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Abstract

Humanity is at a turning point. Accelerated advances in artificial intelligence bring us great

benefits but also pose great challenges. One is: are we going to keep our jobs? Factory

robots, news written by software, patient treatments decided by machines. On a positive

note, in this work we study ways to augment, not substitute, the labor of humans. We

observe it from the lenses of text mining. We apply it to make sense of the deluge of text

data in the fields of genomics. In particular, we look at three peer-reviewed cases that

combined the automation of text mining methods with the feedback of experts, ultimately

to support database curators in their work.

Firstly, we developed a web-based interface that allows experts to validate and improve

the automatic annotations (e.g. gene functions) of a text mining system. We showed that

this semi-automatic annotation approach was up to 2-fold faster than manual curation. We

demonstrated that the system can assist the curation of biomedical databases in a real setting:

multiple employees at FlyBase, the premier repository of the model organism Drosophila

melanogaster (a fly species), used the interactive interface to annotate hundreds of full-text

scientific publications in a cost-effective manner.

Secondly, we developed a new method to extract from the literature mentions of ge-

netic variations. Our method superseded the results of previous ones, uniquely found 33%

of all mentions, and was the only one to discover genetic variations written in natural lan-

guage. Previous methods primarily only treated simple mentions (e.g. “E6V”), whereas our

method was optimized to also understand complex natural language (e.g. “glutamic acid

was substituted by valine at residue 6”). This was made possible thanks to the iterative and

selective re-training of the automatic system, which was guided by users.

Lastly, we developed a text mining method to extract the native subcellular localization

of proteins. Compared to previous solutions, the new method boasted very high accuracy

(New=86% vs. Old=51%). We applied the system to mine the latest research; we verified

that 65%-85% of the text-mined protein localization annotations were correct and novel (i.e.

not known before). Assisted by this method, non-experts (we) were able to discover >100

novel annotations per work day.
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Ofner. Other students impacted me severely: Ashish Burkhard, Kujtim Rahmani, Madhukar

Sollepura Prabhu Shankar, Ankit Dubey, Sanjeev, Shpend Mahmuti, Vasileios Magioglou. I

am especially thankful to Aleksander Bojchevski: you worked with me in so many projects

and put me on pressure to become as good as you are. Also, I must thank the many students

of the datamining labs and bioinformatics practical courses: you were so good and brought

me many playful insights.

To all those who share open source and curate public databases: your immense and

selfless efforts make my work possible. Thank you for all the great communities: GitHub,

UniProtKB, PubMed, Stack Overflow, Wikipedia, Die Stabi in München. . .

I cannot forget my friends. My friend and partner Jorge Campos: you know well our

countless nights working around the clock. Thank you for your patience, support, and

hard work. Roc Reguant, el j*** catalán: your pesky reminders and much accountability

kept me motivated. Michael Eigster and Atanas Dimitrov: thank you for your support

in tha’ hustle; keep it real gangsters. Annalisa Tonni: you are simply, cute and lovely.

Katharina Popp: you were a dear companion in my life; thank you so much for your love.

Huang Xiao: thank you, thank you, thank you my dear Chinese friend. Habtom Kahsay:

your unorthodox thinking made me think twice and sometimes challenged my perceptions.

In the same vein, I must add Dmitrii Nechaev: you weird nerd. Also, thank you for the

proofreading! Pandu Raharja-Liu: you are awesome; but not as much as me. Sebastian

Wilzbach: :*. Dorothea Haider: thank you so much for your tireless feedback. Takuya

Kajiwara: thank you for the good times in Tokyo! Srushty Chafekar: you, girl. Other friends

impacted me indirectly: Klaus Schu, Jan Smarschevski. You will soon be my friend: Gary

Vaynerchuk; you infected my brain me vastly. Thank you Tim Ferriss. To Alejandro Gata:

you touched the fabric of my reality. All the great people at Toastmasters Prostmasters:

Thomas Dall, Ineke Vermeulen, Christian Sammut, Mel Kelly, Ranjith Venkatesh, Stefan

Gruß, Christopher Magyar, . . . Ultimately, I have an infinite list of people to thank to;

including all the good and “bad” encounters. My ænema, my essence, is defined by you.

Finally, my father: eres la persona que más quiero en este mundo. Me has enseñado a
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Chapter 1

Introduction

1.1 Problem overview: massive data, little knowledge

Everything is accelerating. We carry super computers in our pocket. We fuse into our

bodies smart sensors, robotic limbs, 3D-printed organs. Online transactions are global;

every click, every search, every rating is stored. YouTube videos, Instragram photos, tweets.

The problem with Big Data is not that is big. The problem is that is insatiably growing.

Exponentially (Hilbert and Lopez 2011).

Genomics, once on the information technology wagon, shows the same explosive growth.

DNA sequencing does not follow Moore’s law; it surpasses it doubling every seven months

(Fig. 1.1) (Stephens et al. 2015). Sequence data increased as sequencing costs shrunk. The

costs reduction also surpassed Moore’s law (Fig. 1.2), from the estimated e2.7 billion spent

in the human genome project, that took a decade, to the now a reality $1,000 genome, that

takes hours (Hayden 2014; NHGRI 2010).

The problem: we still do not grasp even a tiny fraction of this humongous data. The stan-

dard database for protein sequences and functional annotations, UniProtKB (The UniProt

Consortium 2017), lists as of time of writing over 80 million proteins. The existence of

the majority of proteins was only predicted (74%) or inferred from homology (24%). Less

than 1.7% of the proteins were evidenced experimentally (protein or transcript level evi-

dence). Moreover, nearly all proteins only have predicted functional annotations (99.3%;

UniProtKB/TrEMBL (Bairoch and Apweiler 1999)) as compared to experimentally-based

or manually-verified annotations (0.7%; UniProtKB/Swiss-Prot (Boutet et al. 2016)).

The performance of automatic prediction methods remains largely insufficient. Several

international experiments continue to assess methods for the prediction on, e.g. protein

structure (CASP (Kryshtafovych et al. 2014)), protein-protein interaction (CAPRI (Lensink

and Wodak 2013)), or protein function (CAFA (Jiang et al. 2016)). These methods primarily

machine-learn patterns in the protein sequences or structures or infer functional aspects by

homology, i.e. transfer the annotations and functionality of better-known, similar proteins.

The text of the literature is another source of data to machine learn, i.e. to text mine. In
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1. Introduction

Fig. 1.1. Explosive growth in genomic data. Logarithmic scale of growth in cumulative num-
ber of sequenced human genomes (left axis) and in worldwide annual sequencing capacity mea-
sured in DNA basepairs (right axis: Tera-basepairs (Tbp), Peta-basepairs (Pbp), Exa-basepairs
(Ebp), Zetta-basepairs (Zbps)). Selected milestones are shown, from the first reported human
genomes (2001) (IHGSC 2001; Lander et al. 2001), to the first next-generation sequencing
technology (2008) (D. R. Bentley et al. 2008), to the Exome Aggregation Consortium (ExAC),
that collects over 60,000 human exomes (∼2016) (Lek et al. 2016). The historical growth was
recorded until 2015 (black). The growth for the following decade is projected, considering
three estimators: historical growth rate (red), estimate of Illumina, next-generation sequencing
company, (orange), and Moore’s law (blue). Source: (Stephens et al. 2015).

parallel to genomic data, the body of knowledge in biomedical literature is massive. The go-

to place for biology and medicine is PubMed, the search engine maintained by the United

States National Library of Medicine. PubMed currently registers 27 million publications,

has a growth rate of ∼4.5% and now grows with over 1.1 million new articles every year

(Fig. 1.3).

By text mining the biomedical literature, we mean extracting from publications, results

and descriptions that can help us understand different aspects of molecular knowledge (ex-

amples, Table 1.1). One would think a priori that the deposited knowledge in scientific

journals was well referenced and mapped (i.e. hyperlinked) to standard ontologies such as

UniProtKB or the Gene Ontology (GO) (Ashburner et al. 2000). Sadly, despite past efforts,

this is not the case. For example, what does ”GC1” (in Table 1.1) mean? Is it a protein,

a gene? Is it the protein ”Mitochondrial glutamate carrier 1” or the different protein (that

shares the same abbreviation) ”Epimerase family protein SDR39U1 homolog, chloroplas-

tic” ? Is it a protein from human, mouse, another species? what is the actual meaning of

”inhibit cell motility”? We will review these challenges in the next section.
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1. Introduction

Fig. 1.2. Sequencing costs reduction, faster than Moore’s law. Logarithmic scale of the
yearly progression of costs in dollars to sequence a single entire human genome. The drastic
drop in sequencing costs sparked around 2008, due to emergence of the first next-generation
sequencing technologies (D. R. Bentley et al. 2008). Source: (Wetterstrand 2017).

Table 1.1. Examples of molecular knowledge deposited in the literature.

Evidence for Literature Passage
molecular function, biological process “PKA and CDK5 can phosphorylate spe-

cific serines on the intracellular domain of
podoplanin (PDPN) to inhibit cell motility”,
PMID 25959509

genetic mutations, linked diseases “Mis-sense mutation Val----Ile in exon 17 of
amyloid precursor protein gene in Japanese fa-
milial Alzheimer’s disease”, PMID 1678058

protein cell localization “the C-terminal domains of AtCASP and
GC1 to GC6 localized to the Golgi”, PMID
18182439

In the context of making sense of the literature, one job is essential: that of the biocura-

tor (Salimi and Vita 2006; Burge et al. 2012; Bateman 2010). Biocurators are professional

scientists who collect, validate, and maintain biological research information and deposit it,

in machine-readable form, into specialized biomedical databases (i.e. biodatabases). Ex-

amples of databases that employ manual curation labor are the already mentioned UniPro-
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Fig. 1.3. PubMed: rapid growth of the biomedical literature. The number of biomedical
publications experiences a growth rate of ∼4.5%. Over 1.1 million new publications are now
deposited every year in PubMed.

tKB (The UniProt Consortium 2017), and more specifically its manually-annotated section

Swiss-Prot (Boutet et al. 2016), or the many databases of model organisms, e.g. FlyBase

for the organism Drosophila melanogaster (a fly species) (Gramates et al. 2017), SGD for

Saccharomyces cerevisiae (baker’s yeast) (Cherry et al. 2012), or MGI for Mus musculus

(mouse) (Blake et al. 2017). By large, the primary source of biological research stems

from the literature. Because of this, biocurators must constantly scan and read newly pub-

lished articles to spot and organize the latest scientific findings. The particular tasks of a

biocurator vary and depend on the target database, however, simplified, three are the main

activities: (1) filter documents relevant for curation (a process often called triage), e.g. to

select only those articles treating a specific organism or a particular disease; (2) identify

in the text the discussed biological entities and processes that are of interest, e.g. a newly

discovered function of a gene; and (3) convert the information in a way that is unambiguous

and machine-readable for final database entry. Still largely, these tasks are done manually,

that is, without automation and not at scale (human readers cannot cope with the millions

of new articles incessantly being published). In this context, literature-based text mining

methods may assist biocurators by suggesting and pre-filling data that later they can con-

firm or reject. This quality assurance step of the automatic annotations (human-in-the-loop)

is still essential, for most biodatabases demand a very high level of accuracy in the annota-

tions, and the performance of automatic methods does not match yet. Now, we review the

challenges in text mining specifically encountered in the biomedical domain.
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1.2 BioNLP: concepts and challenges

The final goal of having all the biomedical literature perfectly semantically indexed is far

from being realized. Natural language processing (NLP) automatic techniques aim to solve

this problem. NLP can sometimes be seen as a methodology or part of the global text min-

ing field. In this work we make no distinction. Also, in recent years there has been more

research emphasis on, in contrast to processing, the aspect of natural language understand-

ing (NLU). In this work we see them as equivalent. Biomedical text mining is also often

referred as BioNLP.

Regardless of terminology, the challenge is always: how to use very large amounts of

unstructured text that is understandable by humans, i.e. natural language, and turn into

unambiguous (structured) useful knowledge? What useful knowledge is depends on the

application case. One may ask simply how often Michael Jordan is talked about in the news,

now or through the years. This involves recognizing the discussed concepts (e.g. “Michael

Jordan”), a process called named-entity recognition (NER). One may ask more difficult

questions, such as what is the network of Jordan’s personal connections or the list of books

he wrote. This involves relating named entities, a process called relationship extraction

(RE). Crucial is gathering information that is unambiguous, that is, e.g. knowing whether

“Jordan” contextually meant Michael Jordan the player and businessman, or Michael I.

Jordan the machine learning researcher, or Air Jordan the shoes brand. Identifying entities

unambiguously is equivalent to linking (mapping) them to a unique identifier in an external

recognized resource (e.g. Wikipedia URLs for personalities, passport ids for citizens, or

UniProtKB identifiers for proteins), a process called named-entity normalization (NEN),

also often called named-entity linking (NEL), or named-entity disambiguation (NED).

Ambiguity is the pervading characteristic of natural language. It is most exacerbated

in the biomedical domain. Tens of different concepts exist: proteins, genes, mutations,

function, phenotype, diseases, symptoms, medical procedures, chemical reactions, drugs,

organisms, etc. Worst: for many concepts the terminology of names is not standard. Pro-

teins, the machinery of life, specially suffer from name ambiguity. For a start, e.g. with

the wording “p53”, is not clear whether this refers to a protein name, or its encoding gene,

or its mRNA, if not something else completely different (Hatzivassiloglou, Duboue, and

Rzhetsky 2001). The distinction between proteins, genes, or mRNA is difficult (even for

human readers) and is often ignored; many groups of researchers encompass all three into

the single concept of gene or gene product (GGP). Then, many other ambiguities lurk:

Synonymy: proteins and most biological entities as referenced by various different

names and all must be contemplated, for example for search (Fig. 1.4).

New names constantly coined: new names are created as UniProtKB and other biomed-

ical databases expand. This largely complicates the curation of comprehensive dictionaries

(of names) and demands constant updates from tools.
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Abbreviations and short symbols: many entities can share a same abbreviation, e.g.

“ACE” may stand for at least 20 different expansions, including “angiotensin converting en-

zyme”, “affinity capillary electrophoresis”, or “acetylcholinesterase” (Leser and Hakenberg

2005; Adar 2004). (J. T. Chang, Schutze, and Altman 2002) reported that abbreviations

with six characters or less collapsed in average with 4.61 different definitions.

Clash with common words: English words may name proteins too, e.g. “white”, “And”,

“cactus”, “eagle”, “zen”, “Pavarotti”, “Pokemon” (later retracted for copyright infringement

(Simonite 2005)), or even single letters like “A” or “C” may mean names.

Homology-shared names: e.g. from the wording alone “ATM” (“Serine-protein kinase

ATM”), it is unknown whether it refers to the protein in human (UniProtKB: ATM HUMAN),

in mouse (UniProtKB: ATM MOUSE), or another organism.

A myriad of ontologies and databases exist. These are usable as references for biomedi-

cal entity disambiguation. Some of the most important are listed in Table 1.2. Most BioNLP

applications need to navigate several of these vocabularies to provide useful results, adding

to the complexity.

Fig. 1.4. When names are ambiguous. Example of a UniProtKB protein entry
(KGD MYCS2) with several recommended, alternative, short, or gene names. All names must
be contemplated for an efficient search of concepts. Short abbreviations such as “KGD” may
be shared by many other different proteins. Source: UniProtKB.
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Table 1.2. Many biomedical ontologies exist; examples.

Biomedical entity Ontologies
proteins (or genes) UniProtKB (The UniProt Consortium

2017)
genes (or proteins) Entrez Gene (Sayers et al. 2010; Maglott et

al. 2011)
organisms NCBI Taxonomy (Sayers et al. 2010)
protein function, biological processes, and
protein subcellular localization

Gene Ontology (GO) (Ashburner et al.
2000)

mutation mentions the HGVS nomenclature (Dunnen et al.
2016)

human diseases, or other medical, or phar-
maceutical terms

Disease Ontology (DO) (Kibbe et al.
2015), SNOMED CT (Shahpori and Doig
2010), UMLS (Bodenreider 2004), MeSH
(Nelson n.d.; Major, Kostrewski, and An-
derson 1978), ICD-10 (ICD-11 version is
in development) (WHO 1992; First et al.
2015)

drugs RxNorm (S. Liu et al. 2005) or DrOn
(Hanna et al. 2013)

chemicals ChEBI (Degtyarenko et al. 2008)
phenotypes HPO (Kohler et al. 2017)
many, many more . . . see BioPortal from the NCBO (National

Center for Biomedical Ontology) (Whetzel
et al. 2011; Musen et al. 2012) and OBO
(Open Biomedical Ontologies) (B. Smith
et al. 2007).

A limitation faced by biomedical text mining systems is that a great part of the literature

is closed behind walls. PubMed lists biomedical articles but only abstracts (i.e. including

titles) are available. Many research results are contained only within the full text of an ar-

ticle (e.g. in the Conclusions section) (J. Lin 2009). PubMed Central (PMC), the subset

of PubMed with freely available articles full texts, contains as of today 4.2 million articles,

a small number compared to the over 27 million articles in PubMed. In other words, only

∼16% of PubMed articles have free full texts. Worse, only a fraction of PubMed Central ar-

ticles (as of today, 1.5 million) is in the denominated “Open Access Subset”, that grants text

mining tools free use. That is, only ∼6% of PubMed articles are freely and fully available

for text mining. It was not until recently (Van Noorden 2014), that the publisher Elsevier

opened, although with commercial restrictions, its more than 11 million research papers to

text mining. Even then, most studies even nowadays have been limited to abstracts only.

A recent search on PubMed revealed that only ∼3% of text-mining-related studies mention

full text (searches: http://bit.ly/2nbGyVG and http://bit.ly/2oDL7aZ). Further,

the efforts put into development of methodologies and research of systems trained on ab-
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stracts only, may be futile for full texts (Cohen et al. 2010; Antonio Jimeno Y. and Karin

Verspoor 2014; A. Jimeno Y. and K. Verspoor 2014).

Besides PubMed and PMC, other biomedical sources relevant for text mining exist.

The most important are: Europe PMC (Europe 2015) is a newer search index that includes

PubMed and PMC, and adds some research studies funded by European institutions, also

patents, NHS (National Health Service) guidelines, and Agricola records; PMC Canada

is also built on PMC and adds studies funded by Canadian institutions; ClinicalTrials.gov

(Gillen et al. 2004) contains clinical reports of pharmaceutical drug trials with patients;

Drugs@FDA (Schwartz et al. 2016) lists all drugs and descriptions approved by the FDA

(US Food & Drug Administration); USPTO (United States Patent and Trademark Office)

or EPO (European Patent Office) list patent applications, of which some concern the phar-

maceutical and medical industries. Finally, hospitals electronic health records (EHRs) are

suitable for text mining too.

All other challenges common in NLP apply to the biomedical domain too. NLP tools

are complex systems that depend on many NLP predictor submodules of which depend on

one another as in a stack of tasks (Fig. 1.5). Problematically, errors are compounded, i.e.

errors in one level of the stack are carried over to the next level, which may turn all following

predictions irrelevant. For example, to know the root of the word “bound”, one must know

first if it is used as a verb and if so its tense too, as to either declare the root as “bound” (i.e.

to jump) if in present tense, or as the root “bind” (i.e. to fasten) if in past tense, or otherwise

it may be used as a noun, in which case the root would be “bound” (i.e. a jump). Next, we

summarize some of the basic NLP tasks.

Language detection: nearly all NLP tools have some domain-specific knowledge or at

least greatly benefit from it. First of all, one must know the language (e.g. English or

Spanish) to be able to apply any other NLP subsystem. The biomedical literature is vastly

written in English. Nonetheless, 17% of PubMed is written in other languages (∼4.5 million

articles as of now). A ∼3% of PubMed is written in German. Some journals or conferences

may be only available in other languages and electronic health records are written in the

language of the country of origin.

Topic modeling (detection): second of all, as domain-specific knowledge, one must

account for linguistic and structure differences in different topics. As already discussed,

the biomedical domain is characterized for a highly-specialized jargon. The language of

English news is not the same as that of (English) biomedical papers. Equally, biomedical

papers, patent applications, clinical trials, or patient records differ. NLP systems trained for

general English may not work for biomedical contexts (e.g. lemmatizers, next explained,

need to know the complete language vocabulary).

Document classification: related to topic modeling, can be in itself a useful biomedical

application. For instance, as previously discussed, model organism databases need to and
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Fig. 1.5. Stack of NLP subsystems; errors cumulate. The full understanding of language re-
quires the accumulation of several NLP tasks. In the figure, from the bottom to the top, common
NLP tasks are depicted: sentence segmentation, (constituency) full parsing (syntax tree), shal-
low parsing (constituents identification such as noun or verb phrases), part-of-speech (POS)
tagging, word segmentation or more general tokenization, normalization first to the MeSH on-
tology (e.g. “cells” = D002477 or “white blood cells” (leykocytes) = D007962), then normal-
ization to Entrez Gene (e.g. “Bcl-2” is normalized to 5 different organisms, 596 for human,
12043 for mouse, 24224 for Norway rat, 281020 for Bos taurus (cattle)). Likely an error,
the here related “p53” protein is normalized to unrelated organisms (42722 for Drosophila
melanogaster, the fruit fly, and 297276 for pig). Source: (Hunter and Cohen 2006), adapted
originally from (Nakov et al. n.d.).

filter those publications related to their respective organisms. The task, therefore, is to

cluster texts into closely related fields.

Sentence segmentation: sentences boundaries must be correctly identified from text.

Although seemingly simply detected by periods, some uses of natural language make sen-

tence segmentation a non-so-trivial task: abbreviations or identifiers that use periods, dec-

imal numbers, clauses in parentheses, etc. (Read et al. 2012); all these are frequent in the

biomedical domain. In particular, sentence segmentation tools that were trained for general
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English may lessen performance on biomedical tasks.

Word segmentation: the space character is a good approximation in English and other

Indo-European languages to delimit words. However, contractions like “don’t” vs “do not”

or “Indoeuropean” vs “Indo-European” vs “Indo European” may have to be accounted too.

Other languages such as Chinese, Japanese, or Korean do not have characters for word

delimitation, hence complicating the prediction (C.-R. Huang et al. 2007).

Word tokenization: related to but not necessarily equal to word segmentation. Tokeniza-

tion is the process of dividing text into tokens, understood as the basic parsing units that are

linguistically meaningful and useful for the methodology or application case at hand. For

example, it may be sensible for mutation mention recognition to split the main constituents

by special characters and numbers, e.g. “g.123A>G” into the sequence of tokens: “g”, “.”,

“123”, “A”, “>”, “G”; (C.-H. Wei et al. 2013). Tokenization has been shown to be a criti-

cal performance component in NLP. As most other NLP submodules depend on this step,

tokenization may be either a bottleneck or a leverage. Therefore, given the needs of spe-

cialization, many different tokenization strategies exist (He and Kayaalp 2006; Barrett and

Weber-Jahnke 2011; Webster and Kit 1992; Dridan and Oepen 2012).

Part-of-speech (POS) tagging: the categorization of words (or tokens) into categories

that have similar grammatical properties, such as similar use in the syntax or analogous

inflections. Most languages have nouns and verbs as POS categories, but beyond this,

languages display many differences (Kroeger 2005). For example, English has one type

of adjective only, whereas Japanese has three (i-adjectives, na-adjectives, and English-like

true adjectives). Some languages do not make a strong distinction between adjectives and

adverbs (e.g. German). Some languages may not even have nouns and verbs (Broschart

1997); etc.

Stemming and lemmatization: are the reduction of words into non-inflected forms, stems

and lemmas, respectively. Stemming does not consider the context of words (disregards

grammar), in particular the part of speech, and requires only knowledge of general rules

for word inflection. In contrast, lemmatization does take the context into account (considers

grammar). For example, lemmatization may correctly identify that “binds” and “bound” are

different forms of the same lemma “bind” (to join) or that the lemma for “bad” or “worse”

have same lemma “bad”, whereas stemming (e.g. with the common Porter 2 stemmer for

English), will remove only the inflected appendixes (i.e. “bind” and “bound”, and “bad”

and “wors”, resp.). For regular verbs or common nouns, both methods may provide the

same results, e.g. root “work” for the words “works”, “working”, “worked”, etc. Typically,

lemmatization is preferred. Notwithstanding, stemming is a faster and simpler process and

thereby also often used.

Spelling corrector: errors in spelling can compromise all other NLP subsystems (e.g.

lemmatization) and so must be corrected. Generally not a problem in biomedical scientific

texts, spelling errors are more frequent, however, in for instance patient records, laboratory,

or clinical reports.
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Constituency parsing: is the repeated subdivision of a sentence into its sub-parts indi-

cating the relation between these (Fig. 1.5, full parse in red). The result is a hierarchical

syntax parse tree, starting from a root sentence (S), to more granular phrases, e.g. noun

phrase (NP), verb phrase (VP), or prepositional phrase (PP), down to the leaves in the tree,

i.e. the individual words labeled with their POS tags.

Shallow parsing (chunking): is the subdivision of a sentence into its main constituents;

commonly, noun phrases or verb phrases (Fig. 1.5, shallow parse in yellow). These chunks

can be derived from a full parse tree or otherwise directly and independently predicted,

which normally requires less computation time.

Dependency parsing: is the subdivision of a sentence into a directed hierarchy (typi-

cally a tree unless independent clauses exist), expressing the relationships between words,

starting from most often a verb as the root (main verb) to words that modify the verb, to

subsequent words that modify the previous ones (Fig. 1.6, example).

Fig. 1.6. Dependency parsing tree example. Words are interconnected from head words to
words that modify those. For instance, here, the verb “identified” is the root, which is modified
by “study” (nsubj, the nominal subject of the clause) and “inhibitors” (dobj or simply obj, the
direct object of the verb). Graphic: https://demos.explosion.ai/displacy/

Abbreviation expansion: the resolution of the full expansion of abbreviations, common

in the biomedical domain, e.g. “Acs” expanded into the long name “Acetyl-coenzyme A

synthetase” (UniProtKB: ACSA SALTY). Automatic systems must keep track of previously-

introduced abbreviations and must consider abbreviations that are never explained in the text

at hand, either for being common short names or due to space limitations (as in abstracts).

Coreference resolution: the resolution of expressions that refer to the same thing. Coref-

erences complicate relationship extraction, for the relations involved in coreferences are

only indirectly expressed (Fig. 1.7, example). Coreference resolution is still a hard problem

(Choi, Zobel, and K. Verspoor 2016), that has to be solved if we want to transition towards

a finer understanding of human language, i.e. to natural language understanding (NLU).

Besides intrinsic NLP tasks, and for completeness in the description of concepts, the

reader must be familiar with general terms in machine learning:

Learning: a machine learning model is ultimately an automatic algorithm (hence the

machine part) that maps inputs to outputs (from different spaces) and is optimized (learned)
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Fig. 1.7. Coreference resolution still hard. In the example, the disease “tohemorrhagic cysti-
tis” (orange) is indirectly associated with the chemical IFO (green) only expressed through the
coreferent “side effect” (red). Source: (Le et al. 2016). The difficulty of deriving these types of
relations complicate our understanding of the biomedical sources.

to do so. For example, named-entity recognition can be reduced to the problem of given

some input text, list the text offsets that enclose names of entities, and, most commonly too,

associate each enclosed name to a different entity class, e.g. protein or chemical.

Data labeling: in the context of learning, raw data (e.g. unstructured text) is the input

and (data) labels (e.g. entity text offsets) the output. As should be expected, most data is

unlabeled with the desired output, hence the need of automatic machine learning methods.

Experts and users, however, can manually label some data that can be used for the training

(optimization) of the machine learning models. For example, as is familiar to the reader,

when a user tags a person in a photo, is in fact labeling the photo (the input) by expressing

that a particular region (pixels) represent a face or body of a person (the labeled output).

Likewise, users can select on a web interface that displays a text article (the input) some

words that represent an entity/concept (the output).

Supervised learning: refers to training (optimizing) machine models with completely

labeled data (i.e. data manually-labeled and supervised by humans). Here, models must

recognize patterns in the input, that lead to the given expected output. For example, a

model can perhaps learn that people’s faces on a photo are often associated with the pixel

patterns of having a somewhat circular region enclosing two smaller white circles and a

white line below those. Likewise, a model can perhaps learn that names of entities are often

found within noun phrases and surrounded by often repeated words (e.g. “the protein . . .

functions as a . . . ”).

Unsupervised learning: refers to training machine learning models without any aid of

labeled data. Here, models must recognize intrinsic patterns in the input that are statistically

significant (e.g. repeated round areas with somewhat orange or black pixels, two sub circles,

and a white line) but without really knowing what those patterns represent.

Semi-supervised learning: represents the mixture in which a machine model learns pat-

terns both from labeled and unlabeled data.
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Active learning: is a special case of semi-supervised learning, in which a machine can

actively query (ask) users (or another information source), for labels in data. Here, a pre-

learned model can perhaps find patterns in data for which it does not know or is unsure

about its corresponding output labels yet, and so query the user to provide an explanation

(learning example) for this case. As data labeling is expensive for users (time consuming),

the approach of active learning can reduce this effort, by selectively choosing which data is

the most interesting (not understood or seen yet) to learn, and so to focus users on labeling

these cases only.

Fig. 1.8. Active learning can reduce labeling efforts. An active learning process begins,
often, with an initial set of training labeled data (L) annotated by human experts and users
(more generally, an oracle). The labeled data is used to learn a model that consequently makes
predictions in a set (pool) of unseen unlabeled data (U); the model then queries the human
annotator to label specific cases in which the machine was unsure about (low or intermediate
confidence probability in the predictions). The newly labeled data is added to the set L of
labeled data. The whole process cycles over iterations of manual labeling + automatic querying
for new “interesting” (to learn) labels. Source: (Settles 2009).

All in all, compounded errors in all the different NLP subtasks, all the many differ-

ent approaches, plus errors in named-entity recognition (NER), named-entity disambigua-

tion (NED), and relation extraction (RE), explain the large, still unresolved challenges of

drawing comprehensive biomedical knowledge from natural language text sources. In fact,

natural language understanding is considered to constitute an AI-complete problem. That

is, an artificial general intelligence (AGI) must solve the problem of language in order to

pass the Turing test (Yampolskiy 2013). Notwithstanding, following, we discuss existing

methodologies to tackle the problem, the start of the art, and some successes.
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1.3 The state of the art & some successes

Various conferences and challenges have assessed the performance and applicability of

tools along the years, among the most important: the BioCreative challenges (2005-2017)

(Hirschman et al. 2005; Arighi et al. 2011; S. Kim et al. 2016; C. H. Wei et al. 2016),

the BioNLP shared tasks (2009-2017) (J.-D. Kim et al. 2009; Pyysalo et al. 2015), the

BioASQ challenges (2013-2017) (Tsatsaronis et al. 2015), or the Biocuration conferences

(2005-2017). Other important NLP-general conferences are SemEval (1998-2017) (S. N.

Kim et al. 2010), the conferences and workshops of the ACL (Association for Computa-

tional Linguistics) (1990-2017) (ACL 2016), the COLING conferences (1965-2016) (from

the International Committee on Computational Linguistics), or the CoNLL (Conference on

Computational Natural Language Learning) conferences (1997-2017) (CoNLL 1997). All

these conferences run until to date, attesting for the difficulty of the problem.

Drawing a conclusive guideline of best methodologies and baseline of best perfor-

mances is difficult. Many different sub-problems exist and research is active. As things

change so fast, the reader is advised to contrast the latest reviews in the mentioned confer-

ences; for instance, the review of named-entity recognition and normalization of diseases

and of biomedical relation extraction for chemical-induced disease (C. H. Wei et al. 2016)

and of interactive interfaces intended to aid database curators (Q. Wang et al. 2016).

Until recently, the graphical models, conditional random fields (CRF) (Lafferty, McCal-

lum, and Pereira 2001) had been used consistently as best-performing methods for named-

entity recognition. In the last 4-5 years, however, the so called deep learning class of

algorithms have taken all fields by storm. The latest best techniques still often combine

CRFs with various architectures of artificial neural networks (ANNs) or features derived

from these. For example, the so called word embedding features, i.e. vector representations

of words learned unsupervised from large and massive datasets (e.g. PubMed) have been

shown to significantly improve tagging performance (Mikolov et al. 2013; Collobert et al.

2011). A myriad of experimentations of neural networks, with or without CRFs, are appear-

ing: Long Short-Term Memory (LTSM), LSTMs with CRFs (LSTM-CRF), bi-directional

LTSM (BI-LSTM), bi-directional LTSM with a CRF layer (BI-LSTM-CRF), recurrent neu-

ral networks (RNNs), convolutional neural networks (CNNs), LSTMs or bi-directional with

CNNs (LSTM-CNN, BI-LSTM-CNN), . . . A detailed description of these methods is be-

yond the scope of this work and can be found elsewhere, (Jagannatha and H. Yu 2016; Z.

Huang, Xu, and K. Yu 2015; Chiu and Nichols 2015; Strubell et al. 2017; Q. Wei et al. 2016;

Strubell et al. 2017; Hu et al. 2016). Likewise, the machine learning models support vec-

tor machines (SVMs) (Cortes and Vapnik 1995) and random forests (T. K. Ho 1995), have

been used extensively for relation extraction, but deep learning models are now in vogue

(Nguyen and Grishman n.d.; Zeng et al. 2014). Named-entity disambiguation methods nec-

essarily require to work with dictionaries of names, e.g. by looking up hashed terms that

allow flexible small differences in spelling, (Binder et al. 2014). Yet, word embeddings and
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CNNs are also showing improved performance for entity disambiguation (Gottapu, Dagli,

and Ali 2016).

With respect to active learning, research gears towards the optimization of achieving

high machine performance with the least possible number of queries to human annotators,

i.e. in a cost-effective manner. A survey of the field is found in (Settles 2009). Research is

ongoing, (K. Wang et al. 2017; W.-N. Hsu and H.-T. Lin 2015; C. L. Li, Ferng, and H. T.

Lin n.d.). Research is also active to know how to best include humans for the resolution of

many different tasks, e.g. entities disambiguation (Gottapu, Dagli, and Ali 2016), database

engines that combine SQL-like queries with queries posed to human crowds (Franklin et

al. 2011; Marcus et al. n.d.), optimization of relational database queries (Park and Widom

2013), or just any problem where human supervision can be beneficial (Jamieson et al.

2015). These techniques that try to leverage the intelligence of crowds and humans are

called human-in-the-loop (HITL), also referred as human intelligence tasks (HIT), closely

related to generally gathering information from human intelligence (HUMINT). As wear-

able technologies carried over or integrated into human bodies rapidly advance, some au-

thors are already discussing the concept of humanistic intelligence (HI), (Minsky, Kurzweil,

and Mann 2013; Fung and Mann 2002; Mann 2013), wherein intelligence arises from an

instant feedback loop between a human, and a inextricably intertwined computation.

Few BioNLP tools have proven useful in practice yet. A notable exception is the Texts-

presso system (Muller, Kenny, and Sternberg 2004), which was put in place to assist some

parts of the curation pipeline in multiple model organism databases (Van Auken et al. 2012),

including WormBase (T. W. Harris et al. 2014), dictyBase (Basu et al. 2013), and TAIR (Be-

rardini et al. 2015). Textspresso uses a combination of dictionary look-up methods, hidden

markov models (HMMs) (Rabiner 1989), and SVMs to aid in document filtering and classifi-

cation (triage) and entity recognition. With similar technologies, and also combining human

input, the system helped in parts of the discovery and indexing of the search engine Neu-

roscience Information Framework (NIF), (Bandrowski et al. 2012; NIF 2010). Textpresso

was also used to aid entity normalization resolution by providing suggested hyperlinks in

interactive HTML/PDF articles, from words predicted to be entities to the database entries

URLs that uniquely identify them (Rangarajan et al. 2011). The system also informs users

about entities whose links could not be resolved, and users have the option to edit, accept,

or reject the pre-filled links. Other successful tools similarly automatically add or provide

links of entities and concepts in texts, although not necessarily to assist database curation,

but to ease the reading of scientific articles. These include most importantly the Reflect sys-

tem (Pafilis et al. 2009) and Utopia (Attwood et al. 2010). Utopia is a downloadable open

software PDF reader (for Windows, Mac, and Linux), that automatically shows to the user

contextual information relevant for the displayed article, for instance links to concepts or ci-

tations made by other authors. The tool Reflect lets users, either via a browser add-on or via

its own page, to post URL pages to be marked up with identifiable entities. Reflect can fur-

ther be called with a REST API, and thus indeed label and index text documents. Moreover,
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Reflect also allows users to collectively provide feedback on the predicted annotations, with

looks to keep improving its system over time. Looking at a different application, an early

successful example of biomedical text mining was the tool and database PubGene (Jenssen

et al. 2001), that could draw a large network of interacting genes (139,756 pairs of related

genes for 13,712 total genes) based on co-citation in a same publication (Fig. 1.9). The

authors showed that this approach could reveal clusters of interacting genes that had been

previously assessed experimentally in patients with lymphoma. Finally, the reader finds in

(Thessen, Cui, and Mozzherin 2012) a review of other existing BioNLP tools.

Fig. 1.9. Examples of biological networks drawn by text mining. On the left, a cluster of
interacting genes found to be co-cited in PubMed abstracts; source: (Jenssen et al. 2001). On
the right, a cluster of genes regulated by the drug cocaine text-mined from all PubMed abstracts,
at the time; source: (H. Chen and Sharp 2004).

28



1. Introduction

1.4 Overview of this work

In Chapter 2, I describe tagtog, an interactive web interface designed to aid database cu-

rators. The system automatically machine-predicts annotations of entities (e.g. genes) and

users can provide feedback on those, to either accept, reject, or edit the annotations. Con-

sequently, the feedback is used to retrain and so improve the internal machine learning sys-

tems. In this work, we collaborated with the model organism database FlyBase to annotate

hundreds of last published full-text articles and, in doing so, demonstrated a cost-effective

annotation approach. We used and describe techniques for active learning and named-entity

recognition.

In Chapter 3, I describe nala, a new method that text-mines genetic variations, i.e.

descriptions in the literature of gene mutations (e.g. “glutamic acid was substituted by

valine at residue 6”). The system was optimized to recognize those types of complex natural

language mentions, in contrast to simpler mentions (e.g. “E6V”), which were the focus

of previous tools. In this work, we demonstrated how to apply active learning-based data

labeling to achieve in parallel two things: 1) the creation of the largest collection of mutation

descriptions in the literature to date; and 2) a high-performing method that could find all the

results of other tools, and uniquely discover new variations that remained until this moment

unhidden. We used and show techniques for active learning, named-entity recognition, and

deep learning.

In Chapter 4, I describe LocText, a new method designed to extract the native localiza-

tion of proteins from the literature. The method can help in adding novel Cellular Com-

ponent GO annotations to public databases, most importantly to the standard reference for

protein annotations, UniProtKB. We demonstrated upon manual inspection that the text-

mined annotations by the new method were highly accurate. We (non experts in database

curation) could assess the quality of the automatic annotations rapidly: we could add more

than one hundred novel and verified annotations per work day. In this work, we used and

discuss techniques for named-entity recognition, named-entity disambiguation, relation ex-

traction, and semi-automatic database curation.

Finally, in Chapter 5, I summarize the main results of this dissertation and discuss the

main aim of the work: how text mining can assist human experts.
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Chapter 2

tagtog: a human-assisted automatic
annotation system

2.1 Preface

The great challenge upon biological databases is the explosion of unstructured data (e.g.

literature records) and how to transform it into useful structured knowledge (e.g. how a

molecular drug and a protein target react with each other). For example, curators at Fly-

Base, the premier database of the model organism Drosophila melanogaster, spend their

time thoroughly analyzing all Drosophila-related research articles (Gramates et al. 2017).

Human curators, however, cannot cope with the ever increasing number of new publica-

tions; for Drosophila alone, from ∼1000 in the late 1980s to >3000 a year in the 2010s

(Bunt et al. 2012). Databases of other model organisms such as mouse, yeast, or maize,

face the same problem. Text mining methods were studied in the past to automatically

leverage this tedious work. However, despite extensive efforts, few systems proved useful

in practice yet (Mao et al. 2014).

In this work we studied tagtog, a new system that combines an automatic domain-

independent named-entity recognizer (NER) with a web editor, for users to manually add

and correct annotations. We applied tagtog to create a new corpus of articles published

between 2011 and 2013 with textual annotations of Drosophila genes and symbols. We

annotated full-text articles, a harder problem than abstracts only (Cohen et al. 2010). We

created the corpus in three iterations: 1) One curator annotated 20 documents. The auto-

matic system of tagtog was trained on this set and then used to recognize gene names in 99

unseen documents. The curator reviewed and corrected when corresponding the automatic

annotations. 2) The automatic method was retrained on the until then total 119 documents,

and tested on an independent test set of 20 documents. 3) Five curators annotated 312 new

documents. The automatic system was re-trained on the now total 431 documents, and

tested again on the test set. All in all, we annotated 451 full-text articles, one of the largest

resources of labeled data for NLP to date. All annotations were useful and integrated into

41



2. tagtog: a human-assisted automatic annotation system

the FlyBase database. The automatic system of tagtog showed increased performance along

the iterations. Further, two other curators assessed tagtog for possible savings in annotation

time. One curator repeated the experiment of annotating Drosophila genes while the other

annotated genes in Maize-related articles for the MaizeGDB database (Andorf et al. 2016).

The two curators used the manual interface of tagtog to annotate, independently, 20 full-text

articles. The domain-independent system was again retrained and used to annotate 20 un-

seen documents. The curators corrected the automatic predictions and compared the spent

time on both phases. The combined, computer and user-corrected annotation was 1.6 to 1.9

faster than manual annotation alone.

All methods and data analyses were done by me. I carried out necessary background re-

search. The project was designed by me and Peter McQuilton. The annotation of the corpus

was done by Peter McQuilton, Laura Ponting, Steven J. Marygold, Raymund Stefancsik,

and Gillian H. Millburn. The manuscript was drafted by me and Peter McQuilton.

2.2 Journal article. Cejuela et al., Database (Oxford) 2014;2014(0):bau033

Starts next page.
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Abstract

The breadth and depth of biomedical literature are increasing year upon year. To keep

abreast of these increases, FlyBase, a database for Drosophila genomic and genetic

information, is constantly exploring new ways to mine the published literature to in-

crease the efficiency and accuracy of manual curation and to automate some aspects,

such as triaging and entity extraction. Toward this end, we present the ‘tagtog’ system, a

web-based annotation framework that can be used to mark up biological entities (such

as genes) and concepts (such as Gene Ontology terms) in full-text articles. tagtog lever-

ages manual user annotation in combination with automatic machine-learned annotation

to provide accurate identification of gene symbols and gene names. As part of the

BioCreative IV Interactive Annotation Task, FlyBase has used tagtog to identify and

extract mentions of Drosophila melanogaster gene symbols and names in full-text

biomedical articles from the PLOS stable of journals. We show here the results of three

experiments with different sized corpora and assess gene recognition performance and

curation speed. We conclude that tagtog-named entity recognition improves with a

larger corpus and that tagtog-assisted curation is quicker than manual curation.
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Introduction

A major challenge facing biological databases today is the

increase in data available for curation. Concurrent with an

increase in the number of biological journals, there has been

a movement from printed literature to web-based HTML

and PDF. This has removed many of the financial and tech-

nical constraints on the length and the number of articles a

journal can publish. For the past 30 years, the number of

Drosophila-related primary research articles published each

year has steadily increased from �1000 in 1980 to >2000 a

year since 2001 (1). FlyBase (http://flybase.org) is the prem-

ier database of Drosophila melanogaster genes and genomes

(2) and manually curates Drosophila-related information

from the published literature. This information hangs from

genetic objects, such as genes, alleles and transgenic con-

structs. Our genetic literature curation pipeline has two

main stages: (i) skim or author curation, where the genes in

a paper are identified, and flags are added to indicate the

presence of a new reagent or data type (e.g. a new allele or

gene expression in a perturbed background), and (ii) full

curation, where all other genetic objects are added and

annotated with phenotypic, molecular, expression and inter-

action data. Manually curating each gene mentioned in a

paper is a time-consuming process and takes a significant

amount of curator effort. Finding a way to automate this

process would greatly increase curation efficiency, not to

mention the number of papers that could be fully curated.

Since the meeting at the BioCreative workshop in 2012,

FlyBase has been collaborating with tagtog to identify and

extract Drosophila gene mentions from PLOS journals (3).

tagtog (http://tagtog.net) is a web-based framework for the

annotation of named entities. The tagtog system allows bio-

curators to annotate gene symbols manually and leverages

machine learning methods to perform the same type of an-

notations computationally (Figure 1). Initially, the tool is

trained with a small set of manually annotated documents.

tagtog can then be used to process a set of novel documents

wherein automatically generated predictions are made,

which can be reviewed and validated by the user. This con-

tinuous and interactive retraining of the machine learning

methods with user feedback can lead to an ever-improving

performance in automatic prediction (4). Once optimized,

the trained machine learning methods can be used to process

and annotate a large volume of documents to a sufficiently

accurate level.

In this collaboration between FlyBase and tagtog, we

have annotated >450 PLOS journal articles and explored

whether the size of the annotated corpus affects the preci-

sion and recall of automatic named entity recognition

(NER) and whether NER can speed up gene symbol and

name annotation.

The tagtog system

In the following section, we briefly showcase some of tag-

tog’s main features.

- Multiple projects: users can create different annotation

projects and load their own dictionaries and corpora.

- Team collaboration: multiple users on the same project

are also supported, allowing curation teams to view and

annotate the same set of documents.

- Entity normalization: entities (such as gene names) can

be normalized to unique identifiers (IDs) using a refer-

ence dictionary submitted by the user.

- Active learning: tagtog actively asks for user feedback

on predicted annotations. A proposed mechanism was

already developed in an early version of tagtog, pre-

sented at the BioCreative 2012 workshop (5).

- Document searching: papers can be searched using the

search tool at the top of the interface. Options include

searching by document ID (based on the digital object

identifier), entities or whether a paper has been fully

annotated. In the future, we hope to add the facility to

search by PubMed ID (PMID).

- Browser support: the system runs on all major current

browsers only requiring HTML5 and javascript.

Chrome and Firefox are officially supported. Other

browsers like Opera, Safari and Internet Explorer

(9 and 10) are regularly tested but lack official support

at this point.

- Import options: any paper following the NCBI Journal

Publishing Tag Set (6) or the BioMed Central format

(7) can be uploaded to tagtog. This includes full-text

papers from the PLOS, BioMed Central, Chemistry

Central and Springer Open collections. In the near fu-

ture, we will accept papers from the new JATS format

(8) and plain text files.

- Export options: three export file formats are supported:

a tab-separated list of terms linked to PMIDs (TSV for-

mat), the new BioC format (9) and ‘anndoc’ XML, our

in-house format. Further file formats can be added on

request.

Defining the annotation guidelines

On project creation in tagtog, the first step for a user is to

define the annotation guidelines (Figure 2). These guide-

lines stipulate what should be annotated and how this

relates to the entity class. There are the following options:

- Entity: choose the entity class name to annotate. For

this project, we chose to annotate all D. melanogaster

gene mentions, both as symbols (for example, ‘dpp’ or

‘amn’) and names (for example, ‘decapentaplegic’ or

Database, Vol. 2014, Article ID bau033 Page 2 of 8
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‘amnesiac’), where the gene is a separate string or is

separated from another entity by a hyphen. We also

included some non-Drosophila genes, such as the com-

monly used GAL4 drivers from the UAS-GAL4 system

(10) and expression markers such as GFP, RFP and

lacZ.

- Entity Dictionary: upload a user-defined dictionary of

collected entity names. The dictionary can contain

synonyms and database-specific IDs, allowing data in-

tegrity checks and seamless integration of the results

with the parent database. We generated a dictionary of

FlyBase gene symbols, gene names and gene symbol and

name synonyms based on the ‘FB_2013_05 release

fb_synonym_fb_2013_05.tsv.gz’ file available from the

files download page on the FlyBase Web site (11).

- Meta Information: define a list of checkboxes for docu-

ment triage, e.g. whether the article contains human dis-

ease mentions or information on a new transgene. We

generated checkboxes for all the FlyBase triage flags, so

the annotation of the tagtog corpus could be used dir-

ectly in the FlyBase curation.

- Annotatable material: select the sections of the full-text

articles that can be annotated and trained on. The anno-

tation of captions from figures and images can be

decided independently: ‘always’, ‘never’ or ‘section-

dependent’. For this project, we annotated the title,

abstract, materials and methods, results and figure le-

gends. We did not annotate gene mentions in the intro-

duction or the conclusion/discussion sections, as per

FlyBase curation rules.

Figure 1. Example of the document display and editor in tagtog.
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- Pre-Annotations: users can activate or deactivate this

feature. Pre-annotations are annotations that are auto-

matically generated within an individual document

when a user adds or removes an annotation (i.e. selects

or deselects a word). These automatic annotations are

generated as follows: if a user selects the entity ‘X’, in

the same document all mentions of ‘X’ will be pre-

annotated and assigned to the same entity class. The

converse is true for deselections. Note that the auto-

matic pre-annotations are not machine learning-based

but simple matches of equal strings. The pre-annota-

tions are marked with a special flag and have to be vali-

dated or removed by the user before the containing

article can be used for training.

The machine learning component of tagtog

A core defining characteristic of the tagtog system is that

the users can choose the entity class to annotate, such as

genes, Gene Ontology terms or diseases. The system boasts

a general-purpose named entity recognizer implemented

with conditional random fields (CRFs) (12). For the bio-

medical domain, the CRFs are trained with common fea-

tures used in previous systems. However, in contrast to

best performing methods like AIIAGMT (13), which use

the aggregation of various CRF models, we use one sole

backward model. This results in a slightly lower perform-

ance but has the benefit of an increased speed, which is

essential in a user-interactive application. The recognizer

can be customized to the prediction task at hand by means

of user feedback and by using a dictionary of entity terms.

The system can also be expanded with new machine anno-

tators via plug-ins to enable annotation of diverse classes

and domain languages within the same document. If

desired, the machine learning component of tagtog can be

turned off to allow biocurators to use the tagtog interface

exclusively for manual curation.

Defining the project corpus

Every project in tagtog manages a corpus of documents,

which can be uploaded either individually or in batches. The

system’s internal parser recognizes the documents’ sec-

tions, subsections, figures, tables and some additional meta-

information such as the paper’s original uniform resource

locator (URL). The project corpus can be augmented progres-

sively as the user sees fit. Currently, documents are placed in

two folders, the ‘pool’ folder, where most documents are

placed, and the ‘gold’ folder, where a smaller set of manually

annotated documents is used exclusively for the evaluation of

the machine learning methods’ performance. Only the docu-

ments in the pool folder can be used for training.

Generating the FlyBase corpus

To date, FlyBase curators have manually annotated 451

full-text articles using the tagtog interface. The PLOS

Figure 2. Annotation guidelines.
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journal collection was chosen for document sampling be-

cause PLOS makes all their research papers fully available

for text mining (14), and the PLOS journal collection cov-

ers many aspects of Drosophila research. All sampled

papers are from between 2011 and 2013. The following

document sections were annotated: title, abstract, results,

materials and methods and figure and table legends. The

paper annotations have been used to iteratively train the

machine learning component of tagtog. So far, we have

performed three annotation and benchmark iterations. In

the first two iterations, annotations were done manually

by a sole curator and automatically by the system. In the

third iteration, all five FlyBase curators annotated papers

manually. All the manual annotations and corrections

were performed using tagtog’s document editor interface.

Iteration 1: a sole curator (P. McQuilton) manually anno-

tated a training set of 20 articles, representative of the

Drosophila-related papers found in PLOS journals. The

number of 20 ‘seed’ articles was chosen based on best prac-

tices by previous experiments on active learning (15). We

searched the PLOS Web site using the term ‘Drosophila

melanogaster’ from 2011 onward and then randomly se-

lected 20 articles that had been already annotated and

incorporated into the FlyBase database. Trained with these

documents, the system was applied to predict gene men-

tions in an unlabeled validation set of 99 articles. The cur-

ator then went through the validation set and corrected,

added or removed the predicted annotations, when appro-

priate. Mismatched annotations between the original pre-

dictions and the revised annotations were counted as

errors.

Iteration 2: the two sets of papers used in Iteration 1 were

united to form a training set of 119 articles. For evaluation,

the user manually annotated a test set of 20 new articles

(which we will refer to as the ‘Gold Standard’. The system

was retrained on the 119 articles and benchmarked against

the 20 Gold Standard articles. In contrast to Iteration 1,

prediction errors could be compared directly against the

test set.

Iteration 3: the previous two sets, plus a further 312 papers

curated by five different FlyBase curators, were combined

to form an annotated corpus of 451 fly-related papers.

These papers were used to retrain tagtog before the assess-

ment on the Gold Standard set (20 papers).

Measuring performance on the FlyBase corpus

We used standard NER evaluation measures to benchmark

performance, namely, precision (P), recall (R) and F1

measure (F1). Precision measures the percentage of correct

predictions, i.e. the number of correct predictions divided

by all predictions. Recall measures the percentage of cor-

rectly identified entities, i.e. the number of correctly identi-

fied entities divided by all entities present in the test

document. There is typically a trade-off between precision

and recall; F1 averages the two into one sole measure.

More precisely, F1 is the harmonic mean between precision

and recall. Only exact matches between the ‘tagtog’ predic-

tions and the test annotations are counted as correct, i.e.

the predictions have to match the exact word boundaries

[for example, ‘Su(H)’ but not ‘Su(H) protein’]. Two types

of counts were considered: (i) unique entities on a docu-

ment basis. That is, for a test entity X in a document, the

predictions are right if at least one mention of that entity

can be identified in that document, wrong otherwise (for

example, at least one mention of the gene ‘dpp’ is correctly

identified, no matter whether other mentions may be

missed). Equivalently, all unique entities identified by the

predictions but not present on the test annotations are

counted as errors. (ii) All entity mentions for all docu-

ments. That is, for all entity mentions, matching predic-

tions and test annotations are counted as correct, whereas

mismatched mentions, either false-positive findings or

false-negative findings, are counted as errors (so in this

case, three correct mentions of ‘dpp’ can be identified,

while one mention is missed and recorded as a false nega-

tive). Note that for testing, only the annotatable sections

defined by the curator are compared.

Figure 3 shows the entity recognition performance for all

entity mentions in a paper, i.e the ability of tagtog to identify

the presence of a gene mention, either as a symbol or name.

The figure shows that the performance has steadily improved

(taking the F1 measure) in proportion to the corpus size. The

same performance improvement behavior is seen for unique

entity recognition (Figure 4), that is, the ability to identify

the presence of a gene at least once in a paper. In this case,

however, we found a large reduction in precision perform-

ance from Iteration 1 (P¼ 0.82) to Iteration 2 (P¼0.45). We

observed numerous false-negative findings that were re-

peated only once in the text, examples: ‘BamH1’ in ‘jour-

nal.pgen.1003042’ or ‘oskar’ in ‘journal.pgen.1003079’.

False-negative findings can significantly impact performance

of unique entities, but leave the performance of all mentions

mostly unaffected if the unique false-negative findings repre-

sent a small fraction of the total number of mentions.

Nevertheless, in Iteration 3, both the precision and the recall

for unique entities increased considerably (P¼ 0.64 and

R¼ 0.63).

The final number of 451 papers consists of a test set of

20 manually annotated documents plus a training set of

431 documents, which combine manual and automatic

annotations (that have subsequently been manually vali-

dated). We have deposited this corpus in the BioC

Page 5 of 8 Database, Vol. 2014, Article ID bau033
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Itera�on 1 Itera�on 2 Itera�on 3 
Recall 0.44 0.46 0.63 
Precision 0.82 0.45 0.64 
F1 measure 0.57 0.45 0.64 
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Figure 4. Unique entity recognition performance over all three corpora sizes.

Itera�on 1 Itera�on 2 Itera�on 3
Recall 0.21 0.49 0.57
Precision 0.87 0.85 0.84
F1 measure 0.34 0.62 0.67

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Entity recognition performance over all three corpora sizes.
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format (7) at the BioC repository (http://www.ncbi.nlm.

nih.gov/CBBresearch/Dogan/BioC/) for use by other text-

mining groups. We believe the corpus to be the largest and

the most complete gene mention annotation set in full-text

articles currently available.

The BioCreative interactive annotation task

challenge—curation time

Within the framework of the BioCreative IV workshop,

the purpose of the interactive annotation task (IAT) was to

ascertain the possible benefit in terms of curation effort of

machine-assisted annotation versus manual annotation.

The task for tagtog was divided as follows:

1. Manual annotation: using the tagtog interface, a biocu-

rator manually annotated a set of 20 documents with

an entity class of her choice. The machine learning

component of tagtog was consequently trained on the

first manual set and provided automatic annotations

for a second set of 20 documents.

2. Assisted annotation: using the tagtog interface, the bio-

curator reviewed and corrected, where appropriate,

the automatic predictions of the second set of 20

documents.

Curation time was measured for both subtasks, and the

results were compared. Two biocurators participated in

the task, Mary Schaeffer from MaizeDB (first) and Ritu

Khare from NCBI (second):

• The first biocurator chose to annotate maize-related

genes and uploaded a self-defined dictionary of

terms. She is an expert in this kind of annotation.

A total of 6 h and 34 min was taken for the manual

annotation and 4 h and 5 min for the assisted anno-

tation. This indicates a reduction in curation time of

�1.6-fold.
• The second biocurator chose to annotate Drosophila

gene names and symbols and uploaded the same dic-

tionary as used with the FlyBase corpus. The second

curator is not an expert in this kind of annotation.

She spent 9 h and 19 min for the manual annotation

and 4 h and 49 min for the assisted annotation. This

indicates a reduction in curation time of �1.9-fold.

Conclusions

We have shown that tagtog can be used successfully to an-

notate Drosophila gene symbols and names. We have also

shown that the accuracy of these annotations increases with

the size of the training corpus. In addition, we have shown

that tagtog-assisted NER can reduce overall curation time.

This gradual improvement in accuracy, combined with the

shortening of curation time by 1.6- to 1.9-fold compared

with completely manual curation, illustrates the benefit of

including text-mining techniques, such as tagtog, in cur-

ation. To our knowledge, these preliminary results represent

one of the first NER evaluations with a substantial amount

of full-text articles in the biomedical field.

Given the encouraging nature of the curation time ex-

periments, we plan to expand our analysis of curation with

tagtog to assess whether the increase in curator speed is

due to familiarity with the tool or assisted annotation.

These experiments have also shown that tagtog can be

used to annotate gene symbols from species outside of

Drosophila, such as maize.

In future work, we will check for the presence of

repeated entities between documents that could bias the

NER evaluation between iterations and assess inter-

annotator agreement between the five FlyBase curators to

allow performance benchmarking. NER with full-text art-

icles is understood to be considerably more difficult than

for abstracts (16, 17), and although we have not special-

ized the machine learning methods used here for

Drosophila gene mention extraction, we are pleased with

the level of performance. The continuous learning of tag-

tog is designed to generate cheaper (in terms of manual

curation effort) training data, by taking advantage of

semiautomatic annotation. We will continue to add to the

FlyBase corpus, with the aim of increasing NER accuracy

and the potential incorporation of tagtog (or the output

from tagtog) into our genetic literature curation pipeline.

In this article, we have illustrated how tagtog-assisted

annotation can benefit manual curation from the litera-

ture. We have shown how the identification of D. mela-

nogaster gene symbol and name mentions has gradually

improved with more training data and user feedback. This

illustrates the adaptability of the tagtog system to the spe-

cific curation requirements of the user, and there seems to

be a potential for further improvement in NER perform-

ance. Thanks to our participation in the BioCreative IV

IAT challenge, we have been able to achieve promising

results in the reduction of curation time through the use of

tagtog-assisted curation compared with manual gene men-

tion extraction. As a result of our experiments, we have

generated the FlyBase corpus, one of the largest corpora of

full-text articles with entity annotations in the field of bio-

medical text mining. We have made this available in BioC

format for use by the text-mining community.
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9. Comeau,D.C., Islamaj Doğan,R., Ciccarese,P. et al. (2013)

BioC: a minimalist approach to interoperability for biomedical

text processing. Database (Oxford), 2013, bat064.

10. Brand,A.H. and Perrimon,N. (1993) Targeted gene expression

as a means of altering cell fates and generating dominant pheno-

types. Development, 118, 401–415.

11. FlyBase Precomputed Files. http://flybase.org/static_pages/down

loads/bulkdata7.html

12. Lafferty,J.D., McCallum,A. and Pereira,F.C.N. (2001)

Conditional random fields: probabilistic models for segmenting

and labeling sequence data. In: Proceedings of the Eighteenth

International Conference on Machine Learning. San Francisco,

CA, USA. pp. 282–289.

13. Hsu,C.H., Chang,Y.M., Kuo,C.J. et al. (2008) Integrating high

dimensional bi-directional parsing models for gene mention tag-

ging. Bioinformatics, 24, i286–i294.

14. PLOS Open Access Policy. http://www.plos.org/open-access/

15. Tomanek,K. and Hahn,U. (2009) Semi-supervised active learn-

ing for sequence labeling. In: Annual Meeting of the Association

of Computational Linguistics 2009. Suntec, Singapore. http://

clair.eecs.umich.edu/aan/paper.php?paper_id¼P09-1117.

16. Larry,S., Lorraine,T., Rie,A. et al. (2008) Overview of

BioCreative II gene mention recognition. Genome Biol., 9

(Suppl 2), S2.

17. Zhiyong,L., Hung,K.Y., Chih,W.H., et al. (2011) The gene nor-

malization task in BioCreative III. BMC Bioinformatics, 12

(Suppl 8), S2.

Database, Vol. 2014, Article ID bau033 Page 8 of 8

 by guest on N
ovem

ber 22, 2016
http://database.oxfordjournals.org/

D
ow

nloaded from
 

2. tagtog: a human-assisted automatic annotation system

50



2. tagtog: a human-assisted automatic annotation system

2.3 References

Andorf, C. M. et al. (2016). “MaizeGDB update: new tools, data and interface for the maize

model organism database”. In: Nucleic Acids Res 44.D1, pp. D1195–201. issn: 1362-

4962 (Electronic) 0305-1048 (Linking). doi: 10.1093/nar/gkv1007. url: https:

//www.ncbi.nlm.nih.gov/pubmed/26432828.

Bunt, S. M. et al. (2012). “Directly e-mailing authors of newly published papers encour-

ages community curation”. In: Database (Oxford) 2012, bas024. issn: 1758-0463 (Elec-

tronic) 1758-0463 (Linking). doi: 10.1093/database/bas024. url: https://www.

ncbi.nlm.nih.gov/pubmed/22554788.

Cohen, K. B. et al. (2010). “The structural and content aspects of abstracts versus bodies of

full text journal articles are different”. In: BMC Bioinformatics 11, p. 492. issn: 1471-

2105 (Electronic) 1471-2105 (Linking). doi: 10.1186/1471- 2105- 11- 492. url:

https://www.ncbi.nlm.nih.gov/pubmed/20920264.

Gramates, L. S. et al. (2017). “FlyBase at 25: looking to the future”. In: Nucleic Acids Res

45.D1, pp. D663–D671. issn: 1362-4962 (Electronic) 0305-1048 (Linking). doi: 10.

1093/nar/gkw1016. url: https://www.ncbi.nlm.nih.gov/pubmed/27799470.

Mao, Y. et al. (2014). “Overview of the gene ontology task at BioCreative IV”. In: Database

(Oxford) 2014. issn: 1758-0463 (Electronic) 1758-0463 (Linking). doi: 10 . 1093 /

database/bau086. url: https://www.ncbi.nlm.nih.gov/pubmed/25157073.

51

https://doi.org/10.1093/nar/gkv1007
https://www.ncbi.nlm.nih.gov/pubmed/26432828
https://www.ncbi.nlm.nih.gov/pubmed/26432828
https://doi.org/10.1093/database/bas024
https://www.ncbi.nlm.nih.gov/pubmed/22554788
https://www.ncbi.nlm.nih.gov/pubmed/22554788
https://doi.org/10.1186/1471-2105-11-492
https://www.ncbi.nlm.nih.gov/pubmed/20920264
https://doi.org/10.1093/nar/gkw1016
https://doi.org/10.1093/nar/gkw1016
https://www.ncbi.nlm.nih.gov/pubmed/27799470
https://doi.org/10.1093/database/bau086
https://doi.org/10.1093/database/bau086
https://www.ncbi.nlm.nih.gov/pubmed/25157073




Chapter 3

nala: extraction of genetic variations
mentions written in natural language

3.1 Preface

Genetic variations are of vital importance to understand and consequently treat diseases.

Descriptions of mutations and their experimentally-observed effects are deposited in the lit-

erature. Several automatic methods tried in the past to recognize such mentions, but primar-

ily only focused on simple description forms (e.g. “E6V”). Complex natural descriptions

(e.g. “glutamic acid was substituted by valine at residue 6”) remain largely untapped

In this work, we first studied the impact of natural language (NL) mutation mentions.

That is, how often such descriptions are used by authors in scientific manuscripts. We cre-

ated three independent corpora semi-automatically annotated with the tagtog tool (Cejuela

et al. 2014). The first two corpora, IDP4 and nala known, gathered (as was customary

in previous corpora) full-text and abstract articles listed in heavily-indexed (i.e. well un-

derstood) sources such as UniProtKB (The UniProt Consortium 2017) or dbSNP (Sherry

et al. 2001). The third corpus, nala discoveries, was based on a comprehensive, unbi-

ased PubMed search of mutation-related, most recent publications in the highly-renowned

journals, Nature, Science, and Cell. Altogether, the three new corpora constituted the

largest source of labeled mutation mentions (5660) and thwarted previous corpora (all

combined, 2933 mentions). In the previous and new heavily-indexed articles, SetsKnown,

28%-36% of documents had at least one NL mutation description. In recent publications,

nala discoveries, the number was substantially higher: 67%-77%. All these genetic varia-

tions would be missed by existing text mining solutions.

Consequently, we developed a new automatic method to recognize all sorts of mutation

types (e.g. SNPs/SAVs, insertions, deletions, repetitions, or large chromosomal rearrange-

ments) written in simple form or complex NL forms. The new method, nala, combined

probabilistic combined conditional random fields (CRFs) (Lafferty, McCallum, and Pereira

2001) with word embedding features (Mikolov et al. 2013). The word embeddings were
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learnt unsupervised from the entire PubMed, using word2vec with the neural network archi-

tecture CBOW (continuous bag of words). These unsupervised features accounted for the

biggest performance improvements in mutation mention recognition. Moreover, the new

method and the nala known corpus were developed in parallel in an active learning setting:

articles with automatic predictions with low confidence or erroneous, were purposely se-

lected for annotation, precisely to learn those. In SetsKnown articles, the new method nala

performed consistently equal or better than previous methods. In nala discoveries (latest

publications), the nala method did not miss any of the found mutation mentions by other

methods, and discovered 33% of the mentions uniquely. Further, nala was the only method

to identify NL, long mentions of variations.

The implementation of methods and analysis results were done by me, Aleksandar Bo-

jchevski, and Carsten Uhlig. The study design was conceived by me and Burkhard Rost.

The annotations were done by me, Aleksandar Bojchevski, Carsten Uhlig, Rustem Bek-

mukhametov, Sanjeev Kumar Karn, and Shpend Mahmuti. Ashish Baghudana provided

extra software implementations. Ankit Dubey provided background research. Venkata P.

Satagopam contributed with overall guidance and proofreading. The manuscript was drafted

by me and Burkhard Rost.

3.2 Journal article. Cejuela et al., Bioinformatics 2017

Starts next page.
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Abstract

Motivation: The extraction of sequence variants from the literature remains an important task. Existing

methods primarily target standard (ST) mutation mentions (e.g. ‘E6V’), leaving relevant mentions nat-

ural language (NL) largely untapped (e.g. ‘glutamic acid was substituted by valine at residue 6’).

Results: We introduced three new corpora suggesting named-entity recognition (NER) to be more

challenging than anticipated: 28–77% of all articles contained mentions only available in NL. Our

new method nala captured NL and ST by combining conditional random fields with word embed-

ding features learned unsupervised from the entire PubMed. In our hands, nala substantially out-

performed the state-of-the-art. For instance, we compared all unique mentions in new discoveries

correctly detected by any of three methods (SETH, tmVar, or nala). Neither SETH nor tmVar dis-

covered anything missed by nala, while nala uniquely tagged 33% mentions. For NL mentions the

corresponding value shot up to 100% nala-only.

Availability and Implementation: Source code, API and corpora freely available at: http://tagtog.

net/-corpora/IDP4þ.

Contact: nala@rostlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genetic variations drive biological evolution. Yet, most mutations

might harm (Rost, 1996; Rost et al., 2003; Sawyer et al., 2007).

Experimental studies elucidating the effects of sequence variation re-

main precious and expansive. Today, the important results from such

studies are still published in papers. Repositories, such as OMIM, rely

primarily on labor-intensive and time-consuming expert curation.

Searching PubMed with relevant keywords (http://1.usa.gov/

1rCrKwR) brought up >1M articles; most of those (>630K) for vari-

ation in human. An equivalent search of UniProtKB/Swiss-Prot

VC The Author 2017. Published by Oxford University Press. 1
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(Boutet et al., 2016; UniProt, 2015) revealed �13K indexed publica-

tions, and the professional version of the Human Gene Mutation

Database (HGMD) (Stenson et al., 2003) listed �179K mutations.

These numbers sketch the immense information gap between

literature and database annotations (Jimeno and Verspoor, 2014a,b,

Database). Despite two decades of high-level efforts to increase the

incentive for authors to link their findings to databases, this gap is

likely to expand even more rapidly in the future. Instead of requiring

administrative overhead, the text mining of free literature pursues a

solution that could scale and substantially narrow the gap (Krallinger

et al., 2008).

Mutation mentions refers to the format used to report experi-

mental results for sequence variants. Mining mutation mentions is

referred to as named-entity recognition (NER). We focused on the

task to recognize and parse text fragments such as the following two

equivalent mutation mentions: ‘glutamic acid was substituted by

valine at residue 6’ or ‘p.6E>V’. The two differ only in their syntax:

the first is written in natural language (NL), the second follows a

standardized format (ST).

Existing extraction methods primarily target simple and standar-

dized mutation mentions. MutationFinder (MF) (Caporaso et al.,

2007a,b) uses a large set of regular expressions (regexes) to recog-

nize single nucleotide or amino acid variants written in simple ST

form (e.g. ‘E6V’) and slightly more complex semi-standard (SST)

form (e.g. ‘Glu 6 to Val’ or ‘glutamic acid for valine 6’). SETH

(Thomas et al., 2016) recognizes other short sequence variations

such as insertions and deletions (indels, e.g. ‘c.76_77insG’ and

‘c.76delA’, resp.) by implementing a formal grammar and regexes

that cover recommended, deviations and deprecated cases of the

HGVS nomenclature (den Dunnen et al., 2016). The HGVS nomen-

clature aims to frame mutation mentions in a canonical normalized

language (e.g. the complete form ‘p.Glu6Val’ is preferred over alter-

natives). tmVar (Wei et al., 2013) has introduced probabilistic meth-

ods and recognizes ST mentions for a large variety of variant types:

point variants (SNVs: Single Nuclear Variants, SAVs: Single Amino

acid Variants), structural variations (insertions, deletions, frame-

shifts: e.g. ‘p.(Arg97fs)’, duplications: e.g. ‘c.76dupA’), and rsids

(reference SNP ID numbers, e.g. ‘rs206437’, i.e. dbSNP accession

numbers (Sherry et al., 2001)). None of these three methods appear

to extract genetic markers (e.g. ‘D17S250’) nor large-scale muta-

tions, i.e. variations of regions longer than a few nucleotides or

amino acids (e.g. ‘TP73Dex2/3’ or ‘abrogated loss of Chr19’).

Existing methods are reviewed in detail elsewhere (Jimeno and

Verspoor, 2014a,b, F1000Res.; Nagel et al., 2009). Mapping the

variant E6V to a particular sequence, e.g. that of hemoglobin S in

human with the SWISS-PROT identifier hbb_human and relating it

to sickle cell anemia (SKCA) and finally identifying that the variants

is actually at position 7 in the sequence, i.e. should have been named

E7V (p.Glu7Val), are all essential steps toward ‘parsing the mean-

ing’ of the annotation. We ignored these mapping problems in this

work. Instead, our work focused on presenting the first comprehen-

sive study of the significance of natural language mutation mentions

(e.g. ‘in-frame deletion of isoleucine 299’). Our new method com-

pleted the picture by recognizing different mutation types (for both

genes and proteins) written in simple form or complex natural

language.

2 Materials and methods

2.1 Classification of mutation mentions: ST, SST and NL
There is no single reliable classification of natural language (NL)

or standard (ST) mutation mentions. Some annotators might

consider ‘alanine 27 substitution for valine’ as NL because it does

not follow the standard HGVS nomenclature. Others might con-

sider it as standard or semi standard (SST) because simple regexes

might capture this mention. Previous mutation extraction

methods primarily used regexes and did not capture long muta-

tion mentions.

As an operational definition, we considered any long mention that

was not recognized by previous methods as NL, any mention that

resembled the HGVS nomenclature as ST, and any mention in be-

tween as SST. We defined the following if-else chain algorithm to cap-

ture this idea: given a mutation mention, if it matches custom regexes

or those from tmVar, then it is ST; else if it has 5 or more words or

contains 2 or more English-dictionary words, then it is NL; else if it

contains 1 English-dictionary word, then it is SST; else it is ST (ex-

amples in Table 1). Our custom regexes matched one-letter-coded

mentions such as ‘p.82A>R’ or ‘IVS46: del T -39 . . . -46’

(Supplementary Table S9). The collected tmVar regexes were used by

the authors (Wei et al., 2013) as features of the tmVar probabilistic

model and as post-processing (PstPrc) rules.

2.2 Evaluation measures
We considered a named entity as successfully extracted if its text off-

sets (character positions in a text-string) were correctly identified

(tp: true positive). We considered two modes for tp: exact matching

(two entities match if their text offsets are identical) and partial

matching (text offsets overlap). Any other prediction was considered

as a false positive (fp) and any missed entity as a false negative (fn).

Partial matching is more suitable to evaluate NL mentions lacking

well-defined boundaries. For instance, in finding ‘[changed con-

served] glutamine at 115 to proline’, we did not distinguish solutions

with and without the words in brackets, because we focused on the

extraction of the mention not on that of additional annotations

(here ‘conserved’). We computed performance for all cases and for

the subclasses (ST, SST and NL). A test entity of subclass X was con-

sidered as correctly identified if any predicted entity matched. We

then used the standard evaluation measures for named-entity recog-

nition, namely, precision (P: tp=tpþ fp), recall (R: tp=tpþ fn) and

F-Measure (F: 2 �
�

P � RÞ=ðPþRÞ). Within a corpus, we computed

Table 1. Classification of mutation mentions

Class Examples MF SETH tmVar

ST • Q115P; Asp8Asn; 76A>T
• c.925delA; g.3912G>C; rs206437
• c.388þ 3insT
• delPhe1388; F33fsins; IVS3(þ1);

D17S250;
• TP73Dex2/3

yes

no

no

no

yes

yes

no

no

yes

yes

yes

no

SST • 3992-9g–>a mutation; codon 92,

TAC–>TAT
• Gly 18 to Lys; leucine for arginine 90
• G643 to A; abrogated loss of Chr19

no

yes

no

no

yes

no

yes

no

no

NL • glycine to arginine substitution

at codon 20
• glycine was substituted by

lysine at residue 18
• deletion of 10 and 8 residues

from the N- and C-terminals

yes

no

no

yes

no

no

no

no

no

Note: Examples of mutation mentions of increasing level of complexity as

found in the literature (ST: standard; SST: semi-standard; NL: natural language).

The columns MF, SETH and tmVar indicate if the methods MutationFinder,

SETH and tmVar, respectively, recognize the examples listed.

2 J.M.Cejuela et al.
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the StdErr by randomly selecting 15% of the test data without re-

placement in 1000 (n) bootstrap samples. With<x> as the overall

performance for the entire test set and xi for subset i, we computed:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1

xi � xh ið Þ2
s

StdErr ¼ rffiffiffi
n
p (1)

Across corpora, we did not merge documents. Rather, we computed

the mean of P, R and F between the considered corpora, and com-

puted the StdErr of the mean without subsampling.

2.3 Previous corpora
Some well-known corpora annotate mutation mentions and specific

text offsets, including: SETH (Thomas et al., 2016), tmVar (Wei

et al., 2013) and Variome (Verspoor et al., 2013). All corpora con-

tain different mutation types, including SNPs, frameshifts, or dele-

tions (primarily in ST or SST forms). SETH and tmVar annotated

abstracts, Variome full-text articles. The Variome corpus annotated

many vague mentions (e.g. ‘de novo mutation’ or ‘large deletion’).

With Variome120 we referred to a Variome subset of position-

specific variants with 118 mentions as described earlier (Jimeno and

Verspoor, 2014a,b, F1000Res.) plus two new annotations with ref-

erence to both a DNA and a protein mutation.

2.4 Three new corpora: IDP4, nala and nala_discoveries
We annotated three new corpora (IDP4, nala and nala_discoveries)

at different times and with slightly different objectives. These solu-

tions substantially enriched the status quo. All three were annotated

with the tool tagtog (Cejuela et al., 2014). The differences were as

follows.

2.4.1 IDP4 corpus

We introduced the IDP4 corpus to offer an unbiased representation

of mutation mention forms (NL in particular). Previous corpora

focused on ST or SST mentions. We annotated the entities

Mutation, Organism and GGP (gene or gene product), as well as,

relations between GGP and both Mutation and Organism. We

included abstract-only and full-text documents. Documents were se-

lected in four steps. (1) Include particular organisms/sources (Homo

sapiens, Arabidopsis thaliana, Drosophila melanogaster, Caeno-

rhabditis elegans, Schizosaccharomyces pombe, Saccharomyces cer-

evisiae, Mus musculus, Rattus norvegicus and HIV). (2) Collect the

PubMed identifiers linked from SWISS-PROT (Boutet et al., 2016)

that cite the keywords variation or mutagenesis. (3) Accept all ab-

stracts that contain any of five keywords (mutation, variation, inser-

tion, deletion, SNP). (4 optionally) Retrieve full-text articles

through keyword open access (on PubMed Central).

Our method and thus our annotation guidelines needed mutation

mentions with three components: (1) W (word): a clear word or pat-

tern giving the variant and its type (W is binary, i.e. present or not),

e.g. W¼ yes as in ‘His72 substitution to Arg’ or ‘24bp duplication

of ARX exon 2’. (2) L (letter): giving the mutated nucleotides or resi-

dues (L is binary, i.e. present or not), e.g. L¼ yes as in ‘delta

Phe581’ and L¼no as in ‘deletion at pos. 581’. (3) P (position): giv-

ing the sequence location of the variation (P has three values: exact,

vague, or no, i.e. not applicable), e.g. P¼ exact as in ‘Tyr838 muta-

tion’ or ‘Del 1473-IVS16(þ2)’ and P¼ vague as in ‘placed immedi-

ately downstream of I444’ or ‘at the carboxyl end’.

We annotated two cases: (1) W¼ yes, L¼ yes, P¼ yesjvague, e.g.

‘p.Phe54Ser’, ‘Arg-Thr insertion between 160 and 161 residues’, or

‘(499)leucine (TTA) to isoleucine (ATA)’; (2) W¼ yes, L¼no,

P¼ yes, e.g. ‘point mutation at amino acid 444’, ‘SNPs affecting

residues, 282, 319 and 333’. The rationale was that we could assign

to the missing nucleotide/residue the unknown value X. We also

annotated total gene knockouts (‘D/D’), deletions of subparts

(‘deleted C1 domain’), or deletions of larger regions (‘deletions of

chromosome 9p22.3’). We considered those positions as specific.

Moreover, we annotated rsids.

We measured the agreement between annotators (F-Measure of

the inter-annotator agreement: F_IAA) as proxy for the consistency

of the annotations. Four annotators participated. Across 53 overlap-

ping documents, for IDP4 we observed F_IAA¼91 for all mutation

mentions and F_IAA¼77 for NL mentions. In total, the IDP4 cor-

pus collected 157 documents (72 full textþ85 abstracts) with 3337

mutation annotations: 3113 ST mentions (93%), 198 NL (6%) and

26 SST (1%).

2.4.2 nala corpus

We introduced the nala corpus to expand the amount of NL muta-

tion mentions necessary for the training of probabilistic methods.

No previous corpus tagged enough (Results) (Ravikumar et al.,

2012). We annotated only abstracts for they contained higher den-

sities (number of mentions/number of words) of NL mentions than

full articles. In particular, the IDP4, Variome and Variome120 cor-

pora contained more NL mentions per word in abstracts than in full

texts (ratios: 5.5, 1.6 and 3.8). We selected documents as for the

IDP4 corpus but applied active learning to simultaneously build cor-

pus and method (details below). The nala corpus consisted of two

disjoint sets: nala_training and nala_known. The latter ‘blind’ set

with 90 randomly chosen abstracts (15% of the entire nala corpus)

was used only to test. We stopped adding abstracts to this test set

when the standard error estimate plateaued. Moreover, nala_known

contained 8 documents (9% of test) without any annotation, i.e. no

mutation mentions, to effectively probe the precision of methods.

Annotating NL mentions strictly following our IDP4 corpus

guidelines was more challenging. For example, mutation positions

were often vague and/or referenced indirectly in other sentences

than the variant and often in different paragraphs. In particular, we

relaxed the rules more for insertions and deletions, e.g. ‘2-bp dele-

tion in exon 6’, ‘somatic 16-bp deletion’, or ‘in-frame insertion of 45

nucleotides’. Another unique feature of the nala corpus was the an-

notation of genetic markers. To limit the workload, for the nala cor-

pus we refrained from annotating organisms or GGP terms. Only to

ease the reading of mutation mentions, we used the GNormPlus tag-

ger (Wei et al., 2015) to automatically annotate gene/protein terms.

Three experts annotated nala; their agreement over 30 docu-

ments was F_IAA¼95 for all mutation mentions and F_IAA¼89

for NL. The nala corpus collected 591 abstracts with 2108 mutation

annotations. Despite the explicit focus on NL mentions, ST men-

tions still dominated (presumably because they are easier to anno-

tate): 1097 ST (52%) versus 841 NL (40%) and 170 SST (8%). As a

result, the nala_known set benchmarked both ST and NL mentions

(SST mentions were underrepresented).

2.4.3 nala_discoveries corpus

We introduced another novel corpus, nala_discoveries, to gauge

automatic tagging of papers with ‘new discoveries’. The idea is best

explained in comparison to our generic nala corpus: there we picked

the PubMed articles beginning from identifiers of genes and proteins

that had already been described experimentally and annotated in

SWISS-PROT (Boutet et al., 2016). We had not realized how crucial

this constraint was until we created a new corpus just before
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submitting the manuscript. The usage of previously-indexed articles

and knowledge has been common practice, e.g. for SNPs indexed by

dbSNP or HGVS-compliant mentions (SETH corpus), disease- and

mutation-specific MeSH terms indexed by PubMed (tmVar corpus),

mutation-specific citations indexed by SWISS-PROT (IDP4 and nala).

Only the Variome corpus directly searched PubMed, but it was limited

to three Lynch syndrome genes. For nala_discoveries, we found all art-

icles in PubMed using the keyword mutation and published between

2013 and 2016 in the journals Nature, Science and Cell, without fur-

ther filtering (exact search: http://bit.ly/2aHthKP). To limit the work-

load, we randomly selected abstracts with at least one mutation

mention (any form) and stopped at 60 abstracts with at least one NL

mention. We applied the guidelines used for IDP4 and nala. Compared

to other corpora, we found more large-scale mutations (e.g. chromo-

somal translocations) and significant differences in the semantics of

mutation mentions. The numbers for nala_discoveries were: 78

abstracts (18 with ST or SST mentions only) and 215 mutation

annotations spanning 104 ST mentions (48%), 71 NL (33%) and

40 SST (19%). The corpus nala_discoveries effectively bench-

marked all mention classes (incl. SST) and was annotated by the

same three annotators as the nala corpus.

2.5 New method: nala
The new method nala was based on conditional random fields (CRFs)

(Lafferty et al., 2001). Techniques for CRFs are amply described

(Settles and Burr, 2004; Wei et al., 2013; Wei et al., 2015). We used

the python-crfsuite implementation, a python binding of the CRFSuite

Cþþ library (software URLs in Supplementary Table S10). We used

our in-house implementation of the tmVar tokenizer (Wei et al., 2013),

but did not split tokens upon case changes at the sentence beginning

(‘The’ not ‘T’þ ’he’). We applied BIEO token labeling: tokens at the

beginning of a mutation mention were labeled as B; continuing (inside)

tokens as I; ending tokens as E; all other tokens (outside a mention) as

O. For NL, BIEO outperformed our implementation of the 11 tmVar

labels. We also included standard features such as token stems, word

patterns, prefix and suffix characters, presence of numbers, or the

word belonging to term dictionaries such as nucleotides, amino acids,

or other common entities. We also added PstPrc rules such as fixing

small boundary problems (‘þ1858C>T’ not ‘1858C>T’). Finally, we

introduced two optional post-processing (PstPrc) regex-based filters

that can be switched on or off by users: 1) annotate rsids or not, and 2)

annotate genetic markers or not.

Word embedding features (WE) contributed most to our new

method. WE features had already helped in biomedical named-

entity recognition (Guo et al., 2014; Passos et al., 2014; Seok et al.,

2016; Tang et al., 2014). Specifically, we used neural networks with

the CBOW architecture (continuous bag of words) (Mikolov et al.,

2013) and trained on all PubMed abstracts until mid 2015. We used

window¼10 and dimension D¼100. Tokens were converted to

lowercase and digits were normalized to 0. For each token, the vec-

tor of 100 real values was translated into 100 features. The real val-

ues were used as weights in the CRF features, e.g.:

word_embedding[0]¼0.00492302. In analogy to the optional PstPrc

filters, users also have the option to run nala with WE features (de-

fault) or not (the features are not computed).

We built the nala corpus and method in parallel through iterative

active learning (Fig. 1). We implemented a base version (nala_1)

using the features from tmVar and trained on the IDP4 corpus (iter-

ation_1 training set). For later iterations (iteration_t), we used the

previous model (nala_t-1) and a high-recall set of regexes to select

documents with non-ST mentions. We selected only documents

with�1 NL mention. In each iteration, we arbitrarily selected ten

documents. These were pre-annotated by nala_t-1 and then posted

to the tagtog annotation tool for expert review and refinement; the

reviewed annotations were saved as iteration_t. In each iteration

step, we trained through 5-fold cross-validation. Annotators selected

documents with annotation errors (missing entities, wrong offsets,

or false positives) to learn those. In the end, the merging of iteration

sets without IDP4 created the nala_training corpus. We trained the

final method solely on nala_training (without using IDP4 as training

data), due to two reasons. Firstly, NL mentions were learned much

better with nala_training. Secondly, ST mentions were learned better

including IDP4, yet the small improvement did not justify the com-

plexity of two separate models (ST and NL). We used nala_known

and nala_discoveries only to evaluate the final method.

2.6 Methods for comparison
We compared nala with two state-of-the-art methods, namely SETH

and tmVar. To run SETH locally, we slightly modified the original

scala code to print out the results in brat format. To run tmVar, we

used its official API. We could not benchmark the tmVar API on the

tmVar test set, as it had been trained on this set. For each method, we

evaluated its default and its best performance. To compute the best

performance, we filtered out some test annotations and predictions

originating from arbitrary annotation guidelines of the individual cor-

pora. For example, the best performance of tmVar on the SETH cor-

pus disregarded rsids; tmVar predicts rsids but the SETH corpus does

not consistently annotate them (9 out of 69). Analogously, nala pre-

dicted many NL mentions not annotated in the SETH, tmVar, or

Variome120 corpora. Overall, we applied the two PstPrc filters (rsids

and genetic markers) and the usage or not of WE features (only for

nala). WE features improved the performance for NL mentions (de-

tails below) but without WE features nala did better on the ST-scoped

corpora. For all methods, the difference between default and best per-

formance was consistently and substantially larger than the standard

Fig. 1. nala method active learning process. Each blue box represents an iter-

ation state of the nala method. The method and the iteration training sets are

implemented in parallel. The previous iteration method (nala_t-1) is used to

automatically annotate unseen documents. Selected documents with out-

standing errors are reviewed manually and added to the iteration training set

t. New features are evaluated in 5-fold cross validation and the method is re-

trained with all previous sets (nala_t). At the end, the sum of iteration training

sets without IDP4 form the nala_training corpus. The final nala method is

trained on nala_training (only) and evaluated against the nala_known and

nala_discoveries corpora
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error within the corpus. This underlined the significance of annotation

guidelines. Consequently, we reported (Results) the averages for de-

fault and best performance and their standard errors (individual re-

sults in Supplementary Tables S1–S5).

3 Results and discussion

3.1 Natural language (NL) mutation mentions important
The Variome120 and IDP4 corpora (no bias in mention forms) had

much higher fractions of NL over ST or SST mentions (8% and 6%,

respectively; Fig. 2, grayed out bars) than SETH (4%) and tmVar

(2%). Removing repetitions, the fraction of unique NL mentions

increased to 17% and 13% (Fig. 2, highlighted bars). The Variome

corpus contained the largest fraction of SST mentions (53% with and

19% without repetitions). NL mentions dominated abstracts even

more (12% in Variome120 and 13% in IDP4 with mention repeti-

tions and 29% and 17% without repetitions). The nala corpus, intro-

duced here, was built with a higher fraction of NL mentions (40%

with repetitions and 49% without repetitions). All these corpora

relied on well-annotated genes and proteins (indexed articles). In con-

trast, the nala_discoveries corpus randomly sampled abstracts without

considering previous functional annotations (no previous indices). It

contained the largest percentage of combined NLþ SST mentions

(52% with repetitions and 65% without repetitions).

How many experimental results will methods miss from the three

corpora (IDP4, Variome and Variome120) that focus on ST or SST

mentions? 28–36% of all abstracts contained at least one NL mention

not in ST form (Table 2). The corresponding per-mention fractions

were 13–27% (Table 2). For nala_discoveries the numbers were sub-

stantially higher: 67–77% (per-document) and 43–51% (per-mention).

3.2 New method nala performed top throughout
In our hands, the new method nala compared favorably with exist-

ing tools for extracting standard (ST) mutation mentions and signifi-

cantly outperformed the status-quo for natural language (NL)

mutation mentions (Fig. 3). This baseline was valid for all evalu-

ations that we carried out. We found it more difficult to yield a

single answer for the performance of nala (and from nala compared

to other methods) because the performance depended crucially on

the corpus. Each corpus has its own focus and bias. Which one best

reflects what users expect?

We tried to simplify by grouping results into those for previously

indexed mutations (SetsKnown corpora: SETH, tmVar_test,

Variome120 and nala_known; Supplementary Table S6) and those

without prior knowledge (nala_discoveries; Supplementary Table

S5). To establish the performance on well-annotated genes and pro-

teins, the SetsKnown corpora might provide the least biased esti-

mate: the nala method overall obtained F¼89 6 3 compared to the

highest performing competitor, i.e. tmVar with F¼87 6 3 (Table 3).

In contrast, the nala_discoveries corpus best established how well

text mining works for new articles: the nala method reached

F¼55 6 7 compared to the highest performing competitors SETH

and tmVar with F¼41 6 10 (Table 3). Precision was very high for

all methods on all evaluations and always lower than recall (for nala

avg. on SetsKnown P¼87/R¼92; on nala_discoveries P¼90/

R¼40). Thus, precision is a proxy for the performance on docu-

ments without mutation.

Fig. 2. Natural language (NL) mutation mentions important. What type of mu-

tation mentions dominates annotated corpora that somehow sample the lit-

erature: standard (ST, e.g. E6V), semi-standard (SST), or natural language

(NL)? Grayed out bars indicate counts with repetitions, full bars unique men-

tions (e.g. E6V occurring twice in the same paper, is counted twice for the

grayed out values and only once per paper for the others). The Variome,

Variome120, IDP4 and nala_discoveries corpora assembled different repre-

sentations of NL mentions. The dashed line separates corpora with papers

describing well-known, well-indexed genes and proteins (left of dashed line:

SETH, tmVar, Variome, Variome120, IDP4 and nala_known) and articles

describing more recent discoveries that still have to be indexed in databases

(right of dashed line: nala_discoveries)

Fig. 3. nala performed well for all corpora. The bars give two different results:

values above the horizontal lines in bars reflect the F-measures for all men-

tions, while values below the horizontal lines in bars reflect the F-measures

for the subset of NL-mentions in the corpus (high error bars indicate corpora

with few NL mentions). The exception was the result for the method tmVar

on the corpus tmVar_test, which was taken from the original publication of

the method in which no result was reported for NL-only (Wei et al., 2013).

That publication reports only exact matching performance, i.e. its overlapping

performance might be higher than shown here. nala consistently matched or

outperformed other top-of-the-line methods in well-indexed corpora

(SetsKnown; left of dashed line) and substantially improved over the status

quo in recent non-indexed discoveries (nala_discoveries; right of dashed

line). The F-measures of tmVar and SETH for NL-only on nala_discoveries

was essentially zero (two rightmost bars)

Table 2. Significance of NL mentions

IDP4 Variome Var.120 nala_discoveries

Annotator* (1) (2) (1) (2) (3)

Documents 30% 42% 22% 33% 78% 62% 77%

Mentions 14% 19% 6% 40% 52% 39% 49%

Note: Percentages of documents (3rd row) or mentions (4th row) that con-

tain at least one NL (natural language) or SST (semi-standard) for which no

ST (standard) mention exists in the same text. *Two different annotators

were compared for the corpus IDP4; three different annotators were com-

pared for the corpus nala_discoveries.
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Our new method nala essentially constituted a superset for the other

two top methods in the following sense. The mutations correctly detected

by tmVar and SETH were also found by nala. On top, nala correctly de-

tected many mutations that had been missed by both other methods

(Supplementary Fig. S1). Specifically, we looked at the subset of mentions

correctly detected by any of the three methods (without considering repe-

titions, i.e. counting the detection of E6V only once per publication):

12% (SetsKnown corpora) and 33% (nala_discoveries) of mentions

were exclusively found by nala (Fig. 4). In contrast, only 1% and 0%

(SetsKnown and nala_discoveries) were exclusively found by tmVar;

SETH added no exclusive detection. Moreover, 50% (SetsKnown) and

100% (nala_discoveries) of NL mentions were exclusively found by nala

and only tmVar found 2% of novel NL mentions in the SetsKnown.

3.3 WE features are crucial/large variants are

challenging
The Word Embedding (WE) features contributed significantly to the

success of nala (Fig. 5). WE features improved performance for all men-

tion types, most importantly for NL mentions (from F(WE¼off)¼70 to

F(WE¼on)¼83 on nala_known corpus and from F(WE¼off)¼5 to

F(WE¼on)¼34 on nala_discoveries corpus). In particular, WE vastly

improved recall and even slightly improved the precision

(Supplementary Table S8). All other features by the nala method were

specific to mutation mentions and resulted from a laborious expert opti-

mization. In contrast, WE features leveraged unsupervised data, i.e. can

be adopted with minor modifications to any task or corpus.

We studied NER – Named Entity Recognition and ignored the

considerably more difficult problem to map mutation mentions to

sequences as needed to curate databases. Recent methods aim at this

end (Mahmood et al., 2016; Ravikumar et al., 2015; Vohra and

Biggin, 2013). However, all methods still primarily target SNVs/

SAVs. We plan to extend the new corpora with exhaustive mapping

annotations and to adapt the nala method to better cope with large-

scale variations (predominant in nala_discoveries).

On new discoveries, the recall was 40%, i.e. 60% of the annota-

tions were missed. 70% of these were large-scale variants, i.e. vari-

ations of regions longer than a few nucleotides or amino acids

(presumably because their descriptions were less well-defined). For

44 of the 70% missed annotations, the annotators succeeded to pos-

ition the sequence region (e.g. ‘Deletion of the class 2 KNOTTED1-

LIKE HOMEOBOX’ or ‘Robertsonian translocation between

chromosomes 15 and 21’ or ‘amplification of 3q26/28 and 11q13/

22’). For the remaining 26 of the 70% the descriptions of the vari-

ants were so vague that we could not assign sequences, but recog-

nized large chromosomal changes (e.g. ‘DNA double-strand breaks’

or ‘copy-number variants’). To complete the analysis of the 60% an-

notations missed in nala_discoveries: 22 of the ‘small variation’

30% (100-70¼30) were SAVs and SNVs, and 8% were other short

variants such as insertions, deletions and frameshifts involving only

a few nucleotides. This implied that methods missed at least 2-3

times more single variants (SAVs and SNVs) in nala_discoveries

than in SetsKnown, i.e. in proteins without previous annotations

(data not shown; cf. 92% recall on SetsKnown, i.e. 8% missed an-

notations). As a practical use, we plan to research the performance

of nala to effectively map HIV mutation mentions from whole

PubMed (Davey et al., 2014).

4 Conclusion

Previous accounts (Jimeno and Verspoor, 2014a,b, F1000Res.; Thomas

et al., 2016; Wei et al., 2013) suggested that the strict named-entity rec-

ognition (NER) of mutation mentions constitutes a solved problem with

performance levels reported to be F>85. Despite this optimism, the

Table 3. Previously indexed versus new discoveries

SetsKnown (indexed texts) nala_discoveries (no indices)

method P R F 6 StdErr P R F 6 StdErr

nala 87 92 89 6 3 90 40 55 6 7

tmVar 95 79 87 6 3 93 26 41 6 10

SETH 97 74 83 6 5 93 25 40 6 10

Note: Precision (P), Recall (R) and F-Measure (F) for methods on corpora

with previously indexed articles (SetsKnown: SETH, tmVar_test,

Variome120, nala_known) and a corpus directly sampled from PubMed with-

out index (nala_discoveries).

Fig. 4. nala could fully replace other methods. For each publication we con-

sidered all mentions correctly identified by one of the top three methods and

kept only the findings unique in each publication. The y-axis plots the per-

centage of those mentions identified uniquely by one of the methods (All: all

mentions, NL: NL-only mentions). For all corpora containing publications of

genes and proteins indexed in the databases (SetsKnown), 1% of the men-

tions were detected only by tmVar and 12% only by nala, while SETH found

no mention in this dataset that nala had not detected. Only nala correctly de-

tected NL-only mentions in abstracts with new discoveries (100% bar on right

triplet)

Fig. 5. Word embedding (WE) features crucial for success. The inclusion of

WE features (WE¼on versus WE¼off) substantially improved performance

for both nala_known (texts previously indexed) and nala_discoveries (no pre-

vious indices). The increase in performance was highest for NL mentions, but

for ST mentions it was also significant
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same authors (Caporaso et al., 2007a,b; Jimeno and Verspoor,

2014a,b, Database) observed that methods failed to identify many

mutations for database curation. Our work shed some light on this

apparent paradox. First, mutation mentions often use natural lan-

guage (NL) and were often missed by existing tools as they focused

on standard (ST) forms. Second, existing corpora and methods pri-

marily treated articles that had been previously indexed in databases.

We showed that the percentage of publications with at least one men-

tion in only NL ranged from 28 to 36% for indexed articles

(SetsKnown) while it was twice as high (67–77%) for new discoveries

(nala_discoveries, Table 2). Thus, most mentions relevant for data-

base curation are only captured by methods versatile in NL.

We introduced the method nala designed to handle NL and ST

mentions. In particular, word embedding (WE) features boosted per-

formance for NL mentions (Fig. 5). In our hands, nala at least

matched the best existing tools for publications that have already

been curated in databases (corpora SetsKnown, dominated by ST

mentions (F(nala)¼89 6 3 vs. F(tmVar)¼87 6 3, Table 3).

Randomly sampling PubMed for new discoveries (nala_discoveries),

nala was substantially better than existing methods (F(nala)¼55 6 7

versus F(SETH, tmVar)¼40-41 6 10, Table 3).

What do users have to expect: F¼89 or F¼55? The answer de-

pends on what is known about the genes/proteins you are looking

for. For older articles, point mutations, or indels, the current per-

formance of all methods may suffice. For novel work or large-scale

mutations, nala identifies many mutation mentions that are missed

by others (Fig. 4). However, nala still missed about half of all vari-

ants described in the literature.

An important contribution of this work was the addition of three

new corpora (IDP4, nala_known and nala_discoveries). These three new

corpora accumulated the largest collection of mutation mentions: 826

documents (72 full texts), 627,953 tokens and 5660 mutation annota-

tions (1110 NL). In comparison, the previous SETH, tmVar and

Variome120 corpora combined collect: 1,140 documents (10 full texts),

355,518 tokens and 2,933 mutation annotations (216 NL). In other

words, this work boosted the available resources manifold. We released

the new method as an open source python library and as API service and

made the new corpora freely available: http://tagtog.net/-corpora/IDP4þ
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Table S1.  Individual results of all methods (default and best performances) on the SETH corpus (Thomas, et al., 2014). In bold the values considered 
for the final manuscript: averages of the default and best partial F-Measures and possibly maximum standard errors. 

SETH corpus Exact Partial 

ST P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9195 0.8875 0.9032 0.0012 0.9333 0.8981 0.9154 0.0011     

SETH_best 0.9195 0.8875 0.9032 0.0012 0.9333 0.8981 0.9154 0.0011 0.9154 0.0000 

tmVar 0.8994 0.8190 0.8573 0.0017 0.9158 0.8341 0.8731 0.0017     

tmVar_best 0.9601 0.8171 0.8828 0.0016 0.9769 0.8324 0.8989 0.0015 0.8860 0.0129 

nala 0.7769 0.9049 0.8360 0.0016 0.8398 0.9727 0.9014 0.0012     

nala_best 0.9379 0.8759 0.9058 0.0010 0.9786 0.9206 0.9487 0.0007 0.9251 0.0237 

NL P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9091 0.2941 0.4444 0.0089 1.0000 0.3429 0.5106 0.0080     

SETH_best 0.9091 0.2941 0.4444 0.0089 1.0000 0.3429 0.5106 0.0080 0.5106 0.0000 

tmVar 0.8235 0.4242 0.5600 0.0085 1.0000 0.5556 0.7143 0.0066     

tmVar_best 0.8235 0.4242 0.5600 0.0085 1.0000 0.5556 0.7143 0.0066 0.7143 0.0000 

nala 0.1071 0.4545 0.1734 0.0040 0.3291 1.0000 0.4952 0.0052     

nala_best 0.1897 0.3333 0.2418 0.0078 0.6184 0.9216 0.7402 0.0059 0.6177 0.1225 

All P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9196 0.8597 0.8886 0.0012 0.9345 0.8713 0.9018 0.0011     

SETH_best 0.9196 0.8597 0.8886 0.0012 0.9345 0.8713 0.9018 0.0011 0.9018 0.0000 

tmVar 0.8959 0.7998 0.8451 0.0018 0.9186 0.8208 0.8670 0.0018     

tmVar_best 0.9545 0.7978 0.8691 0.0017 0.9777 0.8191 0.8914 0.0015 0.8792 0.0122 

nala 0.6818 0.8816 0.7689 0.0017 0.7656 0.9736 0.8571 0.0013     

nala_best 0.8779 0.8507 0.8640 0.0012 0.9421 0.9185 0.9302 0.0009 0.8937 0.0366 
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Table S2.  Individual results of all methods (default and best performances) on the tmVar_test corpus (Wei, et al., 2013). In bold the values considered 
for the final manuscript: averages of the default and best partial F-Measures and possibly maximum standard errors. * tmVar could not be tested on 
tmVar_test and its results were taken from those reported in (Wei, et al., 2013). All following calculations use the reported exact performance results of 
tmVar instead of ignoring them, which in turn increased the overall performance of tmVar on SetsKnown. 

tmVar_test Exact Partial 

ST P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9671 0.7933 0.8716 0.0019 0.9947 0.8198 0.8988 0.0016     

SETH_best 0.9671 0.7933 0.8716 0.0019 0.9947 0.8198 0.8988 0.0016 0.8988 0.0000 

tmVar                     

tmVar_best                     

nala 0.8131 0.8112 0.8121 0.0022 0.9471 0.9641 0.9555 0.0010     

nala_best 0.9014 0.8427 0.8711 0.0019 0.9823 0.9310 0.9560 0.0009 0.9558 0.0002 

NL P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.3333 0.2353 0.2759 0.0198 0.6154 0.4000 0.4848 0.0150     

SETH_best 0.3333 0.2353 0.2759 0.0198 0.6154 0.4000 0.4848 0.0150 0.4848 0.0000 

tmVar                     

tmVar_best                     

nala 0.0700 0.4118 0.1197 0.0044 0.2273 1.0000 0.3704 0.0051     

nala_best 0.1190 0.2941 0.1695 0.0086 0.4528 0.9600 0.6154 0.0058 0.4929 0.1225 

All P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9471 0.7716 0.8504 0.0019 0.9820 0.8008 0.8822 0.0016     

SETH_best 0.9471 0.7716 0.8504 0.0019 0.9820 0.8008 0.8822 0.0016 0.8822 0.0000 

tmVar* 0.9138 0.9140 0.9139               

tmVar_best* 0.9138 0.9140 0.9139           0.9139 0.0000 

nala 0.6571 0.7931 0.7188 0.0023 0.8025 0.9660 0.8767 0.0015     

nala_best 0.8102 0.8190 0.8146 0.0021 0.9114 0.9329 0.9220 0.0011 0.8994 0.0227 
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Table S3.  Individual results of all methods (default and best performances) on the Variome120 corpus (Jimeno Yepes and Verspoor, 2014). In bold the 
values considered for the final manuscript: averages of the default and best partial F-Measures and possibly maximum standard errors. 

Var.120 Exact Partial 

ST P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9398 0.7647 0.8432 0.0106 0.9770 0.8095 0.8854 0.0066     

SETH_best 0.9398 0.7647 0.8432 0.0106 0.9770 0.8095 0.8854 0.0066 0.8854 0.0000 

tmVar 0.8627 0.8627 0.8627 0.0057 0.9266 0.9352 0.9309 0.0068     

tmVar_best 0.8627 0.8627 0.8627 0.0057 0.9266 0.9352 0.9309 0.0068 0.9309 0.0000 

nala 0.6870 0.8738 0.7692 0.0119 0.7746 0.9821 0.8661 0.0098     

nala_best 0.8667 0.8922 0.8792 0.0093 0.9386 0.9817 0.9596 0.0053 0.9129 0.0468 

NL P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.6667 0.3077 0.4211 0.0100 1.0000 0.6667 0.8000 0.0133     

SETH_best 0.6667 0.3077 0.4211 0.0100 1.0000 0.6667 0.8000 0.0133 0.8000 0.0000 

tmVar 0.6667 0.3077 0.4211 0.0095 1.0000 0.6667 0.8000 0.0121     

tmVar_best 0.6667 0.3077 0.4211 0.0095 1.0000 0.6667 0.8000 0.0121 0.8000 0.0000 

nala 0.1071 0.2500 0.1500 0.0181 0.5405 1.0000 0.7018 0.0092     

nala_best 0.2667 0.3077 0.2857 0.0167 0.7826 0.9474 0.8571 0.0052 0.7795 0.0777 

NL P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9213 0.6833 0.7847 0.0107 0.9794 0.7600 0.8559 0.0068     

SETH_best 0.9213 0.6833 0.7847 0.0107 0.9794 0.7600 0.8559 0.0068 0.8559 0.0000 

tmVar 0.8440 0.7667 0.8035 0.0071 0.9250 0.8672 0.8952 0.0084     

tmVar_best 0.8440 0.7667 0.8035 0.0071 0.9250 0.8672 0.8952 0.0084 0.8952 0.0000 

nala 0.5629 0.7833 0.6551 0.0105 0.7225 0.9857 0.8338 0.0062     

nala_best 0.7638 0.8083 0.7854 0.0096 0.9048 0.9779 0.9399 0.0039 0.8869 0.0531 
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Table S4.  Individual results of all methods (default and best performances) on the nala_known corpus. In bold the values considered for the final man-
uscript: averages of the default and best partial F-Measures and possibly maximum standard errors. 

nala_known Exact Partial 

ST P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9764 0.7209 0.8294 0.0040 0.9922 0.7356 0.8449 0.0040     

SETH_best 0.9764 0.7294 0.8350 0.0041 0.9922 0.7442 0.8505 0.0039 0.8477 0.0028 

tmVar 0.9424 0.7616 0.8424 0.0043 0.9931 0.8045 0.8889 0.0037     

tmVar_best 0.9424 0.7706 0.8479 0.0040 0.9931 0.8136 0.8944 0.0035 0.8917 0.0027 

nala 0.8389 0.7267 0.7788 0.0044 0.9884 0.8763 0.9290 0.0024     

nala_best 0.8389 0.7267 0.7788 0.0044 0.9884 0.8763 0.9290 0.0024 0.9290 0.0000 

NL P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.4242 0.0979 0.1591 0.0029 1.0000 0.3210 0.4860 0.0041     

SETH_best 0.4242 0.0979 0.1591 0.0029 1.0000 0.3210 0.4860 0.0041 0.4860 0.0000 

tmVar 0.3571 0.1056 0.1630 0.0035 1.0000 0.4142 0.5858 0.0045     

tmVar_best 0.3571 0.1056 0.1630 0.0035 1.0000 0.4142 0.5858 0.0045 0.5858 0.0000 

nala 0.4896 0.3310 0.3950 0.0036 0.9310 0.7459 0.8282 0.0023     

nala_best 0.4896 0.3310 0.3950 0.0036 0.9310 0.7459 0.8282 0.0023 0.8282 0.0000 

NL P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.8439 0.4294 0.5692 0.0038 0.9847 0.5302 0.6893 0.0031     

SETH_best 0.8439 0.4320 0.5714 0.0038 0.9847 0.5331 0.6918 0.0032 0.6906 0.0012 

tmVar 0.7650 0.4513 0.5677 0.0039 0.9959 0.6312 0.7727 0.0028     

tmVar_best 0.7650 0.4540 0.5698 0.0040 0.9959 0.6345 0.7751 0.0030 0.7739 0.0012 

nala 0.6755 0.5280 0.5927 0.0034 0.9658 0.8208 0.8874 0.0016     

nala_best 0.6755 0.5280 0.5927 0.0034 0.9658 0.8208 0.8874 0.0016 0.8874 0.0000 
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Table S5.  Individual results of all methods (default and best performances) on the nala_discoveries corpus. In bold the values considered for the final 
manuscript: averages of the default and best partial F-Measures. * The reported standard errors for nala_discoveries consider those of SetsKnown + 
nala_discoveries, Supplementary Table S7. 

nala_discov. Exact Partial 

ST P R F StdErr P R F StdErr* Avg. F Avg. StdErr* 

SETH 0.8545 0.4519 0.5912 0.0078 0.9322 0.5093 0.6587 0.0082     

SETH_best 0.8545 0.4519 0.5912 0.0078 0.9322 0.5093 0.6587 0.0082 0.6587 0.0000 

tmVar 0.8571 0.4615 0.6000 0.0082 0.9333 0.5185 0.6667 0.0079     

tmVar_best 0.8571 0.4615 0.6000 0.0082 0.9333 0.5185 0.6667 0.0079 0.6667 0.0000 

nala 0.7385 0.4615 0.5680 0.0078 0.9494 0.6410 0.7653 0.0069     

nala_best 0.7385 0.4615 0.5680 0.0078 0.9494 0.6410 0.7653 0.0069 0.7653 0.0000 

NL P R F StdErr P R F StdErr* Avg. F Avg. StdErr* 

SETH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000     

SETH_best 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

tmVar 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000     

tmVar_best 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

nala 0.4167 0.0704 0.1205 0.0042 0.8889 0.2105 0.3404 0.0066     

nala_best 0.4167 0.0704 0.1205 0.0042 0.8889 0.2105 0.3404 0.0066 0.3404 0.0000 

All P R F StdErr P R F StdErr* Avg. F Avg. StdErr* 

SETH 0.8545 0.2186 0.3481 0.0057 0.9322 0.2511 0.3957 0.0060     

SETH_best 0.8545 0.2186 0.3481 0.0057 0.9322 0.2511 0.3957 0.0060 0.3957 0.0000 

tmVar 0.8596 0.2279 0.3603 0.0057 0.9344 0.2603 0.4071 0.0061     

tmVar_best 0.8596 0.2279 0.3603 0.0057 0.9344 0.2603 0.4071 0.0061 0.4071 0.0000 

nala 0.6585 0.2512 0.3636 0.0052 0.9020 0.3948 0.5493 0.0058     

nala_best 0.6585 0.2512 0.3636 0.0052 0.9020 0.3948 0.5493 0.0058 0.5493 0.0000 
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Table S6.  Individual results of all methods (default and best performances) on the SetsKnown corpus (merge of: SETH corpus, tmVar_test, Vari-
ome120, and nala_known). In bold the values considered for the final manuscript: averages of the default and best partial F-Measures and possibly 
maximum standard errors. * tmVar could not be tested on tmVar_test and its results were taken from those reported in (Wei, et al., 2013). All following 
calculations used the reported exact performance results of tmVar instead of ignoring them, which in turn increased the overall performance of tmVar 
on SetsKnown. 

SetsKnown Exact Partial     

ST P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9507 0.7916 0.8619 0.0163 0.9743 0.8158 0.8861 0.0150     

SETH_best 0.9507 0.7937 0.8633 0.0155 0.9743 0.8179 0.8875 0.0138 0.8868 0.0007 

tmVar 0.9015 0.8144 0.8541 0.0061 0.9452 0.8579 0.8976 0.0172     

tmVar_best 0.9217 0.8168 0.8645 0.0101 0.9655 0.8604 0.9081 0.0115 0.9029 0.0052 

nala 0.7790 0.8292 0.7990 0.0154 0.8875 0.9488 0.9130 0.0191     

nala_best 0.8862 0.8344 0.8587 0.0277 0.9720 0.9274 0.9483 0.0068 0.9307 0.0177 

NL P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.5833 0.2338 0.3251 0.0667 0.9039 0.4327 0.5704 0.0768     

SETH_best 0.5833 0.2338 0.3251 0.0667 0.9039 0.4327 0.5704 0.0768 0.5704 0.0000 

tmVar 0.6158 0.2792 0.3814 0.1163 1.0000 0.5455 0.7000 0.0622     

tmVar_best 0.6158 0.2792 0.3814 0.1163 1.0000 0.5455 0.7000 0.0622 0.7000 0.0000 

nala 0.1935 0.3618 0.2095 0.0628 0.5070 0.9365 0.5989 0.1025     

nala_best 0.2663 0.3165 0.2730 0.0472 0.6962 0.8937 0.7602 0.0543 0.6796 0.0807 

All P  R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9080 0.6860 0.7732 0.0713 0.9702 0.7406 0.8323 0.0486     

SETH_best 0.9080 0.6867 0.7738 0.0708 0.9702 0.7413 0.8329 0.0480 0.8326 0.0003 

tmVar* 0.8547 0.7330 0.7826 0.0751 0.9465 0.7731 0.8622 0.0314     

tmVar_best* 0.8693 0.7331 0.7891 0.0765 0.9531 0.8087 0.8689 0.0317 0.8656 0.0034 

nala 0.6443 0.7465 0.6839 0.0383 0.8141 0.9365 0.8638 0.0118     

nala_best 0.7819 0.7515 0.7642 0.0594 0.9310 0.9125 0.9199 0.0114 0.8918 0.0281 
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Table S7.  Individual results of all methods (default and best performances) on SetsKnown corpus + nala_discoveries (merge of: SETH corpus, 
tmVar_test, Variome120, nala_known, and nala_discoveries). In bold the values considered for the final manuscript: possibly maximum standard er-
rors. * tmVar could not be tested on tmVar_test and its results were taken from those reported in (Wei, et al., 2013). 

SetsKnown+nala_discov. Exact Partial 

ST P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.9315 0.7237 0.8077 0.0556 0.9659 0.7545 0.8406 0.0470     

SETH_best 0.9315 0.7254 0.8088 0.0557 0.9659 0.7562 0.8418 0.0470 0.8412 0.0006 

tmVar 0.8904 0.7262 0.7906 0.2369 0.9422 0.7731 0.8399 0.2495     

tmVar_best 0.9056 0.7280 0.7984 0.2399 0.9575 0.7749 0.8477 0.2522 0.8438 0.0039 

nala 0.7709 0.7556 0.7528 0.0477 0.8999 0.8872 0.8835 0.0331     

nala_best 0.8567 0.7598 0.8006 0.0620 0.9675 0.8701 0.9117 0.0370 0.8976 0.0141 

NL P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.4667 0.1870 0.2601 0.0831 0.7231 0.3461 0.4563 0.1286     

SETH_best 0.4667 0.1870 0.2601 0.0831 0.7231 0.3461 0.4563 0.1286 0.4563 0.0000 

tmVar 0.4618 0.2094 0.2860 0.1506 0.7500 0.4091 0.5250 0.2357     

tmVar_best 0.4618 0.2094 0.2860 0.1506 0.7500 0.4091 0.5250 0.2357 0.5250 0.0000 

nala 0.2381 0.3035 0.1917 0.0518 0.5834 0.7913 0.5472 0.0948     

nala_best 0.2963 0.2673 0.2425 0.0476 0.7347 0.7571 0.6763 0.0939 0.6117 0.0645 

All P R F StdErr P R F StdErr Avg. F Avg. StdErr 

SETH 0.8973 0.5925 0.6882 0.1014 0.9626 0.6427 0.7450 0.0951     

SETH_best 0.8973 0.5930 0.6886 0.1013 0.9626 0.6433 0.7455 0.0950 0.7452 0.0002 

tmVar* 0.8557 0.6319 0.6981 0.1026 0.9435 0.6449 0.7712 0.0942     

tmVar_best* 0.8674 0.6321 0.7033 0.1042 0.9583 0.6453 0.7765 0.0956 0.7739 0.0027 

nala 0.6472 0.6474 0.6198 0.0706 0.8317 0.8282 0.8009 0.0635     

nala_best 0.7572 0.6514 0.6841 0.0924 0.9252 0.8090 0.8458 0.0746 0.8233 0.0225 
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Fig. S1: nala could fully replace other methods, Venn Diagrams. Here, we looked at the following subset of all mentions. For each publication we 
considered all the mentions correctly identified by one of the top three methods and kept only the findings unique in each publication (the first sublabel 
after a method’s name shows its correctly recovered percentage of unique mentions and, in parenthesis, the exact number of recovered unique mentions). 
We then asked the number of those had been identified uniquely by one of the methods distinguishing between all mentions and NL-only mentions (the 
second sublabel after a method’s name shows its correctly recovered percentage of unique mentions that were not found by any other method and, in 
parenthesis, the exact number of recovered unique mentions that were not found by any other medhod). For instance, for all corpora containing publica-
tions of genes and proteins indexed in the databases (SetsKnown), 9 of the mentions (1%) were detected only by tmVar and 115 (12%) only by nala, 
while SETH found no mention in this data set that nala had not detected. One the other end, only nala correctly detected NL-only mentions in papers 
reporting discoveries on genes/proteins not indexed in databases, 11 (100%), right-bottwon Venn diagram. 
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Table S8.  Detailed results of the effect on performance (nala method) of the word embedding (WE) features. * The possibly maximum StdErr for 
nala_known was taken from Supplementary Table S4 and the possibly maximum StdErr for nala_discoveries was taken from Supplementary Table S7. 

 P R F StdErr Max StdErr* 

nala_known 

ST WE=off   99 84 91 0 0 

ST WE=on   99 88 93 0 0 

NL WE=off   98 54 70 0 0 

NL WE=on   93 75 83 0 0 

nala_discoveries 

ST WE=off   93 52 67 1 4 

ST WE=on   95 64 77 1 4 

NL WE=off 100   3   5 0 9 

NL WE=on   89 21 34 1 9 
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Table S9.  Custom regular expressions we used to classify some one-letter-coded mutation mentions as standard form (ST). The regular expressions 
are here written in JavaScript –compatible form. 

Regular Expression 

\\w+: del [ACTGRNDEQHILKMFPSWYV] -?\\d+\\.\\.\\.-?\\d+ 

\\d+.*[ACTGRNDEQHILKMFPSWYV] --> [ACTGRNDEQHILKMFPSWYV] 

[cgp]\\. ?\\d+ ?[ACTGRNDEQHILKMFPSWYV]>[ACTGRNDEQHILKMFPSWYV] 
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Table S10.  List of software or utilities used with name, creation or version date, URL, and last accessed date. 

Software Resources 

2016. Online Mendelian Inheritance in Man, OMIM®. http://omim.org/. (2016/5/13 date last accessed) 

NCBI. 2015. NCBI Text Mining Tools. http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/. (2016/5/13 date last accessed) 

Okazaki, N. 2007. CRFsuite - A fast implementation of Conditional Random Fields (CRFs). http://www.chokkan.org/software/crfsuite/. (2016/5/13 
date last accessed) 

Stenetorp, P., Pyysalo, S. and Topić, G. 2014. Standoff format - brat rapid annotation tool. http://brat.nlplab.org/standoff.html. (2016/5/13 date last 
accessed)| 

tpeng. 2015. tpeng/python-crfsuite. https://github.com/tpeng/python-crfsuite. (2016/5/13 date last accessed) 
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Chapter 4

LocText: relation extraction of
protein localizations to assist
database curation

4.1 Preface

The subcellular localization of proteins defines and constraints their range of functional-

ity. Knowing the localization guides the development of drugs that act and target proteins

of specific regions. Despite the importance, however, the annotation of experimentally-

established localizations is not remotely complete yet, even for well-studied species (Simp-

son and Pepperkok 2003; T. Goldberg et al. 2014). Text mining methods may discover

annotations that are hidden in the literature and so assist database curation. However, few

past methods proved useful yet. Most existing solutions only coarsely related all proteins

and localizations that were co-mentioned, as in a same sentence or a same document.

In this work, we developed a new method, LocText, to extract protein localization rela-

tionships from the literature. The new method learned language patterns from syntax trees.

We modeled features with support vector machines (SVMs) (Cortes and Vapnik 1995).

Nearly all features were unsupervised and automatically selected with L1 regularization (Ng

2004). We trained and cross-validated the LocText method on the homonymous LocTextCor-

pus, previously annotated with the tagtog tool (Cejuela et al. 2014; Tatyana Goldberg et al.

2015), and in this work improved. The STRING Tagger was used to automatically recog-

nize the mentions of proteins, subcellular locations, and organisms. These were mapped to

identifiers of standard biological databases, respectively: UniProtKB (UniProt 2015), Gene

Ontology (Ashburner et al. 2000), and NCBI Taxonomy (Sayers et al. 2010). The new

method was compared to a Baseline that relates all proteins and locations co-mentioned in

the same sentence. On the LocTextCorpus, both LocText and Baseline missed many annota-

tions (coverage of 43% vs. 50%). However, LocText was highly accurate (86% vs 51%).

We used the new method to find novel protein-location annotations in last scientific pub-
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lications. Thereby, we manually asserted 60 of the text-mined, potentially novel annotations

(i.e. not annotated in UniProtKB/Swiss-Prot (Boutet et al. 2016)). A 65% of the verified

predictions for human (Homo sapiens) were correct. The success rate was higher for bud-

ding yeast (Saccharomyces cerevisiae) and thale cress (Arabidopsis thaliana): 85% and

80%, respectively. We were able to verify the 60 text-mined annotations in 3 person-hours.

In other words, with an average successful rate of ∼77%, we could add over one hundred

new and correct annotations to highly-accurate databases such as UniProtKB/Swiss-Prot.

The methods were designed by me, Shrikant Vinchurkar, and Tatyana Goldberg. The fi-

nal implementation of LocText was done by me. Tatyana Goldberg and Madhukar Sollepura

Prabhu Shankar added new annotations to the LocTextCorpus. The results evaluation on the

LocTextCorpus was done by me. The results analysis of new publications was done by me,

Tatyana Goldberg, and Burkhard Rost. Additional research and code development were

done by Madhukar Sollepura Prabhu Shankar, Ashish Baghudana, Aleksander Bojchevski,

Carsten Uhlig, André Ofner, and Pandu Raharja-Liu. Finally, the manuscript was prepared

by me, Lars Juhl Jensen, and Burkhard Rost.

4.2 Journal article. Cejuela et al., BMC Bioinformatics 2018; 19

Starts next page.
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Abstract

Background: The subcellular localization of a protein is an important aspect of its function. However, the
experimental annotation of locations is not even complete for well-studied model organisms. Text mining might aid
database curators to add experimental annotations from the scientific literature. Existing extraction methods have
difficulties to distinguish relationships between proteins and cellular locations co-mentioned in the same sentence.

Results: LocText was created as a new method to extract protein locations from abstracts and full texts. LocText
learned patterns from syntax parse trees and was trained and evaluated on a newly improved LocTextCorpus.
Combined with an automatic named-entity recognizer, LocText achieved high precision (P = 86% ± 4). After
completing development, we mined the latest research publications for three organisms: human (Homo sapiens),
budding yeast (Saccharomyces cerevisiae), and thale cress (Arabidopsis thaliana). Examining 60 novel, text-mined
annotations, we found that 65% (human), 85% (yeast), and 80% (cress) were correct. Of all validated annotations, 40%
were completely novel, i.e. did neither appear in the annotations nor the text descriptions of Swiss-Prot.

Conclusions: LocText provides a cost-effective, semi-automated workflow to assist database curators in identifying
novel protein localization annotations. The annotations suggested through text-mining would be verified by experts
to guarantee high-quality standards of manually-curated databases such as Swiss-Prot.

Keywords: Relation extraction, Text mining, Protein, Subcellular localization, GO, Annotations, Database curation

Background
The subcellular location of a protein is an important
aspect of its function because the spatial environment
constrains the range of operations and processes. For
instance, all processing of DNA happens in the nucleus
or the mitochondria. In fact, subcellular localization is so
important that the Gene Ontology (GO) [1], the standard
vocabulary for protein functional annotation, described
it by one of its three hierarchies (Cellular Component).
Many proteins function in different locations. Typically,
one of those constitutes the native location, i.e. the one in
which the protein functions most importantly.

*Correspondence: loctext@rostlab.org; lars.juhl.jensen@cpr.ku.dk;
rost@rostlab.org
1Bioinformatics & Computational Biology, Department of Informatics, Technical
University of Munich (TUM), Boltzmannstr. 3, 85748 Garching, Germany
Full list of author information is available at the end of the article

Despite extensive annotation efforts, experimental GO
annotations in databases are not nearly complete [2].
Automatic methods may close the annotation gap, i.e. the
difference between experimental knowledge and database
annotations.
Numerous methods predict location from homology-

based inference or sequence-based patterns (sorting sig-
nals). These include: WoLF PSORT [3], SignalP [4],
CELLO [5], YLoc [6], PSORTb [7], and LocTree3 [8].
Text mining-based methods can also “predict” (extract)
localization, with the added benefit of linking annota-
tions to the original sources. Curators can compare those
resources to validate the suggested annotations and add
annotations to high-quality resources such as Swiss-Prot
[9] or those for model organisms, e.g. FlyBase [10]. An
alternative to finding annotations in the free literature is
mining controlled texts, such as descriptions and anno-
tation tags in databases [11–13]. Despite numerous past

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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efforts, however, very few text mining systems succeeded
in assisting GO curation [14]. A notable exception is Text-
presso [15], which was integrated into the GO cellular
component annotation pipeline of WormBase [16] and
sped up annotation tenfold over manual curation [17].
Similar computer-assisted curation pipelines have since
been implemented for other model organisms [18], but
no generic solution for the usage of text mining tools to
experts is extensively used yet [19, 20].
Literature-based text mining methods begin with

named-entity recognition (NER), namely the recognition
of names of entities, such as proteins or cellular com-
partments, mentioned within the text. These entities then
have to be normalized, i.e. disambiguated by mapping the
names to exact identifiers in controlled vocabularies (e.g.
proteins mapped to UniProtKB [21] and cell compart-
ments to GO). The next task is the relation extraction
(RE) in which relationships between the entities have
to be deduced from the semantic context. As an exam-
ple, in the sentence “CAT2 is localized to the tonoplast
in transformed Arabidopsis protoplasts”, PMID (PubMed
Identifier) 15377779, the relationship of “CAT2” (UniPro-
tKB: P52569) localized to “tonoplast” (GO:0009705) must
be established. Most existing GO annotation methods
either coarsely associate all pairs of entities that are
co-mentioned in a same sentence or otherwise aggre-
gate the statistics of one or more levels of co-mention
(such as the same sentence, paragraph, section, or docu-
ment). Examples of this include the CoPub Mapper [22],
EBIMed [23], and the COMPARTMENTS database [24].
Textpresso used manually defined regular expressions.
Fewmethods machine-learned the semantics of text, even
if only learning bags of words (i.e. disregarding gram-
mar) [25, 26]. Newer methods modeled the syntax of text
too (i.e. considering grammar) though were not validated
yet in practice for database curation [27–30]. The most
recent method of this type [31] probed the discovery of
novel protein localizations in unseen publications. How-
ever, the method performed poorly in extracting unique
relations, i.e. to find out that the same localization relation
is described in a publication multiple times but using dif-
ferent synonymous (e.g. due to abbreviations or different
spellings). Related to this, the method did not normalize
tagged entities; thus, the relations could not be mapped to
databases.
To the best of our knowledge, the new method,

LocText, is the first method to implement a fully-
automated pipeline with NER, RE, normalized entities,
and linked original sources (necessary for database cura-
tion) that machine-learnt the semantics and syntax of
scientific text. The system was assessed to achieve high
accuracy in a controlled corpus (intrinsic evaluation), and
to retrieve novel annotations from the literature in a real
task (extrinsic evaluation).

Results
Most relations found in same or consecutive sentences
The controlled LocTextCorpus had annotated 66% of all
protein-location unique relations (i.e. collapsing repeti-
tions, “Methods” section) in the same sentence (D0, where
Dn means that the relation covers entities n sentences
apart) and 15% in consecutive sentences (D1; Fig. 1).
When the GO hierarchy was also considered to col-
lapse redundant relations, D0 (same sentence) increased
to 74% (e.g. “lateral plasma membrane”, GO:0016328,
overshadowed the less detailed “plasma membrane”,
GO:0005886). Consequently, a method that extracted
only same-sentence relationships could maximally reach
a recall of 74%; at 100% precision, the maximal F-score
of such a method would be 85%. Methods that extracted
both D0 (same-sentence) and D1 (consecutive sentences)
would have a maximal recall of 89% (max. F = 94%). Con-
sideringmore distant sentences would rapidly increase the
pairs of entities to classify and, with this, likely reduce
a method’s precision and substantially increase process-
ing time. LocTextCorpus had annotated relationships up to
sentence distances of nine (D9). However, after collapsing
repeated relations, the maximum distance was six (D6).

Intrinsic evaluation: relation extraction (RE) and
named-entity extraction (NER) succeeded
LocText (RE) and STRING Tagger (NER) (Methods) inde-
pendently performed well on the LocTextCorpus: LocText
(RE only) reached P = 93% at R = 68% (F = 79% ± 3;
Table 1). A high precision was achieved while closely
reaching the maximum possible recall for considering
only same-sentences relations (D0; max. R = 74%). The
Baseline (usingmanually-annotated entities;Methods) also
performed well (P = 75% at R = 74%; F = 74% ± 3). A
comparative Precision-Recall (PR) curve analysis is shown
in Additional file 1: Figure S3. The STRING Tagger bench-
marked on overlapping normalized entities obtained an
aggregated F = 81% ± 1, for the entities Protein (F =
79% ± 2), Location (F = 80% ± 3), and Organism (F =
94% ± 1; Table 1). The precision for the entities Location
(P = 90%) and Organism (P = 96%) was much higher
than for Protein (P = 80%).
The full LocText relation extraction pipeline (NER + RE)

achieved high precision (P = 86%) at the cost of low recall
(R = 43%; F = 57% ± 4, Fig. 2). The Baseline (using
tagged entities) remained low in precision (P = 51%) and
recall (R = 50%; F = 51% ± 3). Recall might be so low
because the errors in RE and NER cumulate: mistakes in
identifying the protein, the location, or their relation lead
to wrong annotations.

Extrinsic evaluation: high accuracy enables database curation
Encouraged by the high precision of LocText, it was
applied to extract protein localization GO annotations

4. LocText: relation extraction of protein localizations to assist database curation
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Fig. 1Most related protein and localizations closed to each other. Repetitions of relationships were collapsed at the document level after
normalizing the entities: proteins to UniProtKB and localizations to GO. In the LocTextCorpus, the majority of unique relations were annotated
between entities occurring in the same sentence (distance 0 = D0; 66% of all relations) or in adjacent sentences (dist. 1 = D1; 15%). Combined,
D0+D1 accounted for 81% of the relations. Removing repetitions when considering the GO hierarchy (children identifiers are more exact than their
parents), D0+D1 accounted for 89% of all unique relationships

from recent PubMed abstracts (NewDiscoveries_human,
NewDiscoveries_yeast, and NewDiscoveries_cress; “Meth-
ods” section). LocText extracted ∼24k unique GO
annotations, ∼11k of which (46%) were not found in
Swiss-Prot. Some annotations were found in several
abstracts. The reliability of the LocText annotations
increased when found more often. For instance, 10% of
the human annotations were found in three or more
abstracts (corresponding numbers for yeast: 14%, and
thale cress: 6%).
For each organism, the first 20 annotations observed in

exactly three abstracts were reviewed. Of the 20 GO anno-
tations for human, 13 (65%) were novel (Table 2; exam-
ples of mined novel GO annotations in Additional file 1:

Table 1 LocText (RE only) and STRING Tagger (NER); intrinsic
evaluation

Method and evaluation P R F ±StdErr

STRING Tagger Total 84% 78% 81% ± 1

STRING Tagger on Protein 80% 78% 79% ± 2

STRING Tagger on Location 90% 71% 80% ± 3

STRING Tagger on Organism 96% 92% 94% ± 1

LocText, with manual entities 93% 68% 79% ± 3

Baseline, with manual entities 75% 74% 74% ± 3

Performances of the NER and RE components independently evaluated on the
LocTextCorpus; P=precision, R=recall, F ±StdErr=F-measure with standard error

Table S2); three of these weremore detailed versions of the
Swiss-Prot annotations (i.e. child terms in the GO hierar-
chy). 10 of the 20 had no related annotation in Swiss-Prot
(50%). For yeast and cress the novelty fraction was even
higher: 85% for yeast (60% without related annotation)
and 80% for thale cress (55% without related annotation).
The total number of correct novel GO annotations was 46

Fig. 2 LocText full pipeline (NER + RE); intrinsic evaluation. Using the
STRING Tagger-extracted (“predicted”) entities, both LocText and
Baseline had low and comparable F-measure (F=57%± 4 and
F=51%± 3, resp.), however LocText was optimized for precision
(P=86%)

4. LocText: relation extraction of protein localizations to assist database curation
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Table 2 LocText found novel GO annotations in latest
publications; extrinsic evaluation

Org. # C C&NR C&NT C&NR,NT

Human 20 13 (65%) 10 (50%) 9 (45%) 7 (35%)

Yest 20 17 (85%) 12 (60%) 6 (30%) 4 (20%)

Cress 20 16 (80%) 11 (55%) 9 (45%) 7 (35%)

Total 60 46 (77%) 33 (55%) 24 (40%) 18 (30%)

LocTextmined protein location relations not tagged in Swiss-Prot in latest
publications: 2012-2017 for (columnOrg.=organism) human and 1990-2017 for yeast
and cress. (#) 60 novel text-mined annotations (20 for each organism) were manually
verified: (C=correct) 77% were correct; 55% were correct and had no relation (NR) in
Swiss-Prot; 40% were correct and were not in text (NT ) descriptions of Swiss-Prot;
30% were correct and neither had a relation nor appeared in text descriptions

of 60 (77%) of which 33 (55%) had no related Swiss-Prot
annotation.
Upon closer inspection of Swiss-Prot, we found that

some of the allegedly novel predictions could have been
found in Swiss-Prot text descriptions or other annotations
(e.g. biological processes). Still, 9 of the 20 (45%) human
annotations were not found (considering also texts) in
Swiss-Prot (35% without related annotation in Swiss-Prot
considering the GO hierarchy). At that point, we could
have gone back and dug deeper, but we could not auto-
mate the identification of “find in Swiss-Prot” because the
relations were not found through the standard Swiss-Prot
tags. The corresponding numbers for yeast and cress were
30% (20% without related annotation) and 45% (35% with-
out related annotation), respectively. The total number of
verified completely novel GO annotations not in Swiss-
Prot remained as high as 24 out of 60 (40%), of these 18
(30% of 60) had no relation in Swiss-Prot.
23% of the verified predictions were wrong. Half of

these errors originated from incorrect proteins, typically
due to short and ambiguous abbreviations in the name.
For example, “NLS” was wrongly normalized to pro-
tein O43175, yet in all texts they referred to “nuclear
localization signals”. “FIP3” was wrongly recognized as
“NF-kappa-B essential modulator” (Q9Y6K9) while in
the three abstracts in which it was found, it referred
to “Rab11 family-interacting protein 3” (O75154). The
same abbreviation is used for both proteins making this a
perfect example how text mining can be beaten by inno-
vative naming. Another 14% of the errors were due to a
wrong named-entity localization prediction. For example,
in PMID 22101002, the P41180 was correctly identified
with the abbreviation CaR, and yet a same abbreviation in
the text was also wrongly predicted to be the localization
“contractile actomyosin ring”.
The remaining 36% of the errors were due to a wrong

relationship extraction. For example, the relation that the
protein Cx43 (connexin 43, or “gap junction alpha-1 pro-
tein” P17302) is/acts in microtubules could not be fully

ascertained from the sentence: “Although it is known that
Cx43 hemichannels are transported along microtubules
to the plasma membrane, the role of actin in Cx43 for-
ward trafficking is unknown” (PMID 22328533). Another
wrongly predicted relationship was OsACBP2 (Q9STP8)
to cytosol where the seemingly text proof explicitly
negated the relationship: “Interestingly, three small rice
ACBP (OsACBP1, OsACBP2 and OsACBP3) are present
in the cytosol in comparison to one (AtACBP6) in Ara-
bidopsis” (PMID 26662549). Other wrongly extracted
relationships did not show any comprehensible language
patterns and were likely predicted for just finding the
protein and location co-mentioned.

Discussion
Achieving high precision might be the most important
feature for an automatic method assisting in database
curation. Highly-accurate databases such as Swiss-Prot
or those of model organisms need to expert-verify all
annotations. Focusing on few reliable predictions, expert
curators minimize the resources (time) needed to con-
firm predictions. The manual verification of the 60 GO
annotations extracted with LocText from recent PubMed
abstracts took three person-hours (20 annotations per
hour; 60 abstracts per hour). Seventy seven percent of
the LocText predicted annotations were correct, i.e. an
unexperienced expert (we) could easily add ∼120 new
annotations on an average 9-5 day to the UniProtKB
repository.
The LocText method was very fast: it took 45 min to

process ∼ 37k PubMed abstracts on a single laptop (Mac-
Book Pro 13-inch, 2013, 2 cores). These ∼ 37k abstracts
spanned a wide range of the most recent (from 2012 to
2017) research on human proteins localizations. Twenty
one percent of the running time was spent to extract
the named entities (STRING Tagger), 26% on text parsing
(spaCy), and 52% on pure relationship extraction (Loc-
Text). If parallelized, LocText could process the entire
PubMed in near real time.
We discarded relations spanning over more than two

sentences (distance≥1), as the marginal improvements in
recall and F-measure did not justify the significant drops
in precision. Nevertheless, extracting relations between
two neighbor sentences (D1) might increase recall in the
future (from 66 to 81% unique relations disregarding the
GO hierarchy and 74 to 89% considering the hierarchy).
One important question often neglected in the text

mining literature is how well the performance estimates
live up to the reality of users, for instance of database
curators. Much controversy has followed the recent obser-
vations that many if not most published results even
in highly-regarded journals (Science and Nature) are
not reproducible or false [32–34]. As a curiosity, a GO
annotation predicted by LocText (deemed wrong upon
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manual inspection) was found in three journals that
were retracted (PMIDs 22504585 and 22504585; the third
23357054 duplicated 22504585). The articles, written by
the same authors, were rejected after publication as
“expert reviewers agreed that the interpretation of the
results was not correct” (PMID 22986443). This work
has added particular safe-guards against over-estimating
performance (additional data set not used for develop-
ment), and for gauging performance from the perspective
of the user (extrinsic vs. intrinsic evaluation). With all
these efforts, it seems clear that novel GO annotations
suggested by LocText have the potential to significantly
reduce annotation time (as compared to curators manu-
ally searching for new publications and reading those) yet
still require further expert verification.

Conclusions
Here, we presented LocText, a new text mining method
optimized to assist database curators for the annotation of
protein subcellular localizations. LocText extracts protein-
in-location relationships from texts (e.g. PubMed) using
syntax information encoded in parse trees. Common lan-
guage patterns to describe a localization relationship (e.g.
“co-localized in”) were learned unsupervised and thus
the methodology could extrapolate to other annotation
domains.
LocText was benchmarked on an improved version of

LocTextCorpus [35] and compared against a Baseline that
relates all proteins and locations co-mentioned in a same
sentence. Benchmarking only the relation extraction com-
ponent, i.e. with manually annotated entities, LocText and
Baseline appeared to perform comparably. However, Loc-
Text achieved much higher precision (P(LocText) = 93%
vs. P(Baseline) = 75%). The full pipeline combining the
STRING Tagger (NER) with LocText (RE) reached a low
F-measure (F = 57%± 4) and a low recall (R = 43%).
However, it was optimized for the high precision
(P(LocText) = 86% vs. P(Baseline) = 51%).
LocText found novel GO annotations in the latest

literature for three organisms: human, yeast, and thale
cress. 77% of the examined predictions were correct
localizations of proteins and were not annotated in
Swiss-Prot. More novel annotations could successfully
be extracted for yeast and cress (∼80%) than for human
(∼65%). Novel annotations that were not traceable from
Swiss-Prot (either from annotation tags or from text
descriptions) were analyzed separately. Using this defini-
tion for novel annotations, 40% of all findings were novel.
Unexperienced curators (we) validated 20 predicted
GO annotations in 1 person-hour. Assisted by the new
LocText method, curators could enrich UniProtKB with
∼120 novel annotations on a single job day. Advantaging
existing automatic methods (Baseline with accuracy
of 40%-50%), LocText could cut curation time in half.

Compared to solely manual curation (still common in
biological databases), the new method can reduce efforts
and resources greatly.
All code, data, and results were open sourced from

the start and are available at http://tagtog.net/-corpora/
LocText. The new written code added relationship extrac-
tion functionality to the nalaf framework of natural lan-
guage processing [36].

Methods
Named-entity recognition (NER)
The complete LocText pipeline consisted of a NER com-
ponent stacked with a pure RE component (Fig. 3). The
RE component was the focus of this work, and its imple-
mentation is explained in the following subsections. For
NER we reused the existing dictionary-based STRING
Tagger, which is described in detail in earlier publica-
tions [24, 37]. We employed STRING Tagger to extract the
entities from the text: proteins (more generally, gene or
gene products), subcellular localizations, and organisms.
Next, we needed to map these to databases, namely to
UniProtKB accession numbers, to GO Cellular Compo-
nent identifiers, and to NCBI Taxonomy identifiers (note:

Fig. 3 LocText pipeline. The input are text documents (e.g. PubMed).
First, the STRING Tagger recognizes named entities (NER): proteins
(green in the example; linked to UniProtKB), cellular localizations (pink;
linked to GO), and organisms (yellow; linked to NCBI Taxonomy). Then,
the relation extractor (RE) of LocText resolves which proteins and
localizations are related (as in “localized in”). The output is a list of
text-mined relationships (GO annotations) linked to the original text
sources (e.g. PMIDs)
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this map is referred to as normalization in the text min-
ing community). The method extracts text mentions and
the normalized identifiers of entities; it maps proteins
to STRING identifiers. We mapped these to UniProtKB
accession numbers and ran the Python-wrapped tagger
through an in-house Docker-based web server.
The STRING Tagger allows the selective usage of

organism-dependent dictionaries for protein names.
We ran the tagger against the LocTextCorpus (see, “Text
corpora” section) having selected the dictionaries of
human (NCBI Taxonomy: 9606), yeast (NCBI 4932),
and thale cress (NCBI 3702). On the sets of doc-
uments NewDiscoveries_human, NewDiscoveries_yeast,
andNewDiscoveries_cress (Text corpora), we selected only
the corresponding organism. We did not consider this
selective choice of articles and dictionaries to bias results
as this is standard for the curation of model organisms
[10, 18, 36]. As another option of the STRING Tagger,
we also annotated the proteins of other organisms if the
protein and organism names were written close to each
other in text. For reference, we ran the tagger against
LocTextCorpus with exact parameters (options): ids=-22,-
3,9606,4932,3702 autodetect=true. We did not modify the
tagger in any way except for removing “Golgi” from the
list of stopwords (blacklist of names not to annotate) as it
likely referred to “Golgi apparatus” in publications known
to mention cellular components. We filtered the results by
GO identifier to only allow those that were (part of ) cell
organelles, membranes, or extracellular region. We also
explicitly filtered out all tagged cellular components that
constituted a “macromolecular complex” (GO:0032991)
as in most cases they were enzyme protein complexes,
which we did not study (they overlap with the molecu-
lar function and biological process hierarchies of the GO
ontology). We evaluated the STRING Tagger in isolation
for NER (“Results” section).

Relation extraction (RE)
We reduced the problem of relationship extraction to a
binary classification: for pairs of entities Prot/Loc (pro-
tein/location), decide if they are related (true or false).
Several strategies for the generation of candidate pairs are
possible, e.g. the enumeration of all combinations from
all {Prot/Loc} mentioned in a document. During training,
“repeated relation pairs” are used, i.e. the exact text off-
sets of entities are considered, as opposed to the entity
normalizations only (Evaluation). The pairs marked as
relations in an annotated corpus (LocTextCorpus) are pos-
itive instances and other pairs are negative instances. For
our new method, we generated only pairs of entities co-
occurring in the same sentence. This strategy generated
663 instances (351 positive, 312 negative). Instances were
represented as a sentence-based sequence of words along
with syntax information (see, Feature selection). We also

designed ways to generate and learn from pairs of entities
mentioned in consecutive sentences (e.g. the proteinmen-
tioned in one sentence and the location in the next). How-
ever, we discarded this in the end (“Discussion” section).
We modeled the instances with support vector machines
(SVMs; [38]). We used the scikit-learn implementation
with a linear kernel [39, 40]. Neither the tree kernel [41]
implemented in SVM-light [42, 43], nor the radial basis
function kernel performed better. Other models such
as random forests or naive Bayes methods (with either
Gaussian, Multinomial, or Bernoulli distributions) also
did not perform better in our hands; logistic regression
also performed worse, however, within standard error
of the best SVM model. For syntactic parsing, we used
the python library spaCy (https://spacy.io). For word tok-
enization, we used our own implementation of the tmVar’s
tokenizer [36, 44]. This splits contiguous letters and num-
bers (e.g. “P53” is tokenized as “P” and “53”).

Feature selection
An instance (positive or negative) is defined as a pro-
tein location pair (Prot/Loc) that carries contextual infor-
mation (the exact text offsets of entities are used). We
contemplated features from five different sources: corpus-
based, document-based, sentence-based, syntax-based,
and domain-specific. The first four were domain agnostic.
Tens of thousands of features would be generated (com-
pared to 663, the number of instances). Many features,
however, were highly correlated. Thus, we applied feature
selection. First, we did leave-one-out feature selection,
both through manual and automatic inspection (on the
validation set, i.e. when cross-training). In the end, by far
the most effective feature selection strategy was the Lasso
L1 regularization [45]. We ran the scikit-learn LinearSVC
implementation with penalty= L1 and C= 2 (SVM trade-
off hyperparameter). The sparsity property of the L1 norm
effectively reduced the number of features to ∼ 300 (ratio
of 2 = num. instances / num. features). We applied inde-
pendent feature selection whether we used the manually
annotated entities or the entities identified by STRING
Tagger. Both yielded almost equal features. Ultimately, we
only used the following five feature types.
Entity counts in the sentence (domain agnostic, 2 fea-

tures): individual entity counts (for protein, location, and
organisms too) and the total sum. Counts were scaled to
floats [0, 1] dividing them by the largest number found in
the training data (independently for each feature). If the
test data had a larger number than previously found while
training, its scaled float would be bigger than 1 (e.g. if the
largest number in training was 10, a count of 11 in testing
would be scaled to 1.1).
Is protein a marker (domain specific, 1 feature): for

example, green fluorescent protein (GFP), or red flu-
orescent protein (RFP). This might be a problem of
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the LocTextCorpus guidelines. Nonetheless, disregard-
ing protein markers seems a reasonable step to curate
databases.
Is the relation found in Swiss-Prot (domain specific,

1 feature): we leveraged the existing annotations from
Swiss-Prot.
N-grams between entities in linear dependency (domain

agonistic, 57% of ∼ 300 features): the n-grams (n = 1, 2, or
3) of tokens in the linear sentence between the pair of enti-
ties Prot and Loc. The tokens were mapped in two ways:
1) word lemmas in lower case masking numbers as the
special NUM symbol and masking tokens of mentioned
entities as their class identifier (i.e. PROTEIN, LOCA-
TION, or ORGANISM); 2) words part of speech (POS).
In a 2- or 3-gram, the entity on the left was masked as
SOURCE and the end entity on the right as TARGET.
N-grams of syntactic dependency tree (domain agnostic,

42% of ∼ 300 features): the shortest path in the depen-
dency parse tree connecting Prot and Loc was computed
(Additional file 1: Figure S1). The connecting tokens were
mapped in three ways: 1) word lemmas with same mask-
ing as before; 2) part of speech, same masking; 3) syntac-
tic dependencies edges (e.g. preposition or direct object).
Again, we masked the pair of entities in the path as
SOURCE and TARGET. The direction of the edges in the
dependency tree (going up to the sentence root or down
from it) was not outputted after feature selection.
The representation of the sentences as dependency

graphs was inspired by Björne’s method for event extrac-
tion in BioNLP’09 [46]. The n-gram features, both linear-
and dependency-tree-based, that were ultimately chosen
after unsupervised feature selection yielded comprehen-
sible language patterns (Additional file 1: Table S1). In
the Supplementary Online Material (SOM), we listed all
the features that were finally selected (Additional file 1:
Figure S2).

Evaluation
High performance of a method in a controlled setting
(intrinsic evaluation) does not directly translate into high
performance in a real task (extrinsic evaluation) [47].
To address this, we evaluated the new LocText method
in both scenarios, namely, in a well-controlled corpus
using standard performance measures and in the real set-
ting of extracting novel protein localizations from the
literature. Either way, and always with database cura-
tion in mind, we asked: given a scientific text (e.g.
PubMed article), what protein location relationships does
it attest to? For instance, a publication may reveal “Pro-
tein S” (UniProtKB: P07225) to function in the “plasma
membrane” (GO:0005886). To extract this relation, it is
indifferent under which names the protein and loca-
tion are mentioned. For instance, P07225 can also be
named “Vitamin K-dependent protein S” or “PROS1” or

abbreviated “PS” and GO:0005886 can also be called “cell
membrane” or "cytoplasmic membrane” or abbreviated
“PM”. Further, it does notmatter if the relation is expressed
with different but semantically equivalent phrases (e.g.
“PROS1 was localized in PM” or “PM is the final des-
tination of PROS1”). Regardless of synonymous names
and different wordings, repeated attestations of the rela-
tion within the same document are all the same. In other
words, we evaluated relationship extraction at the docu-
ment level and for normalized entities.
In intrinsic evaluation, the annotated relations of a

corpus were grouped by document and represented as
a unique set of normalized entity pairs of the form
(Prot=protein, Loc=location), e.g. (P07225, GO:0005886).
A tested known relationship (Prottest, Loctest) was con-
sidered as correctly extracted (true positive = tp), if at
least one text-mined relation (Protpred, Locpred) matched
it, with both Prot and Loc correctly normalized: 1) Prottest
and Protpred must be equal or have a percentage sequence
identity 90% (to account for cases where likely a same
protein entries can have multiple identifiers in UniPro-
tKB/TrEMBL [48]); and 2) Loctest and Locpred must be
equal or Locpred must be a leave or child of Loctest (to
account for the tree-based GO hierarchy). For example,
a tested (P07225, GO:0005886) relation and a predicted
(P07225, GO:0016328) relation correctly match: the pro-
teins are the same and GO:0016328 (“lateral plasma
membrane”) is a part of and thus more detailed than
GO:0005886 (“plasma membrane”). Any other predicted
relationship was wrong (false positive = fp), and any
missed known relationship was also punished (false neg-
ative = fn). We then computed the standard performance
measures for precision

(
P = tp

tp+fp

)
, recall

(
R = tp

tp+fn

)
,

and F-measure
(
F = 2 ∗ P∗R

P+R

)
(all three multiplied by 100,

in percentages).
We evaluated relationship extraction in isolation (using

manually-annotated entities, i.e. the proteins and local-
izations) and as a whole (with predicted entities). Given
the importance of the NER module (wrongly predicted
entities lead to wrongly predicted relationships), we also
evaluated the NER in isolation. We considered a pre-
dicted named entity as successfully extracted (tp) if and
only if its text offsets (character positions in a text-string)
overlapped those of a known entity and its normalized
identifier matched the same test entity’s normalization
(also accounting for similar proteins and for the GO hier-
archy). Any other predicted entity was counted as fp and
any missed entity as fn. In analogy, we computed P, R, and
F for named-entity recognition.
We evaluated methods in 5-fold cross-validation with

three separate sets as follows. First, we split a fold
into the three sets by randomizing the publications;
this lessens redundancy as different publications mention
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different localizations. Sixty percent of documents served
to train (train set), 20% to cross-train (validation set),
i.e. to optimize parameters such as in feature or model
selection. The remaining 20% were used for testing
(test set). The performance on the test set was com-
piled only after all development had been completed
and was thus not used for any optimization. Finally,
we repeated the folds four more times, such that each
article had been used for testing exactly once. We com-
puted the standard error (StdErr) by randomly select-
ing 15% of the test data without replacement in 1000
(n) bootstrap samples. With 〈x〉 as the overall per-
formance for the entire test set and xi for subset i,
we computed:

σ =
√√√√ 1

n − 1

n∑
i=1

(xi − 〈x〉)2 StdErr = σ√
n

(1)

In extrinsic evaluation, the complete LocText pipeline
(i.e. NER + RE) extracted from large sets of unannotated
PubMed abstracts novel protein localizations (namely,
GO annotations not tagged in Swiss-Prot). A unique
protein-location relation could be found in one or more
documents. The assumption is: the more document hits,
the more reliable the extracted relation. For a num-
ber of extracted unique relations, one person manually
reviewed the originating and linked documents. For each
“predicted” relation, we stopped our analysis when we
found proof of the annotation. We deemed the predic-
tion to be wrong if we found no textual proof in the
abstracts.

Text corpora
To train and formally benchmark the new method (intrin-
sic evaluation), we had only access to a custom-built cor-
pus, for simplicity referred to as LocTextCorpus [35]. We
could not reuse other annotated corpora as they did not
provide annotations at the text level or had incompatible
annotations. Specifically, the BioNLP’09 corpus [28] and
the BC4GO corpus [49] appeared very promising but con-
tained particular features that made it impossible for us
to use those valuable resources. BioNLP’09, for instance,
annotated events (relationships) not requiring the textual
mention of the protein or localization entities, some loca-
tion mentions contained extraneous words that were part
of the phrase but not strictly part of the location names,
and some locations were not only subcellular localizations
but specific cells or body tissues. BC4GO contained nei-
ther exact text-level annotations of the entities nor the
relationships.
We had previously annotated the LocTextCorpus with

the tagtog tool [50]. For this work, we added 8 miss-
ing protein normalizations. LocTextCorpus collected 100
abstracts (50 abstracts for human proteins, 25 for

yeast, and 25 for thale cress) with 1393 annotated
proteins, 558 localizations, and 277 organisms. The
organism annotation had been crucial to correctly map
the protein sequence, e.g. to distinguish the human
Protein S (P07225/PROS_HUMAN) from its mouse
ortholog (Q08761/PROS_MOUSE). The corpus anno-
tated 1345 relationships (550 protein-localization + 795
protein-organism). When removing repeated relations
through entity normalization (Evaluation), the number of
unique protein-localization relations was 303. Relation-
ships of entities mentioned in any sentence apart had
been annotated (Results). That is, the related protein and
location entities could have been mentioned in the same
sentence (sentence distance=0, D0), or contiguous sen-
tences (sentence distance=1, D1), or farther away (D≥ 2).
The agreement (F-measure) between two annotators (an
estimation of the quality of annotations) reached as high
as: F = 96 for protein annotation, F = 88 for localization
annotation, and F = 80 for protein-localization relation-
ship annotation. LocTextCorpus was used to train, select
features, and test (in cross-validation) the new LocText
method.
Furthermore, and to assess how the new method Loc-

Text could assist in database curation in practice, three
sets of PubMed abstracts were added: NewDiscover-
ies_human, NewDiscoveries_yeast, NewDiscoveries_cress.
For each organism, keyword searches on PubMed
revealed recent publications that likely evidenced (men-
tioned) the localization of proteins (e.g. the search for
human http://bit.ly/2nLiRCK). The search for all human-
related journals published between 2012 to 2017/03
yielded ∼ 37k documents (exactly 37454). For publica-
tion years from 1990 to 2017/03, the search obtained
∼ 18k (17544) documents for yeast and ∼ 8k (7648) for
cress. These documents were not fully tagged. They
were only used for final extrinsic evaluation, and only
after the method had been finalized. In other words,
those abstracts never entered any aspect of the develop-
ment/training phase.

Existing methods for comparison
Two previous methods that used machine learning tech-
niques to model syntax also extracted protein localization
relationships [27, 31]. However, neither methods were
made available. We found no other machine learning-
based methods available for comparison. The Textpresso
system uses regular expressions and is used in database
curation [15]. The method, however, is packaged as a
search index (suited to their specialized corpora, e.g. for
WormBase) and not as an extractionmethod.Wewere not
able to run it for new corpora.
Other methods exist that follow a simple heuristic:

if two entities are co-mentioned then they are related
[22–24]. The heuristic of same-sentence co-occurrence

4. LocText: relation extraction of protein localizations to assist database curation

86



Cejuela et al. BMC Bioinformatics  (2018) 19:15 Page 9 of 11

(as opposed to e.g. document co-occurrence) is simple
and yields top results. Therefore, this was considered as
the Baseline to compare the new method against.

Additional file

Additional file 1: Supporting online material. PDF document with
supplemental figures and tables (Fig. S1-S3, Tables S1-S2), one per page.
(PDF 238 kb)
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Fig. S1. Parse Tree Features. LocText derives features from parsed syntax trees: dependencies between tokens (e.g. "to” prepositions “the trans-Golgi 
network”), noun phrases (e.g. the AP-1 µ adaptin subunit”), part of speech tags (e.g. “localized” is a verb, past participle), linear distance between to-
kens (e.g. “adaptin” and “Golgi” are 10-tokens away from each other), or dependency distances between tokens (e.g. “adapting” and “Golgi” are 4-
dependencies away). 

"  
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Table S1. Sample features after L1 regularization selection. 

Feature name Explanation

Total count of entities Float (scaled [0, 1]), count of entities (proteins + localizations + organisms) in sentence-based 
instance.

Is Protein Marker (Binary) test whether the marked protein text was equal to a list of manually defined protein 
markers: GFP, CYH2, ALG2, MSB2, KSS1, KRE11, SER2.

PROTEIN localize Binary, Linear Dependency (LD) feature. Test if the sentence-based instance contains two con-
secutive tokens (2-gram), where the first token is part of an protein name and the following has 
lemma “localize” (e.g. localized).

SOURCE localization at Binary, LD. Test if the first entity (source) in the sentence-based instance (either protein or loca-
tion; likely in this case, a protein), is followed by the lemmas “localization” and “at”.

SOURCE proliferation TARGET Binary, Parsing Dependency (PD). Test if the source entity is connected to the second entity 
(target) by the lemma “proliferation” in the dependency parse tree.

in the TARGET Binary, LD. Test if the lemmas “in” and “the” follow the target entity (likely a location).

SOURCE VERB DET Binary, LD. Test if the source entity is followed by two tokens, the first a VERB, the next a de-
terminer (DET)

VERB NOUN TARGET Binary, PD. Test if, in the dependency parse tree, a VERB token connects a NOUN token that 
connects the target entity.

NSUBJ DOBJ PREP Binary, PD. Test if, in the dependency parse tree, three tokens are connected with the dependen-
cies NSUBJ (nominal subject) to (direct object) to PREP (prepositional modifier).
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Table S2. Examples of novel GO annotations text-mined by LocText. 

Protein Localization Text Source

P61586 human GO:0005634 (nucleus) Recent studies have revealed the localization of RhoA protein in the cell nucle-
us, in addition to its distribution in the cytosol and cell membrane. PMID 
26622605, 2015

P09936 human GO:0008021 (synaptic 
vesicle)

Both synaptic vesicle markers co-localized with the neuronal marker PGP 9.5 
and exhibited granular accumulation patterns in the human and rat ENS. PMID 
24025431, 2013

P56817 hu-
man 

GO:0005764 (lysosome) Here, we report that lack of ubiquitination at Lys-501 (BACE1K501R) does not 
affect the rate of endocytosis but produces BACE1 stabilization and accumula-
tion of BACE1 in early and late endosomes/lysosomes as well as at the cell 
membrane. PMID 23109336, 2012

P01149 yeast GO:0005773 (vacuole) [...] we provided evidence for the existence of an endocytic intermediate(s) from 
the yeast Saccharomyces cerevisiae that is responsible for the transport of the 
pheromone alpha-factor from the plasma membrane to the vacuole. PMID 
8314797, 1993

P13134 yeast GO:0005768 (endo-
some)

However, Kex2 localization is not static, and its itinerary apparently involves 
transiting out of the late Golgi and cycling back from post-Golgi endosomal 
compartments during its lifetime. We tested whether the endocytic pathway 
could deliver small molecules to Kex2 from the extracellular medium. Here 
we report that intramolecularly quenched fluorogenic substrates taken up into 
intact yeast revealed fluorescence due to specific cleavage by Kex2 protease 
in endosomal compartments. PMID 10393104, 1999

Q9FE59 cress GO:0009705 (plant-type 
vacuole membrane)

We demonstrate that this motif can reroute other proteins, such as INT4, SU-
CROSE TRANSPORTER2 (SUC2), or SWEET1, to the tonoplast and that 
the position of the motif relative to the transmembrane helix is critical. PMID 
22253225, 2012

O82533 cress GO:0005829 (cytosol) Here, we report the identification of a second nuclear-encoded FtsZ-type 
protein from Arabidopsis that does not contain a chloroplast targeting se-
quence or other obvious sorting signals and is not imported into isolated 
chloroplasts, which strongly suggests that it is localized in the cytosol. PMID 
9836740, 1998
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Fig. S2. List of all finally selected features. Python-readable list of descriptive feature names. 

[
    "SentenceFeatureGenerator::1.1_counts_individual_int_individual_e_1_[0]",  # 0
    "SentenceFeatureGenerator::1.1_counts_individual_int_individual_e_3_[0]",  # 1
    "SentenceFeatureGenerator::3_order_[0]",  # 2
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_1_<NOUN>_[0]",  # 3
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<[SOURCE ~~ PUNCT>_[0]",  # 4
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<PUNCT ~~ VERB>_[0]",  # 5
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<NOUN ~~ NOUN>_[0]",  # 6
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<VERB ~~ NOUN ~~ PUNCT>_[0]",  # 7
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ PUNCT ~~ ADJ>_[0]",  # 8
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ PUNCT ~~ NOUN>_[0]",  # 9
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<PUNCT ~~ NOUN ~~ NOUN>_[0]",  # 10
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<as>_[0]",  # 11
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<an>_[0]",  # 12
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_1_<ADP>_[0]",  # 13
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_1_<NUM>_[0]",  # 14
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_1_<DET>_[0]",  # 15
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<[SOURCE ~~ NOUN>_[0]",  # 16
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<PUNCT ~~ DET>_[0]",  # 17
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_1_<VERB>_[0]",  # 18
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_1_<NOUN>_[0]",  # 19
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<nsubj>_[0]",  # 20
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<prep>_[0]",  # 21
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_2_<NOUN ~~ NOUN>_[0]",  # 22
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<[SOURCE ~~ VERB ~~ ADP>_[0]",  # 23
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<VERB ~~ ADP ~~ NOUN>_[0]",  # 24
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<ADP ~~ NOUN ~~ NOUN>_[0]",  # 25
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<prep ~~ pobj ~~ appos>_[0]",  # 
26
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_1_<PROPN>_[0]",  # 27
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<e_1 ~~ e_1>_[0]",  # 28
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<DET ~~ ADJ>_[0]",  # 29
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<NOUN ~~ PROPN>_[0]",  # 30
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<PUNCT ~~ CONJ>_[0]",  # 31
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<PUNCT ~~ CONJ ~~ DET>_[0]",  # 32
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<CONJ ~~ DET ~~ TARGET]>_[0]",  # 33
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<[SOURCE ~~ VERB>_[0]",  # 34
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ PUNCT ~~ TARGET]>_[0]",  # 35
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<amod ~~ appos>_[0]",  # 36
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<[SOURCE ~~ NOUN ~~ TARGET]>_[0]",  # 37
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<[SOURCE ~~ form ~~ form>_[0]",  # 38
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<,>_[0]",  # 39
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<[SOURCE ~~ ,>_[0]",  # 40
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<, ~~ TARGET]>_[0]",  # 41
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<to>_[0]",  # 42
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<exit>_[0]",  # 43
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<advcl>_[0]",  # 44
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_2_<VERB ~~ VERB>_[0]",  # 45
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<pobj ~~ prep>_[0]",  # 46
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<prep ~~ advcl>_[0]",  # 47
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<in>_[0]",  # 48
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<ADP ~~ NOUN>_[0]",  # 49
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<ADP ~~ ADJ>_[0]",  # 50
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<[SOURCE ~~ VERB ~~ VERB>_[0]",  # 51
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<VERB ~~ VERB ~~ ADP>_[0]",  # 52
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<dobj>_[0]",  # 53
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<nsubj ~~ advcl>_[0]",  # 54
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<dobj ~~ amod>_[0]",  # 55
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<VERB ~~ NOUN ~~ TARGET]>_[0]",  # 56
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<mutant>_[0]",  # 57
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_1_<SYM>_[0]",  # 58
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<, ~~ the>_[0]",  # 59
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<DET ~~ PROPN>_[0]",  # 60
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<the ~~ e_1 ~~ e_1>_[0]",  # 61
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    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<accumulate>_[0]",  # 62
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_2_<VERB ~~ ADJ>_[0]",  # 63
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_2_<ADP ~~ TARGET]>_[0]",  # 64
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<acl ~~ prep>_[0]",  # 65
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<[SOURCE ~~ NOUN ~~ ADP>_[0]",  # 66
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<NOUN ~~ ADP ~~ NOUN>_[0]",  # 67
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<ADP ~~ NOUN ~~ ADP>_[0]",  # 68
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<NOUN ~~ ADP ~~ VERB>_[0]",  # 69
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<pobj ~~ prep ~~ pobj>_[0]",  # 
70
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<acl ~~ prep ~~ pobj>_[0]",  # 71
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<cell>_[0]",  # 72
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<with>_[0]",  # 73
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<the ~~ e_2>_[0]",  # 74
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<e_2 ~~ of>_[0]",  # 75
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<e_1 ~~ and>_[0]",  # 76
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<with ~~ the>_[0]",  # 77
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ ADP ~~ NOUN>_[0]",  # 78
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<ADP ~~ NOUN ~~ VERB>_[0]",  # 79
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<DET ~~ PROPN ~~ NOUN>_[0]",  # 80
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ ADP ~~ DET>_[0]",  # 81
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<nsubjpass>_[0]",  # 82
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<VERB ~~ DET ~~ TARGET]>_[0]",  # 83
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<of>_[0]",  # 84
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<cell>_[0]",  # 85
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<[SOURCE ~~ of>_[0]",  # 86
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_2_<NOUN ~~ VERB>_[0]",  # 87
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<prep ~~ pobj ~~ acl>_[0]",  # 88
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<dobj ~~ acl>_[0]",  # 89
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<acl ~~ pobj>_[0]",  # 90
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<amod ~~ prep>_[0]",  # 91
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<amod ~~ prep ~~ pobj>_[0]",  # 
92
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<[SOURCE ~~ in>_[0]",  # 93
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<pobj ~~ compound>_[0]",  # 94
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<be>_[0]",  # 95
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<class>_[0]",  # 96
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<relate>_[0]",  # 97
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<on ~~ TARGET]>_[0]",  # 98
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<ADP ~~ TARGET]>_[0]",  # 99
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<[SOURCE ~~ VERB ~~ DET>_[0]",  # 100
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<be>_[0]",  # 101
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<NOUN ~~ NOUN ~~ VERB>_[0]",  # 102
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<NOUN ~~ CONJ>_[0]",  # 103
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<CONJ ~~ VERB>_[0]",  # 104
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<DET ~~ NOUN ~~ PUNCT>_[0]",  # 105
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<CONJ ~~ VERB ~~ VERB>_[0]",  # 106
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<VERB ~~ ADP ~~ ADJ>_[0]",  # 107
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<nummod>_[0]",  # 108
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<VERB ~~ VERB ~~ ADP>_[0]",  # 109
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<expression>_[0]",  # 110
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ ADP ~~ TARGET]>_[0]",  # 111
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<) ~~ be>_[0]",  # 112
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<PROPN ~~ PUNCT>_[0]",  # 113
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<VERB ~~ ADJ ~~ NOUN>_[0]",  # 114
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ ADP ~~ VERB>_[0]",  # 115
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<from>_[0]",  # 116
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<acomp>_[0]",  # 117
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<advmod>_[0]",  # 118
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<pcomp ~~ prep>_[0]",  # 119
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<nsubj ~~ acomp ~~ prep>_[0]",  # 
120
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<with ~~ e_1>_[0]",  # 121
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<ADP ~~ PROPN>_[0]",  # 122
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<PROPN ~~ ADP>_[0]",  # 123
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<VERB ~~ PROPN>_[0]",  # 124
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    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<[SOURCE ~~ colocalizes ~~ with>_[0]",  # 125
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NUM ~~ ADP ~~ DET>_[0]",  # 126
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<DET ~~ NOUN ~~ TARGET]>_[0]",  # 127
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<[SOURCE ~~ and ~~ e_1>_[0]",  # 128
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_2_<[SOURCE ~~ PROPN>_[0]",  # 129
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<conj ~~ pobj>_[0]",  # 130
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<conj ~~ conj>_[0]",  # 131
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<[SOURCE ~~ in>_[0]",  # 132
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<[SOURCE ~~ NOUN ~~ TARGET]>_[0]",  # 133
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<transporter>_[0]",  # 134
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<that>_[0]",  # 135
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<e_1 ~~ ,>_[0]",  # 136
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<ADV ~~ VERB>_[0]",  # 137
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<e_1 ~~ e_1 ~~ ,>_[0]",  # 138
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<e_1 ~~ ( ~~ e_1>_[0]",  # 139
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ NOUN ~~ NUM>_[0]",  # 140
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<VERB ~~ ADV ~~ VERB>_[0]",  # 141
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_2_<NOUN ~~ PROPN>_[0]",  # 142
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<appos ~~ appos>_[0]",  # 143
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<[SOURCE ~~ PUNCT ~~ NOUN>_[0]",  # 144
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<both>_[0]",  # 145
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<e_3>_[0]",  # 146
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<localize ~~ to>_[0]",  # 147
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<of ~~ e_3>_[0]",  # 148
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<PUNCT ~~ ADP>_[0]",  # 149
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<ADP ~~ PROPN ~~ NUM>_[0]",  # 150
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<pobj ~~ amod>_[0]",  # 151
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<prep ~~ pobj ~~ amod>_[0]",  # 
152
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<DET ~~ NOUN ~~ PART>_[0]",  # 153
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<prep ~~ nsubj>_[0]",  # 154
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<ccomp ~~ dobj>_[0]",  # 155
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<pobj ~~ prep ~~ nsubj>_[0]",  # 
156
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<with ~~ TARGET]>_[0]",  # 157
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<nmod>_[0]",  # 158
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_1_<agent>_[0]",  # 159
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_2_<ADV ~~ VERB>_[0]",  # 160
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<of ~~ a>_[0]",  # 161
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<PROPN ~~ VERB>_[0]",  # 162
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<involve ~~ in>_[0]",  # 163
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<protein>_[0]",  # 164
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<VERB ~~ NOUN ~~ ADP>_[0]",  # 165
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<protein>_[0]",  # 166
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<of ~~ activity>_[0]",  # 167
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<and ~~ the>_[0]",  # 168
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ PUNCT ~~ CONJ>_[0]",  # 169
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<DET ~~ NOUN ~~ NOUN>_[0]",  # 170
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<[SOURCE ~~ protein>_[0]",  # 171
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<DET ~~ VERB ~~ NOUN>_[0]",  # 172
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<conj ~~ nsubj>_[0]",  # 173
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<e_3 ~~ TARGET]>_[0]",  # 174
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<nsubj ~~ dobj>_[0]",  # 175
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<PUNCT ~~ ADP ~~ NOUN>_[0]",  # 176
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<tag>_[0]",  # 177
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<advmod ~~ dobj>_[0]",  # 178
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<advmod ~~ dobj ~~ 
compound>_[0]",  # 179
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<gene>_[0]",  # 180
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<[SOURCE ~~ by>_[0]",  # 181
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ NOUN ~~ PROPN>_[0]",  # 182
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ PROPN ~~ PROPN>_[0]",  # 183
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<activate>_[0]",  # 184
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<require>_[0]",  # 185
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<biogenesis>_[0]",  # 186
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<modulates>_[0]",  # 187
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    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<glycosylation>_[0]",  # 188
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ ADJ ~~ NOUN>_[0]",  # 189
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<expression ~~ TARGET]>_[0]",  # 190
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<and ~~ TARGET]>_[0]",  # 191
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<PUNCT ~~ CONJ ~~ TARGET]>_[0]",  # 192
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<NOUN ~~ NOUN ~~ ADP>_[0]",  # 193
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<DET ~~ ADV>_[0]",  # 194
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<VERB ~~ VERB ~~ PART>_[0]",  # 195
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<be ~~ protein>_[0]",  # 196
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<induce>_[0]",  # 197
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<e_2 ~~ and>_[0]",  # 198
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<and ~~ inhibit>_[0]",  # 199
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<retention ~~ inhibit>_[0]",  # 200
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<ADP ~~ ADP ~~ TARGET]>_[0]",  # 201
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<nsubj ~~ dobj ~~ compound>_[0]",  
# 202
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<compound ~~ conj>_[0]",  # 203
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<dobj ~~ advcl>_[0]",  # 204
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<pobj ~~ prep ~~ dobj>_[0]",  # 
205
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<function ~~ TARGET]>_[0]",  # 206
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<VERB ~~ ADJ ~~ TARGET]>_[0]",  # 207
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<nmod ~~ pobj>_[0]",  # 208
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<ADP ~~ PROPN ~~ TARGET]>_[0]",  # 209
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<[SOURCE ~~ be ~~ require>_[0]",  # 210
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<PUNCT ~~ ADV ~~ PUNCT>_[0]",  # 211
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<function>_[0]",  # 212
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<of ~~ e_1>_[0]",  # 213
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<- ~~ independent ~~ function>_[0]",  # 214
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<[SOURCE ~~ function ~~ require>_[0]",  # 215
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<of ~~ function>_[0]",  # 216
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<[SOURCE ~~ of ~~ function>_[0]",  # 217
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<pobj ~~ prep ~~ nsubjpass>_[0]",  
# 218
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<pobj ~~ nmod>_[0]",  # 219
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<prep ~~ pobj ~~ nmod>_[0]",  # 
220
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<PUNCT ~~ ADP ~~ VERB>_[0]",  # 221
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<signal>_[0]",  # 222
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<[SOURCE ~~ signal>_[0]",  # 223
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<amod ~~ nsubj>_[0]",  # 224
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<show>_[0]",  # 225
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<dobj ~~ ccomp>_[0]",  # 226
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<ubiquitination>_[0]",  # 227
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<ubiquitination>_[0]",  # 228
    "DependencyFeatureGenerator::23_PD_pos_N_gram_PD_3_<[SOURCE ~~ ADP ~~ TARGET]>_[0]",  # 229
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<activation>_[0]",  # 230
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ VERB ~~ PROPN>_[0]",  # 231
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NUM ~~ NOUN ~~ ADP>_[0]",  # 232
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<region>_[0]",  # 233
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<ADJ ~~ ADP ~~ PROPN>_[0]",  # 234
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<nsubj ~~ advcl ~~ 
nsubjpass>_[0]",  # 235
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<e_1 ~~ , ~~ the>_[0]",  # 236
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<advcl ~~ prep>_[0]",  # 237
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<[SOURCE ~~ from>_[0]",  # 238
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<into ~~ TARGET]>_[0]",  # 239
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<ADP ~~ ADJ ~~ TARGET]>_[0]",  # 240
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<ADV ~~ TARGET]>_[0]",  # 241
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<this>_[0]",  # 242
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<DET ~~ ADJ ~~ ADJ>_[0]",  # 243
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<ADP ~~ PROPN ~~ PUNCT>_[0]",  # 244
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<compromise>_[0]",  # 245
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<fuse>_[0]",  # 246
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<acl ~~ acomp>_[0]",  # 247
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NOUN ~~ PUNCT ~~ PUNCT>_[0]",  # 248
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    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<vesicle>_[0]",  # 249
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<dispensable>_[0]",  # 250
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<be ~~ dispensable>_[0]",  # 251
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<dispensable ~~ for>_[0]",  # 252
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<be ~~ dispensable ~~ for>_[0]",  # 253
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<e_1 ~~ to>_[0]",  # 254
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<location>_[0]",  # 255
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<[SOURCE ~~ location>_[0]",  # 256
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<[SOURCE ~~ location>_[0]",  # 257
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<, ~~ to>_[0]",  # 258
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<, ~~ while>_[0]",  # 259
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_2_<appos ~~ compound>_[0]",  # 260
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<PUNCT ~~ VERB ~~ TARGET]>_[0]",  # 261
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<important>_[0]",  # 262
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<morphology>_[0]",  # 263
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<pobj ~~ amod ~~ npadvmod>_[0]",  
# 264
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<defect>_[0]",  # 265
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<cohesin>_[0]",  # 266
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<assembly>_[0]",  # 267
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<[SOURCE ~~ determine ~~ localize>_[0]",  # 
268
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<[SOURCE ~~ TARGET]>_[0]",  # 269
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<significantly>_[0]",  # 270
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<be ~~ significantly>_[0]",  # 271
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<at ~~ have>_[0]",  # 272
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<[SOURCE ~~ at ~~ have>_[0]",  # 273
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<[SOURCE ~~ recruitment ~~ of>_[0]",  # 274
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<prep ~~ nsubj ~~ prep>_[0]",  # 
275
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<[SOURCE ~~ domain ~~ of>_[0]",  # 276
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<[SOURCE ~~ domain ~~ of>_[0]",  # 277
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<reconfiguring>_[0]",  # 278
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<division ~~ TARGET]>_[0]",  # 279
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<abundance ~~ TARGET]>_[0]",  # 280
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<eliminate>_[0]",  # 281
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<from ~~ through>_[0]",  # 282
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<from ~~ through ~~ TARGET]>_[0]",  # 283
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_1_<stress>_[0]",  # 284
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<[SOURCE ~~ stress>_[0]",  # 285
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_1_<stress>_[0]",  # 286
    "DependencyFeatureGenerator::26_PD_undirected_edges_N_gram_PD_3_<appos ~~ nsubj ~~ dobj>_[0]",  # 
287
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_3_<localization ~~ disrupt ~~ by>_[0]",  # 288
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<e_1 ~~ to ~~ TARGET]>_[0]",  # 289
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<that ~~ u>_[0]",  # 290
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_2_<require ~~ e_1>_[0]",  # 291
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_2_<PRON ~~ NUM>_[0]",  # 292
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<show ~~ that ~~ u>_[0]",  # 293
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<first ~~ require ~~ e_1>_[0]",  # 294
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<ADP ~~ PRON ~~ NUM>_[0]",  # 295
    "DependencyFeatureGenerator::19_LD_pos_N_gram_LD_3_<NUM ~~ ADV ~~ VERB>_[0]",  # 296
    "DependencyFeatureGenerator::22_PD_bow_N_gram_PD_2_<show ~~ require>_[0]",  # 297
    "DependencyFeatureGenerator::18_LD_bow_N_gram_LD_3_<[SOURCE ~~ to ~~ mediate>_[0]",  # 298
    "IsSpecificProteinType::40_is_marker_[0]",  # 299
    "LocalizationRelationsRatios::50_corpus_unnormalized_total_background_loc_rels_ratios_[0]",  # 
300
    "LocalizationRelationsRatios::58_SwissProt_normalized_exists_relation_[0]",  # 301
]
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Fig. S3. PR-curve analysis. LocText vs. Baseline, using manually-annotated entities. The maximum recall for both methods is 74%. The Baseline is 
shown as a single point (no decision value). A two-sample two-tailed t-test was performed to determine whether the methods’ difference in F-Measure, 
F(LocText)=79%±3 vs. F(Baseline)=74%±3, was significant. The t-statistic was significant at the 99% confidence level, t(3998)=28.04, p=3.99e-165. 
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Chapter 5

Conclusions

In this work, I discussed techniques of text mining specific to biomedicine, and studied

three newly-developed methods that were proven useful in practice to help us navigate the

deluge of literature data. The three methods shared the same characteristic: they combined

automatic annotations made by machines together with the careful expertise of users.

With this semi-automatic approach, I (and my co-authors) were able to (peer-reviewed):

1) Create one of the largest corpora of labeled data for NLP to date, with 451 annotated full-

text articles. Professional curators at FlyBase, the premier database of the model organism

Drosophila melanogaster (common fruit fly), supervised and/or performed the annotations,

and all these were readily useful and added to the database. 2) Demonstrate with two in-

dependent curators, that the semi-automatic annotation assisted by the here designed, in-

teractive web interface, tagtog, was up to 2 times faster than manual annotation alone. 3)

Create the largest resource of genetic mutations as described in scientific publications. 4)

Develop a new method, nala, that superseded the results of all existing solutions in find-

ing mutation descriptions, and discovered up to 33% more, previously unhidden genetic

variations. 5) Develop a new method, LocText, that is highly accurate (65%-85%) in dis-

covering novel, functional annotations of protein subcellular localization from PubMed, the

search engine for biomedical literature. We showed that our system could assist database

curators, and yield over one hundred new annotations, per employee per work day. 6) Text-

mine and assert 46 protein localization annotations, which were previously unknown to the

highly-accurate UniProtKB/Swiss-Prot database, the universal protein knowledgebase. –

We made all our methods and datasets available: tagtog http://tagtog.net, nala http:

//github.com/Rostlab/nala, and LocText http://github.com/Rostlab/LocText.

Our era of never-ending information demands automatic solutions that work at scale. It

is my belief, that this automatic power is best reaped when is intertwined with the expertise

of humans. For this work, at least, the guidance and supervision inputted by users were

essential for our discoveries. Likewise, in this work, the automatic machinery of our text

mining methods complemented, not substituted, the labor of experts, viz. database curators.
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