
An Educational Toolbox on Supervisory Control

Theory using MATLAB Simulink Stateflow
From Theory to Practice in one week

Claudius Jordan, Canlong Ma, Julien Provost

Technical University of Munich

Safe Embedded Systems

Garching bei München, Germany

ma@ses.mw.tum.de, provost@ses.mw.tum.de

Abstract— Since the Supervisory Control Theory (SCT) was

introduced by Ramadge and Wonham in 1987, many researchers

contributed to its theoretical basis and to the development of algo-

rithms. In academia, several self-contained tools are used to model

systems and analyze their behavior. Despite that, there are still too

few application tools of SCT in industry. Therefore, we developed

the MATLAB Supervisory Controller Implementation toolbox

(MSCI) for applying supervisory control theory, in order to have

a first step in bridging the gap. It is based on MATLAB Simulink

and Stateflow since MATLAB is a widespread and accepted envi-

ronment in the industry. Results from a student practical lab

prove that it is possible to teach SCT in a short time by using this

toolbox.

Keywords— Discrete Event System (DES), Supervisory Control

Theory (SCT), MATLAB, Simulink, Stateflow

I. INTRODUCTION

Supervisory Control Theory (SCT) is a method in the field
of Discrete Event Systems (DES) for automatically synthesizing
supervisors that restrict the behavior of a plant [1]. The greatest
feature is that SCT bases itself on the safety point of view, i.e.
what should the plant not do, and it differs from the traditional
liveness perspective, i.e. what should the plant do.

Since first introduced by Ramadge and Wonham in 1987 [1],
many researchers have contributed to the theoretical develop-
ment of SCT. Based on this pioneering work, an input/output
perspective was introduced in [2]. According to it, “a plant re-
ceives commands and reacts to these commands with re-
sponses.” As the main obstacle to the broad application of SCT
in industry, the discrepancy between the abstract supervisor and
its physical implementation has been identified in [3]. Espe-
cially, the gap between the event-based asynchronous automata
world and the synchronous signal-based systems was put into
focus. We refer readers to [4] for a recommended outline of the
state of the art in SCT.

Despite a significant number of contributions to the theoret-
ical field, “the number of applications of SCT in the industry [is]
still far from what most of the discrete event community ex-
pected fifteen years ago” [5]. That was in 2005. This statement
is still valid now. Moreover, three key features that have been
identified to be a major source of difficulty in implementing a
controller were listed in [5]. Recent research shows that the com-

putational complexity can be reduced and the so-called supervi-
sor can be calculated more efficiently [6]. But still, the problem
of modeling is critical and has not yet been overcome.

Various research groups are working on different approaches
to bridge the gap between theory and implementation of dis-
crete-event controllers and SCT [7, 8]. A summary of recent re-
sults is also presented in [9]. Most of these works consider the
implementation on Programmable Logic Controllers (PLCs).

There exist also several stand-alone tools that provide graph-
ical interfaces to model systems as automata and analyze the re-
sulting supervisor, which can be generated automatically. Some
go further and enable automatic PLC code generation. A non-
exhaustive selection of such tools is listed here: DESUMA [10],
IDES [11], Grail for Supervisory Control [12], Supremica [13],
TCT [14], Nadzoru [15], and DEStool [16].

All those tools address the improvement of user-acceptance
to help SCT spread outside the academic field in order to make
it easier to model systems and analyze their behavior. For teach-
ing purposes, as an example, Supremica [13, 17] is well suited
for students to experience the straightforwardness of modeling
systems.

However, if a user wants to apply SCT on a real example,
there is currently, to the best of our knowledge, no tool to cover
the modeling using an industrial standard language and control
of an existing system altogether. This paper presents MATLAB
Supervisory Controller Implementation (MSCI), a toolbox
based on MATLAB Simulink and MATLAB Stateflow. The
aim of this toolbox is to diminish the obstacle in applying SCT
in industry.

The paper is structured as follows: Section II provides back-
ground knowledge. The functionality and illustration from us-
ers’ perspective of the toolbox are presented in Section III and
IV, respectively. In Section V and VI, a demonstration case
study of the toolbox and the result of a student practical lab are
presented. Finally, a discussion of this work is given in the last
section.

II. BACKGROUND

A. Supervisory Control Theory

In contrast to continuous state systems, DES are systems
characterized by discrete states. A DES evolves at discrete time
steps through the occurrence of asynchronous discrete events

and thereby, changes its state. The behavior of the physical sys-
tem is denominated plant. Generally speaking, a plant model
contains possible physical actions and behavior of the system.

In order to control a plant, specifications, which are a set of
formalized requirements, are used to limit the set of the possible
plant’s actions. To meet the constraints defined in the
specifications, a control unit is used, which contains a so-called
supervisor constructed automatically from both the plant model
and the specifications. The interpretation of the system, plant,
and control unit, supervisor, as a closed-loop system is called
“input/output perspective” [2], displayed in Fig. 1.

Systems, such as production systems, contain sensors and
actuators. Sensor values are inputs for the supervisor; they are
imposed by the plant and represented as uncontrollable events,
i.e. 𝛴𝑢. On the other hand, actuator signals are outputs for the
supervisor; they are imposed by the supervisor and represented
as controllable events, i.e. 𝛴𝑐. Only events that relate to the input
or output should be used to define the model of the plant [5].

In our case, binary sensors are used, whose statuses are
represented as either True or False. Actuators are also treated as
binary components that are either On or Off. This information
can be modeled as Boolean values representing the electrical sig-
nals. In each cycle, the input signals are read and the output sig-
nals are set. However, SCT is based on events that occur asyn-
chronously at discrete time instances [1]. Thus, events are
derived by detecting rising and falling edges of those electrical
signals (Fig. 2). On the other hand, actuator signals are created
depending on events that correspond to those signals.

B. Representation of discrete-event systems as automata

Deterministic Finite Automata (DFA) can be used to
describe DES formally. An automaton is a device that is capable
of representing a language according to well-defined rules [18].

A DFA is a five-tuple G = 〈𝑄, 𝛴, 𝛿, 𝑞0, 𝑄𝑚〉 where:

 𝑄 is a finite set of states

 𝛴 is a set of event-labels, the alphabet

 𝛿: 𝑄 × 𝛴 → 𝑄 is a partial transition function

 𝑞0 ∈ 𝑄 is the initial state

 𝑄𝑚 ⊆ 𝑄 is a set of marked states

The simplest way to visualize an automaton is a directed
graph. In this paper, MATLAB Stateflow is used to create such
graphs that contain states and transitions with distinguishing la-
bels. Afterwards, they are translated to formal DFA. Then, the
Discrete Event Control Kit (DECK) [19] is used (more details
about DECK are presented in Sec. III-G). For detailed infor-
mation about MATLAB Stateflow, please refer to the official
MathWorks® documentations.

III. MATLAB SUPERVISORY CONTROLLER IMPLEMENTATION

TOOLBOX

In order to provide a deeper understanding and more practi-
cal experience for students, we started the development of the
MATLAB Supervisory Controller Implementation toolbox
(MSCI). We chose the development environment of MATLAB
because it is a well-known and widely used tool both in aca-
demia and industry. The long-term goal is to provide a toolbox
for educational purposes to help augment the acceptance of SCT,
as well as to provide executable use-cases for industry partners.

MSCI facilitates the configuration for lecturers so that only
a few parts need to be customized for their specific requirements,
i.e. communication with the physical system to be controlled.
MSCI provides a quick learning curve, reducing the time to un-
derstand the concept of SCT-based control. The ‘only’ need for
students is to model the system as automata in Stateflow. Eve-
rything else, i.e. conversion to formal language and SCT algo-
rithms, is taken care of by MSCI.

A. Overview

An overview of the workflow with MSCI is given in Fig. 3.
The physical system is taken as the input and modeled in State-
flow while a database needs to be created in order to obtain the
executable Simulink model. The creation process takes the
Stateflow models as a basis and compares them with the infor-
mation specified in the database to verify syntax correctness.
The executable model needs the information from the database
for the communication with the system because the events han-
dled within the control unit are mapped to electrical signals of
the system.

Fig. 1. Closed-loop system containing supervisor and plant

Fig. 1Fig. 1

Fig. 2. Conversion of signals to events

Fig. 3. Workflow with MSCI

B. Closed-loop system

The executable Simulink model is displayed in Fig. 4 with
its components. The inputs are the system’s sensor signals that
are converted into events by the ‘Signal-to-Event’ block and
then handed over to the ‘Event-queuer’ block, which queues the
events in case there are more than one event in one cycle and
buffers them such that the occurrence information does not get
lost. Consequently, every event is processed separately
afterward. The supervisor is the centerpiece of the control unit
that manages the behavior of the system by outputting events
that are converted to actuator signals by the ‘Event-to-Signal’
block. Depending on the setup, some events are directly passed
to the ‘Technological constraints’ block that contains the virtual
sensors and local controllers, which might directly command ac-
tuators without looping back to the supervisor.

C. System specific database

The toolbox requires an underlying database that contains all
the information about the available electrical signals in the plant,
whose names need to be specified. Only events based on those
names can be used for modeling. An exception is the events for
virtual sensors that do not need to be specified in advance.
Additionally to electrical signals, events for local controllers
need to be predefined in the database.

The communication between the supervisor and the plant
must be taken into account to decide what is needed for the
toolbox to read and write data. As described in Sec. V-C, our
platform uses Modbus TCP [20], but other protocols can also be
implemented.

D. Graphical user interface

The modeling takes place within the environment of
MATLAB Stateflow. Three different superstates are predefined,
namely ‘Plant’, ‘Specification’, and ‘Technological_Con-
straints’. They represent different parts of the model indicated
by their names. Within the ‘Plant’ superstate, all automata rep-
resenting the possible behavior of the system should be
collected. The ‘Specification’ superstate is the trunk for all spec-
ifications that restrict the behavior of the plant. Everything else,
such as virtual sensors or local controllers, should be located in
the ‘Technological_Constraints’ superstate. The superstates
with some exemplary automata are displayed in Fig. 5.

E. Further modeling concepts: Technological_Constraints

In addition to the plant model and the specifications, further
modeling concepts are available providing more freedom and
flexibility in modeling such as virtual sensors, local controllers,
and timing.

1) Virtual Sensor: The plant’s sensors perceive actual

changes in the system, their signals are transformed into events,

and finally the supervisor processes that information. The same

holds for virtual sensors. They are used to inform the supervisor

about events that are specified internally, which means that it

not necessarily has a physical sensor but can be calculated based

on other sensors value and timing. For example, in Sec. V-D a

virtual sensor based on timing is implemented; it ‘detects’ a

workpiece at a position, where there is no sensor located.

2) Timing in automata: Although the supervisor created

using SCT is purely reactive and only prevents controllable

events from occurring; it is possible to allow timing in certain

parts of the model. This is useful as it might be necessary to let

an action last for a specific period. Note that only in the models

for virtual sensors and local controllers timing is allowed,

whereas in the plant model and the specifications it is explicitly

forbidden.
The time information is kept in so-called timing transitions

that use the label after (T, sec), where T is a positive value indi-
cating the time in seconds to wait until the transition is fired.

Allowing the use of timing only in the ‘Technological_Con-
straints’-superstate permits to handle many timed systems
(where time is limited to a subpart of the whole systems) without
extra cost to introduce the concept of time in SCT framework,
which would lead to state-space explosion.

3) Local Controller: Controllable events allowed to occur

by the supervisor represent physical actions. Some subsystems

can do more than just one specific action; for them, the notion

of local controllers is introduced. The supervisor calls them

with a ‘start’ event, and when they have finished their process,

they respond with a ‘done’ event. By doing so, hierarchical de-

composition is possible. For example, in Sec. V-D a local con-

troller is implemented to command a machine and another to

control the movement of a pusher.

F. Conversion to formal representation

To successfully create a supervisor, the Stateflow model is
checked for syntax and interpreted according to the guidelines
given in Sec. IV-B. MSCI compares the labels of the Stateflow
objects and verifies if they are used correctly. Additionally, a
user-defined database is used to check whether every event is
mapped to its signal counterpart. Afterward, the graphical model
is transformed into its formal representation, and the supervisor
is obtained by the Discrete Event Control Kit (DECK) that is
introduced in the following section.

Fig. 5. Top-level superstates of the modeling environment

Fig. 4. Executable model on control unit in closed-loop

G. Discrete Event Control Kit

The MATLAB implemented Discrete Event Control Kit
(DECK) was developed for analysis and internal processing of
DES models [19]. Therefore, it is suitable for the MSCI toolbox.

The models are transformed from their graphical representa-
tion in Stateflow to the formal representation introduced in Sec.
II-B. Then, DECK creates the supervisor based on the user’s
models, which is finally implemented into the Simulink model
that embodies the control unit.

IV. USER’S PERSPECTIVE

In this section, the toolbox is presented in terms of a step-by-
step description of processes and interactions with users. In this
context, processes are the internal MSCI procedures as de-
scribed in Sec. III-F and Sec. IV-C, and interactions are the ac-
tual operations of users. We suppose that the students/users
should only be concerned about the modeling process and there-
fore be aware of the guidelines presented in Sec. IV-B. The prep-
aration of the teaching platform, which is outlined in Sec. IV-A,
is taken care of by the lecturer or experienced operator. We dis-
cuss the assumptions and constraints of the system for which we
developed the toolbox in Sec. V, where further details are given
on the connection of the Simulink model to the physical system.
Also, we briefly present what needs to be customized in order to
use the toolbox for other systems in Sec. IV-D.

A. Preparation

Before we can start to model and control any system, inter-
faces need to be defined and a way to communicate set up. Fur-
thermore, a database of all the signals and their names must be
prepared to serve as the basis for MSCI processes to ensure con-
cordance of the user’s model; the latter is compulsory for con-
verting into formal language. Events for local controllers should
be specified at the appropriate place before applying the conver-
sion routine.

B. Modeling guidelines

Modeling is the key process, and this is the one step the stu-
dent user should put all his/her effort in. MSCI provides the Cre-
ateChart function that creates a Simulink model with a State-
flow chart in it, which contains the three predefined superstates
described in Sec. III-D. In order to convert the Stateflow chart
properly into formal language, the user should respect some
rules regarding syntax.

1) States: There are three different levels of states as men-
tioned in Sec. III-D. Within those top-level superstates, autom-
ata are modeled: each represents a part of the plant, or a specifi-
cation, or a technological constraint. Those automata are State-
flow states containing states, and therefore, are also denomi-
nated superstates. We will refer to them simply as automata to
distinguish between the two types of superstates and thus high-
light the function of the latter. Each of them contains only one
automaton and the states within one automaton are called
substates. It is important to have unique names for each autom-
aton. However, the substates’ names can be arbitrary but must
be unique within a single automaton. All the automata aggre-
gated within the ‘Plant’ superstate model the behavior of the
plant, whereas the ‘Specification’ superstate contains all the
specifications. The automata in the ‘Technological_Constraints’

superstate need to have a prefix, either ‘VS_’ or ‘LC_’, to dis-
tinguish between each other.

2) Transitions: The rules for transition labels are derived
from the syntax of transition action types in Stateflow. Two
types of events, i.e. controllable and uncontrollable events, are
distinguished. Transitions that represent uncontrollable events
are labeled with the events’ names only. In Stateflow, this nota-
tion is used for ‘event triggers’, which means the transition is
fired when the event occurs. Transitions for controllable events
need curly brackets around the events’ names that represent
‘condition_actions’ in Stateflow. So when a transition is fired,
its event is commanded. The difference can be seen in Fig. 6.

In the database, all the physically represented signals need to
be defined. As we utilize event-based algorithms, rising and fall-
ing edges of signals are distinguished. In order to do so, prefixes
are added to the signal names. To indicate a rising edge, the pre-
fix ‘RE_’ is added, while ‘FE_’ stands for falling edges. Only
names that are defined in the database should be used. There is
only one exception to this rule: events that belong to virtual sen-
sors follow a specific syntax. Thereby, they are identified auto-
matically without defining them in advance. Events of virtual
sensors are not linked to signals and thus do not need to be
specified in advance: the prefix ‘vs_’ identifies this type of
events.

Timing transitions: It is possible to use after (T, sec) as tran-
sition label in models for virtual sensors and local controllers.
An example is given in Fig. 7. This type of transition is only
allowed within the ‘Technological_Constraints’ part and forbid-
den in the other parts as outlined in Sec. III-E2.

3) General remarks: It is mandatory to abide the syntax that
is presented here. The conversion process and its verification
subroutines expect those specific prefixes. An error is reported
if some unexpected label is found.

All above is the basis for users to start modeling. The ad-
vantages of those rules are the guidance for the user and the free-
dom that remains to model a system. The compulsory predefini-
tion of signals supports the structured modeling process and en-
sures that any event used has its signal counterpart and vice
versa.

C. Executable Model

Once the modeling process is finished, the user calls the Cre-
ateModel function, which creates a Simulink model that embod-
ies the controller. A supervisor is obtained on the basis of the

Fig. 7. Example for timing transition

Fig. 6. Difference between uncontrollable and controllable events

Stateflow model as discussed in Sec. III-F, which is then
integrated into the Simulink model that manages the input and
output of signals, conversion from signals to events and vice
versa, the queuing of events that occur in the same cycle, and
most importantly the supervisory control. Together with the
technological constraints, the control is applied using SCT.

D. Customization

Besides setting up a system that is capable of communicating
with the control unit in a closed-loop way, the lecturer needs to
set up a database mapping signals and their names to their coun-
terpart. In addition, the information for the control unit how to
read and write signals needs to be provided. The chosen com-
munication protocol needs to be implemented in MATLAB, and
the path to the database, which can be a Comma-Separated Val-
ues (CSV) file, should be adjusted. A more compliant way to
customize the communication and database is under develop-
ment.

V. CASE STUDY

The MSCI toolbox has been applied to a didactic platform as
a case study.

A. Didactic platform

The hardware platform presented in Fig. 8 is supplied by
Fischertechnik®. The biggest advantage of this type of hardware
is to enable students to observe the consequences of their models
at once without worrying about any physical damage they may
cause to the plant or to themselves. The system is quite complex
with regard to number of inputs, outputs, and subsystems that
can be executed in parallel (ca. 300 IOs and 12 subsystems).

B. Hypotheses

We propose the following hypotheses for the closed-loop
system:

H1: The plant is much slower than the controller, i.e. the con-
troller is fast enough to ensure a correct reaction time for the
plant under control.

H2: An event can only occur once during a sampling time.

H3: The order of events that occur within one cycle is not
important.

H4: The control unit processes events before their next oc-
currence.

H5: The supervisor on the controller evolves synchronously
with the plant.

C. Communication

For any system, signal interfaces need to be defined, and the
communication between plant and controller needs to be
established. Various possibilities are available to fulfill this task.
Here, Modbus TCP (using Java Modbus [20] as an implementa-
tion) is used to communicate between the user’s application and
the plant’s control module. A drawback of this approach is that
it cannot satisfy hard real-time constraints. Moreover, exact syn-
chronization is not achievable due to time delays. For the desig-
nated purpose and with the assumptions declared above, the cy-
cle time is small enough for the characteristics of our system.

Unique IP addresses are assigned to the Remote Input Output
Modules (RIOM), and the coils on the modules can be
unambiguously identified. As long as there are no contradictory
assignments of outputs imposed by different control units, mul-
tiple users can have access to them.

D. Illustrative example

The model size grows exponentially with the number of in-
puts, outputs, and subsystems, which makes it inconvenient to
fully present a large scale system like the didactic platform
shown in Fig. 8. In the following, one part of a subsystem, In-
dexedline1 (IL1), is displayed as an example in Fig. 9. The input
and output signals for the control unit are displayed in Fig. 10.
They are specified in the underlying database.

The input and output events that are taken into account by
the supervisor are displayed in Fig. 11. The external events are
obtained from the signal names given in Fig. 10 by adding the
prefixes ‘RE_’ and ‘FE_’ as outlined in Sec. IV-B. The internal
events are defined by the user and need to be specified in the
database as discussed in Sec. III-C. The events used by local
controllers are obtained in the same way as external events in the
supervisor.

Fig. 8. Overview over the didactic platform at the SES department

Fig. 9. Indexedline1

Fig. 10. Input and output signals of the control unit

1) Plant: The subsystem presented here is the first half of the
so-called ‘Indexedline1’. It contains two conveyor belts (B1 and
B2), one machine (Mach1), two light switch sensors (ls1 and
ls2), one pusher subsystem (Push1) and one bi-stable separating
unit (Su1out).

The pusher subsystem contains a two-way motor with the
two signals Push1R_IL1 and Push1E_IL1 and two end position
detectors (ps1R and ps1E). The separating unit is also referred
to as a stopper and provides two signals, Su1outR_IL1 for its re-
traction and Su1outE_IL1 for its extension. For the sake of sim-
plicity, the conveyor belts can only turn in their positive direc-
tions, i.e. they transport the workpiece forward. The correspond-
ing signals are B1p_IL1 and B2p_IL1. The machine is controlled
by the signal StartMach1_IL1. The light switch sensors provide
the signals ls1_IL1 and ls2_IL1. The pusher can move forward
and backward and the subsystem contains two end position sen-
sors with signals ps1R_IL1 for the retracted and ps1E_IL1 for
the extended position. The supervisor does only care if the
pusher is currently ‘idle’. Thus, it can be activated by the event
ActivatePush1_IL1, whereas the actual movement procedure is
defined in a local controller. The models for B1 and Push1 are
given in Fig. 12 and Fig. 13, respectively.

2) Specification:

S1: The conveyor belt 1 should start after a workpiece is de-
tected by light switch sensor 1.

S2: The conveyor belt 1 should stop when the virtual sensor
detects a workpiece.

S3: The pusher should be activated when the virtual sensor
detects a workpiece.

S4: The conveyor belt 2 should start when the pusher pushes
a workpiece to it.

S5: The conveyor belt 2 should stop when light switch sensor
2 detects a workpiece.

S6: The machine 1 should start when conveyor belt 2 is
switched off and the stopper is extended. A virtual sensor can
detect if that condition is satisfied.

S7: The separating unit should retract after the machine has
finished.

S8: The belt 2 should start after the machine has finished.

S9: The separating unit should extend when the pusher is ac-
tivated.

S10: The conveyor belt 2 should stop after the workpiece has
left the subsystem. A virtual sensor can detect that.

More specifications can be used to enable the transportation
of workpieces through the system. The ones listed here indicate
the straightforwardness of the SCT approach and the Specifica-
tion S1 is shown as an example in Fig. 14.

S2, S3, and S9 are all triggered by the activation of the
pusher represented by the virtual sensor event vs_b1push1,
which thereby can be modeled together or separately. Here, S2
and S3 are combined in ‘S2_S3’, whereas S9 is kept separate as
depicted in Fig. 15.

Fig. 15. Model of S2 and S3 combined, and S9 separately

Fig. 14. Model of S1

Fig. 12. Plant model of B1

Fig. 13. Plant model of Push1

Fig. 11. Input and output events of the supervisor

S5 and S10 both specify situations when B2 should stop.
Therefore, they are modeled together as ‘S5_S10’, which is
shown in Fig. 16. Similarly, S4 and S8 are merged together be-
cause otherwise the supervisor would prevent the controllable
event until both conditions have been satisfied, which is not
desired.

3) Technological Constraints: For the pusher, there is no
sensor that detects if the workpiece, which should be transported
to it via the conveyor belt 1, has already arrived. In such a case,
a virtual sensor can be used. For example, it can be assumed that
after 1.5 seconds the workpiece should have reached the desired
position and after that period the event vs_b1push1 can occur.
The model for this virtual sensor is given in Fig. 17.

Mach1 is a subsystem that is only started by the supervisor
commanding the event StartMach1_IL1. The local controller of
Mach1 then starts a desired sequence as depicted in Fig. 18.
When it is finished, it produces the event doneMach1_IL1.

As mentioned above, the pusher is also modeled as a local
controller and its model is given in Fig. 19.

VI. PRACTICAL LAB RESULTS

In October 2016, a one-week practical lab using MSCI and
a didactic platform was carried out as an elective subject for
master students in the department of mechanical engineering.

Students from various study programs (e.g. mechanical en-
gineering, mechatronics, aerospace and power engineering) took
part in this lab, two-thirds of which had no previous knowledge
of SCT.

The students formed groups of 2 persons. The task of each
group was to model and control a subsystem of the platform in
Fig. 8. They were expected to understand the basic idea of SCT
and use it to control a real platform.

A. Global schedule

The lab takes 40 hours (plus an optional introduction lecture
with 4 hours).

On the first day, the students learn the basic theory
knowledge of SCT, in which a few simple examples of plant
model and specifications were given.

Then, the students spent four days designing their own spec-
ifications, formalizing them into Stateflow models, checking
and modifying the models connecting to the platform.

B. Performance evaluation

In the end, the result of each group was evaluated according
to a demonstration on the platform, the Stateflow models, a writ-
ten report, and an oral exam.

The evaluation shows that all students successfully obtained
one or several valid functional models and they grasped the fun-
damental idea of SCT through only one week of practice.

Therefore, all students passed the lab assessment, which con-
forms to lecturer’s expectation.

C. Student feedback

All students were requested to give their feedback about the
lab. Following are some excerpts:

 “We had an intense and productive week, and we
achieved the main goals of this lab while enjoying.”

 “The fact of having a real model to try our system
has motivated us to try to get the best results.”

Fig. 16. Model of S5 together with S10

Fig. 17. Virtual sensor model

Fig. 19. Local controller model of Push1

Fig. 18. Local controller model of Mach1

 “We furnished a quite good work with good state
flows because we use virtual sensors and local con-
trollers in a good way.”

 “Implementing a counter of the current position or
the number of released workpieces in an outflow
would have been very helpful. However, the event-
based approach makes this implementation rather
complicated.”

 “A disadvantage of SCT is: a centralized approach
to create a supervisor (by brute force) cannot over-
come a state space explosion scenario in a complex
process.”

 “SCT is suitable for controlling equipment with a
large number of freedom, i.e. different tasks are
done by different actuators. But if several tasks
have to be done by only one actuator, a lot specifi-
cation is needed.”

VII. CONCLUSION

This paper presents the MSCI toolbox and its current capa-
bilities. The lecturer needs to set up the communication with the
system and prepare a database that allows the input signal from
sensors and control signals to actuators. Students can then start
to model the system based on that predefined database. The
actual control of the plant is then performed by the toolbox.

The central benefit is the incorporation into the MATLAB
environment, which makes it easy for students to start modeling
a system in an environment they already know. Almost immedi-
ately the students get feedback on their models by looking at the
plant’s behavior and are therefore granted deeper knowledge of
the impact of changes and the way they model their system. In
that way, students can rapidly be given a broaden experience
with SCT in an almost playful manner, applying their knowledge
not only to a pure software simulator interface.

The first application of this toolbox in a student practical lab
shows the success of teaching SCT in a short time.

Outlook

The development of this toolbox is still in progress and func-
tions will be added to the toolbox in order to improve its usabil-
ity and further increase the value for users.

The modeling process often requires many iterations driven
by trial and error because the user is sometimes not aware of the
full impact of his specifications, which sometimes lead to too
restricted behavior. A ‘simulator’ can be implemented that im-
poses events, which are triggered by the user, on the Stateflow
model and displays its evolution.

At the moment, a cycle time of 80 ms is achieved that can be
reduced by optimization of the implementation. Additionally,
the modeling boundaries, e.g. maximal number of states or max-
imal size of the model, will be explored.

REFERENCES

[1] P. Ramadge and W. Wonham, "Supervisory control of a class of discrete

event processes," Analysis and Optimization of Systems, vol. 63, pp. 475-

-498, 1984.
[2] S. Balemi, "Control of Discrete Event Systems: Theory and Application,"

1992.

[3] M. Fabian and A. Hellgren, "PLC-based Implementation of Supervisory
Control for Discrete Event Systems," 37th IEEE Conference on Decision

and Control (Cat. No.98CH36171), vol. 3, pp. 3305--3310, 1998.

[4] W. M. Wonham, "Supervisory Control of Discrete-Event Systems," 2016.
[5] J.-M. Roussel and G. Alessandro, "Designing Dependable Logic

Controllers Using the Supervisory Control Theory," Proceedings of the

16th IFAC World Congress, 2005.
[6] S. Miremadi and B. Lennartson, "Symbolic On-the-Fly Synthesis in

Supervisory Control Theory," IEEE Transactions on Control Systems

Technology, vol. PP, 2016.
[7] F. Basile, P. Chiacchio, and D. Gerbasio, "On the Implementation of

Industrial Automation Systems Based on PLC," IEEE Transactions on

Automation Science and Engineering, vol. 10, pp. 990--1003, 2013.
[8] M. V. Moreira and J. C. Basilio, "Bridging the gap between design and

implementation of discrete-event controllers," IEEE Transactions on

Automation Science and Engineering, vol. 11, pp. 48--65, 2014.
[9] R. J. Leduc, Y. Wang, and F. Ahmed, "Sampled-data supervisory control,"

Discrete Event Dynamic Systems: Theory and Applications, vol. 24, pp.

541--579, 2014.
[10] L. Ricker, S. Lafortune, and S. Gene, "DESUMA: A Tool Integrating

GIDDES and UMDES," 8th International Workshop on Discrete Event

Systems, pp. 392--393, 2006.
[11] K. Rudie, "The Integrated Discrete-Event Systems Tool," Discrete Event

Systems, 2006 8th International Workshop on, pp. 394--395, 2006.

[12] C. Reiser, A. E. C. da Cunha, and J. E. R. Cury, "The Environment Grail
for Supervisory Control of Discrete Event Systems," pp. 390--391, 2006.

[13] K. Akesson, M. Fabian, H. Flordal, and R. Malik, "Supremica - An

integrated environment for verification, synthesis and simulation of
discrete event systems," 8th International Workshop on Discrete Event

Systems, pp. 384--385, 2006.

[14] L. Feng and W. M. Wonham, "TCT: A Computation Tool for Supervisory
Control Synthesis," 8th International Workshop on Discrete Event

Systems, pp. 388--389, 2006.

[15] L. P. Pinheiro, Y. K. Lopes, and A. B. a. Leal, "Nadzoru: A Software Tool
for Supervisory Control of Discrete Event Systems," IFAC-

PapersOnLine, vol. 48, pp. 182--187, 2015.

[16] T. Moor, C. Baier, and X. Bai. "DEStool" [Online]. Available:
http://www.rt.techfak.fau.de/FGdes/destool/index.html

[17] K. Akesson, M. Fabian, and H. Flordal, "Supremica in a Nutshell – Draft,"
October, 2007.

[18] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event

Systems: Springer-Verlag New York Inc., 2006.

[19] S. H. Zad, "Discrete Event Control Kit," 2013.

[20] D. Wimberger and J. Charlton. Java Modbus Library (jamod) [Online].

Available: http://jamod.sourceforge.net

