T = 0.09± 0.13 (3.32)

with a correlation coefficient of +0.9. In our analysis we inflate the uncertainties to account for the
neglected contributions in the calculation (‘IR-log’ contributions for S and T as well as vector boson
loop corrections for T ). To be conservative, we assume uncorrelated theory uncertainties of 0.05 for
S and 0.10 for T which we combine with the experimental uncertainties. The values are chosen to
match the typical size of the ‘IR-log’ contributions (see e.g. [70]). The allowed regions are shown in
figure 3.4. The strong correlation between the S and T parameters is quite important as this means
that a large contribution to one parameter implies also a large contribution to the other observable.
This is not trivial since the tree-level S parameter is determined by the gauge sector of the theory,
while the one-loop contributions to the T are dominated by the fermion resonances.

To estimate the impact of the constraint given by the S parameter, we can look at the approximate
result given in [99],

S ≈ 4π v2
SM

(
1

m2
ρ

+
1

m2
a

)
. (3.33)

This shows that effectively, the S acts as a lower bound on the masses of the composite vector
resonances. Assuming degenerate vector resonance masses, the 3σ bound of figure 3.4 gives a rough
lower bound on the vector masses

mρ & 1.9 TeV. (3.34)

3.3.3. Z widths

Decays of the Z boson have been measured to a very high accuracy at LEP [129]. Therefore these
results are sensitive probes of variations of couplings of the Z to SM fermions. By partial compositeness
these couplings get corrections when going to the mass basis,

gmb
Zfifj = V †iI VjJ V

boson
ZK

[
ggb
]
IJK

=

3∑

I=1

V †iIVjIgZ . (3.35)

If the admixtures of composite resonances are large (which just means that if the SM fermions have
a large degree of compositeness) then the 3 × 3 submatrix of the total fermion mixing matrix will
be significantly non-unitary, meaning that the couplings get sizable corrections and even flavour-
offdiagonal Z-couplings are introduced. Such a sizable degree of compositeness is to be expected even
for the lighter quarks in models with a slightly broken flavour symmetry.
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As discussed in section 2.2.1, the Z couplings to SM fermions are subject to a custodial protection,
if the SM are embedded into SO(5) multiplets in such a way that T3

L = T3
R is satisfied. Looking at the

explicit form of the embeddings (4.12) one observes that for the particular model we are analyzing
not the whole ZdiLd

j
L coupling is protected but rather only the contribution to this coupling that is

induced by the admixture of ‘up-type’ composite resonances into the ‘down-type’ SM quarks. But
this is actually very important since it is the up-type contribution that due to the large degree of
compositeness of the top is expected to be dangerous. It can be seen from the mass matrices that
this contribution is not suppressed by the Higgs vev s∗h (see appendix III). Therefore, despite having a
custodial protection mechanism it is very important to include the constraint coming from Z coupling
modifications. We also note that by the same reasoning for the ZuiLu

j
L coupling the protection works

for the subleading contributions by admixtures of down-type resonances. The right-handed couplings
are always protected as after EWSB they are related only to the electromagnetic coupling which is
protected by gauge invariance.

Experimentally, the Z widths have been measured as ratios [129, 130],

Rb =
Γ(Z → bb̄)

Γ(Z → qq̄)
= 0.21629± 0.00066, Rc =

Γ(Z → cc̄)

Γ(Z → qq̄)
= 0.1721± 0.0030,

R` =
Γ(Z → qq̄)

Γ(Z → `+`−)
=





20.804± 0.050 for ` = e
20.785± 0.033 for ` = µ
20.764± 0.045 for ` = τ

.

where Γ(Z → qq̄) implies a sum over all quarks except the top. Especially, Rb is measured to a very
high accuracy such that this gives an important bound on the bottom degree of compositeness. As in
our analysis the lepton sector is purely elementary, the leptonic Z widths can effectively be seen as
constraints on the total hadronic width Γ(Z → qq̄). In particular when imposing a flavour symmetry
the degrees of compositeness (of one chirality) of the light quarks can be significant, which could
possibly lead to sizable effects in the hadronic Z width.

In our analysis we calculate the partial widths of the SM Z boson at tree-level with zero momen-
tum. Contributions beyond this limit are discussed in [131]. These results contain the tree-level SM
contributions. To match the measured values we add by hand NNLO SM contributions including
QCD corrections [130].

3.3.4. Higgs production and decay

In the SM, the coupling of the Higgs to the other fields is predicted to be proportional to their mass.
It is apparent that such a drastic change in the Higgs sector as present in CHMs can easily modify
these relations. Therefore, it is important to control the deviations in the Higgs sector such that it is
in accordance with the experimental data.

Higgs couplings are often measured in terms of signal strengths,

µggX =
σ(gg → h)× BR(h→ X)

σ(gg → h)× BR(h→ X)|SM

, (3.36)

which are the product of production and decay into a particular channel h → X normalized to the
SM prediction. As the Higgs is predominantly produced via gluon fusion we assume this as the sole
production mechanism.

Higgs production and decay were already discussed quite frequently in the literature. The general
EFT description of a strongly-interacting light Higgs (SILH), as it is appropriate for a composite
pNGB Higgs, has been developed in [132]. There, the relevant effective dimension-6 operators for
Higgs production were identified as

LSILH ⊃
cH
f2

∂µ
(
H†H

)
∂µ
(
H†H

)
+

cy
f2

(
H†H

)
f̄RHfL +

cg
f2

(
H†H

)
tr [GµνG

µν ] + h.c.. (3.37)

These correspond to three different NP contributions that are diagrammatically shown in figure 3.5.
The first one is a modification of the Higgs kinetic term induced by the non-linear pNGB nature of the
Higgs in this kind of models. The second contribution describes modifications of the Higgs Yukawas
to the SM fermions. And finally, NP particles running in the loop can also contribute. It was found
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(a) pNGB non-linearities (b) modified Yukawas (c) NP particles in the loop

Figure 3.5.: Contributions to Higgs production via gluon fusion.

in [133] that the last two contributions cancel to a large degree. In particular, the effective Higgs-
Gluon coupling is independent of the spectrum of the NP sector and is for the most part dominated
by the non-linear character of the pNGB Higgs.7

The signal strengths can be expressed as

µggX =
rgg rX
rtotal

(3.40)

where the partial width ratios ri = Γi/Γ
SM
i are used. Due to the Higgs non-linearities the partial

widths are modified as [132]

Γ(h→ X) =

(
1− cX

v2
SM

f2

)
Γ(h→ X)SM (3.41)

with respect to the SM prediction, where the cX are channel dependent constants. With this one finds
for the signal strengths (3.40)

µggX = 1− (cgg + cX − ctot)
v2

SM

f2
+ O

(
v4

SM

f4

)
, (3.42)

so that in general one expects a reduction that depends on the value of the symmetry breaking scale
f and is more pronounced the smaller this scale is.

This is not true anymore if the light quarks are considerably composite as was shown in [135]. In this
case the cancellation between Yukawa modifications and NP loops is not complete anymore and new
terms for light quarks arise that can be non-negligible for large degrees of compositeness. Depending
on the chosen flavour structure this case is well achievable and violations of (3.41) can appear.

In the analysis we include leading order contributions to the partial widths. In particular, we
include the channels h → {WW,ZZ, τ+τ−} at tree-level and h → γγ at one-loop level (where the
loop counting here refers to the decay). Signal strengths in the channel h→ bb̄ have not been measured
yet in the gluon fusion production channel.

The experimental input data are shown in figure 3.6. Unfortunately, the experimental uncertainties
are still rather large

3.3.5. Flavour observables

Meson-antimeson mixing

Particle-antiparticle mixings of neutral mesons are a very powerful tool in constraining NP models.
In the SM these processes occur via box diagrams involving electroweak gauge bosons that are fur-
ther suppressed by the GIM mechanism [27]. In CHMs already tree-level exchanges of heavy vector
resonances can contribute substantially. Therefore it is very important to include these constraints in
the analysis, especially as we are interested in the flavour structure.

7 This can also be understood from the fact that the radiative Higgs-vector boson coupling can be written as [134]

chV V ∝
∂v det(M)

det(M)
, (3.38)

with M the fermion mass matrix. For the models considered here, the determinant of the mass matrix factorizes as

det(M) = F (v/f)× P (Y,M, f), (3.39)

such that for the effective coupling all dependence on the mass parameters and couplings drops out and the Higgs
non-linearities remain as the only contribution.
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0.0 0.5 1.0 1.5 2.0

W+W− 0.86± 0.17 0.84+0.17
−0.17

ZZ 1.18± 0.39 1.13+0.34
−0.31

γγ 1.12± 0.22 1.1+0.23
−0.22

τ+τ− 0.97± 0.39 1.0+0.6
−0.6

Figure 3.6.: Input data for the Higgs signal strengths. We show values for the 2015 analysis (red, values
taken from [136, 137] and for the 2016 analysis (blue, values taken from [138]).

Mesons and antimesons can oscillate into each other. There are a lot of reviews on this topic;
e.g. [139, 140, 141, 142]. Basically, this means that a meson M (where M = K,Bd, Bs, D) can
propagate into its antiparticle M,

|M(t)〉 = f(t) |M〉 + f̄(t)
∣∣M
〉
. (3.43)

The time evolution of the coefficients is determined by a Schrödinger equation

i
d

dt

(
f(t)
f̄(t)

)
=

[(
Mdiag M12

M∗12 Mdiag

)
− i

2

(
Γdiag Γ12

Γ∗12 Γdiag

)](
f(t)
f̄(t)

)
, (3.44)

where it is a consequence of the CPT theorem that the diagonal elements are the same.
The mass matrix M then has two eigenvalues MH and ML, whose corresponding eigenstates are

linear combinations of the flavour eigenstates. The mixing of the flavour states is characterized by the
mass difference

∆M = MH −ML = 2 |M12| . (3.45)

Of great importance is the CP -violating phase φM = arg(M12) of the mixing matrix element. In
the SM this is determined by the phases in the CKM matrix and, therefore, it is a powerful tool for
testing the CKM mechanism and for constructing the unitarity triangle. At this point we are mainly
interested in M12 and φM, but the effects of Γ12 will be discussed in 6 in the context of different
models for NP.

The calculation of the above observables is best done in an operator product expansion which
separates UV and IR contributions,

MM12 =
1

2mM
〈M0|H∆F=2

eff |M0〉 =
(
MM12

)
SM

+
∑

a

Cqiqja (µlow)〈M0|Oqiqja (µlow)|M0〉, (3.46)

where q can be u or d and the loop-induced SM contribution is discussed e.g. in [143]. The ∆F = 2
effective Hamiltonian is given as [144]

H∆F=2
eff =

G2
F

16π2
M2
W

∑

a

λaCKM Cqiqja (µ)Oqiqja . (3.47)

Here λaCKM denote meson dependent CKM structures. The four-quark operators, which are generated
in the considered models, are then given by8

OqiqjV LL = (q̄iLγ
µqjL)(q̄iLγ

µqjL) , OqiqjVRR = (q̄iRγ
µqjR)(q̄iRγ

µqjR) , (3.48a)

OqiqjV LR = (q̄iLγ
µqjL)(q̄iRγ

µqjR) , OqiqjSLR = (q̄iRq
j
L)(q̄iLq

j
R) . (3.48b)

8There are also tensor operators that could possibly contribute. But as we will only consider tree-level NP contributions
tensor operators will not be generated.
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In CHMs these operators are already generated at tree level by the exchange of neutral vector
resonances. These include heavy Z ′ bosons as well as heavy gluon partners that couple to the composite
admixture of the SM quarks. After rotation into the mass basis their couplings become flavour off-
diagonal as they couple in a different way to elementary and composite fermions. Therefore, the
Wilson couplings can easily be calculated from the mass basis couplings and the resonance masses,9

(see e.g. [63] for a derivation in extra-dimensional models)

C
qiqj
V LL(µ = mt) = −1

2

∑

k

(
gL
ρ0kqiqj

mρ0k

)2

− 1

6

(
gL
ρGqiqj

mρG

)2

, (3.50a)

C
qiqj
VRR(µ = mt) = C

qiqj
V LL

∣∣
L→R

, (3.50b)

C
qiqj
V LR(µ = mt) = −

∑

k

gL
ρ0kqiqj

gR
ρ0kqiqj

m2
ρ0k

+
1

6

gL
ρGqiqjg

R
ρGqiqj

m2
ρG

, (3.50c)

C
qiqj
SLR(µ = mt) =

gL
ρGqiqjg

R
ρGqiqj

m2
ρG

. (3.50d)

Here ρ0 denote the Z ′ and ρG the heavy gluon contributions. By our general rationale we interpret
these effective couplings as Wilson coefficients at the high scale µ = mt. For calculating the contri-
butions to meson-antimeson mixing they have to be evaluated at the low scale appropriate for the
particular process. The general forms of the RGE equations are given in [144],

~C(µlow) = Û(µlow, µhigh = mt)~C(µhigh = mt). (3.51)

We use them to evolve the Wilson coefficients down to the low scales (µlow = mb for Bd,s mixing,
µlow = 3 GeV for D mixing and µlow = 2 GeV for K mixing). The relevant evaluations of αs at various
different scales is performed using the code RunDec [112] including 4-loop contributions.

The matrix elements appearing in (3.46) are non-perturbative objects and can be determined using
lattice QCD. They depend on the meson decay constants and bag parameters

〈M0|Oqiqja (µlow)|M0〉 = mMf
2
MBMa (µlow) , (3.52)

where

BMV LL = BMVRR =
1

3
BM1 (µlow) , (3.53a)

BMV LR = −1

6

(
mM

mqi +mqj

)2

BM5 (µlow) , BMSLR =
1

4

(
mM

mqi +mqj

)2

BM4 (µlow) . (3.53b)

The lattice predictions for the decay constants as well as the bag parameters Bi depend on the meson.
We use ref. [109]10 for Bd and Bs mixing. For the kaon bag parameters we use ref. [146]. Putting all
the formulae (3.50), (3.51) and (3.52) together, the ∆F = 2 mixing amplitude MM12 can be calculated
through (3.46).

We include the following observables for ∆F = 2 processes

B(s) mesons: We include in our analysis the mass differences in the Bd and Bs systems. For these
we use the world averages provided by the HFAG collaboration [148]11

∆Md = 2
∣∣∣MBd

12

∣∣∣ = (0.510± 0.003) ps−1, (3.54)

∆Ms = 2
∣∣∣MBs

12

∣∣∣ = (17.761± 0.022) ps−1. (3.55)

9The numerical prefactors of the heavy gluon contributions are determined by a color Fierz transformation

TAabT
A
cd = −1

6
δabδcd +

1

2
δadδcb, (3.49)

where TA denote the QCD generators.
10In the later part of the analysis new lattice QCD results on the B(s) bag parameters became available. Therefore, in

the analysis of the non-minimal model with coset SO(6)/SO(5) (see chapter 5) we used the newer results [145] that
have considerably reduced uncertainties.

11These numbers are the world averages as they were in early 2015, when these scans were performed. The up to date
numbers of 2017, ∆Md = (0.5064 ± 0.0019)ps−1 and ∆Ms = (17.757 ± 0.021)ps−1 as given in [149], differ not too
much, but ∆Md has a somewhat smaller uncertainty. However, these changes are small as compared to the theory
uncertainties.
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Figure 3.7.: Contour plots of the χ2 function used in the scans for the correlated observables ∆Md and
∆Ms. These include the convolution of experimental and theoretical uncertainties. We show
the 1σ-, 2σ- and 3σ-contours. Red: ‘Old’ likelihood used in the SO(5)/SO(4) scan. Blue: ‘New’
likelihood used in the SO(6)/SO(4) scan. Black: 1σ SM prediction, calculated with flavio [147]

.

On the theory side, the main uncertainty is associated with the values of the hadronic matrix
elements calculated on the lattice. We do not have to include uncertainties of the CKM elements,
since these are varied in our scans. Since the hadronic parameters are extracted from global
fits to lattice QCD calculations, they are correlated. During our analyses, there was a steady
progress in extracting these numbers, such that we used the updated numbers for the later
scans. For the analysis of the CHM with the SO(5)/SO(4) coset we used the results of [109] and
assumed relative uncertainties of 10.2 % for ∆Md and 7.6 % for ∆Ms with a correlation factor
0.17. In the more recent analysis of the SO(6)/SO(5) coset we implemented the results of [145].
For this we assumed relative uncertainties of 8 % for ∆Md and 6 % for ∆Ms with a correlation
factor 84.5 %. The impact of the different theory errors12 is illustrated in figure 3.7, where we
compare the χ2 contours for both cases.

To constrain the complex phases of M
Bd,s
12 we include measurements of mixing phases. These

are extracted as mixing-induced CP asymmetries in Bq decays into CP eigenstates. We include
the process Bd → J/ψKS for Bd and the decays Bs → J/ψK+K− and Bs → J/ψ π+π− and
the Bs system. In the SM these observables correspond to (combinations of) the angles of the
unitary triangle. For SψKS

we use the HFAG average [148]13 while for φs we use a combination
provided by the LHCb collaboration [150],

SψKS
= sin

(
arg
(
MBd

12

))
= 0.682± 0.019, (3.56a)

φs = arg
(
MBs

12

)
= −0.010± 0.039 rad. (3.56b)

These values correspond to an angle φd = 43.0◦ ± 1.5◦ and φs = −0.6◦ ± 2.2◦ for Bd and
Bs, respectively. The extraction of these phases from CP asymmetries is plagued by additional
contributions stemming from hard-to-calculate diagrams with penguin topologies. To account
for this so-called penguin pollution [151] we include theoretical errors of 0.68◦ for Bd and 1◦ for
Bs.

K mesons: In the K system the SM determination of the mass difference,

∆MK = 2Re
(
MK

12

)
, (3.57)

12The uncertainties can be estimated by naively adding in quadrature the uncertainties of the individual input param-
eters. In a more dedicated analysis, the uncertainties and correlation coefficients can be extracted by generating
random numbers for the input parameters with a probability distribution taking into account the correlations pro-
vided by the lattice collaborations. This however results in similar numbers.

13The used value differs only minimally from the up-to-date value SψKS
= 0.691± 0.017 given in [149].
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is plagued by large hadronic uncertainties. Therefore, we take a conservative standpoint and
allow the NP contribution to the mass difference to maximally saturate the experimental central
value at 1σ. To be concrete, we define the NP contribution as a ‘pseudo-observable’ which we
constrain to

∆MNP
K = (0± 3.483)× 10−15. (3.58)

Here, the uncertainty corresponds to the PDG average given in [110]. This procedure only sets
a loose bound on the NP contribution, but it assures that no obscure fine-tuned cancellation
between SM and NP contributions happens.

In contrast to the mass difference, indirect CP violation in the K system is theoretically under
better control. The well-known εK parameter acts as a constraint on the imaginary part of the
mixing matrix element,

|εK | = κε
Im
(
MK

12

)
√

2 ∆MK

, (3.59)

where κε = 0.923 parametrizes long-distance effects [152] and for ∆MK we use the experimental
value. To account for uncertainties due to long-distance effects, hadronic parameters as well as
the bad scale-dependence of the perturbative calculation we assume a theory error of 11% [153].
We take the PDG average for the experimental measurements [110],

|εK |exp = (2.228± 0011)× 10−3. (3.60)

D mesons: In [65] it was shown that in CHMs with a weakly broken U(2) flavour symmetry, like
in our setup, one cannot expect to find large effects in D0 mixing observables. Therefore, we
refrain from using them as bounds in our analysis.

Rare B decays

Semi-leptonic b→ s transitions are a powerful tool for testing the SM and constraining NP scenarios.
In the SM these flavour-changing neutral currents (FCNC) are strongly suppressed and only appear
via loop-diagrams while in NP models these processes can already appear at tree-level such that SM
and NP could be of comparable size. Thus, this is one of the first places where NP can show up
and, turning the argument around, measurements of these processes give strong constraints on the
parameter space of NP models.

The FCNC transitions b→ s are usually described by the weak Hamiltonian

Heff =

6∑

a=1

CaOa −
4GF√

2
VtbV

∗
ts

∑

i

CiOi (3.61)

where the operators Oa=1...6 describe hadronic effects that should be unaffected by NP. Generally, in
NP models one expects contributions to the effective operators Oi which are given as

O7 =
e

16π2
mb (s̄Lσ

µνbR)Fµν , O′7 =
e

16π2
mb (s̄Rσ

µνbL)Fµν , (3.62a)

O8 =
gs

16π2
mb (s̄Lσ

µνTabR)Gaµν , O′8 =
gs

16π2
mb (s̄Rσ

µνTabL)Gaµν , (3.62b)

O9 =
e2

16π2
(s̄LγµbL) (µ̄γµµ) , O′9 =

e2

16π2
(s̄RγµbR) (µ̄γµµ) , (3.62c)

O10 =
e2

16π2
(s̄LγµbL) (µ̄γµγ5µ) , O′10 =

e2

16π2
(s̄RγµbR) (µ̄γµγ5µ) , (3.62d)

OS =
e2

16π2
mb (s̄LbR) (µ̄µ) , O′S =

e2

16π2
mb (s̄RbL) (µ̄µ) , (3.62e)

OP =
e2

16π2
mb (s̄LbR) (µ̄γ5µ) , O′P =

e2

16π2
mb (s̄RbL) (µ̄γ5µ) . (3.62f)

In CHMs (at least for the minimal coset SO(5)/SO(4)) scalar operators are not generated, as there

are no heavy scalars in the theory. The dipole operators O(′)
7,8 encode flavour violating couplings of

photons to SM quarks. These can be constrained by the dipole transition b→ sγ. For operators with
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a vector structure there are many processes to which they contribute. Especially in the light of recent
experimental anomalies in b → s`` transitions (see section 6.5) we do not want to be too restrictive
as we want to judge the ability to accommodate these effects in CHMs. For this reason we chose to

impose only the rare decay Bs → µ+µ− as a constraint on C
(′)
10 and leave C

(′)
9 basically unconstrained

to give predictions for its possible size (given all other constraints).

The dipole transition b → sγ

The dipole transition b→ sγ is a powerful tool to constrain the dipole operators O(′)
7 and O(′)

8 . Since
electromagnetism as well as QCD are good, unbroken gauge symmetries, these transitions (even for
CHMs) first arise only at one-loop level. Analytical expressions for the Wilson coefficients in terms of
loop functions are given in [154, Appendix B]. We include NP contributions stemming from fermion
and vector resonances in the loop (where the latter is subdominant for most regions of parameter
space [154]) as well as contributions originating from the non-linear structure of the pNGB Higgs.

According to our general rationale we interpret these contributions as Wilson coefficients at the
high scale µhigh = mt, such that the RGE flow down to the low scale µlow = mb has to be included.
Considering LO QCD renormalization, there is mixing between the dipole operators [155, 154],14

(
C

(′)
7 (µ = mb)

C
(′)
8 (µ = mb)

)
=

(
ηγγ ηγg
0 ηgg

)(
C

(′)
7 (µ = mt)

C
(′)
8 (µ = mt)

)
, (3.63)

such that numerically

C
(′)
7 (µ = mb) = 0.597C

(′)
7 (µ = mt) + 0.318C

(′)
8 (µ = mt). (3.64)

Then, the branching ratio of the b→ sγ transition normalized to the SM value can be written as [156]

Br(b→ sγ)

Br(b→ sγ)SM
=

∣∣Ceff
7 (µ = mb)

∣∣2 + |C ′7(µ = mb)|2 +Nγ∣∣Ceff
7 (µ = mb)SM

∣∣2 +Nγ
, (3.65)

where Nγ = 3.6 × 10−3 is a non-perturbative correction [157]. To obtain renormalization scheme
independent expressions for the Wilson coefficients of dipole operators, one introduces the effective
operators [158] (explicit formulae can be found e.g. in [159])

Ceff
7 (µ = mb) = C7(µ = mb)− 0.156− 0.05387, (3.66)

where the first numerical value is the NLO correction [155] and the second value was chosen to match
the NNLO result given in [156]. We use the SM prediction [160] Br(b→ sγ)SM = (3.36± 0.23)×10−4.

On the experimental side we use the present HFAG average [148]

Br(b→ sγ)exp = (3.43± 0.22)× 10−4 (3.67)

which is in very good agreement with the above SM prediction. We add the the experimental and
theoretical uncertainties in quadrature. The resulting uncertainty of ∼ 8% leaves only little room for
NP interfering with the SM.

Bs → µ+µ−

The rare decay Bs → µ+µ− is an important probe for models beyond the SM as it is sensitive to
scalar as well as vector effective operators. We will discuss the detailed structure of the branching
ratio in greater detail in section 6.5, but here it suffices to remark that the structure of the dependence
is given as follows (see e.g. [161])

Br(Bs → µ+µ−)

Br(Bs → µ+µ−)SM
=
|(C10 − C ′10) + κ1 (CP − C ′P )|2 + |κ2 (CS − C ′S)|2∣∣CSM

10

∣∣2 . (3.68)

14 As mentioned in [154] there is also the possibility of four-fermion operators mixing into the dipole operators. However,
these contributions are suppressed by the composite-elementary mixings and therefore neglected.
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Figure 3.8.: Tree-level contributions to vector effective operators. There are two qualitatively different con-
tributions: (a) through a change in the SM Z boson couplings or (b) through the exchange of
a heavy vector resonance.

With κ1,2 we denote kinematic prefactors that enhance the contributions by scalar operators. However,
as already mentioned above, scalar operators are not generated in this model, therefore one can write
the correction of the branching ratio simply as

Br(Bs → µ+µ−)

Br(Bs → µ+µ−)SM
=
|C10 − C ′10|2∣∣CSM

10

∣∣2 . (3.69)

The SM prediction reads [162]

Br(Bs → µ+µ−)SM = (3.65± 0.23)× 10−9. (3.70)

In the SM this FCNC process occurs only as a loop process and is heavily suppressed by the GIM
mechanism. In CHMs the vector operators C10 and C ′10 are, however, already generated at tree-
level by the exchange of a heavy Z ′ boson or by modification of Z couplings to SM fermions (see
figure 3.8) [163],

Cbsµµ ∼ −
gZbsgZµµ
m2
Z

−
∑

i

gρibsgρiµµ
m2
ρi

. (3.71)

Z exchange: After EWSB the Z boson mixes with heavy resonances that couple to the composite

admixtures of the SM quarks. This contributions is suppressed by a factor v2

f2 . As the coupling

between the Z and the leptons is SM like, one expects C
(′)
9 ∼ (1 − 4 sin2(θw))C

(′)
10 ≈ 0.08C

(′)
10 ,

such that this is mainly a contribution to C
(′)
10 .

ρ exchange: The exchange of a heavy vector resonance is suppressed by the heavy vector mass
m2
Z

m2
ρ
∼ g20

g2ρ

v2

f2 and therefore formally of the same order as the Z exchange. However, there

is an additional suppression by g2
0/g

2
ρ which can be understood by the fact that the coupling of

elementary leptons to the vector resonance has to go via mixing with elementary gauge bosons.

The RGE evolution of semi-leptonic four-fermion operators is known to be very mild as they are not
renormalized by QCD [143] and QED renormalization is suppressed by αem. Therefore we neglect
RGE running and tread these operators directly as generated at a suitable scale for B mesons.

Experimentally, the measured value for this decay [164],

Br(Bs → µ+µ−)exp =
(
2.8+0.7
−0.6

)
× 10−9. (3.72)

as given in a combination of LHCb and CMS data agrees very well with the SM prediction.

3.3.6. Electric dipole moments

In CHMs with a mildly broken flavour symmetry the flavour structure is induced by the composite-
elementary mixings (see section 2.2.3). Potentially, they can introduce a significant number of new
CP -violating complex phases. Additionally, as will be seen in chapter 5, the effective potential can
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generate a spontaneous breaking of CP if some CP -odd scalar field receives a vev. In such a case
CP -violation should show up in the electric dipole moment of the neutron (nEDM).

The nEDM describes NP contributions to the imaginary parts of Wilson coefficients of dipole

operators that are analogous to the operators O(′)
7 and O(′)

8 in (3.62) where only first-generation
quarks are considered [165],

L ⊂ − i

2

∑

q=u,d

dγq (qσµνγ5q)Fµν −
i

2

∑

q=u,d

dgq (qσµνγ5T
aq)Gaµν . (3.73)

In complete analogy with the calculation of b→ sγ in section 3.3.5 we calculate the relevant Wilson
coefficients at the scale µhigh = mt. We use the RGE (3.3.5) to run the Wilson coefficients down to
the low scale, this time the hadronic scale µlow = µh = 1 GeV. In terms of these Wilson coefficients
the nEDM can be calculated as [165, 166, 154]

dn =
(
1.0+0.5
−0.7

)
[1.4 (dγd(µh)− 0.25 dγu(µh)) + 1.1e (dgd(µh) + 0.5 dgu(µh))]

〈qq〉
(225 MeV)3

, (3.74)

where the numerical factors are the outcome of QCD sum rules calculations [165]. With 〈qq〉 we
denote the QCD quark condensate.

Experimentally the nEDM is quite strongly constrained [167],

dexp
n = (−0.2± 1.6)× 10−26 e cm, (3.75)

and tiny. On the theory side there are large hadronic uncertainties, which is why we conservatively
choose the low value 0.3 for the prefactor of the bracket in (3.74).

In principle, there could also be an effect on leptonic observables such as the electron EDM. But
since we consider a purely elementary lepton sector this can only be generated at a higher loop level.
For example, in the non-minimal model considered in chapter 5 which features an extended scalar
sector, the electron EDM can be generated via a 2-loop Barr-Zee process [168]. We, however, find this
observable to be subleading with respect to the nEDM, which is why we will not consider it further.

3.3.7. Contact interactions of light quarks

Until now we mostly put constraints on the degrees of compositeness of heavy quarks. But in some
regions of parameter space also light quarks can have one chirality that might be strongly composite.
This is particularly relevant for models with a U(3)3 flavour symmetry, since in that case the com-
positeness of the u-quark is directly linked to the one of the t-quark. If first-generation quarks are
considerably composite then four-fermion operators (very similar to the ∆F = 2 operators discussed in
section 3.3.5) are generated that contribute to the emission of jets in hadronic colliders. In particular,
the angular distribution of dijet events at the LHC has proven to be a powerful tool in constraining
these scenarios.

The angular distribution of dijet events is usually given in terms of the variable

χ =
1 + |cos(θ∗)|
1− |cos(θ∗)| , (3.76)

where θ∗ is the scattering angle in the dijet center-of-mass frame, in which the two jets are back-to-
back. A low value of χ ≈ 1 means a scattering orthogonal to the beam axis, while a larger value
describes scattering more alongside the beam direction. Then, the dijet cross section for emission into
a specific range of χ is a helpful observable.

Experiments usually quote their results as bounds on the compositeness scale assuming that only a
single NP operator is present. In a full treatment, however, a large number of four-quark operators is
actually active. Therefore, to include the effects of other operators we make use of the LO calculation
of the dijet cross section. This can be used to obtain a bound on dijet events that is independent
of normalization (such as k-factors), thus exactly reproducing the experimental bound (which was
obtained using NLO simulations) but including also other four-quark operators. The LO calculation
of the dijet cross section into a given χ-bin was performed in [169]. For this one needs the effective
Hamiltonian for uu→ uu, dd→ dd and ud→ ud transitions15

Heff =
∑

i

ci
Λ2
Oi + h.c. (3.77)

15Here one only considers quarks of the first generation as contributions from higher generations are suppressed by the
parton distribution functions.
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with

O(1)
uu = (uRγµuR) (uRγ

µuR) , O(1)
dd =

(
dRγµdR

) (
dRγ

µdR

)
, (3.78a)

O(1)
ud = (uRγµuR)

(
dRγ

µdR

)
, O(8)

ud =
(
uRγµT

AuR

) (
dRγ

µTAdR

)
, (3.78b)

O(1)
qq = (qLγµqL) (qLγ

µqL) , O(8)
qq =

(
qLγµT

AqL

) (
qLγ

µTAqL

)
, (3.78c)

O(1)
qu = (qLγµqL) (uRγ

µuR) , O(8)
qu =

(
qLγµT

AqL

) (
uRγ

µTAuR

)
, (3.78d)

O(1)
qd = (qLγµqL)

(
dRγ

µdR

)
, O(8)

qd =
(
qLγµT

AqL

) (
dRγ

µTAdR

)
. (3.78e)

Then, the NP contribution to the dijet cross section into a range χ < χ0 and with a cut on the
invariant dijet mass mjj > mcut

jj can be written as

σNP
jj

(
χ < χ0,mjj > mcut

jj

)
=

χ0∫

1

dχ

s∫

mcut
jj

dŝ

Ymax∫

Ymin

dY x1f1(x1)x2f1(x2)
dσpart

dt̂

t̂2

ŝ2

∣∣∣∣
x1,2 =

√
ŝ
s exp(±Y )

t̂ = −ŝ/(1 + χ)

,

(3.79)
where the partonic cross section can be found in [169] and fi(x) denote parton distribution functions.
The integrations can be done numerically, leading to

σNP
jj

(
χ < χ0,mjj > mcut

jj

)
= − 1

Λ2
~P · ~A(ci) +

1

Λ4
~Q · ~B(ci), (3.80)

where the vectors ~A(ci) and ~B(ci) are specific combinations of Wilson coefficients given in [169, eq.

(11)], while the elements of ~P and ~Q are purely numerical factors, that depend on the details of the
particular experimental analysis. This form is suitable for implementation in our numerical scan.

As stated above, the experiments usually do not give their results in terms of the above cross section,
but they rather assume a NP model where only one of the operators (3.78) is active (usually they

choose c
(1)
qq ) and give a 95% CL bound on the NP scale Λ for a fixed value of the Wilson coefficient. We

can calculate the cross section that corresponds to the bound on c
(1)
qq /Λ2 and we use this as 95% CL

upper bound on σNP
jj as calculated above.16 To cope with the fact that only an upper bound is given

(while a χ2 functions usually contains measurements, i.e. a central value with some error interval) we
include the bound on the cross section as a ‘pseudo-measurement’ which is centered around 0 and has
an uncertainty of half the experimental upper bound.

Contrary to meson-antimeson mixing, contact interactions involve much higher energies. While e.g.
B mixing has an energy scale of around the b mass, the processes leading to dijet events happen at
energies that are of the order of the hadronic collisions, i.e. possibly of the order of several TeV. Since
the effective theory approach is basically an expansion in p2/Λ2

NP (where p is the energy scale of the
contact interaction) this raises the question whether it is meaningful to extract constraints on the
EFT coefficients if the expansion parameter is not small and, in principle, higher order corrections
should be taken into account. In fact, the analysis in [170] suggests that in such a case the constraints
are considerably weaker than a naive analysis would suggest. We take this into account and use
the prescription given in that reference. We rescale each individual contribution to the four-quark
operators by a factor (1+(1.3 TeV)2/m2

ρ)
−2, where mρ is the mass of the exchanged heavy resonance.

The numerical factor is an estimation obtained by analyzing toy models in [170]. The effect of this
approach is that contributions from lighter resonances are weakened such that their bounds are not
overestimated.

In our numerical scan we used an analysis provided by ATLAS [171] using 17.3 fb−1 of run 1 data.
Prior to the scan of the non-minimal CHM an ATLAS analysis [172] using 3.6 fb−1 of run 2 data
became available. We give details on the used analyses in Table 3.4.

3.3.8. Direct searches at colliders

Besides the above indirect constraints on the parameter space very important constraints on the theory
come from direct searches for new particles at colliders. If they are sufficiently light and they have

16Note that by doing this, the absolute normalization of the cross section (such as missing k-factor in the LO calculation)
drop out and we obtain a bound that is independent from global rescaling factors.
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analysis
√
s

∫
dtL χ0 mcut

jj bound on Λ σ95% CL
jj

ATLAS [171] 8 TeV 17.3 fb−1 χ < 3.32 mjj > 3.2 TeV 12.0 TeV 0.28 pb

ATLAS [172] 13 TeV 3.6 fb−1 χ < 2 mjj > 5.4 TeV 17.5 TeV 0.06 pb

Table 3.4.: Details on the used experimental analyses of the dijet angular distribution. From left to right we
give the center-of-mass energy and the integrated luminosity. This is followed by the cuts on the
angular parameter χ and the dijet mass mjj . Lastly we quote the given bound on the NP scale

Λ (assuming c
(1)
qq = 2π) as well as the corresponding 95% CL bound on the NP cross section.

non-negligible couplings to the SM sector, the composite resonances should show up at these direct
searches. An analysis of direct constraints on CHMs is usually performed assuming couplings only to
3rd generation SM quarks. In this work we want to include these searches in a more general way since
we are considering full flavour structures such that there can be several relevant decay channels. To
this end, we calculate all branching ratios for all resonances into all experimentally relevant channels
and compare them to the recent exclusion limits provided by the experiments. Here, we only very
briefly review our approach. For a more elaborated discussion we refer to [28].

In experimental searches one is looking for resonances that can be either heavy vector-like quarks,
heavy vector bosons or (in the case of a non-minimal scalar sector) heavy scalars. The resonances
have to decay in to SM particles since only these are visible to the detector.

Quark partners To produce a signature that is detectable17 by the experiments a heavy fermion res-
onance has to decay into a SM fermion and a SM boson, i.e. either a Higgs or an electroweak
vector boson. In principle, there are three sources the fermion resonance can come from: It
can be produced singly or as a pair, or can be part of a cascade decay in which it was pro-
duced by another even heavier resonance. Out of these possibilities only the pair production is
model-independent. The other two production channels depend on the detailed couplings of the
resonances and can therefore not be implemented efficiently into our scan. We will thus only con-
sider the case of pair production from gluons and take the conservative standpoint that we ignore
constraints originating from the other production mechanisms. In this case the production rate
only depends on the value of the strong coupling constant and the mass of the resonance. Since
we do not assume any significant deviation in the strong coupling, the production is determined
only by the resonance mass and it is calculated at NNLO in QCD using Hathor [173].

Direct searches in the relevant channels have been performed by ATLAS and CMS but also by
CDF at Tevatron and there exist old bounds from LEP. A complete list of the used channels
can be found in [4, Table 2] and [3, Table 1].

Vector resonances At hadron colliders heavy vector resonances ρ are singly produced via a Drell-
Yang-like process with a hadronic cross section

σ(pp→ ρ) =
4π2

3
cρ
∑

q1,q2

Γ(ρ→ q1q2)

smρ
Lq1q2 . (3.81)

In this expression the narrow width approximation (NWA) was employed to account for the
parton distribution functions via the parton luminosities

Lq1q2 =

1∫

ŝ/s

dx

x
fq1(x) fq2(ŝ/(xs)), (3.82)

and the coefficient cρ in (3.81) is a color factor whose value depends on whether the resonance
is a heavy gluon or a partner of an electroweak gauge boson. The advantage of using the NWA
is that the parton luminosities can be calculated and stored model-independently allowing for a
fast computation of the full hadronic cross section which is essential for a numeric scan. To be

17We neglect the possibility of cascade decays of heavy resonances into SM fields and other resonances, since such a
signature is hard to be included in our framework.
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visible in the detector, the heavy vector resonances can decay either into a pair of SM fermions
or SM bosons. Complete lists of the used decay channels are provided in [4, Table 3] and [3,
Table 3].

A problem appears if the decay into two fermion resonances is kinematically allowed. Since
fermion and vector resonances are strongly coupled to each other this case would lead to very
broad resonances that can no longer be captured in the experimental analyses. Therefore, we
only include the constraints from direct searches if Γρ/mρ < 5%. This goes along with our
general philosophy of being conservative.

Heavy scalars In the non-minimal CHM to be considered in chapter 5 the Higgs sector is non-trivial
and a heavy composite scalar appears. In general, heavy scalars have similar production modes
as the Higgs. At hadron colliders the dominant production is via gluon fusion. But we also
consider production directly from quark-antiquark pairs as well as vector boson fusion (VBF).
The production cross section can be calculated similarly to the case of a heavy vector resonance.
For VBF we employ the ‘effective W approximation’ [174, 175, 176, 177] to treat the electroweak
vector bosons as ‘partons’, such that parton distribution functions can be defined for them.

A heavy scalar resonance can decay into pairs of SM fermion of bosons. In particular, direct
searches for the decay into two Higgs bosons are available. A complete list of the decay channels
considered can be found in [3, Table 2]. We note that in the non-minimal model of chapter 5
the scalar resonance is a pNGB such that it is relatively light and therefore a decay into heavy
resonances is kinematically not allowed for the most parameter points.

To evaluate the compatibility of one parameter point with direct searches we now use the following
approach. For each resonance R we calculate the production cross section as well as the partial
widths Γ(R → x) for the decays into all possible final states x. For some particular channel R → X
the branching ratio of R is then calculated via

Br(R→ X) =
Γ(R→ X)∑
x

Γ(R→ x)
. (3.83)

The experimental collaborations usually give their results as so-called ‘brazil band plots’, i.e. 95% CL
upper bounds on the product σprod ×Brdecay for a resonance in a mass range typically between a few
hundred GeV and a few TeV. For producing the plots the experiments usually assume Brdecay = 1 for
the particular channel. This means that the experimental bounds have to be rescaled by the value
of the theoretical branching ratio such that they can be compared to the σprod × Brdecay predicted
for a particular parameter point.18 We digitize these plots using the package svg2data [178], which
extracts the exact experimental numbers from a vector-graphics file.

To be able the judge the viability of a parameter point we define a χ2 function in the following way.
One can interpret the experimental 95% CL bounds as ‘measurements’ which give σprod×Brdecay = 0
and have an uncertainty that at the 2σ-level coincides with the quoted bound B(mR) for the mass
mR of the resonance. Then, the χ2 takes the form

χ2 =

(
(σBr)exp − (σBr)theo

uncertainty

)2

=

(
0− (σBr)theo

B(mR)/2

)2

= 4
(σBr)2

theo

B(mR)2
(3.84)

In this approach χ2 = 4 means that the theory prediction lies directly on the experimental limit
corresponding to a 95% CL exclusion. The so-defined χ2 function still depends on the resonance and
on the particular decay channel. We group the experimental analyses according to the experiment, the
center-of-mass energy and the spins of the resonances and calculate for each group the maximum of all
χ2 for all resonances and all channels. This gives us a set of combined χ2 values for each experiment,
each LHC run and each resonance spin, which we assume to be uncorrelated and on which we can
separately apply the χ2 < 9 cut (3.6).
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3.4. Summary

In this chapter we presented our general strategy for constraining the parameter spaces of composite
Higgs models. Our approach is a completely numerical parameter scan that does not make use of
analytical approximations. By this we have the power to include special cases that are not accessible
using approximate formulae. A software framework was developed in the programming language
Python that takes as input general mass and coupling matrices, rotates them into the physical mass
basis and uses these as input for the calculation of observables. As an important step our code
includes the calculation and minimization of the one-loop effective Coleman-Weinberg potential, which
is essential for including a realistic EWSB into the analysis.

Viable parameter points were generated utilizing a least-squares fit in which the problem reduces
to finding the minima of a χ2 function on the parameter space of the model. For an efficient scanning
result we employed a two-staged approach in which a global minimization tool is used to burn-in into
a good parameter region and after that adaptive Markov chains were used to sample the parameter
space.

Although the above code is fairly model-independent the included experimental constraints were
chosen to obtain bounds covering all model aspects of CHMs in the best possible way. The included
constraints are summarized in table 3.5.

18For the quark resonances there is a subtlety: As they are assumed to be pair-produced, the experiments can either
assume that one or both resonances decay in a particular channel, which changes the corresponding rescaling factor.
This, however, depends on the analysis under consideration.
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SO(5)/SO(4) – the minimal model4
After introducing CHMs on rather general grounds in chapter 2 and presenting our general strategy
for an analysis in chapter 3 we are now in the position to conduct dedicated numerical analyses of
CHMs. In the following chapter we investigate a well-motivated model that is minimal in the number
of newly introduced free parameters as well as in the number of appearing NP states. At the same
time the considered model is fully realistic as it includes the complete flavour structure as well as a
calculable EWSB and avoids dangerous corrections to EWPOs.

In the following we will first introduce the concrete model which we are investigating and which is
the minimal version of the construction described in 2.3. After that we immediately discuss the results
of the analysis. These are large collections of parameter points that fulfill all experimental constraints
imposed on the model. We present the results as scatter plots of the viable parameter points such that
the magnitude of possible NP effects in physical observables becomes visible. Our discussions of results
will include EWSB and fine-tuning, mass spectra for the heavy resonances, an identification of the
strongest experimental bounds (such that an increase in experimental accuracy in these observables
can efficiently reduce the allowed parameter space in the future) as well as modifications of observables
in Higgs and flavour physics.

4.1. The minimal 4d composite Higgs model

In this section we introduce the so-called minimal 4d composite Higgs model (M4dCHM) by De Curtis,
Redi and Tesi [99], which is the minimal version of the dimensionally deconstructed model introduced
in section 2.3, and generalize it to include a full flavour structure. This model will be the subject of
the following analysis. The minimal model has the advantage that it is still realistic in the sense that
the Higgs potential is calculable and severe phenomenological constraints are avoided. In the following
chapter 5 we will generalize this model to the next-to-minimal case. For a more detailed discussion
of the model we refer the interested reader to the original publication [99] and for a broader context
which includes the relation to similar models a good reference is given by [55].

Bosonic part

As discussed in section 2.2.1 the minimal coset featuring a custodial protection of EWPO’s and Z
couplings as well as a SU(2)L doublet NGB-Higgs is given by SO(5)/SO(4). Including also QCD and
hypercharge this means that we will work with a group Gbig = SU(3)c × SO(5)×U(1)X broken down
to Hbig = SU(3)c×SO(4)×U(1)X. By interacting with a SM-like elementary sector these symmetries
will subsequently break down spontaneously to SU(3)c ×U(1)em by strong dynamics.

Although at first sight it might appear to be a very crude approximation, this model has the
feature that realistic physics is already reproduced by a maximal discretization. This means that, one
can go to the extreme case and approximate the extra-dimensional theory by only two sites, which
we will refer to as the elementary and the composite site. Hence, we will be dealing with the SM
supplemented by only one level of composite resonances. Along the lines of section 2.3.3 the minimal
symmetry structure is depicted in figure 4.1. The model consists of two non-linear σ-models, one
of which describes a coset

(
SO(5)1

L × SO(5)1
R

)
/SO(5)1

L+R with NGBs Ω1 while the other represents
the breaking SO(5)/SO(4) with a NGB matrix Ω∗, where for the sake of simplicity we did not write
explicitly the SU(3) × U(1)X components. The symmetries SO(5)6

R and SO(5) are gauged to their
diagonal group to form a site of composite resonances. Without elementary fields this model still
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#4\SO(5)/SO(4) – the minimal model\The minimal 4d composite Higgs model

Figure 4.1.: Symmetry pattern of the M4dCHM with two sites. There is an elementary sector and one level
of composite resonances ρµ, interacting with each other via a link field Ω1. The symmetry
breaking SO(5)/SO(4) is parametrized by the Goldstone matrix Ω∗. This is the minimal version
of the structure shown in figure 2.6.

features a global symmetry breaking structure SO(5)1
L/SO(4) which is parametrized by U = Ω1Ω∗

which is the NGB matrix defined in (2.128).
Associated with the composite site there are heavy vector resonances ρAµ which are described as

gauge bosons. Because of this they are adjoints of SO(5) such that they can be written as

ρAµ︸︷︷︸
10

= ρaLµ T
a
L︸ ︷︷ ︸

(3,1)

+ ρaRµ T
a
R︸ ︷︷ ︸

(1,3)

+ aâµ T
â
(2,2)︸ ︷︷ ︸

(2,2)

, (4.1)

where we decomposed them into SO(4) = SU(2)L × SU(2)R components and the (3,1) components
have the right quantum numbers to act as heavy partners of the Wµ bosons. Also at the composite
site there are gauge symmetries connected with color and the U(1)X such that heavy gluons ρGµ and
Xµ resonances appear.

On the elementary site in figure 4.1 the global SO(5)1
L interacts with SM-like elementary fields such

that the global symmetries are gauged down to SU(2)×U(1). As a consequence, the elementary gauge
fields directly interact with the σ-model field Ω1 which transmits the interactions to the composite
sector and therefore induces partial compositeness for the vector bosons.

Putting everything together, the effective Lagrangian of the boson sector is written as

Lboson = Lgauge + LNGB, (4.2)

which is the minimal version of the general Lagrangian (2.130). Here, the gauge Lagrangian,

Lgauge = −1

4
tr
[
G0
µνG

µν
0

]
− 1

4
tr
[
W 0
µνW

µν
0

]
− 1

4
B0
µνB

µν
0 (elementary)

− 1

4
tr
[
ρGµνρG

µν
]
− 1

4
tr [ρµνρ

µν ]− 1

4
XµνX

µν (composite)

+
f2
G

4

(
g0

3 G
0
µ − gρ3 ρGµ

)2
+
f2
X

4

(
g′0B

0
µ − gXXµ

)2
, (mixing) (4.3)

contains kinetic terms for the elementary gauge fields and heavy vector resonances. Further, we
explicitly included mass terms that act as composite-elementary mixings for composite gluon and Xµ

resonances with their elementary counterparts. These depend on effective scales fG and fX as well as
on effective gauge couplings gρ3 and gX and were chosen to closely resemble the general form (2.33).
The coupling strength of the resonances associated with SO(5) is denoted by gρ. For the Goldstone
fields the Lagrangian takes the form given in (2.130) which in its minimal version reduces to

LNGB =
f2

1

4
tr
[
(DµΩ1)

†
(DµΩ1)

]
+
f2

2

2

[
(DµΩ∗)t

(DµΩ∗)
]

55
. (4.4)

While the link field Ω couples to elementary as well as to composite vectors, the other NGB matrix
Ω∗ only has interactions with the composite spin-1 resonances. Both fields do not interact with colour
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or Xµ resonances as these are not part of the underlying symmetry breaking structure. Therefore,
the covariant derivatives of the σ-model fields are given as

DµΩ1 = ∂µΩ1 − i
(
g0W

0 a
µ TaL + g′0B

0
µ T

3
R

)
Ω1 + i gρ Ω1 ρµ, (4.5a)

DµΩ∗ = ∂µΩ∗ − i gρ ρµ Ω∗. (4.5b)

In the following we adopt the holographic gauge (2.132),

Ω1(x) = U = exp

[
i

√
2

f1
πâ(x)Tâ

]
and Ω∗(x) = 15. (4.6)

This moves all dependencies on the NGB fields of the SO(5)/SO(4) breaking to the left link field such
that composite-elementary mixings proceed through insertions of U . Note further that in this gauge
the NGBs associated with the breaking of

(
SO(5)1

R × SO(5)
)
/SO(5)diag through gauging are absent.

In this gauge the NGB matrix takes the form

U := exp

[
i

√
2

f1
πâ(x)Tâ

]
=




1
1

1

cos
(
h(x)
f1

)
sin
(
h(x)
f1

)

− sin
(
h(x)
f1

)
cos
(
h(x)
f1

)



, (4.7)

where the SM unitary gauge was used to set πâ(x) = (0, 0, 0, h(x)).
Writing the Lagrangian as above in holographic gauge leads to a mixing term between the Higgs

and the fourth component of the coset vector resonances of the form

1√
2
gρ f1 aµ4 ∂µh. (4.8)

One can get rid of this term by a field redefinition,

aµ4 → aµ4 −
√

2

gρ

f

f2
2

∂µh , h→ f1

f
h , (4.9)

where f is given by f−2 := f−2
1 + f−2

2 . By this transformation the mixing term vanishes and the
composite Higgs kinetic term gets canonically normalized. This is a general phenomenon in non-linear
σ-model with gauge symmetries that was already mentioned in the early paper [33]. As a result, all
dependencies on the Higgs field are given via

sh = sin

(
h

f

)
. (4.10)

The above Lagrangian leads to the mass mixing matrices given in appendix III.1.1.

Fermionic part

We now include the fermionic states. As we are considering the case of only two sites, this is just
the minimal version of (2.133) with elementary fields and one level of composite resonances living
in the fundamental representation of SO(5), where the fundamental was chosen as this can give a
custodial protection of Z couplings (rf. section 2.2.1). Under the SO(4) subgroup this decomposes
into a bidoublet Q and a singlet S, 5 = (2,2)⊕ (1,1). When using the basis of generators introduced
in appendix I.1, the singlet can be placed in the 5th component and then the whole 5-plet is written
as

5 =



[
Q++ Q+−

Q−+ Q−−

]

S00


 , (4.11)

where the indices are used to denote the quantum numbers under T̂3
L and T̂3

R. Eventually, the explicit
breaking of global symmetries in the fermion sector is introduced by embedding the elementary chiral
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states into incomplete fundamentals of SO(5) in such a way that the SM gauge group is respected
but SO(4) is explicitly broken. Therefore, the left-handed quark doublets have to be included as the
SU(2)L-doublet components of the 5, while the right-handed singlet states are implemented as the
singlet components. By the definition of hypercharge in these models (2.123), the quantum numbers
of the U(1)X -symmetry are already fixed to qX = 2

3 and qX = − 1
3 for up- and down-type quarks,

respectively. Then, the embeddings of the elementary quarks are written as (see section I.1)

q0
L → ξuL =



[

0 u0
L

0 d0
L

]

0


 =

1√
2




d0
L

−i d0
L

u0
L

iu0
L

0



, q0

L → ξdL =



[
u0

L 0
d0

L 0

]

0


 =

1√
2




u0
L

iu0
L

−d0
L

i d0
L

0



,

(4.12a)

u0
R → ξuR =



[

0 0
0 0

]

u0
R


 =




0
0
0
0

u0
R



, d0

R → ξdR =



[

0 0
0 0

]

d0
R


 =




0
0
0
0
d0

R



.

(4.12b)

Here we explicitly used the fact the left-handed quarks can be embedded in both, ξuL and ξdL (see
the discussion below eq. (2.124)).

The composite resonances have to come in SO(5) fundamentals with the same U(1)X charge as-
signment in order to be able to mix with the elementary states. Then, written in components, one
has

Ψu =




[
Q

5
3 Q

2
3
1

Q
2
3
2 Q−

1
3

]

S
2
3


 ∈ 5 2

3
, Ψd =




[
Q

2
3 Q

− 1
3

1

Q
− 1

3
2 Q−

4
3

]

S−
1
3


 ∈ 5− 1

3
. (4.13)

Here, the indices denote the electromagnetic charges after EWSB given by

Q = T3
L + Y = T3

L + T3
R +X. (4.14)

This shows that the physical spectrum contains states of exotic charges q = 5
3 and q = − 4

3 .

As seen for the extra-dimensional model in section 2.3, left-handed elementary fields mix with a
fundamental Ψ, while the right-handed states mix with a fundamental Ψ̃ (rf. eq. (2.124)). With this
in mind it is now possible to write down the most general form of the fermion Lagrangian in which
the composite sector is invariant under a coset SO(5)/SO(4) that is broken explicitly only by the
couplings to the elementary sector:

Lfermion = L(elem)
fermion (4.15a)

+ Ψu

(
i/D −mU

)
Ψu + Ψ̃u

(
i/D − m̃U

)
Ψ̃u (4.15b)

− Yu ΨuL φ
t
2φ2Ψ̃uR − mY u ΨuLΨ̃uR + h.c. (4.15c)

+ ∆uLξuLΩ1Ψu + ∆uRξuRΩ1Ψ̃u + h.c. (4.15d)

+ (u↔ d). (4.15e)

Neglecting for a moment the composite-elementary mixings, the breaking SO(5)→ SO(4) is parametrized
by φ2 := Ω∗ · (0, 0, 0, 0, 1). If this vanishes then the full global SO(5) symmetry is manifest. But if,
on the other hand, this has a non-vanishing value then it leads to a mass splitting between singlet
and bidoublet components, which can be understood as the composite Yukawa coupling appearing in
(2.28).
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Assuming holographic gauge (4.6) the fermion Lagrangian takes the form:

Lfermion = L(elem)
fermion (4.16a)

+ iQu /DQu + iQ̃u /DQ̃u + iSu /DSu + iS̃u /DS̃u (4.16b)

−mU

(
QuQu + SuSu

)
− m̃U

(
Q̃uQ̃u + S̃uS̃u

)
(4.16c)

− (mY u + Yu)SuLS̃uR −mY uQuLQ̃uR + h.c. (4.16d)

+ ∆uL ξuLU (QuR + SuR) + ∆uR ξuRU
(
Q̃uL + S̃uL

)
+ h.c. (4.16e)

+ (u↔ d). (4.16f)

This Lagrangian leads to the mass mixing matrices given in appendix III.1.2.
As already stated earlier, we are mainly interested in the interplay between quark flavour measure-

ments and the Higgs potential, we do not consider effects of partial lepton compositeness in this work.
Furthermore, if the compositeness of the left- and right-handed lepton chiralities are comparable,
they have to be small due to the small masses of the leptons and their impact on the observables
to be considered below is expected to be small. Moreover, flavour-changing interactions are strongly
constrained by negative searches for charged lepton flavour violating processes. Therefore, we simply
consider elementary leptons with direct bilinear couplings to the Higgs field,

Llepton = il
0

L /Dl0L + i`
0

R /D`0R −
mSM

v
l
0

L ·
(

0
h

)
`0R + h.c., (4.17)

where, just as for the elementary quarks, the covariant derivatives are understood as couplings to the
elementary SU(3)0 × SU(2)0 ×U(1)0 gauge fields.

Flavour structure

As discussed in section 2.2.3 we consider the case that the composite sector is invariant under a
flavour symmetry. We assume that these symmetries are explicitly broken by either left-handed or
right-handed composite-elementary mixings. As a consequence, the composite-elementary mixings are
not general matrices in flavour space but their explicit forms are determined by a spurion expansion.
In this analysis we consider the following four flavour structures: MFV-like flavour symmetries U(3)3

LC

or U(3)3
RC, in which either left-handed or right-handed composite elementary mixings preserve this

symmetry while the right-handed mixing break it explicitly, and flavour structures U(2)3
LC or U(2)3

RC,
in which the third generation is independent from the first two.

We give the explicit forms of the composite-elementary mixings in appendix IV.1.

4.2. The scan

Using the scanning method laid out in section 3.1 we started O(1000) scans for each of the 4 considered
flavour structures, U(2)3

LC, U(2)3
RC, U(3)3

LC, U(3)3
RC. In the end this gave us the following number of

viable parameter points that fulfill each individual constraint on the 3σ level:

U(2)3
LC U(2)3

RC U(3)3
LC U(3)3

RC

431507 128066 0 410321

One very important observation is that we did not find any viable parameter point for the U(3)3
LC

structure. This is reasonable as a qualitative analysis of CHMs with this flavour symmetry already
revealed a significant tension with experimental constraints [70]. We therefore conclude that this
flavour structure is strongly disfavoured in CHMs when combining flavour and electroweak constraints
with a realistic EWSB and in the following we will not include it anymore into the analysis.

For the remaining three successful flavour structures we found large numbers of viable parameter
points. We have to remind the reader that these are the numbers of point that successfully pass all
constraints. The total number of all sampled points is much higher. These numbers as well as the
following results show that all reasonable regions of parameter space were sampled which allow to
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Figure 4.2.: Barbieri-Giudice measure of fine-tuning for the three flavour models. The solid gray line shows
the naive expectation ∆ ∼ f2/v2

SM. The dashed line shows the same expectation but including
double tuning, ∆ ∼ (1/ε2)× f2/v2

SM, with an example value ε = 0.5.

satisfy the given constraints. But we again want to stress that our results are not intended to and
do not allow us to draw statistical conclusions about the parameter space. We used Markov chains
simply as a handy tool for generating viable parameter points in an efficient way.

For all three models we find that the total χ2 of the viable parameter points almost always lies in
the region χ2

total ∼ 15−60 with a peak around 30−40. Given a number of 52 individual (uncorrelated)
constraints imposed and a number of free parameters of 44 for U(2) and 30 for U(3), we see that we
actually find good a good agreement with the experimental data. We further see that for the majority
of viable points only one or two individual constraints are violated at the 2σ level. For less than 10%
of the points more than 4 individual constraints are violated at that level. These constraints are most
often the top mass (as will be discussed in section 4.3.1). But also ∆F = 2 observables as well as
direct constraints are often in tension.

4.3. Electroweak symmetry breaking

One of the main points of this work is a realistic reproduction of EWSB. In this section we therefore
discuss the results we find for the effective Higgs potential. For this we first discuss the fine-tuning of
the potential. After that the potential itself, its minimum and its generation are addressed.

4.3.1. Fine-tuning

At this point let us assess the fine-tuning needed to generate the hierarchy vSM � f . A quantitative
measure for the stability of the electroweak scale is given by the Barbieri-Giudice measure [179],

∆BG = max
λ∈parameters

∣∣∣∣
∂log(mZ)

∂log(λ)

∣∣∣∣ , (4.18)

which directly quantifies the sensitivity of the electroweak scale against small variations in the fun-
damental parameters. Present-day analyses of this measure in SUSY models [180, 181, 182] result in
values ∆BG ∼ O(few hundred), where the value can go down to as low as 10 for some non-minimal
models. A similar situation is found for CHMs [183]. We are interested in the question what the
present-day situation is for CHMs when all current constraints are included in a global analysis. Hav-
ing identified parameter points with low fine-tuning will also allow us to judge whether predictions
made by the viable points require fine-tuning.

For CHMs with minimal coset SO(5)/SO(4) this Barbieri-Guidice measure is readily calculated
from the effective potential via [56]

∆BG = max
λ∈parameters

∣∣∣∣
2λ

sh

c2h
f2m2

h

∂2 Veff

∂λ∂sh

∣∣∣∣ . (4.19)
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Figure 4.3.: Predicted values for Higgs and top mass in all three viable flavour structures. The red points
have ∆BG < 100 and the gray band mark the experimental 1σ measurements of the masses. To
guide the eye orange lines are drawn where these constraints cut into the parameter space of
the model.

We calculate this number for every found parameter point that satisfies the constraints (3.6). As can
be seen in figure 4.2, we find values of ∆BG that vary over a broad range, but their distribution is
peaked around ∆BG ∼ 100− 200 for all three models. We find the following minimal values1

∆min
BG =





29 for U(2)3
LC

50 for U(2)3
RC

70 for U(3)3
RC

. (4.20)

As expected we find the fine-tuning to be correlated with the symmetry breaking scale f . A tuning
better than the percent-level is certainly still possible for all three flavour structures as long as f .
1100 GeV, 800 GeV, 700 GeV for U(2)LC, U(2)RC, U(3)RC, respectively.

In figure 4.2 also the naive expectation for minimal tuning, ∆ ∼ f2/v2
SM is shown. As discussed

in section 2.2.2, for fermions embedded into the fundamental representation of SO(5), one actually
expects an increased tuning, the so-called double-tuning ∆ ∼ (1/ε2) × f2/v2

SM, due to the fact that
formally subleading terms in the spurion expansions (2.65) and (2.66) have to be tuning to the size of
the leading order contributions to obtain a realistic EWSB [56]. Figure 4.2 also shows this expectation
for an example value ε = 0.5, which shows that our results are compatible with double-tuning.

Let us note that in figure 4.2 one can identify individual chains as lines of constant f the reason for
this is the following: As discussed in section 2.2.2 the effective potential necessitates the occurrence
of cancellations between fermion and vector contributions to the effective potential. While the vector
contributions are essentially given by the scale f , the fermion contributions depend on a large number
parameters. Therefore, the value of f remains constant to a large degree within one Markov chain as
a change in f would imply a simultaneous and coordinated change of the parameters of the fermion
sector, which is hard to find for a Markov chain.

Such low levels of fine-tuning (4.20) unfortunately come at a price. CHMs have the known tendency
to predict a rather high Higgs mass and a somewhat low top mass. We find that points with low fine-
tuning follow this trend as shown in figure 4.3. We remind the reader that we define the viability
of a parameter point by passing a 3σ constraint assuming convoluted experimental and theoretical
errors. Especially for the top mass we assumed a theory uncertainty of 5% such that we allow for
large deviation with respect to the experimental value. It is however not a priori clear whether higher
order corrections will lift this tension.

These estimations of fine-tuning have to be taken with a grain of salt. In our bottom-up approach
we treat all effective parameters as being independent. In a more complete theory, however, the
effective parameters could be strongly correlated, such that the fine-tuning in the parametrization of
the fundamental theory might in fact be lower.

1We remark that relative values for the fine-tuning in the different flavour structures fit the very naive expectation we
obtained using a spurion analysis in section 2.2.4

85



#4\SO(5)/SO(4) – the minimal model\Electroweak symmetry breaking

0.2 0.3 0.4 0.5

600

800

1000

1200

1400

1600
f

[G
eV

]
M4dCHM5 − U(2)3

LC

0.2 0.3 0.4 0.5

s∗h

M4dCHM5 − U(2)3
RC

0.2 0.3 0.4 0.5

M4dCHM5 − U(3)3
RC

Figure 4.4.: Found minima s∗h of the effective Higgs potential. These are strongly correlated with the sym-
metry breaking scale f via fs∗h = vSM = 246 GeV. The blue points mark all viable parameter
points and the red points have ∆BG < 100.

4.3.2. Potential

In figure 4.4 we present the found values for the minimum s∗h of the effective potential. As expected
these are strongly correlated with the symmetry breaking scale f through fs∗h = vSM = 246 GeV.
Model-independently we find roughly the same allowed ranges s∗h ∼ 0.2 − 0.6, which correspond to
values of f in the range f ∼ (500 − 1500) GeV. Larger values of f (corresponding to smaller values
of s∗h) are not excluded per se, but raising this scale to the ball park of 2 TeV quickly introduces a
tuning at the permille level as can be seen by extrapolating from figure 4.2.

In (2.55) we introduced an expansion of the effective potential in powers of sh,

Veff(sh) =
(
−γ s2

h + β s4
h + . . .

)
f4, (2.55)

and saw that in order to generate the correct scale of EWSB and the correct Higgs mass, one has to
find the coefficients β and γ in the ballpark shown in figure 2.2. Roughly speaking, one needs β ≈ 0.04
and γ . 0.03. For each of our viable parameter points we are able to fit this expansion to the effective
potential and by this extract the predictions for β and γ for a given parameter point. In general, we
find a good agreement between the fit and the full potential indicating a small coefficient of a possible
s6
h-term in (2.55). Comparing our results on β and γ with the expectations given in section 2.2.2 we

find a good agreement between the found points and the expectations. In particular, we see that all
points are clustered around the black line given in figure 2.2, which marks a non-trivial consistency
check.

To retrieve more information we are able to extract the coefficients β and γ separately for each
contribution to the potential given by up-type or down-type quarks or by charged and neutral vector
resonances. Regarding β we find that the contribution βU from top partners is always the dominant
one. This is exactly the behaviour predicted in section 2.2.2. For the coefficient γ the usual folklore is
that is gets a largely positive2 contribution by the fermions (in particular, from top partners) which
has to be counteracted by vector contributions in order to obtain the desired small positive value [55].
On the whole we can confirm this behaviour in our numerical scan and further we can identify three
qualitatively different scenarios for the relative ratios of up-type and down-type contributions, γU and
γD.

scenario (I): The up-type quark resonances give a strong positive contribution while γD is rather small. In
this scenario EWSB is triggered by top-partners alone and the correct value of the vev is given
by a cancellation between up-type and vector contributions. This scenario marks the one with
small tuning as it only needs a cancellation between two independent contributions.

scenario (II): Again EWSB is triggered by the up-type quark resonances. However in this case down-type
resonances give a significant negative contribution that counteracts γU . Although now the

2One should keep in mind that in the expansion (2.55) the coefficient γ is defined with a negative sign. Therefore, a
positive value of γ is needed in order to have a non-trivial minimum.
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cancellations that have to be maintained by the vector resonances are smaller, this scenario is
more fine-tuned as it involves cancellations between three independent contributions.

scenario (III): In this scenario the roles of up-type and down-type contributions are exchanged with respect
to scenario (II). EWSB is induced by bottom-partners, while the top-partners counteract this
effect. Also for this case we expect a considerable amount of tuning needed.

Schematically, these are shown in figure 4.5. Generally, we find that the contributions from charged
and neutral vector resonances to γ are strongly correlated due to custodial symmetry. Further,
these contributions are always negative, such that vector contributions alone cannot give a non-trivial
minimum for the potential.

A further possibility where top- and bottom-partners simultaneously trigger EWSB is disfavoured
as it would imply a large amount of fine-tuning, since then the vector contributions would have to
overcome the combined effect of the fermion sector.

We show the distributions found for γU and γD in figure 4.6. They roughly fall into the above
scenarios although also superpositions are possible for a small fraction of points. We note that for
U(2)3

RC we did not find any points corresponding to scenario (III).

4.4. Spectra

As already mentioned in section 3.3.8 CHMs have an interesting and rich collider phenomenology.
Although included as a vital part of this analysis we will not discuss constraints and prospects for
direct searches of composite resonances in this work. We rather refer the interested reader to [28]
where these topics are elaborated in great detail.

To get a feeling for the mass ranges of the composite resonances which are still allowed after
applying all constraints coming from EWSB, indirect constraints and direct searches we present the
mass spectra in figure 4.7. In this figure, the mass distributions of the lightest resonances for each
class of composite states (up-type- and down-type partners, exotically charged resonances, neutral
and charged vector resonances and gluon resonances) are shown. We find that in each class the light
composite resonances are often nearly mass-degenerate (at least for the composite fermions) such
that the distributions shown in figure 4.7 are valid for the lightest couple of resonances. Model-
independently we observe that the masses of the lightest up-type and down-type partners are always
below 2 TeV, which is well within the reach of the LHC, so that these states will be tested in near-
future collider searches. Note that kinematically the light fermion resonances can only have branching
ratios into SM final states. The masses of charged and neutral vector resonances vary over a much
larger range. We find most spin-1 resonances with masses of several TeV which can go down to roughly
2 TeV (with an exception for U(2)3

LC where the masses can be a little bit smaller).3 For the neutral
vector resonances we also find very small masses below 1 TeV. These correspond to anomalous light
states mainly composed of the Xµ resonance that does not contribute to oblique corrections and is
therefore not constrained by the S parameter. These states will be relevant for rare B decays as will
be discussed in section 4.7.2. Last, we find gluon resonances with masses up to 16 TeV.

Apart from the mass spectra it is interesting to see how the assumed flavour structures determine
the degrees of compositeness of the SM quarks. For this one first has to define what is actually meant
by a degree of compositeness for the given model. The naive formulae (2.26) are clearly not applicable
in our case, as the elementary fields are allowed to mix with several composite resonances (even in a
flavour off-diagonal way). In general, the SM quarks are mixtures of elementary and composite fields,

ψSM
i = V0-0

ij ψ0
j + V0-comp

iJ Ψcomp
J , (4.21)

where V0-0 and V0-comp are elements of the rotation matrices that are defined in (3.10) and due to
unitarity one has

∑
j |V0-0

ij |2 +
∑
J |V

0-comp
iJ |2 = 1. Then for each chiral SM quark one can define a

degree of compositeness of a particle i via

degree of compositeness =
∑

J

|V0-comp
iJ |2. (4.22)

3This is in contrast to lattice calculations of the vector resonance spectrum in CHMs [184], where values larger by one
order of magnitude where found. In these lattice calculations, however, specific fermionic 4d UV completions are
assumed. Our EFT approach is model-independent and implicitly assumes the existence of a high energy theory
allowing for low vector resonance masses.
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We present the distributions for the compositeness of the SM quarks in figure 4.8. This nicely demon-
strates the impact of the flavour structures on the degrees of compositeness.

U(2)3LC We find the left-handed compositenesses of the first two generations to be strongly correlated.
As a consequence the hierarchies of the masses have to be generated by the right-handed degrees
of compositeness alone. The third generation is decoupled and for top and bottom we find both
chiralities to be considerably composite.

U(2)3RC For right-handed compositeness the picture is similar. Here the right-handed compositenesses
of the first and second generation quarks are large and correlated, while the left-handed ones
generate the mass hierarchies. In the third generation we find a less composite bottom and an
almost entirely composite tR.

U(3)3RC A slightly broken U(3) flavour symmetry is qualitatively very different. Here the degrees of
compositeness of all three generations are correlated leading to almost completely composite uR

and dR quarks. The freedom to generate the correct masses is much more restricted leading to
sharply peaked distributions.

We find these results in perfect agreement with what one would expect from these flavour structures.

4.5. Main constraints

In this section we want to identify the most constraining bounds on this model. EWPOs are known
to be a major constraint on strongly coupled theories like CHMs or technicolor [38]. We present
the found values for these observables in figure 4.9. One can see that although most parameter
points with reasonable fine-tuning predict only moderate contributions to the S and T parameters,
these observables pose a relevant bound for all three flavour structures. According to (3.33) the NP
contribution to the S parameter is always positive. The contribution to the T parameter can have
either sign, but for a positive S parameter also a positive T parameter is preferred by the experimental
data.

In section 3.3 we implemented CKM unitarity, the hadronic Z width and contact interactions as
constraints on the compositeness of light quarks. We show results on these observables in figure 4.10.
First-row CKM unitarity is a relevant constraint for left-compositeness. In this flavour model the
left-handed quark chiralities are considerably composite leading to large deviations in W couplings
which modifies the extraction of CKM elements. The impact of this constraint is nicely seen as
horizon and vertical edges in the distribution of the viable parameter points. These mark the 3σ
bound (3.6) imposed by us and they show that CKM unitarity is a constraint that deeply cuts into
the parameter space of models with left-handed compositeness. Being such a strong constraint we can
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identify it as one of the main reasons why a U(3)3
LC flavour symmetry is not viable. In such a model

the compositeness of the left-handed chiralities of the light quarks is directly connected to that of the
3rd generation, leading to too large deviations in the CKM elements. In models with right-handed
compositeness, on the other hand, there is no large left-handed degree of compositeness, making this
constraint virtually non-existing.

In the second row of figure 4.10 we present constraints coming from the CKM angle γ and from
contact interactions. For U(2)3

LC contact interactions are not constraining at the moment but they
can become important provided the experimental upper bounds on the dijet angular distributions will
decrease in the future. Especially for U(3)3

RC contact interactions lead to a significant bound that cuts
into the parameter space. For this flavour structure also the light quarks have one strongly composite
chirality such that one generally finds large contributions to the dijet cross section that are often near
the experimental limits. This is in contrast to the U(2) flavour models where the dijet cross section
tends to be small, but can become sizable for some points. We find the CKM angle γ to be relevant
in all three flavour structures.

We show the constraints coming from Z width deviations in figure 4.11. For left- and right-
compositeness the hadronic Z width is not a very sensitive probe yet. The hadronic width Re =∑
q Γ(Z → qq) / Γ(Z → ee) was indentified in [70] as a strong bound on the compositeness of left-

handed light quarks such that this constraint is particularly important for a U(3)3
LC flavour structure.

We, however, find that this constraint is not violated by more than 2σ such that there are more
significant bounds on light quark compositeness, such as e.g. CKM unitarity. Assuming partial com-
positeness also for charged leptons, the hadronic Z width can become an important constraints if the
leptons are significantly composite. We find further that the coupling of Z to the bottom quark, Rb,
gives a bound for low values of the Z width in all three flavour structures, indicating that the large
degree of compositeness of the 3rd generation can give significant contributions in this observable.

4.6. Higgs physics

It is intuitive that due to the non-linear realization of the Higgs in pNGB-theories its couplings to
SM fields can get significant modifications. This can be measured in terms of Higgs signal strengths
as discussed in section 3.3.4. We present the outcome for these observables in figure 4.12. As the
top row of this figure shows the general dependence of the signal strengths on the scale f roughly fits
the expectation (3.42). Deviations from this expectation are possible if light quarks have a significant
degree of compositeness, as discussed in section 3.3.4. We find this confirmed by the fact that the
curves for U(3)3

RC generally appear to be more “washed out”, as for this flavour structure a large
compositeness also for light quarks is to be expected.

We find that the Higgs signal strengths in the channels h→WW,ZZ and h→ τ+τ− do not pose a
strong bound at the moment. However, we also see that the decay into photons is already able to rule
out points with very small values of f for U(3)3

RC, as can be seen in the bottom row of figure 4.12.
Currently, the signal strength in this mode is measured with an uncertainty of around 20 %. In the
future, both experiments, ATLAS and CMS, expect to reach a sensitivity of around 10 % and 5 % for
300 fb−1 and for a high-luminosity phase with 3000 fb−1, respectively [185, 186, 187]. This shows that
in the future this channel will give significant constraints on the symmetry breaking scale f even for
the other flavour structures.

One can also see that the effects in h → bb are generally larger than in other channels. Presently,
there is no observation in this channel yet, but it is expected after 100 fb−1 of Run 2 data are accumu-
lated. As prospects the CMS experiment gives expected uncertainties of 10 − 15 % for 300 fb−1 and
even below 5 % for 3000 fb−1, respectively [188, 186]. With such an accuracy the decay h → bb will
become a very important constraint that can potentially rule out f . 1 TeV after a high-luminosity
phase, provided a SM-like value will be measured.

4.7. Flavour physics

4.7.1. Meson-antimeson mixing

In our analysis meson-antimeson mixing was included to obtain control over the CKM structure of the
model. Furthermore, due to the presence of many neutral vector resonances as well as possibly large
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degrees of compositeness for the SM quarks these observables can potentially get large modifications.
Before presenting the results of our analyses let us first shortly discuss the expectation one has for the
∆F = 2 parameters given the assumed flavour structures. The consequences of U(2)3 and U(3)3 flavour
symmetries using a general EFT framework were elaborated in [65] (see also [189] for a derivation in
a supersymmetric context). In these references remarkably simple correlations between the ∆F = 2
parameters in Bd-, Bs- and K-mixing were found at leading order in the spurion expansion:

U(3)
∆Md

∆MSM
d

=
∆Ms

∆MSM
s

, φNP
d = φNP

s = 0,
εK
εSM
K

= (1− α) + α
∆Md

∆MSM
d

, (4.23a)

where α = ε
SM (tc+cc)
K /εSM

K is the ratio of the sub-leading top-charm and charm-charm contri-
bution to the full SM prediction for εK . Thus, for this MFV-like flavour structure one expects
highly correlated NP contributions to ∆F = 2 observables.

U(2)
∆Md

∆MSM
d

=
∆Ms

∆MSM
s

, φNP
d = φNP

s ,
εK
εSM
K

= (1− α) + α
|1 + hK |
|1 + hB |

∆Md

∆MSM
d

, (4.23b)

where hK,B ≈ 0.009 TeV2 CK,BV LL and the Wilson coefficients CK,BV LL were defined in (3.47)4. The
correlation between εK and ∆Md is model-dependent and depends (roughly speaking) on the

ratio of the left-handed vector-interactions CK,BV LL.

We present our results on the ∆F = 2 observables in figures 4.13, 4.14 and 4.15. The first row
in each of these figures shows the predictions on the total values of the observables, which can be
compared directly with the experimental bounds. We observe that in all observables large effects,
up to saturating the experimental constraints on the 3σ level, are possible. In the mass differences
in the Bd and Bs systems (shown in figure 4.13) we mostly find an enhancement while a negative
NP contribution is disfavoured. We find parameter points giving the whole range allowed for the
mixing phases (rf. figure 4.14), but we also see that the scans prefer a slight positive shift φd and a
negative shift of φs with respect to the experimental value. In U(2) flavour structures we observe an
enhancement of εK up to saturating the 3σ bound. In U(3)3

RC we find a similar effect but it is less
pronounces as the correlations with ∆Md are stronger.

We have to remind the reader that in our scans also the CKM elements are allowed to vary.
Therefore, all correlations between NP contributions between ∆F = 2 observables are obscured by
the variation of CKM elements. In the bottom rows of figures 4.13, 4.14 and 4.15 we present the
above results normalized to the SM values, i.e. to the values obtained by forbidding heavy resonances
to contribute to the observable. Because of this the variations of the CKM elements drop out and a
connection to the expectations (4.23) can be drawn. We find that for a U(3)3

RC flavour structure the
MFV expectations are satisfied to an excellent degree. But for the mass differences and mixing phases
in U(2) flavour structures we also find that large violations of the leading-order expectations (4.23a)
are possible. This is due to enhanced sub-leading contributions which are not considered in (4.23a).
Most notably these are due to enhancements of the Wilson coefficient CbsSLR defined in (3.47). But we
also find that the expected relations are satisfied by the majority of points, meaning a large density
of points around the dashed lines in that figures.

A very interesting feature can be observed for the correlations between εK
εSMK

and ∆Md

∆MSM
d

shown

in figure 4.15. The three flavour structures show qualitatively very different results. While the
MFV relation is satisfied to a good degree in U(3)3

RC, there is generally either a suppression or an
enhancement of εK

εSM
K

with respect to ∆Md

∆MSM
d

for left-composite and right-composite U(2), respectively.

Experimentally, this gives a clear discriminator for the flavour structures.
A remarkable feature of the predictions given in figures 4.13, 4.14 and 4.15 is that the parameter

points with an acceptable fine-tuning ∆BG < 100 are mostly clustered around the experimentally
preferred values (an exception might be ∆Ms in U(3)3

RC). This is important as it shows that there
is no tension between the effective potential and ∆F = 2 flavour observables, which might have been
there since flavour breaking as well as EWSB is induced by the composite-elementary mixing. This
very well meets the expectations we obtained in section 2.2.4 through a spurion analysis, namely that
the connection between the the potential and flavour transitions should be small.

4Note that our normalization of the effective operators is different to the one used in [65]
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constraints cut into the parameter space. Bottom row: Mass differences normalized to the SM
values. The dashed line marks the MFV limit.
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Figure 4.14.: Mixing phases in the Bd- and Bs-systems. All viable parameter points are shown in blue while
the red points mark ∆BG < 100. Top row: Total phases. The gray regions denote the 2σ
experimental results. To guide the eye orange lines are drawn where these constraints cut into
the parameter space. Bottom row: Corrections to the mixing phases induced by NP only. The
dashed line marks the MFV limit.
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Figure 4.15.: Correlation between indirect CP violation in the Kaon system and particle-antiparticle mixing
of B mesons. All viable parameter points are shown in blue a while the red points mark
∆BG < 100. Top row: Total values. The gray regions denote the 2σ experimental results.
To guide the eye orange lines are drawn where these constraints cut into the parameter space.
Bottom row: Correlations normalized to the SM values. The dashed line marks the MFV limit.
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Figure 4.16.: Contributions to dipole transitions. In the heavy quark sector we show Br(b → sγ) and for
first generation quarks we present contributions to electric dipole moment of the neutron. All
viable parameter points are shown in blue while the red points mark ∆BG < 100. The gray
regions denote the 2σ experimental results. To guide the eye orange lines are drawn where
these constraints cut into the parameter space.

4.7.2. Rare decays

In section 3.3.5 rare B meson decays were included in the analysis to constrain the semi-leptonic

operators given in (3.62). The dipole operators O(′)
7 and O(′)

8 give rise to the inclusive decay B →
Xsγ. For light quarks analogous operators induce the electric dipole moment of the neutron. We
present results on both dipole transitions in figure 4.16. For all three flavour structures one sees
that the majority of the viable parameter points are scattered towards the lower end of the allowed
region for b → sγ, such that this gives a relevant bound on the parameters space. In the models
with a U(2) flavour symmetry large enhancements are also possible, although only for a few fine-
tuned points. Generally, we find that only small imaginary parts for these Wilson coefficients are
generated, indicating that no large contributions to CP sensitive observables in dipole transitions are
to be expected. This is also true for dipole operators involving first generation quarks. As figure 4.16
shows, although the allowed values for the electric dipole moment of the neutron vary over a large
range, they are still several orders of magnitude below the experimental limit (3.75). Therefore, this
constraint is not relevant at all.

Regarding the vector operators O(′)
9 and O(′)

10 in (3.62), we included the rare decay Bs → µ+µ−

as a constraint, which is sensitive to the combination |C10 − C ′10| (see eq. 3.69). In figure 4.17 we
present correlations between the decays Bd → µ+µ− and Bs → µ+µ−. In models with a U(2) flavour
symmetry the relative contributions normalized to the SM have to be equal, as d- and s-quarks are
part of the same flavour doublet. We find, however, that this relation is washed out by variations in
the CKM parameters. For a U(2)3

LC flavour symmetry the experimental upper bound on Bs → µ+µ−

can be saturated, while also rather low values are possible. For right-compositeness on the other hand,
we observe that generally only small modifications of the branching ratio are allowed. In all three
models we find that for Bd → µ+µ− values at the lower end of the experimental 2σ end are preferred.

We purposely did not include constraints on the operators O(′)
9 . In light of recent anomalies in

b → s`+`− data (which we will discuss in chapter 6) it is interesting to see which values are still

allowed for their Wilson coefficients in CHMs, if we just include the constraints on O(′)
10 coming from

Bs → µ+µ−. In figure 4.18 the results on the vector operators are presented. In gray we further show
the 1σ and 2σ regions preferred by a global fit to b → sµ+µ− data, which has been performed in [1]
using flavio [147]. It is very interesting that for all three flavour structures we find viable parameter
points inside the 1σ region, showing that these models can potentially explain these anomalies. But
we have to remark that for all cases these points do not have a good fine-tuning. We observe that all
points with CNP

9 . −0.5 have a relatively small composite coupling gX in the range gX = O(1−2). As
a consequence, there will be a light neutral composite vector resonance in the spectrum. Furthermore,
as the coupling gX is small, this resonance will dominantly be Xµ, since the admixtures of other neutral
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Figure 4.17.: Modifications of the branching ratios for Bd → µ+µ− and Bs → µ+µ−. In blue all viable
parameter points are shown while the red points mark ∆BG < 100. The gray regions denote
the 2σ experimental results. To guide the eye orange lines are drawn where Bs → µ+µ− cuts
into the parameter space.
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Figure 4.18.: Constributions to the Wilson coefficients C9 and C10. In the heavy quark sector we show
Br(b→ sγ) and for first generation quarks we present contributions to electric dipole moment
of the neutron. In blue all viable parameter points are shown while the red points mark
∆BG < 100. The prefered region for the Wilson coefficients at 1σ and 2σ as obtained through
a global fit to b→ sµ+µ− data (using the numerical results of [1] ) are shown by gray ellipses.
To guide the eye orange lines are drawn where these constraints cut into the parameter space.
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resonances are gX -suppressed5. Therefore, this resonance will only have non-chiral vector couplings
to the fermions such that one can effectively consider it as a γ′ resonance which only contributes to
CNP

9 . Since we implemented the lepton sector as purely elementary in this work, the coupling of the
γ′ resonance to SM leptons has to go through mixing with elementary gauge bosons. These mixings
are suppressed by gX , but this suppression is lifted again by an enhancement due to the small γ′ mass,
such that effectively the Wilson coefficient gets corrections CNP

9 ∼ (1/m2
X) × f2

X g0 gX ∼ g0/gX ,
which need not be small. Hence, there can be large effects in CNP

9 , provided the flavour off-diagonal
coupling to SM quarks is not too small. In some sense, the Markov chains have found a way to
circumvent the arguments given in section 3.3.5. For these points we therefore predict the existence
of a light vector resonance which could show up in direct searches. Furthermore, we find that this
light γ′ has the largest branching ratio into tt pairs

Let us note here that CHMs possess also another mechanism for generating sufficient contributions
to C9 and C10 to explain the anomalies in b → s`` data which was investigated by us in [5]. If
one extends the framework used in this analysis and introduces partially composite leptons then
one can show that under certain circumstances (which are described below) effects in O9 and O10

can be generated in the right ballpark without getting into conflict with other measurements. The
idea behind this is that a good agreement with the b → s`` data can be achieved if NP enters via
CNP

9 = −CNP
10 suggesting a NP contributions solely to left-handed neutral currents. This can be

generated in CHMs if the left-handed muons are significantly composite. In this framework it is even
possible to explain the recently hinted lepton flavour violation in B → Kµ+µ− and B → K∗µ+µ−

decays [190, 191] if muons and electrons are equipped with different degrees of compositeness. Note
that the small muon mass can still be reproduced in this case if the right-handed muons are mostly
elementary. Introducing composite muons immediately leads to large corrections of ZµLµL couplings
if these are not protected by custodial symmetry analogous to section 2.2.1. It is remarkable that this
requirement in the lepton sector uniquely determines the representation under SO(4) × U(1)X . The
only possibility (if one neglects representations of dimension higher than 3 which would lead to states
with exotic electrical charges greater then ±2) allowed by the symmetries is (2,2)0⊕ (1,3)0⊕ (3,1)0,
where µL is embedded into the bidoublet and µR is part of (1,3)0. In a pNGB model based on
the coset SO(5)/SO(4) this corresponds to an embedding into the antisymmetric representation 10
of SO(5). The necessary contributions to the Wilson coefficients can be generated by a resonance
exchange similar to figure 3.8b, but where the vector resonance directly couples to the compositeness
of the leptons. In this case, Wilson coefficients are given as

CNP
9

Λ2
= −C

NP
10

Λ2
∼ (cbs gρ)×

1

m2
ρ

× (cµµ s
2
µL
gρ) ∼

cbs cµµ s
2
µL

f2
, (4.24)

where sµL denotes the muon degree of compositeness and cbs and cµµ are model-dependent numerical
factors. An upper bound on cbs can be obtained from Bs mixing as for this the mass difference should
go like ∆Ms ∼ c2bs. A large muon degree of compositeness affects the extraction of the Fermi constant
Gµ from muon decay. However, one can show that there exist regions in parameter space where this
effect is not too large, but also sizable effects in the vector operators can be generated.

Predictions in the kaon sector

We did not include rare kaon decays as constraints into the analysis, therefore we are able to give
predictions. The rare decays K+ → π+νν and KL → π0νν will be highlights in flavour physics in
the next 5-10 years [192, 193]. Being theoretically very clean these decays have the potential to probe
the flavour sector to high accuracy [194]. Currently, the experimental situation for both decays is not
overwhelming. The charged kaon mode K+ → π+νν has been measured by the E949 experiment at
Brookhaven National Laboratory, but only with a 65% uncertainty [195],

Br(K+ → π+νν)exp = (1.7± 1.1) · 10−10. (4.25)

For the neutral mode only an upper bound exists from the E391a experiment at KEK [196],

Br(KL → π0νν) < 2.6 · 10−8 @ 90%CL, (4.26)

5As this resonance is mainly Xµ it does not contribute to the S parameter, such that the bound (3.34) is not applicable
for it.
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Figure 4.19.: Predictions for the rare kaon decays K+ → π+νν and KL → π0νν. All viable parameter
points are shown in blue while the red points mark ∆BG < 100. The light gray band shows the
experimental 1σ region for K+ → π+νν. We do not explicitly show the experimental upper
bound Br(KL → π0νν) < 2.6 ·10−8 @ 90%CL [108] as this does not pose any bound. The black
ellipses show the 1σ SM values.

which is still more than three orders of magnitude above the SM prediction. The experimental
prospects for these decays are very promising [192]. The NA62 experiment at CERN expects to
measure Br(K+ → π+νν) with an accuracy of 5% in the next couple of years. Also the KOTO
experiment located at J-PARC expects to measure Br(KL → π0νν) with SM sensitivity within the
next 5 years.

We present the predictions for these rare decays in figure 4.19 and observe that no large corrections
are to be expected. Although presently there is plenty of room for NP in KL → π0νν, we only find
SM-like values. In general, we find SM-like values for U(2)3

LC and a moderate ∼ 20% suppression with
respect to the SM value in right-compositeness for K+ → π+νν. The majority of the points lie within
in the current experimental 1σ region. But with the expected future sensitivity at the 10% level these
effects could become visible making this observable a promissing one for the future.

4.8. Summary

Generally, we find that CHMs are in a good shape when confronted with current experimental data.
Our findings are the following:

• We do not find any viable parameter point supporting a U(3)3
LC flavour symmetry.

• For all other flavour structures we find a significant fraction of points with better than percent-
level tuning.

• Generally, we find a top mass which is about 10% too light. As expected, the main tension with
fine-tuning is given by the large value of the top mass. But we also note that this is still within
the uncertainties of our theoretical calculation for the top mass.

• Model-independently we find minima of the effective potential everywhere in the range s∗h ∼
0.2− 0.6, which corresponds to values of f in the range f ∼ (500− 1500) GeV.

• EWSB can be induced by top partners as well as by bottom partners. But the latter option is
not favoured for U(2)3

RC.

• The lightest fermion resonances always have masses below 2 TeV, but the lightest vector reso-
nances are usually heavier than 1.5 TeV. Exceptions are light neutral Z ′ bosons that dominantly
consist of Xµ.

• In all models large corrections to EWPOs can occur.
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• For left-compositeness first-row CKM unitarity is the most significant bound. For right-compositeness
dijet bounds and the CKM angle γ are most constraining.

• In Higgs physics we find significant modifications of signal strengths which are, however, in most
cases still compatible with current experimental data. Future estimations show that h → γγ
and in particular h→ bb will become relevant probes of CHMs in the not-so-distant future.

• Large effects (up to saturating present experimental bounds) are possible in meson-antimeson
mixing.

• For most points expectations for ∆F = 2 observables as given in U(2) and U(3) flavour symme-
tries are satisfied, while also large violations of these conditions are possible.

• Correlations between ∆F = 2 observables (in particular |εK |/|εSM
K | vs. ∆Md/∆M

SM
d ) allow to

distinguish the flavour structure.

• We find no obvious correlation between flavour observables and the effective potential. Points
with an acceptable fine-tuning are mostly clustered around the experimental values.

• Large effects in b→ sγ (mostly a suppression) are possible.

• We find only tiny contributions to the electric dipole moment of the neutron.

• For U(2)3
LC the rare decay Bs → µ+µ− is an important probe for the axial vector operator O(′)

10 ,
but for right-handed compositeness we only find minor effects.

• Generally, we find values at the lower end of the experimentally allowed region for the rare decay
Bd → µ+µ− and for right-compositeness the decay Bs → µ+µ− is SM-like.

• For all flavour structures we find parameter points that can explain the current anomalies in
b → s`` data, which however are plagued by a certain amount of fine-tuning. For these we
predict the existence of a light neutral vector resonance with a significant branching ratio into
top pairs.

• We can make predictions for the rare kaon decays K → πνν. Corrections of about 20% to the
SM value are found which can become visible in the forthcoming generation of kaon experiments.
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SO(6)/SO(5) – the next-to-minimal model5
For a CHM that is phenomenologically successful without being fine-tuned to a large degree the coset
SO(5)/SO(4) is the minimal choice. Abandoning minimality there is plenty of room for model-building
(for a recent review see e.g. [197]). In this chapter we want to deform the minimal scenario to the
next-to-minimal coset SO(6)/SO(5).

The main consequences of enlarging the coset structure is a larger NGB sector. For the next-to-
minimal coset the scalar sector will, apart from the Higgs doublet, contain an additional scalar field
η which is a singlet under the SM gauge symmetries. The presence of this scalar leads to profound
modifications compared to the minimal coset. The effective scalar potential becomes a combined one
for the singlet and the doublet. Consequently, the new scalar can possibly obtain a non-trivial vev
giving interesting contributions to EWSB. Furthermore, η can be shown to be a pseudo-scalar field,
such that the effective potential can act as a source of spontaneous CP violation through the η vev. In
this case also a mixing between the singlet and doublet scalars will be allowed, leading to modifications
in Higgs physics.

A further interesting motivation for this coset lies in the fact that it is isomorphic to SU(4)/Sp(4)
which is in fact the minimal option admitting a purely fermionic 4d UV completion [198, 199, 200,
201, 202, 203, 204, 205]. Furthermore, it could give important contributions to baryogenesis in the
early universe as the effective Higgs potential can give rise to a strongly first-order electroweak phase
transition and new sources of CP violation [168]. If the coset is supplemented by a suitable Z2 parity
(such that the coset becomes O(6)/O(5)), the additional scalar is stable and could serve as a dark
matter candidate [206].

In the following we will modify the M4dCHM used in the previous chapter to the next-to-minimal
coset and perform an analysis along the same lines as for the minimal model. After discussing the level
of fine-tuning that can be obtained in this model we investigate the limit in which the next-to-minimal
model reduces to the minimal one before we discuss novel features that the enlarged coset introduces.

5.1. The next-to-minimal 4d composite Higgs model

In this section we introduce the Next-to-Minimal 4d Composite Higgs Model (NM4dCHM) based
on the coset SO(6)/SO(5). The main difference with respect to the minimal model considered in
chapter 4 is the existence of an enlarged scalar sector containing an additional SM singlet state
[207, 51, 208, 209, 210, 211]. In the following we will discuss in detail the deformation of the minimal
model to the next-to-minimal coset. We will again use the 4d Composite Higgs [99] as the basis for
the model used in this analysis.

5.1.1. Nambu-Goldstone bosons in SO(6)/SO(5)

The next-to-minimal coset is subject to an isomorphism SO(6)/SO(5) ∼= SU(4)/Sp(4). As a conse-
quence the group theory of this coset can be described either by complex 4 × 4 matrices or by 6 × 6
orthogonal matrices. Both conventions have been used in the literature, see [51] for a work using
the SU(4)/Sp(4) language and [212, 211] for related analyses in the SO(6)/SO(5) framework. We
decided to perform the following analysis using the coset SO(6)/SO(5) as it has the advantage that
the connection to the minimal coset will be clearer and one could easily write down a decomposition
of SO(6) components into SO(4) ∼= SU(2)L × SU(2)R components, which is convenient considering
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custodial symmetry and embeddings of SM fields. Going back to chapter 4, the generators of SO(5)
are written as

SO(5) : TA =


TaL, T

a
R,︸ ︷︷ ︸

SO(4)

Tâ(2,2)︸ ︷︷ ︸
coset


 , (5.1)

where TaL,R are the generators of the SU(2)L,R subgroups and the four generators Tâ(2,2) parametrize

the coset. Going to the larger group SO(6) ⊃ SO(5), 5 generators have to be added.1 Under SO(5)
the coset states form a 5-plet which is why under SO(4) they can be written as a bidoublet and a
singlet. Hence, the generators can be written as

SO(6) : TA =


TaL, T

a
R, T

1, a
(2,2),︸ ︷︷ ︸

SO(5)

T2, â
(2,2), TS︸ ︷︷ ︸

coset


 , (5.2)

where now the unbroken subgroup contains a bidoublet T1, a
(2,2) and the coset consists of another

bidoublet and a singlet.
The description of Nambu-Goldstone bosons in the next-to-minimal coset works in principle just

the same as in the minimal one. Using the CCWZ formalism (see appendix II) we can implement
them in terms of a NGB matrix that takes the usual form

U = exp

[
i

√
2

f
Π(x)

]
with Π(x) = π5TS +

∑

i

πiT2, i
(2,2) (5.3)

=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0
cos

(√
π2
4+π2

5
f

)
π2
4+π2

5

π2
4+π2

5

π4π5

(
cos

(√
π2
4+π2

5
f

)
−1

)
π2
4+π2

5

π4 sin

(√
π2
4+π2

5
f

)
√
π2
4+π2

5

0 0 0
π4π5
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(√
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5
f

)
−1
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4+π2
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5 cos

(√
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)
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5

π5 sin

(√
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4+π2
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(√
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−
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(√
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4+π2

5
f

)
√
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4+π2

5

cos

(√
π2
4+π2

5

f

)




, (5.4)

where already SM unitary gauge was assumed to eliminate π1,2,3, such that in the end a bidoublet
field π4 and a singlet field π5 appear in the scalar sector. The above form is not very convenient as it
contains square roots and trigonometric functions of the scalar fields.2 To obtain a more useful form
we can perform a non-linear field transformation [211] which replaces π4, π5 by modulus (h) and angle
(η) in the π4 − π5 plane,

π4 = h cos

(
η

f

)
, π5 = h sin

(
η

f

)
. (5.5)

With this the NGB matrix greatly simplifies,



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 cos
(
h
f

)
cos2

(
η
f

)
+ sin2

(
η
f

)
− sin2

(
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2f

)
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(

2η
f
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(
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f

)
cos2
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f
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sin
(
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f

)

0 0 0 − cos
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f
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sin
(
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f

)
− sin

(
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f
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sin
(
η
f

)
cos
(
h
f

)




.

(5.6)

1Remember that the group SO(n) has 1
2
n(n− 1) generators, which is why the coset SO(6)/SO(5) contains 1

2
· 6 · 5−

1
2
· 5 · 4 = 5 generators.

2Also, as we will see later there are mixing terms between composite scalars and vectors appearing that are very hard
to eliminate using the above parameterization of the NGB matrix.
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Note that now all dependence on the NGB fields comes through trigonometric functions as in the case
of the minimal coset.

A very important consequence of this coset is that the additional NGB π5 is a pseudoscalar [51].
The reason for this is that the generators of the coset SO(6)/SO(5) give rise to an automorphism
which acts as a CP transformation and yields3

π4 → π4, π5 → −π5. (5.7)

Through the transformation (5.5), parities are assigned such that h is a scalar field while η is a
pseudoscalar.

In this non-minimal coset a subtlety arises which is not present in the minimal model. Consider-
ing a 4d strongly interacting UV completetion, there could be anomalies connected connected with
technicolor-like gauge interactions. To reflect these onto the low-energy effective theory of composite
resonances one has to add Wess-Zumino-Witten (WZW) terms [213, 214]. Such a case is allowed for
the next-to-minimal coset [51], giving

L ⊃ η

16π2

(
nB BµνB̃

µν + nW tr
[
WµνW̃

µν
]

+ nG tr
[
GµνG̃

µν
])
, (5.8)

where the tildes denote dual field strengths tensors. The structure of these terms is determined by
symmetry considerations of the coset while the numerical values of the coefficients nB , nW and nG
are dictated by the anomaly structure of the concrete underlying UV theory. However, for the given
coset one finds generally that nB +nW = 0 [209], such that these terms do not give effective couplings
of η to photons, but they lead to additional ηZZ, ηW+W− and ηGG couplings. As we do not specify
a concrete UV completion, we would have to include these couplings as free parameters whose net
effect would be to increase the constraints coming from direct searches. In our analysis we chose to
ignore these terms for two reasons. Without a UV theory in mind we do not know the values of these
couplings, therefore ignoring them is the most conservative option as we do not want to arbitrarily
exclude a model that possibly predicts smaller couplings than the ones assumed by us. Further, we
are actually not able to include these terms in our scanning procedure. As these terms only rescale
the bounds coming from direct searches, the Markov chains would always have the tendency to tune
the couplings to zero in order to decrease the tensions associated with them.

5.1.2. Bosonic Lagrangian

For the NM4dCHM with the coset SO(6)/SO(5) the Lagrangian has the same form as in the SO(5)/SO(4)
case. It consists of a gauge part (which parametrizes the composite vector resonances) and a σ-model
part (which includes the NGB fields),

Lboson = Lgauge + LNGB. (5.9)

The gauge Lagrangian contains the kinetic terms of the composite and elementary vectors as well as
the mixing terms between B and G resonances (which take the same form as in eq. (4.3) for the
minimal coset),

Lgauge = −1

4
tr [ρµνρ

µν ]− 1

4
tr
[
A0
µνA

µν
0

]
+ LB,G-mixing. (5.10)

The composite vector resonances, being in adjoint representations of SO(6), consist of 15 components,

ρµ = ρµAT
A = ρµL + ρµR + aµ1︸ ︷︷ ︸

SO(5)

+ aµ2 + ρµS︸ ︷︷ ︸
coset

, (5.11)

which correspond to the 15 generators given in (I.9). Compared to the case of the minimal coset (4.1)
there is an additional bidoublet aµ1 which does not belong to the coset, as well as a singlet coset state
ρµS .

The σ model Lagrangian also has the same form as before since the symmetry breaking is analogous
(only with larger groups). In the 2-site description there are two σ-model fields, Ω1 and Ω2, trans-
forming in the same way under the symmetries as in the SO(5)/SO(4) case (with the replacement

3Note that since the fundamental representation of SO(6) is a real one, this CP transformation does not involve a
complex conjugation. We thank Andreas Trautner for pointing this out.

107



#5\SO(6)/SO(5) – the next-to-minimal model\The next-to-minimal 4d composite Higgs model

SO(5)→ SO(6) and SO(4)→ SO(5)). Thus, the Lagrangian4 can be written as

LNGB =
f2

1

4
tr
[
(DµΩ1)

†
(DµΩ1)

]
+
f2

2

2

[
(DµΩ2)

t
(DµΩ2)

]
66

(5.12)

with the covariant derivatives

DµΩ1 = ∂µΩ1 − i
(
g0W

0 a
µ TaL + g′0B

0
µT

3
R

)
Ω1 + igρΩ1ρµ (5.13)

DµΩ2 = ∂µΩ2 − igρ ρµ Ω2. (5.14)

Going to holographic gauge (2.132) we set5

Ω1 = U and Ω2 = 1. (5.15)

As in the SO(5)/SO(4) case, the holographic gauge leads to mixing terms between the NGBs and
neutral components of the coset vector resonances. In particular, there are mixing matrices connecting
∂µh, ∂µS, a

4
1µ, a

4
2µ and ρSµ. In general, these terms are of the form

(∂µh) a4µ
2 ×

(
1 + h+ h2 + η + η2 + hη + . . .

)
. (5.16)

For the SO(5)/SO(4) case there was only the first term linear in the mixing, which could be eliminated
by a simple shift (4.9) of the vector resonances. For the coset we are considering now, the situation
is slightly different since we also find nonlinear terms for the mixing. After EWSB these lead to
vev-dependent mixings of scalars and vectors.

Explicitly, these mixings take the form6




∂µh ∂µη a2
4µ a1

4µ ρSµ

∂µh
1
2 0

f1gρ cos
(
vη
f1

)
2
√

2
0

f1gρ sin
(
vη
f1

)
2
√

2

∂µη 0 2 sin2
(
vh
2f1

)
− f1gρ sin

(
vh
f1

)
sin
(
vη
f1

)
2
√

2

f1gρ sin2
(
vh
2f1

)
√

2

f1gρ cos
(
vη
f1

)
sin
(
vh
f1

)
2
√

2

a2
4µ

f1gρ cos
(
vη
f1

)
2
√

2
− f1gρ sin

(
vh
f1

)
sin
(
vη
f1

)
2
√

2
1
4

(
f2

1 + f2
2

)
g2
ρ 0 0

a1
4µ 0

f1gρ sin2
(
vh
2f1

)
√

2
0

f2
1 g

2
ρ

4 0

ρSµ

f1gρ sin
(
vη
f1

)
2
√

2

f1gρ cos
(
vη
f1

)
sin
(
vh
f1

)
2
√

2
0 0 1

4

(
f2

1 + f2
2

)
g2
ρ




(5.17)
As described in [215]7, these mixings can be eliminated by suitable redefinitions of the vector reso-
nances,

vectorµ → vectorµ + α(vh, vη) ∂µ scalar, (5.18)

followed by a rescaling of the scalar fields. Here, α(vh, vη) is just a number depending on the numerical
values of the h- and η-vevs.

4One might be wondering whether this generalization of the SO(5)/SO(4) case is valid here. In particular the second

term. In general, one would write these terms using the Maurer-Cartan symbol dâµ = −i tr
[
Ω†2DµΩ2 Tâ

]
as L ⊃

f22
4
dâµd

â µ. But in the SO(N + 1)/SO(N) case this is the same as L ⊃ f22
4

(DµΦ2)† (DµΦ2) where Φ2 = Ω2 φ0 with
φ0 = (0, 0, 0, 0, 0, 1) [100].

5One has to remember that in this gauge one has to replace f → f1 in (5.6).
6We extracted these expressions by expanding every term in the Lagrangian (5.12) around (h, η) = (vh, vη) and keeping

only the 0-th order terms.
7In even more detail this is described in [216]
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We can perform the following redefinitions:8

a1
4µ → a1

4µ +

(√
2 cos

(
vh
f

)
−
√

2
)

f1gρ
∂µη, (5.19a)

a2
4µ → a2

4µ +

√
2
(
f2 − f2

1

)
cos

(
vη

f sin( vhf )

)

f3
1 gρ

∂µh−

√
2
(
f2 − f2

1

)
sin
(
vh
f

)
sin

(
vη

f sin( vhf )

)

f3
1 gρ

∂µη,

(5.19b)

ρS µ → ρS µ +

√
2
(
f2 − f2

1

)
sin

(
vη

f sin( vhf )

)

f3
1 gρ

∂µh+

√
2
(
f2 − f2

1

)
sin
(
vh
f

)
cos

(
vη

f sin( vhf )

)

f3
1 gρ

∂µη,

(5.19c)

h→ f1

f
h, η → f1

f sin
(
vh
f

)η. (5.19d)

As a consequence, all unwanted mixing terms vanish, but due to the rescaling (5.19d), all dependence
of the NGB fields will now come via

sh = sin

(
h

f

)
, s̃η = sin


 η

f sin
(
vh
f

)


 . (5.20)

In particular, the effective potential will be a function of these entities, Veff(sh, s̃η).
This Lagrangian leads to mass mixing matrices for the vector resonances, that are presented in

appendix III.2.1.

5.1.3. Fermion Lagrangian

Formally, including composite fermion resonances for the next-to-minimal coset is analogous to the
case of the minimal one. One first has to specify the representation of the fermion under SO(4).
Using the SU(4)/Sp(4) language the smallest representations have been investigated in [51]. It was
found that the 4- and 10-dimensional representations (which are spinor representations of SO(6))
are phenomenologically not viable. The 4 = (1,2) ⊕ (2,1) does not contain a bidoublet under the
custodial symmetry and therefore ZbLbL vertices are not protected in this model (see section 2.2.1).
The symmetric tensor 10 = (2,2) ⊕ (3,1) ⊕ (1,3) does contain a custodial protection, but it gives
rise to an electroweak-scale axion-like particle that would be in conflict with measurements. For the
6-dimensional representation (which corresponds to the fundamental representation of SO(6)) the
authors of [51] report no apparent tension with experimental data. The next smallest representations
of SO(6) are the antisymmetric 15-dimensional tensor and the symmetric 20-dimensional tensor. For
reasons of simplicity we choose the smallest possibility and assume the composite fermion resonances
to belong to the fundamental 6-dimensional representation of SO(6).

Under the SO(5) and SO(4) subgroups the fundamental representation decomposes as 6 = 5 + 1 =
(2,2) + (1,1) + (1,1). This shows that the structure of the fermion representations is similar to the
fundamentals of SO(5) (see (4.11)), but supplemented with an additional singlet component,

Ψ6 =




[
Q++ Q+−

Q−+ Q−−

]

S00
1

S00
2


 =

1√
2




Q++ +Q−−

iQ++ − iQ−−

Q+− −Q−+

iQ+− + iQ−+
√

2S00
1√

2S00
2



, (5.21)

leading to an additional composite singlet resonances in the theory.
The embedding of left-handed elementary fields into SO(6) fundamentals proceeds along the same

lines as for the case of SO(5), i.e. we can use eq. (4.12a) and simply add an additional 0 for the

8Note that after this shift also the kinetic mixing (∂µh) (∂µη) vanishes! This does not happen when using the expression
(5.4) without the transformation (5.5) for the Goldstone matrix.
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6th component. The embeddings of the right-handed elementary fermions, on the other hand, is
ambiguous as there are two singlets in the fundamental (5.21). To be as general as possible, this
means that two different embeddings have to be considered [51],

ξ5
qR =




0
0
0
0
q0
R

0



, ξ6

qR =




0
0
0
0
0
q0
R



, (5.22)

where q denotes either the elementary up- or down-quark.

The general form of the fermion Lagrangian looks is similar to the minimal coset,

Lquark = L(elem)
quark (5.23a)

+ Ψu

(
i/D −mU

)
Ψu + Ψ̃u

(
i/D −mŨ

)
Ψ̃u (5.23b)

− Yu ΨuL φ
t
2 φ2 Ψ̃uR −mY uΨuL Ψ̃uR + h.c. (5.23c)

+ ∆uL ξuLΩ1 ΨuR + ∆5
uR ξ

5

uRΩ1Ψ̃uL + ∆6
uR ξ

6

uRΩ1Ψ̃uL + h.c. (5.23d)

+ (u↔ d), (5.23e)

where the breaking SO(6) → SO(5) is parametrized by φ2 = Ω∗ · (0, 0, 0, 0, 0, 1). Note that there are
two different composite-elementary mixings for the right-handed elementary quarks, that in general
can have independent couplings.

If we go to holographic gauge (eq. (5.15)) we can write the fermion Lagrangian as

Lquark = L(elem)
quark (5.24a)

+ iΨu /DΨu + iΨ̃u /DΨ̃u (5.24b)

−mU

(
QuQu + S1uS1u + S2uS2u

)
− m̃U

(
Q̃uQ̃u + S̃1uS̃1u + S̃2uS̃2u

)
(5.24c)

− (mY u + Yu)S2uLS̃2uR −mY u

(
QuLQ̃uR + S1uLS̃1uR

)
+ h.c. (5.24d)

+ ∆uL ξuLU ΨuR + ∆5
uR ξ

5

uRUΨ̃uL + ∆6
uR ξ

6

uRUΨ̃uL + h.c. (5.24e)

+ (u↔ d). (5.24f)

Here we decomposed the fundamental 6 into SO(5) representations, Ψ = (Q,S1, S2). Note that this
Lagrangian explicitly shows the remaining invariance under SO(5), while there is a mass splitting
between (Q,S1) and S2 that demonstrates the explicit breaking of SO(6).

The mass matrices which we find for the fermion sector of this model are given in appendix III.2.2.

5.1.4. Flavour structure

For the flavour structure, one could in principle consider the same possibilities as in the case of the
minimal coset, i.e. U(2)2 or U(3)3 flavour symmetries with either right- or left-compositeness. In this
analysis, however, an investigation of the detailed aspects of flavour physics is not our main concern.
Also, left-compositeness would bring additional complications due to the enlarged possibilities for
right-handed embeddings. In particular, the theory does not lead to CKM-like flavour violation
without additional ad hoc assumptions not motivated by flavour symmetries. Therefore, we consider
only one possibility for the flavour structure that proved to be successful in the minimal model.
Therefore, in the following analysis we will exclusively consider the U(2)3

RC flavour structure.

The explicit form of the left-handed composite-elementary mixings is precisely the same as in the
minimal case (see appendix IV). The right-handed mixings contain a subtlety. Counting the physical

phases in these mixings one finds that the relative phases between the (flavour-diagonal) ∆
(5)
R and

∆
(6)
R cannot be absorbed, meaning that they are physical and have to be included as free parameters.

We write them as complex phases for the ∆6
R mixing and use the following form for the composite-
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elementary mixings

∆uL =




cu ∆u1L −su ∆u2L e
iαu

su ∆u1L e
−iαu cu ∆u2L εu ∆u3L e

iφu

∆u3L


 , (5.25a)

∆5 †
uR =




∆5
u12R

∆5
u12R

∆5
u3R


 , ∆6 †

uR =




∆6
u12R e

iφ6
u12R

∆6
u12R e

iφ6
u12R

∆6
u3R e

iφ6
u3R


 ,

(5.25b)

with analogous expressions for the down-type quark sector.

5.1.5. The effective potential and electroweak symmetry breaking

Let us discuss in this section the effective potential of the enlarged scalar sector. The main difference
compared to the minimal model is the appearance of the additional scalar field η. As a consequence,
there will be a combined potential for h and η such that, possibly, both can obtain a vev and all particle
masses and couplings will depend on the values of both vevs. We have already seen in previous sections
that the mass mixing matrices in this theory also depend on sh and s̃η, so the effective potential can
be calculated by the usual methods laid out in section 2.2.2. A new feature that could appear in the
next-to-minimal model are contributions to the effective potential induced by interactions between the
NGB fields. However, as is well known NGBs only have derivative self-interactions [33]. Furthermore,
loops contributing to the effective potential are evaluated at vanishing external momentum. We
conclude that NGB self interactions do not contribute to the effective potential.

As we are still working in the framework of 4dCMHs, we benefit from the fact that the model is
deconstructed from an extra-dimensional theory. In particular, this means that also for the next-to-
minimal coset it is guaranteed that the Weinberg sum rules (2.52) are satisfied and the calculability
of the effective potential at one loop level is ensured. This can be seen explicitly by inserting the mass
matrices given in appendix III.2 into eq. (2.52).

EWSB is triggered by an explicit breaking of SO(5) that is generated by the interactions between
the composite and the elementary sector. Analogously to the potential in the minimal model (see
section 2.2.2), there are contributions coming from the boson and fermion sectors that have to work
together to generate a potential that is in accordance with experiment. But due to the larger symmetry
structure, new features arise that are interesting to investigate. The general structure of the effective
potential in the next-to-minimal model has already been analyzed in great detail in [51] in the language
of SU(4)/Sp(4). At this point let us review the results and translate them into the SO(6)/SO(5)
notation used in this work.

Gauge contributions: Contributions from vector bosons originate from the fact that the global sym-
metry is broken explicitly by gauging its SM-like subgroup. Although it was the case in the
minimal coset that the global symmetry is then broken down completely to the gauged subgroup,
this is not true in general. By gauging a subgroup, the global symmetry is only broken down to
the largest subgroup that contains the gauged one as an ideal [51]. For SO(6), this implies that
by gauge interactions alone, the global symmetries are broken down to SU(2)L×U(1)Y ×U(1)S .
There is an additional U(1)S which is still a symmetry of the theory. It is generated by the
generator TS under which the NGB π5 in (5.3) shifts. As a consequence, gauge contributions
alone do not generate a potential for π5 because it is still associated to an unbroken theory and
therefore a true NGB. In this case the theory necessarily contains a massless scalar mode.

Fermion contributions: To prevent a massless scalar mode one also has to break the U(1)S symmetry
explicitly. This is possible in the fermion sector if the elementary fermion embeddings have
a non-consistent U(1)S-charge assignment. The composite resonances, being complete SO(6)
multiplets, are invariant under U(1)S by construction. For an elementary embedding ξ the
action of U(1)S is given as

ξ → ξ′ = exp (iqSθTS) ξ ≈ (1 + iqSθTS + . . . ) ξ = ξ + δξ + . . . . (5.26)

The U(1)S-charge assignment is consistent only if δξ ∼ TSξ = qSξ, i.e. if the embedding is
an eigenvector of the generator TS . Out of the six eigenvectors of TS we find four to have a
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degenerate eigenvalue of 0, which correspond to the bidoublet in (5.21). This shows that the
left-handed elementary embeddings are always neutral under U(1)S and therefore cannot break
it. The remaining two eigenvectors correspond to embeddings of the right-handed elementary
fermions. These are:

ξ+
R ∼ (0, 0, 0, 0,−i, 1) with qS = +

1√
2
, (5.27a)

ξ−R ∼ (0, 0, 0, 0, i, 1) with qS = − 1√
2
. (5.27b)

Remembering that there are two right-handed embeddings to be included (see 5.22)), this means
that the global U(1)S symmetry is preserved by the elementary fermion embeddings if

∆5
R = ±i∆6

R. (5.28)

Phrasing this the other way around, this means that a potential for π5 is generated as long as
(5.28) is not satisfied.

Using the matrices given in appendix III.2 the effective potential can be calculated just as in the case
of the minimal coset via 2.53,

Veff(sh, s̃η) =
∑ ci

64π2
m4
i (sh, s̃η) log

[
m2
i (sh, s̃η)

]
. (5.29)

From this we can calculate the scalar mass mixing matrix as given in (3.17),

M2
S(s∗h, s̃

∗
η) =

(
∂2
hVeff ∂h∂ηVeff

∂h∂ηVeff ∂2
ηVeff

)∣∣∣∣
s∗h,s̃

∗
η

. (5.30)

This matrix determines the masses of the scalar fields as well as their mixing. It is interesting to see
that due to

∂ηVeff|s̃∗η =
ds̃η
dη

∂s̃ηVeff

∣∣∣∣
s̃∗η

=
c̃∗η
f s∗h

∂s̃ηVeff

∣∣∣∣
s̃∗η

(5.31)

the theory contains a very light scalar field in the limit s̃∗η → 1. For the last equation in (5.31) we
made use of (5.20).

5.2. The scan

As for the minimal model, a parameter scan along the lines of section 3.1 was performed for the
next-to-minimal model. Computationally, the most significant change is the numerical minimization
of the now two-dimensional effective scalar potential. This is notably slower than a minimization in
only one direction. Together with other additions in the code (such as the numerical evaluation of
second and third derivatives of the effective potential for calculating scalar masses and couplings) this
led to an increase in computation time to around 1 s for the evaluation of the χ2-function for a single
parameter point. Furthermore, due to additional parameters in the composite-elementary mixings of
right-handed quarks the dimensionality of the parameter space increased to 52. In total, this made the
generation of viable parameter points significantly less efficient compared to the minimal models. We
started a total number of O(32 000) Markov chains that in the end resulted in 125 successful chains
containing 66161 viable parameter points. The complete analysis consumed O(250 000 cpuh) on the
C2PAP computational cluster.

As we will discuss later, it is interesting to consider the limit in which all ∆5
R are small. This is,

however, difficult to find in a general parameter scan with Markov chains. Therefore, about one third
of all scans were started where this condition was put in by hand for the starting point. By this, we
obtain a good coverage of the parameter space also in this limit.

5.3. Fine-tuning

As a first result let us assess the amount of fine-tuning needed in the next-to-minimal model to generate
the electroweak scale. Analogously to the case of the minimal coset in section 4.3.1 we calculated the
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Figure 5.1.: Fine-tuning of the effective scalar potential. Left: Barbieri-Giudice measure ∆BG of fine-tuning
for the found points and its correlation with f . The gray lines show naive expectations for the
fine-tuning (see main text). Note that results are only shown for a relatively small fraction of all
found points. This plot is meant to merely give an indication of the general size of fine-tuning.
Right: Found masses for the top and the Higgs. The red points have ∆BG < 100 and the gray
band mark the experimental 1σ measurements of the masses. To guide the eye orange lines are
drawn where these constraints cut into the parameter space of the model.

Barbieri-Giudice measure of tuning (4.18) for the viable parameter points.9 The results are shown
in figure 5.1. We find a minimal fine-tuning ∆min

BG = 30. This is even slightly better than for the
minimal model with the same flavour structure (see eq. (4.20))10. Hence, a better-than-percent level
tuning is also achievable in the next-to-minimal model and a moderate tuning, ∆BG < 100, is possible
for f . 1000 GeV. In figure 5.1 we further show the naive expectation for the minimal fine-tuning,
∆min ∼ f2/v2

SM displayed as a solid gray line. For the minimal CHM based on the coset SO(5)/SO(4)
with fermions in the fundamental representation it is well known that the potential is subject to a
so-called double-tuning [56], ∆min ∼ 1/ε2 × f2/v2

SM, meaning a parametrically larger tuning due to
the particular structure of the potential (see the discussion in section 2.2.2). We expect this to be
true also for the next-to-minimal coset with fermions in the fundamental representation. To guide
the eye, we included the expectation for an exemplary value ε = 0.5 as the dashed line in figure 5.1,
which shows that our data points are consistent with double-tuning.

Also in the next-to-minimal model moderate fine-tuning is achieved at the expense of having de-
viations in the top and Higgs mass as seen in the right plot in figure 5.1. For moderate amounts of
fine-tuning we generally find a top mass that is 5 − 15% too small top mass and a Higgs boson that
is up to 15% too heavy. However, one has to keep in mind that these values are still within in large
theory uncertainties of our calculation and that higher-order corrections can lift these tensions.

5.4. The SO(5)/SO(4) limit

The NM4dCHM features a limit in which it effectively reduces to a theory similar to the M4dCHM.
To see this, let us go back to the embeddings of the elementary fermions into SO(6) fundamentals.
As shown in (5.22) there is an ambiguity for the embeddings of the right-handed quarks, which leads
to the introduction of two independent composite-elementary couplings in (5.23). Intuitively, both
couplings are on different qualitative grounds. Imagine for the time being that only the mixing ∆6

R is
present and ∆5

R is set to zero. In this case SO(6) is explicitly broken by the right-handed embeddings

9As these calculation are numerically not trivial, we calculated the fine-tuning for around 40% of the viable parameter
points. However, this number is enough for our purposes.

10In a recent analysis [217] the improved fine-tuning in the next-to-minimal coset was interpreted as being due to
so-called “level repulsion”. This means that due to scalar mixing the Higgs mass gets further reduced such that less
tuning is needed to obtain a realistic mass for the Higgs boson.
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only to SO(5). If now also ∆5
R takes non-zero values then SO(6) is broken down to SO(4). In this

sense, the case ∆5
R 6= 0 marks a more violent explicit breaking of the global symmetries than the case

∆5
R = 0, especially as we are considering a flavour structure with right-compositeness. In this section

we will consider the latter case of milder explicit breaking and show that this corresponds to a theory
virtually indistinguishable from the minimal coset. The case of a non-vanishing ∆5

R will be discussed
in the following section 5.5.

Since we are including the full flavour sector in this work, the composite-elementary mixings are
matrix-valued in flavour space. This means that in the considered U(2)3

RC flavour structure there
are four different mixings ∆5

R = ∆5
u12R,∆

5
u3R,∆

5
d12R,∆

5
d3R (see eq. (5.25)). The SO(5)/SO(4) limit

corresponds to the case where all four mixings vanish. Therefore we introduce an order parameter

max
∆5

R

∆6
R

= max

{
∆5
u12R

∆6
u12R

,
∆5
u3R

∆6
u3R

,
∆5
d12R

∆6
d12R

,
∆5
d3R

∆6
d3R

}
(5.32)

and consider the limit max∆5
R/∆

6
R → 0. To simplify the notation we will denote this limit simply

by ∆5
R → 0, but imply the above. The effects of one (or more) ∆5

R/∆
6
R & 1 will be discussed in

section 5.5.
To see why this limit effectively reduces the theory to SO(5)/SO(4), it is instructive to look at the

effective potential in a different form than given in eq. (2.51). Using the methods used e.g. in [55] one
can integrate out the heavy sector such that the Lagrangian of the elementary quarks in momentum
space takes the form

L ⊃ Πij
L q0 i

L /p q
j
L + Πij

R qiR /p q
j
R −

(
Πij

LR q
i
Lq
j
R + h.c.

)
, (5.33)

where the effect of the heavy sector is parametrized in terms of form factors Π = Π(p2, sh, s̃η) which
depend on the momentum and the pNGBs. We show the derivation of the potential in appendix VI
and show at this place only the final result for fermion contributions to the effective potential,

Vf (sh, s̃η) ∼
∫

dpE

(2π)4
log tr

[
p2

E ΠLΠR + |ΠLR|2
]
, (5.34)

where the dependence on the pNGBs and the composite-elementary mixings is given through

ΠL(p2, sh, s̃η) =
[
1−∆uL πu(p2) ∆†uL −∆dL πd(p

2) ∆†dL

]
− 1

2
s2
hc̃

2
η ∆uL

(
πSu(p2)− πu(p2)

)
∆†uL,

(5.35a)

ΠR(p2, sh, s̃η) =
[
1−∆5

uR πSu(p2) ∆5 †
uR −∆6

uR πSu(p2) ∆6 †
uR

]
+ c̃2η ∆5

uR

(
πSu(p2)− πu(p2)

)
∆5 †
uR

+
(
chs̃η ∆5

uR − sh ∆6
uR

) (
πSu(p2)− πu(p2)

) (
chs̃η ∆5 †

uR − sh ∆6 †
uR

)
, (5.35b)

ΠLR(p2, sh, s̃η) = i shc̃η ∆uL πLR(p2)
(
shs̃η ∆5 †

uR + ch ∆6 †
uR

)
. (5.35c)

Here we only wrote down the contribution from up-type quarks; the down-type contributions have to
be added and are obtained by replacing u↔ d. The explicit forms of the form factor functions πq(p

2)
and πLR(p2) are not important in this discussion but they are given in appendix VI.

If we now go to the limit ∆5
R → 0, we see that the potential depends on η only through c̃2η and the

potential effectively reduces to the much simpler expression

Vf (sh, s̃η) ∼
∫

dpE

(2π)4
log tr

[
Π(0)(p2

E, sh) + c̃2η Π(2)(p2
E, sh)

]
, (5.36)

where the form factors used are combinations of the above form factors. This general dependence on
c̃2η is enough to draw some general conclusions about the theory in this limit. The minimum of the
potential is obviously given by the values of (s∗h, s̃

∗
η) at which the derivatives vanish,

∂shVf (sh, s̃η)|s∗h,s̃∗η = 0, ∂s̃ηVf (sh, s̃η)
∣∣
s∗h,s̃

∗
η

= 0. (5.37)

Calculating the derivative in the s̃η-direction one easily finds

∂s̃ηVf (sh, s̃η) ∼
∫

dpE

(2π)4

s̃η tr
[
Π(2)(p2

E, sh)
]

tr
[
Π(0)(p2

E, sh) + c̃2η Π(2)(p2
E, sh)

] , (5.38)
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Figure 5.2.: Impact of the SO(5)/SO(4) limit on the phenomenology of η. The results including all viable
parameter points are shown in blue while red shows the same but only including parameter
points with ∆BG < 100. Left: Dependence of the η-vev on the order parameter max∆5

R/∆
6
R.

Right: Production cross section at a 13 TeV proton-proton collider. In this, gluon fusion, quark-
antiquark annihilation and vector boson fusion are included.

which shows that in the limit ∆5
R → 0 there is always a minimum in the s̃η-direction realized for

s̃∗η = 0. In this case the potential in the sh-direction reduces to the one for the SO(5)/SO(4) coset11

This is shown in the left plot of figure 5.2. One can further observe a form of factorization, namely,
as (5.38) shows, acting additionally with a derivative ∂sh in the sh-direction to calculate the mixing
term ∂h∂ηVeff in the scalar mass matrix (3.17) will always give ∂h∂ηVf = 0 when evaluated at the
minimum of the potential. This shows that in the limit ∆5

R → 0 there will be no mixing between the
doublet state h and the singlet η. This picture still remains valid when including gauge contributions
into the effective potential.

Looking at the explicit form of the form factors for the effective potential given in (5.35a), we can
insert the limit ∆5

R → 0, s̃η → 0. In this case we observe that the potential reduces to the expression
given in [55] for the potential in the SO(5)/SO(4) coset. Therefore, all conclusions on the effective
potential obtained in chapter 4 hold for the next-to-minimal potential in this limit. In particular, the
allowed values for s∗h and f coincide with the values given in the analysis of the minimal model.

As (5.35c) further shows, there is no linear η-coupling to SM quarks in the limit ∆5
R → 0. Therefore,

η is not singly produced at a hadron collider (neither at tree level directly from quarks nor at the loop
level via gluon fusion), making it invisible in a classical ’bump hunt‘ of the form pp→ η → SM. This
is shown in the right plot of figure 5.2. Furthermore, couplings to SM gauge bosons are also absent
or at least highly suppressed as the singlet η does not mix with the Higgs-like doublet component h.

In the next-to-minimal coset there are additional vector resonances (a bidoublet a1µ and a singlet

ρS µ, see eq. (5.11)) and fermion resonances (singlet fields S1
u,d and S̃1

u,d, see eq. (5.21)) as compared
to the minimal case. From the mass matrices given in appendix III.2 one can observe that these
additional fields decouple from the theory in the limit ∆5

R → 0, s̃η → 0. Consequently, these fields
will impact neither direct nor indirect constraints on the model. Furthermore, the mass matrices of
the remaining fields reduce to the expressions in the minimal coset SO(5)/SO(4) (see appendix III.1),
making all effects indistinguishable from the results presented in chapter 4.

Although the pNGB η effectively decouples from the theory, it still receives a mass from the effective
potential. Going to the limit ∆5

R → 0, we see that eq. (5.28) cannot be satisfied as long as ∆6
R 6= 0

(which is necessary in order to couple the SM quarks to the Higgs). Therefore, the global U(1)S is
necessarily broken such that η receives a massless and there is no mass scalar fields in the spectrum.

11Formally, there seems to be also the possibility of another extremum connected to the c̃2η in (5.38). But as c̃2η only
appears in the denominator we do not think that such an extremum can be realized for physical values of s̃η . Also,
the numerical results show no indication for the existence of such a solution.
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Figure 5.3.: Characteristics of the effective scalar potential in the next-to-minimal coset. Results including all
viable parameter points are shown in blue, while red denotes parameter points with a moderate
fine-tuning, ∆BG < 100. Left: Location of the found minima in the (s∗h, s̃

∗
η)-plane. In gray we

show lines of constant f that reproduce the correct value of vSM via (5.39). Right: Found masses
for h and η. This directly corresponds to the curvature of the potential at the minimum.

Summarizing, we find that in the limit ∆5
R → 0, the pseudoscalar η does not develop a vev, i.e.

s̃∗η = 0. Consequently, the effective potential does not act as a source of spontaneous CP violation.
Furthermore, η does not mix with the Higgs-like scalar h, decouples from SM fields and is not produced
at collider experiments. Furthermore, additional vector and fermion resonances decouple from the
other fields such that effectively the theory becomes indistinguishable from the M4dCHM. However,
the scalar η obtains a mass. Whether in this limit η acts as a possible candidate for dark matter is
beyond the scope of this work.

5.5. Novel features

In the last section we have seen that the next-to-minimal model exhibits a limit in which it effectively
reduces to a model very similar to the minimal one. In this section we want to address the question
of what changes if we deviate from this limit. To be concrete, we are considering the case in which
at least one of the ratios ∆5

R/∆
6
R (see eq. (5.32)) is not small. This marks the general case in which

the pseudoscalar η is allowed to obtain a vev (but it does not have to), such that it mixes with the
Higgs-like doublet h and CP can be broken spontaneously. In this case it is interesting to see what the
experimental signatures are that allow to differentiate the next-to-minimal model from the minimal
one.

5.5.1. Potential

An important novel feature of the NM4dCHM away from the SO(5)/SO(4) limit is the fact that also
the pseudoscalar η can obtain a vev such that s̃∗η 6= 0. As the mass matrices in appendix III.2 show,
there are, in this case, additional mixings between elementary and composite fermion and vector
states, which has an impact on all observables. In particular, the value of the SM Higgs vev as defined
through the W mass gets contributions from s̃∗η,12

vSM = s∗h c̃
∗
η f, (5.39)

where c̃∗ 2
η = 1− s̃∗ 2

η . In the limit s̃∗η � 1 this reduces to the expression in the SO(5)/SO(4) case, but
away from this limit the η-contribution becomes important and allows s∗h to take large values up to

12This can be calculated by an expansion of the eigenvectors of the charged vector boson mass matrix in terms of s∗h
and s̃∗η . For this one can use techniques from time-independent perturbation theory.
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s∗h ∼ 1 without the need to introduce light vector resonances as it would be the case in a model based
on the minimal coset.

Electroweak symmetry breaking is characterized by the location (s∗h, s̃
∗
η) of the minimum of the

effective scalar potential. In principle, the minimum is allowed to take any value on the unit square
[0, 1] × [0, 1], but demanding the correct SM Higgs vev vSM = 246 GeV (cf. eq. (5.39)) restricts the
allowed region for reasonable values of f . In our scans we found values for f roughly in the range
500− 1500 GeV.

In the left plot of figure 5.3, we show predictions for the minimum of the effective potential. We find
viable parameter points for all reasonable values of s∗h and s̃∗η. Generically, the scan has the tendency
to yield minima with large s∗h and s̃∗η. However, points with s̃∗η ≈ 1 are excluded as they imply a
very small mη (see eq. (5.31)). The region of s̃∗η ≈ 0 is more tuned in the sense that it corresponds
to the case of ∆5

R → 0 which is hard to find in a general scan. Therefore, we started dedicated scans
with a preference for these values of parameters to have a good coverage of the small s̃∗η region (cf.
section 5.2). One finds that for this case the found range of s∗h is comparable to the one found in
chapter 4. Only in the region of intermediate s̃∗η the coverage is comparably low.

In the left plot of figure 5.3, one can also identify the individual Markov chains as different clouds
with constant f . This is easy to understand from the fact that fermion and gauge boson contributions
to the potential have to cancel each other to a rather large extent to guarantee the lightness of the
Higgs [55, 56]. While the size of the gauge boson contributions is mainly driven by the parameter f ,
the fermion contributions depend on a large number of independent parameters, such as composite
masses and composite-elementary mixings. Thus, a change in f would require a coordinated and
collective change in many fermion parameters, which is again difficult to realize in a Markov Chain
scan.

Further, in the left plot of figure 5.3 we also indicate the position of points with ∆BG < 100 in the
s∗h-s̃∗η plane. This shows that a moderate fine-tuning can be achieved for all values of the vevs that
allow for a not too large scale f .

In the right plot of figure 5.3 we present the found values for the scalar masses. As in figure 5.1,
the tendency to predict a large Higgs mass is obvious. For the pseudoscalar η we generally find larger
masses. The lower bound is given by the Higgs mass, as we explicitly demand η to be heavier than the
Higgs. We find maximal values in the region of around 1.5 TeV, but most of the points are clustered
in the region 500− 1000 GeV.

5.5.2. Higgs physics

For the CHM with minimal coset the couplings of the Higgs to SM states get corrections due to the
non-linearly realized nature of the pNGB Higgs. In models with an enlarged scalar sector there are
additional corrections if the Higgs mixes with the additional scalar states. In the setup considered in
this work, this is the case when η gets a non-vanishing vev from the effective potential.

Analogously to section 4.6 we consider modifications of the Higgs signal strengths as a probe of the
Higgs sector. Then, it is interesting to see how much the presence of the additional scalar η changes
the Higgs couplings as compared to the minimal coset. We present our results on the Higgs signal
strengths in figure 5.4. Comparing them with figure 4.12 we observe that the same rough overall
dependence on the symmetry breaking scale f as in the minimal coset is valid also in the non-minimal
one. However, one also sees that especially the signal strengths of the Higgs into vector bosons are
rather “washed out” which shows that there are significant contributions from the mixing between the
scalars. These additional contributions are not enough to to bring the model in conflict with current
Higgs coupling measurements. But using the estimates for future Higgs signal strength measurements
discussed in section 4.6, h → bb in particular will become a relevant constraint for this model in the
coming LHC runs.

5.5.3. Flavour physics

∆F = 2 observables were shown in have section 4.7.1 to be important constraints on the compositeness
of third generation quarks. However, we also found that for the minimal coset there was no general
correlation between the effective potential and flavour observables, meaning that flavour observables
are dominantly determined by the flavour structure. We find this picture confirmed in the case of
the next-to-minimal coset. In figure 5.5 we show the results on ∆F = 2 observables that correspond
to figures 4.13, 4.14 and 4.15 for the minimal model. We find that in all observables the effects
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Figure 5.4.: Higgs signal strengths (3.40) in the channels h→WW,ZZ (both are the same due to custodial
symmetry), h→ γγ and h→ bb as functions of the symmetry breaking scale f . The gray bands
and colored horizontal lines mark the 2σ experimental limits. We refrained from showing results
for h→ τ+τ− as due to the large experimental uncertainties this does not pose any constraint
at the moment.

are virtually identical to the M4dCHM with a U(2)3
RC flavour structure. Furthermore, we analyzed

whether parameter points outside of the SO(5)/SO(4) limit, max∆5
R/∆

6
R � 1, prefer certain values

of ∆F = 2 observables and found that these points follow the same distributions as the remaining
points. Therefore, we conclude that the effects of the enlarged pNGB sector and of the additional
composite resonances are not important in flavour observables making this sector essentially blind to
the different cosets.

One point worth mentioning (but already touched upon in section 3.3.5) is the impact of updated
bag parameters in B meson mixing compared to the analysis of the minimal coset in section 4.7.
Compared to the results shown in figure 4.13, one can see that with the updated bag parameters only
a much smaller region is allowed. Furthermore, we observe that the points with moderate fine-tuning
∆BG < 100 tend to predict slightly enhanced values for the mass differences.

5.5.4. CP violation

CHMs necessarily contain a certain amount of direct CP violation through complex valued composite-
elementary mixings. This has to be large enough to reproduce the CP violation already present in the
SM. An observable sensitive to this is the electric dipole moment of the neutron (see section 3.3.6).
As we found in section 4.7.2, the amount of CP violation introduced in the M4dCHM is not sufficient
to generate a measurable effect in this observable. In the NM4dCHM, however, an additional source
of CP breaking is present. If the pseudoscalar η obtains a non-vanishing vev the effective potential
acts as a source of spontaneous CP violation. We present predictions for the electric dipole moment
of the neutron in figure 5.6. As expected, we find that in the limit max∆5

R/∆
6
R � 1 there are only

tiny contributions, many orders of magnitude below the current experimental upper bound. If one,
however, deviates from this limit such that at least one of the ratios ∆5

R/∆
6
R does not need to be

small, we observe that the neutron electric dipole moment can take large values up to saturating the
experimental upper limit. This indicates that additional CP violation can be a clear discriminator
between the minimal and the next-to-minimal model.
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Figure 5.5.: Results on ∆F = 2 observables in the NM4dCHM. These plots are the analogue to fig-
ures 4.13, 4.14 and 4.15 for the M4dCHM.

119



#5\SO(6)/SO(5) – the next-to-minimal model\Summary

10−4 10−2 100 102 104 106 108

max∆5
R/∆

6
R

−4

−2

0

2

4

10
2
6
×
d
n

[e
cm

]

NM4dCHM6 − U(2)3
RC

Figure 5.6.: Electric dipole moment of the neutron. Scatter plot including all viable points (blue). In red
we mark all points with ∆BG < 100. The gray band is the experimental 2σ constraint. One can
see that in the SO(5)/SO(4) limit, max∆5

R/∆
6
R � 1 only negligible contributions are generated,

but away from this limit the dn can take large values indicating large amounts of CP violation.

5.5.5. Collider phenomenology of η

In section 5.4 we found that in the SO(5)/SO(4) limit, max∆5
R/∆

6
R � 1, the composite scalar η

decouples from the theory. In fact, as the right plot in figure 5.2 shows the production cross section
is significantly suppressed in this limit. But away from this limit η can be produced at rates that are
very well in the reach of present and future collider experiments.

As in the case of the minimal coset we do not want to discuss the collider signatures of the next-
to-minimal model in detail and refer to [28] for an extensive analysis. At this point we just give a
short overview of the collider phenomenology of the new scalar η as this is one of the major differences
between the minimal and the next-to-minimal model. In figure 5.7 we show results on production and
decay of η.

We find that for nearly all points η is almost exclusively produced via gluon fusion, similar to the
Higgs. Other production channels are direct production from heavy quarks (which is suppressed by
the small parton distribution functions) and vector boson fusion.

As a dominant decay mode of η we can identify the decay into a pair of Higgs bosons, but also the
decay into a top pair as well as pairs of electroweak vector bosons can have a sizable branching ratio.
Decays into light quarks as well as photons are always strongly suppressed. We note that the decay
into composite resonances is usually kinematically not open. These findings are contrary to what one
might expect from the Goldstone boson equivalence theorem. The reason for this is the mixings of
the scalar fields. As the pseudoscalar η mixes with the doublet component h but not with NGBs that
yield the longitudinal polarizations of the W and Z bosons the ηhh coupling gets enhanced compared
to the ηWW and ηZZ couplings.

5.6. Summary

Generally, we find that the 4dCHM based on the next-to-minimal coset SO(6)/SO(5) is in a compa-
rably good shape when confronted with experimental data as the minimal model. The main results
of this analysis are:

• SO(6)/SO(5) is the next-to-minimal coset.

• The enlarged coset gives rise to an additional pseudoscalar field η. Therefore, the effective
potential becomes two-dimensional. If the pseudoscalar η receives a vev then the potential acts
as a source of spontaneous CP violation.
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• The number of heavy resonances also increases as one has to consider larger representations
under the global symmetries. In the vector sector there is an additional bidoublet field as well
as an extra singlet field. In the fermion sector one finds an additional singlet field.

• There is an ambiguity in the choice of embeddings of right-handed elementary quarks into SO(6)
fundamentals. This leads to additional composite-elementary couplings which can carry complex
phases.

• We find a minimal fine-tuning of about ∆min
BG = 30. This is even slightly better than for the

minimal coset with the same flavour structure. A tuning better than percent-level is achievable
for f < 1 TeV.

• This model possesses a limit, max∆5
R/∆

6
R → 0, in which it becomes indistinguishable from the

minimal coset. In this limit the additional fields decouple, the couplings of η to SM fermions
vanish and no spontaneous CP violation through the potential occurs since η does not obtain a
non-trivial vev.

• Away from this limit s∗h can be large if this is balanced by an also large s̃∗η. This stands in contrast
to the situation in the minimal model and can be one reason for the smaller fine-tuning. We
find values for s∗h and s̃∗η in all theoretical allowed regions. We see no preference of a value due
to fine-tuning.

• We find values 500 GeV ≤ f ≤ 1500 GeV for the symmetry breaking scale f .

• For η we find masses as low as nearly the Higgs mass all the way up to around 1.5 TeV, but
most points are clustered in the region 500− 1000 GeV.

• In Higgs physics large deviations are possible stemming from Higgs non-linearities and mixings
of the Higgs and η.

• Flavour physics is dominated by the flavour structure. We find no qualitatively new features in
this model.

• Due to spontaneous CP violation through the potential large effects in the neutron electric dipole
moment are possible up to saturating present experimental bounds.

• Regarding collider phenomenology we find that η is almost exclusively produced through gluon
fusion. It decays mostly into Higgs bosons, top pairs or electroweak vector bosons. Decays via
the diphoton mode or to light quarks are suppressed.
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Leptoquarks in b → s transitions6
In the last chapter of this work we will jump to a different class of NP scenarios. The previous chapters
always investigated thorough, fully-fledged BSM theories that tried to solve the ‘big problems’ of
particle physics, such as the fine-tuning problem or the generation of flavour hierarchies. Especially in
the last decade the trend in high energy physics has shifted to be in some sense more data-driven. As
the experimental results of the last years have not shown any torch-like signal such as supersymmetric
partners or composite resonances that would be expected in a complete theory, it might be well-
motivated to add only small pieces of NP to the SM. Then, it is not of immediate interest how and
whether these pieces can be implemented in a more fundamental theory, but one wants to see if the
general idea of such NP makes sense. This is always done under the assumption that for the processes
under consideration the added NP pieces give the dominant contributions. For the remainder of this
work we now want to continue this road of simplified models and consider the possibility that beyond
the SM there exist leptoquarks (LQ), i.e. spin-0 or spin-1 bosons that couple to a quark-lepton current.
A recent review on the phenomenology of LQs is given in [218]

In recent years LQs have been subject to a large amount of interest, especially in connection with the
bs`` anomalies. The reason for this is that LQs can naturally generate the patterns of effective semi-
leptonic operators that are needed to explain these anomalies. In the following we want to investigate
LQ models in the light of these anomalies while considering the related modes B → K(∗)νν and
Bs → µ+µ−. The main goal will be to see whether these modes can be used to extract additional
information about NP through LQ models.

6.1. b → s transitions

Generally, b→ s transitions are powerful probes of NP [159]. In recent years a lot of interest in these
transitions was triggered by several tensions observed between experimental measurements and SM
predictions in particular in b → s`+`− decays. In principle, these tensions are independent of each
other, but as was soon found, they all consistently fit together into a single hypothesis of NP. These
tensions are:

• In 2013 LHCb conducted an angular analysis of the B → K(∗)µ+µ− decay and reported a
tension in the angular observable P ′5 at the level of three standard deviations [219, 220], which
was confirmed in 2015 by LHCb using the complete Run-1 dataset [221]. Recently also ATLAS
and CMS presented analyses [222, 223].

• An independent tension was presented in 2014 by the LHCb collaboration in the ratio [190]

RK =
Br(B+ → K+µ+µ−)[1,6] GeV2

Br(B+ → K+e+e−)[1,6] GeV2

= 0.745+0.090
−0.074 ± 0.036 (6.1)

which shows a 2.6σ tension with the SM that predicts RK = 1 to an excellence precision [224].
This measurement therefore presents a hint for a possible violation of lepton flavour universality
(LFU) which is predicted by the SM. Very recently this hint was strengthened by the observation
of a similar anomaly in the related mode [191]

RK∗0 =
Br(B0 → K∗0µ+µ−)[1,6] GeV2

Br(B0 → K∗0e+e−)[1,6] GeV2

= 0.685+0.113
−0.069 ± 0.047. (6.2)
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This value is very well compatible with predictions made by us [1] assuming the experimental
data on bs`` prior to the announcement of RK∗0 . As a caveat one however has to note that
LHCb also sees a similar excess in the low-q2 bin [0.045, 1.1] GeV2 in which no effect due to NP
was expected.

• Further tensions were found in branching ratio measurements of B → Kµ+µ− and Bs →
φµ+µ− [225, 190, 226].
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WC scenario best fit 1σ

CNP
9 -1.19 [-1.41, -0.97]

C ′9 +0.13 [-0.08, +0.34]

CNP
10 +0.64 [+0.41, +0.90]

C ′10 -0.05 [-0.22, +0.11]

CNP
9 = +CNP

10 -0.33 [-0.53, -0.12]

CNP
9 = −CNP

10 -0.61 [-0.74, -0.45]

C ′9 = +C ′10 +0.07 [-0.18, +0.32]

C ′9 = −C ′10 +0.05 [-0.05, +0.15]

Figure 6.1 & Table 6.1: Preferred ranges for Wilson coefficients obtained by a global fit to bs`` data. Left:
Contours in the two-dimensional CNP

9 −CNP
10 plane. Right: Best fit values and 1σ

ranges for the case that only one Wilson coefficient or a certain combination is
non-vanishing. These results use the numerical data obtained in [1].

Several theory groups [227, 163, 228, 229] conducted independent global fits of the effective Hamil-
tonian (3.62) to these experimental data in order to assess the potential of NP showing up through
these tensions. In a recent update [1] we incorporated the most recent theoretical and experimental
data into this fit. The consensus is that all these tensions can be explained together in a consistent
way by NP in the Wilson coefficient Cµµ9 which interferes destructively with the SM (see figure 6.1).
A similarly good fit is found if NP also affects the Wilson coefficient C10 such that CNP

9 = −CNP
10 ,

which is a very convenient option for model building as it indicates NP connected with left-handed
muons. The tensions in RK(∗) are explained if NP only enters the second lepton generation, while the
interactions of electrons remain SM-like.

A caveat is that b → s`+`− transitions are plagued by hadronic uncertainties such as form factors
or non-factorizable hadronic effects due to the presence of charmonium resonances. It has been
argued that underestimated hadronic effects could mimic a NP contribution to C9 [230, 231, 232].
This, however, does not apply to the LFU observable RK since hadronic effects mostly cancel in this
ratio [224]. We therefore adopt the following standpoint for this work: neglecting the possibility of a
hadronic effect we assume that the anomalies in b→ s`+`− transitions are in fact due to NP effects.

6.2. Leptoquark basics

LQs are particles that carry lepton- as well as baryon-number such that they couple leptons and
quarks into one vertex. For this, they necessarily have to be bosons, where scalar and vector LQs
are the simplest options. Generally, LQs appear naturally in many different NP scenarios. The first
examples where LQs appeared were models for gauge coupling unification such as e.g. Pati-Salam
models [233] or SU(5) grand unification theories (GUTs) [234]. In these models quarks and leptons
are usually embedded into the same multiplet of the GUT symmetry. Therefore, LQs can appear as
gauge bosons of this theory or as scalar fields that obtain a vev in order to break the GUT symmetry.
Supersymmetric theories also offer the possibility of LQs. The scalar superpartners of the SM quarks,
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Scenario Spin GSM Lint

S1 0 (3,1) 1
3

λ̂L (qcL · ε · lL)φ + λ̂R u
c
R`Rφ + λ̂1

qq (qL · ε · qcL)φ + λ̂2
qq dRu

c
Rφ

S̃1 0
(
3,1

)
4
3

λ̂R d
c

R`Rφ + λ̂qq uRu
c
Rφ

R2 0 (3,2) 7
6

λ̂L (qL · φ) `R + λ̂R uR (lL · ε · φ)

R̃2 0 (3,2) 1
6

λ̂R dR (lL · ε · φ)

S3 0
(
3,3

)
1
3

λ̂L (qcL · ε · τa · lL)φa + λ̂qq (qL · ε · τa · qcL)φa

U1 1 (3,1) 2
3

λ̂L (qLγ
µlL)φµ + λ̂R dRγ

µ`Rφµ

Ũ1 1 (3,1) 5
3

λ̂R uRγ
µ`Rφµ

V2 1
(
3,2

)
5
6

λ̂L (qcL · ε · φµ) γµ`R + λ̂R d
c

Rγ
µ (lL · ε · φµ) + λ̂qq uRγ

µ (qcL · φµ)

Ṽ2 1
(
3,2

)
− 1

6

λ̂R u
c
Rγ

µ (lL · ε · φµ) + λ̂qq (qL · φµ) γµdcR

U3 1 (3,3) 2
3

λ̂L (qL · τa · γµlL)φaµ

Table 6.2.: Possible representations for leptoquarks φ. In the last column we show the interaction terms with
SM fermions. With ε we denote the 2-dimensional Levi-Cevita symbol and τa are the generators
of SU(2)L

the squarks, carry the correct quantum numbers to act as LQs. But for this a certain amount of
R-parity violation has to be present, such that vertices with two SM fields and only one superpartner
are allowed [235]. Another class of NP models where, admittedly, LQs are not predicted but they come
in handy, are models in which neutrino masses are generated at the (multi-)loop level (see e.g. [236]).
Finally, let us note that LQs also appear in CHMs if larger GUT-like cosets are assumed. In [237] scalar
LQs are implemented as pNGBs of a coset [SO(9)× SO(5)] / [SU(4)× SU(2)Π × SU(2)H × SU(2)R].
Under a coset based on the Pati-Salam-like global symmetries SU(4)c × SO(5)×U(1)X (as compared
to (2.7)) vector LQs can emerge as composite vector resonances [31].

Although LQs can appear in many concrete models, the standard treatment is usually model-
independent. Therefore, one can work in a simplified model that assumes SM gauge invariance. Then,
the LQ has to carry defined quantum numbers under the SM gauge group and one can classify all
possible representations such that LQ interactions are gauge invariant. Assuming no larger represen-
tations than triplets under SU(3)c and SU(2)L and neglecting also right-handed neutrinos, there are 5
possible representations for scalar LQs and also 5 representations for vector leptoquarks [238]. These
are shown in table 6.2. All LQs have to carry colour charge in order to be able to couple quarks to lep-
tons. As a consequence no couplings of LQs to two leptons are allowed. In the last column of table 6.2
the possible interaction terms with SM fermions are shown. Dictated by the symmetries, every LQ
representation has unique coupling patterns to SM fields leading to a rather distinct phenomenology
for each scenario.

The interaction terms in table 6.2 are written in the gauge basis prior to EWSB. In general, the
SM fields carry a flavour index, which is why the LQ couplings also have to be equipped with two
flavour indices; one carries quark flavour the other lepton flavour. A priori, there is no structure for
these couplings such that they are general matrices in flavour space. When matching these operators
to a Hamiltonian relevant for low energy phenomenology, the quark fields have to be rotated into the
physical mass basis using rotation matrices defined by the SM Yukawa interactions. This then means
that effectively also the LQ couplings have to be rotated into the mass basis.

To see this explicitly, we find it instructive to conduct a short exemplary calculation at this point.
Let us consider the LQ representation U1 with the interaction term (see table 6.2 and for the moment
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sL

µL

µL

bL

LQ

Figure 6.2.: Example of a tree-level contribution to a semi-leptonic bsµµ-operator by LQ exchange.

we are only interested in the interaction of left-handed quarks)

Hint ⊃
[
λ̂L

]ij (
qiLγ

µljL

)
φµ + h.c. (6.3a)

=
[
λ̂L

]ij (
uiLγ

µνjL

)
φµ +

[
λ̂L

]ij (
d
i

Lγ
µ`jL

)
φµ + h.c.. (6.3b)

We further pretend for the time being that we are only interested in b − µ and s − µ interactions.
Then we can rotate the above operators into the mass basis yielding

Hint ⊂ λbµL
(
bLγ

µµL

)
+ λsµL (sLγ

µµL) + h.c., (6.4)

where the mass basis couplings are given as

λsµL =
[
V †dL

]
2i

[
λ̂L

]i2
, λbµL =

[
V †dL

]
3i

[
λ̂L

]i2
(6.5)

and VdL rotate the left-handed down-type quarks into the mass basis. In this basis it is now possible
to calculate semi-leptonic effective operators by integrating out the LQ in diagrams like the one shown
in figure 6.2,

diagram = (sLγ
µµL)× (−iλsµL )×

(
iηµν
m2

LQ

)
×
(
−iλbµ ∗L

)
× (µLγ

νbL)

= −i
λsµL λbµ ∗L

m2
LQ

(sLγ
µµL) (µLγµbL)

=
λsµL λbµ ∗L

m2
LQ

(sLγ
µbL) (µLγµµL)

=
λsµL λbµ ∗L

2m2
LQ

(sLγ
µbL) (µγµµ) − λsµL λbµ ∗L

2m2
LQ

(sLγ
µbL) (µγµγ5µ) ,

where we made use of a Fierz transformation. Then, we can match the LQ theory onto the effective
Hamiltonian (3.61) and we find the following relation for the Wilson coefficients:

CNP
9 = −CNP

10 = −1

2
N (mLQ)λsµL λbµ ∗L , (6.6)

introducing the normalization factor

N (mLQ) = − 2π

αem VtbV ∗ts

v2
SM

m2
LQ

≈ −1176

(
1 TeV

mLQ

)2

. (6.7)

This shows that LQs are able to explain the recent LHCb anomalies in bs`` data through a NP
contribution to the Wilson coefficients CNP

9 = −CNP
10 is one of the preferred scenarios obtained by

global fits for explaining these anomalies [1]. The assumption that the LQs only couple to 2nd
generation leptons can also serve as a natural explanation for the experimental hints for lepton flavour
non-universality seen in B → K(∗)µ+µ− decays. The LQ S3 was considered in [239] as a promising
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possibility for this. The authors of [240] investigated the representation S1 in which the anomaly in
the charged current process B → D(∗)`ν [241, 242, 243] can be explained by a tree-level exchange
while the neutral current anomalies in bs`` are solved at the loop level, such that naturally a hierarchy
is given between both effects. The vector LQs U1 and U3 have been considered in [244, 245]. The LQ
R2 can generate the relation CNP

9 = −CNP
10 at one-loop level [246], if one assumes that the coupling

λ̂L such that the Wilson coefficients do not get a tree-level contribution.
At first sight the assumption that the considered LQ only couples to one generation of leptons

seems a bit ad hoc. Relaxing this assumption, however, inevitably leads to lepton flavour violating
processes. In [247] an attempt was made to generate such a flavour pattern from a slightly broken
U(2) flavour symmetry.

6.3. Leptoquarks and b → sνν

The rare decays B → K(∗)νν are important for constraining NP scenarios for several reasons. Theoret-
ically they are very clean as they do not suffer from hadronic uncertainties beyond the ones associated
to hadronic form factors. Since the final state leptons are not charged under QED, these decays do
not suffer from non-factorizable corrections due to photon exchange. Another important point is that
the decay in the dineutrino channel can be related to the decays B → K(∗)µ+µ− as neutrinos and
charged leptons are components of the same SU(2)L doublet. This allows the use of experimental data
on the mode with charged leptons to obtain information about the dineutrino mode.

In this section we will pursue this road and assess the possible NP effects in b → sνν while using
the charged lepton channel as input.

Effective Hamiltonian and current status

The theory of b→ sνν transitions has been investigated in [248, 249, 250]. Assuming no right-handed
neutrinos, the effective Hamiltonian at the scale mb contains only two effective operators and is given
by

Heff = −4GF√
2
VtbV

∗
ts (CLOL + CROR) + h.c., (6.8)

with

OL =
e2

16π2
(sγµPLb) (νγµ (1− γ5) ν) , OR =

e2

16π2
(sγµPRb) (νγµ (1− γ5) ν) . (6.9)

In the SM such operators are only generated at the loop-level through diagrams involving W -bosons;
which is why CSM

R vanishes. The Wilson coefficient CSM
L is known to a high precision including NLO

QCD corrections [251, 252, 253] and two-loop electroweak contributions [254]. The SM values are
given by

CSM
L = −Xt/s

2
W, CSM

R = 0 with Xt = 1.469± 0.017. (6.10)

Using this effective Hamiltonian, the dineutrino invariant mass distribution for B → Kνν can be
written as [255]

dΓ(B → Kνν)

dsB
=
G2
Fα

2

256π5
|VtbV ∗ts|2m5

Bλ
3
2 (sB ,

mK

mB
, 1)

[
fK+ (sB)

]2 |CL + CR|2 , (6.11)

where sB = q2/m2
B ranges in 0 ≤ sB ≤ (1−mK/mB)

2
and λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ac)

is a kinematical factor.
Since the K∗ is a vector particle, the decay mode B → K∗(→ Kπ)νν is richer as it contains

angular information. Because of this, the dineutrino mass distribution is written in terms of helicity
amplitudes [255],

dΓ(B → K∗νν)

dsB
∝ |A⊥|2 +

∣∣A||
∣∣2 + |A0|2 , (6.12)

where we did not write down kinematical factors and the amplitudes are schematically given by

A⊥(sB) ∝ (CL + CR)V (sB), (6.13a)

A||(sB) ∝ (CL − CR)A1(sB), (6.13b)

A0(sB) ∝ (CL − CR)A12(sB). (6.13c)
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Here we again did not show explicitly kinematic factors but rather showed the general dependence on
the Wilson coefficients and the forms factors. Both decays channels intimately depend on the form
factors fK+ as well as V,A1, A12 that parametrize the hadronic matrix elements

〈
K(∗) |OL,R|B

〉
. Being

QCD objects these are hard to calculate from first principles. At low recoils, q2 . (mB −mK)2, the
matrix elements can be evaluated via lattice QCD [256, 257], whereas for q2 ≈ 0 the form factors can
be calculated via lightcone sum rules (LCSR) [258, 259]. In [260] the results from lattice QCD and
LCSR were fitted together to obtain a reliable description of the form factors over the whole kinematic
range. These results are essential for the considered decays as the branching ratios are calculated as
q2-integrals over the form factors. The fitted form factors for B → K∗ as we as lattice calculations
for B → K form factors [261] are implemented in flavio [147] which we use in this analysis.

Although the neutrinos escape the detector without being observed, there is still a third observable
in these decays besides the branching ratios. Angular information can be obtained through the K∗

longitudinal polarization fraction

FL =
Γ0

Γ
=

∫
dsB |A0(sB)|2

∫
dsB

(
|A⊥(sB)|2 +

∣∣A||(sB)
∣∣2 + |A0(sB)|2

) , (6.14)

By construction most of the hadronic uncertainties drop out in the ratio making it a clean observable.
Furthermore, in the absence of right-handed currents, i.e. for CR = 0, all dependence on the Wilson
coefficients drops out such that measuring a non-SM value would be a direct signal for NP with
right-handed currents.

The physics of b→ sνν is described by two complex numbers: the Wilson coefficients CL and CR.
It has proven useful to parametrize the NP contributions by other coefficients [249, 250],

ε =

√
|CL|2 + |CR|2
|CSM
L |

, η =
−Re(CLC

∗
R)

|CL|2 + |CR|2
, (6.15)

which are real numbers. In terms of these one can express the three observables in b → sνν decays
normalized to their SM values as

RK :=
Br(B → Kνν)

Br(B → Kνν)SM
= (1− 2η)ε2, (6.16a)

RK∗ :=
Br(B → K∗νν)

Br(B → K∗νν)SM
= (1 + κηη)ε2, (6.16b)

RFL :=
FL
F SM
L

=
1 + 2η

1 + κηη
. (6.16c)

Here, κη = 1.33 is a numerical factor that depends on the integrated hadronic form factors. In the
SM the two parameters take the values (ε, η)SM = (1, 0). The advantage of this parametrization is
that in the absence of right-handed currents (CR = 0) one always has η = 0 such that RK = RK∗ .
Consequently, a measurement of a different relative modification of the two decay modes, RK 6= RK∗
would be a direct signal of NP with right-handed couplings. Furthermore, there are two parameters to
describe three observables such that the system is over-determined. A measurement of FL has to be
consistent with the determination of the branching ratios according to (6.16). Otherwise, that would
be a direct signal for invisible particles in the final state other than neutrinos.

The SM predictions for the observables can be calculated using flavio [147] which yields

Br(B+ → K+νν)SM = (4.59± 0.55)× 10−6, (6.17a)

Br(B0 → K∗0νν)SM = (9.59± 1.00)× 10−6. (6.17b)

Experimentally these decays have not been observed yet, but the current experimental bounds are
given by the Belle collaboration [262] at the 90% CL as

Br(B → Kνν) < 1.6× 10−5 such that RK < 3.5, (6.18a)

Br(B → K∗νν) < 2.7× 10−5 such that RK∗ < 2.8. (6.18b)

The future prospects are very promising. The upcoming Belle II experiment will be well-equipped for
investigating these decays with a missing energy signature. The current luminosity projection is to
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collect an integrated luminosity of 50 ab−1 by the year 2024 [263]. With this amount of statistics the
expected sensitivities are at the level of 22 % for B+ → K+νν and even 17 % for B → K∗νν [264, 265]
assuming SM values. Therefore, strong evidence for these decay will definitely be possible within the
next decade. In many NP scenarios the decay rates can be significantly enhanced such that signs for
NP could show up much earlier.

Departing from lepton flavour universality

In the above formulae (especially in (6.16)) it was implicitly assumed that NP couples to all lepton
generations in the same way. At the experiments the detectors do not differentiate between the
neutrino flavours. Therefore, the assumption of lepton flavour university (LFU) effectively gives a
factor of 3 in the branching ratio. In the case of LQs, however, it is difficult to implement LFU since
this would automatically generate lepton flavour violation (LFV), e.g. in the decays B → K(∗)µe.
Therefore, a frequent assumption in LQ scenarios is that the LQ couples exclusively to one generation
of leptons. In such a case there will be contributions to e.g. CbsµµL but none to CbseeL and CbsττL .
Including generation-dependent couplings to leptons adds a flavour index ` to the Wilson coefficients
C`L and C`R contributing to b→ sν`ν` transitions. Then, the parameters ε and η become also flavour
dependent and eqs. (6.16) have to be modified to

RK =
1

3

∑

`

(1− 2η`)ε
2
` , (6.19a)

RK∗ =
1

3

∑

`

(1 + κηη`)ε
2
` , (6.19b)

RFL =
1

3

∑

`

1 + 2η`
1 + κηη`

. (6.19c)

Consequences of SM gauge invariance

By construction LQs come in representations of the SM gauge group such that the theory is SM
gauge invariant. Further, along the lines discussed at the beginning of this chapter, we assume other
NP to be heavier than the LQ fields. Under the assumption that the NP scale is much larger than
vSM, the SM gauge symmetries are respected to a high degree at low energies and it is convenient
to parametrize the NP effects at low energies in a GSM invariant way, which is done in the so-called
SMEFT [266, 68]. As we will see in the following, in LQ models only a subset of all possible NP
operators is generated, such that the SMEFT formulation leads to strong correlations between the
dineutrino mode and the decay into charged leptons. Therefore, the wealth of experimental data on
B → K(∗)`+`− can be used to give predictions for the neutrino mode.

Using an effective Lagrangian for dimension-6 operators,

L(6) =
∑

i

ci
Λ2

NP

Oi , (6.20)

let us first write down the basis of effective operators relevant for b → s`` and b → sνν transitions
that is invariant under the SM gauge symmetry [68] (omitting flavour indices),

O(1)
Hq = i(q̄LγµqL)H†DµH , O(1)

ql = (q̄LγµqL)(l̄Lγ
µlL) , (6.21a)

O(3)
Hq = i(q̄Lγµτ

aqL)H†DµτaH , O(3)
ql = (q̄Lγµτ

aqL)(l̄Lγ
µτalL) , (6.21b)

OHd = i(d̄RγµdR)H†DµH , Odl = (d̄RγµdR)(l̄Lγ
µlL) , (6.21c)

Ode = (d̄RγµdR)(¯̀
Rγ

µ`R) , Oqe = (q̄LγµqL)(¯̀
Rγ

µ`R) . (6.21d)

For simplicity, we have omitted dipole operators, that are only relevant in semi-leptonic b → s`+`−

processes at low dilepton invariant mass and in radiative decays, as well as scalar operators, that are
relevant in the Bs → µ+µ− decay (see 6.5).

The NP contributions to rare B decays are described at low energies (and after EWSB) by the

effective operators O(′)
9 and O(′)

10 (see eq. 3.62) for b → s`+`− as well as by OL and OR for b → sνν
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Spin GSM interaction term generated Wilson coefficients

S1 0
(
3,1

)
1
3

λ̂ijL (qcL i · ε · lL j) φ
[
c
(1)
ql

]
ij;kl

Λ2
NP

= −
[
c
(3)
ql

]
ij;kl

Λ2
NP

= − 1
4

λ̂jlL λ̂
ik ∗
L

m2
LQ

S3 0
(
3,3

)
1
3

λ̂ijL (qcLi · ε · τa · lL j) φa
[
c
(1)
ql

]
ij;kl

Λ2
NP

= 3

[
c
(3)
ql

]
ij;kl

Λ2
NP

= 3
4

λ̂jlL λ̂
ik ∗
L

m2
LQ

R̃2 0 (3,2) 1
6

λ̂ijR dR i (lL j · ε · φ)
[cdl]ij;kl

Λ2
NP

= − 1
2

λ̂ilR λ̂
jk ∗
R

m2
LQ

U1 1 (3,1) 2
3

λ̂ijL (qL i γ
µ lL j) φµ

[
c
(1)
ql

]
ij;kl

Λ2
NP

=

[
c
(3)
ql

]
ij;kl

Λ2
NP

= 1
2

λ̂ilL λ̂
jk ∗
L

m2
LQ

U3 1 (3,3) 2
3

λ̂ijL (qL i γ
µ τa lL j) φ

a
µ

[
c
(1)
ql

]
ij;kl

Λ2
NP

= −3

[
c
(3)
ql

]
ij;kl

Λ2
NP

= − 3
2

λ̂ilL λ̂
jk ∗
L

m2
LQ

V2 1
(
3,2

)
5
6

λ̂ijR d
c

R i γ
µ (lL j · ε · φµ)

[cdl]ij;kl
Λ2

NP
=

λ̂ilRλ
jk ∗
R

m2
LQ

Table 6.3.: Possible leptoquark scenarios relevant for b → sνν̄ decays. In the first columns, the spin and
gauge quantum numbers are given as well as the relevant interaction term. In the last column, we
give expressions for the Wilson coefficients of the generated four-fermion operators. The SM left-
handed quark and lepton doublets are denoted by QL and LL, respectively, while the leptoquark
is written as φ(µ). We explicitly showed the flavour indices here.

(see eq. (6.9)). The effective operators (6.21) can be mapped onto the weak effective Hamiltonian
(3.61) yielding the dictionary1

CL = CSM
L + c̃

(1)
ql − c̃

(3)
ql + c̃Z , CR = c̃dl + c̃′Z , (6.22a)

C9 = CSM
9 + c̃qe + c̃

(1)
ql + c̃

(3)
ql − ζ c̃Z , C ′9 = c̃de + c̃dl − ζ c̃′Z , (6.22b)

C10 = CSM
10 + c̃qe − c̃(1)

ql − c̃
(3)
ql + c̃Z , C ′10 = c̃de − c̃dl + c̃′Z , (6.22c)

where

c̃Z = 1
2 (c̃

(1)
Hq + c̃

(3)
Hq) , c̃′Z = 1

2 c̃Hd and ζ = 1− 4s2
w ≈ 0.08 (6.23)

To match the normalizations of the effective operators the notation

c̃k =
(ck)23

Λ2

π√
2GFαVtbV ∗ts

≈ (ck)23

VtbV ∗ts

(
5 TeV

ΛNP

)2

, (6.24)

was introduced where we restored flavour indices and worked in a basis where the down-type quark
mass matrix is diagonal. The dictionary (6.22) now reveals the correlations between the Wilson
coefficients induced by the SM gauge symmetry.

In LQ models we find that only a few of the operators (6.21) are actually generated and that they are
directly correlated such that for all scenarios there is effectively only one free parameter. Exceptions
are the scenarios S̃1, R2, Ũ1 and Ṽ2 as they do not generate any effects in b → sνν. The LQs Ũ1

and Ṽ2 only contribute to weak decays of up-type quarks while the LQs S̃1 and R2 can give effects
in down-type ∆F = 1 processes but then it necessarily involves only charged leptons. The results for
the viable options are shown in table 6.3. In models in which the LQ is an SU(2)L singlet or triplet

only the operators O(1)
ql and O(3)

ql are generated, but are predicted to obey the relation

c̃
(1)
ql = n · c̃(3)

ql , (6.25)

where n is a model-dependent real constant. From (6.22) we then find that, for a given n, the

1The correct treatment would be to perform the matching at the high scale and then use RG evolution to obtain the
effective operators at the low scale mb. However, for the considered operators the RGE effects are small such that
we neglect their impact.
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CNP
9 CNP

10 C ′9 C ′10 CS CP C ′S C ′P CNP
L CR

S1 — — — — — — — — − 1
4λ

b`
L λ

s` ∗
L —

S̃1 — — − 1
2λ

b`
Rλ

s` ∗
R +C ′9 — — — — — —

R2
1
2λ

s`
L λ

b` ∗
L +CNP

9 — — — — — — — —

R̃2 — — − 1
2λ

s`
R λ

b` ∗
R −C ′9 — — — — — +C ′9

S3
3
4λ

b`
L λ

s` ∗
L −CNP

9 — — — — — — + 1
2C

NP
9 —

U1 − 1
2λ

s`
L λ

b` ∗
L −CNP

9 − 1
2λ

s`
R λ

b` ∗
R +C ′9 λs`L λ

b` ∗
R m−1

b −CS −λs`R λb` ∗L m−1
b +C ′S — —

Ũ1 — — — — — — — — — —

V2 − 1
2λ

b`
L λ

s` ∗
L +CNP

9
1
2λ

b`
Rλ

s` ∗
R −C ′9 λb`L λ

s` ∗
R m−1

b −CS −λb`Rλs` ∗L m−1
b +C ′S — +C ′9

Ṽ2 — — — — — — — — — —

U3 − 3
2λ

b`
L λ

s` ∗
L −CNP

9 — — — — — — +2CNP
9

Table 6.4.: Correlations between Wilson coefficients of b → s`+`− as b → sνν transitions. It has to be understood that the
LQs have to be multiplied by the normalization factor (6.7) as shown e.g. in (6.6). We do not include dipole or
tensor operators as these would be generated only at loop-level so we assume that they are sub-leading.

low-energy Wilson coefficients only depend on one parameter,

CNP
L = c̃

(1)
ql − c̃

(3)
ql = (n− 1)c̃

(3)
ql , (6.26a)

CNP
9 = −CNP

10 = c̃
(1)
ql + c̃

(3)
ql = (n+ 1)c̃

(3)
ql , (6.26b)

CR = C ′9 = C ′10 = 0. (6.26c)

Hence, we can write the corrections to the b→ sνν branching ratios in the following way,

RFL = 1, RK = RK∗ =
2

3
+

1

3

∣∣∣CSM
L + (n− 1)

[
c̃
(3)
ql

]
`

∣∣∣
2

∣∣CSM
L

∣∣2 . (6.27)

In the case of a doublet LQ, only Odl is present. So again, we expect only a dependence on one
parameter,

CNP
L = CNP

9 = CNP
10 = 0, (6.28a)

CR = C ′9 = −C ′10 = c̃dl. (6.28b)

In this case, we find a contribution to η 6= 0 such that also RK 6= RK∗ ,

RK =
2

3
+

1

3

(
1 + 2

CSM
L Re ([c̃dl]`)

|CSM
L |2 + | [c̃dl]` |2

)(
1 +
|[c̃dl]`|

2

∣∣CSM
L

∣∣2

)
, (6.29a)

RK∗ =
2

3
+

1

3

(
1− κη

CSM
L Re ([c̃dl]`)

|CSM
L |2 + | [c̃dl]` |2

)(
1 +
|[c̃dl]`|

2

∣∣CSM
L

∣∣2

)
. (6.29b)

From table 6.3, we can already see two special cases. In the scenario U1 there is n = 1 which
implies that all contributions to RK = RK∗ vanish such that we do not expect any deviation from the
SM values in this model. For S1 we find n = −1, which means that this scenario does not give any
contribution to the decay into charged leptons. Hence, the effects in RK and RK∗ are unconstrained
from these decays. Since we have connected b→ sνν transitions to b→ s`+`− transitions it is now
possible to use the wealth of experimental results regarding the latter to give predictions for possible
modifications of the former. The experimental data on b→ s`+`− transitions show a significant tension
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Figure 6.3.: Allowed ranges forRK andRK∗ obtained by using correlations with b→ s`+`− transitions: Left:
The case that LQs only couple to first-generation leptons. Right: LQs only couple to second-
generation leptons. The 1σ (transparent thick lines) and 2σ ranges are shown. The dashed lines
denote the expectations if only CL (diagonal) or CR (curved line) get contributions. The gray
box shows the expected experimental precision assuming a measurement of a SM-like value. We
did not show results for S1 as this is unconstrained by GSM correlations and so it can extend
over the diagonal dashed line as long as (6.18a) is satisfied.

with the SM predictions, which could be due to either NP or underestimated hadronic uncertainties.
In this work we take the most optimistic standpoint and assume that the whole tension is in fact
due to NP. Then, by the above relations, these tensions can be related to possible NP effects in the
dineutrino mode to estimate how large NP effects can possibly become. This effectively acts as an
upper bound on NP. If the bs`` anomaly is in fact due to hadronic physics then NP contributions will
be small, such that one cannot expect large NP effects in b→ sνν transitions.

For all LQ representations, we show in table 6.4 the correlations between the effective operators
relevant for semi-leptonic b → s transitions. Because of SM gauge invariance, there are either no
or several operators that are relevant for b → s`+`− transitions. The Wilson coefficients of these
operators are directly linked to CL or CR. In the SU(2)L-triplet scenarios only left-handed vector
operators are generated that obey the relation CNP

9 = −CNP
10 , which is one of the preferred scenarios

for the bs`` anomaly. For models in which the LQ is either an SU(2)L singlet or a doublet the generated
patterns of Wilson coefficients are qualitatively different depending on whether the LQ is spin-0 or
spin-1. In the case of scalar LQs either left-handed or right-handed vector operators are generated
whose Wilson coefficients can have either relative sign. For vector LQs U1 and V2 all vector and scalar
operators involving charged leptons are generated, but their Wilson coefficients are tightly correlated.
For the scalar singlet LQ S1 there are no contributions involving charged leptons at all. Therefore,
the dineutrino channel is unbounded by GSM relations and is allowed to saturate the experimental
constraints (6.18a). The vector LQ U1 does not give any contributions to the dineutrino channel. We

also note that the cases Ũ1 and Ṽ2 cannot be probed by b→ s transitions at all.

For the time being let us concentrate on the case where the LQs couple only to one generation of
leptons such that there are no LFV processes. The different leptons in the final states imply rather
different experimental bounds. Therefore we will discuss the three different cases separately.

• ` = e
Assuming that the LQs only couple to leptons of the first generation one can put constraints
on b → sνeνe via the decay mode into charged leptons b → se+e−. For these there exist mea-
surements of the branching ratio Br(B+ → K+e+e−) from LHCb [190] as well as measurements
of the inclusive rate B → Xsee by BaBar [267]. Relevant for the LQ V2, which also generates
scalar operators, is further an upper bound on Br(Bs → e+e−) given by CDF [268]. We have
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performed a global fit to this data using flavio [147], which gives the following 1σ ranges,

S1 CNP
L unbounded (6.30a)

R̃2 C ′9 = −C ′10 ∈ [−0.78, 0.15] CR ∈ [−0.78, 0.15] (6.30b)

S3 CNP
9 = −CNP

10 ∈ [−0.28, 0.36] CNP
L ∈ [−0.11, 0.15] (6.30c)

V2 CR ∈ [−0.21, 0.16] (6.30d)

U3 CNP
9 = −CNP

10 ∈ [−0.28, 0.36] CNP
L ∈ [−1.13, 1.45] (6.30e)

where we used the relations (6.26) and (6.28) to calculate the allowed ranges for CNP
L and CR.

For the LQ V2 we performed a dedicated Bayesian fit taking into account all effective operators
that are present in this scenario (see table 6.4). The results are shown in the left plot of figure 6.3.
Generally, we find that for both modes a suppression as well as an enhancement are possible.
The corrections in the case S3 are small and will probably not be measurable given the expected
experimental precision. For the cases S3, R̃2 and V2 the corrections are more sizable ranging
about ±10% or larger which, however, are probably also too small to be visible.

• ` = µ
In case the final state consists of muon neutrinos, the b → sνν transition is constrained by

measurements of the decays b → sµ+µ−. The allowed ranges for the Wilson coefficients C
(′)
9,10

have recently been determined in a global fit to bsµ+µ− data [1] (see section 6.1). Using
the results of table 6.4 we can now use the fit results given in table 6.1 to translate them into
bounds on the dineutrino operators CL and CR. Concentrating on the relevant cases for b→ sνν
transitions the allowed 1σ ranges translate as follows

S1 CNP
L unbounded (6.31a)

R̃2 C ′9 = −C ′10 ∈ [−0.02,+0.18] CR ∈ [−0.02,+0.18] (6.31b)

S3 CNP
9 = −CNP

10 ∈ [−0.75,−0.46] CNP
L ∈ [−0.30,−0.18] (6.31c)

U3 CNP
9 = −CNP

10 ∈ [−0.75,−0.46] CNP
L ∈ [−3.00,−1.84] (6.31d)

A special case is the LQ V2 as it generates not only vector but also scalar operators. These
operators are probed by the rare decay Bs → µ+µ− (see section 6.5). This decay, however, has
not been included into the analysis performed in [1] as in that analysis the focus was on vector
operators. Therefore, we performed a dedicated Bayesian fit taking into account the correlated
Wilson coefficients of the LQ V2 (see table 6.4) using flavio [147]. We included the same data
as in [1] but additionally the branching ratio of Bs → µ+µ− as measured2 by CMS [269] and
LHCb [270]. This results in

V2 CR ∈ [−0.004,+0.006] . (6.31e)

Taking into account these allowed ranges for the Wilson coefficients the preferred values in the
RK−RK∗ plane are shown in figure 6.3. For the scenarios S3, R̃2 and V2 only small modifications
of the branching ratios of the order of a few percent are possible which, unfortunately, will not
be resolvable in the foreseeable future. For the LQ U3 larger corrections of up to 25% are
possible and, furthermore, accepting the B → K(∗)µ+µ− anomalies as given through NP one
would definitely expect an enhancement of RK = RK∗ which could be detectable within the
next decade, although this might be hard. This is interesting since both LQs S3 and U3 can
potentially explain the B → K∗µ+µ− anomaly. If this anomaly prevails the decays B → K(∗)νν
could act as a discriminator between both LQ scenarios.

• ` = τ
If the LQ only couples to 3rd generation leptons then its couplings are effectively unbounded
by GSM relations. There exist upper bounds on the branching ratios Br(Bs → τ+τ−) [271] by
LHCb and BR(B+ → K+τ+τ−) [272] by the BaBar collaboration, but these are several orders
of magnitude above the SM predictions. Therefore, by far the strongest bounds are given by the
searches for the dineutrino modes (6.18a).

2The experiments give these results as a correlated likelihood for Bs → µ+µ− and Bd → µ+µ−. In this fit we assumed
no NP in b→ d transitions which is justified as the experimental likelihood only shows a weak correlation.
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If the LQs couple to more than one generation of leptons then one inevitably also gets LFV processes
like B → K(∗)νeνµ or the corresponding charged lepton mode. Experimentally, upper bounds on such
processes have been obtained,3

Br(B+ → K+eµ) < O(10−7) BaBar [273],

Br(B → K∗eµ) < O(10−6) BaBar [273],

Br(Bs → eµ) < O(10−8) LHCb [274],

Br(B+ → K+eτ) < O(10−5) BaBar [275],

Br(B+ → K+µτ) < O(10−5) BaBar [275].

Generally, LFV involving taus is only loosely constrained. If only the first two lepton generations
are involved then the bounds are stronger but still one order of magnitude weaker than in the lepton
flavour conserving case.

Denoting the Wilson coefficients contributing to b → s`i`j generically by Csb;ij we can relate the
lepton flavour violating coefficients to the lepton flavour conserving ones (where we restrict ourselves
to the first two lepton generations),4

Csb;eeCsb;µµ = Csb;eµCsb;µe. (6.32)

Therefore, as long as one is refraining from going to fine-tuned corners of parameter space in which
one coupling is anomalously large while others are very small, the LFV effects cannot be too large
given the current data on lepton flavour conserving processes. On the other hand, if in the future
a non-zero NP contribution to both the electron and the muon mode will be established, then it is
predicted that in the LQ models considered also a signal in the LFV modes should appear.

6.4. Direct bounds on leptoquarks

In this section we want to discuss direct constraints on LQs at pp colliders like the LHC. Since LQs
carry colour, they are expected to be produced copiously at hadron colliders. Therefore direct searches
put important constraints that are complementary to indirect bounds.

Before diving into the details of collider searches let us first discuss another bound that is very
relevant for LQs. As LQs carry baryon number a breaking of this quantum number is induced if
they couple to quark-antiquark pairs (these are the λ̂qq couplings in table 6.2) such that proton
decay can be generated. This usually puts strong constraints on the theory making very high LQ
masses inevitable. This is particularly relevant when considering concrete models. As an example,
in GUT models the coupling λ̂qq is connected to gauge couplings. We, however, are considering
a simplified approach in which the couplings are free parameters and have to be chosen to fulfill
experimental constraints. Therefore, we set λ̂qq = 0 in the following analysis to satisfy bounds from
proton decay. Furthermore, regarding direct searches this marks a conservative choice of parameters
as non-vanishing λ̂qq couplings would decrease the branching ratios of interesting decay channels such
that direct constraints are effectively loosened.

Leptoquark production

At hadron colliders LQs can be produced singly or in pairs at tree level [276]. Most experimental
searches focus on pair production. The reason is that single production is strongly model-dependent
since the production cross section depends on the detailed LQ couplings. Pair production is instead
determined by the strong coupling constant.5 Hence, the pair production cross section is a function
of the LQ mass alone for all representations. In the following we will focus solely on pair production.
We note that the experimental bounds on LQs can be significantly improved by including single
production [277], but this is beyond the scope of this work.

The coupling of a scalar LQ S to gluons is uniquely determined by the kinetic Lagrangian,

L = (DµS)
†

(DµS) − m2
SS
†S, (6.33)

3Here, we do not show the exact numbers as only the orders of magnitude are important.
4Note that generally the processes B → K(∗)µ+e− and B → K(∗)e+µ− have to be considered as different decays.
5There are also contributions from a t-channel lepton exchange, but this should be suppressed by a ratio λ2/g2

s .
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where the gauge covariant derivative is given by Dµ = ∂µ − igsG
a
µT

a. Then the partonic cross section
is given by [278, 279]

σ̂(pp→ SS) = σ̂(pp→ gg → SS) +
∑

q

σ̂(pp→ qq → SS), (6.34)

where the cross sections for production from gluons or quark-antiquark pairs read

σ̂(pp→ gg → SS) =
πα2

s

96ŝ

{
β
(
41− 31β2

)
−
(
17− 18β2 + β4

)
log
|1 + β|
|1− β|

}
, (6.35a)

σ̂(pp→ qq → SS) =
2πα2

s

27ŝ
β3. (6.35b)

Here, β =
√

1− 4m2
S/ŝ contains the dependence on the LQ mass and ŝ is the partonic center-of-mass

energy.
The production cross section of vector LQs is more involved. Here, gauge invariance allows for

modifications of the couplings to gluons that are model-dependent. The most general Lagrangian
describing the interactions of vector LQs Vµ with gluons is given by [278]6

L ⊃ −1

2
V†µνVµν +M2

V V
†
µV

µ − igs(1− κ)V †µ G
µν Vν , (6.36)

where the LQ field strength tensor is written as Vµν = DµVν−DνVµ with the gauge covariant derivative
stated below eq. (6.33). The value of κ is model-dependent. If the vector LQ Vµ is part of a Yang-
Mills gauge field, as would be the case for a GUT-like UV completion, one has κ = 0. In our general
approach there are however no restrictions on κ. Therefore, we will consider two different scenarios
for vector LQ production

Yang-Mills: We assume κ = 0.

Minimal production: κ is chosen such that the production cross section is minimized. This marks
the most conservative option.

The expressions for the production cross sections with full κ dependence are given in ([278]).
To obtain the total production cross section the partonic ones have to be convoluted with parton

distribution functions

σtot(pp→ LQ LQ) =
∑

X

∫
dx1 dx2 fX(x1) fX(x2) σ̂(pp→ X → LQ LQ), (6.37)

where X denotes production from gluon and quark-antiquark pairs. For this we implemented CT14
NNLO parton distribution functions [280] using LHAPDF6 [281].

Leptoquark decay

Pair produced leptoquarks decay into two leptons and two quarks (see figure 6.4). Therefore the
experimental signature is either 2j + `+`−, 2j + /E or 2j + `± + /E where the missing energy indicates
neutrinos in the final state. Experimental searches typically assume that the LQs only couple to one
generation of quarks and leptons, but as long as there is no flavour tagging for the jets this is not a
problem for inter-generational couplings such as e.g. b− µ− LQ.

In the following we will assume that only those LQ couplings are non-vanishing which are sufficient
for generating effects in b → sµ+µ− transitions. In particular, will assume that the LQs will only
couple to second generation leptons and not to quarks of the first generation. Due to GSM invariance
this will lead to correlations with other decay channels involving e.g. top quarks. The experimental
searches that are included in the following analysis are:

• jjνν, bbνν, ttνν from ATLAS at 8 TeV [282],

6Note that there is also the possibility of a term V †µ G̃µν Vν where G̃µν is the dual gluonic field strength tensor.
Therefore, this terms would violate CP . We will assume CP invariance and neglect this term. Furthermore, on
the non-renormalizable level a dimension-6 operator of the form VσµGµνVσν could be present. Such an operator,
however, would have to be suppressed by a UV-scale ΛUV > mLQ, such that we expect the effects of such an operator
to be negligible.
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Figure 6.4.: Experimental signature of decaying pair produced LQs.

• jjνν from ATLAS at 13 TeV [283],

• jjµµ, jjνν from CMS at 8 TeV [284],

• jjµµ from CMS at 13 TeV [285],

and the relevant decay patterns for the LQ models, which follow from the interaction terms shown
in table 6.2, are given in table 6.5. We will further take the anomalies in b → s`+`− seriously and
assume that for each LQ, the Wilson coefficients take values given by the best fit points obtained in a
global analysis to b→ s`+`− data [1]. To be concrete, each LQ scenario predicts correlations amongst

the Wilson coefficients C
(′)
9,10 which are given in table 6.4. Except for the representations7 U1 and V2

these Wilson coefficients depend on two LQ couplings, λsµ and λbµ. For each coupling λsµ we fix the
other coupling, λbµ, in such a way that the best fit values of table 6.1 are reproduced. This allows us
to draw exclusion plots in the mass-coupling plane which are shown in figure 6.5. Fixing the one LQ
coupling via λsµ λbµ = const. has the advantage that the exclusion plots contain both limiting cases
λsµ � λbµ and λsµ � λbµ. We make the following observations:

• As the LQs S̃1 and R2 each generate only the relevant decay channel LQ → jµ, the exclusions
are independent of the couplings and only depend on the production rate, which is the same
for both LQ representations. In this case we find that LQ masses below around 900 GeV are
excluded.

• For the LQ R̃2 we find that LQ masses below roughly 1250 GeV are excluded if λsµR � λbµR . In

the opposite case, λbµR � λsµR , we find a significantly weaker bound of only 500 GeV.

• The LQ representation S3 is generally only weakly constrained. For λsµL � λbµL we find a bound

of 500 GeV and for λbµL � λsµL we find roughly 600 GeV.

• For the vector LQ U3 we have to differentiate between minimal production and YM-like pro-
duction. In the case of minimal production we find bounds of 700 GeV (for λbµL � λsµL ) and

roughly 1200 GeV (for λsµL � λbµL ). In the case of YM-like production the bounds are stronger
by roughly 200 GeV. We note that if both LQ couplings are of comparable size then the bounds
are weaker.

We want to stress again that these bounds are only valid under the assumption that only the couplings
needed for b → sµ+µ− transitions are non-vanishing. If one also allows for other couplings then the
bounds can be significantly weaker.

6.5. Leptoquarks and Bs → µµ

Until now we investigated the impact of LQs on b → s transitions induced by vector operators.
However, as table 6.4 shows, there are two LQs that give rise also to scalar operators. These are the
spin-1 representations U1 and V2. The first case is of particular interest as it predicts CNP

9 = −CNP
19

7We delay the discussion of direct bounds on the LQs U1 and V2 until section 6.5.
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Figure 6.5.: Excluded parameter regions at 95% CL for LQs by direct searches at the LHC assuming that
all LQ components are mass degenerate. The LQ couplings are fixed in such a way that the
generated Wilson coefficients coincide with the best fits to bs`` data. For the vector LQ U3 we
show exclusions for YM-like production as well as minimal production (doubly hatched).
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Scenario relevant decay channels

S̃1 S̃1 → jµ

R2 R
2
3
2 → jµ

R
5
3
2 → {jµ, tµ}

R̃2 R̃
− 1

3
2 → {jν, bν}

R̃
3
3
2 → jµ

S3 S
− 2

3
3 → {jµ, jν, bν, tµ}
S

1
3
3 → {jµ, jν, tν}
S

4
3
3 → {jµ, jν, tν}

Scenario relevant decay channels

U1 U1 → {jµ, tν, jν}

V2 V
1
3

2 → {jµ, jν}
V

4
3

2 → jµ

U3 U
− 1

3
3 → {jν, bν}

U
2
3

3 → {jµ, jν, tν}
U

5
3

3 → {jµ, tµ}

Table 6.5.: Relevant decay channels for experimental searches. Left: Scalar LQs, Right: vector LQs. With j
we denote jets possibly coming from all quarks but the top.

and therefore has the potential to explain the B → K(∗)`+`− anomalies. As we shall see, although
the constraints imposed in the last sections are already quite restraining there is still significant room
for NP in scalar operators that is not probed by the above processes. Generally, there are not many
observables that are sensitive to NP contributions to scalar operators. The most prominent one is
the decay Bs → µ+µ−. In the SM this is loop-, GIM- and helicity-suppressed making it a very rare
decay. All three suppression mechanisms do not have to be at work for NP contributions and so
large corrections could be generated. Furthermore, this decay is very clean theoretically as it does
not suffer from any hadronic uncertainty except for the Bs decay constant which is determined from
lattice QCD with an uncertainty of 2% (see e.g.
[286, 287]). Another observable sensitive to scalar NP is the “flat term” FH in B → Kµ+µ−, but in
accordance with [288] we find that this is not competitive with Bs → µ+µ−.

In this section we will investigate the impact of the process Bs → µ+µ− on LQ models and, in par-
ticular, highlight benefits of the mass-eigenstate rate asymmetry A∆Γ as it allows to lift degeneracies
in the scalar couplings that cannot be resolved by a measurement of the branching ratio alone.

Leptoquarks and scalar operators

As table 6.4 shows, there are only two LQ representations that can generate the scalar operators C
(′)
S,P

at tree-level. These are the spin-1 SU(2)L singlet U1 and the spin-1 SU(2)L doublet V2. It can be
understood that these are the only possibilities by considering the interaction terms given in table 6.2.
By their chiral structure scalar operators enforce that the LQ couples to four different fields, left- and
right-handed leptons as well as left- and right-handed quarks. Therefore, scalar operators can only be
generated if the LQ has left-handed λ̂L as well as right-handed couplings λ̂R. Due to their quantum
numbers this is only allowed for the two vector LQs U1 and V2.

An interesting question is whether scalar operators can be generated at the one-loop level via box
diagrams. For LQ representations that only allow for one interaction term, box diagrams involving
two LQs can only generate vector operators as only two different fields (modulo flavour indices) can
appear as external states.8 By a similar argument one sees that if a second interaction term exists
which contains up-type quarks one cannot generate the correct semi-leptonic operators. To obtain the
needed number of external fields one would have to include a W boson or Higgs in the loop, as these
can change singlet to doublet or up-type to down-type. A W boson exchange necessarily leads to a
neutrino inside the loop such that the needed helicity flip for a scalar operator cannot be generated.
As a last possibility there are box diagrams involving one LQ and one Higgs exchange. These are,
however, strongly suppressed by the small Yukawa couplings of the leptons. An explicit calculation
shows that contributions are indeed numerically completely negligible. Hence, we conclude that the

8As an example consider the LQ R̃2 that couples dR to µL. The only semi-leptonic operator that can be written down
is (dLγ

µdL)(µLγµµL) which due to its chiral structure has to have a vector interaction.
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U1 V2

CNP
9 − 1

2Nλ
sµ
L λbµ ∗L

1
2Nλ

bµ
L λsµ ∗L

C ′9 − 1
2Nλ

sµ
R λbµ ∗R

1
2Nλ

bµ
R λsµ ∗R

CNP
10

1
2Nλ

sµ
L λbµ ∗L

1
2Nλ

bµ
L λsµ ∗L

C ′10 − 1
2Nλ

sµ
R λbµ ∗R − 1

2Nλ
bµ
R λsµ ∗R

CS = −CP NλsµL λbµ ∗R m−1
b NλbµR λsµ ∗L m−1

b

C ′S = C ′P NλsµR λbµ ∗L m−1
b NλbµL λsµ ∗R m−1

b

Table 6.6.: The bsµµ Wilson coefficients in the two LQ models in terms of mass-basis couplings. The su-
perscript “NP” denotes the new physics contribution. The normalization factor N is defined in
(6.7).

relevant scalar operators cannot be generated at one-loop level such that it suffices to consider only
the cases U1 and V2.

Using the SMEFT fixes correlations between the scalar operators of the form [289]9

CS = −CP , and C ′S = +C ′P . (6.38)

Summarizing table 6.4, the results on the bsµµ Wilson coefficients for the two relevant LQ represen-
tations are shown in table 6.6. An important result is that in both scenarios the Wilson coefficients
are correlated via

m2
b CS C

′
S = −4CNP

10 C ′10 = −4CNP
9 C ′9. (6.39)

Fits to B → K(∗)µ+µ− decays only constrain vector Wilson coefficients, i.e. effectively the products
λsµL λbµ ∗L and λsµR λbµ ∗R whereas the ratios of these couplings are unconstrained. Then, one could for

example consider a scenario in which the coupling λbµR vanishes such that the left-handed couplings
are chosen to fulfill the B → K(∗)µ+µ− constraint and λsµR effectively controls an arbitrary amount
of NP in CS = −CP .

The decay Bs → µ+µ−

The rare decay Bs → µ+µ− is a key observable for constraining scalar operators since contributions
from vector NP are helicity suppressed. Another feature is the sizable width difference of the Bs
system [149],

ys =
∆Γs
2Γs

= 0.065± 0.005, (6.40)

which makes the effects of meson-antimeson mixing significant. Consequently, the time dependence
of this decay becomes measurable allowing for a larger number of observables to disentangle NP
contributions.

In this section we briefly review the observables accessible in the Bs → µ+µ− decay. For a more
detailed discussion we refer e.g. to [141, 290]. Since it cannot be expected to measure the helicity of
the muons in the foreseeable future, one considers the helicity-averaged decay rate [290],

Γ(Bs(t)→ µ+µ−) = Γ(Bs(t)→ µ+
Lµ
−
L ) + Γ(Bs(t)→ µ+

Rµ
−
R) (6.41)

∝
[
cosh

(
yst

τBs

)
+ Sµµ sin(∆Mt) +A∆Γ sinh

(
yst

τBs

)]
× e−t/τBs .

Depending on whether a dermination of the initial flavour of the Bs meson can be determined (tagged),
one can then measure the untagged (CP -averaged) time-dependent rate

Γ(Bs(t)→ µ+µ−) + Γ(B̄s(t)→ µ+µ−) ∝
[
cosh

(
yst

τBs

)
+A∆Γ sinh

(
yst

τBs

)]
× e−t/τBs , (6.42)

9This can be understood in a simple way by the fact that all four operators are generated in the SMEFT by a single
operators Oledq = (dRqL)(lL`R) which can have a flavour dependent Wilson coefficient.
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or the CP asymmetry in the decay rate,

Γ(Bs(t)→ µ+µ−)− Γ(B̄s(t)→ µ+µ−)

Γ(Bs(t)→ µ+µ−) + Γ(B̄s(t)→ µ+µ−)
=

Sµµ sin(∆Mt)

cosh
(
yst
τBs

)
+A∆Γ sinh

(
yst
τBs

) . (6.43)

Since the width difference in the Bs system is sizable the decay is characterized by three observables:

• The mass-eigenstate rate asymmetry

A∆Γ =
Γ(BH

s → µ+µ−)− Γ(BL
s → µ+µ−)

Γ(BH
s → µ+µ−) + Γ(BL

s → µ+µ−)
, (6.44)

where BH
s and BL

s denote the heavy and light mass eigenstates of the Bs system. This asymmetry
can be extracted from the untagged rate and it is of primary interest in the following. For poor
statistics, an experimental extraction of this observable is easier via an effective lifetime [161],

τµµ =

∫∞
0

dt t 〈Γ(Bs(t)→ µ+µ−)〉∫∞
0

dt 〈Γ(Bs(t)→ µ+µ−)〉 , (6.45)

where 〈Γ(Bs(t)→ µ+µ−)〉 = Γ(Bs(t) → µ+µ−) + Γ(B̄s(t) → µ+µ−) is the untagged rate. The
effective lifetime is connected to A∆Γ via

A∆Γ =
1

ys

(1− y2
s)τµµ − (1 + y2

s)τBs
2τBs − (1− y2

s)τµµ
. (6.46)

The SM predictions for these observables are:

ASM
∆Γ = +1, τSM

µµ =
1

1− ys
τBs = (1.615± 0.010) ps. (6.47)

In general, A∆Γ can take values only between −1 and +1.

• The time-integrated (and CP -averaged) branching ratio Br(Bs → µ+µ−). It is related to the
“prompt” branching ratio, i.e. the branching ratio in the absence of Bs-B̄s mixing, as [161]

Br(Bs → µ+µ−) =
1

2

∞∫

0

dt
〈
Γ(Bs(t)→ µ+µ−)

〉

=
1 +A∆Γys

1− y2
s

Br(Bs → µ+µ−)prompt . (6.48)

The SM expectation can be obtained from flavio [147] and is

Br(Bs → µ+µ−)SM = (3.60± 0.18)× 10−9. (6.49)

• The mixing-induced CP asymmetry Sµµ. The measurement of Sµµ requires flavour tagging,
therefore large amounts of data are needed such that small tagging efficiencies at LHC can be
overcome. In the SM one has SSM

µµ = 0. We will not consider Sµµ in the following.

The NP contributions to this decay are described by the weak Hamiltonian (3.61) where the only

relevant operators are O(′)
10 , O(′)

S and O(′)
P . In the absence of scalar NP this decay is only sensitive to

the difference C10 −C ′10. The prompt branching ratio (as used in (6.48)) and A∆Γ are given in terms
of the Wilson coefficients as

BR(Bs → µ+µ−)prompt =
G2
Fα

2

16π3
|VtsV ∗tb|2 f2

BsτBsmBsm
2
µ

√
1− 4

m2
µ

m2
Bs

∣∣CSM
10

∣∣2
(
|P |2 + |S|2

)
, (6.50a)

A∆Γ =
|P |2 cos(2φP − φNP

s )− |S|2 cos(2φS − φNP
s )

|P |2 + |S|2
, (6.50b)
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where the Wilson coefficients appear through the combinations

P =
C10 − C ′10

CSM
10

+
M2
Bs

2mµ

mb

mb +ms

(
CP − C ′P
CSM

10

)
, S =

√
1− 4

m2
µ

M2
Bs

M2
Bs

2mµ

mb

mb +ms

(
CS − C ′S
CSM

10

)
,

(6.51)

with S = |S| exp(iφS), P = |P | exp(iφP ), and φNP
s is a NP contribution to the B0

s − B̄0
s mixing phase

which is strongly constrained (see eq. (3.56b)). In the SM one has S = 0 and P = 1. Eq. (6.50a)
shows the helicity suppression of the branching ratio by the fact that it is proportional to the square
of the small muon mass. For the scalar operators this is again canceled in eq. (6.51), such that the
bounds on the scalar operators will effectively be much stronger than for the vector operators.

First experimental evidence for Bs → µ+µ− has been found by the LHCb [291] and CMS [269]
experiments individually in 2013, who subsequently combined their measurements of Bs → µ+µ−

and their searches for B0 → µ+µ− from LHC Run 1 data [164]. Recently, the LHCb collaboration
presented a measurement including Run 2 data [270], which is the first single-experiment observation
of the decay. For Bs → µ+µ−, the results of the two experiments have recently been combined
yielding [2]

Br(Bs → µ+µ−)CMS+LHCb 2017 = (3.00+0.55
−0.54)× 10−9, (6.52)

which is in reasonable agreement with the SM expectation (6.49). In the same measurement the
LHCb collaboration presented a first measurement of the effective lifetime [270], albeit still with
sizable uncertainties,

τLHCb
µµ = (2.04± 0.44) ps. (6.53)

A naive use of (6.46) allows to estimate ALHCb
∆Γ = 8+19

−7 which is still far outside the physical range
−1 ≤ A∆Γ ≤ +1, but is compatible with the A∆Γ = +1 or A∆Γ = −1 hypothesis at the 1.0σ or 1.4σ
level, respectively.

At the moment the experimental uncertainty on the Bs → µ+µ− branching ratio is dominated
by statistics and therefore can improve substantially with more data. For LHC Run 4 the LHCb
collaboration expects to accumulate an integrated luminosity of 50 fb−1. For this amount of data a
statistical precision of 0.19 × 10−9 on the branching ratio is expected [292]. After a high-luminosity
phase at LHC Run 5, LHCb would be able to collect an integrated luminosity of 300 fb−1. Naive
scaling then suggests a statistical uncertainty of 0.08 × 10−9, which means a 2% uncertainty on the
SM central value. At CMS it is expected to collect an integrated luminosity of 3000 fb−1 in the
same time, corresponding to a precision of 0.4 × 10−9 [293] To estimate the sensitivity for A∆Γ we
assume comparable uncertainties for the time-dependent decay rate, such that a 5% (2%) uncertainty
translates into an error of ±0.8 (±0.3) on A∆Γ for Run 4 (Run 5). Therefore, we will consider the
following scenarios

σexp(Bs → µ+µ−) = 0.19 , σexp(A∆Γ) = 0.8 , for 50 fb−1 (“Run 4”), (6.54a)

σexp(Bs → µ+µ−) = 0.08 , σexp(A∆Γ) = 0.3 , for 300 fb−1 (“Run 5”). (6.54b)

In figure 6.6 we show the current constraints on the scalar operators imposed by Bs → µ+µ−

observables. The measurement of the branching ratio (6.52) is shown by the red ring. This demon-
strates that there is a degeneracy, the position on the ring, that cannot be resolved no matter to what
accuracy the branching ratio will be measured. This stays true even if CS = 0 or C ′S = 0, such that
in these cases there are always two solutions that cannot be discriminated by a measurement of the
branching ratio alone. As the color shading in the same figure suggests these degeneracies can be
lifted by a measurement of A∆Γ. In the following we will illustrate in detail the potential of A∆Γ in
discriminating degenerate solutions in scalar operators.

Leptoquarks and Bs → µ+µ−

The LQ scenario U1 can explain present anomalies in semi-leptonic b → sµµ transitions [247] if
CNP

9 = −CNP
10 ≈ −0.61 and C ′9 = C ′10 ≈ 0 [1]. In the following we will focus on this case. We fix

the left-handed couplings such that CNP
9 and CNP

10 take the above value and keep the right-handed
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Figure 6.6.: Constraints on scalar operators from Bs → µ+µ− measurements. In red 1σ and 2σ contours
are shown that mark the constraints coming from the measurement of the branching ratio. The
green color shading specifies the values of A∆Γ, where white corresponds to a SM-like value. Due
to SM gauge invariance the Wilson coefficients are correlated via CS = −CP and C′S = +C′P
(see eq.(6.38)).

couplings as free parameters. By (6.39) we are then forced to set either the unprimed or primed scalar
operator to zero. We consider the following benchmark scenario:10

U1 : λsµL = λbµL = +

√
− 1

2 × (−0.61)

N (mLQ)
, λsµR = 0, λbµR free, (6.55)

which results in CNP
9 = −CNP

10 = −0.61, C ′9 = C ′10 = 0, CS = −CP (free), C ′S = C ′P = 0.
The LQ V2 predicts CNP

9 = +CNP
10 and therefore cannot explain the b→ sµµ anomalies. We assume

degenerate masses for the two components with charges 1
4 and 4

3 , and consider the following scenario:

V2 : λsµL = λbµL =

√
2× 0.1

N (mLQ)
, λsµR = 0, λbµR free. (6.56)

This setup corresponds to a rather small value of CNP
9 = +C10 = 0.1, vanishing primed Wilson

coefficients, and free CS = −CP .
In figure 6.7 we show the presently allowed parameter regions for both scenarios in the mass-

coupling plane. In the parameter space still allowed by experimental searches, one finds two solutions
that reproduce the current measurement of the branching ratio. One is SM-like while the other
corresponds to large NP effects.

Projecting into the future, a measurement of A∆Γ will be able to disentangle this situation. We find
that the NP solution gives rise to a large negative A∆Γ, such that already an estimation of its sign
can rule out this scenario. In figure 6.8 we present future projections for the mass vs. coupling plane.
We consider run 4 and run 5 of the LHC. We estimate the direct constraints by rescaling the present
exclusion limits by the square root of the luminosity ratio,

√
Ltoday/Lfuture, where Lfuture = 300 fb−1,

3000 fb−1 for Run 4 and Run 5, respectively. In high mass ranges, for which presently there are no
direct constraints, we conservatively extrapolate the current exclusion limits as constants. For the
branching ratio we assume the current SM value (6.49) with uncertainties (6.54). These projections
clearly show the power of an A∆Γ measurement in eliminating a degenerate solution as well as the
general impact of Bs → µ+µ− on the LQ parameter space.

In figure 6.8 one further sees the complementarity of indirect constraints and bounds obtained from
direct searches for these states at hadron colliders. Direct searches put a lower bound on LQ masses

10Note that the requirement of CNP
9 = −CNP

10 = −0.61 does not uniquely determine the values of the left-handed

couplings. Only the product of λsµL and λbµL is fixed, but not their ratio. We assume that both are of the same order.
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Figure 6.7.: The currently allowed parameter regions in the mass vs. coupling plane for the LQs U1 (left) and
V2 (right) in the scenarios (6.55) and (6.56). Inside the dark and light green bands, the present
value of the experimental branching ratio (6.52) is reproduced at 1 and 2σ, respectively. The
black //-hatched regions show the exclusions from present direct searches. The more densely
hatched region corresponds to minimal LQ production, while the more coarsely hatched region
is for YM-like production.

but cannot put significant limits on LQ couplings. Indirect observables like A∆Γ are sensitive to the
ratio of LQ couplings and masses. For the above scenarios we find that currently the direct bounds
on LQ masses are in the region of 1 TeV for U1 and 1.3 TeV for V2. If no signal will be found, these
can go up to around 1.5 TeV for U1 and 1.8 TeV for V2 after LHC Run 5. This still leaves much room
for NP.

Using the results of table 6.4 it is possible to give correlations between the decays Bs → µ+µ−

and B → K(∗)νν which are shown in figure 6.9. For the triplet LQs U3 and S3 one generally finds
RK = RK∗ such that the correlations of Bs → µ+µ− with B → Kνν and B → K∗νν are identical
and one expects an enhancement of RK = RK∗ while there is a slight suppression of the Bs → µ+µ−

rate. For the LQ R̃2 we find that Bs → µ+µ− is correlated positively with B → Kνν but negatively
with B → K∗νν. However, we also expect these effects to be too small to be detectable. In the case
of the LQ representation V2 we observe that Bs → µ+µ− is correlated to the b → sνν transition via
m2

1
3

CR = m2
4
3

C ′9 = −m2
4
3

C ′10. As NP contributions to C ′9 = −C ′10 are strongly constrained, one cannot

expect large contributions to B → K(∗)νν. Taking a benchmark value of C ′9 = −C ′10 = 0.25 (which
corresponds to the maximally allowed value at the 2σ-level found in [1]) and assuming degenerate
masses for the two LQ components, we only find a modification of about 2% relative to the SM
expectation. This, however, is only true if the LQ solely couples to muons. If couplings to other
lepton generations are allowed, then the effects can be much larger.

6.6. Summary

In this chapter we investigated the impact of recent measurements of b→ s`+`− decays on parameter
spaces of LQ models. We make the following observations:

• For all LQ scenarios there are tight correlations between the generated semi-leptonic four-fermion
operators as shown in table6.4. The LQ representations S3, U1 and U3 generate CNP

9 = −CNP
10

which is the favored option for explaining the b→ sµ+µ− anomalies. Possible hints for LFNU as
measured through RK can also be explained if the LQs dominantly couple to second generation
leptons.

• SM gauge invariance can be used to correlate b→ sµ+µ− and b→ sνν transitions. Generally, we
predict modifications of b→ sνν observables of a size that is unfortunately within the expected
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Figure 6.8.: Future constraints in the mass vs. coupling planes for the LQs U1 (left) and V2 (right) in
the scenarios (6.55) and (6.56). The first row is for the “Run 4” scenario while the second row
marks “Run 5”. The green 1σ- and 2σ-regions correspond to the anticipated future experimental
sensitivity of the branching ratio, assuming the SM central value (6.49). The black //-hatched
regions show the extrapolated exclusions from direct searches. The more densely hatched region
corresponds to minimal LQ production, while the more coarsely hatched region is for YM-like
production. The blue \\-hatched region would be excluded at the 2σ level by a measurement of
A∆Γ with SM-like central value.
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Figure 6.9.: Correlations between Bs → µ+µ− and B → K(∗)νν. Left: Bs → µ+µ− vs. B → Kνν. Right:
Bs → µ+µ− vs. B → K∗νν. The 1σ (transparent thick lines) and 2σ ranges are shown.

future experimental uncertainty for these decays. Only the LQ U3 can possibly give a measurable
effect.

• Currently, LFV in b→ s``′ transitions is only weakly constrained. In the LQ case it is possible
to bound the LFV decays with lepton flavour conserving ones.

• If the LQs couple to τ ’s then the experimental bounds are very weak such that large effects in
B → K(∗)νν are possible.

• Direct constraints on LQs vary strongly between the different representations. We find partic-
ularly strong bounds for vector LQs. The scalar LQ S3 is however only weakly constrained by
direct searches at the moment.

• The LQs U1 and V2 generate scalar Wilson coefficients. These can be constrained by the decay
Bs → µ+µ−, but a measurement of the branching ratio alone cannot lift all degeneracies in
the LQ couplings. The observable A∆Γ however is a powerful tool for eliminating degenerate
solutions.
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Conclusion7
Although the SM is extremely successful in describing the physics at energies as high as the ones
at the LHC there is good reason to believe that it is not the end of the story. Lacking concrete
experimental evidence for physics beyond the SM, the strongest motivations are theory-driven and
regard the origin of EWSB and flavour and the stability of the electroweak scale. In particular the
last point has pushed model building for the last decades. In recent years, experiments observed hints
for possible NP connected with semi-leptonic b → s transitions. In the light of this, many simplified
models have been proposed that try to explain the experimental anomalies by supplementing the SM
only by minimal amounts of NP. We have presented both approaches in this thesis considering CHMs
and LQs.

The electroweak scale can be stabilized if there are new strong interactions such that this scale is
generated as a result of dimensional transmutation. A successful framework for this idea are models
in which the Higgs boson appears as a composite bound state. The relative lightness of the Higgs can
further be introduced in a natural way if the NP sector connected with the new strong interactions is
subject to a global symmetry breaking from which the Higgs emerges as a NGB. By interactions with
the SM-like elementary sector these global symmetries can be broken explicitly, such that the Higgs
actually only is an approximate NGB that can obtain a mass dynamically via the Coleman-Weinberg
mechanism.

If there is a new strong interaction then one also expects that there are heavy composite resonances
at energies accessible at collider experiments. A phenomenologically successful framework for the
interaction of these resonances with elementary fields is given by partial compositeness. In this
one assumes linear mixings between composite and elementary fields such that SM fields, which
are identified with the lightest linear combinations, necessarily have a composite admixture. These
mixings also generate a potential for the NGBs at the loop level which, in turn, induces EWSB.

Demanding phenomenological success of such a model puts restrictions on model-building. To
protect EWPOs one introduces a custodial symmetry such that the minimal coset allowing for an
SU(2)L doublet Higgs is given by SO(5)/SO(4). A protection of Zbb couplings can be achieved by
choosing certain representations of the composite fermion resonances under the global symmetries.
For the above coset the minimal choice for the representations is the fundamental 5. Generally, as
we are working with non-renormalizable effective theories, the calculability of the Higgs potential
may not be given. To ensure this we are working with theories deconstructed from gauge theories on
extra-dimensional spacetimes. As a last ingredient we include the full flavour structure into the model
where we assume that the composite sector is invariant either under U(3) or U(2) flavour symmetries
that are slightly broken by the interactions with elementary fields to generate the flavour structure of
the SM.

We perform a dedicated numerical analysis of CHMs taking into account a large number of ex-
perimental constraints to have control over the global parameter space. In particular, we demand
compatibility with precision measurements of EWPOs and the Z width; we include Higgs physics,
CP violation showing up through the neutron EDM and contact interactions of light quarks. In the
flavour sector we include experimental results on meson-antimeson mixing and rare B decays. We
include direct searches for heavy resonances at hadron colliders, although these are not discussed in
detail in this work (we rather refer to [28]). The last and crucial constraint that we include is a realis-
tic EWSB through the Coleman-Weinberg effective potential that reproduces the correct Higgs mass
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and vev. This allows us for the first time to perform a global analysis of CHMs including all relevant
constraints at the same time while satisfying the correlations induced by the potential. Due to partial
compositeness and the large dimensionality of the problem we were forced to implement elaborate nu-
merical methods based on Markov Chain Monte Carlos on a high-performance computational cluster
to sample the parameter spaces of the models.

The flavour structure as well as the effective Higgs potential are induced by the interactions of the
composite and elementary sectors. Therefore, it is an interesting question whether this leads to non-
trivial correlations between both phenomena. As estimated through a spurion analysis and verified in
the numerical analysis, we do not find an obvious correlation between EWSB and flavour transitions
in these models. However, we are able to exclude an U(3)LC flavour structure since it is in conflict
with CKM unitary due to the large degree of compositeness of left-handed light quarks.

As expected we find that the main source of tuning in these models stems from the fact that a
part of the elementary sector (the top quark) should be made heavy while a field of the composite
sector (the Higgs) has to be made relatively light. Generally, we find that a fine-tuning better than
the percent level is achievable for symmetry breaking scales f roughly below the TeV range. This
shows that in the light of the current experimental status the main motivation for this model, giving
a solution for the fine-tuning problem, is still a reasonable one, although there is increasing tension
with naturalness if no resonances will be found.

Enlarging the minimal coset to the next-to-minimal one SO(6)/SO(5) introduces many new and
interesting features. Most importantly a new pseudoscalar pNGB η appears. Because of this the effec-
tive potential becomes two-dimensional and a vev for η can be generated. This gives new contributions
to EWSB such that, in particular, the vev of the doublet pNGB does not have to be small anymore.
We find a slightly improved but overall similar picture regarding the fine-tuning in this model. The
model based on the next-to-minimal coset gives rise to a limit in which it gets indistinguishable from
the minimal model, but away from this limit there are new features can arise. In particular, the vev of
η acts as a source of spontaneous CP violation. Therefore, large effects in neutron EDMs are generated
which can be a clear discriminator between the two models. The vev also leads to a mixing between
η and the Higgs which induces modifications of Higgs couplings. Flavour transitions, however, are
in any case similar to the minimal case which confirms the small impact of the potential on these
observables.

In recent years LQs have gained increasing theoretical interest as in these models one can give a
simple solution to the anomalies observed in b → s`+`− decays. Although LQs are a phenomenon
appearing in many models we take a more general approach and consider simplified models in which
the LQ is the only new field that is added to the SM. In this work we assume the standpoint that
the b→ s`+`− anomalies are in fact due to NP neglecting the possibility of a hadronic effect. Under
this assumption we investigated the impact on the related decays B → K(∗)νν and Bs → µ+µ−. It is
then interesting to see whether one can distinguish between different LQ scenarios (that allow for an
explanation of the b→ s`+`− anomalies) using these related decays.

AssumingGSM invariance of possible LQ contributions we find tight correlations between the dimuon
and dineutrino mode leading to rather strong bounds. Although, given the b → sµ+µ− anomalies,
we find different predicted values for the different LQ representations, the estimated experimental
uncertainty might not be enough to discriminate between the models using the dineutrino mode. If
the LQs couple to first or third generation leptons then the bounds are significantly looser. Especially
in the case of couplings to taus large effects are possible.

The rare decay Bs → µ+µ− is sensitive to scalar operators which are generated by two vector LQ
representations. We highlighted the particular benefit of the observable A∆Γ that in the not-too-far
future will be measured to a good accuracy and will allow to lift degeneracies in the determination of
Wilson coefficients that will not be resolvable by a measurement of the branching ratio alone.

Assuming the scenarios preferred by the b→ s`+`− anomalies we analyzed to current bounds given
by direct searches for LQs. In general, these bounds strongly depend on the considered LQ scenario
and on the values of the couplings. For certain scenarios (including one that allows to explain the
b→ s`+`− anomalies) we find that small LQ masses as low as 500 GeV are still allowed.

An interplay between theory and experiment is crucial for the search of NP. Without a clear signal for
a concrete NP scenario precise experimental measurements are essential for evaluating the still allowed
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parameter spaces of hypothetical models. Even if at some point there will be a signal, investigating
correlations between different experimental modes will be indispensable for differentiating between
models. With the coming runs of the LHC and the upcoming Belle II experiment the future looks
promising in that perspective.
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Appendix I

Group theory

In this chapter we summarize results on the group theory of the groups SO(5) and SO(6) which are
relevant for the analyses performed in chapters 4 and 5, respectively.

I.1. SO(5)

Generators

The group SO(5) has 1
2 · 5 · (5− 1) = 10 generators. Of these, six can be associated to the subgroup

SO(4) while the remaining 4 belong to the coset SO(5)/SOO(4). For our purposes it is helpful to
choose a basis for the generators in which the embedding of the subgroup SO(4) becomes transparent.
As the group SO(4) is isomorphic to SU(2)L × SU(2)R the basis of generators can be chosen in such
a way that it decomposes into the generators of these two groups. We use the basis

SO(5) : TA =


TaL, T

a
R,︸ ︷︷ ︸

SO(4)

Tâ(2,2)︸ ︷︷ ︸
coset


 , (I.1)

where the generators take the explicit forms [60]

[TaL]ij = − i

2

(
1

2
εabc

(
δbi δ

c
j − δbjδci

)
+
(
δai δ

4
j − δaj δ4

i

))
, (I.2a)

[TaR]ij = − i

2

(
1

2
εabc

(
δbi δ

c
j − δbjδci

)
−
(
δai δ

4
j − δaj δ4

i

))
, (I.2b)

[
Tâ(2,2)

]
ij

= − i√
2

(
δâi δ

5
j − δâj δ5

i

)
. (I.2c)

Fundamental representation

Relevant for this work is the 5-dimensional fundamental representation. Under the SO(4) subgroup
this decomposes as 5 = 4 ⊕ 1 = (2,2) ⊕ (1,1), where in the last step we used the SU(2)L × SU(2)R

language. This means that the fundamental decomposes into a bidoublet and a singlet,

5 =




[
Q++ Q+−

Q−+ Q−−

]

S0,0


 , (I.3)

where the indices denote the quantum numbers under T̂3
L and T̂3

R.
We now want to embed the bidoublet into the fundamental 5; this means we want to parametrize

the fundamental 5 through components with defined T3
L and T3

R quantum numbers. For this we note
that the coset operators form a bidoublet such that we can write

Q = QâTâ(2,2) = Q++ T++ +Q+− T+− +Q−+ T−+ +Q−− T−−, (I.4)
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where in the last step we introduced a basis of generators that have defined T̂3
L and T̂3

R quantum
numbers. This means we have to find a mapping between the generators on the LHS and the RHS
of the above equation. For this we note that, as generators are in the adjoint representation of the
group, the operators T̂3

L and T̂3
R act on them via the commutator

T̂3
L,RT :=

[
T3

L,R,T
]

= T3
L,RT− TT3

L,R, (I.5)

such that the generators on the RHS of (I.4) are defined via

T̂3
LT
±X = T3

LT
±X − T±XT3

L = ±1

2
T±X , (I.6a)

T̂3
RT

X± = T3
RT

X± − TX±T3
R = ±1

2
TX±. (I.6b)

A suitable choice for this is given by

T++ =
1√
2

(
T1̂ + iT2̂

)
, T−− =

1√
2

(
T1̂ − iT2̂

)
, (I.7a)

T+− =
1√
2

(
T3̂ + iT4̂

)
, T−+ = − 1√

2

(
T3̂ − iT4̂

)
. (I.7b)

Inverting these relations we find the sought embeddings

Ψ5 =




Q1̂

Q2̂

Q3̂

Q4̂

Q5̂




=
1√
2




Q++ +Q−−

iQ++ − iQ−−

Q+− −Q−+

iQ+− + iQ−+
√

2S




(I.8)

for the bidoublet Q and the singlet S.

I.2. SO(6)

Generators

The group theory of SO(6) is very nicely explained in [212]. SO(6) has 15 generators: the usual 10
generators of SO(5) (TaL, TaR, Tâ(2,2)) plus a bidoublet (Tâ(2,2)) plus a singlet (TS).

SO(6) : TA =


TaL, T

a
R, T

1, a
(2,2),︸ ︷︷ ︸

SO(5)

T2, â
(2,2), TS︸ ︷︷ ︸

coset


 , (I.9)

with

[TaL]ij = − i

2

(
1

2
εabc

(
δbi δ

c
j − δbjδci

)
+
(
δai δ

4
j − δaj δ4

i

))
,

[TaR]ij = − i

2

(
1

2
εabc

(
δbi δ

c
j − δbjδci

)
−
(
δai δ

4
j − δaj δ4

i

))
,

[
Tâ(2,2)

]
ij

= − i√
2

(
δâi δ

5
j − δâj δ5

i

)
,

[
Tâ(2,2)

]
ij

= − i√
2

(
δâi δ

6
j − δâj δ6

i

)
,

[TS ]ij = − i√
2

(
δ5
i δ

6
j − δ5

j δ
6
i

)
,

where a ∈ {1, 2, 3}, â ∈ {1, 2, 3, 4} and i, j ∈ {1, 2, 3, 4, 5, 6}.
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Representations and embeddings

Under the subgroup SO(5) the fundamental decomposes as 6 = 5 ⊕ 1. As the generators of SO(6)
were conveniently chosen to be a superset of those of SO(5), the embeddings of the fundamental
representation only have to be supplemented by an additional singlet,

6 =




[
Q++ Q+−

Q−+ Q−−

]

S0,0
1

S0,0
2




=
1√
2




Q++ +Q−−

iQ++ − iQ−−

Q+− −Q−+

iQ+− + iQ−+
√

2S1√
2S2



. (I.10)
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Appendix II

CCWZ formalism

The goal of this section is to give a most general description of CHM’s in four-dimensional theories.
For this it is most helpful to use the language of phenomenological Lagrangians, i.e. of theories
with a spontaneously broken global symmetry. The general classification of the structure of such
Lagrangians was given in 1968 by Callan, Coleman, Wess and Zumino (CCWZ) [32, 33]. We will
review their findings here and see in the following section how this general framework can be used to
describe CHM’s on a general ground.

The general procedure for writing Lagrangians with spontaneous symmetry breaking is based on
the fact that the latter is a misnomer. The symmetries are not broken but rather hidden in non-linear
realizations of the symmetry. Consider e.g. electroweak symmetry breaking in the Higgs sector. In the
broken phase we do not see the SU(2)L invariance looking just at the Higgs field h. But nevertheless,
this symmetry is still physical (otherwise one could not go to Rξ gauges); the Higgs field just does not

transform linearly under it. What transforms linearly is the combination Φ = (φ1 + iφ2, v + h+ iφ3)
t
,

that once was the full Higgs doublet. Thus, one can rephrase the problem. When considering theories
with a symmetry breakdown G/H one actually considers non-linear realizations of G that become linear
when restricted to the subgroup H.

The general classification of this problem was given in [32]. The main point here is the construction
of some standard form for describing the field content of this kind of theories. In general, we want
to consider theories with pseudo-Nambu-Goldstone bosons, i.e. theories with a Lagrangian L =
Linv +Lcov, that decomposes into an invariant part Linv, where the symmetry is realized non-linearly
but becomes linear when restricted to the unbroken subgroup H, and a covariant term Lcov that
describes an explicit breaking of G.

As already mentioned, we want our theory to superficially appear invariant under linearH-transformation.
Therefore, let us introduce fields ψ transforming under h ∈ H, 1

ψ → ψ′ = D(h)ψ, (II.1)

where D(h) is a representation. This describes the transformation under the unbroken subgroup
H ⊂ G, but what about the transformation under the total group? Let us introduce generators of
the global symmetry group G. With Ta we denote the unbroken generators forming the subgroup H,
while we write Tâ for the broken generators parametrizing the coset G/H. We are then able to write
a general element g ∈ G uniquely as

g = exp(πâTâ)︸ ︷︷ ︸
∈G/H

exp(uaTa)︸ ︷︷ ︸
∈H

. (II.2)

The (left) action of any g0 ∈ G on coset elements U := exp(πâTâ) ∈ G/H then takes the form

g0 U = g0 exp(πâTâ) = exp(π′âTâ) exp(u′aTa), (II.3)

where π′ = π′(π, g0) and u′ = u′(π, g0) are functions of the initial fields πâ and g0. Using this, we can
then construct realizations

g0 : π → π′(π, g0), ψ → D(exp(u′aTa))ψ, (II.4)

1Note that in general, the representation D(h) can be reducible. This means that ψ actually can be seen as a collection
of all the particles in the theory that transform linearly under H.
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that are exactly what we were looking for: for a general g0 ∈ G the transformation π → π′(π, g0) is
highly non-linear, but for the special case g0 = h ∈ H this reduces to linear representations.

To see this imagine for a short moment that g0 = h. Then we can write

U h→ hU = hU h−1 h, (II.5)

showing that everything transforms linearly, 2

πâTâ → π′âTâ = h
(
πâTâ

)
h−1, ψ → ψ′ = D(h)ψ. (II.6)

If, on the other hand, we transform with a general group element g0 ∈ G, the situation looks quite
different. We then have to write

U g→ g U (II.7)

= exp(π′âTâ) exp(u′aTa) (II.8)

= exp(π′âTâ) exp(u′aTa) exp(−u′aTa) exp(u′aTa) (II.9)

= g U h−1 h, (II.10)

indicating highly non-linear transformation properties

exp(πâTâ) → g exp(πâTâ)h−1, ψ → D(h)ψ, (II.11)

where h = h(π, g) ∈ H is some function of g ∈ G.
Let us summarize this. It is not enough to consider fields ψ in representations of H. To write

down a Lagrangian describing a symmetry breaking pattern G/H one additionally has to introduce
new degrees of freedom U = exp(πâTâ) taking values in the coset. These additional (but necessary)
degrees of freedom we identify with Goldstone bosons. These then have transformation properties

g : U → g U h(U , g)−1, ψ → D(h(U , g))ψ, (II.12)

where h(U , h) = h shows that these realizations become linear when restricted to unbroken subgroup.
It is the main result of [32] that this constitutes a standard parametrization, in the sense that one can
always describe symmetry breakdown by this form.

After discussing the occurring degrees of freedom let us now tackle the question of how to construct
Lagrangians that respect the above transformation properties. The general procedure for doing this
was described in [33]. The key question here is how to treat derivative terms that necessarily occur
in Lagrangian densities. We will see that just as in gauge theories one has to introduce some kind
of covariant derivatives that transform homogeneously under the given symmetries. In order to be
as general as possible, we consider the case that additionally to the global symmetry G that gets
broken down to its subgroup H there is also a local gauge symmetry Ggauge under which the fields can
transform. So we assume that the fields ψ couple to the gauge fields Vµ via gauge covariant derivatives
and we also allow the Goldstone fields to be charged under this symmetry,

Dµψ = (∂µ − iVµ)ψ, (II.13)

DµU = (∂µ − iVµ)U , (II.14)

where the exact form of these couplings depends on the representation of the fields under the gauge
symmetry.

Let us now define the so-called Maurer-Cartan form,

ωµ = iU†DµU . (II.15)

2For the π-field we can see this easily by

U → hU h−1 = h exp(πâTâ)h−1

= h

(
1 + π +

1

2
π π + . . .

)
h−1

= 1 + hπh−1 +
1

2
hπh−1 hπh−1 + . . .

= exp
(
hπh−1

)
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From (II.12) one sees that the Cartan-Maurer-form transforms similarly to a gauge field under H
(remember that g does not depend on x!):

ωµ = iU†DµU → i
(
g U h†

)†
Dµ

(
g U h†

)
(II.16)

= i
(
hU† g†

)
g
(
(DµU)h† + U (∂µh

†)
)

(II.17)

= h
(
iU†Dµ U + i∂µ

)
h† (II.18)

= h (ωµ + i∂µ)h†, (II.19)

where again h = h(U , g) depends non-linearly on g. We further define the projections of ωµ onto the
broken and unbroken generators

ωµ = iU†DµU =: dµ + Eµ = dâµT
â + EaµT

a (II.20)

with
dâµ = tr

[
ωµ T

â
]
, Eaµ = tr [ωµ T

a] . (II.21)

Since h∂µh
† ∈ H, we can deduce the transformation properties of the d- and E-components:

Eµ → h (Eµ + i∂µ)h†, dµ → h dµ h
†. (II.22)

We see that the dµ-components transform linearly while the Eµ-components transform like a gauge
connection. This suggests to define a covariant derivative for some field ψ that transforms in some
representation r of H (i.e. ψ → ψ + εa Tarψ infinitesimally, where Tar are there the generators in the
representation r) as

∇µψ =
(
∂µ − iEaµT

a
r

)
ψ, (II.23)

Then one can easily see that this covariant derivative transforms linearly

∇µψ = ∂µψ − iEµψ → ∂µ(hψ)− i
(
hEµ h

† + ih(∂µh
†)
)
hψ (II.24)

= (∂µh)ψ + h∂µψ − ihEµ ψ + h(∂µh
†)hψ (II.25)

= h (∂µ − iEµ)ψ + (∂µh)ψ + h(∂µh
†)︸ ︷︷ ︸

=−(∂µh)h†

hψ (II.26)

= h∇µψ (II.27)

If ψ also carries quantum numbers under the gauge symmetry Ggauge then we have to modify the
covariant derivative such that it is also covariant with respect to gauge transformations:

∇µψ = (∂µ − iEµ − iVµ)ψ. (II.28)

Having made these definition, we can now state the main result of [33], namely that the most general
Lagrangian realizing G non-linearly, but H linearly, is obtained writing down all terms consisting only
of dµ, ψ and ∇µψ that are superficially invariant under H using the transformations (II.22) and
(II.27). An important consequence of this is the fact that there is no explicit occurrence of U in the
invariant part of the Lagrangian. In particular, this means that one cannot write down mass terms
for the Goldstone bosons. Furthermore, Goldstone self-interactions are only included in the kinetic
term

L ⊃ tr
[
d†µd

µ
]

= (Dµπ
â)†(Dµπâ) + . . . , (II.29)

which shows that the self-interactions always carry powers of momentum. In turn, direct (Yukawa-
type) interactions between Goldstones and matter fields can only occur if the Lagrangian contains
terms breaking the G symmetry explicitly.
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Appendix III

Mass matrices of composite Higgs models

In this appendix we give the expressions for the mass mixing matrices that were used for the analyses
of the M4dCHM (see chapter 4) and the NM4dCHM (see chapter 5).

III.1. M4dCHM

III.1.1. Boson sector

The pNGB structure of the M4dCHM Lagrangian leads to mixings between the elementary and
composite vector bosons of equal charge. In particular, the composite triplets ρµL and ρµR as well as
the axial resonances aµ will have neutral and charged components mixing with the elementary Wµ

0

and Bµ0 gauge bosons. In addition, the neutral components will also mix with the U(1)X resonance
Xµ.

For the neutral and charged vector bosons we find the mass matrices given in table III.1.

By the explicit mixings introduced in the Lagrangian (4.3) one finds the following mass matrices for
the gluons and their composite resonances. By construction this does not spoil invariance under the
SM SU(3)c, which survives as a linear combination of the elementary and composite SU(3) symmetries
as can be seen from the fact that the gluon mass matrices exhibit a massless eigenvalue.

M2
Boson,Gluon = (III.3)




G0
µ ρGµ

Gµ0
1
2g

0 2
3 f2

G − 1
2g

0
3gGf

2
G

ρµG
1
2g

2
ρ3f

2
G


 (III.4)

III.1.2. Fermion sector

After EWSB the elementary quarks mix with all resonances carrying the same electric charge. For
the up- and down-type quarks we find the mass matrices given in table III.2.

For the exotically charged fermion resonances the mass matrices are independent of the Higgs field.
Thus, they do not give a contribution to the Higgs potential, which is clear since they do not mix
with elementary fields.

M
+ 5

3

fermion =




Q++
uR Q̃++

uR

Q
++

uL mU mY u

Q̃
++

uL 0 m̃U


 , M

− 4
3

fermion = s




Q−−dR Q̃−−dR

Q
−−
dL mD mY d

Q̃
−−
dL 0 m̃D


 (III.7)

Of course, the fields used above still carry flavour indices. As a consequence of this, all the entries
in the fermionic mass matrices actually are 3 × 3 matrices in flavour space, promoting the up- and
down-type mass matrices to 27× 27 objects. The explicit form of the entries is model dependent and
will be given in appendix IV.

Since we took the leptons as purely elementary, their mass matrices are just diagonal taking the
SM values.
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M
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o
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n
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e
u
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=

(I
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.1
)

              

W
0

3
µ

B
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µ

0
1 2
g 0
f

2 1
0

−
1 2
g 0
g ρ
f

2 1
co

s2
(
h 2
f

)
−
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−
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√
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Table III.1.: Mass matrices for the neutral and singly charged bosons in the M4DCHM5.
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Table III.2.: Mass matrices for the up- and down-type fermioins in the M4DCHM5.
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III.2. NM4dCHM

In this section we give the explicit forms of the mass matrices of bosons and fermions in the NM4dCHM.
In the way they are presented here, the mass matrices depend on the scalar fields h and η. By this,
they are suitable for the calculation of the effective potential via eq. (2.51), which determines the vevs
of the scalar fields. In the end, the physical masses of the particles are given as the eigenvalues of the
mass matrices, where the scalar fields take their vacuum value, Mi(h = vh, η = vη).

III.2.1. Vector bosons

In the vector boson sector it is convenient to group the fields by their charge, such that there are
separate mass matrices for neutral and charged vector bosons. For the neutral fields the elementary
W 0 3
µ - and B0

µ-bosons mix with composite vectors via composite-elementary mixings, v0
W and v0

B . The
structure of the mass matrix is the following

M2
Z(h, η) =




W 0 3
µ B0

µ ρ3
Lµ ρ3

Rµ a3
1µ a3

2µ Xµ a4
1µ a4

2µ ρSµ

W 0 3
µ D0

1
v0 t
W

0

B0
µ v0 t

B

ρ3
Lµ

v0
W v0

B D0
2

ρ3
Rµ

a3
1µ

a3
2µ

Xµ

a4
1µ

0 D0
3a4

2µ

ρSµ




, (III.8)

where the diagonal elements are given by

D0
1 =




W 0 3
µ B0

µ

W 0 3
µ

f2
1 g

2
0

2

B0
µ

1
2

(
f2

1 + f2
X

)
g′ 20


 , (III.9a)

D0
2 =




ρ3
Lµ ρ3

Rµ a3
1µ a3

2µ Xµ

ρ3
Lµ

f2
1 g

2
ρ

2

ρ3
Rµ

f2
1 g

2
ρ

2

a3
1µ

f2
1 g

2
ρ

2

a3
2µ

f4
1 g

2
ρ

2(f2
1−f2)

Xµ
f2
Xg

2
X

2




, (III.9b)

D0
3 =




a4
1µ a4

2µ ρSµ

a4
1µ

f2
1 g

2
ρ

2

a4
2µ

f4
1 g

2
ρ

2(f2
1−f2)

ρSµ
f4
1 g

2
ρ

2(f2
1−f2)




(III.9c)
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and the (h- and η-dependent) composite-elementary mixings are

v0
W =




W 0 3
µ

ρ3
Lµ − 1

4f
2
1 g0gρ

(
chc̃

2
η + s̃2

η + 1
)

ρ3
Rµ − 1

4f
2
1 g0gρ (1− ch) c̃2η

a3
1µ

f2
1 g0gρ (1−ch)s̃η c̃η

2
√

2

a3
2µ − f

2
1 g0gρ shc̃η

2
√

2

Xµ 0




, (III.10a)

v0
B =




B0
µ

ρ3
Lµ − 1

4f
2
1 g
′
0gρ (1− ch)c̃2η

ρ3
Rµ − 1

4f
2
1 g
′
0gρ

(
chc̃

2
η + s̃2

η + 1
)

a3
1µ − f

2
1 g
′
0gρ (1−ch)s̃η c̃η

2
√

2

a3
2µ

f2
1 g
′
0gρ shc̃η
2
√

2

Xµ − 1
2f

2
X g
′
0gX




. (III.10b)

After the scalar fields assume their vevs the neutral boson mass matrices will have one massless and
one rather light (as compared to the scale f) eigenvalue. These we will identify with the photon and
the Z-boson, respectively. The mass matrix of the charged vector bosons takes a similar (but simpler)
form,

M2
W (h, η) =




W 0 +
µ ρ+

Lµ ρ+
Rµ a+

1µ a+
2µ

W 0−
µ D+

1 v+ t
W

ρ−Lµ

v+
W D+

2
ρ−Rµ
a−1µ
a−2µ



. (III.11)

Here, the charged vector bosons V ±µ are given as linear combinations

V ±µ =
1√
2

(
V 1
µ ∓ iV 2

µ

)
, (III.12)

where the 1 and 2 refer to the SU(2) indices of the vector triplets. The mass matrix has diagonal
elements

D+
1 =

(
W 0 +
µ

W 0−
µ

f2
1 g

2
0

2

)
, (III.13a)

D+
1 =




ρ+
Lµ ρ+

Rµ a+
1µ a+

2µ

ρ−Lµ
f2
1 g

2
ρ

2

ρ−Rµ
f2
1 g

2
ρ

2

a−1µ
f2
1 g

2
ρ

2

a−2µ
f4
1 g

2
ρ

2(f2
1−f2)




, (III.13b)

and composite-elementary mixings

v+
W =




W 0 +
µ

ρ−Lµ − 1
4f

2
1 g0gρ

(
chc̃

2
η + s̃2

η + 1
)

ρ−Rµ − 1
4f

2
1 g0gρ (1− ch)c̃2η

a−1µ
f2
1 g0gρ (1−ch)s̃η c̃η

2
√

2

a−2µ − f
2
1 g0gρ shc̃η

2
√

2



. (III.14)

This mass matrix also has a light eigenvalue which is the W -boson of the SM.

The mass matrices for gluons and their resonances are the same as in (III.4).
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III.2.2. Fermions

As for the vector bosons the fermion mass matrices are best grouped by the electrical charge of the
fields, i.e. there is a mass matrix for up-type as well as for down-type quarks and quark resonances.
The mass matrices for heavy resonances with exotic charges q = +5

3 and q = − 4
3 are the same

as (III.7).

The (h, η)-dependent mass matrix for up-type quarks is given as

Mu(h, η) =




u0
R Q+−

uR Q̃+−
uR Q−+

uR Q̃−+
uR Q++

dR Q̃++
dR S1

uR S̃1
uR S2

uR S̃2
uR

u0
L 0 ∆+−

QuL ∆−+
QuL ∆++

QdL ∆1
SuL ∆2

SuL

Q
+−
uL ∆+−†

QuR Mu
Q̃

+−
uL

Q
−+

uL ∆−+ †
QuR Mu

Q̃
−+

uL

Q
++

dL 0 Md
Q̃

++

dL

S
1

uL ∆1 †
SuR

Mu

S̃
1

uL

S
2

uL ∆2 †
SuR M̂u

S̃
2

uL




.

(III.15)
By construction, the left-handed elementary quarks mix with heavy composite states Ψ while the
right-handed ones mix with composites Ψ̃. Both composites mix via non-diagonal composite mass
matrices

Mu =




ΨuR Ψ̃uR

ΨuL
mU mY u

Ψ̃uL 0 mŨ


 , (III.16a)

Md =




ΨdR Ψ̃dR

ΨdL mD mY d

Ψ̃dL 0 mD̃


 , (III.16b)

M̂u =




ΨuR Ψ̃uR

ΨuL
mU mY u + Yu

Ψ̃uL 0 mŨ


 , (III.16c)

M̂d =




ΨdR Ψ̃dR

ΨdL mD mY d + Yd

Ψ̃dL 0 mD̃


 . (III.16d)
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The composite-elementary mixings carry the h, η-dependence. These are given as

∆+−
QuL =

(
Q+−
uR Q̃+−

uR

u0
L − 1

2∆uL

(
chc̃

2
η + 1

)
0

)
, (III.17a)

∆−+
QuL =

(
Q−+
uR Q̃−+

uR

u0
L

1
2∆uLc̃

2
η (1− ch) 0

)
, (III.17b)

∆++
QdL =

(
Q++
dR Q̃++

dR

u0
L −∆dL 0

)
, (III.17c)

∆1
SuL =

(
S1
uR S̃1

uR

u0
L − i√

2
∆uL (1− ch) s̃η c̃η 0

)
, (III.17d)

∆2
SuL =

(
S2
uR S̃2

uR

u0
L

i√
2
∆uLc̃ηsh 0

)
, (III.17e)

∆+−
QuR =


 Q

+−
uL Q̃

+−
uL

u0
R 0 i√

2

(
∆5
uR ((1− ch)s̃η c̃η) + ∆6

uRshc̃η
)


 , (III.17f)

∆−+
QuR =


 Q

−+

uL Q̃
−+

uL

u0
R 0 i√

2

(
∆5
uR ((1− ch)s̃η c̃η) + ∆6

uRshc̃η
)


 , (III.17g)

∆1
SuR =

(
S

1

uL S̃
1

uL

u0
R 0 −∆5

uR

(
c̃2η + chs̃

2
η

)
+ ∆6

uRshs̃η

)
, (III.17h)

∆2
SuR =

(
S

2

uL S̃
2

uL

u0
R 0 −∆5

uRshs̃η −∆6
uRch

)
. (III.17i)

The mass matrix for down-type states takes a form analoguos to (III.15). One can get it by replacing
u↔ d and +↔ − (for the SU(2)L × SU2R indices) in the up-type mass matrix.
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Appendix IV

Composite-elementary mixings

In this appendix we summarize the explicit form of composite-elementary mixings in the fermion
sector. The general form of flavour structures used in this work is discussed in section 2.2.3. For
CHMs it is assumed that the composite sector is subject to an exact flavour symmetry that is only
broken by interactions with the elementary sector. We consider two possibilities: left-compositeness,
in which left-handed composite-elementary mixings respect the symmetry while it is broken explicitly
by the right-handed couplings, and right-compositeness which marks the opposite case. The mixings
that respect the flavour symmetry always have to take the form of a unity matrix in the respective
flavour space1 The structures of mixings that break the flavour symmetries have to be determined by
a spurion analysis. For the case of a U(3) symmetry the breaking has to occur in terms of the SM
CKM matrix in order to reproduce the SM in the MFV case. Assuming a U(2) symmetry the mixings
are given by (2.85).

IV.1. M4dCHM

In the case of the M4dCHM we consider four flavour structures:

• In U(3)3
LC,

∆uL = ∆123
uL 1 , ∆†uR = V †CKM




∆1
uR

∆2
uR

∆3
uR


 , (IV.1a)

∆dL = ∆123
dL 1 , ∆†dR =




∆1
dR

∆2
dR

∆3
dR


 . (IV.1b)

Here, VCKM is the CKM matrix with 3 angles and 1 phase.

• In U(3)3
RC,

∆uL = V †CKM




∆1
uL

∆2
uL

∆3
uL


 , ∆†uR = ∆uR 1 , (IV.2a)

∆dL =




∆1
dL

∆2
dL

∆3
dL


 , ∆†dR = ∆dR 1 . (IV.2b)

1For the case of a U(2) flavour structure the “unity matrix” has the form diag(a, a, b).
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• In U(2)3
LC,

∆uL =




∆12
uL

∆12
uL

∆3
uL


 , ∆†uR =




cu∆1
uR −su∆2

uRe
iαu

su∆1
uRe
−iαu cu∆2

uR εu∆3
uRe

iφu

∆3
uR


 ,

(IV.2ca)

∆dL =




∆12
dL

∆12
dL

∆3
dL


 , ∆†dR =




cd∆
1
dR −sd∆2

dRe
iαd

sd∆
1
dRe
−iαd cd∆

2
dR εd∆

3
dRe

iφb

∆3
dR


 .

(IV.2cb)

• In U(2)3
RC,

∆uL =




cu∆1
uL −su∆2

uLe
iαu

su∆1
uLe
−iαu cu∆2

uL εu∆3
uLe

iφu

∆3
uL


 , ∆†uR =




∆12
uR

∆12
uR

∆3
uR


 ,

(IV.2d)

∆dL =




cd∆
1
dL −sd∆2

dLe
iαd

sd∆
1
dLe
−iαd cd∆

2
dL εd∆

3
dLe

iφb

∆3
dL


 , ∆†dR =




∆12
dR

∆12
dR

∆3
dR


 .

(IV.2e)
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Appendix V

Markov Chain Monte Carlo techniques

In this appendix we want to lay out some basic properties of the Markov chains used in the numerical
scans of chapters 4 and 5. Markov chains are very similar to Brownian motion in the sense that they
describe a random walk through some space of dimension d. They are stochastic processes subject
to the so-called Markov property: the probability for the next step does not depend on the previous
steps. This means that at every step the Markov chain “starts new”.

Markov chains are usually used to sample some target probability distribution function f(~Θ) on

some space of dimension d with points ~Θ. The Markov condition ensures that in the limit of infinitely
many steps the distribution of samples coincides with the target function. In that sense, samples will
be mostly drawn in regions of high likelihood producing an effective pull towards regions of maximal
likelihood (or equivalently minimal χ2). The standard approach for this is via the Metropolis-Hastings
algorithm [102, 103]. The structure of this algorithm is very simple and it is shown in Table V.1. At

every step of the stochastic process one is located at a current point ~Θ0 and a new point ~Θ is drawn
randomly according to a given proposal density p(~Θ; ~Θ0). If the value f(~Θ) at the new point is smaller

than the value f(~Θ0) at the current point, then the step to the new point is made. Otherwise the new

step is only performed with a transition probability f(~Θ0)/f(~Θ) < 1. Then one starts again. This
algorithm has the property that the chain does not go exclusively into the direction of the minimum of
f , but there is also a non-vanishing probability to go to a point with worse f value. This is important
for sampling the parameter space.

A crucial object for this procedure is the proposal density p(~Θ; ~Θ0). Its concrete form depends
very much on the target function f that is to be sampled. Imagine that f has a minimum with some
intrinsic “width” w. If the proposal density mainly suggests new points ~Θ with ‖~Θ− ~Θ0‖ � w, then
the chain will almost always “jump over” the minimum and it will be hard to find good points. On
the other hand, if the proposal only gives new points with ‖~Θ − ~Θ0‖ � w, then the Markov Chain
will have to make a large number of steps until it reaches the minimum. A priori the target function
f is unknown and one has no information on how to choose the correct proposal density. The solution
to this problem is to use adaptive Markov chains implemented in the package pypmc [102]. The word
“adaptive” here means that the Markov chain by itself has to learn somehow the optimal form of the
proposal density [294, 295]. The details of such a self-adaptation are nicely explained in [296]. The
basics are to use a multivariate normal distribution centered around the current point

p(~Θ, ~Θ0) ∝ exp

(
−1

2

(
~Θ− ~Θ0

)t

Σ−1
(
~Θ− ~Θ0

))
. (V.1)

Then, adaptation means tuning the covariance Σ to the optimal value. After n1 steps Σ is updated

1In our scans we use n = 500.

1. Depending on the current points ~Θ0 generate a new point ~Θ according to the proposal density p(~Θ; ~Θ0).

2. Calculate the Hastings test ratio α = min
{

1, f(~Θ0)

f(~Θ)

}

3. Draw a random number u uniformly distributed in [0, 1].

4. If u ≤ α, accept the new point and set ~Θ0 = ~Θ. Otherwise do not make the step.
5. Continue anew from 1.

Table V.1.: Metropolis-Hastings algorithm
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by
Σ′ = (1− a)Σ + aS, (V.2)

where S is the covariance matrix calculated from the last n steps in the chain. The scale parameter a
is chosen such that the acceptance rate α, which is defined as the ratio of accepted steps to the total
number of attempted steps, is optimal. If α = 0, that means that no steps are made and the chain is
stuck. On the other hand, if α = 1 it means that every step is accepted meaning that probably the
step size is chosen too low. To obtain a good coverage of the parameter space the acceptance rate
optimally takes a value α ≈ 0.25 [296], showing that on average the chain does not stay at the best
fit point, but also has a tendency to sample the region around it.
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Appendix VI

Effective potential for NM4dCHM

In this appendix we will shortly present the calculation of the fermion contributions to the effective
potential that was used in the arguments of section 5.4. For simplicity we give the calculation only
for the top quark contributions, but the generalization to full flavour case is straight forward.

The starting point is the fermion Lagragian of the NM4dCHM shown in (5.24). This leads to the
mass matrices shown in appendix III.2.2. It is particularly useful to switch to a momentum space
representation of the Lagrangian (this was also done e.g. in [41, 55] and integrate out the heavy
resonances such that the effects of the composite sector are parametrized in terms of form factors,

L ⊂ t̄L /pΠL tL + t̄R /pΠR tR − (t̄L ΠLR tR + h.c.) (VI.1a)

= t̄L /p tL + t̄R /p tR + t̄L /p (ΠL − 1) tL + t̄R /p (ΠR − 1) tR − (t̄L ΠLR tR + h.c.) (VI.1b)

The form factors are readily calculated from the mass matrices (in the gauge basis) and result in

ΠL(p2, sh, s̃η) =
∑

I

M1I
1

p2 −MII
M∗I1 (VI.2a)

=
[
1−∆uL πu(p2) ∆†uL −∆dL πd(p

2) ∆†dL

]
− 1

2
s2
hc̃

2
η ∆uL

(
πSu(p2)− πu(p2)

)
∆†uL,

(VI.2b)

ΠR(p2, sh, s̃η) =
∑

I

MI1
1

p2 −MII
M∗1I (VI.2c)

=
[
1−∆5

uR πSu(p2) ∆5 †
uR −∆6

uR πSu(p2) ∆6 †
uR

]
+ c̃2η ∆5

uR

(
πSu(p2)− πu(p2)

)
∆5 †
uR

+
(
chs̃η ∆5

uR − sh ∆6
uR

) (
πSu(p2)− πu(p2)

) (
chs̃η ∆5 †

uR − sh ∆6 †
uR

)
, (VI.2d)

ΠLR(p2, sh, s̃η) =
∑

I

M1I
MII

p2 −MII
MI1 (VI.2e)

= i shc̃η ∆uL πLR(p2)
(
shs̃η ∆5 †

uR + ch ∆6 †
uR

)
, (VI.2f)

where M denotes the fermion mass matrix and the index I runs over the composite resonances. In
the above equations we introduced the functions

πq(p
2) =

cos2(θq)

p2 −m2
q1

+
sin2(θq)

p2 −m2
q2

πLR(p2) =
1√
2

(
sin(θSu) cos(θSu)

(
mSu1

p2 −m2
Su1

− mSu2

p2 −m2
Su2

)
− sin(θu) cos(θu)

(
mu1

p2 −m2
u1

− mu2

p2 −m2
u2

))
.

The angles θi originate from diagonalizing the submatrices (III.16) (see also [55, appendix D.2]).
With these results on can either directly use the results of [55] for the effective potential or one can

calculate the necessary one-loop vacuum diagrams using the vertices given in (VI.1b). In the end, one
obtains the result

Vf (sh, s̃η) ∼
∫

dpE

(2π)4
log tr

[
p2

E ΠLΠR + |ΠLR|2
]
, (VI.4)

where the index E denotes an integration over the euclidean momentum.
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