
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl für Sicherheit in der Informatik

Code and Data Integrity
of

Modern Operating Systems

Thomas Karl-Heinz Kittel

Vollständiger Abdruck der von der Fakultät für Informatik der Tech-
nischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Georg Carle
Prüfer der Dissertation:

1. Univ.-Prof. Dr. Claudia Eckert
2. Univ.-Prof. Dr. Uwe Baumgarten

Die Dissertation wurde am 09.05.2017 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am
28.08.2017 angenommen.

Acknowledgements

I want to thank everybody who influenced my live. Special thanks
to everybody who guided me to write this thesis. A list of names
would be incomplete anyway.

iii

Abstract

Our society is more and more based on digital information. People’s
lives depend on the availability of interconnected networks and the
integrity of the information shared between the connected devices.
Communication and sharing of information - through this network -
is a cornerstone of our current way of living. Both criminals as well as
nation states aim to extend their power and influence by controlling
the devices and the information flowing through the network. For
this, actors spend huge amount of energy into compromising the
connected systems and thereby violate their integrity. For this, it is
very important to be able to make assumptions about the integrity
of a given device, most importantly the device’s hardware and the
operating system powering the device. This thesis aims to tackle
this problem by proposing mechanisms to validate the integrity of
modern operating system kernels during runtime.
In the first part of our work, we investigate, how runtime code

integrity of a modern operating system can be achieved. While
various mechanisms exist to ensure the load-time integrity of an op-
erating system, runtime code integrity is still an open issue. Existing
mechanisms agree on the assumption, that code, once loaded into
memory is static. Thus, systems calculate and verify hashes of code
pages in memory, or use dedicated hardware mechanisms to prohibit

v

their modification once they are initially loaded. We show, that
these approaches heavily restrict the ability of an operating system
to perform benign self-optimization during runtime. We present an
approach, that leverages detailed insight into the different active
employed self-patching mechanisms to validate the integrity of self-
modifying kernel code on a byte granularity, while also taking the
current system state into account. For this, we make use of Virtual
Machine Introspection (VMI), a method to monitor a system from
an external view. To further highlight the importance of this part
of our research, we also present a critical security issue in the Linux
kernel that we discovered during our work, which allows unprivileged
processes to load arbitrary code and data into the kernels code re-
gion, effectively undermining newly introduced defense mechanisms
like Supervisor Mode Execution Protection (SMEP) and Supervisor
Mode Access Prevention (SMAP).

After providing a way to validate the integrity of operating system
(OS) kernel code, we take a look into how to improve the current
state-of-the-art for kernel data integrity. Researchers have proposed
various code reuse mechanisms, which allow an attacker to chain
together instruction sequences already legitimately existing within
a system to execute malicious behavior without introducing new
code into a system. We aim to detect such code reuse malware by
revealing the required control structures within data memory. We
introduce Code Pointer Examination (CPE), an approach to identify
and to classify code pointers in memory and provide a prototype for
recent Linux kernels that is capable of detecting code-reuse malware
in an efficient manner.
In addition, we also apply the methods developed in this theses

to userspace applications. We present the investigations made in
this direction and show to which extent the integrity of userspace
applications can be validated.

vi

Zusammenfassung

Unsere Gesellschaft basiert mehr und mehr auf digitalen Informatio-
nen. Das Leben der Menschen hängt von der Verfügbarkeit von in-
einandergreifenden Netzwerken und der Integrität der Informationen
die zwischen den verbundenen Geräten geteilt wird ab. Kommunika-
tion und der Austausch von Informationen - durch diese Netzwerke -
ist ein Grundstein unser derzeitigen Lebensweise. Sowohl Kriminelle
als auch Regierungen versuchen ihre Macht und ihren Einfluss zu
erweitern, indem sie versuchen, die Geräte und den Informations-
fluss durch diese Netzwerke zu kontrollieren. Um das zu erreichen,
verwenden die Akteure viel Energie um die verbundenen Geräte zu
kompromittieren und verletzen dadurch ihre Integrität.

Aus diesem Grund ist es sehr wichtig in der Lage zu sein, Annahmen
über die Integrität eines Gerätes machen zu können. Wichtig ist dabei
sowohl die Hardware des Geräts als auch das Betriebssystem. Diese
Arbeit geht das Integritätsproblem an und schlägt Mechanismen vor,
mit deren Hilfe die Integrität von modernen Betriebssystemen zur
Laufzeit überprüft werden kann.

Im ersten Teil der Arbeit untersuchen wir, wie die Codeintegrität
eines modernen Betriebssystem zur Laufzeit überprüft werden kann.
Während bereits verschiedene Mechanismen existieren, die die In-
tegrität eines Betriebssystem zum Zeitpunkt des Ladens sicherstellen,

vii

ist das Problem der Laufzeitintegrität noch ungelöst. Existierende
Lösungsansätze basieren auf der Annahme, dass der Programmcode,
sobald er in den Speicher geladen wird, statisch ist. Aus diesem
Grund basieren diese Mechanismen darauf, Hashwerte von dem Code
im Arbeitsspeicher zu berechnen und diese wiederum zu prüfen. An-
dere Mechanismen verwenden spezielle Hardware um Änderungen
des Codes generell zu unterbinden. In dieser Arbeit zeigen wir, dass
diese Ansätze die Fähigkeit moderner Betriebssysteme zur Laufzeit
legitime Selbstoptimierungen durchzuführen stark beschränken.

Wir stellen einen Ansatz vor, der mit Hilfe von detailiertem Wissen
über die verschiedenen aktiv verwendeten Selbstmodifikationsmech-
anismen die Integrität von selbstmodifizierendem Kernel Code auf
Bytegranularität sicherstellen kann und dabei den aktuellen Sys-
temzustand berücksichtigt. Um das zu erreichen verwenden wir eine
“Virtual Machine Introspection (VMI)” genannte Technik um das
entsprechende System von außen betrachten zu können. Um die
Wichtigkeit dieses Teils unserer Forschung hervorzuheben, präsen-
tieren wir zusätzlich ein kritisches Sicherheitsproblem des Linux
Kernels, welches wir während dieser Arbeit entdeckt haben. Das
Problem erlaubt unpriviligierten Anwendungen beliebigen Code und
Daten in die Codebereiche des Kernels zu laden und damit effektiv
neu eingeführte Sicherheitsmechanismen wie SMEP und SMAP zu
untergraben.
Nachdem wir eine Möglichkeit gegeben haben die Codeintegrität

eines Kernels sicherzustellen, legen wir unseren Fokus darauf, den
derzeitigen Stand der Technik im Bereich Kerneldatenintegrität vo-
ranzubringen. Forscher haben verschiedene Code-Reuse Mechanis-
men vorgestellt, die es einem Angreifer erlauben, verschiedene, bereits
auf dem System bestehende Instruktionssequenzen miteinander zu
verketten und damit bösartiges Verhalten auszulösen ohne dazu neuen
Code in das System einbringen zu müssen. Diese Arbeit beabsichtigt
solche Code Reuse Malware zu erkennen, indem die von der Malware
benötigten Kontrollstrukturen im Datenspeicher erkannt werden.
Wir stellen Code Pointer Examination (CPE) vor, eine Technik um
Code Pointer im Speicher zu erkennen und zu klassifizieren. Zusät-

viii

zlich stellen wir eine prototypische Implementierung für aktuelle
Linux Systeme zur Verfügung, welche Code Reuse Malware effizient
erkennt.
Darüberhinaus adaptieren wir die in dieser Arbeit entwickelten

Techniken auch auf Anwendungen im Userspace. Wir stellen die
Untersuchen in dieser Richtung vor und zeigen in welchem Umfang die
Integrität von Userspaceanwendungen generalisiert validiert werden
kann.

ix

Contents

List of Figures xv

List of Tables xvi

List of Publications xvii

1 Introduction 1
1.1 Research Questions 6
1.2 Contributions . 9
1.3 Outline . 10

2 Background 13
2.1 Hardware and Operating System Background 13

2.1.1 Virtual Address Translation 14
2.1.2 Kernel Code Protection Mechanisms 16

2.2 Virtual Machine Introspection 19
2.2.1 The Semantic Gap 21
2.2.2 Combination of Approaches 24
2.2.3 Virtual Machine Introspection Frameworks . 26

2.3 Code Reuse Attacks 28
2.3.1 Simple Code Reuse Attacks 28
2.3.2 Persistent Data-only Malware 30

3 Related Work 35
3.1 Code Integrity Validation 35

xi

Contents

3.1.1 Early Hash-based Approaches 36
3.1.2 Hypervisor-based Hash-based Approaches . . 37
3.1.3 Handling code modifications 39
3.1.4 Recent Approaches 40
3.1.5 Summary . 41

3.2 Kernel Data Integrity Validation 41
3.2.1 Mapping Kernel Objects 42
3.2.2 Semantic Data Integrity Validation 44
3.2.3 Summary . 47

4 Control Flow Integrity and its Limitations 49
4.1 Coarse grained Control Flow Integrity (CFI) 50
4.2 Fine Grained CFI . 53

4.2.1 Forward edge validation 54
4.2.2 Backward edge validation 58

4.3 CFI for Kernel Software 59
4.4 Summary . 63

5 Runtime Kernel Code Integrity 67
5.1 Problem statement 68
5.2 Kernel Runtime Patching 69

5.2.1 Position Independent Code 70
5.2.2 Configuration-specific Patching 70
5.2.3 Summary . 75

5.3 System Design . 78
5.3.1 Requirements & Goals 78
5.3.2 Preselector (PS) 79
5.3.3 Runtime Verifier (RV) 82
5.3.4 Lazy Loader (LL) 83

5.4 Implementation . 85
5.4.1 Identifying Executable Pages 86
5.4.2 Handling Load Time Patching 87
5.4.3 Handling Runtime Patching 90

5.5 Evaluation . 92
5.5.1 Effectiveness 92

xii

Contents

5.5.2 Performance 93
5.5.3 (Not) Trusting the Guest State 96

5.6 User Code in the Linux Kernel 100
5.7 Delimitation from previous work 104
5.8 Summary . 107

6 Code Pointer Examination 111
6.1 Problem statement 112
6.2 Attacker Model & Assumptions 113
6.3 Proposed Approach 114

6.3.1 Control Flow Related Data Structures 115
6.3.2 Pointer Identification 117
6.3.3 Pointer Classification 118

6.4 Implementation . 120
6.4.1 Kernel Object Validation 120
6.4.2 Code Pointer Examination 125
6.4.3 Detection of Dispatcher Calls 127

6.5 Evaluation . 128
6.5.1 Experiments 128
6.5.2 Discussion . 132

6.6 Summary . 135

7 Dynamic Integrity Validation for Userspace Applications 137
7.1 Problem statement 137
7.2 Code and State Integrity Validation 139

7.2.1 Process State Validation 139
7.2.2 Process and Library loading 141
7.2.3 Detection of additional code pages 144
7.2.4 Userspace Code Validation 144

7.3 Code Pointer Examination 145
7.3.1 Kernel Code Pointers within Userspace Appli-

cations . 145
7.3.2 Classification of Userspace Code Pointers . . 146

7.4 Experimental results 154
7.4.1 Userspace Code Integrity Validation 154

xiii

Contents

7.4.2 Kernel Code Pointers in Userspace 155
7.4.3 Userspace Code Pointers 157

7.5 Discussion and Limitations 162
7.6 Application of the Kernel Integrity Framework . . . 164
7.7 Summary . 170

8 Conclusion and Future Work 171
8.1 Contributions . 171
8.2 Practical Application 175
8.3 Future Work . 176
8.4 Final Words . 179

A Appendix 181
A.1 Tables . 181

Bibliography 201

xiv

List of Figures

2.1 Different view-generation approaches. 24
2.2 Illustration of ROP chain on the stack 30
2.3 Illustration of Data-only Malware 34

4.1 struct inode_operations 61

5.1 Implementation of SMP in practice. 73
5.2 Example of Jump Label implementation in the Linux

kernel. 76
5.3 Architecture of the proposed code page validation

framework. 80
5.4 Summary of the binary loading process. 89
5.5 Different mappings of the same physical memory. . . . 101

6.1 Pointer classification within the proposed framework. 116
6.2 Schematic representation of the self-patching imple-

mentaton. 122
6.3 Stack frame validation. 124

7.1 Example of a string overwriting parts of a pointer. . 152
7.2 Class Hierarchy of to access Guest datastructures. . 168
7.3 Example code to extract all running processes from

an introspected VM. 169

xv

List of Tables

4.1 Example of vtable like structures in the Linux kernel 65

5.1 Classification of self-patching mechanisms in the Linux
kernel . 77

5.2 Types of executable pages in the Linux 3.8 kernel . . 86
5.3 Results of performance evaluation (mean) 95
5.4 Libraries with content in the kernel code section . . 109

6.1 Results of the Phoronix Test Suite for Linux 3.8. . . 130
6.2 Results of the Phoronix Test Suite for Linux 3.16. . 130

7.1 Summary of userspace CPE results without full PIE 159
7.2 Summary of userspace CPE results with full PIE . . . 161

A.1 Vtable like structures in the Linux kernel 186
A.2 Detailt statistic of userspace CPE result wothout full

PIE . 188
A.3 Userspace CPE experiment with apache2 process . . 193
A.4 Userspace CPE experiment with mysqld process . . . 196
A.5 Detailt statistic of userspace CPE result wothout full

PIE . 197
A.6 Userspace CPE experiment with PIE enabled mysqld

process . 199

xvi

List of Publications

Alexandre Bouard, Benjamin Glas, Anke Jentzsch, Alexander Kiening,
Thomas Kittel, Franz Stadler, and Benjamin Weyl. Driving Automotive
Middleware Towards a Secure IP-based Future. In 10th conference for
Embedded Security in Cars (Escar’12), Berlin, Germany, November 2012.
Sebastian Vogl, Jonas Pfoh, Thomas Kittel, and Claudia Eckert. Per-
sistent Data-only Malware: Function Hooks without Code. In Proceedings
of the 21th Annual Network & Distributed System Security Symposium
(NDSS), February 2014.
Sebastian Vogl, Robert Gawlik, Behrad Garmany, Thomas Kittel,
Jonas Pfoh, Claudia Eckert, and Thorsten Holz. Dynamic Hooks: Hiding
Control Flow Changes within Non-Control Data. In Proceedings of the
23rd USENIX Security Symposium. USENIX, August 2014.
Tamas K. Lengyel, Thomas Kittel, and Claudia Eckert. Multi-tiered
Security Architecture for ARM via the Virtualization and Security Ex-
tensions. In 1st Workshop on Security in highly connected IT systems,
September 2014.
Thomas Kittel, Sebastian Vogl, Tamas K. Lengyel, Jonas Pfoh, and
Claudia Eckert. Code Validation for Modern OS Kernels. In Workshop
on Malware Memory Forensics (MMF), December 2014.
Tamas Lengyel, Thomas Kittel, George Webster, and Jacob Torrey. Pit-
falls of Virtual Machine Introspection on Modern Hardware. In Workshop
on Malware Memory Forensics (MMF), December 2014.

xvii

List of Publications

Fatih Kilic, Thomas Kittel, and Claudia Eckert. Blind Format String
Attacks. In 10th International Conference on Security and Privacy in
Communication Networks (SecureComm 2014), volume 153 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 301–314. Springer International
Publishing, 2015.
Tamas K. Lengyel, Thomas Kittel, and Claudia Eckert. Virtual Ma-
chine Introspection with Xen on ARM. In 2st Workshop on Security in
highly connected IT systems, September 2015.
Andreas Fischer, Thomas Kittel, Bojan Kolosnjaji, Tamas K Lengyel,
Waseem Mandarawi, Hans P Reiser, Benjamin Taubmann, Eva Weishäupl,
Hermann de Meer, Tilo Müller, and Mykola Protsenko. CloudIDEA: A
Malware Defense Architecture for Cloud Data Centers. In 5th Interna-
tional Symposium on Cloud Computing, Trusted Computing and Secure
Virtual Infrastructures - Cloud and Trusted Computing (C & TC 2015),
October 2015.
Thomas Kittel, Sebastian Vogl, Julian Kisch, and Claudia Eckert.
Counteracting Data-Only Malware with Code Pointer Examination. In
18th International Symposium on Research in Attacks, Intrusions and
Defenses, November 2015.
Julian Kirsch, Clemens Jonischkeit, Thomas Kittel, Apostolis Zarras,
and Claudia Eckert. Combating Control Flow Linearization. In 32nd
International Conference on ICT Systems Security and Privacy Protection
(IFIP SEC), May 2017.
J. Kirsch, B. Bierbaumer, T. Kittel, and C. Eckert. Dynamic Loader
Oriented Programming On Linux. In 1st Reversing and Offensive-oriented
Trends Symposium (ROOTs), November 2017.
Bruno Bierbaumer, Julian Kirsch, Thomas Kittel, Apostolis Zarras,
and Claudia Eckert. CookieCrumbl0r: Smashing the Stack Protector for
Fun and Profit (unsubmitted).
Sergej Proskurin, Thomas Kittel, Apostolis Zarras, Sebastian Vogl, and
Claudia Eckert. Follow the WhiteRabbit: Towards Consolidation of On-
the-Fly Virtualization and Virtual Machine Introspection (unsubmitted).

xviii

In
tro

du
ct

io
n

Chapter1
Introduction

The integrity of software is a basic requirement. In our daily lives
we rely on thousands of different software programs. Not only do we
expect them to function as intended, these programs are executed
on operating systems, that are themselves trusted. Although the
definition of trust is very hard to make in an IT security context,
most people define trusted, as small and manageable in code size.
That is, the code may be trusted, if both the source code is open and
understandable and ideally audited. Another requirement is that
the executed binary code is unchanged from what was created from
the compiler during the translation process from readable source
code to executable machine code. To maintain trust in an executable
binary, the integrity of the executable has to be guaranteed even
while executing in memory.

The integrity of code is often directly connected to its identity. One
big step to maintain this trust is, for example the reproducible-builds
project1,2. It aims to extend compilers and distributions so that
the hash sum of a compiled binary is always reproducible and not

1https://reproducible-builds.org/
2https://wiki.debian.org/ReproducibleBuilds

1

https://reproducible-builds.org/
https://wiki.debian.org/ReproducibleBuilds

1. Introduction

dependent on for example the build time or the minor version of the
compiler that was used during compilation.
Still, this approach does not solve the trust problem, as it only

enhances the trust in the compiled binary. A typical assumption
about code integrity is, that code is static once it is loaded to memory.
For userspace applications, an executable program is usually directly
copied to the applications virtual memory space by the operating
systems application loader. Therefore, the code that is executed
within memory is unchanged from the version that was shipped to
the computer within the executable. Due to this, code integrity
for userspace applications is usually achieved by simply hashing the
memory pages containing code and in turn comparing the results
to a hash of the code section within the binary, e. g. Executable
and Linkable Format (ELF) file. So for userspace applications, the
integrity of the code is usually directly bound to its identity.

Kernel Code Integrity However, the integrity of the operating sys-
tem (OS) kernel is especially crucial for the security of the entire
system. If the kernel gets compromised, the attacker can further
disable existing protection mechanisms and take full control over the
system and all applications running on it. This makes the kernel a
very lucrative target for malware authors. Once the kernel is com-
promised, all security mechanisms that rely on its protection become
useless. This is why modern hardware continues to provide additional
security features that protect the kernel from the introduction of
malicious code. A very prominent example of this development is
trusted boot.
With trusted boot enabled, each component in the boot process

validates the integrity of the next component in the boot chain before
loading and executing it. This ensures that the bootloader will only
load an untainted and signed OS kernel. Similarly, the kernel itself
will only load modules/drivers that are signed and untainted. As
a consequence, attackers can no longer simply infect the kernel by
loading a malicious module or changing the kernel binary on disk,

2

In
tro

du
ct

io
nwhich are very popular attack vectors. Since trusted boot is part of

the UEFI specification and is enabled by default since Windows 8, it
has since gained wide distribution.
While trusted boot can ensure the integrity of the kernel code at

load-time, it cannot provide runtime integrity. If the kernel contains
a vulnerability, the protection mechanism can be bypassed and the
kernel can be compromised. Since the security architecture of most
systems is based on the integrity of the kernel, it is essential that the
integrity of the kernel can also be verified during runtime. Hereby
the validation of the kernel must include the data structures of the
kernel as well as its code.

Unfortunately the assumption that code is static once it is loaded
into memory is not true for the kernel itself. Once the operating
system kernel is loaded by the boot loader, its code and data contents
are copied to the main memory of the machine and an initialization
routine is executed. Afterwards the program code and data get
modified by the operating systems loader effectively changing the
binary code. This process is similar if a new kernel module is loaded
by the kernel. Previous research assumed, that after these load-time
modification the kernel code is also static. To validate the code in
memory, a code page in memory is cryptographically hashed, and,
as long as this hash does not change, the integrity of the code is
assumed. The initial hash for this type of comparison is usually taken
from an already loaded reference kernel and not from the binary
executable itself. This approach assumes that the binary code may
be modified once during load-time but is constant during the runtime
of the executable.

This assumption does not hold for modern kernels which perform
dynamic code patching also at runtime (e. g. to control certain func-
tionalities). Consequently, executable pages within kernel space may
legitimately change during execution, which will lead to a high false
positive rate if existing methods are used.
Additionally, this also allows attackers to easily circumvent the

current protection mechanisms because such traditional methods are
unable to distinguish between benign and malicious changes to the

3

1. Introduction

kernel code. To complicate things further, the runtime changes that
take place are both system and architecture dependent, making it
impossible to establish a single ground truth. This leads to many
additional previously unconsidered challenges that must be solved to
be able to validate kernel code at runtime. Being able to accomplish
this task, however, is crucial, as the kernel provides the basis for
virtually all protection mechanisms found on systems today.

In this theses, we take a deeper look on the question, if the as-
sumption that kernel code is static once it is loaded into memory
is valid in practice. We thereby first take a look on modern OS
kernels, as these form the most important part of a running system
and thus have to be most trusted. First investigations showed that
the kernel code in fact changes during runtime. For this, in a first
step, we investigate how and to what extent the executable code
of a kernel changes during load-time and later during runtime. We
show that for different reasons the executable code of an operating
system kernel may legitimately change during runtime. For this,
we will investigate the rationales and motivations behind for these
self-modification mechanisms. With this information we answer the
question how its integrity may be validated despite of these changes
and build a framework that is able to validate the executable code
of a state of the art Linux operating system during runtime.

Enhancing Kernel Data Integrity As code integrity mechanisms
become more and more widespread, attackers are forced to find new
ways to infect and control a system. A likely next step in malware
evolution is thereby data-only malware, which solely uses instructions
that already existed before its presence to perform its malicious
computations [44]. To accomplish this, data-only malware employs
code reuse techniques such as return-oriented programming (ROP) or
jump-oriented programming (JOP) to combine existing instructions
into new malicious programs. This approach enables the malware
form to evade all existing code-based defense approaches and to
persistently infect a system without changing its codebase [100].

4

In
tro

du
ct

io
nDespite this capability and the substantial risk associated with it,

there only exist a handful of countermeasures against data-only
malware so far that can often be easily circumvented [20, 29, 41, 78,
19].

Thus, in this thesis, we continue by introducing a method to
make assumptions about the integrity of data memory. As one
usually is unable to make general assumptions about the contents
of untyped memory, we focus on control-flow relevant data memory.
An important part of control flow relevant data are pointers to
executable code, as these are used to define certain callback functions
during runtime. A well known example for such pointers is the list
of code pointers inside the system call table. While a userspace
process only requests a certain functionality to be executed in the
OS, the system call table holds pointers to each concrete system call
implementation. The actual system call dispatching is then done
inside the kernel, where, based on the requested system call number
the correct function is invoked. However, in addition to these well
known places, code pointers are also used within normal data to
specify the appropriate function to handle a certain object.

For this, we identify code pointers with a relatively simple heuristic.
We rely on the fact that only a small amount of memory is executable
within the entire address space. We identify a code pointer by the
simple fact that the memory it points to is marked as executable
in the page tables. With this we are able to check for each code
pointer if it points to a known function or symbol or an otherwise
allowed target. This technique is called Code Pointer Examination
(CPE). We also implement that concept and extend our prototype
framework to validate that all code pointers within kernel memory
point to well known targets and thus aim to detect invalid function
pointers. Thereby we are for example able to detect malware that
introduces pointers to existing code into the system and that tries to
reuse the existing kernel code in a ROP-style code reuse attack.

5

1. Introduction

Userspace Lastly, we extend our scope to also provide integrity
validation for userspace processes. We investigate to what extent
the mechanisms and software components developed throughout this
thesis may also be applied to validate the integrity of userspace
applications. With this, we extend our framework to also validate
the integrity of userspace application code as well as important
control-flow relevant datastructures. We also conduct research in
order to detect kernel targeting code reuse malware in the memory
of userspace processes. Finally, we also investigate to which extent
CPE may also be applied to detect code reuse malware that directly
targets userspace applications.

1.1. Research Questions
This thesis delivers insight about the problem of assuring runtime
integrity of modern operating systems. This consists of both the
integrity of the kernel code as well the integrity of the kernel data.
To solve this problem, we will address multiple research questions,
that we lay out and describe in the following.

(Q1) Under which circumstances and to which extent does the
code of a modern operating system change during runtime? With
this research question we aim to gain insight into the different kernel
features that an operating system employs which require dynamic
self-modification of kernel code. We start to investigate how dy-
namic the code regions of a modern operating system are in practice.
Initial tests revealed a lot of differences between the code that was
contained within the kernel binary and the code that was loaded
into memory. The first and obvious modifications are load-time
relocations. However, additional dynamic modifications are applied
to the in-memory representation of the code. These dynamic mod-
ifications within executable code exist because of various reasons.
The most obvious candidates seem to be performance improvements
and debug capabilities. For example, one might not want to check a

6

In
tro

du
ct

io
n

1.1. Research Questions

certain unlikely condition all over again during code paths which are
executed with a high frequency. Instead, to avoid polling, one might
only want to change the executable code once, in case that condition
is met and revert the code to its original state, in case the condition
is not valid any more. In this research question we investigate the
reason for dynamic code changes within modern operating systems.
This question thus aims to thoroughly enumerate the reasons for
dynamic kernel code modifications in order to be able to predict
and validate code modifications, and thus the code integrity, for a
specific operating system state. Previous mechanisms do not take
dynamic code modification into account and allow code modifications
at certain locations. Thus, allowing an attacker to take advantage of
such an unvalidated location by modifying it to her specific needs.
Note that the modification of a single instruction may be enough
for the attacker to persistently change the control flow for malicious
purposes.

(Q2) How to validate dynamic code changes within the kernel
code during runtime? After the reasons for dynamic code modi-
fications are investigated, we aim to implement a framework that
is able to validate dynamic kernel code during runtime. This also
includes the semantic validation of kernel internal data structures
and the hardware state that corresponds to the concrete code modi-
fications. For this purpose, a virtual machine introspection system is
created which is able to predict code modifications according to a
given system’s hardware and software state. If a unique prediction
of a modification is not possible, it should at least be possible to
enumerate all valid modifications for a specific location. In addition,
we evaluate the feasibility and performance of our approach.

(Q3) How can code reuse attacks be detected in kernel memory?
After the integrity of kernel code is validated by giving solutions
to the first research questions, we set our focus to validate parts
of the integrity of kernel data. As most of the data per definition

7

1. Introduction

is constantly changing, it is impossible to make general integrity
guarantees about kernel data. Previous approaches, further described
in Section 3.2, try to validate the integrity of particular important
data structures. However, due to the high amount of different objects,
it is hard to validate all objects within an operating system kernel
during runtime. For this reason, we restrict our focus on the detection
of code reuse within the kernel. More specifically, we aim to detect
control structures used for code reuse during system runtime. Thus,
we aim to scrape code pointers out of the kernels data memory and
try to detect clusters of code pointers that may be used as control
structures for code reuse techniques such as ROP. For this, it is
important to be able to not only find heuristics to detect code pointers,
but to also find categories for the classification of these detected
pointers. In this part of our research, we extend our framework to
implement the afore mentioned pointer detection and classification
and evaluate, if such an approach is applicable in practice. To be
practical, the process needs to be efficient and the method should
have only a very low number of false positives.

(Q4) Is it possible to also apply the developed methods to userspace
processes? This question addresses how our developed technique
can be applied not only to operating system kernels, but also to
userspace applications. While we expect the code validation part of
our work to be much simpler due to the success of other hash based
approaches, we aim to find heuristics to successfully apply the results
of (Q3) to userspace processes. This is required, as this allows to
detect code reuse already, when the control structure is built up
within a userspace application and before it is transferred to kernel
space.

(Q5) Is there a theoretical difference between a control structure
for code reuse malware and a legitimate stack? In this thesis, we
developed heuristics to detect and classify code pointers in (Q3) and
(Q4). However, we finally raise our yet unanswered final question,

8

In
tro

du
ct

io
n

1.2. Contributions

whether it is possible, for a given program state and a given stack
content, to decide if the stack contains legitimate content or a control
structure for a code reuse program. While we are unable to answer
this questions as part of this thesis, we think that answering this
question would advance the current state of the art in malware
detection.

1.2. Contributions
During this thesis, we give answers to the previously mentioned
research questions. In the following we shortly summarize the contri-
butions that we made while researching for this answers.

• We show that current code validation techniques are not suit-
able to validate the code integrity of modern kernels.

• We examine various load time and runtime code patching
techniques employed by modern OS kernels.

• We discuss the challenges that these runtime code patching
mechanisms create for code validation.

• We demonstrate the importance of correctly validating modern
kernel code. We do this with a practical example that enables
an unprivileged user to load arbitrary executable code into the
Linux kernel.

• We introduce a framework that can successfully validate the
integrity and identity of dynamic kernel code and enforces
additional security constraints.

• We examine the state of the art of CFI mechanisms currently
proposed and show that they are unable to detect all possible
control-flow modifications in practice.

• We present CPE, a novel approach to identify and classify code
pointers.

9

1. Introduction

• We highlight important data structures that are used for con-
trol flow decisions in modern Linux kernels and thus must be
considered for control flow validation.

• We provide a prototype implementation and show that it is
both effective and efficient in detecting control structures of
data-only malware.

• We extend the proposed kernel integrity validation framework
to also validate the integrity of userspace processes.

1.3. Outline
In the following, we will shortly outline the remainder of this thesis.
First, we provide the technical background required for this thesis in
Chapter 2. After describing some hardware and operating system
background together with current kernel protection mechanisms, we
introduce the concept of Virtual Machine Introspection (VMI) and
describe the semantic gap, the problem to interpret a systems memory
and hardware state from an external perspective. We illustrate this
problem by introducing some existing VMI frameworks and the
techniques they use to solve the semantic gap. Further, we elaborate
on the concept of Data-only Malware, a novel type of malware that
only relies on code-reuse techniques and does not need to execute
its own payloads. As this type of malware effectively mitigates the
concept of Code Integrity Validation (CIV) we have to elaborate
new techniques to be able to detect and defend against this type of
malware.

Then we introduce related work to the research done in this theses
in Chapter 3. We elaborate previous research on CIV, a technique to
validate the contents of application and kernel code and the different
problems that have to be solved to provide CIV for a modern OS
and also also introduce related work to the problem of data integrity
validation for modern OS kernels.

10

In
tro

du
ct

io
n

1.3. Outline

CFI was introduced to secure the control flow of against malicious
modifications. In Chapter 4, we introduce the different concepts that
where introduced and show, why, in our opinion this approach is not
enough to mitigate the problems that it tries to solve. We thus do
not focus on the weakness of concrete implementations but more on
a general problem with the proposed approach.

Chapter 5 describes our efforts to ensure kernel code integrity on a
modern OS and addresses the problem of runtime code self-patching
mechanisms employed by these modern OSs. In this Chapter, we
also describe a severe vulnerability within the Linux kernel that we
detected during our efforts.
After proposing a solution to code integrity, we focus on data

integrity and introduce a concept called CPE, in Chapter 6. CPE
can be used to detect persistent code-reuse-based malware within
the memory of a modern operating system. While we do not claim
that CPE can mitigate code-reuse based attacks in any case, it is
still able to detect its presence in memory.

Chapter 7 we apply the knowledge gained during our investigations
with the Linux kernel to userspace applications and show our results
in this direction.
Finally, Chapter 8 concludes this thesis including a discussion

about our contributions and possible future work.

11

Ba
ck

gr
ou

nd

Chapter2
Background

In this chapter, we discuss background that is relevant to the overall
topic of this thesis. This also includes the current state of the art of
solutions that are proposed to answer the research questions brought
up in this thesis. Parts of this chapter have already been published
as research papers: [54, 53].

2.1. Hardware and Operating System
Background

In this section, we will cover background concepts that are important
for the understanding of the remainder of this thesis. In particular,
we will provide an overview of virtual address translation and existing
kernel code protection mechanisms on the x86 architecture. The
code verification concepts are nevertheless also applicable to other
architectures like e. g. the ARM architecture.

13

2. Background

2.1.1. Virtual Address Translation

While software on the x86 architecture usually operates on virtual
addresses, the hardware operates on physical addresses. For this
purpose, there exists the memory management unit (MMU), which
translates the virtual address used by the software into physical
addresses that can be processed by the hardware. How this trans-
lation is conducted depends on the paging mode that is used by
the processor. The x86 architecture supports three different paging
modes: 32-bit paging, PAE paging, and IA-32e paging [46]. In this
thesis, we are only concerned with PAE paging and IA-32e paging,
which are the paging modes that are commonly used nowadays. Both
paging modes use multiple page table levels to translate a virtual
address into a physical address. While we will not go into details
on the individual pageing mechanisms, we will briefly describe the
general translation mechanism in the following.
A virtual address is translated into a physical address with the

help of multiple page table levels. Hereby entries in a page table
either references another page table (on a lower level) or a physical
frame that contains the data that a virtual address is referencing.
Whether a page table points to another page table or a page frame is
specified by each individual entry within a page table. The address
of the top-level page table that is used during the translation process
is contained in the CR3 register. In particular, the CR3 register
contains the physical address of the first page table. Consequently,
the hardware can directly access the table without having to translate
its address first.
The entry that is used within a page table to translate a virtual

address is encoded within the address. To select an entry within a
page table, the hardware will take a predefined number of bits from
the virtual address and use the value of those bits as an index into
the page table. Hereby the hardware processes the virtual address
from left (the highest bit) to right (the lowest bit). For instance, in
the case of IA-32e paging the leftmost 9-bits of the virtual address

14

Ba
ck

gr
ou

nd

2.1. Hardware and Operating System Background

determine the page table entry that is to be used in the initial page
table pointed to by the CR3 register.

To translate a virtual address, the hardware will step through the
page tables following the page table entries that are encoded within
a virtual address. This process will continue until a page table entry
does not reference another page table, but a physical page frame.
The remainder of the virtual address (i. e. the part of the virtual
address that was not yet used to identify a page table entry) is used
as an offset into the page frame to access the data that the virtual
address is referencing.
Besides referencing a page table or a page frame, a page table

entry also contains status bits. For this thesis the following bits are
of interest:

P The present bit specifies whether the entry is valid
or not.

U/S The user/supervisor bit specifies whether the page
frame pointed to by the virtual address contains
kernel code/data or user code/data.

R/W The read/write bit specifies whether the page
frame pointed to by this virtual address is read-
only or can be written to.

XD The execute-disable bit specifies whether the page
frame pointed to by the virtual address is exe-
cutable or not.

Obtaining all executable pages within kernel space can therefore
be achieved by iterating through the page tables and extracting all
page frames that can contain supervisor code, which are page frames
that are referenced by page table entries whose present flag (P) is
set while its supervisor bit (U/S) and execute-disable (XD) bits are
cleared.
Modern CPUs also provide a corresponding structure within the

hypervisor that translates the Guest Physical Address (GPA) to the
Host Physical Address (HPA). These structures are called Extended

15

2. Background

Page Tables (EPTs) and may be used to enforce additional policies
and to track for example write operations to specific pages. The
access permissions for each page can be different in the guest’s page
tables and in the EPTs. In that case, the most restrictive policy is
enforced by the hardware.

2.1.2. Kernel Code Protection Mechanisms
In this section, we take a closer look at the code protection mecha-
nisms that are offered by the x86 architecture and/or are leveraged
by modern OS kernels.

2.1.2.1. W ⊕ X

As mentioned in the previous section, the x86 architecture provides
an execute-disable bit as well as a read/write bit. These features can
be leveraged to implement W ⊕X. The general idea is that each page
in the page tables is marked either as writable or as executable, but
never as both. As a result, code pages cannot be simply modified by
an attacker, because they are marked as executable and are therefore
not writable. Similarly, data regions cannot be executed as they are
writable and therefore not executable. Note that the code segment
of the Linux kernel is not writable per default. To patch its code the
kernel temporarily sets the code to being writable and executable
effectively violating the W ⊕ X policy.

2.1.2.2. Trusted Boot & Module Signing

The goal of trusted boot is to ensure that each component in the
boot chain is untainted and has not been modified by an attacker at
load time. To provide this functionality a signature exists for each
component that includes a hash value of the component. During
the boot process each component verifies the next component in the
boot chain by checking the validity of its signature, recomputing the
hash of the component, and comparing the so obtained hash value

16

Ba
ck

gr
ou

nd

2.1. Hardware and Operating System Background

with the hash value within the signature. If both the certificate as
well as the hash value can be verified, the component is considered
to be untainted and is loaded. Otherwise the boot process is aborted.
The TPM specification [96] extends this concept so that applications
can later seal their keying material depending on an untainted boot
process.
While a kernel module must not necessarily be loaded as part

of the boot process, the trusted boot approach can be extended to
include loadable kernel modules. In this case the kernel is configured
to only load modules that are signed and untainted. To allow this
scheme to work each module must provide its own signature that can
be verified by the kernel before it is loaded. The verification process
is thereby identical to the previously mentioned process.
If trusted boot is used, an attacker can no longer simply modify

the kernel binary on disk as this would change the hash value of
the kernel binary and it would therefore not pass the verification
process on the next boot. Similarly, if module signing is used, an
attacker can no longer load arbitrary modules into kernel space as the
modules are verified before they are loaded. By combining trusted
boot and module signing, it is thus possible to tightly restrict the
code that can be loaded into the kernel space. Notice, however, that
this protection mechanism does not protect the kernel from runtime
modifications.

2.1.2.3. Supervisor Mode Execution Protection (SMEP)

A common exploitation technique that is often used to execute
attacker controlled code with kernel privileges is to place the desired
instructions into userspace and then divert the control flow of the
kernel to the userspace code region. Since the processor already
executes at the highest privilege level when the control flow is diverted,
it will execute the userspace instructions with supervisor privileges.

The advantage of this approach is that the attacker neither needs
to alter kernel code nor does she have to load a kernel module.
Consequently, the attacker does not have to circumvent protections

17

2. Background

such as W ⊕ X or trusted boot. Instead the attacker only needs to
store her instructions in userspace, which only requires control of a
userspace process on the system.
To protect against such attacks, Intel introduced SMEP. With

SMEP enabled, loading an instruction from a userspace page (a
page that is not marked as a supervisor page in the page tables)
while operating at the highest privilege level will lead to a page-fault
exception [46]. Therefore the attacker can no longer divert the control
flow of the kernel to userspace code as all userspace pages are marked
as user pages and not as supervisor pages.

2.1.2.4. Supervisor Mode Access Prevention (SMAP)

SMAP is a similar method as SMEP for data accesses. In the case
of SMAP the system can be configured to cause a trap (page fault),
if the system is in supervisor mode and tries to access data that is
mapped as user memory. This way an attacker needs to find a way
to transfer all code and data that she needs for her exploit to the
kernel before she is able to use that data in her exploit.

2.1.2.5. Memory Protection Keys for Userspace (PKU)

Intel also recently introduced a new page protection mechanism into
its architecture called protection keys. In addition to the classical user-
and supervisor classification, a page table entry now also contains
a protection key associated with it. This key allows to classify a
userspace page into 16 different protection classes for which the
access rights (read and write accesses) may be set differently in
each execution thread. The allowed access modes for each class are
specified by corresponding bits in the userspace accessible PKRU
register.

2.1.2.6. Address Space Layout Randomization (ASLR)

When ASLR is enabled, code regions such as the kernel code region
are no longer loaded to a fixed address. Instead the loader generates

18

Ba
ck

gr
ou

nd

2.2. Virtual Machine Introspection

a random address when a binary is loaded and places the binary at
the generated address. Therefore, the memory address of a binary
will be different each time it is loaded.

While this approach does not directly protect the code regions of
the system from modifications, it forces the attacker to determine the
address of the code regions, before she can modify them or execute
them. Since the memory address of the regions cannot be predicted
by the attacker, this may be a difficult task especially if the attacker
does not yet have control of a process on the victim’s system. There
are however still two frequently exploited problems with ASLR. First,
the number of random bits in the virtual address of the code page is
usually small (12 bit in x86 and 28 bit in x86_64). Second, libraries
and modules are still a loaded to the beginning of a page boundary.
Therefore, if an attacker is able to gather information about a single
symbol within a library or module, he is again able to calculate the
address of the start code section and thus the location of all symbols.

ASLR is already widely adapted for userspace applications. Also,
Kernel ASLR (KASLR) was implemented for the Linux kernel in
20131. However, during the time of writing, KASLR is still not
enabled by default. Although the mechanism is already implemented
for quite some time, it is not enabled, as there exist compatibility
issues with the Linux kernel’s hibernation feature. This is a typical
example, where usability of a system directly contradicts its security
mechanisms. Currently, the developers work to enable KASLR by
default2.

2.2. Virtual Machine Introspection
VMI is a technique that can be used for unconstrained introspection
and manipulation of any virtualized system that is executed inside
of a hypervisor. In this work, the term Virtual Machine Monitor
(VMM) is also used for hypervisor interchangeably. In this section we

1https://lwn.net/Articles/569635/
2https://lwn.net/Articles/683733/

19

2. Background

describe basic properties of VMI and how this technique is commonly
used to detect malicious software in forensic environments.
The term VMI has first been defined by Garfinkel and Rosen-

blum [37]. In their paper, the authors describe three properties that
are required for VMI.

Isolation: The first property mandates, that the monitored guest
system must not be able to access or modify anything on the
target system except its own state. This ensures an attacker is
unable to tamper with the security mechanism, even after she
has completely subverted the monitored guest system.

Inspection: The second property requires, that the hypervisor has
access to the entire (virtual) hardware and software state of the
monitored virtual machine. This includes not only the current
CPU state as well as all the memory and I/O device state. This
also includes all elements that the guest is able to store data
on.

Interposition: The last, and most important property is, that the
hypervisor needs to be able to interpose on certain operations
that the virtualized guest conducts. This is required, as the
VMI application can use this property to instrument the moni-
tored guest and thereby is able to infer additional information
from the monitored guest.

With these properties, a VMI application is, for example, able,
to extract certain information of a running guest, every time a new
active process is scheduled within the virtualized guest. Due to the
first property this can even be done in a completely stealth manner.
Garfinkel and Rosenblum conclude that hypervisors typically fulfill
these properties and are thus a perfect tool to implement VMI
mechanisms.

This insight however leads to another problem of VMI that is the
semantic gap.

20

Ba
ck

gr
ou

nd

2.2. Virtual Machine Introspection

2.2.1. The Semantic Gap
The basic problem of VMI is the problem of interpreting the cur-
rent hardware and software state of a Virtual Machine (VM) from
the outside without further knowledge about the current system’s
internals. This step of interpretation was coined as the semantic gap
by Chen and Noble [24]. The problem in this step arises due to the
large amount of binary data that has to be parsed.

In order to resolve the issue researchers have found different ways
to handle this problem and to reduce the amount of information
that has to be generated to generate a consistent view about the
monitored system. In this process they introduced a classification of
different view generation patterns [70]. This classification was made
as of two reasons. First it classifies the amount of information that
can be gathered by view generation pattern, second, it also classifies
the amount of trust, that an external inspector should put into the
generated information.
In the following we will shortly describe these view generation

patterns:

2.2.1.1. Derivation

The first approach to infer information about a previously unknown
system is to derive the information directly through semantic in-
formation about the underlying hardware architecture. While the
amount of information that can be gathered with this approach is
limited, it has two major advantages. First, the gathered information
is binding and thus can not be changed by a malicious attacker. This
is due to the fact, that the information that us used during this
process is directly used by the hardware. The critical data-structures
used in the derivation process are thus rooted in hardware [71], as
one can build a chain between the data-structures and an immutable,
hardware defined component. A VMI application can for example
derive a sequence of system calls, as the address of the system call
handler is contained in a special hardware register and any execution

21

2. Background

of that page can be trapped by the hypervisor. Also, it is for example
possible to derive the memory areas that are allocated for a certain
process within the guest VM, as a pointer to the page mapping for
each process is contained in a special register (CR3 on x86), together
with a description of the paging mode that is currently used (CR0
on x86). Using these two registers, a VMI application can extract
the page tables for each process from memory and can thus extract,
e. g. all executable pages. As of that, hardware-rooted data structures
become evasion-resistant.
Second, this approach is also software agnostic, as it only relates

to the underlying hardware architecture and not on certain imple-
mentation decisions made by e. g. Linux or Windows. This results in
the fact that VMI applications that solely rely on a derived view are
guest operating system agnostic.

A drawback of this method is, that only hardware-rooted informa-
tion can be derived from a system. This still leaves a dark spot on
most of the guest state. This is also, why other means of information
delivery approaches are required.

2.2.1.2. Out-of-band delivery

Another important part of guest memory is defined by the concrete
applications that are executed within the monitored guest. These
applications usually consist of an OS kernel together with appli-
cations that are executed in userspace. To be able to make sense
of the information that is processed by the kernel, a VMI applica-
tion requires symbol information to connect the raw memory with
its higher level representation. This symbol information is usually
generated in an out-of-band approach by analyzing the source code
or binary information of the executed programs. This information
for example consists of all the data types that are defined within
the program and the addresses of all global variables together with
information about their respective types. Thus, a VMI application
is enabled to navigate through the guest memory, while starting at
global variables.

22

Ba
ck

gr
ou

nd

2.2. Virtual Machine Introspection

This approach has the advantage, that the semantic information
can already be generated in an offline manner and the view generation
process is independent of the monitoring process. On the other hand
it has the disadvantage, that the information that was generated
does not take the active system state into account. Not only is the
information bound to a specific software version, malware could also
change the monitored system in a way, that the generated view does
not match the current system any more. These attacks are known
as Direct Kernel Object Manipulation (DKOM) [17] and Direct
Kernel Structure Manipulation (DKSM) [7]. Another problem with
this approach is, that the type of internal data structures may also
depend on the current system state and that the generated view is
thus ambiguous. Therefore, this approach is also called non-binding,
as the gathered information is not directly bound to the monitored
systems state.
Due to this, current VMI mechanisms use a combination of the

derivation and the out-of-band delivery approach.

2.2.1.3. In-band delivery

In contrast to the previously described view-generation approaches,
one can also use an in-guest agent, to deliver information about the
monitored guest system. Due to its internal position, the in-guest
agent directly uses the monitored guests semantic information. Thus
it is also possible to use this delivery approach to bridge the semantic
gap for parts of memory, that could not be bridged using other means
of view generation.

However, in-band delivery also comes with a fundamental problem,
which has to be thought of, before leveraging this mechanism. As
the view generation is executed within the domain of the monitored
system, an attacker is able to tamper with the view generator. It
can, for example, provide the agent with malicious or modified data.
This means, that a VMI system must take special care and consider
that the generated results might me unreliable or false.

23

2. Background

Monitored
VM

VMM

Derivation

Out-of-band
delivery

In-band delivery
VMI

Application

Host OS

Figure 2.1.: Different view-generation approaches.

2.2.2. Combination of Approaches
As we have seen the same information may be derived or delivered
from an introspected guest system using different approaches. Figure
2.1 gives an overview over the different approaches. In the following,
we give an example how list of all active processes may be extracted
from a monitored guest VM using the different approaches. The
easiest way to extract the list of running processes, one may inject an
in-guest agent into the monitored system that in turn executes the
ps command within the monitored machine and redirects the output
to the analyzer. While this is the simplest approach, malware within
the monitored VM might not only recognize the in-guest agent, but
also modify the information that is extracted. That is, this approach
is not stealthy and the information extracted is not binding and thus
does not necessarily reflect the correct information.

Alternatively, the list of executing processes may also be extracted
by using out-of-bound delivery. For this, the VMI application needs
external information about the location and layout of the corre-
sponding kernel data structures. With this, it may locate the kernel
structure init_task within the virtual memory of the monitored
guest VM. In order to map this address to the corresponding physical
address, the introspecting application is required to parse the page

24

Ba
ck

gr
ou

nd

2.2. Virtual Machine Introspection

table data structures of the monitored guest, that are available at the
symbol init_level4_pgt. After this information is extracted, the
doubly linked process list can be traversed and all information about
currently executing processes may be extracted. With this approach
the information may be extracted from the introspected guest VM
in a stealthy manner. Also, the full state of the guest system may
be extracted. But still, the information that is extracted does not
necessarily reflect the monitored VM’s true state (is non-binding).
This is because a malicious host may still have altered the information
within this datastructure.

Finally, the list of processes may also be derived from the virtual
hardware state. This has the advantage, that this process is both
stealthy and binding. As a drawback, this mechanism does not allow
to reconstruct a full state of the monitored VM. In order to extract
a list of processes together with their virtual memory mappings, the
VMI application needs to configure the hypervisor to trap on each
change of the CR3 register. This register holds the physical address
of the currently active page table datastructure. As each process
owns its own set of page tables, this address identifies a process.
With access to the active page tables, the memory contents of each
process may be extracted from the guest VMs physical memory. Still,
metadata, such as the name of the process or its associated process
ID, can not directly be derived from the virtual hardware.
While In- and Out-of-Band delivery provide a wider range of

information about the monitored system, only derived information is
trustworthy.

2.2.2.1. Weak vs. Strong Semantic Gap

In addition to the different view generation patterns previously
discussed, Jain [48] introduces the differentiation between the weak
semantic gap problem and the strong semantic gap problem.

The difference between these concepts is made in the way, VMI is
used to analyze a system. In the first case, the system is started in a
known and benign state. The system is then monitored throughout

25

2. Background

its entire live cycle and any malicious change is directly analyzed. In
this scenario, the entire state of the system, that means the hardware
architecture as well as all applications on the monitored system,
is known, and any changes in the guest systems semantics are an
indication of a malicious change made by malware. This is a common
scenario in current (cloud) environments, where VMI is used to
extend the existing monitoring environment. Jain refers to this as
the weak semantic gap and postulated, that it is basically a solved
engineering problem.

In contrast, the strong semantic gap is a scenario, where a system’s
hardware and software state is not known in advance or the system
has not been under monitoring through its entire live cycle. According
to Jain [48], this problem is currently still unsolved.

2.2.3. Virtual Machine Introspection Frameworks

This work is influenced and based on multiple existing VMI frame-
works. In the following we will shortly introduce these frameworks
and also describe how our approach leverages their previous work.
Insight [80, 79] was developed as a tool to bridge the semantic

gap and build a graph of objects in kernel memory. We will later
go explain the concepts of this system in more detail. In terms of
definitions Insight is based on the out-of-band derivation pattern as
it uses compiler generated symbol and debug information to detect
these objects. The framework was specifically implemented for the
Linux kernel. The framework’s initial concept was to parse the
kernel‘s source code and compiler generated debug information of
the Linux kernel, specifically the Debugging With Attributed Record
Formats (DWARF) debug information. The goal was to map the
kernel memory by starting with global objects, as the type and
location of these global objects is well known. From this, these
objects reference all other objects within kernel memory through a
chain of pointers. By traversing the generated tree, one could find
and identify all objects.

26

Ba
ck

gr
ou

nd

2.2. Virtual Machine Introspection

While the initial versions of this thesis have been implemented as
modules for the insight framework, some limitations emerged. The
most important have been the lacking support for live introspection
of a running virtual machine and the complex setup phase for new
kernel versions. For this reason we decided to generate a separate
framework as part of this thesis. One big advantage, that we take
from the concepts already implemented in Insight is the possibility to
bridge the semantic gap and extract information from the analyzed
kernel.

Another project that this thesis builds upon is LibVMI [64]. Lib-
VMI is generated as a generic library to interact with a Virtual
Machine in a generic way. While its initial name was XENaccess and
it was initially only built for use with XEN, it is now also compatible
with other hypervisors such as, for example, KVM.

While LibVMI is a generic wrapper to control a hypervisor, like
pausing and resuming a virtual machine, in the context of our thesis,
the library is mainly used to transparently access the memory of
the target virtual machine. This is possible, as LibVMI is able to
parse the page tables of an introspected virtual machine and reads or
writes to the memory of the target virtual machine. Recent versions
of LibVMI have also been updated to support the use of Intels EPT.

LibVMI is also frequently combined with the VMI frameworks
Volatility [102] and Rekall [74]. Both of these frameworks aim to
allow a user to gather information from the memory of running
virtual machine. This information, besides others, contains a list of
running processes, a list of loaded kernel modules. As we are highly
depending on low level information of the introspected VM, we base
our work direktly on LibVMI.

Next, we will introduce the reader to the basic underlying concepts
of code reuse attacks and data-only malware, a novel type of malware,
which we aim to protect against as part of this thesis.

27

2. Background

2.3. Code Reuse Attacks
The concept of data-only malware is both a foundation and a moti-
vation for this thesis. To describe data-only malware we first need
to take a quick look at the history of malware and exploitation. In
the past decades, security mechanisms and secure programming have
not been to wide spread in the software and hardware development
industry. Code and data memory have not been separated. It was
typically enough for an attacker to search for a piece of code that
takes some input from the user and does not correctly filter the
length of the input. This way, an attacker was able to achieve two
goals. First, he was able to overwrite some memory location, that the
program uses to manage its control flow, namely the current functions
return address on the stack, and in addition to also introduce his own
executable machine code into the attacked system. For a long time,
this was enough to alter the control flow of the attacked program.

To mitigate this problem, operating system developers introduced
means to prevent the execution of data pages, as the stack. First,
software workarounds such as PaX [42] for Linux or Data Execution
Prevention (DEP) from Microsoft3 (Windows XP Service Pack 2)
were introduced. Later, Intel introduced a dedicated hardware flag to
disable the execution of a page within the page tables data structure
with the release of the Pentium 4 (Prescott) processor.

2.3.1. Simple Code Reuse Attacks
With this separation attackers were not easily able to introduce new
executable code into a system any more. Thus, attackers started to
develop new techniques to reuse executable code already present on a
target system [89]. They started to recycle existing functions present
within a library that was already loaded in the attacked system, like,
for example, the C library. While only a single function could be

3https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553.
aspx

28

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553.aspx

Ba
ck

gr
ou

nd

2.3. Code Reuse Attacks

executed, attackers quickly understood to chain multiple functions
together [104] by carefully crafting the contents of the attacked stack.

Later Shacham et al. [85] extended on this concept by introducing
a variant of return-to-libc, that does not aim to reuse entire functions,
but instead only uses short instruction sequences which themselves
end in a return instruction, called gadgets. The important feature of
this return instruction is that it pops the value at the current top
of the stack to the instruction pointer and thus directs the control
flow to the gadget at that next address. To achieve the intended
functionality, an attacker is required to create a control structure,
that contains a list of addresses of gadgets, that need to be executed.
To conduct the attack, the control chain, is loaded into the memory
of the attacked program, in the easiest case, onto the stack. Every
time, during the attack, a return instruction is executed, the address
of the next gadget is read from the control chain and the control flow
is redirected to the selected instruction. For this, this technique was
quickly known as return-oriented programming (ROP). Figure 2.2
illustrates a ROP-chain on the stack. Note, that during such an
attack, the control structure might also contain gadgets, that, for
example, pop intermediate values from the stack into a selected
register. Thus an attacker may actively influence the control flow by
modifying register contents during the attack. It was shown that ROP
can achieve Turing complete computation [22]. Still one problem of
ROP attacks is that the content of the stack is modified and destroyed
during its execution. Similar techniques where also presented that
use indirect jumps or signals instead of return instructions [22, 12, 14].
For this, this category of attacks is now known as Code-Reuse Attacks
(CRAs), as only existing instructions are used for the attack and no
new code is introduced.
From this time on, CRAs were commonly used as the first part

of an exploit. It used to infiltrate a system and to disable certain
protection mechanisms and to download a second stage. The second
stage, in turn, contains the intended malicious functionality and is
itself not based on code reuse, but typically still consists of classical
binary code. Thus, the second stage could then be directly executed

29

2. Background

<ptr>

<ptr>

<data>
<ptr>

<data>
<data>
<ptr>
<ptr>
<ptr>
<ptr>

Stack Code

instr; ret;

instr; ret;instr; ret;

instr; ret;
instr; ret;

instr; ret;

instr; ret;

instr; ret;
instr; ret;

Figure 2.2.: A ROP chain on the stack. Different gadgets are chained
together. After a ret instruction is executed, the next
gadget is activated.

on the attacked system, as the security mechanisms were already
disabled by the first stage. Note, that even current glibc versions
contain the string /bin/sh. Thus a simple exploit is only to find
this string in memory and to direct the control flow of the attacked
system to the system() function, while providing the address of the
string as a parameter to the function. With this, the attacker may
open a shell on the attacked device.

2.3.2. Persistent Data-only Malware
Over the years, defense mechanisms improved again and were again
able to detect such second stage malware. As the second stage
introduces code into the system this code might also be detected by a
defensive security system. Therefore malware authors are more and
more required to implement not only the first exploits, but instead
their entire malware leveraging code reuse techniques. This leaves two

30

Ba
ck

gr
ou

nd

2.3. Code Reuse Attacks

possibilities for an attacker: Either the malware lacks of persistence
and the attacked system has to be exploited over and over again
to execute the malicious functionality. In this case, of course, the
malware is not able to react on the behavior of the attacked system
(e. g. system call hooking to implement, for example, a key-logger).
This also means that the malware is easily removable by simply fixing
vulnerability which was exploited by the malware. An example for
such a data-only rootkit was first published by Hund et al. [44].

Another possibility is to implement all rootkit functionality, includ-
ing memory persistence, entirely with code reuse techniques. With
persistent malware, in this context, we mean a rootkit that is part
of the attacked system and may be activated during selected events
within the attacked host, such as for example function hooking in
the simplest case or on system call invocation or during interrupt
handling. In addition, persistent data-only malware has the require-
ment, to not only intercept certain events, but also to always hand
control back to the original control flow. Persistent malware by its
definition is not required to survive, for example, a system reboot.
Vogl et al. [100] have shown, that it is possible to achieve a persistent
data-only rootkit without modifying existing code or introducing new
code into a system. Vogl et al.‘s work also contains Chuck, the, to
our knowledge, first publicly available implementation of a persistent
data-only rootkit. Although it was written as pure data-only rootkit,
it provides key-logger functionality and is capable of hiding processes
and files within the attacked system.
While code reuse exploits usually only make use of a very small

control data structure that simply allocates a writable and executable
memory region which is then used to execute traditional shellcode,
control data structures of data-only malware are in general quite
large. The reason for this is that data-only malware solely relies on
code reuse to function. Each functionality that the malware provides
must be implemented by using code reuse. The result are huge chains
that contain hundreds of reused instruction sequences [100].

As the author of this thesis was also involved in Vogl et al.‘s work,
and his work serves as a motivation for this thesis, we, in the following,

31

2. Background

describe persistent data-only malware and the challenges involved
to create such malware in more detail. First, we shortly discuss the
general problems and requirements of persistent data-only malware
and then introduce the architecture of the example implementation.

In a classical CRA scenario, an attack can typically be divided in
to a first code reuse based exploit that in turn downloads a payload
and the execution of that payload as a second chain. In an abstract
view, this is also true for persistent data-only malware. While the
first stage already contains the payload, it prepares the attacked
system to trigger the second stage payload on certain hooks. For
this, the first stage ROP chain is also called the initialization chain.
The initialization chain needs to accomplish multiple steps. First it
loads the second stage payload into a suitable memory location of
the attacked process, that is not overwritten by the attacked process
itself. Then, it alters the attacked system to regularly execute the
second stage ROP chain. To remind the reader, this requires to load
the virtual address of the payload into the stack pointer to load the
chain (the stack pivot) and to execute a return instruction to redirect
the control flow to the chains first gadget. In contrast to the first
exploitation, where the attacker has a detailed view over the target
and may have even control over multiple registers, there is only little
influence to the current CPU state, once the second stage chain is
triggered.
Up to Vogl et al.‘s work the problem of executing callbacks in a

return oriented rootkit was still an open problem [23]. Vogl et al.
propose to leverage unused hardware mechanisms as a stack pivot.
Amongst others, they propose to use the sysenter mechanism, a
mechanism to trigger context switches from userspace to kernel space.
For this, also the stack pointer and the instruction pointer need to be
replaced in an atomic manner. On x86_64 systems, the sysenter
mechanism is superseded by the syscall interface and is thus unused.

To use the sysenter mechanism to create a callback to the persis-
tent part of the data-only rootkit, the initialization chain modifies
the appropriate model-specific register (MSR) registers. These are
namely the registers IA32_SYSENTER_ESP and IA32_SYSENTER_EIP.

32

Ba
ck

gr
ou

nd

2.3. Code Reuse Attacks

The first register is set up to hold the address of the start of the
persistent stage. The second register is set up to hold the virtual
address of a return instruction. This way, every time a sysenter
instruction is executed, the persistent stage of the data-only rootkit
is executed. Thus to enable the callback during an interesting event,
the control flow must be redirected to execute a sysenter instruction.
For this, a pointer may be modified to point to the correct location.
Note that this is orthogonal to the use of the system call mechanism,
as this typically uses the syscall instruction.

After we have described the initialization of the malware, we will
now discuss the requirements to the persistent portion of the malware.
There are multiple problems, that an attacker needs to face in order
to successfully implement such malware. The first problem, is that
the control structure of the malware is on the stack. This means, that
the executed instructions may also modify the stack and thus destroy
the chain. This is especially a problem if parts of the chain execute
external functions. A second problem is, that the malware may be
triggered by multiple events at the same time. Thus the payload
needs to be reentrant. A third major problem is, that the malware
needs to restore the systems state after it finishes its execution. That
is, not only must the malware store the current state of all registers,
the registers need to be restored once the chain ends.

To comply with these requirements, Vogl et al. propose to separate
the persistent chain into three different sub-chains. The copy chain,
the dispatcher chain, and the payload chain. The copy chain is held
to a minimum. Its only purpose is to save the current CPU state
to a dedicated memory location that is already allocated by the
initialization chain and to create a unique version of the dispatcher
chain for each invocation. Thus each invocation of the dispatcher
and the payload chain may destroy their chain while executing. In
addition, the copy chain uses the fact, that the sysenter mechanism
temporarily disables interrupts on the system. For this, it guarantees,
different concurrent invocations of the callback do not interfere with
each other. Lastly, the copy chain enables interrupts again and
hands over control to the dispatcher chain. This next chain is

33

2. Background

Kernel StackCopy Chain(persistent)Payload Chain (volatile stack)Original RBPprepare Kernel Stackck PAYLOAD SAVE REGISTERS COPYDispatcher Switch to Dispatcher13restore Registers PAYLOADState Determine Process Switch to PayloadGLOBALState Dispatcher Chain(volatile Stack)ReserveMemory 2457Patch Payload COPYPayload 89106111213Leave;Ret;14

Figure 2.3.: This figure illustrates the tasks of the different ROP-chains
required to create data-only malware. It is is originally
taken from Figure 4 of [100].

then responsible to create a custom version of the payload chain
by copying it to a new location in memory and modifying process
relevant information. Finally, the task of the payload chain is to
provide the malicious functionality and then to restore the original
register state of the system at the time of the hook to solve the third
problem described above. For this, it needs to access the information
stored by the copy chain. A well-arranged summary of this process
is given in Figure 2.3, originally taken from Figure 4 of the original
work [100].

Note that the content of the original stack pointer is lost when
leveraging the stack pivot mechanism described above. To solve this
problem, the reference implementation makes use of the old frame
pointer. As the callback used for the example rootkit is within the
system call handler function, the implementation knows the offset
between the stack pointer and the frame pointer at the time of the
hook.

This has a big impact on defensive security mechanisms. Defenders
not only need to implement code integrity mechanisms to ensure, that
the code within a system is not malicious and can not be modified
by an attacker. Also defenders need to be able to detect control
structures for data only malware in memory by ensuring the integrity
of the data memory that is contained within a system. This data can
typically be separated into control flow relevant data like stacks and
jump tables, as well as control flow irrelevant data. Vogl et al. [99]
also showed, that it is possible to attack a system by only changing
non-control data, as this data is also considered for control flow
decisions.

34

Re
la

te
d

W
or

k

Chapter3
Related Work

As we have discussed the background relevant for this thesis in the
last chapter, we will now introduce related work and discuss its
influence on this work.

3.1. Code Integrity Validation
One goal of this thesis is to efficiently and securely validate the
integrity of kernel code of modern operating systems which perform
different forms of self-patching during both loadtime and more im-
portantly during runtime. In the following we introduce different
existing solutions to code validation and motivate our research effort
in this direction.

Lots of approaches where presented to handle CIV. Many of these
use dedicated hardware extensions, like Trusted Platform Modules
(TPMs) or leverage smart-cards to execute code sections which de-
serve particular protection. In contrast, in this work we focus on
mechanisms that can be applied to modern operating systems using
off-the-shelf hardware. Another avenue to protect code integrity is

35

3. Related Work

the application of program obfuscation. However it was shown, that
program obfuscation is not applicable in practice [9, 10]. In addition,
obfuscation based program integrity mechanisms aim to defend the
code against malicious modification and hope, that unauthorized
modification leads to a crash of the program. In our work we aim
to validate the integrity of program code, even if some level of self
modification is applied.

3.1.1. Early Hash-based Approaches
One of the first available tools to check the integrity of software was
Tripwire in 1994, which at its base, checks hashes of all files in the
filesystem [52]. For this, Tripwire maintains a database of known
files. For each file in the filesystem, Tripwire stores a hash of the file
in the database. During runtime, all files in the system are hashed
by Tripwire in a regular interval. The resulting hash is compared to
the known hash in the database. While Tripwire also includes several
non cryptographic CRC functions as supported hash mechanisms,
the authors proposed to prefer secure cryptographic hash functions
such as MD5 and SHA1. Although this approach is comparably
simple, it is one of the first approaches, which tries to validate the
integrity of executing code.

Later in 2001 a mechanism was introduced to check the integrity of
code during runtime [21]. Chang et al. introduce guard code into a
program which checks the integrity of specific code sections (defined
by start and end address) within memory by calculating a checksum
of the code region. In case of a checksum mismatch, the system
modifies the stack pointer of the program. This should in turn lead
to a crash of the protected program. To mitigate attacks targeted
against the guard code, the authors propose to introduce a network
of guards within the program, which in addition to the production
code, also check the integrity of the guards themselves. However,
not surprisingly, it was later shown that checking the integrity of an
entity from within the entity itself is generally flawed, as the attackers
code might also be executed with the same or higher privileges than

36

Re
la

te
d

W
or

k

3.1. Code Integrity Validation

the defense mechanism [105]. Note, that the malicious modification
of the translation lookaside buffer (TLB) described by Wurster is
not only invisible to the application that tries to protect itself, but
is even invisible to the operating system where maximal privileges
are assumed.

Copilot [69] was one of the first systems that calculated a hash of all
Linux kernel and module text regions to detect rootkit modifications
to code areas. To achieve this, Copilot makes use of trusted hardware
that is capable of calculating and comparing the hashes at runtime.
The “good” hashes, which are required as a basis for the detection of
modifications, are thereby obtained by calculating the hashes in a
system state that is considered to be non-compromised.

3.1.2. Hypervisor-based Hash-based Approaches
Garfinkel et al. [36] first propose to check the integrity of software
through a secure and trusted hypervisor. Terra is designed to enable
attestation for remote parties. For this, Terra calculates hashes of
all files that are read from the virtual disk. The files are divided into
smaller blocks (for example 4kb, the size of a page in memory) and
for each block a separate hash is calculated. To optimize the handling
of large amounts of hashes, the authors propose to use a Merkle hash
tree. A whitelist of hashes (or the root node of the Merkle hash tree)
is then stored in the VM descriptor and thus secure from external
access. As Terra validates the integrity during load-time, runtime
modifications are not considered in this work.
Similar to Terra , Pioneer [84] aims in providing runtime remote

attestation. In contrast to Terra, Pioneer does not depend on a
trusted hypervisor. Instead, Pioneer calculates hashes of all kernel
code pages and all static data pages. This way, the system is able to
detect malware that modifies the kernel’s code to include itself into
the Control Flow Graph (CFG) of the kernel. Unfortunately, it also
does not take runtime self-modification of an OS kernel into account,
but still compares the calculated hash values for each page against a
whitelist of hashes.

37

3. Related Work

Petroni and Hicks [68] also compute a hash to validate kernel
and module code regions, but move the validation component out
of the guest system with the help of a hypervisor to increase the
isolation of the validation component. To provide a base for the
comparison, the authors make use of a trusted store that contains all
trusted executables. To make this scheme work, binaries within the
trusted store are relocated before the hash is compared based on their
current location within the guest system. One problem with such an
approach is that the set of possible hashes can grow arbitrary large
during runtime. Other approaches that make use of hashes to detect
kernel code modifications include Manitou [58], Blacksheep [11], and
OScK [43].

SecVisor [83] further elaborates this idea, by leveraging the memory
management functionalities of modern CPUs and entirely prevents
modification of kernel code, once it is loaded to memory. This way,
SecVisor is able to handle load-time modifications of the binary and
ensures the code integrity of kernel code, but it prevents the kernel’s
optimization functionalities, by also disabling its ability of runtime
self-modification. This policy also forbids to load custom modules
into the kernel, as the code of a module in memory is different
from the code of the kernel module within the object file on disk
due to relocation. To allow loading of custom kernel modules, the
authors decided, to implement the relocation functionality inside
the trusted hypervisor. While this seems to be a good idea in the
first place, it is even worse in practice, as it allows an attacker to
trick the hypervisor to do arbitrary computations [86] based on
artificially crafted relocation metadata. Note, that the problem of
handling self-modifying kernel code was already mentioned by the
authors of SecVisor, but not considered for their implementation,
as supporting self-modifying code is likely to complicate the approval
policy of SecVisor [83].
NICKLE [76] on the other hand redirects the instruction fetches

to kernel code to a secure shadow version kept within the VMM.
The most recent approach, MoRE [95], splits the TLB so that data
accesses, such as write attempts, point to a different memory location

38

Re
la

te
d

W
or

k

3.1. Code Integrity Validation

then the actual code pages. While the specifics on how they enforce
static OS code pages differs, these approaches all come with the
same penalty: All these approaches consider kernel code to be static,
once it has been relocated. While this assumption was true for older
kernel versions, modern kernels make use of runtime patching. These
legitimate kernel patching mechanisms, which are often there to im-
prove performance, are disabled by these approaches. For this reason
Ianus [61] advocates for only a partial enforcement against kernel
patching where kernel modules are restricted from modifying code
that does not belong to the module itself. Also Srivastava et al. [90]
introduced a system to restrict untrusted modules to modify the code
pages of the core kernel. However, without understanding the specific
changes that happen to the main kernel code, such restrictions can
be easily circumvented.

3.1.3. Handling code modifications
The first work that claims to handle self-modifying kernel code is
Patagonix [57]. Equal to previous work, Patagonix leverages the
isolation of a hypervisor to reason about the integrity of executable
code within a monitored machine. Patagonix does not solely depend
on a hash-based mechanism to identify code pages in memory. The
authors argument, that due to different load-time modifications, such
as relocation, many different hashes need to be managed for each
binary file. For this, Patagonix extracts all locations from the binary,
that are modified during load-time and reverts these locations during
hash generation. This way, only one set of hashes (one hash for
each 4kb page) needs to be generated and compared for each binary
that is loaded to memory. Note, that changed locations that are
reverted during hash generation need to be validated manually, to
prohibit an attacker to use this unnoticed space to alter the control
flow of the code in memory. In Patagonix two different types of
Linux kernel self-modification mechanisms are handled. The first
mechanism is the application of deterministic hardware dependent
code modifications during load-time (called alternative instructions in

39

3. Related Work

this thesis). This is, the kernel may substitute instruction sequences
with other, more efficient sequences, based on the current CPU, for
example to support newer CPU features. While the authors state
that alternative instructions are patched by the Linux kernel during
runtime, they are patched during the kernel’s loading process (occur
early during boot [57]) before any userspace processes or external
network communication is executed and are thus considered as load-
time modifications in this work. The second runtime self-modification
mechanism, the authors present is loading of new kernel modules.
Also, as this does not change the already present the code of the
Linux kernel but only adds new code, this modification is also not
considered as runtime self-patching in this work. A more detailed
discussion about the differences between our work and Patagonix
is given in Section 5.7. Patagonix, however, shows the limitations
of hash-based integrity validation and the necessity to be able to
detect and validate kernel self-modification that is conducted after
the kernel is loaded into the system.

3.1.4. Recent Approaches
Finally, Sprobes [39] is a recent system that aims to provide kernel
code integrity by the use of the ARM TrustZone. This work again
makes the assumption that kernel code is static, once the boot process
hash finished.
Parallax [5] introduces a completely different CIV approach. In-

stead of comparing hashes of expected versions of code pages, Parallax
validates the code integrity of a program by implementing the code
validation component as a ROP program that uses overlapping gad-
gets within the instructions of the code to be validated. This way,
once the code of the program is changed, the generated ROP code
stops to function. Parallax converts some functions from the source
code into semantically equal ROP code, so called function chains. By
executing those function chains, the program automatically checks
its code integrity and crashes, once the code is changed. During com-
pilation the system thus does not only need to convert source code to

40

Re
la

te
d

W
or

k

3.2. Kernel Data Integrity Validation

an appropriate function chain, but also take care, that the rest of the
code (1) contains enough gadgets to be used by the function chain
and (2) contains usable gadgets in all parts of the code that need
to be validated. Due to the nature of the approach, the protection
can not cover the entire code integrity, but only about an average of
75% of the contained instructions [5]. Therefore, this approach seems
very promising to protect specific important functionality within a
program, such as anti-debugging features or license key validation.
Still, it is unable to validate the code integrity of an entire program.

3.1.5. Summary
Unfortunately all of the existing solutions assume, that the codebase
does not change during execution. The only dynamic modification
that was also targeted are load-time changes. As these changes
are conducted before the code is executed, these changes are also
seen as static. For this, we analyze the importance to handle self
modifying code within modern operating systems and introduce
a framework to validate the code integrity of a modern operating
system by leveraging the isolation and interposition properties of
VMI. Thus we are able to validate 100% of the code, which also
includes the runtime modifications conducted by the OS itself.

After the first publication of our work, we became aware of related
work that also investigate the runtime self-patching capabilities of the
Linux kernel [92]. Although that work discovers similar mechanisms,
their approach and the results of their work differ from the results
provided in this thesis. We describe the differences of that work
compared to our work in detail in Section 5.7 on page 104.

3.2. Kernel Data Integrity Validation
Our second major research question was how to validate the integrity
of kernel data memory. Our first approach was to extend on existing
work that aims to build a map of objects within kernel memory.

41

3. Related Work

Thus, in the following, we shortly describe previous efforts in this
direction.

3.2.1. Mapping Kernel Objects

One of the first proposals to build a map of objects within kernel
memory was KOP [18]. The basic idea of this concept is to start at
a list of global symbols. With information about the layout of all
datastructures at hand, each known object is scanned for pointers
to other objects. Recursively, all objects within the kernel may be
found. In their work, the authors propose a solution for two major
problems during the map generation process. First, many objects
contain pointers to other objects that do not name the correct type
of the referenced object, but are instead of the type (void *). Thus
at this point the type of the next object is unknown and the mapping
process must be stopped. Second, for union types it is unknown,
which representation is currently active. This again permits to
interpret the data correctly. To solve these issues, Carbone et al.
propose to use a points-to analysis [4]. They statically analyze the
kernel‘s source code and extract an extended type graph that contains
all uses of a certain object. They extract a list of types to which
an object is casted. The referenced object is then assumed to be of
the extracted type. In addition, similar to this thesis Carbone et al.
propose to check the integrity of all function pointers contained in
the object tree found by KOP. In contrast to our approach, however,
they only check if the pointer points to unmodified kernel code. They
do not check if it points to the beginning of a function or an otherwise
allowed symbol.
A revised object mapping approach called InSight was later also

implemented by Schneider et al. [81]. In addition to the points-to
analysis introduced by Carbone, InSight also makes use of used-
as relations between objects. Together with a static rule set for
frequently used types, Insight is able to find and identify a large part
of the objects located in Linux kernel memory.

42

Re
la

te
d

W
or

k

3.2. Kernel Data Integrity Validation

These solutions, however, still have problems to distinguish am-
biguous types. In this thesis, we initially tried to extend on this
concept by also taking constants of objects into account. The general
idea was, that, for example, a union type may contain a constant
member that indicates the current used-as type of the union. For
this, we parse the kernel‘s source code to find constants. If a certain
data structure, for example a member of a struct or a union, is set
up in the kernel and only one or a small number of different constant
values are assigned to that member we save both the type of the
data structure, as well as the constant value. This information is
then later used to sort out invalid subtrees from the generated kernel
object graph.
During the mapping of a specific kernel instance, starting from

global variables, we check for each identified object, if the identified
object is an instance of a datatype that was identified to contain a
constant. If this is the case, we check if the object actually contains
this constant in memory. If this is also the case we assume to have
found a valid object with high probability. On the other hand,
if the object does not contain the constant, the identified object
is not of the assumed type. Although we have found quite some
structures within the Linux kernel that contained constant members,
initial experiments showed, that the additional information could
not significantly improve the quality of the resulting kernel object
graph significantly.
Finally note, that the Linux kernel contains an object caching

mechanisms, the SLAB allocator [13], that is used to allocate memory
for frequently (re-)used objects. For example for process management,
this allocator is used to allocate multiple process management objects
(struct task_struct) at the same time. Whenever a new object is
required by the kernel, the cache returns an unused object from the
cache. Once the object is not required by the kernel any more, the
corresponding object is marked as unused in the cache. Thus all
allocated objects are then located in memory side by side. This holds
an advantage for object validation, as important objects in kernel
memory may be found by analyzing the management data of the

43

3. Related Work

SLAB allocator. Thus building a complete type graph of the kernel
data might not always be necessary.
While this approach helps to bridge the semantic gap, it did not

help us to make valid assumptions about data integrity. For this, we
set ourselves more in the direction of data integrity validation.

3.2.2. Semantic Data Integrity Validation
Rhee et al. [75] proposed an architecture that monitors each memory
modification using a hypervisor. For each kernel object in memory, a
set of corresponding functions is defined which is is allowed to make
modifications, while all other code is not allowed to modify the object.
During execution, for each memory access the corresponding kernel
function is matched based on the current value of the instruction
pointer. This concept still has multiple drawbacks. First, like the
previous approach it requires to manually build a specification about
the object—function mappings, which is cumbersome in practice. In
addition, the work assumes that a malicious attacker would use dedi-
cated debug functionalities like /dev/kmem or /dev/mem to modify
kernel data. They admit, that their mechanism does not protect
from modifications using code reuse techniques as they might use the
correct instructions to modify an object. Lastly, this system requires
to intercept each executed instruction. While this was not a major
issue, as virtualization was mainly based on instruction emulation
at that time anyway, today this introduces significant performance
impacts.
The Linux Kernel Integrity Measurer (LKIM) [59] was another

approach to validate the integrity of a Linux kernel. In their work
they combine classical hash-based techniques (checking hashes of
kernel code pages and important data structures as the System Call
Table, the Interrupt Descriptor Table (IDT) and Global Descriptor
Table (GDT)) with contextual inspection. For the latter, LKIM
verifies that the validated data structures are actually referenced by
the monitored system and that no malicious modified copy of such a
data structure is used by the system. Note, that this work already

44

Re
la

te
d

W
or

k

3.2. Kernel Data Integrity Validation

proposed to simulate the loading process of kernel modules to create
a valid baseline of allowed modifications to executable code sections
introduced due to relocation. The proposed prototype was later,
based on Stanley’s work [92] on kernel code integrity, enhanced in
cooperation with the Research Directorate of the National Security
Agency to use a code integrity validation approach similar to the
approach suggested in this thesis Chapter 5) [66]. In their conclusion
the authors claim the approach is working as expected and is now
used in several important governmental institutions: Because LKIM
does not rely on signatures of known malware, it is able to detect
zero-day infections, making it ideal for countering the “advanced
persistent threats” of concern to many of APL’s [Johns Hopkins
University Applied Physics Laboratory] sponsors. Together with the
Research Directorate of the NSA, APL has developed LKIM from a
concept to a prototype solution and is now working toward deploying
LKIM in high-impact environments for our broader sponsor base [66].

Petroni et al. [67] were the first to propose an architecture to
detect semantic integrity violations in dynamic kernel data. In their
work, they argue that the content of kernel data structures may
be maliciously modified by attackers. An analyst thus needs to
analyze and validate the invariant relationships among kernel objects,
effectively proposing what we now call Lie Detection. They propose
to build a formal model that describes the relationship between the
different objects within the kernel. With this, the data could be
automatically validated. While their idea is valuable, they do not
create a sufficient model for the entire kernel. Still many integrity
validation frameworks, as ours, manually validate the integrity of
important kernel data structures as the ones described in their work.

Later Gibraltar [8] was introduced to automatically generate such
specification invariants by monitoring a trusted uncompromised ker-
nel and detecting values in kernel data memory that are static over
the entire execution. Gibraltar in turn makes use of the Daikon
System to generate these invariants [31]. Carbone et al. show that
this specification based system misses up to 72% of the dynamic
kernel data [18]. Still, this approach is orthogonal to the approach

45

3. Related Work

proposed in this thesis. We propose to combine our technique with a
system like Gibraltar.

Another approach to data integrity is to detect and validate objects
of a certain type in memory. Dolan-Gavitt et al. [30] propose to
generate robust signatures for specific important data structures, in
order to detect these data structures in memory even if they have
been unlinked from management datastructures. In their example
they created a signature for the Windows EPROCESS data structure,
the Windows data structure that represents a process in the kernel.
OSck [43], a hypervisor-based integrity protection system, tar-

gets to verify safety properties for large portions of the kernel heap.
For this, in-memory data structures are validated using out-of-band
generated type information extracted from the kernel source code.
Instead of building a map of kernel objects, OSck only focuses on
selected, SLAB allocated, types of objects contained on the kernel
heap and use a linear scan through the SLAB allocated memory for
efficiency reasons. In addition OSck prevents the OS to modify hard-
ware registers that contain pointers to kernel code and marks specific
important data structures like the system call table as read-only.
This is done in an effort, that an attacker is unable to leverage, for
example the x86 debug registers or modify the pointer to the system
call dispatcher within the corresponding MSR or modify the corre-
sponding system call handler itself. Unfortunately, unlike Gibraltar,
OSck does not automatically generate specification invariants about
the contents of different data structures, but leaves the generation of
these invariants to skilled kernel developers.

In addition, there also exists work like HookFinder [56] that keep
track of all memory modifications made by a system. In case a
modification is caused by a monitored process and the modified
memory is later used to set the instruction pointer (e. g. in a call
instruction), a hook is detected. Nevertheless, while more accurate
in practice, this class of systems is meant for forensic analysis instead
of continuous inspection and are thus seen as orthogonal research.

Finally, Szekeras et al. [93] introduced the concept of Code-Pointer
Integrity (CPI), the requirement to enforce the integrity of code

46

Re
la

te
d

W
or

k

3.2. Kernel Data Integrity Validation

pointers in memory. An implementation of CPI that is based on
memory splitting was then proposed by Kuznetsov et al. [55]. In
their work they introduce a binary instrumentation framework that
protects control flow relevant pointers. The basic idea thereby is
to separate control flow relevant pointers into a separated space
in memory and to limit the access to that area. Thus they split
process memory into a safe region and a regular region, where the
safe region is secured by the kernel and can only be accessed via
memory operations that are autogenerated and proven at compile
time [55]. However, Evans et al. [32] showed that restricting access
to pointers in memory is not enough, because this separation can
still be broken with the help of side channel attacks.

3.2.3. Summary
Many of the existing approaches go into the direction of building
a map of all objects within the kernel and validate properties of
the resulting graph. Other approaches try to build a set of static
invariants about the content of these data structures and validate
these invariants during runtime. To summarize, we find, that a
general approach to validate kernel data is very hard to find. For
this, we restrict ourselves to a subset of kernel memory and try to
validate the part of data memory that is relevant for the kernels
control flow. To increase the performance of continuous monitoring,
we restrict ourselves to detect and validate only code pointers within
data memory in order to detect malicious hooks and possible code
reuse attacks. Later in this thesis, we introduce CPE, a technique to
find and extract memory locations that may contain pointers from
memory and check, if they only target allowed destinations.

47

CF
Ia

nd
its

Li
m

ita
tio

ns

Chapter4
Control Flow Integrity and its
Limitations

In addition to code integrity, securing the integrity of an operating
system requires securing the integrity of the control flow of the mon-
itored system. Researchers proposed different solutions to validate
the integrity of a programs control flow. As CFI is related to the
topic of this thesis, we discuss the different variants of CFI recently
discussed in academia in the following. While the concept of CFI is
sound in theory, we will show the practical weaknesses of CFI and
discuss that CFI alone is not enough to secure the integrity of a
modern operating system.

Note, that there is also published work in breaking the proposed
CFI mechanisms in practice. As this thesis is more interested on
the conceptional limitations of this technique, papers only showing
novel attack methods against specific implementation weaknesses
have been skipped in this section.

49

4. Control Flow Integrity and its Limitations

4.1. Coarse grained CFI
CFI was first formalized by Abadi et al. [2] in 2005 and an updated
version of his work was published in 2009 [3]. The general idea of CFI
is to build a complete Control Flow Graph (CFG) for the executing
program in question ahead of time. In the CFG every instruction
or basic block of the program is represented as a node, while edges
exist for every possible transition, e. g. every valid branch, between
different nodes. During execution, the CFI mechanism checks for each
branch (direct call, indirect call, direct jump and indirect jump) if
(1) both the source and the destination of the branch are valid nodes
within the CFG and if (2) these nodes are also directly connected
through an edge in the CFG.

This simple concept of CFI is sufficient to prevent a large number
of typical attack patterns in practice. In this scenario, an attacker
might still be able to overwrite a function pointer that is used within
the program or a return address by using a simple stack-based buffer
overflow. However, there does typically not exist a corresponding
edge in the CFG of the program. Thus, coarse-grained CFI mitigates
most of the classical return-to-libc-style attacks.

Note, however, that attacks that stay in the bounds of the allowed
CFG are not prevented using this simple CFI implementation. There
are multiple examples where this is possible. First, a function might
legitimately call a function which is required by an attacker. In this
case an attacker might be able to chain legitimate function calls
within the program until he reaches the desired function. Second,
for a specific node in the CFG multiple destinations may be allowed.
This is especially a problem for return addresses, as CFI does not
take the current system context into account. If there exists an edge
in the CFG, the control flow change is allowed, even if it is not valid
in the current system state. So a function may legitimately return
to every function that calls the function in question, as the CFG
contains a valid return edge for each of the calling functions. This
still leaves an attack surface for an attacker. For this reason, Abadi
refer to their proposed CFI mechanism as coarse-grained [2].

50

CF
Ia

nd
its

Li
m

ita
tio

ns

4.1. Coarse grained CFI

To solve this problem, Abadi et al. already propose to combine
coarse-grained CFI with a shadow stack. A shadow stack is a re-
dundant memory location, in which trusted copies of the return
addresses are stored. This is used to validate the contents of the
stack and hinder an attacker that is only able to modify the return
address on one stack. A typical problem, however, is to also secure
the location of the shadow stack, as an attacker is sometimes also
able to modify this second location. Researchers have thus provided
different techniques to implement a shadow stack and hinder an
attacker to modify the trusted return values. These implementations
either depend on the inability of an attacker to guess the memory
location of the new shadow stack or to separate the shadow stack by
leveraging dedicated hardware features. An example for the latter
is segmentation [87] in the simple case or more advanced features
like virtualization and Intel’s performance counters [98]. It is also
possible to leverage the security of dedicated security peripherals
like ARMs TrustZone or Intels SGX. Alternative approaches, that
encrypt the return address with a random cookie have also been
proposed [35].

Over time many coarse-grained CFI solutions [62, 63, 109, 108, 25,
26] have been proposed in academia. In addition to approaches that
aim to secure userspace binaries, CFI solutions emerged that focus
in securing the control flow of operating system kernels [68, 51, 26]
and hypervisors [103, 38]. A common problem of CFI is that all
branches need to be validated during runtime. While direct branches
can be validated statically, indirect branches need to be validated
dynamically. This is typically achieved either by compiler-based
modifications to the binary or by binary-instrumentation. Thus, CFI
solutions suffer from a significant performance overhead (as high as
21% in its first implementations [3]). As a result, solutions were
proposed, that limit the number of checks to increase the perfor-
mance without a significant loss in the precision of the approaches.
kBouncer [62] for example only checks the control flow integrity of a
program when a system call is executed. At this point the last 16
indirect branches are checked for integrity. The constant 16 thereby

51

4. Control Flow Integrity and its Limitations

is given by the use of Intels Last Branch Recording feature [46], which
when enabled stores the source and destination addresses of the last
16 taken indirect branches.

Davi et al. [29] have analyzed the current state of the art of coarse-
grained CFI solutions in 2015. They showed, that while reducing
the performance overhead to a usable range, all of the proposed
systems are relaxing the originally proposed CFI policies and thus
are not sufficient to defend against code reuse attacks. In fact they
even provide less security to gain better performance. In addition,
systems made new assumptions about different classes of indirect
branches, for example, that a certain number of instructions has to
be executed between different branch instructions. It was shown,
that even using the strongest assumptions made, it is still possible to
create data-only programs, which only consist of gadgets, that are
valid destinations in the control flow graph. This subset of gadgets
still allows Turing-complete computation and real-world attacks can
still be launched. Even with strict enforcement policies in place. The
authors claim that all examined systems were broken “having access
to only a single — and common used system library” [29]. A key
observation for this problem is the fact, that the soundness of the
initial CFI proposal is directly related to the quality and granularity
of the generated CFG. While this CFG does not take the current
state of the program execution into account, successive solutions
even relaxed its granularity to gain performance benefits. Similar
research was conducted by Goktas et al. [40].

Another problem of CFI is the generation of the CFG for a given
program. As this is usually done for performance reasons prior to
the execution of a program using binary analysis, it is not possible
to take the current software state into account (e. g. a called function
has to return to the instruction following the branch instruction
that initially called the function). In addition, there are much more
fundamental problems in generating a CFG. The Linux kernel for
example provides a core infrastructure for its developers, that is
similar to the functional range of the standard library for userspace
programs. This core infrastructure also contains functions, that take

52

CF
Ia

nd
its

Li
m

ita
tio

ns

4.2. Fine Grained CFI

a function pointer as argument and then during execution call this
function pointer as a callback. We will describe these issues in more
detail later in this section. Due to these conventions, it is sometimes
impossible to make a priori assumptions about the destination of a
specific call instruction in the CFG. Thus an attacker might use such
a function to hide the usually forbidden control flow transfer.

In an attempt to solve the previously discussed issues with coarse-
grained CFI, research started to focus on two distinct sub problems:
(1) forward-edge CFI and (2) backward-edge CFI. While the latter
problem is solvable by securing the stack and implementing a shadow
stack, the first problem is harder to deal with.

4.2. Fine Grained CFI

Fine-grained CFI aims to minimize the amount of valid targets for
the forward edges in the CFG. The proposed techniques thereby
focus on restricting indirect jumps and indirect calls.

One major part of forward-edges in the control flow of a program
are indirect calls that use function pointers that are stored in memory.
An example of such functions pointers for programs written in C++
are vtables. Vtables list the methods that can be called for a certain
object. For this, each instance of an object contains a pointer to
its corresponding vtable. Once a method of an object is called, the
program loads the corresponding vtable and uses the function pointer
at the specific offset to call the intended functionality.

An attacker can leverage this fact by either changing the pointers
for existing vtable entries or by creating fake vtables in memory. In
the latter case, the attacker also has to create fake objects in memory
which, instead of the pointer to the valid vtable, contain a pointer
to the fake vtable object.

53

4. Control Flow Integrity and its Limitations

4.2.1. Forward edge validation
To mitigate these attacks, researchers proposed solutions that aim
to secure and validate vtables of C++ objects using the available
source code. Since there was a lot of research in this specific area,
we will only introduce some of the latest solutions and highlight the
core ideas that where proposed.

4.2.1.1. Forward edge validation for C++ vtables

Jang et al. [49] first proposed SafeDispatch. SafeDispatch is an
enhanced C++ compiler built on top of the LLVM compiler infras-
tructure. During compilation, SafeDispatch analyses the source code
to generate what the authors call a class hierarchy analysis. In this
analysis, SafeDispatch generates the set of valid method implementa-
tions, that may be invoked by an object of a specific type. This set
contains all methods of the specific class, as well as all functions from
classes in its class hierarchy. It then inserts validation code into the
resulting binary, which, during runtime, checks, if a method invoca-
tion of an object calls a valid function according to the previously
generated set. This is similar to a whitelist of functions that may
be called. This way, an attacker is unable to arbitrarily change a
pointer in an objects vtable, but is restricted to a previously defined
set of targets.
Later in the same year, Tice et al. [94] published their work on

compiler extensions for both the GCC, as well as the LLVM com-
piler. Due to the different architectures of both compiler frameworks,
Tice et al. implemented two different approaches (Virtual-Table Ver-
ification (VTV) for GCC and Indirect Function-Call Checks (IFCC)
for LLVM. The first approach (VTV) is equal to the method that
was implemented by SafeDispatch. During compilation VTV cre-
ates vtable-map variables, which contain all valid vtable pointers for
each polymorphic class. These variables are stored within a special
read-only section of the resulting binary. Therefore, it is possible to
merge different sets, when the source code is compiled incrementally.

54

CF
Ia

nd
its

Li
m

ita
tio

ns

4.2. Fine Grained CFI

During runtime VTV checks for each indirect call, if the executed
function pointer is contained in the previously generated set. In
contrast, IFCC operates on the LLVM IR during link-time optimiza-
tion. It generates jump tables for each indirect call target and adds
code for each indirect call to use these jump tables. Also IFCC
stores the jump tables in read-only memory, making it impossible
for an attacker to maliciously change the call target. The authors
managed to upstream their work into the source code of both of
the compilers. Thus their work is widely available and usable for
real-world applications. The usability of their work was evaluated
by compiling the entire ChromeOS project. Still these approaches
incorporate a high performance penalty.

In the mean time, two solutions for this performance issue have been
proposed: Bounov et al. [15] propose to increase the performance
by replacing the costly set membership tests conducted by both
SafeDispatch and VTV with a simple range check. Therefore, they
propose to restructure the layout of the generated vtables, to not
only contain all function pointers for a single class, but to combine
all vtables for an entire class hierarchy into one larger vtable. This
is achieved by both VTable ordering (preorder traversal of the class
hierarchy) and VTable Interleaving. Depending on the type of the
object in question the valid range within the vtable can be adjusted
by the compiler.

Zhang et al. [107] proposed VTrust. VTrust’s solution to minimize
the runtime overhead is not to check the set membership during the
invocation of an indirect call, but instead to check the RunTime Type
Information (RTTI) of the target function against a value given at
compile time. During compile time, the RTTI is merged into a unique
4-byte value, such that the comparison is reduced to a simple integer
comparison. In addition VTrust applies VTable Pointer Sanitization
to ensure the validity of vtable pointers. For this, VTrust maintains a
list of all function pointers used by the program. This list is generated
during compile time. In addition the vtables do not contain function
pointers, but instead only contain an index to the corresponding
function pointer within the previously generated whitelist. VTrust

55

4. Control Flow Integrity and its Limitations

adds code to the binary, which decodes the function pointer directly
before the indirect call. This way VTrust tries to hinder an attacker
to introduce custom handcrafted vtables into a program.
An alternative approach, Opaque CFI was implemented by Mo-

han et al. [60]. In their approach, the authors combine CFI with
automated software diversity. Automated software diversity aims to
regularly re-randomize the memory layout of an application. This
re-randomization may either be conducted by the compiler, by the
loader during loading of the application or even during program exe-
cution. Opaque CFI relies on load-time re-randomization to secure
the control flow of an application. In addition, similar to IFCC,
Opaque CFI introduces jump tables into the code that point to valid
call targets for each indirect branch target. During execution, for
each indirect branch, only a specific range within the jump tables
are allowed for each branch. Due to the re-randomization, both the
content of the jump table as well as the allowed ranges change for
each program invocation.
To summarize, most of the effort in securing the forward edge

of the control flow was conducted to secure the vtables of object
oriented languages. To restrict branches to a valid forward edge, call
targets are classified according to their type (e. g. RTTI) or their
class hierarchy. In the worst case however only a small number of
classes is generated, which again allows a large number of call targets.

4.2.1.2. Limitations of Forward edge validation

Carlini et al. [19] and Evans et al. [33] independently showed, that
fine-grained CFI still does not provide enough security to completely
hinder control flow attacks. Carlini et al. argue, that fine-grained
CFI is breakable by using just calls to the standard library [19] and
the deployment of shadow stacks is necessary in practice. Evans et al.
go a step further and argument, that fine-grained CFI is ineffective
in protecting against malicious attacks [33].

This is the case as large software projects (as Apache and Nginx
in their experiments) intentionally use coding practices that create

56

CF
Ia

nd
its

Li
m

ita
tio

ns

4.2. Fine Grained CFI

flexibility in their intended control flow graph (CFG) [33]. Examples
for such constructs are higher-order functions. Higher-order functions
are used to increase the modularity and flexibility of source code.
In C this concept is used to create structures (structs) that behave
like objects in C++. In C++ techniques like vtable validation have
been proposed, as described before. While such defense techniques
are hard to implement in C++, they can not be implemented in
programming languages that lack the concept of object orientation,
like C. This is because, the relation and type of the involved structures
and functions is not known by the compiler. For example, imagine a
construct where two pointers are passed to a function. The function
uses the first pointer as a function pointer, which is then called and
the second pointer is passed to the called function as an argument.
Another example are structures that contain functions to operate
on a specific object. During this thesis such constructs were also
found in the Linux kernel and will be introduced in detail later in
this section.

4.2.1.3. Binary-only Forward edge validation

To tackle this problem, Veen and Göktas et al. [97] proposed TypeAr-
mor. TypeArmor tries improve on the current research activities by
proposing a more fine-grained CFG generation technique for binary-
only CFI. The authors propose a method which they call Control
Flow Containment. This approach classifies indirect function calls
as well as every function concerning to two different heuristics. For
indirect function calls, TypeArmor checks how many parameters are
prepared and if the caller expects a return value from the callee.
Equally, for every function, TypeArmor analyses, how many parame-
ters are used by the function and if the functions provides a return
value. With this information, TypeArmor instruments the code in
such a way, that indirect calls are only allowed to target functions,
which use at most the same number of parameters than the number
of parameters prepared by the calling function. In addition a call site
expecting a return value may not call a function that has an inferred

57

4. Control Flow Integrity and its Limitations

return type of void. For callees, that expect less parameters, than
set by the caller, TypeArmor scrambles the unused parameters by
overwriting the corresponding CPU registers with random data. For
function calls that do not expect a return value, the return value, if
set by the callee, is also scrambled. Unfortunately, the evaluation
shows that only about 20% of the functions returning void can be
identified as such.

Notice, that this approach does not hinder a successful CRAs, but
is likely to crash as the registers are not valid any more. While this
work improves on current research on fine-grained CFI, it still has
one major drawback. It assumes, that the protected program does
not employ self modifying code. Therefore, in its current form, it can
not be applied to kernel software. In addition, while talking about
variadic functions, the authors did not talk about intended callback
functions, which take a pointer to an array of arguments as their
input parameter. While TypeArmor is able to defend against a large
class of attacks called COOP attacks [82], it does not defend against
pure data-only attacks as the one proposed by Carlini et al. [19].

4.2.2. Backward edge validation
In contrast to the previous approaches, Davi et al. [27] propose
a hardware architecture to secure backward edges of the control
flow. Their solution does not require a dedicated shadow stack and
promises increased performance. The idea of their solution is to
introduce two new CPU instructions. The first instruction CFIBR
label is inserted at the start of a function, while the second new
instruction CFIRET label is inserted after each call instruction in
the binary. With these instructions in place their approach works as
follows: When ever the program executes a call instruction, the next
instruction is required to be an CFIBR instruction. With this, the
system checks, that a call instruction can only target the beginning
of a valid function. Note that additional measures should be applied
to restrict the number of allowed target functions. More important,
the CFIBR instruction also contains a label, which on invocation of

58

CF
Ia

nd
its

Li
m

ita
tio

ns

4.3. CFI for Kernel Software

the instruction is pushed to a dedicated label state. Now once the
function hits a return instruction, the return instruction pops the
current label from the stack (and eventually checks it against a label
encoded into the return instruction). After a return instruction, the
next executed instruction is required to be a CFIRET instruction,
which checks if the current active label on the label stack is correct.
This way, a function is only able to return to the correct caller.
Unfortunately, the system was only described, but not implemented
in practice.

4.3. CFI for Kernel Software
As we have now introduced important related work in the direction
of CFI, we will in the following introduce research that specifically
targets CFI for kernel software.
KCoFI [26] is an example for a coarse-grained CFI framework,

that provides CFI for a commodity operating system. KCoFI was
implemented for the FreeBSD kernel. The core implementation of
CFI is based on previous work from Zeng [106]. The authors describe
KCoFI as follows: KCoFI does not attempt to compute a call graph
of the kernel. Instead, it simply labels all targets of indirect control
transfers with a single label. As a result, their design uses a very
conservative call graph [26]. With this KCoFI only restricts indirect
call instructions to call entire functions. It does not restrict the
set of allowed functions. In addition they also claim to protect
the kernel from ret2user style attacks, which can also be achieved
by the consequent use of SMEP. More importantly, the authors
focus on handling low-level state manipulations performed by the OS,
like trap handlers, context switching and signal delivery. So they
hinder malware to modify the saved CPU state for execution contexts
that are currently not scheduled. For this, the authors include a
layer between the OS and the processor that handles these state
manipulations. Instead of trusting the OS internal datastructures,
KCoFI stores the entire CPU context of each executing thread into a

59

4. Control Flow Integrity and its Limitations

special memory region on each context switch. This region can only
be modified by their security layer and can not be modified by the
operating system. Thus, the control flow can not be changed in a
malicious way during context switches.
The general problem of hardening context switches within the

kernel is a problem for CFI in the context of operating system kernels.
KCoFI uses a heavy-weight mechanism to ensure the integrity of
saved CPU state, which makes its general applicability unlikely due
to its high performance overhead. The overhead could be reduced, if
the integrity of the corresponding kernel internal data structures can
be ensured. Still the problem to restrict indirect calls during normal
execution was not discussed by KCoFI.

Another attempt to apply CFI to kernel software was proposed by
Ge et al. [38]. In their work they try to apply fine-grained CFI to the
FreeBSD kernel as well as the MINIX microkernel. In addition they
partly apply their approach to the BitVisor hypervisor. This work has
some major drawbacks. The first problem, that is partly addressed
in the paper, is that this work does not support preemptive kernels.
They do not support kernels, that interrupt normal execution in favor
of an exception with higher priority. The reason for this choice is,
that (1) it can not be predicted, when such preemption takes place
and (2) it is not possible to verify the return address from such an
exception, as it may point to any kernel address.

The second, more fundamental problem, is that this work is based
on two assumptions, which we will shortly discuss in the following:

(A1) The only allowed operation on a function pointer is assignment.

(A2) There exists no data pointer to a function pointer.

The first assumption is valid, but as we will show, the second
assumption does not hold in practice. While this assumption might
be true for the kernels that where analyzed by the authors, this is not
the case for the Linux kernel, that was analyzed within this thesis.
The authors claim, that function pointers might be contained within
existing structures, they claim no direct data pointer to a function

60

CF
Ia

nd
its

Li
m

ita
tio

ns

4.3. CFI for Kernel Software

*lookup
*get_link
*permission
*get_acl
*readlink
*create
*link
*unlink
*symlink
*mkdir
...

struct inode_operations

Figure 4.1.: Beginning of the contents of struct inode_operations from
Linux 4.5. A pointer to this struct is also a data pointer
to a function pointer, thus violating assumption (A2).

pointer exists. For the Linux kernel, this is the case for function
pointers that are the first member of a structure. We will now show
examples that violate assumption (A2) extracted from the Linux
kernel. One type of examples for violations of (A2) can be found in the
file system related structures like struct inode_operations and block
device related datastructurs like struct block_device_operations in
the Linux kernel. These structures contain a set of functions pointers
that can operate on inode objects or block_device objects. This
way, the kernel code emulates object oriented programming. The
beginning of struct inode_operations is depicted in Figure 4.1.

Table 4.1 provides an overview of such object operation structures
taken from the Vanilla Linux 4.5 kernel. The table shows the name of
35 vtable like objects, as well as the source file where each structure
is defined. Note that this table only lists such structures which name
contains _operations. Our tests show, that there exist 290 structures
within the Linux 4.5 kernel that are called *_ops and only contain

61

4. Control Flow Integrity and its Limitations

function pointers. A table that lists all these structures can found in
Table A.1. We did not spend more time on to research if there are
more structures like this, which do not adhere to such a systematic
naming convention. While not all of these structures have a function
pointer as first member, this example clearly shows that assumption
(A2) does not hold for the Linux kernel.

Note that these objects are all similar to vtables that where already
described and handled in different approaches and described earlier in
this chapter. They contain pointers to functions that handle certain
functionality for a given object. However, in contrast to the vtables
that were also discussed earlier in this section, there does not exist a
reference (pointer) between the object, on which the functions in the
vtable are used and the vtable object itself. Thus it is not possible
to handle these datastructures as it is possible for C++ vtables. For
this we assume that CFI can not easily be applied to kernel software.
In addition, there is currently not even a generic way to extract all
vtable like objects and relate them to their corresponding objects.

Even more, the Linux kernel contains functions, which explicit
purpose is to call lists of function pointers that are passed to them
as arguments. One example for such a construct is the function noti-
fier_call_chain() in kernel/notifier.c. The notifier mechanism
is also used for the kernel’s tracepoint mechanism. The tracepoints
mechanism allows kernel developers to register arbitrary functions
during runtime, that are executed whenever the kernel execution
hits a certain tracepoint. Constructs like these make it very hard, if
not impossible, to implement efficient fine-grained CFI for modern
operating system kernels such as Linux or Windows.
For this reason, in this thesis we assume, that practical CFI can

not be achieved in an modern OS kernel. Therefore, we try to provide
mechanisms for both code integrity as well as code pointer integrity
for modern operating systems. We provide a mechanism to detect
return oriented programs and other means of code reuse by detecting
the gadget chain within the memory of the already compromised
system.

62

CF
Ia

nd
its

Li
m

ita
tio

ns

4.4. Summary

Finally, as already proposed by Abadi et al. [2], Intel has recently
taken up the discussion about CFI and announced the introduction
of its own solution to the problem1. In their implementation, the
processor expects a certain instruction (ENDBRANCH) at any lo-
cation that is allowed to be the target of a branch [47]. In contrast
to the proposal made by Davi et al. [27], Intel does not differentiate
between call, return or jump branches and also does not contain a
label. This might have two reasons. First, including a label state
is effectively introducing a new type of stack, which also requires
management and second, differentiating between different types of
branches might introduce compatibility problems, with features like
tail recursion or tail call optimization. Although this is only a very
coarse-grained implementation of CFI, with only one label for all
target instructions, it is expected to reduce the attack surface in
practice.

4.4. Summary
In summary, a lot of research effort was put into validating and
enforcing the control flow integrity of both userspace applications
and kernel software. While the initial approach suffers from a high
performance penalty, over time many ideas have been proposed to
solve the performance problem without creating incisive security
problems. But despite the different solutions, researchers showed
that even by using the strictest, fine-grained CFI policies it is not
always possible to detect all control flow violations. In addition,
current software design and kernel implementation also hinders the
application of proposed CFI mechanisms in practice. For this reason,
this work does not focus on CFI and on mitigating attacks but instead,
we focus on analyzing and detecting the integrity of an operating
system even after the system was compromised. We think that by

1https://software.intel.com/en-us/blogs/2016/06/09/intel-release-
new-technology-specifications-protect-rop-attacks/

63

https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks/
https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks/

4. Control Flow Integrity and its Limitations

combining our approach with CFI, an attack may be detected, even
if it could not be mitigated in advance.
Recent work in the direction of CFI also starts to look into this

problem [110]. Note that our work on userspace code and data
integrity goes in a similar direction, but instead of relying on a
trusted preshared library that is stored within the protected OS, we
base our security model on VMI. We think that it is very important
to be able to detect advanced code reuse attacks on an already
compromised machine. The techniques proposed in this thesis build
a fundamental requirement for such detection.

64

CF
Ia

nd
its

Li
m

ita
tio

ns

4.4. Summary

struct name defined in
address_space_operations include/linux/fs.h
ata_port_operations include/linux/libata.h
block_device_operations include/linux/blkdev.h
ceph_connection_operations include/linux/ceph/messenger.h
configfs_group_operations include/linux/configfs.h
configfs_item_operations include/linux/configfs.h
dentry_operations include/linux/dcache.h
dquot_operations include/linux/quota.h
efivar_operations include/linux/efi.h
export_operations include/linux/exportfs.h
fc_rport_operations include/scsi/libfc.h
file_lock_operations include/linux/fs.h
file_operations include/linux/fs.h
fmc_operations include/linux/fmc.h
inode_operations include/linux/fs.h
kobj_ns_type_operations include/linux/kobject_ns.h
lock_manager_operations include/linux/fs.h
media_entity_operations include/media/media-entity.h
media_file_operations include/media/media-devnode.h
oprofile_operations include/linux/oprofile.h
page_ext_operations include/linux/page_ext.h
parport_operations include/linux/parport.h
pccard_operations include/pcmcia/ss.h
pernet_operations include/net/net_namespace.h
pipe_buf_operations include/linux/pipe_fs_i.h
posix_clock_operations include/linux/posix-clock.h
proc_ns_operations include/linux/proc_ns.h
psci_operations include/linux/psci.h
qtree_fmt_operations include/linux/dqblk_qtree.h
seq_operations include/linux/seq_file.h
super_operations include/linux/fs.h
tty_operations include/linux/tty_driver.h
tty_port_operations include/linux/tty.h
usb_mon_operations include/linux/usb/hcd.h
vm_operations_struct include/linux/mm.h

Table 4.1.: Example for object oriented constructs in the Linux kernel.
These structures are equivalent to vtables in C++. Note
that this is only the subset of structures that adheres to the
naming convention *_operations. There are 290 structures
that are called *_ops. See Table A.1 for details.

65

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

Chapter5
Runtime Kernel Code Integrity

In this chapter we present an approach for syntactically validating the
integrity of kernel code with the use of semantic (binding) information.
With this research we give answers to the research questions Q1 and
Q2 raised in the beginning of this thesis. By leveraging virtual
machine introspection, we examine all kernel code pages at runtime
to validate their contents and to reconstruct the active system state.
By emulating the OS’s patching mechanisms, our system is able to
successfully differentiate between malicious and benign code changes.
We demonstrate the ability to detect malicious kernel code with a
set of rootkit samples. Our method does not restrict modern OS
kernels from using otherwise benign patching routines. To further
highlight the importance of practical kernel code validation, we also
present a critical security issue in the Linux kernel that we discovered
in our research which thus far remained unnoticed. Parts of this
chapter have already been published in the paper “Code Validation
for Modern OS Kernels” [54].

67

5. Runtime Kernel Code Integrity

5.1. Problem statement
As we have shown in Chapter 3, detecting changes to the kernel
code base up until now generally comes down to validating the
integrity of the kernel’s code region with a whitelist of known good
states. In previous research ([58, 76, 84, 68, 83, 11, 43]), this is
typically achieved by calculating the hash of each executable page and
comparing it to a whitelist of hashes that were calculated beforehand
in a secure environment. If a hash is calculated that is not contained
in the whitelist, one can deduce that either existing code was changed
or new code was introduced into the system.

While approaches that do not depend on hash-comparison, such as
MoRE [95], have better performance and can ensure that code-pages
remain static during the execution of the OS, they prevent the kernel
from applying otherwise benign optimizations at runtime. Consider-
ing that the Linux kernel has recently introduced new features such
as JIT code and dynamic security patching, the short-comings of
these approaches will become even more limiting in the future.

In this chapter we describe the different self-patching mechanisms
employed in the Linux kernel and show that they could be abused
by an attacker to modify kernel code pages in a manner that are
particularly difficult to detect. We will show that simple hash-
based approaches or approaches that only make use of non-binding
information and are not taking the current system state into account
are no longer sufficient to perform code validation for modern kernels.
Solving this challenge requires a deeper understanding of the

kernel’s various load and runtime self-patching mechanisms. In fact,
there are several mechanisms for which the integrity and consistency
of a change may be validated but the resulting state still may be
malicious. We also present a novel method to perform runtime kernel-
code integrity checking that addresses the short-comings of existing
systems. Based on this knowledge we will present a proof of concept
(POC) implementation that is capable of not only validating the
integrity of kernel code at runtime, but also its identity. That is, the
prototype is able to attribute kernel code pages found within memory

68

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.2. Kernel Runtime Patching

to the kernel binary itself or to a loaded module. Since our prototype
makes use of VMI, it cannot be evaded and remains functional even
if the attacker compromises the monitored system.

As our experiments show the proposed prototype is not only very
effective against kernel-level malware, but also very efficient (0.54%
overhead in the worst case), which makes it well-suited for real-world
applications. Although we focus on Linux within this chapter, we
argue that many of the challenges that we discovered are also adaptive
to other OSs such as Windows or MacOS.

In summary, in this chapter, we make the following contributions:

• We show that current code validation techniques are not suit-
able to validate the code integrity of modern kernels.

• We examine various load time and runtime code patching
techniques employed by modern OS kernels.

• We discuss the challenges that these runtime code patching
mechanisms create for code validation.

• We demonstrate the importance of correctly validating modern
kernel code. We do this with a practical example that enables
an unprivileged user to load arbitrary executable code into the
Linux kernel.

• We introduce a framework that can successfully validate the
integrity and identity of dynamic kernel code and enforces
additional security constraints.

5.2. Kernel Runtime Patching
In this section, we present constructs and mechanisms within modern
OS kernels that make simple hashing techniques ineffectual. Our
investigation is primarily based on the Linux kernel (Version 3.8,
64-bit and Version 3.16, 64-bit), however, some constructs also apply
to the Windows kernel as well. We begin by taking an in-depth look

69

5. Runtime Kernel Code Integrity

at the load time patching mechanisms that the kernel uses and then
discuss commonly used runtime patching mechanisms in more detail.

5.2.1. Position Independent Code
The first mechanism that makes plain hashing difficult is position
independent code. While the virtual start address for the kernel
itself is still fixed at compile time, the load address for each module
is dynamic. This is due to the fact, that the kernel cannot guarantee
a fixed address region for each module. Thus, the compiler can not
predict the addresses of external symbols at compile time and the
addresses are unknown until load time. Therefore, the necessary
addresses are patched during the module’s loading process. This is
known as relocation. The relocation information is contained within
each module binary. For each segment within the module a relocation
table lists all references to both internal and external symbols. As
the Windows kernel has a similar issue in that it cannot reserve
unique space for every driver that may ever load, Windows drivers
and the driver loader employ similar techniques.

It is clear that such a mechanism would hinder simple page hashing
techniques, unless the initial hash is taken after the driver is loaded
and running. In this case, however, we cannot be sure that driver
is not already infected or altered. The common solution to this is
to take the initial hash in a “secure environment”, however such an
approach will lead to other complications as we will describe in the
following section.

5.2.2. Configuration-specific Patching
In addition to patching the modules for external symbols as described
above, the Linux (module) loader may also replace code with ar-
chitecture and configuration-specific opcodes or code blocks that
are only present in certain configurations and are replaced with no
operation (NOP) instructions otherwise. In fact, such patching takes
place in the kernel code as well. This is done to improve performance,

70

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.2. Kernel Runtime Patching

leverage special features such as symmetric multiprocessing (SMP)
or (para-)virtualization on architectures that support them, or to
accommodate debugging or tracing to provide extensibility. With
these mechanisms the kernel can even replace entire functions. Such
patching not only takes place in kernel modules, but in the kernel
code as well.

In the following, we present the four cases in which such patching
takes place in more detail. All of them have in common, that they
patch an instruction and overwrite the rest of the available space
with NOP instructions. The kernel unfortunately does not only use
the straight forward 0x90 instruction as a NOP instruction. For
performance reasons it also uses multi-byte instructions like: xchg
ax, ax (0x60, 0x90) or nop dword [rax+rsi*4-0x40] (0xf, 0x1f,
0x44, 0x0, 0x0). Unfortunately, the exact multi-byte instructions
used are also specific to the processor architecture and type currently
used. Also, to patch code during runtime, the kernel does not need
a special synchronization method. Instead, it first replaces the first
byte of buffer with an int3 instruction, thus every CPU trying to
execute this instruction will be trapped. Then the rest of the space is
filled with the new content. As a last step the kernel replaces the first
byte with the right instruction and notifies all waiting CPUs. To even
further improve the performance, the kernel sets the interrupt handler
function to the address directly after the patched buffer. Thus the
int3 instruction is effectively changed into a NOP instruction.

5.2.2.1. Alternative Instructions

For certain functionalities, the specific opcodes used by the kernel
vary depending on the available CPU’s feature set. Mostly, this
approach is used when later CPU models support more efficient
instructions. For every instruction sequence that should be replaced,
a list of alternative instructions is provided with each kernel binary,
ordered by the most preferred as last in the list. The Linux module
loader replaces each instruction if the requested feature is supported
by the CPU. This feature is mostly used, when a new CPU feature is

71

5. Runtime Kernel Code Integrity

introduced and the kernel implements support for the new feature. In
this case, the kernel adds nop instructions into the compiled binary
code, that are then replaced by the required instructions during
load-time (e. g. to enable/disable SMAP or to synchronize memory
accesses). In other cases, the operand of a call or jmp instruction is
changed in order to execute different code during runtime. However,
also some cases exist where entire kernel functions are replaced
entirely with this feature. Notice that this is the only configuration-
specific patching mechanism that is considered by Patagonix [57]. To
be able to validate alternative instructions, we have to extract that
specific information from the monitored guests memory or generate
it based on the knowledge we have about the used hardware.

5.2.2.2. Hypercalls

Another situation in which code is commonly patched within the
kernel is related to virtualization, in the form of hypercalls. Hyper-
calls are analogous to system calls, where a call is passed from a
userland process to the kernel, in a virtualized environment which
enable the guest system to interact with the hypervisor. Examples
of such hypercalls include enabling and disabling interrupts, writing
to specific processor registers, and MMU related functions.

As with relocation, hypercalls can not be inserted during compile
time, as the kernel or its modules do not know if they are executed
on real or virtualized hardware. Furthermore it is unknown which
virtualization technology is used (e. g. XEN, KVM, etc.). Thus,
the compiler provides hints in the compiled binary that a specific
function (e. g. writing to the CR3 register, which holds the page
tables for the currently executing process) is requested at a specific
location in the kernel code. During load time the kernel is then
able to decide how the requested function is provided and inserts
the appropriate functionality. This can be done by inserting the
corresponding opcodes directly, calling a function provided by the
hypervisor, or even by jumping to a predefined location.

72

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.2. Kernel Runtime Patching

f0 ff 00 lock inc DWORD PTR [rax]

3e ff 00 inc DWORD PTR [rax]

inc [rax]
lock prefix

segment overwrite prefix

Figure 5.1.: Implementation of SMP in practice.

To facilitate this mechanism, the kernel maintains a table of alter-
natives introduced by a hypervisor-specific driver that can be used
as a replacement for a given instruction. This table must adhere
to the kernel’s paravirt_patch_template interface. This feature is
even employed in a non-virtualized or full-virtualized environment.
For full-virtualized environments, the kernel provides the native
implementations for the requested functionality.

The kernel also suffers from another virtualization related problem.
To enable userspace applications to use the correct system call mech-
anism the kernel maps a common page into every userspace process
called the vdso page, containing functions that wrap the kernel’s
current system call interface. Equal to this mechanism, a hypervisor
can also map a custom page into the memory of a guest VM.

The patching mechanisms described so far are all conducted at load
time. A common solution to these load time patching mechanisms
is to take the initial hash after all modules have been loaded such
that relocation is no longer an issue. However, this approach has
a fundamental flaw: we cannot be sure that kernel code has not
already been altered when the hash is calculated. Next we will
describe patching mechanisms that are applied during runtime.

5.2.2.3. Symmetric Multiprocessing Locks

SMP describes an architecture with multiple CPUs that share mem-
ory. This is very common in modern PCs. There are portions of
the kernel code that become critical sections (i. e. they share data
that should only be accessed in an asynchronous, mutually exclusive

73

5. Runtime Kernel Code Integrity

fashion) and only when SMP and multiple CPU cores are enabled.
In this case, the critical section must be protected with locks. How-
ever, in the interest of performance the kernel chooses to patch in
these locks only if it recognizes it is operating in an environment
in which more than one CPU is present. An example for such a
modification is shown in Figure 5.1. This makes sense as the locking
and unlocking operations are computationally expensive tasks and
become unnecessary if only one CPU is active.
Furthermore, the Linux kernel supports enabling and disabling

CPUs at runtime. This results in such patching also taking place at
runtime. Note that adding and removing CPUs in a virtualized envi-
ronment is frequently used for scalability. In addition to SMP locks
it is conceptually also possible to patch arbitrary other instructions,
in a fashion similar to alternative instructions, during runtime, once
the number of active CPUs changes.

5.2.2.4. Jump Labels

The Jump Labels mechanism is used within the kernel to optimize
“highly unlikely” code branches to the point that their normal over-
head is close to zero. Instead of checking whether a branch should be
taken or not every time the control flow reaches a specific point, the
kernel either replaces the conditional jump with a NOP instruction,
and thereby omits the unlikely code, or with an unconditional jump
to the unlikely code. Thus, the enabling/disabling of the function
is an expensive task, but the runtime cost is completely avoided.
An illustration for a jump label is shown in Figure 5.2 on page 76.
Figure 5.2a shows the source code for a jump label in the kernel.
During normal execution, the jump label is deactivated. Thus the
code in memory looks like represented by Figure 5.2b. Once the
unlikely condition is fulfilled, the code in memory is replaced to
the state shown in Figure 5.2c. Although this feature was mainly
intended for debugging and tracing features, this mechanism is now
frequently used both in the Linux scheduler and in the networking
subsystem. For example, the latter uses it to activate and deactivate

74

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.2. Kernel Runtime Patching

certain netfilter hooks. The current state of each jump instruction is
also maintained within a kernel data structure.

5.2.2.5. Function Tracing

Another mechanism that requires runtime code patching is the Ftrace
function tracer. This tracer is mainly used to debug the kernel or
measure performance. It is commonly called at the beginning of
each function within the kernel or its modules. For performance
reasons, each tracer call is replaced by a NOP slide when the feature
is currently disabled. Although the feature is similar to the Jump
Labels mechanism, its implementation is different and it depends on
other kernel data structures. Consequently, both mechanisms must
be considered separately.

5.2.2.6. Function Patching

In the meantime the kernel even supports live patching of entire
kernel functions. This is to support security updates without the
need to reboot the entire machine. In that case, the kernel either
replaces an entire function with its new content, if the new version of
that function is shorter then the original version, or the kernel uses
the space that was reserved for the ftrace function tracer to insert
an unconditional jump to the address of the new function.

5.2.3. Summary
In this section we provided the reader with an overview of the
different patching mechanism that the Linux kernel uses. The shown
mechanisms can be divided in two groups. The first group contains
patches that only are applied during the loading of the kernel or
its modules. The second category includes the mechanisms that are
also used during runtime and thus are not precomputable. Table 5.1
contains a list of patching mechanisms for both categories.

75

5. Runtime Kernel Code Integrity

1 int function() {
2 [...]
3 if (unlikely(...)) {
4 doSomething();
5 }
6 [...]
7 }

(a) Jump Label in Source

1 function:
2 <function prologue>
3 [...]
4 nop
5 label1:
6 [...]
7 <function epilogue>
8 jump_label:
9 <prepare parameters>
10 call doSomething
11 jmp label1

(b) Jump Label deactivated

1 function:
2 <function prologue>
3 [...]
4 jmp jump_label
5 label1:
6 [...]
7 <function epilogue>
8 jump_label:
9 <prepare parameters>

10 call doSomething
11 jmp label1

(c) Jump Label activated

Figure 5.2.: Example of Jump Label implementation in the Linux kernel.
In case the unlikely condition is fulfilled the nop in line 4
is replaced with an unconditional jump.

76

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.2. Kernel Runtime Patching

Load-Time Runtime
Relocation SMP Instructions
External Symbols Jump Labels
Alternative Instructions Function Tracing
Paravirtualization Instructions Function Patching

Table 5.1.: Classification of self-patching mechanisms in the Linux
kernel

The introduced features are examples in which dynamic runtime
patching may take place at any time during execution and not
simply at load time, making out-of-band hashing-based troublesome.
Most of the mechanisms described in this section are also relevant for
architectures other then x86. All of the runtime patching mechanisms
mentioned above can be used at any time within the operation of
the kernel. Consequently, the kernel’s code pages are not static,
meaning that simple hashing of code pages is not enough to validate
its integrity. In addition, as the patching of the kernel’s code depends
on the current state of the running system, we must consider semantic
information taken from within the guest OS to validate code integrity.
To the best of our knowledge, we are the first to apply semantic
knowledge for runtime validation of the kernel.

As we have pointed out in the last section, the Linux kernel applies
various code validation of modern kernels is a challenge that requires a
deeper understanding of the kernel’s various patching and relocation
mechanisms. This means that simple hash-based approaches or
approaches that simply make use of the kernel binary are simply
not sufficient. In fact, there are several mechanisms for which the
integrity and consistency of a change is verifiable but the resulting
state still could be used by an attacker. In the following section we
will introduce the architecture of our proposed solution to validate
the kernel code during runtime.

77

5. Runtime Kernel Code Integrity

In the simple case, with alternative instructions, an invalid change
might only be an instruction which is normally not used on the
specific architecture. However, in the case of jump labels, an attacker
might enable a hook within the system, while the systems internal
state is not aware of the hook.

5.3. System Design
In the following we describe a new architecture for kernel code
integrity validation that handles dynamic changes within kernel code.
We first give an abstract overview over our approach before we
describe each of its components in more detail. We then introduce
our concrete implementation in the next section, where we will also
discuss the implementation related issues we had to solve in our
framework.

5.3.1. Requirements & Goals
The main goal of the proposed architecture is to validate the identity
and integrity of kernel code pages reliably, even in cases where
dynamic changes are applied to kernel code during runtime. To
achieve this goal we need to solve several subproblems. First of all, to
validate the integrity of a code page, we depend on a trusted secure
version of the code page that we can use for comparison. That is
for each executable page in the target system we need to be able to
identify the corresponding executable file which was used to originally
load the page. We then need to extract all information from a
trusted reference binary that is relevant for the code page in question.
This includes all information that is relevant for the dynamic self-
patching. Finally, we need to validate each executable code page and
dynamically decide for each custom code patch if the modification is
valid in the current system state. Secondly, to be able to validate all
executable kernel code pages, the architecture requires both access
to the target’s page tables, since they provide a reliable source of

78

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.3. System Design

information, and to the target’s memory to validate the consistency
of the current state. In addition, the security critical components of
the architecture must be executed in an isolated manner to guarantee
that the validation component cannot be modified by an attacker.

The three main components of our system that solve the first set of
issues are discussed more in depth in the following: (1) the Preselector
(PS) that identifies all code pages that need to be validated and maps
each page to a corresponding trusted binary, (2) the Runtime Verifier
(RV) that conducts the actual validation, and (3) the Lazy Loader
(LL) that is responsible to load all required metadata required by the
RV from the trusted executables identified by the PS. The overview
of our architecture is shown in Figure 5.3. To solve the second issues,
our architecture makes use of VMI to provide both isolation and
tamper resistance for our system.
The decision to base our architecture on VMI does not limit our

approach to the world of servers and cloud environments, as modern
smartphones also begin to employ virtualization techniques through
the use of the ARM Virtualization Extensions [1]. Finally, it is
important to mention that data-only attacks such as return-to-libc
[89], ROP [85], or data-only malware [101] are beyond the scope of
this chapter and will be discussed in the next chapter. The reason
for this is that a code integrity validation mechanism can not protect
against such attacks, since they do not require code modifications to
function.

5.3.2. Preselector (PS)
The task of the PS is to obtain the executable pages of the kernel,
to divide code pages from data pages, and to associate code pages
with a specific module or the kernel. To accomplish the first, the PS
walks over the target system’s page tables and extracts all supervisor
pages that are present and executable. Since the virtual memory
mechanism and the position and structure of page tables are specified
by the hardware architecture, this information is binding. That is, it
reflects the true state of the system at the time of the validation.

79

5. Runtime Kernel Code Integrity

4

2

R
u
n
tim

e
 V

e
rifie

r
<

p
a
g
e
>

G
u
e
st

S
e
cu

re
 V

M

H
y
p
e
rv

iso
r

1
P
re

se
le

cto
r

lo
ca

te
 e

xe
cu

ta
b

le
 p

a
g

e
s

Am
a
p

 p
a
g

e
 to

 m
o
d

u
le

lo
a
d

 tru
ste

d
 co

n
te

x
t

 aa
p

p
ly

 a
n
d

 ch
e
ck

d

y
n
a
m

ic m
o
d

ifica
tio

n
s

av
e
rify

 p
a
g

e
 co

n
te

n
ts

in

tro
sp

e
ctio

n

v
e
rify

 co
d
e
p
a
g
e
s

3
La

zy
 Lo

a
d
e
r

 <
m

o
d
u
le

>
lo

a
d

 tru
ste

d
 m

o
d

u
le

 alo
a
d

 d
e
p

e
n
d

e
n
cie

s
 aa
p

p
ly

 sta
tic m

o
d

ifica
tio

n
s

lo
a
d

re
cu

rsiv
e

d
e
p
e
n
d

e
n
cie

s

co
n
ta

in
s tru

ste
d

re
fe

re
n
ce

 b
in

a
rie

s

if n
o
t

a
lre

a
d

y
 lo

a
d
e
d

p
ro

v
id

e
 sta

tic
co

n
te

x
t

Tru
ste

d
 w

h
ite

list

ch
e
ck

w
h
ite

list

ch
e
ck

e
xe

cu
ta

b
le

 p
a
g
e
s

 Figure
5.3.:Architecture

ofthe
proposed

code
page

validation
fram

ework.

80

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.3. System Design

After having obtained all kernel code and data pages within the
system, the PS assigns pages to a specific module or the kernel’s code
region on the system. For this purpose it obtains the list of currently
loaded modules from the monitored system and extracts the virtual
address of the code and data regions of each module. Based on the
extracted data, it assigns the physical page frames to the modules
by converting the obtained virtual addresses into physical addresses.
The kernel binary is similarly processed. In this step the PS also
separates code pages from executable data pages, by checking to
which section the physical page belongs to.

After the code and data pages have been mapped, the PS performs
an initial integrity check. It identifies any pages that could not be
mapped to either the kernel or module code pages and have the
supervisor flag set. If such a page exists it is considered malicious.
Consequently, if a rootkit introduces code into the kernel and removes
itself from the list of loaded modules, which is a commonly used
technique, it will be detected at this point, since there is no module
that can be associated within the code page of the rootkit. Note that
this integrity check is based on non-binding information. We will
defer a more detailed discussion of the security of the mechanism to
Section 5.4.

Finally, the PS processes executable kernel data pages. Although
data pages should be marked as non-executable, this is not always
the case in practice. In the case of Linux, for example, all allocated
data segments and especially pages that are allocated with kmalloc
are marked as both writable and executable by default. To solve
this issue, the PS marks all data pages as non-executable, a simple
and effective solution, since data pages should actually never be
executed. To space out that this design decision has a negative
impact, we verified that setting all data pages in the Linux kernel to
non-executable does not affect the system’s stability.

81

5. Runtime Kernel Code Integrity

5.3.3. Runtime Verifier (RV)

The RV is the heart of our system, because it processes the code
pages that it obtained from the PS. It must be aware of all dynamic
changes that can be conducted by the guest’s kernel. For this purpose
it first extracts all information from the monitored system that
influences dynamic changes. For example, in the case of Linux
tracing functionality can be enabled and disabled at runtime. Thus
the runtime verifier must extract the status of the tracing component
from the monitored system before it can validate the code pages
reliably. When the RV processes a page, it first checks whether the
module the page belongs to has already been processed by the LL.
If this is not the case it will invoke the LL, which is responsible
for loading a trusted version of the respective module into memory.
After a module has been processed by the LL, the RV applies all
predictable dynamic changes to the trusted reference binary and then
compares each extracted kernel code page with the corresponding
trusted reference. This process consists of three steps. First, the
RV calculates the offset of the code page to be validated within
a module’s (or the kernel’s) executable code segment. Second, it
will use this offset to access the corresponding code page within the
trusted representation that it obtained from the LL. Third, it will
compare both pages byte-by-byte. In case, an inconsistency between
the obtained code version and the trusted code version is detected,
the RV checks whether this change is due to legitimate dynamic
patching. After the changes can be reconstructed and validated, the
identity of the code page is confirmed.

To check whether a change was conducted due to a dynamic patch,
the RV makes use of a list of dynamic patch information that it
obtains together with the module from the LL. This list is unique for
each module (and the kernel) and contains information about each
dynamic patch symbol within the binary. For each dynamic patch
symbol, the list states the location of the symbol and the reason of
the patch. Based on this information the RV can check whether a
change was conducted at a location that belongs to a dynamic patch

82

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.3. System Design

symbol and if the currently applied change is valid for the given
patch symbol.

The latter can be achieved based on the information that the RV
extracted from the running guest system. To make this scheme work,
the RV additionally extracts all information from the monitored
system that influences dynamic changes. This includes both informa-
tion about the current architecture as well as information about the
current system state. For example, a jump label can be enabled and
disabled at runtime. Thus the RV must extract the current status of
each jump label from the monitored system before it can validate
the code pages reliably. In this step the RV also checks the internal
state of the running guest that is related to dynamic patching. This
is both the kernel’s information about the patching symbol as well
as the current state. Only if the changes can be reconstructed and
validated, the identity of the code page is validated. Notice that
both information sources - the dynamic symbol list as well as the
runtime information - are crucial, since an attacker is otherwise able
to launch mimicry attacks, which we further discuss in Section 5.4.

5.3.4. Lazy Loader (LL)
In order to validate the integrity of a kernel code page in memory,
the RV requires a trusted copy of that page from a trusted reference
binary. The task of the LL is to load this trusted version of each
loaded module and the kernel as a basis for this comparison. To
achieve this, the LL loads each module’s (and the kernel’s) binary
from a trusted location, performs all load time modifications on it,
and generates a list of dynamic patch symbols. In the following, each
of these steps are described in more detail.
When the LL is invoked by the RV, it first attempts to find the

requested module using the modules name. For this, it requires
access to a secure location containing all trusted kernel binaries. The
contents of this location essentially functions as a whitelist and it is
therefore crucial that its location is protected against attackers. We
achieve this isolation through virtualization and store the trusted

83

5. Runtime Kernel Code Integrity

reference binaries outside of the monitored guest. In case where the
requested binary is not contained within the secure location, the
module (or the kernel) is considered to be malicious. Otherwise
the LL will load the binary into memory and applies all predictable
modifications to it. Notice that the specific modifications that are
applied heavily depend on the hardware and the software of the
monitored system.

Since code pages can usually be loaded at an arbitrary address, the
lazy loader will first update all addresses within the trusted binary
such that they match the binary within the monitored system. To
do this it makes use of the information that is provided to it by the
RV. In particular, as every code page is associated with a specific
module and the virtual address of a module’s code and data regions
are known, the LL can make use of these addresses to conduct the
relocation. This is achieved by calculating the base address for each
module and then applying the relocations according to this base
address.

Aside from relocation, symbol resolution is another important step
that is conducted by the LL. Since a module may make use of kernel
functions and the address of these functions is unknown at the time
of compilation, the loader must resolve all external symbols when
a module is loaded. Similarly, the LL performs this step for the
trusted modules. However, in contrast to the loader within the target
machine, the LL must resolve all external symbols without relying on
information within the machine because this information is untrusted.
To solve this problem, the LL must determine the dependencies of
each module (i. e. the list of other modules that the current module
is dependent on as it makes use of symbols exported by them) based
on the symbols that the module imports. Once this information is
obtained, the LL can recursively load the dependencies and finally
resolve all external references based on the trusted version of the
modules. Note that the kernel itself is an implicit dependency of
every module.
In the final step, the LL extracts all patchable locations for each

module. It iterates over all patchable locations within the module

84

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.4. Implementation

and extract all of the symbols that are relevant for patching. In
the process, it can already apply all patches that can be predicted
(i. e. that are not dynamic). The list of the dynamic patch symbols as
well as the relocated binary is then returned to the RV. Notice that all
dynamic patch symbols are also contained in data structures within
the monitored kernel’s memory, since the kernel would otherwise
not be able to locate and patch the symbol during execution. These
in guest data structures are also checked for integrity during this
process.

5.4. Implementation

After giving a general overview over our proposed framework in the
last section, we now discuss the implementation and the associated
challenges in more detail in this section. In the next section we will
then evaluate our approach in terms of effectiveness and discuss the
security implications that result from specific decisions made during
the implementation.
In the following we present our implementation of a framework

to enable integrity validation of Linux kernel code pages on the x86
architecture. To handle dynamic patching, it is essential that our
system is able to access the hardware and high-level software state
of the guest system at runtime. While the former is easily possible
from the hypervisor, accessing the high-level software state of the
guest kernel from the VMM requires that we bridge the semantic
gap [24]. That is, we must be able to identify data structures and
functions as the guest kernel sees them from the hypervisor. To solve
this problem, we navigate to the desired data structures by following
pointers through the object graph starting at global variables. The
location of the global variables is obtained from the trusted kernel
reference binaries. The layout of the corresponding structures is
derived from the binaries ELF and DWARF debug information.

85

5. Runtime Kernel Code Integrity

5.4.1. Identifying Executable Pages
The first component of our architecture is the PS. To be able to
validate kernel code pages and to detect hidden code pages, our
system initially requires a list of all executable kernel pages contained
within the guest’s memory. It is essential that this list is trustworthy
as it is critical for the security of our architecture. This is why the
preprocessor obtains this list directly from the underlying hardware.
In particular, it creates the list of all executable kernel code pages
by iterating through the page tables that are currently used by the
system. The physical address of these page tables is contained within
the CR3 register.

Once the list of executable kernel pages is generated, the PS maps
each page in the list to the kernel’s or a module’s code section. For
this purpose, it extracts the addresses of important kernel structures
such as the location of the .text or .data segment of every kernel
module directly from the guest systems memory by reading the
corresponding data structures. The addresses of the kernel’s .text
and .data section are extracted from its binary representation. An
example of a typical page mapping is given in Table 5.2.

Type of pages Absolute # Size (in kb)
Kernel Code pages 4 8192
Module Code pages 137 548
Kernel Data pages (.data) 240 960
Kernel Data pages (.vvar) 1 4
Kernel Data pages (.bss) 17 2112
Total 399 11816
Total validated 141 8740

Table 5.2.: Types of executable pages in the Linux 3.8 kernel

In practice there are two types of executable pages: dedicated code
pages and executable data pages. In our test environment all of the

86

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.4. Implementation

kernel’s data pages were actually mapped as executable, which is
consistent with the fact that newly allocated pages also are mapped
as executable per default. As previously mentioned we set all pages
non executable.

5.4.2. Handling Load Time Patching

Similar to the kernel, our implementation also uses a multi-staged
process to reconstruct the contents of each executable page. In the
first phase all load time code modifications are precomputed in the
LL. In addition to the relocation and external symbol resolution,
this phase also includes the patching of hypercalls and the processor
dependent improvements. For a specific target system these steps are
only reproduced once. The dynamic runtime patching mechanisms
are considered in the second phase, which is conducted by the RV.

After the executable pages are identified as code pages of the kernel
or one of its modules, the PS component calls the RV to validate the
contents of each page. To do this, the runtime verifier first invokes
the LL for each page in order to obtain the validation context for
each module. If the module’s context was already initialized, the LL
loader returns the module’s trusted context. Otherwise the loader
initializes the context as follows:

The loader component first loads the binary ELF representation of
the requested module from a trustworthy location. This is equivalent
to providing a whitelist of binaries. Due to this whitelist an attacker
is no longer able to load arbitrary modules. Should an attacker
load an unknown module into the guest system, the LL returns an
empty context and notifies our framework of the malicious module.
This approach implies that the trusted repository of kernel binaries
must be updated if the kernel of the monitored system is updated
intentionally. In addition, it is essential that the administrator
ensures that only trusted binaries are contained in the whitelist.
Note that this essentially replicates the kernel’s loading process, as
the LL also loads all of the dependencies of the requested modules.

87

5. Runtime Kernel Code Integrity

After loading the trustworthy reference and all of its dependen-
cies, our framework takes care of the relocation of internal symbols.
Therefore, the binary representation of each module contains a list of
locations and their corresponding symbols that need to be relocated.
For each location and each internal symbol we calculate its virtual
address in the memory of the inspected VM. We then replace each
reference to a symbol with its absolute virtual address or a relative
offset to this address depending on the type of relocation (absolute
or relative).
After the relocation we resolve external symbols. As with reloca-

tion, we replace all references to external symbols with the absolute
address of the external symbol or a relative offset to its location.
As to avoid relying on potentially compromised data-sources, our
system doesn’t rely on the monitored kernel’s resources (e. g. its
System.map or its internal list of exported symbols). Instead, we
follow the kernel’s dependency mechanism, by recursively loading all
dependencies of the current module and initializing their full context
for later usage. Thereby we also create our own list of (exported)
symbols for each of the kernel binaries. When resolving an external
symbol we consult our internal list of symbols.
Next, we process alternative instructions that are provided with

each binary. As a reminder, this feature allows one to substitute
specific instructions within the code with other, more efficient in-
structions based on the current hardware. To decide whether the
substitutions should be conducted, we obtain the necessary informa-
tion from the virtual hardware. With a list of features at hand we
now walk through the list of alternative instructions and substitute
the referenced instructions, whenever the required feature is available.
If the compensating instructions requires less space than the original
instruction, the rest of the reserved space is filled up with NOP
instructions that correspond to the CPU model in use.
Finally, the LL updates the instructions within the binary which

depend on the host’s hypervisor. For this purpose, each binary con-
tains a segment with a list of locations together with the type of patch
that is to be applied. In contrast to the alternative instructions, the

88

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.4. Implementation

1. Return context for the binary from cache if already loaded.
2. Load the binary from trusted location.
3. Return empty context if no trusted binary is found.
4. Extract and recursively load dependencies.
5. Extract code from trusted reference binary.
6. Relocation of internal symbols.
7. Relocation of external symbols.
8. Extract and process list of alternative instructions.
9. Extract and process list of virtualization related modifications.
10. Extract metadata about runtime patching mechanisms.
11. Internally save all known symbols of the binary.
12. Add the generated context to the cache and return it.

Figure 5.4.: Summary of the binary loading process.

possible patch values for the locations are contained within a kernel
data structure provided by the virtualization solution (e. g. KVM,
Xen), not by the kernel binary itself. Whether the patch that is ap-
plied is a simple instruction patch or a jump/call to another function
is determined by the specific virtualization driver that is in use.
While replacing an instruction with a jump instruction is not

used within KVM, it is used in a paravirtualized Xen environment.
In this environment, the following functions are jumped to by us-
ing this mechanism: xen_iret, xen_sysexit, xen_sysret32 and
xen_sysret64.

As we know exactly which hypervisor is being used, we are able
to validate these patches through a whitelist. For this purpose our
framework provides a plugin system to be easily extensible. This
enables the framework to support different hypervisors (e. g. KVM,
Xen) or additional patching mechanisms that may be introduced in
the future as well. Since we, in this case, cannot trust the kernel’s

89

5. Runtime Kernel Code Integrity

data structure, the whitelists for each hypervisor are generated from a
trusted copy of this kernel data structure. In contrast to the original
structure, the copy does not contain addresses, but only the name of
the symbol that is used. This is because the address of a function or
symbol may vary due to relocation, while the symbol name is unique.
The LL is then able to reliably resolve these symbols as described
above. In addition, we also validate that the kernel’s data structure
that contains the hypervisor dependent replacements contains the
correct instructions. A summary of the tasks of the LL is given in
Figure 5.4.

5.4.3. Handling Runtime Patching
After load time modifications are applied, the LL hands the initialized
context to the RV. The task of the RV is to validate all dynamic
modifications that cannot be predicted, e. g. changes that are not
related to load time patching and are thus not already managed by
the LL. Therefore, the RV analyzes the current system state and
updates the initialized context concerning changes conducted by the
runtime patching mechanisms. For this the RV needs to analyze and
evaluate the state of the monitored system that is related to the
corresponding runtime self-modification mechanisms. Afterwards the
RV iterates byte-by-byte over all executable pages of the monitored
system and compares their contents with the appropriate pages of the
internal reference binaries within the trusted context. If a difference
is detected, the RV matches the difference against one of the known
runtime patching mechanisms. We implement this as a two step
process, as for some of the mechanisms (e. g. the SMP locks) it is
easier to predict and apply the current state of the code section
just before the validation is conducted, while for other mechanisms
(e. g. the Jump labels), there are multiple variants possible and it is
easier to do the validation when the current state of the code section
within the monitored system is known in the live validation. As we
have described these mechanisms in Section 5.2 we will now describe
how our POC implementation handles them in more detail.

90

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.4. Implementation

The first mechanism checked is the SMP related patching. We
obtain the number of currently active CPUs and adapt the locks
within the trusted reference accordingly. Note that the number of
CPUs is not necessarily static on a modern system. For example, in
virtualization-based cloud environments it is common that vCPU
cores are added and removed at runtime.
The next mechanism handled is the Ftrace function tracer. To

validate an Ftrace function call, the RV first checks if the corre-
sponding tracing functionality is enabled within the guest. Based
on the current state of the tracing mechanism, it ensures that the
Ftrace function call is either replaced with NOPs (tracing disabled)
or that the call points to the __fentry__ symbol (tracing enabled).
The latter can be validated using the internal symbol list of our
framework.
Jump Labels are another feature of modern Linux kernels that

requires patching at runtime. To reiterate, with this feature a kernel
developer is able to mask unlikely branches during normal execution.
The mechanism provides a list of offsets inside the executable code
together with a jump destination for each offset. At runtime the
branch can be enabled or disabled by calling a specific function. The
kernel therefore handles all jump targets within an internal data
structure. Each entry in that structure contains a key, that indicates
the current status of the jump label. To validate jump targets, our
framework compares the value of this key with the current state of
the jump target on the executable page. If the states match, the
current target on the executable page is compared with the original
target specified in the trusted reference binary. The change is only
considered benign, if all information is consistent.

Although this is not directly a dynamic patch, the final check that
is performed by the RV is to ensure that pages that only partially
contain code are valid. This situation arises when a code segment of a
module or the kernel is smaller than an entire page of memory. In this
case the code segment will only occupy a part of the page, while the
remainder is unused. Since the page is executable, an attacker could
try to inject code by modifying the unused code areas. In practice

91

5. Runtime Kernel Code Integrity

such an attack should be easily detectable as all unused kernel code
regions are by default set to zero on Linux. Thus, our framework
protects against such attacks by ensuring that the unused space on
the last page of a code segment does not contain any non-zero bytes
after the end of the code. We will further discuss in Section 5.6
how and why some of this space is currently also dual mapped into
userspace.

5.5. Evaluation
After having introduced our framework for dynamic code integrity
validation, we now present the evaluation of our framework. First,
we evaluated the effectiveness of our approach in the case of kernel
code integrity violations. For this purpose we evaluated the detection
capabilities of our system using multiple rootkits. In a second set
of experiments, we measured the performance impact introduced by
our system. In the following we describe the experiments and their
results in more detail. We conducted all tests on an AMD Phenom II
X4 945 Processor with 16 GB of RAM. As monitored guest we chose
Ubuntu 13.04 with 512 MB of RAM on the KVM hypervisor. The
validation component of our framework as described in Section 5.4
was executed within the host OS.

5.5.1. Effectiveness

The primary goal of our proposed framework is to reliably detect
kernel code integrity violations. To test our framework in this regard,
we conducted multiple experiments with kernel rootkits. As one
integral purpose of rootkits is to provide stealth, this enabled us to
validate the effectiveness of our framework in a real-world scenario.
The rootkits we tested with were four well-known kernel rootkits:
adore-ng, enyelkm.en.v1.1, intoxonia-ng2 and override. All of these
rootkits change the code of the victims kernel and make use of DKOM

92

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.5. Evaluation

to hide themselves inside the victim kernel’s memory. Thus we expect
our system to be effective if it is able to detect all of these rootkits.

With our experiments we verified that we are successfully able to
detect all of these rootkits. In our tests we could distinguish three
detection cases. In the case that the rootkit removed itself from the
module list within monitored guest, our framework was unable to
match its executable code pages to a kernel component. It marked
the rootkits executable pages as malicious. When a rootkit did not
hide itself from the list of loaded modules, our framework’s LL didn’t
find a corresponding trusted representation of the module and thus
marked the module as malicious. To further test our system we also
renamed one of the rootkits to reflect a module contained in our
whitelist. More precisely, we renamed the override rootkit to decnet,
disabled its hiding features and reran our validation framework. In
this experiment the LL loaded the trusted version of the decnet
module and the RV detected the mismatch. In case, the rootkit did
not only load itself as a new module but modified existing kernel
code, we also detected its changes.

Additionally, in all cases our framework detected all changes to the
kernel code that were introduced by the rootkits. As our framework
successfully identified all valid dynamic patches within the code pages,
we had no false positives related to the kernel’s dynamic patching
mechanisms. Furthermore, the framework correctly informed us
about the code pages that contained content that originated from
userspace and automatically set all executable data pages to not
executable.

5.5.2. Performance
To validate the applicability of our approach we also measured the
performance imposed by our framework in a second step. We used
KVM/QEMU in combination with hugetablefs to create a file rep-
resentation of the guest’s physical memory within the host. With this
setup, our framework can directly access the guest’s physical memory.
Note that this file representation enables us to memory map the

93

5. Runtime Kernel Code Integrity

guest’s memory as shared memory within the validation framework.
Shared memory is an efficient technique as it automatically syncs
between the processes and has very little overhead.

As the kernel code is usually only patched infrequently, we provide
a worse case evaluation scenario. We decided to monitor and validate
the guest system live in a continuous manner which generates as much
stress to the system as possible. With this decision, we effectively
use one dedicated CPU of the system for the integrity validation.
Another similar approach was recently proposed by Brookes and
Taylor [16].

To measure the overhead of our approach we executed a memory
and I/O intensive task within the virtual machine. We chose this test
case, as due to the architecture of our framework and its frequent
memory accesses, we expect to gain a worst case performance penalty
when also using an I/O intensive task as the benchmark, while we
expect no performance penalty for CPU intensive workloads. That
is because the validation framework is executed on a different CPU
than the monitored guest VM. As our test case we compiled the
Ubuntu version of apache2 repeatedly. The test was conducted in
the VM both without external validation and with our validation
framework checking the kernel’s pages from within the host system.
In the case with external validation enabled we also did not only
validate the executable code pages once in a predefined interval, as
one would do that in a real-world use case. Instead we verified the
monitored guest’s code pages in a continuous manner to provide as
much stress to the system as possible. The evaluation results of our
tests can be seen in Table 5.3.

First we measured the our test case without external code valida-
tion. The mean real time for a single test run took 222.59s (176.951s
sys + usr). We then enabled external validation and reran the test
case. In this case, the mean real time of one test run was 224.474s
(179.409s sys + usr).

We also measured the average performance overhead that was
introduced by our code validation framework. This experiment is
separated into two cases. In the first test, we only consider the

94

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.5. Evaluation

Test time result
Compile Apache2 without code validation 222.590 s
Compile Apache2 with code validation 224.474 s
Code validation without initialization 4.051 s
Code validation with initialization 0.279 s

Table 5.3.: Results of performance evaluation (mean)

case in which our framework is uninitialized and the LL component
of our framework needs to load all trusted reference binaries. On
average it took 4.051s to validate all kernel code pages without prior
initialization. As this loading step is only required once, the case
in which the framework is already initialized is a more accurate
measurement of runtime overhead. In this case, the validation of all
kernel code pages took on average only 0.279s. During that time
all 141 executable kernel code pages of our test environment where
identified and validated (2185 pages if we count the 2MB pages
with a page size of 4kB). The check of a single page thus only took
0.00012s (0.1ms), which is a negligible overhead.
It is also of interest that our architecture makes use of shared

memory when accessing the monitored guest’s memory. We therefore
do not have to interact with the monitored guest itself. On a multicore
architecture the validation process can thus be done in parallel to the
VM’s execution. Therefore the introduced performance degradation
is very small.
The performance could even be further increased. By leveraging

an event based mechanism, e. g. the hypervisor’s EPT mechanism,
only one individual page validation is required after a write to a code
page was identified. The performance degradation comes down to
ca. 0.1ms every time the kernel has patched one of its code pages.
In addition it is also possible to validate the contents of a page in
subpage granularity, which further decreases our overhead. In such a
case malicious changes could even be reverted automatically.

95

5. Runtime Kernel Code Integrity

5.5.3. (Not) Trusting the Guest State
After evaluating the effectiveness and the performance of our system
we now talk about the security properties of our approach.

To validate the integrity of the kernel code pages our framework
considers untrusted semantic information provided by the guest.
Since this information is non-binding and could be tampered with,
careful consideration has to be given to this potential serious security
issue. However, as we will discuss within this section, any infor-
mation that we use from the guest system is actually not security
relevant. That is, even if an attacker changes the information that
our framework extracts, it will not undermine the security of our
system. In the following, we will show that all information that is
used by our system is either trustworthy or not security relevant. In
the following we will discuss the binding and non-binding information
our framework uses. In our analysis, we reiterate the order of steps
that are conducted by our framework. For this, we will discuss all
information that is extracted from the monitored guest.
Our system first extracts information about all executable super-

visor pages within the monitored system. As this information is
directly obtained from the virtual hardware it reflects the true state
of the system and is therefore trustworthy. Furthermore, we also
extract a list of all currently loaded kernel modules. We use this list
to relate the pages in the system to specific modules. If an attacker
manipulates this list (e. g. by removing a module from it) our system
will not relate the pages of the hidden module to a known module and
considers them as malicious. Since hidden code pages are considered
malicious, the attack is detected. Also, if the addresses of the text
or data segment of a module is changed we detect this inconsistency.
Thus using information contained from this data structure does not
affect the security of our system, as any malicious alteration will be
detected.
To perform external symbol resolution, the next piece of infor-

mation that we process is the list of exported kernel and module
symbols. The kernel’s list of loaded symbols (which is used for lo-

96

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.5. Evaluation

cating exported symbols within the kernel’s module loading process)
is a data structure that is commonly used for this purpose. As we
reconstruct the loading process of the kernel and its modules and
thus regenerate this information within our framework, we do not
depend on the kernel’s possibly compromised data structure. In fact,
we are even able to detect such modifications and generate an alarm
if such an inconsistency is detected.
In the next step, our framework generates the contents for SMP

locks and alternative instructions that depend on the current state
of the monitored system. This step is once more based on the
virtual hardware, and thus can also be considered trustworthy. (Para-
)virtualization related patching on the other hand is more difficult
to validate. This is because the modifications conducted by the
kernel directly depend on a kernel data structure provided by the
corresponding hypervisor’s driver. Our framework also validates the
integrity of this data structure. Without this data validation, we
could only validate that a call is targeting a valid function within
verified code. This leaves an attacker an opening in which she could
modify control flow from one verified function to another. To remedy
this, we include a small data validation step to establish the integrity
of any changes. As we use KVM as a hypervisor for this part of our
work, this step becomes quite straightforward due to the fact that
we can assume the native implementation of the paravirtualization
interface is used. We simply validate that the corresponding native
instructions and functions are patched in. However, we also consider
the possibility of a paravirtualized Xen environment to show the
flexibility of our system. In this case, for example, jump destinations
are: xen_iret, xen_sysexit, xen_sysret32 and xen_sysret64. As
there is no generic way to validate jump destinations, we provide a
trusted copy of the entire kernel data structure as a whitelist.
To extract information as to whether a hook for the Ftrace or

Jump Label mechanism is enabled, we again inspect the current state
of the guest kernel. The current state of the jump/call is contained
both within the kernel code and inside a kernel internal management
data structure. To validate the integrity of the current system state

97

5. Runtime Kernel Code Integrity

we check if the state of the code is consistent with the kernels control
data structure. If the current state is not reflected in the trusted data
structure, we consider the change malicious. We furthermore validate
that the control data structure is consistent with the information
that is contained within the trusted reference binary.

Having outlined the security considerations in our system, we see
that handling code changes due to the paravirtualization feature
requires a whitelist. We added this functionality to increase the
security of the guest kernel, though it is possible to validate the
integrity without this whitelist. It is however, very important to
understand that this mechanism can be leveraged to subvert the
security of the kernel without directly affecting its integrity as this
mechanism is intended to allow for arbitrary patching and hooking.
The fact that this mechanism can be abused is a matter of the design
of the mechanism itself. Virtualization therefore represents a perfect
example of the edge cases that are not considered by existing systems.
We introduce the ability to leverage whitelists in this situation to
reduce the attack surface.
In addition to the code segments mentioned above, the kernel

clearly maintains data as well. Generally, these segments are the
.data, .vvar and .bss segments. While these segments are to
contain data, we found that many of the pages inside of these segments
are in fact marked as executable. Specifically, in our experiment
we came across 258 data pages taking up around 3076 kbytes of
memory that were marked executable. This creates a problem as we
must consider these pages during our validation as well if they are
executable. Simply hashing these pages creates issues as these pages
generally contain some data that will change.
Currently our system’s main focus is on detection of malicious

changes to the kernel’s code pages, regardless of the schedule at which
it is run. The simplest schedule is to simply run the validation process
at regular intervals, however our system could be used in conjunction
with event based mechanisms as well. For example, one could leverage
the EPT mechanism. This enables us to set the monitored hosts
executable kernel pages to read-only in the hypervisors page-table

98

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.5. Evaluation

representation. Whenever the monitored system writes to its code
pages to patch a dynamic hook this generates an EPT violation in
the hypervisor [65]. The hypervisor can then allow the write to the
corresponding page and notify our integrity detection framework to
re-validate the integrity. In this case our framework can be configured
to automatically revert malicious changes. This way our system also
prevents malicious integrity violations.

99

5. Runtime Kernel Code Integrity

5.6. User Code in the Linux Kernel
To underline the importance of research in the field of kernel code
integrity, we want to describe a particularly alarming behavior of
the Linux kernel that we discovered during our research. The sheer
fact that this problem remained unnoticed so far provides further
proof that existing methods are unable to validate the kernel’s code
regions reliable. On a high level, the issue we encountered allows
an unprivileged user to load arbitrary code into kernel space. While
the code is not executed by default, this makes exploitation in many
cases trivial, as the attacker only needs to find a way to point the
instruction pointer into her code. This represents a critical issue, as
there are dozens of security mechanisms such as secure boot, signed
driver loading, W ⊕ X, SMEP, and SMAP that solely exist to hinder
an attacker from loading code into kernel space or executing userland
code from kernel space.
The root of the problem is related to performance optimizations,

by which the x86 version of the Linux kernel uses 2MB pages to
store its code segments. This results in a hole at the end of the
kernel code segments, but before the end of the last page which is
effectively allocated to the kernel, but not used. This hole is filled
with what we initially mistook for uninitialized memory. After some
further investigation we found that this hole contains code and data
belonging to userspace libraries and processes.

In a single test we found more that 15 different libraries that had
a part of their pages also mapped inside the kernel. Besides common
libraries as libc and ld there were also libraries such as libdbus
that are potentially more vulnerable. But even more concerning is
that stack and heap pages of some userspace libraries were mapped
to this region. We made sure that we could reproduce this on a
native system as to exclude the possibility of a bug in the hypervisor
and, indeed, we noticed the same behavior.

In fact, we found that instead of letting this memory go to waste
the kernel also maps it as 4KB pages for userland processes despite
the fact that it is already mapped into the kernel code segment. We

100

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.6. User Code in the Linux Kernel

Figure 5.5.: Different mappings of the same physical memory.

presume that this is done in an effort to not waste physical memory.
This is illustrated in Figure 5.5. As we cannot predict what pages
will be mapped into this space it is impossible to perform hashing
on a page granularity.
Table 5.4 shows the userspace libraries that had some of their

content in the region of physical memory that was also marked as
executable kernel code for a single test.

In addition to creating a challenge for code validation, this has other
security implications. Effectively, this allows one to load arbitrary
code into the kernel. There are two arguments that one may have in
defense of this design decision. First, the user pages that are mapped
are mapped out of order and are not guaranteed to be mapped to
these physical frames. The other argument may be that the code
could be loaded, however it is never executed, so there is no problem.
We consider these two arguments separately.

We begin by addressing the argument that malware cannot influ-
ence where its pages are mapped from userspace. This is technically
true, but is a problem that is easily overcome. The first problem is
that the code is constrained to a single page as it is very unlikely that

101

5. Runtime Kernel Code Integrity

two pages will be mapped in order and in adjacent frames. This sim-
ply means that the malware must confine itself to a single 4KB page
in the simplest case. On the other hand, we are not even guaranteed
that any single page will be mapped into the kernel segment. While
this is also true, there is little stopping the process from deallocating
and allocating memory until it finds it is mapped into kernel space.
To find out if the process has some pages mapped to the interesting
parts of physical memory, the process may read the maps file inside
the processes directory on the /proc filesystem. There it finds the
information which virtual addresses are mapped to the process. With
this information it can extract the physical mapping of each virtual
page by reading the pagemaps file in the same directory. Note, that
this is also allowed with only user privileges.

To address the second argument that there is no problem as long
as the code is not executed, we argue that this stance is fundamen-
tally flawed. This argument assumes that there will never be a
vulnerability in the kernel that allows one to control the instruction
pointer. Mechanisms such as signed driver loading and SMEP work
to explicitly prevent unsigned code from being loaded into the kernel
or to prevent the CPU from jumping into user space code while in
supervisor mode. Allowing code to simply be mapped into kernel
space undermines these mechanisms completely even if it is never
executed.

To show the concern of this architectural decision, we implemented
an unprivileged userspace application capable of inserting code into
the kernel. In particular, we use the already mentioned pagemap fea-
ture within the /proc file system to read the current mapping of vir-
tual to physical pages. To ensure that our process has a page mapped
into the kernel’s text pages, we allocate multiple page-aligned memory
areas, checking /proc/self/maps and /proc/self/pagemap each
time to determine whether the most recent allocation is also mapped
in the kernel’s code segment. In practice, this was surprisingly ef-
fective. We found that it only takes a couple of tries until a page is
mapped into the kernel.

102

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.6. User Code in the Linux Kernel

Once we control a physical page that is also mapped inside the
kernel text segment, we need to obtain its virtual address in order to
be able to invoke it. As it turns out, calculating this address is as
simple as: <.text> + (pagenr * 0x1000).

This is the case as the first 8 MB of physical memory are mapped
to that address in the so called identity mapping on the x86_64
architecture and the current versions of Linux do not implement
ASLR in kernel space. If we assume a vulnerability inside the kernel
which lets us redirect the control flow to a specific address, we are
able to use that vulnerability to jump to the code we loaded into the
kernel. Note that the vulnerability can be relatively simple as we
only need to be able to control the instruction pointer. Traditionally,
a vulnerability would require the ability to upload a payload, control
the instruction pointer, and in some cases control the stack pointer
in order to exploit it.
Of course, we cannot be sure that our page will be indefinitely

mapped to this area in the kernel text segment. It is possible that we
are evicted by the page replacement algorithm of the kernel at some
point in the future. However, we simply need to execute once. Since
we are executing in the context of the kernel, we can simply allocate
memory within kernel and copy a persistent payload to that area.

Kemerlis et al. [50] recently found a similar problem in the Linux
kernel. They describe that the Linux kernel employs an identity
mapping of the entire physical memory for performance reasons
and that this area is not required to be executable by the kernel.
This is a different mapping than the kernel identity mapping we
described in this section. They then go on to describe how the
physical identity mapping can be exploited and propose a solution
for mitigation. Their mitigation method unmaps a page from the
physical identity mapping once it is allocated to userspace. After
the page is no longer allocated in userspace, the page contents are
wiped before it will be mapped to the identity mapping again. In
contrast, the vulnerability we discovered shows that a section of the
kernel identity mapping is not occupied by kernel code and is instead
allocated to unprivileged userspace applications. While the attack

103

5. Runtime Kernel Code Integrity

surface described by Kemerlis does overlap with our vulnerability,
the mitigation method does not apply. Thus, we propose that the
physical memory, that is part of the kernel identity mapping, must
not be allocated to userspace applications.
Of course, we also inspected the Windows 7 kernel for similar

conduct and found that there is no similar behavior. To inspect
Windows, we iterated over the pagetables of all Windows processes
using the KPCR[111] debugging mechanism. We compared all 2 MB
and 1 GB kernel page mappings1 with all user mode mappings to
look for overlaps. We verified that none of the pages mapped into
user space occupies a physical page that is also mapped as executable
page in the kernel.

5.7. Delimitation from previous work
The only previous work that slightly considers configuration-specific
patching is Patagonix [57]. To recapitulate, at its core, Patagonix is
also a hash-based validation system in which the hypervisor stores
a hash of all valid code pages. Patagonix makes the assumption
that patching generally only occurs during load and early boot time.
Load time patches are handled with the help of a list of all possible
memory locations that can be updated, and a list of all possible
values for each memory location. This information is extracted from
each binary before the validation process. Furthermore, the code
validation relies only on binding information, that is, they do not rely
on any “semantics implied by source and symbol information”. While
we agree that it is important to handle non-binding information
carefully, as malicious code is not bound to this information, we
argue that one must consider non-binding information to be able to
properly validate the dynamic runtime changes conducted by modern
OS kernels. For example, many of the runtime patching mechanisms
used by the Linux kernel depend on the current software state of
the running system. This information is non-binding by its nature.

1In our tests there was no 1 GB mapping used.

104

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.7. Delimitation from previous work

As Patagonix does not make use of non-binding information, it is
unable to validate the changes conducted by these mechanisms.
The main difference between our work and Patagonix is that

Patagonix tries to validate all changes conducted to a code page by
the guest solely on information contained within a binary. That is,
Patagonix does not include information about the current system
state in its validation process. This leads to several problems on
modern kernels. First and foremost, there are memory updates
conducted by the kernel that cannot be predicted beforehand. For
example, if a module imports functions from an other module the
symbol resolution of the module obviously depends on the memory
location of the other module and thus on the state of the system.
Second, Patagonix will consider all potential modifications that can be
applied to a specific memory location as valid independent of whether
the modification is actually legitimate for the current software and
hardware state. Third, the information whether a memory location
is patched during runtime can in the case of modern kernels no
longer be directly extracted from the binary. For example, the
kernel may substitute specific instruction sequences if it is running
in a paravirtualized environment. However, this information is not
contained within the binary.
The common problem with all these approaches is that they con-

sider kernel code to be static once it has been loaded into memory.
Modern kernels, however, make use of many optimizations that re-
quire runtime patching, which renders these approaches obsolete. To
validate kernel code it is thus essential to understand the individual
runtime patching mechanisms that the kernel uses. Once these mech-
anisms are understood, we can implement code integrity validation
mechanisms that reliably detect malicious modifications at runtime.
In this thesis, we make the first step in this direction and investigate
the runtime patching mechanisms of modern Linux kernels.

After the first publication of our previous work [54] we encountered
similar research conducted at the same time by Stanley et al. [92, 91].
We consider our work as more comprehensive for various reasons.
Similar to our work, the authors introduce and shortly describe

105

5. Runtime Kernel Code Integrity

different kernel self-patching mechanisms within the Linux kernel
and improve the NICKLE hypervisor [76] to support code integrity
validation under consideration of runtime kernel self-patching. In
order to validate the patches that are conducted by the guest OS
during runtime, a whitelist of possible change sets is generated in an
offline phase in advance. This whitelist consists of tuples containing
the offset of the start address of a change within the kernels code
segment and the content of the patch. With this, the hypervisor-
based system intercepts every self-modification attempt and only
permits the modification, if the corresponding patch is contained in
the previously generated whitelist. While this is a first important
step, we argue that it is also important to check the current state of
the guest operating system and validate whether the change is valid
according to the current system state. For this, our system does not
only detect and validate kernel self-modifications, but also validates
the corresponding kernel state related to the modification. Our
handling of different types of multibyte NOP instructions on different
architectures is another example. To additionally support module
loading, our system generates the patching related information on
demand by extracting the information from trusted versions of the
loaded binary files. Another difference is the handling of some of the
mechanisms. For example, Stanley arguments, that patches related
to (para-)virtualization are not handled by their system due to the
fact, that they did not use paravirtualized kernels. In contrast, we
show that it is in fact important to handle virtualization related
kernel code modifications as they are used even in full virtualized
environments.
Finally, the most important difference is in the evaluation of

the approach. Stanley describes the existence of the self-patching
mechanisms and shows that hypervisor-based kernel code validation
is possible with low overhead. During our evaluation, we were not
only able to show that kernel code validation is possible with minor
overhead, but we also found problems in the management of physical
pages in the Linux kernel. We show that the Linux kernel benevolently
maps userspace code into the kernels code sections, opening potential

106

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.8. Summary

for an attacker to easily load malicious code into the kernel without
tampering with the kernel code itself, effectively rendering protection
mechanisms like SMEP as useless. We further elaborate on this
problem in Section 5.6.

5.8. Summary
Validation of kernel code integrity is an important aspect of runtime
integrity checking. Previous approaches assumed the kernel code to
be static at runtime or only depend on non-binding information while
checking the integrity of kernel code. In this chapter, we have shown
that modern kernels also employ dynamic runtime code modification.
We have examined various load time and runtime code patching

techniques employed by modern OS kernels in detail and discussed
the challenges that these runtime code patching mechanisms create
for code validation.

Due to complicated loading, debugging, and optimization processes,
kernel code must be considered highly dynamic. Thus current state-
of-the-art code validation techniques are not suitable to validate
the code integrity of modern kernels. To address this, we designed
and implemented a dynamic code validation framework using both
binding and non-binding state information from the monitored guest.
We reconstruct trusted copies of kernel code pages and differentiate
between valid and invalid changes inside these pages. We also validate
the integrity of the kernel’s internal state related to the dynamic
patching.

To show the viability of our system, we present several experiments
to test both the effectiveness and performance overhead of our system.
We were able to show that our framework is able to detect all of
the modifications that where introduced by the rootkits we tested.
Additionally, we were able to show that the performance overhead
is as low as 0.1ms for every change that is made to the kernel code.
And due to the nature of our approach we are able to validate the
entire content of the kernel code section.

107

5. Runtime Kernel Code Integrity

Finally, we discussed several security concerns we had as a result of
our investigation. We identified a yet undiscovered a double mapping
of executable supervisor code pages that are also mapped to userspace.
This enables an unprivileged attacker to place arbitrary executable
code within the kernel without violating protection mechanisms such
as signed driver loading, W ⊕ X or SMEP. We discussed these issues
and also successfully implemented a POC to exploit the issue.

108

Ru
nt

im
e

Ke
rn

el
Co

de
In

te
gr

ity

5.8. Summary

[heap]
- init
- upstart-udev-br
[stack]
- console-kit-daemon
/lib/x86_64-Linux-gnu/ld-2.17.so
/lib/x86_64-Linux-gnu/libc-2.17.so
/lib/x86_64-Linux-gnu/libdbus-1.so.3.7.2
/lib/x86_64-Linux-gnu/libnsl-2.17.so
/lib/x86_64-Linux-gnu/libnss_compat-2.17.so
/lib/x86_64-Linux-gnu/libnss_files-2.17.so
/lib/x86_64-Linux-gnu/libnss_nis-2.17.so
/lib/x86_64-Linux-gnu/libpthread-2.17.so
/lib/x86_64-Linux-gnu/libresolv-2.17.so
/sbin/dhclient
/sbin/getty
/usr/lib/sudo/sudoers.so
/usr/lib/x86_64-Linux-gnu/libgssapi_krb5.so.2.2
/usr/lib/x86_64-Linux-gnu/libpolkit-backend-1.so.0.0.0
/usr/sbin/console-kit-daemon

Table 5.4.: List of userspace libraries which had some of their data
memory on phsical pages that are also mapped to executable
kernel memory.

109

Co
de

Po
in

te
rE

xa
m

in
at

io
n

Chapter6
Code Pointer Examination

In the last chapter our focus was set on the integrity of the code
region of the kernel. In this chapter we set our focus to the integrity
of parts of the data areas of the kernel. In this chapter, we introduce
CPE, a novel approach which aims to detect data-only malware by
identifying and classifying code pointers. Instead of targeting control
flow changes, our approach targets the control structure of data-
only malware, which mainly consists of pointers to the instruction
sequences that the malware reuses. Since the control structure is
comparable to the code region of traditional malware, this results
in an effective detection approach that is difficult to evade. We
implemented a prototype for recent Linux kernels that is capable of
identifying and classifying all code pointers within the kernel. With
this we provide an answer for our research question Q3 set in the
beginning of this thesis. As our experiments show, our prototype is
able to detect data-only malware in an efficient manner (less than
1% overhead). The main results of this chapter have already been
published in the academic paper “Counteracting Data-Only Malware
with Code Pointer Examination” [53].

111

6. Code Pointer Examination

6.1. Problem statement
In this chapter, we explore a new approach to the detection of data-
only malware. The key idea behind this approach is to detect data-
only malware based on “malicious” pointers to code regions (from
here on simply referred to as code pointers). Similar to traditional
malware, data-only malware has to control which reused instruction
sequence should be executed at which time (e. g. event). To achieve
this, data-only malware makes use of a control structure that contains
pointers to the instructions that should be (re)used. This control
structure can essentially be seen as the “code region” of the data-only
program that the malware introduces. By identifying malicious code
pointers in memory, we in essence aim to apply the idea of code
integrity checking to the field of data-only malware by detecting
malicious control data within the system. For this purpose, we
introduce the concept of Code Pointer Examination (CPE).

The idea behind CPE is to identify and examine each possible code
pointer in memory in order to classify it as benign or malicious. This is
essentially a two-step process. In the first step, we will iterate through
the entire memory of the monitored machine on a byte by byte
granularity in order to identify all code pointers. In the second step,
we will then classify the identified code pointers based on heuristics.
As our experiments show, this approach results in an effective and
high-performance (less than 1% overhead) detection mechanism that
can detect data-only malware in many cases. It is thus well-suited
for both live monitoring as well as forensic investigations where only
a single memory snapshot is analyzed.

Since the OS is the integral part of the security model that is used
on most systems today, we focus our work primarily on the Linux
kernel. We chose this OS, since it is open and well documented, which
makes it easier to understand and reproduce our work. However, the
concepts and ideas that we present are equally applicable to userspace
applications and other OSs such as Windows. As a groundwork for the
approach described in this chapter, we require information about the
monitored operating system, specifically about the memory regions

112

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.2. Attacker Model & Assumptions

occupied as well as the locations of the code within memory. This
information is extracted from trusted ELF images of the monitored
kernel using the kernel code integrity framework already described
in the previous chapter.

In summary, in this chapter, we have made the following contribu-
tions:

• We present CPE, a novel approach to identify and classify code
pointers.

• We highlight important data structures that are used for con-
trol flow decisions in modern Linux kernels and thus must be
considered for control flow validation.

• We provide a prototype implementation and show that it is
both effective and efficient in detecting control structures of
data-only malware.

6.2. Attacker Model & Assumptions
In this chapter we assume that the monitored system is protected by
a virtualization-based runtime code integrity validation framework.
In addition, we assume that an attacker has gained full access to
the monitored system, which she wants to leverage to install kernel
malware. While the attacker can in principle modify any part of the
system, the code integrity validation framework will detect some parts
of the changes that the attacker may conduct. Most importantly, it
will detect any changes to executable kernel code and will in addition
enforce SMEP and SMAP from the hypervisor-level. As a result, the
attacker is forced to use data-only malware to infect the kernel. In
this process, the control structure that is used by the attacker must
reside within kernel’s memory space since SMAP is in place. We
also assume that the kernel’s identity mapping that maps the entire
physical memory into kernel space is marked as usermode in the page
tables, as was previously proposed by Kemerlis et al. [50]. Finally,

113

6. Code Pointer Examination

we assume that the data-only malware that will be introduced into
the system by the attacker is persistent, i. e. will permanently reside
within the memory of the target system. Notice that this is usually
the case for malware as Petroni and Hicks [68] showed.

6.3. Proposed Approach
In this chapter we aim to detect the control data structures of
persistent data-only malware. In this process, we want to achieve
three main properties:

Isolation Since the main goal of our framework is to detect rather
than to prevent kernel data-only malware infections, it is crucial
that the detection framework is strongly isolated from the
system it monitors. This is why we will leverage virtualization
as a building block for our framework.

Performance The overhead that our detection framework incurs on
the monitored system should be as small as possible. Since
we use virtualization as a foundation for our framework, it is
thereby of particular importance that we keep the number of
VM exists as small as possible as they will heavily impact the
performance of the overall approach.

Forensic Due to the ever increasing number of malware attacks, the
investigation of incidents becomes more and more important in
order to understand the approach of an successful attacker and
to avoid future breaches. This is why another crucial goal of
our framework is to support forensic investigations in addition
to live monitoring. In this regard, its particular important
that an human investigator can easily assess and analyze the
situation once an anomaly is detected by our framework.

The key idea behind our approach is to detect data-only malware
based on its control structure. As described in Section 2.3, the control

114

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.3. Proposed Approach

structure is the most important component of data-only malware
that essentially defines which reused instruction sequence should be
executed when. Due to this property it is comparable to the code
section of traditional malware, which makes it predestined as a basis
for a detection mechanism.
To detect the control structure in memory, we use a three-step

process. In the first step, we start by checking the integrity of
important control flow related kernel objects. This is done for multiple
reasons. First, we can use additional contextual information about
these kernel objects and secondly these objects contain a lot of code
pointers by their design. By validating these objects at the beginning,
we can thus increase the performance of our approach, as the code
pointers within these known objects do not need to be validated in the
steps that follow. We refer to this step as Kernel Object Validation.
In the second step, we identify all code pointers within the kernel’s
memory space. Based on this information, we will in the third
step classify the identified code pointers into benign and malicious
code pointers by applying multiple heuristics. The combination of
these latter two steps is the Pointer Examination phase. Figure 6.1
provides an overview of this process. In the following, we will describe
these steps in more detail. For the sake of simplicity, we will thereby
focus on the Intel x64 bit architecture and the Linux OS. However,
most of what we present is equally applicable to other OSs such as
Windows and other architectures, such as ARM. While this section
will provide an overview of our approach, we will defer a discussion
of the implementation details to Section 6.4.

6.3.1. Control Flow Related Data Structures
We first describe control flow relevant kernel objects that we check
using special semantic knowledge in the first step of our process.

Kernel Dispatcher Tables and Control Flow Registers The
most traditional control flow related data structures are the system
call table and the interrupt descriptor tables. As control flow related

115

6. Code Pointer Examination

Figure 6.1.: Pointer classification within the proposed framework.

data structures have already seen a lot of attention, we only mention
this type of data structures here for sake of completeness. Our system
checks every entry within these tables and ensures that it points
to the correct function. This can be done by comparing the entire
object to the corresponding version inside a trusted reference binary.
In this step, we also validate the values of all control flow relevant
registers such the MSRs and the Debug registers.

Tracepoints Tracepoints are another type of data structure that
is control flow relevant. An administrator can use the tracepoints
feature to insert arbitrary hooks into the kernel’s control flow that
are executed always when a certain point in the kernel’s control flow
is hit and the corresponding tracepoint is enabled. The addresses of
the callback functions are stored in a list and are iteratively called
by the kernel once the tracepoint is activated. Tracepoints impose a
big problem for control flow integrity validation as arbitrary function
addresses can be inserted into all tracepoint locations at runtime. To

116

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.3. Proposed Approach

counter this threat, we check that every hook that is installed with
this mechanism calls a valid function within the Linux kernel.

Control Structures For Kernel Runtime Patching To man-
age different runtime-patching mechanisms, the kernel maintains
different data structures. These data structures in turn contain
pointers to the kernel code, as they need to store the locations where
kernel code should be patched at runtime. In our approach we check
the integrity of the related data structures.

Kernel Stacks Another examined type of data structure is the
kernel stack of each thread in the system. We separate each kernel
stack into three parts: At the very beginning of the stack, the active
part of the stack is located. This part is empty if the corresponding
process is currently executing in userspace. Next to the active part
of the stack old stack content is residing, which is not used any more.
On the very top of the stack, after all usable space, resides a structure
called thread_info. It contains management information about the
thread, to which this stack belongs to like a task_struct pointer
and the address limit of the stack.

While it is possible to validate the active part of the stack and its
management structure, an attacker could use the old stack content
to hide persistent data-only malware. Therefore, this space is reset
to zero by our framework when used in live monitoring mode. As the
examination of the stack is very complicated, we move that discussion
into Section 6.4.

6.3.2. Pointer Identification

After we have validated control flow relevant data structures, we
start to identify all other code pointers in memory in the second step.
To identify code pointers, we first of all need to obtain a list of all
executable memory regions within kernel space. For this purpose, we
make use of the page tables that the hardware uses. We also generate
a list of all readable pages that do not contain code, as these pages

117

6. Code Pointer Examination

contain the kernel’s data. The physical address of the initial level of
page tables can thereby be obtained from the CR3 register.
Starting with the initial page table, we iterate through all refer-

enced pages and extract the virtual addresses of all pages that are
marked as both supervisor pages and executable. In this process, we
also save the address of all kernel data pages (pages that are marked
as non-executable, but have the supervisor bit set) as these pages
contain the actual pointers.

Equipped with a list of all kernel code and data pages, we identify
all kernel code pointers by iterating through each data page byte by
byte and interpreting each 64-bit value as a potential pointer. If the
potential pointer should point to a code region (i. e. the 64-bit value
represents an address lying within one of the code pages), we consider
it to be a code pointer. While this seems like a very simple approach
that might produce many false positives, we like to stress that we did
not observe any false positives during our experiments with various
Linux kernels. In our opinion the primary reason for this is that the
64-bit address space is much larger than the former 32-bit address
space and makes it thus much more unlikely that values looking like
pointers appear within memory. We will provide a more detailed
discussion on this topic in Section 6.5.2.

6.3.3. Pointer Classification
After we have found a pointer, we classify it based on its destination
address in order to decide whether it is malicious or benign. In a
legitimate kernel there are multiple targets where a pointer is allowed
to point to. In the following, we will list those valid targets and
describe how we are able to determine to which category the pointer
belongs to.

Function Pointer One important type of kernel code pointers
are function pointers, which are frequently used within the kernel.
To determine whether a code pointer is a function pointer, we make
use of symbol information that is extracted from a trusted reference

118

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.3. Proposed Approach

binary of the monitored kernel. In particular, the underlying code
integrity validation framework implements its own binary loader.
In the process, the loader obtains the name and the address of
all symbols in order to perform symbol resolution. Amongst these
symbols are all functions that the kernel provides. We leverage the
symbol list to verify whether a code pointer points to a function
or not. In the former case, we consider the pointer to be benign.
Otherwise, we continue with the classification process in order to
determine whether the code pointer belongs to one of the other
categories that we will discuss below. Note that this implies that
our approach might still be vulnerable to data-only malware that
solely makes use of ret2libc. We discuss this issue in more detail in
Section 6.5.2

Return Addresses Another important type of code pointers are
return addresses. In contrast to a function pointer, which must point
to the beginning of a function, a return address can point to an
instruction within a function that is preceded by a call instruction.
To identify whether a code pointer is a return address, we leverage
multiple heuristics. We will further discuss this in the next section.
Note that most of the return addresses are located on a stack which
is already checked during the Kernel Object Validation phase.

Pointer Related to Runtime Patching A third type of pointer
destinations are addresses that are stored by the kernel and point to
a location where dynamic code patching is performed. While most of
these pointers are contained within special objects that are checked
in the Kernel Object Validation step as previously described, there
are still some exceptions that must be considered separately. We will
describe this issue in more detail in the next section.

Unknown Pointer Destinations Any code pointer that points
into executable code and that can not be classified into one of the
above categories is considered as being malicious. Therefore a human
administrator is notified to further investigate this issue. If multiple
malicious pointers are residing on the same page the probability that

119

6. Code Pointer Examination

these pointers are part of a ROP chain is rather high. Whenever a
malicious pointer is found it is presented to the user together with the
name of the function that the pointer is pointing to. This should help
the human to easily judge the situation and to further investigation
of the issue.

6.4. Implementation
After describing the general idea of our approach, we cover the
details of our implementation in this section. The code pointer
examination framework presented in this work is based on the kernel
code integrity framework presented in the previous chapter. This
framework provides multiple advantages for our implementation:
First, it keeps track of all kernel and module code sections and

ensures their integrity during runtime. In addition, it also keeps track
of all functions and symbols that are available inside the monitored
kernel, as it already resembles the Linux loading process. This ensures
that the information about the monitored kernel is binding by its
nature, that is it reflects the actual state of the monitored system.
In our implementation we can use this database as a ground truth
to classify kernel code pointers.
Secondly, the underlying framework keeps track of all dynamic

runtime code patching that is conducted by the Linux kernel. We
use this information to identify and validate data structures that are
related to kernel runtime patching.

Third, our approach is usable for multiple hypervisors, while most
of the features also work to analyze memory dumps in a forensic
scenario. Currently tests have been conducted with both KVM as
well as XEN, while LibVMI [64] was used as the VMI middleware.

6.4.1. Kernel Object Validation
Before we scan the kernel’s memory for pointers, we check the in-
tegrity of important kernel data structures. This allows us to mini-

120

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.4. Implementation

mize the parts of kernel data that may contain arbitrary function
pointers or other pointers into executable kernel code. The valida-
tion of those structures leverages semantic information about the
kernel that was generated by the underlying code integrity validation
framework or that was manually collected while analyzing the kernel.
We here only list a couple of examples to illustrate the requirement
of this step.
First, we validate various dispatcher tables and the kernel’s read-

only data segments. These locations usually contain a lot of kernel
code pointers, whereas the target of each pointer is well defined. The
validation is performed by comparing these objects to the trusted
reference versions of the binaries that are loaded by the underlying
validation framework and that have previously been extracted from
the trusted reference binaries.

Next, we validate kernel data structures that are used for runtime
kernel patching. These are for example:

• Jump Labels (__start___jump_table),
• SMP Locks (__smp_locks),
• Mcount Locations (__start_mcount_loc),
• Ftrace Events (__start_ftrace_events).

To validate these structures we semantically compare them to
the data that was extracted from trusted reference binaries by the
underlying framework. That is, we use the knowledge, we extracted
about the structure of these datastructures to ensure, that the same
information is encoded in both representations. In addition to these
runtime patching control data structures, there also exist data struc-
tures in the kernel that are used to actually conduct the runtime
patch. For clarification, we will discuss one example for legitimate
pointers to kernel code related to self patching here: the kernel
variables bp_int3_handler and bp_int3_addr.

To understand why these pointers are required, we explain how
runtime patching takes place in the Linux kernel. If the kernel patches
a multibyte instruction in the kernel, it can not simply change the

121

6. Code Pointer Examination

Excerpt of Code Area

bp_int3_addr

0xCC

bp_int3_handler

Instructions that need to be replaced

Figure 6.2.: The kernel makes sure to not execute code while it is
replaced during self-patching. It replaces the first replaced
instruction with an interrupt and handles the interrupt by
jumping to the instruction after the modified area. After
the rest of the instructions are replaced, the kernel replaces
the first byte.

code in question, as otherwise the kernel’s code would be in an
inconsistent state for a short period of time, which might lead to a
kernel crash. Thus, the kernel implements a special synchronization
method. It first replaces the first byte of the change with an int3
instruction. As a result, every CPU trying to execute this instruction
will be trapped. Then the rest of the space is filled with the new
content. As a last step the kernel replaces the first byte with the
right instruction and notifies all waiting CPUs. During this process
the address that contains the int3 instruction is saved in the variable
bp_int3_addr. This will enable the int3 interrupt handler upon
invocation to determine whether the interrupt originates from the
patched memory location or not. While the interrupt handler will
simply process the interrupt normally in the latter case, it will in the
former case invoke a specific handler, whose address is stored within
the variable bp_int3_handler. This is depicted in Figure 6.2. In
the case of a patched jump label, for example, the handler variable
will point to the instruction directly after the patched byte sequence,
which turns this sequence into a NOP sequence during the patching
process. Since both of the bp_int3 variables are never reset once
patching is complete, they always point to the last patched location
and the last handler respectively. To solve this issue, our framework

122

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.4. Implementation

checks whether the current value of the bp_int3_addr points to a
self patching location and if the handler address matches the type of
patching conducted.
Finally, we iterate through all pages that contain a stack. Each

process running in a system owns its own kernel stack that is used
once the application issues a system call. To gather the address of
all stacks from the monitored host, we iterate through the list of
running threads (init_task.tasks) and extract their corresponding
stacks (task->thread->sp0). In case the process is not currently
executing within the kernel, the current stack pointer is also saved
within that structure. Ideally the process is currently not executing
in kernel space in which case its stack must be empty.
The unused parts of the kernel stack could potentially be used

to hide data-only malware. For this reason, our framework can
be configured to reset these parts of the kernel stacks to zero in
regular intervals to hinder persistent data-only malware to store the
persistent payload in this part of the kernel.
In order to minimize the problem of malware that hides within

the active part of a stack we also validate the contents of each stack.
Note that while this is not a comprehensive solution to the problem,
it still increases the frameworks ability to detect data-only malware
that is hiding within a processes kernel stack. That is even though
we classify the sequence of function calls on the stack as valid, the
executed functionality might eventually still be malicious, although
the probability for such a case seems rather low.
In order to validate a stack we use the following approach: For

each return address that we find on the stack, we save the addresses
of two functions. First, we save the address of the function that the
return address is pointing to (retFunc). In addition, we also extract
the address of the call target, that the call instruction preceding the
return address is pointing to (callAddr), if possible. This is possible,
as in most cases, the destination of the call is directly encoded in the
instruction, or a memory address is referenced in the instruction that
can in turn be read from the introspected guest systems memory.

123

6. Code Pointer Examination

ret addr 3

ret addr 2

ret addr 1

Stack Code

<fun1>

<fun2>

<fun3>

call rbx

call fun3

call fun4

<fun4>
call

retFunc = 3
callAddr = 4

retFunc = 2
callAddr = 3

retFunc = 1
callAddr = ? <fun5>

LBR Targets:
fun2 || fun5

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 6.3.: Stack frame validation.

This information is then used to validate the next return address
that is found. In particular, the callAddr of the next frame needs
to match the retFunc of the previous stack frame, as the previous
function must have called the function, that the return address is
pointing to. This process is also illustrated in Figure 6.3.

Since it is not possible to extract all call targets using the mecha-
nism described above, we used an additional mechanism to extract
all possible targets of indirect calls. In particular, we monitored
the execution of the test systems (see next section) in a secure envi-
ronment and activated the processors Last Branch Register (LBR)
mechanism in order to extract the call and the target address of
every indirect branch instruction that was executed by the systems

124

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.4. Implementation

CPU. Using this mechanism we generated a whitelist of targets for
each call for which the target address is generated during runtime.
This list is then also used by our stack validation component, as can
be seen during the validation of ret addr 1 in Figure 6.3.
Using this approach we were in our experiments able to validate

most of the kernel stacks within our test system. Sometimes the stack
validation required further manual investigation, for example in cases
where the size of a stack frame was not known and an additional
return address was stored in a local variable in a stack frame or in
cases where an interrupt is handled during the execution, as the
interrupt reuses the current stack for its execution. While our stack
validation, in its current implementation is not perfect, it certainly
reduces the attack surface further.

The entire problem arises as the stack is currently not designed to
be verifiable even under normal circumstances. However, the kernel
developers currently discuss an enhancement to the code that would
make stack validation more reliable. While this change is intended to
simplify the generation of stack traces in case a bug or a segmentation
fault is detected in the kernel, this could, once implemented, be used
to improve our current return address validation approach and would
allow us to remove the external whitelist1.
Note, after our work on this topic, the propsed patchset to allow

for validation of the kernel stack2 was in the mean time included
into the mainline Linux kernel with version 4.6.

6.4.2. Code Pointer Examination
After we have checked important data structures, we scan through
the rest of kernel data memory to find pointers to executable kernel
code. This is achieved in the following steps: We first extract the
memory regions of executable kernel code sections in the monitored
virtual machine using the page tables structure. As a second step,

1https://lkml.org/lkml/2015/5/18/545
2https://lwn.net/Articles/677109/

125

https://lkml.org/lkml/2015/5/18/545
https://lwn.net/Articles/677109/

6. Code Pointer Examination

we extract the data pages of the monitored guest system. For this
purpose, we obtain all pages that are marked as supervisor and not
executable in the page tables. These pages contain the data memory
of the kernel and therefore all pointers that are accessible from within
the Linux kernel. Note that the information we use for our analysis
is binding, since it is derived from either the hardware or the trusted
kernel reference binaries.

Having obtained the code and data pages, we iterate through the
extracted pages in a byte by byte manner. We interpret each eight
byte value (independently of its alignment) as a pointer and check
if it points into one of the memory locations that was identified as
containing kernel code.

If we found a pointer that points to executable kernel memory we
first check if its destination is contained in the list of valid functions.
We will discuss this decision later in Section 6.5.2.

In case the pointer does not point to a valid function, we in turn
check if the pointer is a return address. There are currently multiple
approaches used in our framework to identify a return address. First
and foremost, a return address must point to an instruction within
a function that is preceded by call instruction. Consequently, our
initial check consists of validating whether the instruction it points
to is actually contained within the function.
For this purpose, we will disassemble the function the pointer al-

legedly points to from the beginning using the Capstone Disassembly
Framework [73] and verify that the value of the pointer points to a
disassembled instruction and not somewhere in between instructions.
If this should be the case, we additionally validate a call instruction
resides before the instruction that the pointer points to. If any of
these conditions should fail, we consider the code pointer not to be a
valid return address and continue to check for the next category.

While most of the return addresses that are used within the kernel
are stored within one of the kernel stacks, there exist a few functions
within the kernel that save the return address of the current function
to the kernel heap in order to be able to later identify the current
caller of that function. This was first introduced as a debug feature

126

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.4. Implementation

to print the address of the calling function to the user in case of an
error. However, in the meantime this feature is also used for other
purposes such as timers. For example, the struct hrtimer contains
a pointer start_site that points to the instruction after the call
instruction that started the timer.
With such a feature in place and used by the kernel it is hard

to differentiate between legitimate return addresses and specially
crafted control structures for code reuse techniques. To limit this
problem we created a whitelist of all calls to functions that contain
the problematic instruction and only allow return addresses in the
kernel’s data segment if they point to one of the functions in question.

If the pointer does not point to valid function or a return address,
the pointer is considered as malicious and a human investigator is
notified. At this point the system also enriches the error message
with the name of the function or symbol, that the pointer is pointing
into. With this additional information the analyst may decide if the
chain is malicious or not.

6.4.3. Detection of Dispatcher Calls
In the previous section we have discussed code pointers that are
accepted as valid by our framework, however, to mitigate possible
attacks we further restrict the list of allowed pointers.

A wrapper function that basically calls one of its arguments with
a certain offset, would be very helpful for an attacker. The Linux
kernel currently contains some functions with exactly that property.
Examples for such a function are: do_one_initcall or ops_init.
Therefore our system uses a blacklist approach and checks that no
pointer to these functions is contained within memory. To generate
a comprehensive blacklist we conducted an experiment where we
extracted all indirect branch instructions from a running Linux kernel
together with the corresponding target for each branch using the
CPUs LBR feature. Therefore we gather a list of all call instructions
with their corresponding targets. If a branch instruction is targeting
multiple other functions, we assume that the function containing

127

6. Code Pointer Examination

the branch is usable by an attacker and therefore no pointer to that
function is allowed in memory. Another type of indirect branch
instructions are used in the Linux kernel is for example directly
at the beginning of a function. The called function then calls a
function whose address is provided in as an argument to the function.
However, this still requires the function pointer of the transitively
called function in memory. As such the call target is detectable with
our system.

6.5. Evaluation
In this section, we evaluate our approach using the prototype im-
plementation described in the last section. In order to determine
whether our framework is able to achieve the goals that we set in
Section 6.3, we will first determine its performance characteristics,
before we evaluate its effectiveness against data-only malware in both
live monitoring as well as forensic applications. We follow this with
an in-depth discussion of the security aspects of our system.

6.5.1. Experiments
Our host system consisted of an AMD Phenom II X4 945 CPU with
16 GB of RAM running Linux kernel version 3.16 (Debian Jessie).
As guest systems we used two different VMs running Linux 3.8 as
well as Linux 3.16. Each VM had access to two virtual CPUs and 1
GB of RAM. In these experiments, we used XEN as the underlying
hypervisor.

Performance and False Positives First of all, we evaluated the
performance of our system as well as its susceptibility to false positives.
For this purpose, we used the Phoronix-Test-Suite to run a set of
Benchmarks on our system. In detail, we ran the pts/kernel test suite.
This suite consists of different tests programs that look at different
aspects of the system’s kernel performance such as file I/O and CPU
intensive tasks. We conducted the benchmark three times on each

128

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.5. Evaluation

test kernel. During the first set of tests, we disabled all external
monitoring to obtain a baseline of the normal system performance.
In the second test set, we then enabled the code integrity validation
component to be able to differentiate between the overhead of our
framework and the code integrity validation system. Finally, we
enabled both the code integrity validation component as well as our
new pointer validation module in order to identify the additional
overhead that our system incurs. During the tests, the integrity
validation component was executed in a loop, if enabled, to stress the
guest system as much as possible. The results of the benchmarks of
each set of experiments as well as the overall performance degradation
are shown in Table 6.1 for Linux 3.8 and in Table 6.2 for Linux 3.16.

While evaluating the Linux 3.8 kernel, the kernel contained 80 code
pages and 426 data pages. One complete Code Integrity Validation
was completed in 255.8 ms, while in the experiment with Code
Integrity Validation and Pointer Examination enabled, one iteration
took 567.58 ms (341.78 ms for CPE). The Linux 3.16 kernel that
was used during our evaluation contained 408 code pages and 986
data pages. The Code Integrity Validation alone took 639.8 ms per
iteration, while the combined CIV and Pointer Examination took
962.0 ms per iteration (322.2 ms for CPE). Note that these values
are calculated mean values. This shows that it requires less than
1 ms in the mean to check the integrity of one page.

As one can see the performance overhead that our framework
incurs is very small. In fact, the use of the underlying code in-
tegrity validation component incurs a larger overhead than our CPE
framework. The performance impact of our system is for the most
benchmarks well under one percent. The main reason for this is that
our framework, in contrast to many other VMI-based approaches,
uses passive monitoring of the guest system wherever applicable. As
a result, the guest system can execute through most of the validation
process without being interrupted by the hypervisor, which drasti-
cally reduces the performance overhead of the monitoring. Only for
the FSMark benchmark a performance degradation of about 2.65
percent is noticed on Linux 3.8. This degradation can not be seen in

129

6. Code Pointer Examination

Test (Unit) w/o CIV (%) CIV & CPE (%)
FS-Mark (Files/s) 32.57 30.10 (8.21%) 31.73 (2.65%)
Dbench (MB/s) 69.84 66.53 (4.98%) 71.54 (−2.38%)
Timed MAFFT Alignment (s) 20.63 20.70 (0.34%) 20.63 (0.00%)
Gcrypt Library (ms) 2857 2853 (−0.14%) 2837 (−0.70%)
John The Ripper (Real C/S) 1689 1689 (0.00%) 1688 (0.06%)
H.264 Video Encoding (FPS) 35.38 35.23 (0.43%) 35.31 (0.20%)
GraphicsMagick 1 (Iter/min) 95 95 (0.00%) 95 (0.00%)
GraphicsMagick 2 (Iter/min) 58 58 (0.00%) 58 (0.00%)
Himeno Benchmark (MFLOPS) 593.59 585.73 (1.34%) 586.24 (1.25%)
7-Zip Compression (MIPS) 4715 4702 (0.28%) 4706 (0.19%)
C-Ray - Total Time (s) 130.96 131.00 (0.03%) 130.99 (0.02%)
Parallel BZIP2 Compression (s) 36.35 36.58 (0.63%) 36.47 (0.33%)
Smallpt (s) 445 445 (0.00%) 446 (0.22%)
LZMA Compression (s) 234.50 236.39 (0.81%) 236.12 (0.69%)
dcraw (s) 124.24 124.38 (0.11%) 124.35 (0.09%)
LAME MP3 Encoding (s) 25.20 25.19 (−0.04%) 25.19 (−0.04%)
Ffmpeg (s) 27.00 27.02 (0.07%) 26.82 (−0.67%)
GnuPG (s) 15.34 14.98 (−2.35%) 14.94 (−2.61%)
Open FMM Nero2D (s) 1137.17 1148.95 (1.04%) 1144.94 (0.68%)
OpenSSL (Signs/s) 173.70 173.73 (−0.02%) 173.80 (−0.06%)
PostgreSQL pgbench (Trans/s) 115.11 114.69 (0.37%) 115.21 (−0.09%)
Apache Benchmark (Requests/s) 10585.45 10481.21 (0.99%) 10506.23 (0.75%)

Table 6.1.: Results of the Phoronix Test Suite for Linux 3.8.

Test (Unit) w/o CIV (%) CIV & CPE (%)
FS-Mark (Files/s) 30.90 31.37 (−1.50%) 31.67 (−2.43%)
Dbench (MB/s) 61.42 60.76 (1.09%) 61.04 (0.62%)
Timed MAFFT Alignment (s) 20.74 20.79 (0.24%) 20.75 (0.05%)
Gcrypt Library (ms) 3747.00 3740 (−0.19%) 3733 (−0.37%)
John The Ripper (Real C/S) 1693.00 1693 (0.00%) 1692 (0.06%)
H.264 Video Encoding (FPS) 34.60 34.32 (0.82%) 34.35 (0.73%)
Himeno Benchmark (MFLOPS) 598.71 582.78 (2.73%) 585.78 (2.21%)
7-Zip Compression (MIPS) 4850.00 4805 (0.94%) 4730 (2.54%)
C-Ray - Total Time (s) 89.80 89.81 (0.01%) 89.80 (0.00%)
Parallel BZIP2 Compression (s) 31.25 31.41 (0.51%) 31.37 (0.38%)
Smallpt (s) 407.00 407 (0.00%) 407 (0.00%)
LZMA Compression (s) 236.62 241.49 (2.06%) 242.17 (2.35%)
dcraw (s) 117.54 117.47 (−0.06%) 117.29 (−0.21%)
LAME MP3 Encoding (s) 23.39 23.41 (0.09%) 23.40 (0.04%)
GnuPG (s) 13.72 13.65 (−0.51%) 13.98 (1.90%)
OpenSSL (Signs/s) 173.63 173.37 (0.15%) 173.57 (0.03%)
Apache Benchmark (Requests/s) 9504.78 9156.01 (3.81%) 9383.66 (1.29%)

Table 6.2.: Results of the Phoronix Test Suite for Linux 3.16.

the results of the benchmark on Linux 3.16. While using the guest
system with monitoring enabled we did not observe any noticeable

130

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.5. Evaluation

overhead from within the guest system. This clearly shows that our
framework can achieve its performance goal that we set in Section 6.3
and is from a performance point of view well suited for real world
applications.
Sometimes the results even showed, that the tests where better

with our pointer examination framework enabled than without our
framework. We argue, that this may be due to the fact, that the
performance impact of our system is much smaller than the impact
of other standard software within the tested Debian system that also
influenced the result.

At the same time we did not observe any false positives during our
experiments. That is, when enabled, our system could classify all of
the pointers it encountered during the validation process using the
heuristics we described in Section 6.3. However, note that we can,
due to the design of our system, not rule out false positives entirely.
This is why we will perform a more detailed discussion about the
possibility of encountering false positives in Section 6.5.2.

Malware Detection After having evaluated the performance of
our system and touched upon its susceptibility to false positives,
we continued to evaluate the effectiveness of our framework against
data-only malware. For this purpose, we infected our test VMs with
the persistent data-only rootkit presented by Vogl et al. [100]. We
chose this rootkit, since it is, to the best of our knowledge, the only
persistent data-only malware available to date.
While our framework did not detect any malicious code pointers

during the performance experiments, our system immediately identi-
fied the various malicious control structures used by the rootkit. In
particular, our system identified the modified sysenter MSR and
the modified system call table entries for the read and the getdents
system call during the prevalidation step and thus classified the sys-
tem as malicious. As these hooks are also found by other systems, we
then removed these obvious manipulations manually and once more
validated the system state. While the prevalidation step yielded no
results in this case, the pointer validation found all of the malicious

131

6. Code Pointer Examination

code pointers in memory. This proves that our framework can be
very effective against data-only malware even if the malware avoids
the manipulation of key data structures such as the system call table.

Finally, to evaluate the usefulness of our framework in forensic ap-
plications, we conducted an experiment where we randomly installed
the rootkit on the test VMs while we periodically took snapshots of
the guest systems. Our system detected all of the infected snapshots
reliably. As before, we did not observe any false positives in this test.

6.5.2. Discussion
In this section, we will provide a detailed discussion of the security
relevant properties of our system.

False Positives Although, we did not encounter false positives
throughout our experiments, we cannot rule out false positives en-
tirely, since our system relies on heuristics to identify code pointers.
However, we like to stress that we consider the probability of en-
countering false positives in our system to be quite small on a 64-bit
architecture. To encounter a false positive with our system, we es-
sentially would need to find a value in kernel space that contains the
address of a kernel code section even though it is not a pointer. Since
the virtual address space on a 64-bit system has a size of 1.8 ∗ 1019

bytes and the kernel code section typically only has a size of 15
megabytes at maximum, the chance of encountering such a rare case
is merely 8.5 ∗ 10−11%. And that is only the case if the kernel is
not optimized as the kernel code section even becomes smaller in
this case. In other words, we consider a 64-bit address space to
be sufficiently large that the chance of random data looking like a
pointer by chance are small at best. Consequently, we assume that
false positives are not a big issue in most scenarios.

Detection vs. Prevention As we are examining data structures
on a regular basis and not using an event-based notification mecha-
nism, we are trading soundness of our approach with performance.
In the worst case, we may not prevent an external intrusion using

132

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.5. Evaluation

data-only malware. We are nevertheless able to detect the control
structure that is used for data-only malware in memory, after the
system was compromised, as pure data-only malware is usually very
large in size, up to 2 megabytes according to [100]. To prevent the
execution of data-only malware entirely we would need to examine
the current stack, whenever the stack pointer is switched during
legitimate execution. Not only does no such hardware notification
mechanism exist, it would also significantly decrease the performance
of our system. Also there are many legitimate reasons for stack
switching, such as process scheduling or context switches for inter-
rupts. Therefore it is not possible to detect and identify the pivot
sequence of data-only malware in all cases.

ret2libc When searching for malicious pointers in memory, we
currently do not penalize pointers that point to function entry points.
As a consequence, our system is at the moment unable to detect
data-only malware that solely makes use of entire kernel functions
to perform its malicious computations. While this is certainly a
weakness of our approach, its important to know that this is a
very common limitation that almost all existing defense mechanisms
against code reuse attacks face [28, 82]. In fact, to the best of our
knowledge, the detection of ret2libc attacks still remains an open
research problem, which we will further discuss in the following.

While ret2libc is a powerful technique that is very difficult to
detect, we argue that it is actually quite difficult to design pure
data-only malware that solely relies on entire functions to run on a
64-bit architecture. The main reason for this is that in contrast to
32-bit systems, function arguments in Linux and Windows are no
longer passed on the stack on a 64-bit architecture, but are provided
in registers instead. As a consequence, to create 64-bit ret2libc
data-only malware, an attacker must actually have access to “loader”
functions that allow her to load arbitrary function arguments into
the registers that the calling conventions dictate. Otherwise, without
access to loader functions, the attacker would be unable to pass

133

6. Code Pointer Examination

arguments to any of the functions she wants to invoke, which would
significantly restrict her capability to perform attacks.

It goes without saying that such loader functions are probably rare
if they exist at all. A possible approach to further reduce the attack
surface could thus be to analyze the kernel code for such loader
functions. If they should exist, one can then monitor the identified
functions during execution to detect their use in ret2libc-style attacks.

Return Addresses If an attacker requires gadgets in addition to
entire functions to execute her persistent data-only malware (e. g. to
load function arguments into registers), the only location that she
can place the required control structure to without being detected
is the kernel stack of a process. Should a code pointer that points
inside a function appear anywhere else within the kernel memory,
it will be classified and identified as malicious by our system. In
addition, due to the fact that our system enforces SMAP from the
hypervisor, the control structure cannot be placed in userspace if
it should be executable from kernelspace. This only leaves a kernel
stack for kernel data-only malware. But even here the attacker faces
various constraints. First of all, she can only make use of gadgets
that appear legitimately in the code and that are preceded by a
call instruction, since all other pointers into a function would be
classified as malicious. Secondly, as the kernel stack where the control
structure resides may also be used by the process it belongs to, the
attacker must ensure that her persistent control structure is not
overwritten by accident. While this is not necessarily an issue for
data-only exploits, this is crucial in the case of persistent data-only
malware as the persistent control structure of the malware may never
be changed uncontrollably. Otherwise, if the control structure would
be modified in an unforeseen way, it is very likely that the malware
will fail to execute the next time it is invoked. This is comparable to
changing the code region of traditional malware. This is also why
our system zeroes all data that belongs to a memory page that is
part of the kernel stack, but currently resides at a lower address
than the stack pointer points to as a final defense layer. Since this

134

Co
de

Po
in

te
rE

xa
m

in
at

io
n

6.6. Summary

data should be unused, zeroing it will not affect the normal system
behavior. However, in the case of persistent data-only malware,
this approach may destroy the persistent control structure of the
malware, which will thwart any future execution. This will be the
case if the malware is currently executing while our system performs
the validation. Since an attacker cannot predict when validations
occur as our system resides on the hypervisor-level, this makes it
difficult for her to stay unnoticed in the long run.
As a further enhancement one could also set the kernel stacks of

processes that are currently not executing to not readable within
the page tables. This could for example be done during the process
switch. As a result, the attacker would only be able to use her control
structure when the process on whose kernel stack the structure resides
is currently executing. This raises the bar if the attacker wants to
hook the execution of all processes instead of just one, which is
generally the case.

Taking all this into account we argue that while our system cannot
eliminate the threads of persistent data-only malware entirely, it
significantly increases an attackers effort to evade detection and thus
reduces the attack surface.

6.6. Summary
In this chapter, we have proposed Code Pointer Examination, an
approach that aims to detect data-only malware by identifying and
classifying pointers to executable memory. To prove the validity and
practicability of our approach, we employed it to examine all pointers
to executable kernel memory in recent Linux kernels. In the process,
we discussed important control flow relevant data structures and
mechanisms within the Linux kernel and highlighted the problems
that must be solved to be able to validate kernel control data reliably.
Our experiments show that the prototype, which we implemented
based on the discussed ideas, is effective in detecting data-only
malware, while only incurring a very small performance overhead

135

6. Code Pointer Examination

(less than 1% in most of the benchmarks). In combination, with code
integrity validation, we can thus provide the first overall approach
to kernel integrity validation. While our framework still provides
a small attack surface, we argue that it considerably raises the bar
for attackers and thus provides a new pillar in the defense against
data-only malware.

136

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

Chapter7
Dynamic Integrity Validation for
Userspace Applications

Up until now, we have presented how our kernel integrity framework is
able to (1) handle code integrity validation for dynamically modifying
kernel code and is able to (2) detect control structures of code reuse
malware within kernel data. In this chapter we will investigate to
what extent our work is also applicable to userspace applications.
With this we give an answer to the research question Q4 that we
raised in the beginning of this thesis.

7.1. Problem statement
In this section, we describe our efforts to adapt the approach devel-
oped in our previous research to userspace applications. With this we
extend the scope of our research and provide integrity mechanisms for
general application software. For this, we first set our focus on code
integrity validation. While the codebase of userspace applications
is static during runtime, we take an in depth look on the applica-

137

7. Dynamic Integrity Validation for Userspace Applications

tion loading process. We examine if there are mechanisms within
the loading process, that complicate the validation code integrity
in practice due to differences in the loading process, that make a
generation of the ground truth cumbersome.

In a second step, we apply our code pointer examination technique
to userspace memory. We do this, as the concept showed encouraging
results when applied to kernel memory. The basic idea is to not only
scan for kernel code pointers within kernel data regions, but to extend
this validation to the entire guest VM memory. With this, we aim to
detect data-only kernel rootkits before an attack against the victims
kernel is conducted. We intend to detect control structures, once they
are loaded into the memory of a userspace program. This is especially
interesting for malware, which is generated on the target machine
on-the-fly, such as, for example Just-In-Time (JIT)-ROP [88].

Lastly, we aim to investigate, to what extent CPE may be applied
to detect code reuse attacks that directly target userspace processes.
In this last investigation, we discuss if and to what extent it is
possible to apply CPE also to userspace processes. As an attacker
model for this investigation, we assume, that an attacker introduces
a ROP-chain into a process, that leverages gadgets provided by the
application code, for example the underlying C standard library. We
also discuss the problems we encountered during our experiments
and propose improvements that are required to enhance the current
situation.
In the following, we also provide a technical description of our

kernel integrity framework and how it was extended to also sup-
port information generation and integrity validation for userspace
applications.

In summary, we propose the following contributions in this chapter:

• We extend our VMI-based kernel integrity framework to also
validate the integrity of userspace processes.

• We show, that CPE is able to detect control structures of code
reuse malware that targets the OS kernel within userspace
memory.

138

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.2. Code and State Integrity Validation

• We discuss the applicability of CPE to detect control struc-
tures of code reuse malware that directly targets userspace
applications.

7.2. Code and State Integrity Validation
As previously introduced we now first focus on the dynamic validation
the parts of userspace applications that should be static during
runtime. As this first seems to be an easy task, we hereby do not
only focus on the program code and static data sections, but we also
focus on the current state which the kernel holds about the executing
process.

7.2.1. Process State Validation
In order to validate userspace related memory within the VM, we
first extract and validate the information, the kernel stores about the
process from the monitored kernel. As a first step, our system checks
the correctness and consistency of the information the kernel holds
about a process. This effort is done in order to detect malware that
modifies that state on its behalf, for example in order to loads itself
into the virtual memory of a process. One important part of that
information are the virtual memory mappings of each loaded process.
The kernel maintains a list of all memory regions that are mapped
into a process’s virtual address space, called Virtual Memory Areas
(VMAs).

To validate the information about the memory mappings, we
extract both the VMA information that the kernel maintains as well
as the root of the page table directory for a given process. Note,
that the address of the page table directory may be derived from the
hypervisor, while the process in question is executing. In addition this
information is also stored within kernel internal datastructures. We
then validate, that for each page that is mapped within the page tables
of the process, a corresponding mapping within the kernels VMA

139

7. Dynamic Integrity Validation for Userspace Applications

information exists. Through that step we ensure that the kernels
memory management information is consistent with the contents
of the page tables and no additional, possibly malicious memory is
mapped within the process. The integrity of this information as well
as the contents of the corresponding pages are then validated in a
later step.
In a next step, we validate important parts of the applications

environment. Our system extracts and first checks for the existence
of suspicious settings. This is important, as an attacker might be able
to alter the code of the program by leveraging special environment
variables, as for example LD_LIBRARY_PATH or LD_PRELOAD. While
this technique is already well known, its detection still increases the
integrity guarantees we are able to make about the programs executed
within the monitored VM. If an unexpected entry is detected, our
framework issues a warning to the administrator. This is done, as
our framework is, by design, unable to decide if there is a legitimate
reason for that dangerous setting in the current situation.

Next, our framework extracts information about the executable bi-
nary which was used to load and start the process from the monitored
Linux kernel. This includes the name of the executable and its path
within the file system of the monitored VM. Note, that the operating
system stores this information in multiple places. Once inside its
process management datastructures and once within the environment
information of the process (i. e. in argv[0]). We check that this
information is consistent, as a malicious process may overwrite the
information within its environment block. This is a problem, as this
information is used when an administrator gathers information about
the system, by listing all active processes with the top command.
Our framework then searches for the executed binary within a

whitelist of all allowed executables and libraries stored within our
trusted environment. With this we ensure, that only legitimate
applications are allowed to execute on the monitored target VM. This
is similar to a feature called User Mode Code Integrity (UMCI) which
is part of Device Guard, a security mechanism recently introduced

140

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.2. Code and State Integrity Validation

by Microsoft1. If the corresponding binary is not contained within
the trusted store, the administrator is informed about the malicious
process.

7.2.2. Process and Library loading
The next step in the userspace code integrity validation process is
the actual loading of the executable binary file in order to generate
a ground truth for the final validation of the memory contents. If
the executable is found in the trusted store, the framework starts to
emulate the application loading process.
During this process, in the relocation step, the binaries .got

(Global Object Table) and .plt (Program Linker Table) sections are
initialized by our framework. These sections typically contain links to
all external symbols that are referenced by the library. With this step
we (1) aim to be able to validate the contents of all VMAs that are
mapped into the process as executable and (2) are able to compare
the contents of both the .got and .plt sections within the guest
VMs memory against a trusted reference version. The second point
is also important, as instead of modifying the read-only mapped code
segments directly, malware typically changes these datastructures
to be able to access functions within other libraries, that are not
originally referenced by the binary. Again, this technique is not new
in our thesis, but increases the integrity guarantees provided by our
framework. Thus we include this check within our framework.

During the replication of the application loading process, we noticed
two limitations, which make it hard to fully validate the integrity
of a process that is loaded into memory. Both of these issues are
related to the way how relocations are implemented within Linux
userspace applications. To reiterate, the idea of relocations is, that a
library may reference an external function or symbol, independent of
the memory addresses that the different libraries are loaded to. For
this, the userspace binary loader inserts a pointer to the referenced

1https://technet.microsoft.com/de-de/library/dn986865(v=vs.85).aspx

141

7. Dynamic Integrity Validation for Userspace Applications

external symbol into a location in memory that is known by the
loaded library during load time. However, a feature exists (lazy
binding), which does not require the relocation to happen directly
during load time of the library, but symbols may also be resolved
on demand during runtime. This is done to optimize the load time
of large applications that contain a lot of relocation entries. Lazy
loading was the default option for relocations within Linux for a
long time. Due to lazy loading, the Global Object Table (.got)
may have a different state depending on which external symbols
have already been used during program execution. This, however, is
just a consistency problem, when checking the integrity of the .got
section in memory. However, lazy loading is not supported by or
framework. The decision to not support lazy loading is not critical,
as lazy loading nowadays only provides minor impact on performance
and may easily be disabled in a security aware context. In addition,
there was also a new loader feature introduced, which aims to prevent
applications to maliciously modify the contents of the .got section.
This feature also demands to fully execute the relocation at load
time and then maps the corresponding data structure as read-only
within the monitored process. This feature is called relro. Thus the
first limitation is not critical, as further security mechanisms already
exist, that solve the problem.
In contrast, the second limitation we encountered during our in-

vestigations is more critical. In 2011 gcc introduced a new type
of relocation2 by implementing support for a new symbol type ex-
tension, called IFUNC 3. In effect, this mechanism is similar to the
alternative instructions mechanism present in the Linux kernel, which
was presented in Section 5.2 of this thesis. It allows the application
developer to select a specific implementation of a function during the
load time of the binary. The decision may depend on external condi-
tions like the current hardware and software state. The difference
between the IFUNC mechanism and the kernels alternative instruc-

2Version 4.6, March 2011
3STT_GNU_IFUNC

142

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.2. Code and State Integrity Validation

tions mechanism is that instead of selecting a specific implementation
for the function depending on concrete criteria, the loader executes
an external function that is provided by the application developer
during the relocation step. Instead of the address to the requested
symbol, the relocation entry contains the address of the selection
function. During relocation of the corresponding symbol, the loader
simply executes the given function, which sole purpose is to select
which concrete implementation is selected for the current relocation.
The global object table is then updated with the functions return
value.

Our framework is currently not able to reproduce a full list of
possible relocation entries and thus is unable to entirely validate the
contents of the global object table of an executable in memory in case
the binary uses the IFUNC mechanism. This is, as our validation
framework currently does not support symbolic execution and we
do not want to execute external code within our security framework.
We did not implement this as part of this thesis, as the .got data
structure is mapped as read only by the loader anyway for all systems
that enable the nowadays common relro security mechanism. Note,
that this problem also applies to other state of the art CFI tools as
there is, to the best of our knowledge, no related work that discusses
this issue.

To support this feature, our framework would need to be extended
to support symbolic execution to automatically extract the address
of the intended function from the binary code in a secure way. It,
however, should not only be able to extract the address of the function
that should be executed in the current environment, but in addition
also extract a list of all possible functions together with information
about the decision criteria. With this information also a ruleset for
each possible implementation could be created, which could be used
during the .got validation step within our framework.

143

7. Dynamic Integrity Validation for Userspace Applications

7.2.3. Detection of additional code pages
After the loading of a trusted reference version of the process memory
is conducted by our framework, we validate, that only libraries are
loaded to the process space, that are contained within the binaries
dependency graph. If a library is found, that is not contained as an
explicit dependency, the administrator is notified. This might either
be a executable code page, that has no corresponding VMA entry
within the kernel, but might also be a library, that has a corresponding
VMA entry in the kernel but is not listed as a dependency of the
trusted version of the loaded program. Note, that there are legitimate
reasons, why additional libraries might be loaded into a process
(i. e. due to the use of dynamic library loading (dlopen). However,
we think that an administrator needs to be aware of this fact. During
this investigation, we detected, that sometime legitimate libraries are
loaded into the address space of every process even if they are not
listed as an explicit dependencies. In our case we found authentication
related libraries like, for example libnss. Therefore, a whitelist of
additional libraries needs to be configured by an administrator.

7.2.4. Userspace Code Validation
In a final step, we validate the code integrity and code identity of
every code page loaded within the process. We iterate through all
executable pages and check if the kernels VMA information contains
a related library. If that is the case, we compare the trusted version of
that libraries code section which was generated in the previous loading
steps with the memory page in question. In our case, userspace code
pages in memory have never been legitimately altered from their
trusted versions that where loaded from the binaries. The result of
this comparison shows, that code sections within Linux userspace
processes are in fact static. Thus comparison of hashes and signatures
is an adequate mechanism to validate code pages in Linux userspace
processes. Still it is not a valid approach for kernel code, as we could
show in our previous research.

144

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.3. Code Pointer Examination

7.3. Code Pointer Examination
After we have described the static userspace code and state validation
conducted by our framework, we now present how our concept of CPE
is applied to userspace applications executed within the monitored
VM.

7.3.1. Kernel Code Pointers within Userspace
Applications

Our first goal within this line of research is to detect persistent data-
only malware that is targeting the operating system kernel while it is
still contained inside a userspace application on the attacked machine.
This is both interesting if the data-only malware is uploaded to the
victims system through a userspace service as well as in cases, where
the code reuse malware is directly created on the target machine
on-the-fly. For this, we scan the entire systems memory for potential
pointers to kernel code. We extract all physical pages from the test
machine which are mapped into any userspace application as both
readable and writable. The restriction to only scan on pages that are
both readable and writable was made due to the assumption, that
an attacker who has already gained userspace access to the machine
may use these pages to prepare the control structure for code reuse
which is then in turn used to exploit the systems kernel.

To efficiently identify all memory locations that contain pointers
to kernel code, we combine all physical pages that are mapped into
any executing process. That is, we do not conduct this scan on a
per process basis. For this, we iterate through the page tables of all
processes currently executed on the target guest OS and collect a list
of all physical pages that are mapped to these processes. This is done
in in an effort to optimize the performance of the pointer detection,
as we can combine memory mappings in multiple processes that map
to the same physical memory. After this list is generated, we extract
all pages from that list that are both read and writable, and scan
through these pages on a byte-by-byte basis.

145

7. Dynamic Integrity Validation for Userspace Applications

This process is implemented in two different modes of operation.
In the first setting, we scan for pointers to kernel code as described
above. We then also created an additional test, that does not check
the first two bytes of an address, when a pointer is suspected. This
is to represent an optimization done in the Linux kernel. Modern
processors have an address length of 64 bit, but usually only 48
physical address lanes are available. For this, the topmost 16 bits of
an address are currently still unused during an access to the physi-
cal memory hardware. As enforced by the hardware, in userspace
applications, these bits are checked for consistency (= 0) before an
access to the corresponding memory is performed. In kernel space,
however, this integrity validation step is typically omitted. The first
two bytes of a kernel address may be in a random state although the
pointer is technically still valid. While we expect only a very small
number of false positives in our first test case, our intuition is, that
we might suffer from a lot of false positives in the later case. We will
give an overview over the actual results of these tests in Section 7.4.

7.3.2. Classification of Userspace Code Pointers
In a final set of experiments, we investigate, whether CPE may also
be used as a simple heuristic to reliably detect control structures
of data-only malware which is directly targeted against a userspace
application. For this, we apply our method to benign userspace
memory and expect the number of unidentifiable code pointers to be
low in practice.

7.3.2.1. Proposed Approach

In this step, we iterate through the memory of every process that is
currently executed on the target guest OS in order to detect code
pointers to their respective code sections. Thereby, we intend to
detect CRAs that leverage the codebase of large binaries or libraries.
In practice, for example gadgets in the libc library are commonly
used to build return-oriented programs. For this, we extract a list

146

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.3. Code Pointer Examination

of all writable pages of each process and scan through these pages
(again in a byte-by-byte manner). This time, we check if the current
value is in the range of an executable code segment that is loaded into
the current process. As in the kernel code pointer examination case
(Chapter 6), we expect to find legitimate valid pointers in this case.
Therefore, we further classify the detected pointers into multiple
classes.

7.3.2.2. Pointer classification

For classification, we first check, if the detected pointer, does not only
point into an executable page, but also points to a memory location
that is occupied by an executable section of the loaded library. This
is done, as executable sections do not always occupy entire pages, but
may only use parts of a page. In theory, the rest of the page should be
unused and the content of the page at that specific location should be
zero. In fact, this is not always the case in practice, as a physical page
may contain both code and data and may be mapped into virtual
memory twice, while each mapping has different page permissions.
To mitigate this issue, the binary loader could be enhanced to create
two separate physical pages and delete the contents on the page that
are not intended to be part of the corresponding mapping. Pointers
that to not point into a code section of the binary or library are
currently ignored by our framework.

Next, we further classify the pointers that point into an executable
section of a binary. Within an executable mapping, only the .text
section of a binary should contain valid instructions. The rest of the
sections mapped into the executable segment contain information
that is relevant for the loader or the control flow of the application
and that should not be changed by the application. For this reason
our framework contains a list of sections that are also typically part
of an executable mapping but are not intended to be executed. These
additional sections are placed inside this mapping as it is mapped as
read-only and thus can not be modified during runtime.

147

7. Dynamic Integrity Validation for Userspace Applications

Examples for whitelisted sections are the string section, that con-
tains among other things the names of the symbols that are referenced
in the relocation phase, the .rodata section or hash and note sections
that are created by the compiler. We propose to strictly separate the
different sections within virtual memory and introduce a separate
VMA that only contains read-only contents of the binary. With this,
an attacker is unable to use unintended instruction sequences that
are part of sections that do not need to be executed. While the
previously introduced relro security mechanism introduces such a
read-only memory mapping, currently not all read-only sections are
moved into this mapping. We count the number of pointers that
point to a whitelisted executable section, but still, our framework
currently does not further analyze these pointers. It is part of future
work to evaluate, to what extent the content of these pages may be
used as gadgets for code reuse malware.
If a pointer is not sorted out in the previous categories it points

into a section of the binary that contains executable code. Thus it
should belong to one of the following categories: (1) a known symbol
or (2) the start of a function within the code or to (3) a return
address. To identify pointers of the first and second type, we use the
information that was generated during the binary loading process of
our framework, which we consult, if a symbol or function is known at
the specified location. In this step we must differentiate between two
types of symbols. On the one hand, we may find an exported symbol.
The address of that symbol is known due to the relocation information
gathered during the reproduction of the loading process. On the
other hand, the symbol may be an internal symbol. The information
about internal symbols can currently only be gathered, if the debug
information of the specific library is not stripped from the library
within our trusted binary store. Note, that this is not a limitation
of our approach, as the addresses of internal functions may also be
reverse engineered from the binary with, for example, an approach
introduced by Andriesse et al. [6]. To identify return addresses, our
framework disassembles the function, the pointer points to using
the capstone library [73] and checks, if the targeted instruction is

148

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.3. Code Pointer Examination

directly preceded by a call instruction. Note, that we only expect to
encounter pointers that are classified as return addresses inside an
applications stack segment. In our experiments we will summarize
these pointers into the following categories:

1. Overall Ptrs:
Number of pointers that was detected in data memory.

2. Unique Ptrs:
Number of unique pointers that was detected.

3. Ptr to .text
Number of pointers that point to code and where further ana-
lyzed.

In case the pointer can not be classified into one of the previous
categories, we assume the pointer to be malicious. In this case, we
further classify the pointer into multiple categories:

4. Unknown Ptrs:
A superclass, that contains all unidentifiable pointers.

5. Invalid Instruction:
Pointers that point to an Invalid Instruction.

6. Unintended Instruction:
Pointers that point to an unintended, but yet valid instruction.

7. Unintended Return Address:
Pointers that point to a unintended instruction after an unin-
tended call instruction.

For further classification, we check, if the pointer points to a valid
instruction. If this is the case, we disassemble the entire function the
pointer points into and check, if the pointer points to an intended
instruction. If the instruction was an unintended but valid instruction,
we check if the instruction preceding the target instruction is a branch

149

7. Dynamic Integrity Validation for Userspace Applications

instruction (e. g. a call instruction). In this case, we classify the
unknown pointer as Unintended Return Address.
For pointers that point to an unknown but valid instruction, we

check, if the instruction sequence may be used as a gadget for a
return oriented program. For this we check, if it ends with a return
instruction and does not contain any illegal or invalid instructions.
We then output information about the length of the gadget. Note
that we currently do not further check, if gadget is actually usable
in practice. That is, we do not further extract higher level semantic
information about the potential gadget. This could be enhanced
by incorporating symbolic execution in future work. That is, if our
approach shows to be valuable in our experiments. Our system may
be extended to symbolically execute the detected gadget in order
to further classify its usability in an actual CRA. With this the
number of false positives can be further reduced in order to limit the
workload of the human analyst that needs to interpret the output of
our system.

We expect our method to be applicable to userspace applications
if the number of false positives is small (ideally zero) when applied
on a benign environment. We nevertheless expect a small number
of false positives and also expect that our general mechanism needs
to be adapted for every analyzed application in order to assess the
generated results.

7.3.2.3. (Un-)Legitimate Code Pointers

During our initial experiments we found two major problem classes,
which make the application of CPE to userspace applications cum-
bersome in practice: First, programs or libraries may be loaded into
a non randomized address range at the beginning of virtual mem-
ory. In this case, we might misinterpret legitimate counter values
as malicious code pointers. Second, memory write accesses are not
always conducted in an aligned way and parts of old pointers may be
overwritten by new content. In the following we will shortly discuss

150

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.3. Code Pointer Examination

these problems and show how these problems may be alleviated in
practice.

The first problem lies in the virtual address range, where the pro-
gram or library code of a program is loaded to within the applications
virtual memory address space. If this virtual address is relatively
near to the beginning of virtual memory and thus code addresses are
small, arbitrary counters may look like malicious code pointers in our
investigation. In practice, this problem arises, when an executable
application is loaded to a fixed address in memory during the loading
phase (0x400000 on amd64-based Linux systems).

This, however, is a well known issue, as it also allows an attacker
to guess the address of specific instructions in memory. Due to this
static loading address applications are also currently not able to take
the advantage of ASLR. In order to randomize the address space
(ASLR) two compiler extensions have been introduced, that allow to
load the binary code to randomized addresses in memory: Position
Independent Code (PIC) for position independent library code and
Position Independent Executable (PIE) for position independent
application code. The load address of position independent code is
generated during load time of the application.
Both PIC and PIE have already been introduced some time ago.

While PIC is already widely adopted, Linux distributions such as
Debian are only currently in the transition to enable PIE for all appli-
cations that are shipped with the distribution. PIE was enabled per
default in Debian since October 2016 starting from gcc-6 6.2.0-74.
We expect the number of legitimate counters that are misinter-

preted as pointers to be much lower in case both PIC and PIE are
enabled for an application and the code sections are loaded to ran-
domized addresses. So, in addition to the previous classification, we
classify each detected code pointer according to whether the address
of the text section was randomized during loading or not.

The second problem that is causing a lot of unidentifiable pointers,
when applying CPE to userspace processes in practice, are partial

4https://tracker.debian.org/news/806845

151

https://tracker.debian.org/news/806845

7. Dynamic Integrity Validation for Userspace Applications

overwrites. The reason for this problem is, that (data) memory is
not always modified in entire blocks of memory and old content of
memory is not always discarded, once it is not valid any more. Thus
old unused pointers may be partially overwritten. Typically write
operations are conducted in an aligned way (for example eight bytes
are written in a continuous manner) and pointers start at addresses
that are a multiple of eight for better access performance. Thus when
data is written to memory, a pointer would normally be overwritten
by new data entirely.

<data>
<ptr>

<data>

<ptr>

<data>
<ptr>

<data>
<data>

0x...1c0

0x...200
<data>
<ptr>

<data>

<ptr>

<data>
<ptr>

<data>
0x...1c0

0x...200

Hallo Wo

rld\0

Figure 7.1.: Example of a string overwriting parts of a pointer.

However this is not always the case in practice. If, for example,
a null terminated string is written to memory, the data is written
sequentially. Thus only the bytes that later hold the string are
modified and the rest of the old content of memory is left as is. With
this, if the old memory contained a valid pointer, writing a string to
an address in front of the pointer may overwrite only part of that
pointer. Figure 7.1 gives an example for such an overwrite, when the
string "Hallo World" is written to the address 0x1c8. Note that
in the picture the beginning of the pointer is overwritten. Pointers,
however, are stored in little endian format on the Intel platform.
Thus the bytes of the pointer are stored in reverse order. With this a
legitimate pointer may be overwritten by the application resulting in

152

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.3. Code Pointer Examination

a unidentifiable, but yet benign code pointer. Unfortunately there is
no way to distinguish between a malicious and a partially overwritten
benign pointer.

To soften the effects of this issue we add an additional classification:
printable pointers. Our framework classifies detected pointers that
do not point to a known location as printable, if the pointer contains
a nullbyte followed by only printable characters. With this we are
able to give a hint if a valid pointer may have been overwritten with
a string.

Note, that this problem did not occur within the kernel context, as
the kernel usually does not require the handling of dynamic strings,
but instead mostly uses fixed buffers of static size to store strings.
Another reason, why we assume that this problem did not show
up during our investigation on kernel level CPE is the way how
memory management is implemented in the Linux kernel. Instead
of allocating new memory for every new object and deallocating the
memory afterwards, the kernel makes use of a dedicated object cache
(the SLAB-Allocator [13]). The objects within this cache are always
reused for the same type of object. For this, memory that holds a
pointer will be overwritten by a pointer again. Thus the probability
for a partial overwrite of a pointer is much smaller within the Linux
kernel.

Currently these identified pointers still require for manual inves-
tigation. One might apply additional heuristics such as allowing
a small number of unidentifiable pointers as ROP chains usually
consist of multiple pointers. Also, our framework could be enhanced
to further filter out pointers that end with printable content. On the
other hand, a single pointer to executable code may be enough for
an attacker to conduct his malicious intention. For this, we chose
to evaluate if the number of falsely detected benign pointers in a
benign scenario is small and give a notification to an administrator
for every detected unknown pointer.

153

7. Dynamic Integrity Validation for Userspace Applications

7.4. Experimental results
We have now described our concepts to also apply the results gained
in the previous chapters to userspace applications. In this section, we
present our experiments together with the results of our investigations.
A more general discussion of these results is provided in the next
section.

For the following experiments, the host system in use was a AMD
Phenom II X4 945 CPU with 16 GB of physical RAM running
Debian Stretch (at the time of writing currently still distributed
as Testing) with Linux kernel version 4.8 and the XEN hypervisor.
As guest we used a VM running a custom Linux 3.16 kernel on
Debian Stretch with 1 virtual CPU and 1 GB of guest physical
RAM. To evaluate userspace processes, we equipped our test VM
with common server applications like among others apache2 (Version
2.4), mysql-server (Version 5.7), isc-dhcp-server (Version 4.3), bind9
(Version 9.10), exim4 (Version 4.88) and openssh-server (Version 7.5).
These constitute common server applications and present a realistic
scenario for our evaluation. For all these applications, we also added
the corresponding debug information into our trusted binary store.
This is required as our framework requires the information about
internal symbols of each binary file as explained in the last section.
In all test cases our framework directly scanned the memory of the
monitored virtual machine from within the host operating system.
The virtualized guest was not paused during our experiments.

7.4.1. Userspace Code Integrity Validation
In a first set of experiments, we tested the userspace code valida-
tion capabilities of our framework and validated the code integrity
of all executable code of all processes executed in the monitored
VM as explained in the previous section. As expected, we did not
detect any inconsistencies between the in memory representation
of the executable code and the trusted representation created by
our framework. Performance wise, this experiment is currently still

154

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.4. Experimental results

rather slow, as the binary loading mechanism within our framework
currently does not take advantage of internal caching mechanisms.
Each binary file is loaded and processed for each process where it
is included, instead of reusing the information for the next process
validation. The entire process of loading and code validation cur-
rently took around 60 seconds for 83 different processes. Note that
the majority of time (around 38.7s) is spent in our framework for
process loading and information gathering, which is only required
once in a scenario with regular memory testing. The actual code
validation step requires around 20s for all 83 processes (751 different
executable code mappings, around 221.46 MB in total). Note, that
applications, that are executed on the system multiple times are
also checked multiple times in this experiment. This could also be
optimized further, if a physical page that is mapped into multiple
virtual address spaces is only validated once per iteration.

With this, we assume, that our mechanism to validate the code
base of userspace applications from an external point of view by
leveraging VMI techniques may be practically used as an efficient
mechanism to check the code integrity of userspace processes once
our frameworks internal binary loader is able to take advantage of
caching. As this is not a conceptual issue, this feature was not
implemented during the time of writing but will be implemented as
part of future work.

7.4.2. Kernel Code Pointers in Userspace
In a next set of experiments we evaluate the effectiveness of CPE
to detect kernel code pointers within userspace applications. We
have already shown, that our framework is able to detect data-only
malware in the previous chapter. Thus, in this experiment, we
measure if our framework suffers from false positives in a benign
scenario. In the following, we do not discuss the performance impact
of our experiments to the guest VM. Due to the architecture of our
framework, we assume this impact to be of similar magnitude as
during our kernel only CPE experiments (see Section 6.5.1). The

155

7. Dynamic Integrity Validation for Userspace Applications

amount of guest physical RAM scanned during these experiments
exceeds the amount of RAM scanned during kernel only validation.
For this, we assume, that an application of CPE to all applications
of the monitored target system in a live manner, like proposed in
Chapter 5 is only able to check each individual application in the
order of seconds. Thus a transient attack might not be detected by
this approach. Still, as we assume persistent data-only malware as
an attacker model, the malware needs to stay inside the system as
long it intends to take control over the attacked system and in that
case, our system is able to detect the malware.

First, we start to scan all userspace memory for kernel pointers.
As described earlier, we first extract all writable memory mappings
from our monitored VM. This is done in order to scan each single
page only once. In this experiment, our framework inspected 1, 297
different memory mappings from 97 different processes resulting in
30, 356 different physical pages (approx. 118.5 MB). During the
experiment (and also during every other execution of this test case)
no memory location was found that contained data that could be
(mis-)interpreted as kernel pointer. For this, CPE seems to be a
suitable instrument to detect the creation of kernel level code reuse
malware within a userspace application like for example proposed by
Snow et al. [88].

In the next experiment, we lifted our restriction to only scan for
pointers on writable pages. Thus, we also investigated pages that are
mapped as not writable from userspace. In this experiment 35, 828
pages where scanned (2, 823 mappings in 97 processes, approx. 140
MB). In this test 28 different locations have been found to contain
data that might also be interpreted as kernel pointers (15 unique
values). While most of these would only point to kernel data, only 2
values have been found to point to kernel code. Both of these were
found by misinterpreting legitimate instructions inside the executable
mapping of libc-2-24.so as pointers. In this experiment we de-
tected a small number of possible kernel pointers within executable
userspace code sections. This is not critical to our approach, as the

156

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.4. Experimental results

code sections of libraries are separately checked for their integrity by
our framework.
In a next experiment, we adapt our search to scan for kernel

pointers that are accepted by the memory management unite despite
the fact that they are not valid in practice. We to lift the constraint
that the first 16 bits of a kernel address need to be set on a 64 bit
system with only 48 physical address lines. For the first case, when
only both readable and writable pages are checked, still no false
positives are detected by our framework. Thus, CPE is a practical
technique to scan for kernel targeting data-only malware in userspace.

In contrast, in the second case, when also scanning on pages that
are only readable from userspace and ignoring the 16 highest bits
of an inspected pointer, 177 different pointers were detected (136
unique kernel pointers, 77 unique kernel code pointers). This is still
a low number, when we keep in mind, that we only need to find
a collision for 48 bits. Still, this number is to high for a manual
analysis. For this, we propose to enable the consistency check for the
correctness of the first 16 bits of the address in kernel space. Note,
that Intel recently announced to increase the number of physical
address lines from 48 to 57 and to announce an additional level in
the page tables [45]. Thus this problem will likely be also minimized
with future hardware versions.

With this set of experiments we show, that our approach may
be used detect kernel targeting CRA-based malware in userspace
applications as it does not show any false positives in a benign
scenario.

7.4.3. Userspace Code Pointers
Up until now, we conducted our experiments to validate the code
integrity and detect kernel targeting CRA-based attacks in userspace
data memory. In the following we present the results of our final set
of experiments. With this set of experiments we investigate, if CPE
may also be practically applied to detect return oriented malware
that leverages gadgets within userspace applications. We assume the

157

7. Dynamic Integrity Validation for Userspace Applications

mechanism to be applicable, if the number of false positives detected
by our framework is small (ideally zero).

For this we executed multiple experiments to scrutinize our as-
sumption in practice. During the first execution of this experiment,
all binary packages used on the monitored system were directly taken
from the, at that time current, Debian repository. Thus the software
tested during this experiment represents typical server software as
widely deployed in the internet. Also, as previously discussed, PIE
was not enabled for all applications. A summary of our results for
all processes executed on our test system during the experiment can
be found in Table A.2 in the Appendix of this document (page 188).
The numbers in the table summarize the number of code pointers
that where detected within the memory of each inspected application
according to our classification (described in Section 7.3.2). In the
numbers specify the total number of pointers for that category. The
numbers for bash and apache in marked with an asterisk represents
the share of pointers that point to a non randomized code segment
(no PIE). Applications that are listed in the table multiple times also
had multiple instances running while our test was executed. Still the
numbers for these processes are typically similar, as these processes
mostly share the same address space (code and data pages) due to
the way the processes where initialized (fork()).

Our experiment shows, that our framework detected possible code
pointers that could not be tagged as benign using our classification.
Still the results of this experiment look promising. Compared to the
overall number of pointers detected within the memory of a process,
a large number of pointers could be identified by our framework.
Still, the processes apache2, bash and mysql show a large number of
not identifiable pointers. For the rest of applications, for which full
debug information was available, the number of unknown pointers
is smaller than 10. Thus, from this experiment, it seems that CPE
is not usable to detect malicious pointers in the data memory of
userspace applications. However, we will show, that if important
boundary conditions are considered our approach is in fact usable.

158

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.4. Experimental results

In the following, we focus our discussion of the results on selected
applications that serve as example to discuss the practical problems
that need to be solved in order for an efficient application of our
approach in practice. Table 7.1 gives a summary of the results for
only these processes that we will further discuss in the following. In
addition, detailed results for this run of our experiment with the
apache2 process can be found in Table A.3, results for the mysqld
process can be found in Table A.4. Due to their respective lengths
both tables have been moved to the appendix. Note that, the second
column in these tables contains a X, in case our framework had
access to the internal debug information for a binary during our test.
As described earlier, the number of unidentifiable pointers is also
larger in our system when no debug information is available. That is
due to the fact that internal symbols are unknown to our framework.

Pr
oc
ess
na
me

Db
g.
Sy
mb
ols

Ov
era
ll
Pt
rs

Un
iue

Pt
rs

Pt
r t
o .t

ex
t

Un
kn
ow
n
Pt
rs

Pr
int
ab
le

In
va
lid

In
str
.

Un
int
en
de
d
In
str
.

Un
int
. R

et

apache2 X 3180 1769 1244 86 82 4 63 1
bash - 1492 1195 338 226 66 6 0 0
bash* - 733 500 281 225 66 6 0 0
mysqld X 165115 4280 1700 1323 666 91 473 67
mysqld* X 98834 2140 1192 1041 485 72 301 38

Table 7.1.: Summary of interesting processes during the first run of
userspace CPE experiments. The numbers for processes in
marked with an asterisk represents the share of pointers that
point to a non randomized code segment (no PIE). The
entire results of this experiment can be found in Table A.2
on page 188.

We further analyze and discuss these results in the following and
show that our mechanism still may be applied in practice.
Both the bash and the mysqld processes serve as examples for

applications that are loaded to a memory area near the beginning

159

7. Dynamic Integrity Validation for Userspace Applications

of the virtual address space. While bash is the de facto standard
shell program on Linux systems, mysql is a popular database server
implementation that is widely deployed in the internet. At the time
of writing, both of these network facing applications had not been
compiled to support the security feature PIE by the Debian project.
We will now discuss the detailed results of our scan of the mysqld
process. The detailed results of our experiment with the MySql
server are presented in Table A.4 in the Appendix section. In this
scan, we identified 165, 115 different pointers (4, 280 unique pointers)
in the data memory of the process.

Among these, we could not identify around 1, 323 different unique
pointers that were detected during our experiment. Note that the
majority of the pointers that could not be identified (1041 unique
pointers) point to the program code segment of the loaded executable
and not to any other library within that process. The reason for
this is, that the code segment of the mysqld binary is mapped to the
memory area between 0x00400000 and 0x019fe000 of virtual memory
as this process is not compiled with as PIE. The code segment of
this application is relatively large (21 MB), and is mapped to the
relative beginning of the virtual address space. For this, internal
data like counters have been falsely identified as pointers. To test our
assumption, we recompiled all applications executed on the monitored
test system to also support PIE. The result of this test case is shown
in Table A.5 on page 197. The results for the experiment with the
mysqld process are detailed in Table A.6. We summarize the results
for the processes bash and mysqld in Table 7.2.
As expected, the number of unidentifiable pointers has dropped

multiple orders of magnitudes. For the bash process, it dropped
from 226 to 1. For mysqld we only identified 32.211 different memory
locations as pointers (2.272 unique pointers). The number of unknown
pointer values in this case only is 23. While this number is still
significant, it is now in a range that may be manually analyzed
by a human expert. 8 of these unidentifiable pointers locations
are detected on the program stack and all unidentifiable pointers
still point into the program code segment of the mysqld executable.

160

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.4. Experimental results

Pr
oce

ssn
am
e

Db
g.
Sy
mb
ols

Ov
era
ll P

trs

Un
iue

Pt
rs

Pt
r t
o .t

ex
t

Un
kn
ow
n P

trs

Pr
int
ab
le

Inv
ali
d I
nst
r.

Un
int
en
de
d I
nst
r.

Un
int
. R

et

bash X 1393 1212 375 1 0 0 0 0
mysqld X 32211 2272 678 23 16 5 11 0

Table 7.2.: Summary of the results of important processes in the eval-
uation on a system with PIE enabled. Detail results in
Table A.5 (page 197).

Currently no further manual research has been conducted to further
classify and identify these pointers.

Our experiment shows that by consequently enabling the existing
security mechanism PIE, the number of false positives that are
detected by or system dropped significantly. Thus bringing the
number of false positives into a maintainable level. Still legitimate
data is encountered, that is identified as code pointers when PIE is
enforced on the monitored system. We further analyzed this issue
and found that the reason for this problem are partial overwrites.
The amount of such invalid pointers was low in our experiments

(typically below 10) in applications for which the debug information
with information about internal symbols was available. The numbers
in Table 7.1, however show one test run of our framework, in which
the number of false positives was specifically high. The detailed test
results for the apache2 process are listed in Table A.3 on page 193. In
that test run we detected 86 unknown pointers of which 77 alone point
from memory that belongs to libnss_resolve.so.2 to the program
code of libc-2.24.so. From these assumed pointers 73 are also
flagged as printable by our framework. The other 3 pointers contained
two sequential nullbytes followed by only printable characters and
thus seem to be overwritten by printable characters twice.

161

7. Dynamic Integrity Validation for Userspace Applications

For this we further analyzed the source of this issue. These pointers
where not continuous in memory. However, all the 77 pointers that
we detected point into the function strcpy_ssse3. During our test,
this function was mapped to the virtual address 0x7f1ab10055e0 in
the virtual address space of the apache2 application. That is, in all
the cases when our framework detected an unknown pointer inside
the virtual memory of the apache2 process, the first three bytes
of a valid pointer have been overwritten by a string. Thus in this
testcase, all false positives of our framework stem from the fact, that
legitimate pointers have been partly overwritten by null terminated
character strings.
Finally note, that for the processes that are not marked with a

checkmark in the Tables A.2 and A.5, not all symbol information
was available during the experiments. Thus we expect that most of
the unknown pointers are caused by pointers to internal symbols.

7.5. Discussion and Limitations
After we evaluated our approach in the last section, we shorty sum-
marize our results in this section. Our prototype framework was
successfully able able to validate the integrity of all userspace appli-
cation code executed in a state-of-the art Linux server distribution.
By reiterating the loading process, we are able to not only validate
the code itself, but also important control flow relevant datastruc-
tures and also process management related kernel state. With this
our hypervisor-based system shows to be applicable to provide code
integrity in practice.

In addition we could show, that the detection of kernel pointers in
userspace only holds small amount of false positives in a benign sce-
nario in practice. In case, where only pages where inspected that are
writable no only pointer was identified that could be misinterpreted
as a kernel code pointer. Interestingly, the false positives we have
found during our analysis were only contained within executable only
mapped pages. For this, we assume that scanning userspace memory

162

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.5. Discussion and Limitations

for kernel pointers is an interesting and efficient approach to detect
control structures of data only malware before the guest kernel itself
is attacked.
In contrast, we showed that CPE can not be easily applied to

userspace applications as is. The two major problems we encountered
are partial memory overwrites of old legitimate pointers in memory
and code mappings at the beginning of virtual memory. Due to
this problem the application of CPE to detect code reuse malware
against userspace applications suffers from a lot of legitimate data
that is misinterpreted as malicious pointers by our approach. We
could, however, show that this situation is improved when we applied
CPE to userspace binaries that have both PIC and PIE enabled. We
found that the number of false positives of our system in this case
is manageable. Still, we found that partially overwritten legitimate
pointers are an issue for our system.
Unfortunately, we are unable to distinguish between partially

overwritten pointers and malicious pointers. In our experiments, we
conducted further manual investigation which is very time consuming
and can not always be applied on a production system. To cope with
this problem we introduced the classification of printable pointers.
Our experiments show, that a large number of partial overwrites are
caused by string writes. However, this is not the only reason for
partial overwrites. As such we think that this approach may not be
efficiently applied to userspace memory. Future research may however
find further differentiation factors, which make such an approach
feasible. Nevertheless, we have learned about some aspects in the
handling of userspace applications in modern OSs, that make the
validation of data integrity in general and code pointer integrity in
concrete a interesting research problem.
To summarize, the research in this part of our thesis, has lead to

two results. First, it shows, that ensuring code integrity for both
kernel and userspace code is possible from an external viewpoint
using VMI. Also the brute-force search for kernel code pointers in
physical memory seems to be a promising and efficient technique
to detect kernel code reuse gadgets in memory. However, we also

163

7. Dynamic Integrity Validation for Userspace Applications

discovered, that deficiencies in memory management of userspace
applications leads to a high number of false positives when CPE is
utilized to detect and identify invalid userspace code pointers.

With this, our framework could be employed in a cloud environment
and not only validate the integrity of the guests kernel state, but also
the integrity of important userspace applications. In such a scenario
a dedicated CPU of the host system could be applied to validate the
integrity of all virtualized guests on the system.
During the development of this work, we have also enhanced our

framework to an, as we think, helpful tool for the development of
further VMI applications. Thus in the next section, we introduce
important features that we implemented.

7.6. Application of the Kernel Integrity
Framework

After we have have described our approach to apply our research to
userspace applications, in this section we give a technical overview
over the kernel (and userspace) integrity validation framework, which
we have implemented during this thesis. As the kernel integrity
portion of the framework was already described in detail in previous
chapters of this thesis, we now focus on the technical aspects of
the framework as well as the parts of the framework, which have
been extended in order to conduct integrity validation for userspace
memory presented in this chapter.
To implement our system, we were required to understand and

implement large parts of the operating systems binary loader and the
file formats of executable files. For the binary loader, this includes
both the kernel loader as well as the userspace loading mechanism.
In terms of file formats, we based our efforts on the ELF file format
and the handling of DWARF debug symbol format. In addition to
the file format handling, we also need extract information from kernel
memory which is related to the OSs userspace management. This is
required to reiterate the userspace binary loading process in a way

164

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.6. Application of the Kernel Integrity Framework

that is consistent to the current OS state. This for example includes
information about the current memory mappings of a process, as this
is required to conduct the library relocations. In order to achieve this,
we implemented an generic interface to bridge the semantic gap and
allow easy extraction of semantic information from the introspected
guest operating system and its internal state.

In terms of nomenclature, our framework is based on both deriva-
tive, as well as out-of-bound generated information. The derivative
information is gathered from the hypervisor, in our case through the
help of LibVMI [64]. For this, our framework is agnostic about the
underlying virtualization technology. Most important, this informa-
tion consists of access to the current register contents and access to
the guests physical memory.
In contrast, the information about the loaded binary executables

is extracted in an out-of-band manner from trusted executables. It is
mostly generated during the reiteration of the binary loading and the
relocation phase. For this, as previously stated, the information is
extracted from the ELF headers as well as from the DWARF debug
information. The latter is only processed if available. The ELF
headers contain information about the in-memory layout of the binary.
Special sections exist that contain information about the offsets
within the binary that need to be adapted due to relocation or about
the offsets and names of (internal) symbols. The DWARF debug
information does not only contain the name and memory location
of a symbol, but also additional type and layout information. This
is especially important if further information needs to be extracted
from a specific library.
In its current version, our approach only depends on the avail-

ability for DWARF debug information from the kernel itself. This
conceptually allows to easily extend our work to further analyze com-
plex userspace applications like for example browsers or the Android
ecosystem as part of future work.
We have already implemented our own ELF parsing and loading

mechanism for the previous work. While its functionality was first

165

7. Dynamic Integrity Validation for Userspace Applications

limited to the functionality required to handle the OS kernel, it was
extended to also handle userspace programs as well as libraries.
The binary loading process for the kernel is relatively straight

forward. The ELF header contains a list of memory sections associ-
ated with their corresponding addresses in virtual memory. Also the
kernel contains an initial set of page tables within its data section
that is consistent with the information given in the ELF file. Thus
in order to initially load the kernel, the boot loader only needs to
load the kernel executable to a given offset within physical memory
and execute a short initialization routine that is already part of the
kernel. This gives the advantage, that the loaded sections are already
in the correct order and our replicated kernel loading mechanism only
is required to extract the correct information from the ELF header,
take care of the load-time relocations and the extraction of the in-
formation that is relevant for the kernel runtime self-modifications.
This process was already described in Chapter 5 of this thesis.

In contrast, the loading mechanism for kernel modules and userspace
applications is more complicated, as the addresses for the different
memory segments that are contained within the binary file need to
be extracted from the executing kernel. In addition, unlike the kernel
itself they contain a list of external dependencies, which need to be
loaded into the virtual address space in advance in order to be able to
resolve external symbols. For this, our framework recursively extracts
a dependency tree for the executable and for all its dependencies.
The loading process is then performs as a post-order traversal of the
dependency tree. Note, that for userspace applications the virtual
Dynamically linked Shared Object (vDSO) page that is provided
by the kernel is an additional implicit dependency of every loaded
executable. This page is part of the operating system and is used as
a mechanism to increase the performance of system calls.

For the loading of userspace executables, two additional implemen-
tation problems need to be solved. First, the kernel is only organized
in sections, while the memory layout of userspace applications is
managed in different segments. This makes rebuilding the loading
process more complicated. Second, the physical memory of one spe-

166

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.6. Application of the Kernel Integrity Framework

cific library may also be mapped within multiple different virtual
addresses within multiple processes. Thus the relocation phase needs
to take care of the different virtual offsets, on which the library is
loaded in the different processes. In other words, while the code
segment of a library is the same for all processes the library is loaded
to, the data has to be relocated for every process.

During the loading of an individual userspace binary, also a shadow
copy of all generated VMAs is generated. This is required in order to
validate the information that the kernel holds about the correspond-
ing process. The memory content of each VMA consists of a list
of different segments which are defined within the binary file. In a
next step, the in memory representation of each segment is relocated
according to its actual position within the processes virtual memory.
This requires our framework to resolve all required external sym-
bols which are already loaded into the process due our frameworks
dependency handling.

During the emulation of the loading process, we create a database
of all symbols referenced within each accessed binary. For each loaded
executable, the names, absolute virtual addresses and available type
information of all known symbols are extracted by our framework
after the binary is loaded. This is required for multiple reasons. First,
it is required to resolve external symbols for binaries that depend on
a specific symbol. Second, it can later be used to extract additional
information from the executing process. This information is now
maintained within a separate SymbolManager.
A dedicated SymbolManager instance is created for the kernel as

well as for every userspace process. This is in order to represent
the scope of a specific symbol. When feed with additional type
information information, our framework is able to transparently ex-
tract information from the applications executed on the monitored
machine, as it is able to extract information from the kernel in
the current version. Figure 7.2 shows the class hierarchy provided
by the SymbolManager subsystem of our framework to access the
guests memory. This hierarchy is directly adapted from the DWARF
specification. For each abstract symbol an instance may be created

167

7. Dynamic Integrity Validation for Userspace Applications

ReferencingType

StructuredMember

Variable

Symbol

BaseType

Enum

Function

RefBaseType

Structured

ConstType

FuncPointer

Pointer

Typedef

Array

Struct

Union

Figure 7.2.: Class Hierarchy of to access Guest datastructures.

by associating a virtual address to the type. In combination with
our LibVMI wrapper it is thus directly possible to extract the con-
tents of a symbol from the virtual machine and navigate within the
datastructures.
With this infrastructure in place we have built an easy to use

mechanism to access both kernel and userspace datastructures from
the monitored guest virtual machine. We are thus able to extract
arbitrary information from the monitored kernel. This includes access
to all the executing userspace processes including their respective
virtual address spaces.

To ease the development of custom memory introspection appli-
cations, we implemented a kernel specific custom helper classes, to
extract commonly required information from the monitored guest
VM. We currently implemented two example classes: (1) the Kernel
class and (2) the TaskManager. The first allows to extract high level
state information about the kernel. This includes for example the
list of loaded kernel modules. The TaskManager allows to extract
userspace management related information from the kernel, such
information about currently executing userspace applications as well
as information about the current memory mappings of each process.

168

Ap
pl

ica
tio

n
to

Us
er

sp
ac

e

7.6. Application of the Kernel Integrity Framework

1 ElfKernelLoader kl = KernelValidator::loadKernel();
2 [...]
3 auto tasks = kl->getTaskManager()->getTasks();
4

5 for (auto && task : tasks) {
6 pid_t pid = task.memberByName("pid").getValue<int64_t>();
7 std::string comm = task.memberByName("comm").getValue<std::string>();
8 std::cout << pid << "\t" << comm << std::endl;
9 }

Figure 7.3.: Example code to extract all running processes from an
introspected VM.

Note, that this information is orthogonal to the information that is
stored within the page tables of a specific process.
A developer is is thus easily able to extend our framework to

build custom introspection or validation plugins. An example to
extract a list of all active processes of an introspected VM from
within our framework with only a little bit of C/C++ code5 is
shown in Figure 7.3. The code shows, how the different layers of
accessor functions work together in our framework. First, an object
of class ElfKernelLoader is used, to extract information about the
relevant kernel datastructures. Based on the gathered information
the TaskManager is able to extract specific information from the
kernels userspace management datastructures. In this example about
the struct task_struct. This list can then be further be processed
through our SymbolManager API which provides functions to directly
access the in guest data structures (as shown in Figure 7.2). Note,
that this API uses LibVMI to access the underlying guest VMs
physical memory.
With this framework we are able to transparently extract infor-

mation about the target system on a per process level. With this
infrastructure in place, future versions of our framework may be able
to handle larger userspace applications, which themselves employ

5A python wrapper with basic functionality is also provided.

169

7. Dynamic Integrity Validation for Userspace Applications

their own mechanisms of managing applications. Such as for example
Browsers that employ a lot of Extensions or the Android Framework
with its own Kernel like Runtime Environment and its Apps.

7.7. Summary
In this chapter, we introduced the userspace validation features that
were implemented in our kernel integrity validation framework during
this thesis. Userspace code validation was implemented emulating
the userspace loader within our framework and solely comparing the
in memory representation of the code with the trusted representation.
This is possible due to the valuable property of userspace code to be
static in practice. In addition we successfully applied CPE which
was already introduced in Chapter 6 to the userspace part of the
monitored virtual machine. We could show, that this mechanism,
even though handling a lot more memory, is still a promising approach
to detect kernel code reuse in practice.
Finally, we also showed the practical problems that hinder the

application of CPE to detect userspace targeting CRAs.

170

Co
nc

lu
sio

n

Chapter8
Conclusion and Future Work

As already discussed in this thesis, the detection and prevention of
malware is a major problem in the IT industry. Different stakeholders
provide different anti virus products that are marketed as a panacea
to the problem of malicious software. Unfortunately most of these
commercially available products have in common, that they depend
on the integrity of the underlying operating system to successfully
perform their main task: protect the integrity of the underlying
operating system. In this thesis, we propose mechanisms to protect
the integrity of the operating system without depending on its in-
tegrity. With this section, we want to conclude this thesis. First, we
shortly iterate the contributions of this thesis, then discuss possible
applications and finally give some ideas about possible future work.

8.1. Contributions
When our research effort started, the research in the direction of code
integrity validation became stale. The dominant opinion in academia
on that topic was, that code integrity is easy to validate. This was due

171

8. Conclusion and Future Work

to the fact, that it was believed that the binary code in memory is only
a copy of the code within the application binary. Thus, to validate the
integrity of code, the memory of the OS only needs to be compared
to a trusted reference version. While it was acknowledged that load-
time modifications like relocations are conducted, the codebase was
assumed to be static during runtime.

Kernel Code Integrity In Chapter 5 we scrutinized this well estab-
lished assumption and showed, that this assumption, while being
wide spread, is not correct. Over the years of development, modern
operating systems have included a multitude of different features
and have thus become more and more complex. In contrast, to
support interactive usage, an operating system requires to be as fast
and as efficient as possible. For this reason, OS developers included
different mechanisms into the codebase of the OS kernel that make
use of runtime code self-modification in order to adapt the kernel
code to the current situation and requirements. This is done to
optimize the kernel code to the point that the overhead for context
related decisions during runtime is close to zero. As the first major
contribution of this thesis, we conducted a detailed analysis on the
different self-modification mechanisms employed by modern operat-
ing systems. This includes a detailed discussion about the different
self-patching mechanisms that are employed as well as a study on
how the codebase and the runtime changes can still be validated.
This also includes a validation of the kernels internal state related to
these runtime self-patching mechanisms. To support our theoretical
analysis a VMI-based prototype framework has been implemented
and evaluated, which is able to validate the different runtime changes
made by the OS kernel and that is thus able to validate the code
integrity of a monitored OS during runtime. With this contribution
we give an answer to the first two of our research questions (Q1 and
Q2) that we raised during the introduction of this thesis. During
this work, we also detected and described, what we think is a major
problem of the Linux kernel. Userspace applications are able to load

172

Co
nc

lu
sio

n

8.1. Contributions

arbitrary data into portions of physical memory that are marked
as executable within the OS kernel. The existence of this problem
shows, that we were the first ones to make a detailed investigation
on operating system code integrity validation.

Kernel Data Integrity In the second part of this theses, we directed
our attention to the rest of the contents of OS memory, more specif-
ically the kernel’s data memory. While it is clear, that there is no
way to make general integrity assumptions on data memory, we tried
to still make integrity assumptions about important parts of kernel
memory. For this reason, we turned our attention in the direction
of code pointers within memory. While code pointers are part of
data memory they are also directly related to the control flow of
an operating system. Thus if we are able to make sense about all
code pointers in memory, we are able to make assumptions about
the integrity of the control flow of the OS. To aid this research, we
theoretically analyzed existing CFI approaches. These approaches
require to closely monitor the execution of a target system in order
to detect a control flow violation directly at the point it happens.
Thus these mechanisms suffer from significant performance overheads.
While researchers tried to increase the performance of these systems
they where required to trade performance against the security of the
system. In Chapter 4 we argue that current CFI concepts may not be
sufficient to be applied to operating system kernels. Together with
our knowledge about the internals of modern operating systems, we
concluded that CFI mechanisms alone can not completely mitigate
control-flow violations in practice.
In contrast, while our system is unable to actively detect and

mitigate a control flow violation, we are able to make integrity
assumptions based only on the contents of data memory, as we are
able to detect the control structures of data-only malware. Thus,
in Chapter 6 we elaborate on CPE, our approach to detect and
classify code pointers in kernel data memory. We have implemented
a practical prototype of our concept and in an evaluation, we show

173

8. Conclusion and Future Work

that our mechanism is both efficient and has a low number of false
positives in practice. With this, our framework is able to detect
control structures of data-only malware in memory, thus giving a
hint about an infection, in case the infection could not be prevented
by using CFI mechanisms in the first place. Note, that we did not
encounter a single false positive in our experiments. With this part
of our research we give an answer to the third research question (Q3)
that we raised within this thesis. As our system is unable to actively
detect control flow violations we propose to combine our approach
with other research in the field of CFI.

Userspace Applicability Finally, we also investigated if the results
of this thesis may also be applied to userspace applications. For this,
we extended the framework developed in this thesis to also support
the replication of the Linux userspace loading process. In Chapter 7
we present our results of this work. We successfully implemented
both userspace code validation as well as the detection of kernel
targeting data-only malware in userspace memory. In short, we think
that it is possible to apply CPE to userspace memory. This way, one
may even be able to detect malware that makes use of code reuse
such as return oriented programming already before it is loaded into
the kernel by an attacker. This could be used as defense mechanism,
similar as the search for executable instructions or shellcode is used
in network based intrusion detection systems today.

In a last investigation, we made experiments to detect and clas-
sify userspace code pointers in order to detect code reuse malware
targeting userspace applications. We showed that under certain
circumstances CPE can also be applied in this use case. However, we
found that this application does not seem to be successfully applica-
ble in practice due to limitations that are set by the current system
architecture. With this we give an answer to the forth research
question (Q4) that was raised in the beginning of this thesis.

174

Co
nc

lu
sio

n

8.2. Practical Application

Open Framework for Integrity Validation To conclude, while we
are not able to give an binary answer to the question if a current
system state can be trusted, we are able successfully make integrity
assumptions and detect code reuse malware within an operating
system without continuous control flow monitoring by only analyzing
the memory contents from an external position. During this research,
we also extended our prototype framework in a way, that it is suc-
cessfully able to bridge the semantic gap and allows developers to
easily extract information from the memory of a monitored virtual
machine. With this we support the development of further memory
introspection tools that aim to validate further parts of the state
of important systems. To promote further development of integrity
validation tools, the prototype framework created within this thesis
was published under an open-source license:

• https://github.com/kittel/kernel_integrity

• https://github.com/kittel/libdwarfparser

8.2. Practical Application
In this section, we shortly want to discuss the practical application of
the proposed framework. Due to its architectural nature, VMI-based
protection mechanisms are generally seen as inefficient. To extract
information about its current execution, the monitored target system
is typically paused in regular intervals (e. g. each instruction, each
branch instruction, or every time the instruction pointer exceeds a
page boundary in memory). To minimize the overhead, the amount
of information that is monitored and extracted in a synchronous
manner through VMI should be kept to a minimum in a production
environment. For this reason, a differentiation between lightweight
and heavyweight detection mechanisms should be made [34]. In such
a scenario, the approach presented in this thesis could be used as
a lightweight detection mechanism and, in case an indication for
a malicious modification is found, a more heavyweight detection

175

https://github.com/kittel/kernel_integrity
https://github.com/kittel/libdwarfparser

8. Conclusion and Future Work

mechanism may be activated to scan for further evidence. So, high
overhead is prevented in normal system execution.

Another idea is to virtualize the target system on-the-fly, an idea
first proposed by Rutkowska in 2006 [77]. This is effectively an
extension of the scenario proposed above. Instead of executing the
target system in a virtualized environment during normal execution,
the system may be executed without active virtualization. Once
any evidence for malicious behavior is detected, the system may be
virtualized and lightweight VMI-based malware detection mechanisms
may be applied. If the evidence can not be confirmed through the
VMI-based detection mechanisms the hypervisor may unload itself
leaving the system in an unvirtualized state again. A version of this
mechanism targeting the Intel architecture was implemented as a
master thesis [72], during this thesis. At the time of writing this
work however was not yet published as academic paper.

8.3. Future Work
After we have wrapped up our conclusions and shortly provided some
ideas for practical application, in the following we shortly introduce
some future work and research directions for each of the research
direction that we have presented throughout this thesis.

Kernel Code Integrity Future work related to kernel code integrity
validation is mostly implementation work. Our current prototype
implementation of our kernel integrity framework is based on the
Linux kernel. Currently for each supported kernel version some
modifications are necessary. In order to extend the applicability of
our system a kernel version agnostic abstraction layer needs to be
implemented. This layer should contain abstract information about
the different self-patching mechanisms that need to be validated and
information about the corresponding in memory representation of
important data structures. That is different kernel versions rename
or change the layout of required kernel objects. In order to support

176

Co
nc

lu
sio

n

8.3. Future Work

future kernel versions, an abstract database needs to be created that
contains information on where to find specific information within
kernel memory.
In addition, since our work on this topic another runtime self-

modification mechanism has been included into the main line kernel.
That is, the kernel now supports KPatch1. With this mechanism
security patches can be applied during runtime, eliminating the need
for a kernel reboot after updates. With KPatch entire functions
can be replaced during runtime. If the new version of the function
is shorter than the old version, the new function replaces the old
function. If the new function requires more space, the new function
is placed in another part of executable memory and an unconditional
branch to the new function is inserted at the beginning of the old
function. Our framework currently does not support the validation
of this new feature. Thus support for this feature should be included
as part of future work.

Next, the ideas and the prototype implementation created through-
out this thesis currently are only thoroughly tested on the Intel ar-
chitecture. The prototype could be extended to further architectures
such as for example the ARM architecture. With this, its scope
could be extended from validating the integrity of servers in a cloud
environment, to for example validate the OS code integrity in mobile
devices. This seems even more important, as these devices are more
commonly used and are thus also a profitable attack target. Finally,
the scope of our kernel code integrity prototype was restricted to
the Linux platform. Thus it would be interesting to also study the
wide spread Windows platform for similar runtime code patching
mechanisms.

Code Pointer Integrity During our work on CPE, we implemented
a simple algorithm to validate the contents of kernel stacks. As we
explained, this algorithm is currently not able to validate the contents
of a stack reliably. Thus future work should be dedicated to this topic.

1http://rhelblog.redhat.com/2014/02/26/kpatch/

177

8. Conclusion and Future Work

A technique should be proposed, that is able to reliably validate the
content of a given stack frame in memory. While this problem seems
to be easily solvable in theory, it is not trivial, as the stack might
contain additional unrelated pointers and old uninitialized contents.
An extension of this work could also give hints on whether the given
stack is a legitimate stack that was created during program execution
or whether the execution of the sequence of return instructions on
the stack results in malicious behavior. We already proposed this
problem as, what we think is an important research question (Q5)
in the beginning of this thesis. Another topic for future work is the
inclusion of symbolic execution. Once a malicious pointer is identified
by our approach, more information about the potential gadget could
be extracted. With this a further classification of the pointer could
be made. For example, concerning information about the different
registers or memory addresses that are manipulated by the gadget.

Another interesting topic would be to extend existing research in
the area of CFI to also be able to handle how, object orientation is
emulated within C program such as the Linux kernel. As already
introduced in Chapter 4 existing CFI mechanisms already aim to
handle C++ vtable structures. The Linux kernel uses a similar mech-
anism to simulate object oriented functionality. It contains dedicated
datastructures (*_ops), similar to vtables, that contain pointers to
functions that are directly related to a certain datastructure. In
contrast to C++ vtables, the C structures to not contain a reference
to their corresponding *_ops data structures. First such a relation
should be automatically inferred, for example from the source code,
or by analyzing the function signatures of the corresponding func-
tions. Then, mechanisms should be developed, to efficiently check
the integrity of such data structures in memory.

Application to Userspace Additional future work should be con-
ducted in the validation of userspace processes during runtime. One
important part is the generation of ground truth for the ifunc
relocation mechanism introduced in Section 7.2. This could be imple-

178

8.4. Final Words

mented by integrating an additional symbolic execution plugin into
our framework. As we do not expect any algorithmic mechanisms to
handle partly overwritten legitimate pointers, it would be interesting
to find methods to be able to differentiate between partly overwritten
legitimate pointers. For this, first the question should be answered,
if it is possible to implement return oriented malware that solely
makes use of gadgets that are stored at such ambiguous addresses.
If such malware exists, its detection becomes rather complicated in
practice. We also suggest to spend efforts in the question of how to
generally separate a malicious control flow from a benign one. Thus,
for example, given the contents of the current stack of a process,
decide, whether the application is malicious or not.

Finally, as part of our thesis large efforts have been made to provide
a transparent interface for a developer to bridge the semantic gap
and enable the easy development of introspection tools. As part of
future work, the created libraries could be enhanced to support not
only OS kernels, but also common middleware application such as
the Android Runtime (ART) or modern browsers, which themselves
are as complicated as an operating system. With this effort, our
framework could be extended to also validate the integrity of for
example single Android Apps.

8.4. Final Words
In this work we made efforts to make integrity assumptions about
modern operating systems. We hope, that the investigations and
results made in this thesis, especially the outlined problems, that
we exposed within the OS design help to improve the design and
architecture of future versions of operating systems.

179

AppendixA
Appendix

A.1. Tables
The following table shows a list of vtable like structures in the
Linux kernel adhering to the naming convention *_ops. The list was
extracted from the source code of Linux 4.5.

Table A.1
struct name defined in
acpi_debugger_ops include/linux/acpi.h
acpi_device_ops include/acpi/acpi_bus.h
acpi_pci_root_ops include/linux/pci-acpi.h
assoc_array_ops include/linux/assoc_array.h
atmdev_ops include/linux/atmdev.h
atmphy_ops include/linux/atmdev.h
atm_tcp_ops include/linux/atm_tcp.h
auth_ops include/linux/sunrpc/svcauth.h
backlight_ops include/linux/backlight.h
bcma_host_ops include/linux/bcma/bcma.h
blk_mq_ops include/linux/blk-mq.h
bpf_map_ops include/linux/bpf.h
bpf_verifier_ops include/linux/bpf.h
c2port_ops include/linux/c2port.h
cdrom_device_ops include/linux/cdrom.h
ceph_auth_client_ops include/linux/ceph/auth.h
cfhsi_cb_ops include/net/caif/caif_hsi.h
cfhsi_ops include/net/caif/caif_hsi.h
cleancache_ops include/linux/cleancache.h
clk_hw_omap_ops include/linux/clk/ti.h
clk_ops include/linux/clk-provider.h

181

A. Appendix

Table A.1 – continued from previous page
struct name defined in
component_master_ops include/linux/component.h
component_ops include/linux/component.h
coresight_ops include/linux/coresight.h
coresight_ops_link include/linux/coresight.h
coresight_ops_sink include/linux/coresight.h
coresight_ops_source include/linux/coresight.h
cx2341x_handler_ops include/media/drv-intf/cx2341x.h
dca_ops include/linux/dca.h
dcbnl_rtnl_ops include/net/dcbnl.h
devfreq_event_ops include/linux/devfreq-event.h
dev_pm_ops include/linux/pm.h
dlm_lockspace_ops include/linux/dlm.h
dma_buf_ops include/linux/dma-buf.h
dma_map_ops include/linux/dma-mapping.h
drbg_state_ops include/crypto/drbg.h
dss_mgr_ops include/video/omapdss.h
dst_ops include/net/dst_ops.h
dw_mci_dma_ops include/linux/mmc/dw_mmc.h
ep93xx_spi_chip_ops include/linux/platform_data/spi-ep93xx.h
ethtool_ops include/linux/ethtool.h
exynos_media_pipeline_ops include/media/drv-intf/exynos-fimc.h
fb_ops include/linux/fb.h
fb_tile_ops include/linux/fb.h
fence_ops include/linux/fence.h
fib_rules_ops include/net/fib_rules.h
flow_cache_ops include/net/flow.h
fpga_manager_ops include/linux/fpga/fpga-mgr.h
frontswap_ops include/linux/frontswap.h
fscache_cache_ops include/linux/fscache-cache.h
fsnotify_ops include/linux/fsnotify_backend.h
ftrace_ops include/linux/ftrace.h
ftrace_ops_hash include/linux/ftrace.h
ftrace_probe_ops include/linux/ftrace.h
genl_ops include/net/genetlink.h
gpd_dev_ops include/linux/pm_domain.h
gss_api_ops include/linux/sunrpc/gss_api.h
hdac_bus_ops include/sound/hdaudio.h
hdac_ext_codec_ops include/sound/hdaudio_ext.h
hdac_io_ops include/sound/hdaudio.h
hdlcdrv_ops include/linux/hdlcdrv.h
header_ops include/linux/netdevice.h
host1x_bo_ops include/linux/host1x.h
host1x_client_ops include/linux/host1x.h
hotplug_slot_ops include/linux/pci_hotplug.h
i915_audio_component_audio_ops include/drm/i915_component.h
i915_audio_component_ops include/drm/i915_component.h
ib_dma_mapping_ops include/rdma/ib_verbs.h
ide_disk_ops include/linux/ide.h
ide_dma_ops include/linux/ide.h
ide_port_ops include/linux/ide.h
ide_tp_ops include/linux/ide.h
iio_buffer_setup_ops include/linux/iio/iio.h
iio_dma_buffer_ops include/linux/iio/buffer-dma.h
iio_sw_trigger_ops include/linux/iio/sw_trigger.h
iio_trigger_ops include/linux/iio/trigger.h
inet_connection_sock_af_ops include/net/inet_connection_sock.h
iommu_ops include/linux/iommu.h
iommu_ops include/linux/iommu.h
ipack_bus_ops include/linux/ipack.h
ipack_driver_ops include/linux/ipack.h
ip_tunnel_encap_ops include/net/ip_tunnels.h

182

A.1. Tables

Table A.1 – continued from previous page
struct name defined in
irq_domain_ops include/linux/irqdomain.h
iscsi_conn_ops include/target/iscsi/iscsi_target_core.h
iscsi_sess_ops include/target/iscsi/iscsi_target_core.h
kernel_param_ops include/linux/moduleparam.h
kernfs_ops include/linux/kernfs.h
kernfs_syscall_ops include/linux/kernfs.h
kexec_file_ops include/linux/kexec.h
kset_uevent_ops include/linux/kobject.h
kvm_device_ops include/linux/kvm_host.h
kvm_io_device_ops include/kvm/iodev.h
l2cap_ops include/net/bluetooth/l2cap.h
l3mdev_ops include/net/l3mdev.h
latch_tree_ops include/linux/rbtree_latch.h
lcd_ops include/linux/lcd.h
led_flash_ops include/linux/led-class-flash.h
lwtunnel_encap_ops include/net/lwtunnel.h
mbox_chan_ops include/linux/mailbox_controller.h
mbus_hw_ops include/linux/mic_bus.h
mcp_ops include/linux/mfd/mcp.h
mdiobb_ops include/linux/mdio-bitbang.h
mipi_dsi_host_ops include/drm/drm_mipi_dsi.h
mipi_dsim_master_ops include/video/exynos_mipi_dsim.h
mmc_host_ops include/linux/mmc/host.h
mmp_overlay_ops include/video/mmp_disp.h
mmp_path_ops include/video/mmp_disp.h
mmu_notifier_ops include/linux/mmu_notifier.h
mpc8xx_pcmcia_ops include/linux/fsl_devices.h
msi_domain_ops include/linux/msi.h
mtd_blktrans_ops include/linux/mtd/blktrans.h
mtd_oob_ops include/linux/mtd/mtd.h
nci_driver_ops include/net/nfc/nci_core.h
nci_ops include/net/nfc/nci_core.h
nci_uart_ops include/net/nfc/nci_core.h
neigh_ops include/net/neighbour.h
net_device_ops include/linux/netdevice.h
nfc_digital_ops include/net/nfc/digital.h
nfc_hci_ops include/net/nfc/hci.h
nfc_ops include/net/nfc/nfc.h
nfc_phy_ops include/net/nfc/nfc.h
nf_hook_ops include/linux/netfilter.h
nf_ipv6_ops include/linux/netfilter_ipv6.h
nfs_commit_completion_ops include/linux/nfs_xdr.h
nf_sockopt_ops include/linux/netfilter.h
nfs_pageio_ops include/linux/nfs_page.h
nfs_pgio_completion_ops include/linux/nfs_xdr.h
nfs_rpc_ops include/linux/nfs_xdr.h
nfs_rw_ops include/linux/nfs_page.h
nft_expr_ops include/net/netfilter/nf_tables.h
nft_set_ops include/net/netfilter/nf_tables.h
nsc_gpio_ops include/linux/nsc_gpio.h
ntb_client_ops include/linux/ntb.h
ntb_ctx_ops include/linux/ntb.h
ntb_dev_ops include/linux/ntb.h
nvm_dev_ops include/linux/lightnvm.h
of_pdt_ops include/linux/of_pdt.h
omapdss_atv_ops include/video/omapdss.h
omapdss_dpi_ops include/video/omapdss.h
omapdss_dsi_ops include/video/omapdss.h
omapdss_dvi_ops include/video/omapdss.h
omapdss_hdmi_ops include/video/omapdss.h
omapdss_sdi_ops include/video/omapdss.h

183

A. Appendix

Table A.1 – continued from previous page
struct name defined in
omap_hdmi_audio_ops include/sound/omap-hdmi-audio.h
omap_mcbsp_ops include/linux/platform_data/asoc-ti-mcbsp.h
otg_fsm_ops include/linux/usb/otg-fsm.h
pci_ops include/linux/pci.h
pcr_ops include/linux/mfd/rtsx_pci.h
phy_ops include/linux/phy/phy.h
pinconf_ops include/linux/pinctrl/pinconf.h
pinctrl_ops include/linux/pinctrl/pinctrl.h
pingv6_ops include/net/ping.h
pinmux_ops include/linux/pinctrl/pinmux.h
platform_freeze_ops include/linux/suspend.h
platform_hibernation_ops include/linux/suspend.h
platform_suspend_ops include/linux/suspend.h
plat_sci_port_ops include/linux/serial_sci.h
plat_vlynq_ops include/linux/vlynq.h
powercap_control_type_ops include/linux/powercap.h
powercap_zone_constraint_ops include/linux/powercap.h
powercap_zone_ops include/linux/powercap.h
ppi_ops include/media/blackfin/ppi.h
ppp_channel_ops include/linux/ppp_channel.h
preempt_ops include/linux/preempt.h
pr_ops include/linux/pr.h
proto_ops include/linux/net.h
pwm_ops include/linux/pwm.h
qcom_smem_state_ops include/linux/soc/qcom/smem_state.h
Qdisc_class_ops include/net/sch_generic.h
Qdisc_ops include/net/sch_generic.h
qed_common_cb_ops include/linux/qed/qed_if.h
qed_common_ops include/linux/qed/qed_if.h
qed_eth_cb_ops include/linux/qed/qed_eth_if.h
qed_eth_ops include/linux/qed/qed_eth_if.h
quotactl_ops include/linux/quota.h
quota_format_ops include/linux/quota.h
rate_control_ops include/net/mac80211.h
regulator_ops include/linux/regulator/driver.h
request_sock_ops include/net/request_sock.h
reserved_mem_ops include/linux/of_reserved_mem.h
reset_control_ops include/linux/reset-controller.h
rfkill_ops include/linux/rfkill.h
rio_ops include/linux/rio.h
rio_switch_ops include/linux/rio.h
rpc_call_ops include/linux/sunrpc/sched.h
rpc_pipe_dir_object_ops include/linux/sunrpc/rpc_pipe_fs.h
rpc_pipe_ops include/linux/sunrpc/rpc_pipe_fs.h
rpc_xprt_ops include/linux/sunrpc/xprt.h
rproc_ops include/linux/remoteproc.h
rtc_class_ops include/linux/rtc.h
rtnl_af_ops include/net/rtnetlink.h
rtnl_link_ops include/net/rtnetlink.h
sbc_ops include/target/target_core_backend.h
scpi_ops include/linux/scpi_protocol.h
sh_clk_ops include/linux/sh_clk.h
shdma_ops include/linux/shdma-base.h
sh_mobile_lcdc_sys_bus_ops include/video/sh_mobile_lcdc.h
skb_checksum_ops include/linux/skbuff.h
snd_ac97_build_ops include/sound/ac97_codec.h
snd_ac97_bus_ops include/sound/ac97_codec.h
snd_ak4xxx_ops include/sound/ak4xxx-adda.h
snd_compr_ops include/sound/compress_driver.h
snd_device_ops include/sound/core.h
snd_hwdep_ops include/sound/hwdep.h

184

A.1. Tables

Table A.1 – continued from previous page
struct name defined in
snd_i2c_bit_ops include/sound/i2c.h
snd_i2c_ops include/sound/i2c.h
snd_info_entry_ops include/sound/info.h
snd_pcm_ops include/sound/pcm.h
snd_rawmidi_global_ops include/sound/rawmidi.h
snd_rawmidi_ops include/sound/rawmidi.h
snd_sb_csp_ops include/sound/sb16_csp.h
snd_soc_compr_ops include/sound/soc.h
snd_soc_dai_ops include/sound/soc-dai.h
snd_soc_ops include/sound/soc.h
snd_soc_tplg_bytes_ext_ops include/sound/soc-topology.h
snd_soc_tplg_io_ops include/uapi/sound/asoc.h
snd_soc_tplg_kcontrol_ops include/sound/soc-topology.h
snd_soc_tplg_ops include/sound/soc-topology.h
snd_tea575x_ops include/media/drv-intf/tea575x.h
snd_vx_ops include/sound/vx_core.h
soc_camera_host_ops include/media/soc_camera.h
ssb_bus_ops include/linux/ssb/ssb.h
ste_modem_dev_ops include/linux/ste_modem_shm.h
superhyway_ops include/linux/superhyway.h
svc_serv_ops include/linux/sunrpc/svc.h
svc_xprt_ops include/linux/sunrpc/svc_xprt.h
svm_dev_ops include/linux/intel-svm.h
switchdev_ops include/net/switchdev.h
syscore_ops include/linux/syscore_ops.h
sysfs_ops include/linux/sysfs.h
target_backend_ops include/target/target_core_backend.h
target_core_fabric_ops include/target/target_core_fabric.h
tc_action_ops include/net/act_api.h
tcf_ematch_ops include/net/pkt_cls.h
tcf_proto_ops include/net/sch_generic.h
tcp_congestion_ops include/net/tcp.h
tcp_request_sock_ops include/net/tcp.h
tcp_sock_af_ops include/net/tcp.h
team_mode_ops include/linux/if_team.h
tegra_cpu_car_ops include/linux/clk/tegra.h
thermal_cooling_device_ops include/linux/thermal.h
thermal_zone_device_ops include/linux/thermal.h
thermal_zone_of_device_ops include/linux/thermal.h
ti_clk_ll_ops include/linux/clk/ti.h
timewait_sock_ops include/net/timewait_sock.h
tpm_class_ops include/linux/tpm.h
tty_ldisc_ops include/linux/tty_ldisc.h
uart_ops include/linux/serial_core.h
ulpi_ops include/linux/ulpi/interface.h
usb_ep_ops include/linux/usb/gadget.h
usb_gadget_ops include/linux/usb/gadget.h
usb_phy_io_ops include/linux/usb/phy.h
v4l2_clk_ops include/media/v4l2-clk.h
v4l2_ctrl_ops include/media/v4l2-ctrls.h
v4l2_ctrl_type_ops include/media/v4l2-ctrls.h
v4l2_flash_ops include/media/v4l2-flash-led-class.h
v4l2_ioctl_ops include/media/v4l2-ioctl.h
v4l2_m2m_ops include/media/v4l2-mem2mem.h
v4l2_subdev_audio_ops include/media/v4l2-subdev.h
v4l2_subdev_core_ops include/media/v4l2-subdev.h
v4l2_subdev_internal_ops include/media/v4l2-subdev.h
v4l2_subdev_ir_ops include/media/v4l2-subdev.h
v4l2_subdev_ops include/media/v4l2-subdev.h
v4l2_subdev_pad_ops include/media/v4l2-subdev.h
v4l2_subdev_sensor_ops include/media/v4l2-subdev.h

185

A. Appendix

Table A.1 – continued from previous page
struct name defined in
v4l2_subdev_tuner_ops include/media/v4l2-subdev.h
v4l2_subdev_vbi_ops include/media/v4l2-subdev.h
v4l2_subdev_video_ops include/media/v4l2-subdev.h
v4l2_subscribed_event_ops include/media/v4l2-event.h
vb2_buf_ops include/media/videobuf2-core.h
vb2_mem_ops include/media/videobuf2-core.h
vb2_ops include/media/videobuf2-core.h
vexpress_config_bridge_ops include/linux/vexpress.h
vfio_device_ops include/linux/vfio.h
vfio_iommu_driver_ops include/linux/vfio.h
vga_switcheroo_client_ops include/linux/vga_switcheroo.h
vgic_ops include/kvm/arm_vgic.h
vgic_vm_ops include/kvm/arm_vgic.h
videobuf_qtype_ops include/media/videobuf-core.h
videobuf_queue_ops include/media/videobuf-core.h
virtio_config_ops include/linux/virtio_config.h
vpbe_device_ops include/media/davinci/vpbe.h
vpbe_osd_ops include/media/davinci/vpbe_osd.h
vringh_config_ops include/linux/vringh.h
watchdog_ops include/linux/watchdog.h
wkup_m3_ipc_ops include/linux/wkup_m3_ipc.h
wm97xx_mach_ops include/linux/wm97xx.h
wpan_dev_header_ops include/net/cfg802154.h
zbud_ops include/linux/zbud.h
zpool_ops include/linux/zpool.h

Table A.1.: Vtable like structures in the Linux kernel adhering to the
naming convention *_ops extracted from Linux 4.5.

186

A
.1.

Tables
Table A.2

Pr
oc

es
sn

am
e

D
bg

.
Sy

m
bo

ls

O
ve

ra
ll

Pt
rs

U
ni

ue
Pt

rs

Pt
r

to
.t

ex
t

U
nk

no
wn

Pt
rs

Pr
in

ta
bl

e

In
va

lid
In

st
r.

U
ni

nt
en

de
d

In
st

r.
U

ni
nt

.
Re

t
agetty - 399 (0) 274 (0) 130 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0)
agetty - 419 (0) 289 (0) 140 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0)
apache2 X 3180 (0) 1769 (0) 1244 (0) 86 (0) 82 (0) 4 (0) 63 (0) 1 (0)
apache2 X 3682 (0) 1868 (0) 1289 (0) 86 (0) 82 (0) 4 (0) 63 (0) 1 (0)
apache2 X 3682 (0) 1868 (0) 1289 (0) 86 (0) 82 (0) 4 (0) 63 (0) 1 (0)
atd - 438 (0) 324 (0) 115 (0) 3 (0) 0 (0) 0 (0) 0 (0) 0 (0)
bash - 1492 (733) 1195 (500) 338 (281) 226 (225) 66 (66) 6 (6) 0 (0) 0 (0)
bash - 1507 (737) 1195 (497) 331 (274) 225 (225) 66 (66) 6 (6) 0 (0) 0 (0)
bash - 1515 (740) 1193 (496) 330 (272) 226 (225) 66 (66) 6 (6) 1 (0) 0 (0)
bash - 1522 (753) 1202 (502) 335 (275) 224 (224) 65 (65) 6 (6) 0 (0) 0 (0)
bash - 1764 (843) 1309 (520) 378 (305) 233 (231) 70 (70) 8 (8) 0 (0) 0 (0)
cron - 571 (91) 372 (54) 140 (20) 6 (3) 2 (1) 0 (0) 2 (0) 0 (0)
dbus-daemon - 819 (0) 546 (0) 217 (0) 44 (0) 5 (0) 0 (0) 0 (0) 0 (0)
dhclient - 721 (0) 531 (0) 187 (0) 98 (0) 9 (0) 0 (0) 0 (0) 0 (0)
exim4 - 1046 (0) 653 (0) 201 (0) 9 (0) 0 (0) 0 (0) 3 (0) 2 (0)
irqbalance - 489 (121) 322 (76) 132 (27) 5 (5) 2 (2) 0 (0) 0 (0) 0 (0)
mysqld X 165115 (98834) 4280 (2140) 1700 (1192) 1323 (1041) 666 (485) 91 (72) 473 (301) 67 (38)
named - 2774 (0) 1353 (0) 371 (0) 151 (0) 12 (0) 0 (0) 0 (0) 0 (0)
rpcbind - 802 (84) 561 (39) 159 (14) 8 (7) 1 (1) 0 (0) 0 (0) 0 (0)
rsyslogd - 1917 (0) 870 (0) 553 (0) 249 (0) 16 (0) 0 (0) 0 (0) 0 (0)
sftp-server - 367 (0) 236 (0) 109 (0) 4 (0) 3 (0) 0 (0) 3 (0) 0 (0)
sshd - 1339 (0) 988 (0) 219 (0) 22 (0) 1 (0) 1 (0) 1 (0) 1 (0)
sshd - 1731 (0) 1270 (0) 338 (0) 23 (0) 1 (0) 0 (0) 0 (0) 0 (0)
sshd - 1855 (0) 1342 (0) 372 (0) 23 (0) 1 (0) 0 (0) 0 (0) 0 (0)
sshd - 1855 (0) 1342 (0) 372 (0) 23 (0) 5 (0) 0 (0) 0 (0) 0 (0)
sshd - 1972 (0) 1280 (0) 337 (0) 44 (0) 3 (0) 0 (0) 0 (0) 0 (0)
sshd - 2051 (0) 1332 (0) 374 (0) 45 (0) 8 (0) 0 (0) 1 (0) 0 (0)
sshd - 2066 (0) 1339 (0) 378 (0) 45 (0) 3 (0) 0 (0) 1 (0) 0 (0)
systemd X 1096 (0) 769 (0) 220 (0) 1 (0) 1 (0) 0 (0) 1 (0) 0 (0)
systemd X 3141 (0) 1587 (0) 374 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0)
systemd X 3473 (0) 1351 (0) 290 (0) 1 (0) 1 (0) 0 (0) 1 (0) 0 (0)
systemd-journald X 644 (0) 454 (0) 163 (0) 1 (0) 1 (0) 0 (0) 1 (0) 0 (0)
systemd-logind X 837 (0) 629 (0) 171 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
systemd-resolved X 877 (0) 590 (0) 191 (0) 3 (0) 2 (0) 1 (0) 1 (0) 0 (0)
systemd-timesyncd X 882 (0) 610 (0) 178 (0) 1 (0) 1 (0) 0 (0) 1 (0) 0 (0)
systemd-udevd X 800 (0) 530 (0) 212 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
test X 836 (0) 568 (0) 128 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

187

A
.

A
ppendix

Table A.2 – continued from previous page

Pr
oc

es
sn

am
e

D
bg

.
Sy

m
bo

ls

O
ve

ra
ll

Pt
rs

U
ni

ue
Pt

rs

Pt
r

to
.t

ex
t

U
nk

no
wn

Pt
rs

Pr
in

ta
bl

e

In
va

lid
In

st
r.

U
ni

nt
en

de
d

In
st

r.
U

ni
nt

.
Re

t

tmux - 1203 (0) 944 (0) 205 (0) 35 (0) 0 (0) 0 (0) 0 (0) 0 (0)
tmux - 381 (0) 266 (0) 92 (0) 6 (0) 0 (0) 0 (0) 0 (0) 0 (0)
vim.basic - 1137 (0) 930 (0) 171 (0) 25 (0) 17 (0) 3 (0) 16 (0) 0 (0)

Table A.2.: Statistic of number of identified userspace pointers during one run through the entire
system. The system solely consists of applications packages taken from the current
Debian repository. During the experiment all libraries have been compiled to be posi-
tion independent (fPIC). However, not all applications have been compiled as position
independent (fPIE). Processes that are executed multiple times concurrently are listed
multiple times. The number in brackets shows the number of pointers that point to non
randomized code segments.

188

A.1. Tables

This table shows a detailed report about an executing instance of
the apache2 process.

Table A.3

Fr
om

M
ap
pi
ng

To
M
ap
pi
ng

D
bg
.
Sy
m
bo
ls

O
ve
ra
ll
Pt
rs

U
ni
ue
Pt
rs

Pt
r
to

.t
ex

t

U
nk
no
wn

Pt
rs

Pr
in
ta
bl
e

In
va
lid

In
st
r.

U
ni
nt
en
de
d
In
st
r.

U
ni
nt
.
Re
t

<unknown> mod_mpm_event.so X 1 1 1 0 0 0 0 0
<unknown> libc-2.24.so X 12 8 4 0 0 0 0 0
<unknown> libpthread-2.24.so X 1 1 1 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 7 6 2 0 0 0 0 0
<unknown> ld-2.24.so X 6 6 6 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0

189

A. Appendix

Table A.3 – continued from previous page

Fr
om

M
ap
pi
ng

To
M
ap
pi
ng

D
bg
.
Sy
m
bo
ls

O
ve
ra
ll
Pt
rs

U
ni
ue
Pt
rs

Pt
r
to

.t
ex

t

U
nk
no
wn

Pt
rs

Pr
in
ta
bl
e

In
va
lid

In
st
r.

U
ni
nt
en
de
d
In
st
r.

U
ni
nt
.
Re
t

<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0

190

A.1. Tables

Table A.3 – continued from previous page

Fr
om

M
ap
pi
ng

To
M
ap
pi
ng

D
bg
.
Sy
m
bo
ls

O
ve
ra
ll
Pt
rs

U
ni
ue
Pt
rs

Pt
r
to

.t
ex

t

U
nk
no
wn

Pt
rs

Pr
in
ta
bl
e

In
va
lid

In
st
r.

U
ni
nt
en
de
d
In
st
r.

U
ni
nt
.
Re
t

<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 2 2 2 0 0 0 0 0
<unknown> apache2 X 1 1 1 0 0 0 0 0
<unknown> mod_mpm_event.so X 2 2 2 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 9 5 4 0 0 0 0 0
<unknown> libapr-1.so.0.5.2 X 5 4 2 0 0 0 0 0
<unknown> ld-2.24.so X 6 6 6 0 0 0 0 0
<unknown> libgcc_s.so.1 - 22 21 3 0 0 0 0 0
<unknown> libc-2.24.so X 1 1 0 0 0 0 0 0
libnss_compat-2.24.so libnss_nis-2.24.so X 16 11 11 0 0 0 0 0
libpthread-2.24.so libdl-2.24.so X 1 1 1 0 0 0 0 0
libpthread-2.24.so libc-2.24.so X 14 14 13 0 0 0 0 0
libapr-1.so.0.5.2 libdl-2.24.so X 3 3 3 0 0 0 0 0
libapr-1.so.0.5.2 libc-2.24.so X 43 43 43 0 0 0 0 0
libapr-1.so.0.5.2 libpthread-2.24.so X 21 21 21 0 0 0 0 0
libaprutil-1.so.0.5.4 libc-2.24.so X 5 5 5 0 0 0 0 0
libaprutil-1.so.0.5.4 libapr-1.so.0.5.2 X 8 8 8 0 0 0 0 0
libpcre.so.3.13.1 libc-2.24.so X 4 2 2 0 0 0 0 0
<unknown> apache2 X 16 1 1 0 0 0 0 0
zero libc-2.24.so X 7 6 6 6 6 0 4 0
zero libapr-1.so.0.5.2 X 3 3 2 0 0 0 0 0
zero libnss_resolve.so.2 X 2 2 0 0 0 0 0 0
zero apache2 X 16 7 3 0 0 0 0 0
libnss_resolve.so.2 mod_status.so X 45 6 5 0 0 0 0 0
libnss_resolve.so.2 mod_setenvif.so X 90 6 1 0 0 0 0 0
libnss_resolve.so.2 mod_negotiation.so X 37 6 3 0 0 0 0 0
libnss_resolve.so.2 mod_mpm_event.so X 185 27 19 1 1 0 1 0
libnss_resolve.so.2 mod_mime.so X 260 10 2 0 0 0 0 0
libnss_resolve.so.2 mod_filter.so X 17 5 4 0 0 0 0 0
libnss_resolve.so.2 mod_env.so X 12 2 2 0 0 0 0 0
libnss_resolve.so.2 mod_dir.so X 13 3 1 0 0 0 0 0
libnss_resolve.so.2 mod_deflate.so X 16 5 4 0 0 0 0 0
libnss_resolve.so.2 mod_autoindex.so X 78 12 2 1 1 0 1 0
libnss_resolve.so.2 mod_authz_user.so X 16 3 1 0 0 0 0 0
libnss_resolve.so.2 mod_authz_host.so X 42 10 3 0 0 0 0 0
libnss_resolve.so.2 mod_authz_core.so X 94 15 6 0 0 0 0 0
libnss_resolve.so.2 mod_authn_file.so X 25 5 2 0 0 0 0 0
libnss_resolve.so.2 mod_authn_core.so X 14 6 4 0 0 0 0 0
libnss_resolve.so.2 mod_auth_basic.so X 36 4 3 0 0 0 0 0
libnss_resolve.so.2 mod_alias.so X 28 4 3 0 0 0 0 0
libnss_resolve.so.2 mod_access_compat.so X 12 4 3 0 0 0 0 0
libnss_resolve.so.2 libexpat.so.1.6.2 - 13 11 3 0 0 0 0 0
libnss_resolve.so.2 libdl-2.24.so X 17 13 3 0 0 0 0 0
libnss_resolve.so.2 libcrypt-2.24.so X 14 11 3 0 0 0 0 0
libnss_resolve.so.2 librt-2.24.so X 24 16 3 0 0 0 0 0

191

A. Appendix

Table A.3 – continued from previous page

Fr
om

M
ap
pi
ng

To
M
ap
pi
ng

D
bg
.
Sy
m
bo
ls

O
ve
ra
ll
Pt
rs

U
ni
ue
Pt
rs

Pt
r
to

.t
ex

t

U
nk
no
wn

Pt
rs

Pr
in
ta
bl
e

In
va
lid

In
st
r.

U
ni
nt
en
de
d
In
st
r.

U
ni
nt
.
Re
t

libnss_resolve.so.2 libuuid.so.1.3.0 - 20 16 4 0 0 0 0 0
libnss_resolve.so.2 libc-2.24.so X 178 109 78 77 73 4 56 1
libnss_resolve.so.2 libpthread-2.24.so X 22 13 0 0 0 0 0 0
libnss_resolve.so.2 libapr-1.so.0.5.2 X 202 29 13 1 1 0 1 0
libnss_resolve.so.2 libaprutil-1.so.0.5.4 X 26 10 2 0 0 0 0 0
libnss_resolve.so.2 libpcre.so.3.13.1 - 12 7 0 0 0 0 0 0
libnss_resolve.so.2 ld-2.24.so X 4 4 0 0 0 0 0 0
libnss_resolve.so.2 libc-2.24.so X 10 9 2 0 0 0 0 0
libnss_resolve.so.2 libpthread-2.24.so X 7 7 3 0 0 0 0 0
libnss_resolve.so.2 libapr-1.so.0.5.2 X 25 15 9 0 0 0 0 0
libnss_resolve.so.2 libaprutil-1.so.0.5.4 X 8 7 3 0 0 0 0 0
libnss_resolve.so.2 libpcre.so.3.13.1 - 7 7 3 0 0 0 0 0
libnss_resolve.so.2 ld-2.24.so X 8 5 0 0 0 0 0 0
ld-2.24.so libc-2.24.so X 6 6 5 0 0 0 0 0
ld-2.24.so libpthread-2.24.so X 5 5 5 0 0 0 0 0
ld-2.24.so libapr-1.so.0.5.2 X 1 1 0 0 0 0 0 0
apache2 mod_status.so X 1 1 0 0 0 0 0 0
apache2 mod_authn_core.so X 2 2 2 0 0 0 0 0
apache2 mod_access_compat.so X 1 1 1 0 0 0 0 0
apache2 libc-2.24.so X 1 1 1 0 0 0 0 0
apache2 libapr-1.so.0.5.2 X 479 479 479 0 0 0 0 0
apache2 libaprutil-1.so.0.5.4 X 291 281 279 0 0 0 0 0
apache2 mod_authz_core.so X 1 1 1 0 0 0 0 0
heap libselinux.so.1 - 25 17 3 0 0 0 0 0
heap libnss_files-2.24.so X 16 12 3 0 0 0 0 0
heap libnss_nis-2.24.so X 22 14 3 0 0 0 0 0
heap libnsl-2.24.so X 17 12 3 0 0 0 0 0
heap libnss_compat-2.24.so X 34 24 3 0 0 0 0 0
heap mod_status.so X 11 10 4 0 0 0 0 0
heap mod_setenvif.so X 12 11 5 0 0 0 0 0
heap mod_negotiation.so X 14 12 5 0 0 0 0 0
heap mod_mpm_event.so X 15 11 3 0 0 0 0 0
heap mod_mime.so X 17 13 5 0 0 0 0 0
heap mod_filter.so X 14 12 5 0 0 0 0 0
heap mod_env.so X 10 10 5 0 0 0 0 0
heap mod_dir.so X 14 12 5 0 0 0 0 0
heap libz.so.1.2.8 - 28 24 3 0 0 0 0 0
heap mod_deflate.so X 15 12 4 0 0 0 0 0
heap mod_autoindex.so X 19 14 5 0 0 0 0 0
heap mod_authz_user.so X 11 10 3 0 0 0 0 0
heap mod_authz_host.so X 11 10 4 0 0 0 0 0
heap mod_authz_core.so X 12 11 5 0 0 0 0 0
heap mod_authn_file.so X 11 10 4 0 0 0 0 0
heap mod_authn_core.so X 13 11 5 0 0 0 0 0
heap mod_auth_basic.so X 15 12 5 0 0 0 0 0
heap mod_alias.so X 16 12 5 0 0 0 0 0
heap mod_access_compat.so X 22 10 4 0 0 0 0 0
heap libc-2.24.so X 31 17 5 5 5 0 2 0
heap libapr-1.so.0.5.2 X 3 2 0 0 0 0 0 0
heap libnss_systemd.so.2 X 34 21 1 0 0 0 0 0
heap libnss_resolve.so.2 X 37 22 1 0 0 0 0 0
heap apache2 X 7 3 1 0 0 0 0 0
stack libselinux.so.1 - 1 1 0 0 0 0 0 0
stack libnss_files-2.24.so X 12 8 5 0 0 0 0 0
stack mod_status.so X 2 2 0 0 0 0 0 0
stack mod_setenvif.so X 4 2 0 0 0 0 0 0

192

A.1. Tables

Table A.3 – continued from previous page

Fr
om

M
ap
pi
ng

To
M
ap
pi
ng

D
bg
.
Sy
m
bo
ls

O
ve
ra
ll
Pt
rs

U
ni
ue
Pt
rs

Pt
r
to

.t
ex

t

U
nk
no
wn

Pt
rs

Pr
in
ta
bl
e

In
va
lid

In
st
r.

U
ni
nt
en
de
d
In
st
r.

U
ni
nt
.
Re
t

stack mod_mpm_event.so X 8 6 5 0 0 0 0 0
stack mod_mime.so X 1 1 1 0 0 0 0 0
stack mod_deflate.so X 2 1 0 0 0 0 0 0
stack libdl-2.24.so X 6 3 2 0 0 0 0 0
stack libc-2.24.so X 60 39 32 0 0 0 0 0
stack libpthread-2.24.so X 15 9 4 0 0 0 0 0
stack libapr-1.so.0.5.2 X 35 24 17 0 0 0 0 0
stack libpcre.so.3.13.1 - 8 8 4 0 0 0 0 0
stack ld-2.24.so X 70 24 21 0 0 0 0 0
stack libnss_systemd.so.2 X 6 6 1 0 0 0 0 0
stack libnss_resolve.so.2 X 7 7 5 0 0 0 0 0
stack apache2 X 46 37 16 0 0 0 0 0

Table A.3.: Detailed results of pointer destinations in userspace CPE
experiment with apache2 process without PIE enabled

193

A
.

A
ppendix

This table shows a detailed report about an executing instance of the mysql process.

Table A.4

Fr
om

M
ap

pi
ng

To
M

ap
pi

ng

Sy
m

bo
ls

av
ai

la
bl

e

O
ve

ra
ll

Pt
rs

U
ni

ue
Pt

rs

Pt
r

to
.t

ex
t

U
nk

no
wn

Pt
rs

Pr
in

ta
bl

e

In
va

lid
In

st
r.

U
ni

nt
en

de
d

In
st

r.
U

ni
nt

.
Re

t

heap mysqld X 101635 (64343) 2702 (1058) 613 (440) 585 (423) 360 (247) 32 (20) 194 (97) 3 (1)
heap libnss_files-2.24.so X 16 (0) 12 (0) 3 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
heap libc-2.24.so X 10 (0) 8 (0) 6 (0) 5 (0) 4 (0) 1 (0) 3 (0) 0 (0)
<unknown> mysqld X 6 (5) 3 (2) 3 (2) 3 (2) 3 (2) 0 (0) 1 (0) 0 (0)
<unknown> mysqld X 6 (5) 3 (2) 3 (2) 3 (2) 3 (2) 0 (0) 1 (0) 0 (0)
<unknown> mysqld X 36 (20) 20 (11) 7 (6) 7 (6) 5 (4) 0 (0) 3 (2) 0 (0)
<unknown> mysqld X 308 (234) 81 (53) 49 (28) 46 (27) 18 (12) 3 (2) 11 (5) 0 (0)
<unknown> mysqld X 11 (6) 7 (3) 6 (2) 6 (2) 5 (2) 0 (0) 1 (0) 0 (0)
<unknown> mysqld X 38 (24) 25 (16) 22 (15) 14 (10) 5 (2) 1 (1) 4 (1) 1 (0)
<unknown> libc-2.24.so X 4 (0) 4 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 2 (0) 2 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 21 (18) 16 (13) 14 (11) 13 (10) 4 (2) 1 (1) 4 (1) 1 (0)
<unknown> libc-2.24.so X 4 (0) 4 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 2 (0) 2 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 43 (31) 29 (20) 24 (16) 16 (12) 6 (4) 1 (1) 5 (1) 1 (0)
<unknown> libc-2.24.so X 4 (0) 4 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 3 (0) 3 (0) 3 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 38 (29) 23 (16) 21 (14) 15 (11) 4 (2) 2 (2) 4 (1) 1 (0)
<unknown> libc-2.24.so X 4 (0) 4 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 3 (0) 3 (0) 3 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 373 (305) 67 (51) 40 (37) 39 (36) 15 (12) 2 (2) 11 (8) 0 (0)
<unknown> mysqld X 365 (299) 59 (45) 32 (28) 32 (28) 14 (10) 1 (1) 10 (6) 0 (0)
<unknown> mysqld X 911 (748) 132 (103) 80 (66) 78 (66) 30 (23) 7 (4) 26 (19) 0 (0)
<unknown> mysqld X 466 (378) 85 (71) 51 (46) 50 (45) 25 (21) 4 (3) 14 (10) 0 (0)
<unknown> mysqld X 345 (275) 120 (87) 88 (70) 34 (30) 11 (8) 2 (2) 9 (6) 6 (5)
<unknown> libc-2.24.so X 15 (0) 15 (0) 12 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 6 (0) 5 (0) 5 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 206 (134) 97 (48) 65 (33) 33 (26) 16 (11) 1 (1) 16 (10) 9 (6)
<unknown> libc-2.24.so X 27 (0) 22 (0) 17 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libstdc++.so.6.0.22 - 5 (0) 5 (0) 5 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 5 (0) 5 (0) 5 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 170 (109) 80 (58) 62 (46) 34 (30) 14 (12) 2 (2) 9 (5) 5 (3)
<unknown> libc-2.24.so X 4 (0) 4 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 3 (0) 3 (0) 3 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

194

A
.1.

Tables
Table A.4 – continued from previous page

Fr
om

M
ap

pi
ng

To
M

ap
pi

ng

Sy
m

bo
ls

av
ai

la
bl

e

O
ve

ra
ll

Pt
rs

U
ni

ue
Pt

rs

Pt
r

to
.t

ex
t

U
nk

no
wn

Pt
rs

Pr
in

ta
bl

e

In
va

lid
In

st
r.

U
ni

nt
en

de
d

In
st

r.
U

ni
nt

.
Re

t

<unknown> mysqld X 484 (269) 149 (93) 118 (74) 64 (49) 26 (20) 4 (4) 31 (16) 21 (11)
<unknown> libc-2.24.so X 4 (0) 4 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 7 (0) 6 (0) 6 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 159 (98) 79 (55) 62 (43) 34 (29) 12 (10) 3 (3) 9 (4) 6 (3)
<unknown> libc-2.24.so X 5 (0) 5 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 7 (0) 4 (0) 4 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 538 (291) 154 (87) 118 (68) 62 (44) 25 (17) 5 (5) 30 (12) 19 (8)
<unknown> libc-2.24.so X 5 (0) 5 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 7 (0) 7 (0) 7 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 80 (52) 47 (30) 40 (25) 24 (18) 6 (4) 1 (1) 10 (5) 7 (4)
<unknown> libc-2.24.so X 4 (0) 4 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 4 (0) 4 (0) 4 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 40 (31) 25 (19) 20 (15) 15 (12) 4 (2) 1 (1) 6 (3) 2 (1)
<unknown> libc-2.24.so X 4 (0) 4 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 3 (0) 3 (0) 3 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> mysqld X 7 (6) 5 (4) 5 (4) 5 (4) 3 (2) 2 (2) 1 (0) 0 (0)
<unknown> mysqld X 29 (21) 21 (15) 19 (13) 13 (9) 5 (2) 1 (1) 4 (1) 1 (0)
<unknown> libc-2.24.so X 4 (0) 4 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
<unknown> libpthread-2.24.so X 4 (0) 4 (0) 4 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
libnss_files-2.24.so mysqld X 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0)
libnss_files-2.24.so mysqld X 36 (25) 25 (17) 22 (15) 15 (11) 5 (2) 1 (1) 5 (1) 1 (0)
libnss_files-2.24.so mysqld X 1779 (1611) 514 (496) 373 (356) 355 (342) 154 (143) 28 (28) 153 (141) 2 (0)
libnss_files-2.24.so mysqld X 139 (87) 66 (36) 54 (32) 33 (25) 14 (10) 4 (4) 8 (4) 4 (2)
libnss_files-2.24.so mysqld X 39 (29) 26 (19) 24 (17) 17 (13) 6 (3) 1 (1) 7 (3) 3 (2)
libnss_files-2.24.so mysqld X 39 (29) 26 (19) 24 (17) 17 (13) 6 (3) 1 (1) 7 (3) 3 (2)
libnss_files-2.24.so mysqld X 40 (29) 26 (19) 24 (17) 17 (13) 6 (3) 1 (1) 7 (3) 3 (2)
libnss_files-2.24.so mysqld X 63 (38) 41 (23) 36 (19) 20 (14) 8 (4) 1 (1) 9 (3) 5 (2)
libnss_files-2.24.so mysqld X 39 (29) 26 (19) 24 (17) 17 (13) 6 (3) 1 (1) 7 (3) 3 (2)
libnss_files-2.24.so mysqld X 39 (29) 26 (19) 24 (17) 17 (13) 6 (3) 1 (1) 7 (3) 3 (2)
libnss_files-2.24.so mysqld X 40 (29) 26 (19) 24 (17) 17 (13) 6 (3) 1 (1) 7 (3) 3 (2)
libnss_files-2.24.so mysqld X 39 (29) 26 (19) 24 (17) 17 (13) 6 (3) 1 (1) 7 (3) 3 (2)
libnss_files-2.24.so mysqld X 56 (37) 34 (24) 31 (22) 19 (15) 6 (3) 1 (1) 7 (4) 3 (3)
libnss_files-2.24.so mysqld X 42 (32) 26 (19) 24 (17) 17 (13) 6 (3) 1 (1) 7 (3) 3 (2)
<unknown> mysqld X 53343 (27529) 1033 (817) 639 (550) 609 (531) 330 (264) 53 (45) 231 (179) 4 (2)
libnsl-2.24.so mysqld X 1 (1) 1 (1) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
libc-2.24.so mysqld X 57 (48) 14 (11) 11 (9) 11 (9) 5 (3) 1 (1) 4 (2) 0 (0)
libc-2.24.so mysqld X 18 (12) 15 (12) 10 (8) 10 (8) 7 (5) 1 (1) 4 (2) 0 (0)

195

A
.

A
ppendix

Table A.4 – continued from previous page

Fr
om

M
ap

pi
ng

To
M

ap
pi

ng

Sy
m

bo
ls

av
ai

la
bl

e

O
ve

ra
ll

Pt
rs

U
ni

ue
Pt

rs

Pt
r

to
.t

ex
t

U
nk

no
wn

Pt
rs

Pr
in

ta
bl

e

In
va

lid
In

st
r.

U
ni

nt
en

de
d

In
st

r.
U

ni
nt

.
Re

t

libgcc_s.so.1 mysqld X 34 (10) 23 (6) 10 (5) 7 (3) 5 (1) 2 (2) 3 (1) 0 (0)
libgcc_s.so.1 libc-2.24.so X 2 (0) 2 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
libm-2.24.so mysqld X 32 (25) 20 (16) 4 (2) 4 (2) 3 (1) 1 (1) 2 (0) 0 (0)
libstdc++.so.6.0.22 mysqld X 18 (10) 5 (2) 5 (2) 5 (2) 3 (0) 1 (1) 3 (1) 0 (0)
libstdc++.so.6.0.22 libc-2.24.so X 14 (0) 14 (0) 14 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
libstdc++.so.6.0.22 mysqld X 145 (92) 11 (8) 7 (4) 6 (4) 3 (1) 1 (1) 4 (2) 0 (0)
libstdc++.so.6.0.22 libc-2.24.so X 13 (0) 13 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
libatomic.so.1.2.0 mysqld X 1 (1) 1 (1) 1 (1) 1 (1) 0 (0) 1 (1) 0 (0) 0 (0)
librt-2.24.so mysqld X 8 (4) 5 (3) 3 (2) 3 (2) 1 (0) 1 (1) 2 (1) 0 (0)
libz.so.1.2.8 mysqld X 38 (11) 27 (9) 8 (5) 8 (5) 6 (3) 1 (1) 4 (2) 0 (0)
libdl-2.24.so mysqld X 20 (14) 15 (12) 10 (7) 10 (7) 9 (6) 0 (0) 5 (2) 0 (0)
libcrypt-2.24.so mysqld X 1 (1) 1 (1) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
libwrap.so.0.7.6 mysqld X 15 (14) 12 (11) 10 (9) 10 (9) 9 (8) 0 (0) 2 (1) 0 (0)
liblz4.so.1.7.1 mysqld X 32 (15) 23 (11) 20 (9) 19 (9) 17 (8) 1 (0) 13 (7) 0 (0)
libnuma.so.1.0.0 mysqld X 39 (32) 24 (22) 19 (17) 19 (17) 18 (16) 0 (0) 3 (1) 0 (0)
libnuma.so.1.0.0 libc-2.24.so X 19 (0) 17 (0) 17 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
libpthread-2.24.so mysqld X 17 (0) 2 (0) 2 (0) 2 (0) 1 (0) 0 (0) 1 (0) 0 (0)
libpthread-2.24.so libc-2.24.so X 16 (0) 16 (0) 15 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
libpthread-2.24.so mysqld X 5 (4) 4 (3) 4 (3) 4 (3) 2 (1) 0 (0) 1 (0) 0 (0)
ld-2.24.so mysqld X 32 (23) 9 (7) 8 (6) 7 (5) 3 (1) 1 (1) 2 (0) 0 (0)
ld-2.24.so libc-2.24.so X 6 (0) 6 (0) 5 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
ld-2.24.so libpthread-2.24.so X 5 (0) 5 (0) 5 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
ld-2.24.so mysqld X 65 (57) 17 (14) 13 (10) 10 (8) 4 (2) 1 (1) 4 (2) 0 (0)
ld-2.24.so libstdc++.so.6.0.22 - 1 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
stack mysqld X 2139 (1166) 357 (216) 244 (147) 138 (97) 69 (47) 10 (8) 66 (37) 36 (23)
stack libc-2.24.so X 75 (0) 26 (0) 23 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
stack libstdc++.so.6.0.22 - 4 (0) 4 (0) 4 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
stack libpthread-2.24.so X 6 (0) 3 (0) 3 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
stack ld-2.24.so X 13 (0) 6 (0) 6 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table A.4.: Detailed results of pointer destinations in userspace CPE experiment with mysqld process
without PIE enabled

196

A.1. Tables

Table A.5

Pr
oc
es
sn
am
e

D
bg
.
Sy
m
bo
ls

O
ve
ra
ll
Pt
rs

U
ni
ue
Pt
rs

Pt
r
to

.t
ex

t

U
nk
no
wn

Pt
rs

Pr
in
ta
bl
e

In
va
lid

In
st
r.

U
ni
nt
en
de
d
In
st
r.

U
ni
nt
.
Re
t

agetty - 399 274 130 2 0 0 0 0
agetty - 419 289 140 2 0 0 0 0
apache2 X 3696 1839 1251 5 4 1 3 0
apache2 X 4129 1938 1295 5 4 1 3 0
apache2 X 4144 1941 1295 5 4 1 3 0
atd - 438 324 115 3 0 0 0 0
bash X 1393 1212 375 1 0 0 0 0
bash X 1516 1247 403 3 0 2 0 0
bash X 1534 1256 406 4 0 2 0 0
bash X 1812 1387 466 4 0 3 0 0
cron - 618 427 198 12 5 2 6 0
dbus-daemon - 819 553 224 51 5 0 0 0
dhclient - 720 532 188 98 9 0 0 0
exim4 - 1047 653 201 9 0 0 3 2
irqbalance - 734 503 185 4 1 0 0 0
mysqld X 32211 2272 678 23 16 5 11 0
named - 2776 1353 371 151 12 0 0 0
rpcbind - 822 584 187 9 0 0 7 3
rsyslogd - 1919 863 546 246 15 0 0 0
sftp-server - 372 237 110 5 4 0 2 0
sshd - 1340 989 220 22 1 1 1 1
sshd - 1730 1267 335 23 4 0 0 0
sshd - 1855 1342 372 23 1 0 0 0
sshd - 1855 1342 372 23 1 0 0 0
sshd - 1855 1342 372 23 1 0 0 0
sshd - 1971 1281 338 44 9 0 0 0
sshd - 2055 1334 376 45 3 0 1 0
sshd - 2056 1334 376 45 3 0 1 0
sshd - 2071 1341 380 46 3 0 2 0
su - 933 685 275 5 0 0 0 0
systemd X 1095 768 219 1 1 0 1 0
systemd X 3092 1560 374 3 1 0 0 0
systemd X 3304 1325 292 3 1 1 1 0
systemd-journald X 652 450 166 0 0 0 0 0
systemd-logind X 841 627 169 0 0 0 0 0
systemd-resolved X 901 579 183 4 2 2 1 0
systemd-timesyncd X 882 610 178 1 1 0 1 0
systemd-udevd X 813 531 213 1 1 0 1 0

Table A.5.: Statistic of number of identified userspace pointers dur-
ing one run through the entire system. The system solely
consists of applications packages taken from the current
Debian repository. During this experiment all libraries have
been compiled to be position independent (fPIC) and all
applications have been compiled as position independent
(fPIE). Processes that are executed multiple times concur-
rently are listed multiple times.

197

A. Appendix

This table shows a detailed report about an executing instance of
the mysql process.

Table A.6

Fr
om

M
ap
pi
ng

To
M
ap
pi
ng

Sy
m
bo
ls
av
ai
la
bl
e

O
ve
ra
ll
Pt
rs

U
ni
ue
Pt
rs

Pt
r
to

.t
ex

t

U
nk
no
wn

Pt
rs

Pr
in
ta
bl
e

In
va
lid

In
st
r.

U
ni
nt
en
de
d
In
st
r.

U
ni
nt
.
Re
t

<unknown> mysqld X 899 216 36 3 1 1 0 0
<unknown> mysqld X 3 3 3 0 0 0 0 0
<unknown> mysqld X 4 1 0 0 0 0 0 0
<unknown> libc-2.24.so X 5 5 2 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> mysqld X 181 116 100 2 1 1 1 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> mysqld X 3 3 3 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 3 3 3 0 0 0 0 0
<unknown> mysqld X 10 10 10 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 3 3 3 0 0 0 0 0
<unknown> mysqld X 8 8 8 0 0 0 0 0
<unknown> libc-2.24.so X 27 22 17 0 0 0 0 0
<unknown> libstdc++.so.6.0.22 - 5 5 5 0 0 0 0 0
<unknown> libpthread-2.24.so X 5 5 5 0 0 0 0 0
<unknown> mysqld X 89 62 48 0 0 0 0 0
<unknown> mysqld X 30 15 10 0 0 0 0 0
<unknown> mysqld X 30 15 10 0 0 0 0 0
<unknown> mysqld X 30 15 10 0 0 0 0 0
<unknown> mysqld X 30 15 10 0 0 0 0 0
<unknown> libc-2.24.so X 16 16 13 0 0 0 0 0
<unknown> libpthread-2.24.so X 6 5 5 0 0 0 0 0
<unknown> mysqld X 106 83 65 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 4 4 4 0 0 0 0 0
<unknown> mysqld X 11 9 9 0 0 0 0 0
<unknown> libc-2.24.so X 17 11 5 0 0 0 0 0
<unknown> libgcc_s.so.1 - 18 16 7 1 0 0 0 0
<unknown> libpthread-2.24.so X 21 15 12 1 1 0 1 0
<unknown> ld-2.24.so X 15 9 9 0 0 0 0 0
<unknown> mysqld X 10 10 10 0 0 0 0 0
<unknown> libc-2.24.so X 13 13 10 0 0 0 0 0
<unknown> libpthread-2.24.so X 5 5 5 0 0 0 0 0
<unknown> mysqld X 42 33 27 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 1 1 1 0 0 0 0 0
<unknown> mysqld X 11 11 11 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 1 1 1 0 0 0 0 0
<unknown> mysqld X 11 11 11 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 1 1 1 0 0 0 0 0
<unknown> mysqld X 11 11 11 0 0 0 0 0
<unknown> libc-2.24.so X 6 6 3 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> mysqld X 25 23 22 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 1 1 1 0 0 0 0 0

198

A.1. Tables

Table A.6 – continued from previous page

Fr
om

M
ap
pi
ng

To
M
ap
pi
ng

Sy
m
bo
ls
av
ai
la
bl
e

O
ve
ra
ll
Pt
rs

U
ni
ue
Pt
rs

Pt
r
to

.t
ex

t

U
nk
no
wn

Pt
rs

Pr
in
ta
bl
e

In
va
lid

In
st
r.

U
ni
nt
en
de
d
In
st
r.

U
ni
nt
.
Re
t

<unknown> mysqld X 11 11 11 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 1 1 1 0 0 0 0 0
<unknown> mysqld X 11 11 11 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 1 1 1 0 0 0 0 0
<unknown> mysqld X 11 11 11 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 1 1 1 0 0 0 0 0
<unknown> mysqld X 11 11 11 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 2 2 2 0 0 0 0 0
<unknown> mysqld X 17 17 17 0 0 0 0 0
<unknown> libc-2.24.so X 4 4 1 0 0 0 0 0
<unknown> libpthread-2.24.so X 1 1 1 0 0 0 0 0
<unknown> mysqld X 11 11 11 0 0 0 0 0
<unknown> mysqld X 25030 30 16 5 4 1 2 0
libgcc_s.so.1 libc-2.24.so X 2 2 2 0 0 0 0 0
libstdc++.so.6.0.22 libc-2.24.so X 14 14 14 0 0 0 0 0
libstdc++.so.6.0.22 libc-2.24.so X 13 13 0 0 0 0 0 0
libnuma.so.1.0.0 libc-2.24.so X 19 17 17 0 0 0 0 0
libpthread-2.24.so libc-2.24.so X 16 16 15 0 0 0 0 0
ld-2.24.so libc-2.24.so X 6 6 5 0 0 0 0 0
ld-2.24.so libpthread-2.24.so X 5 5 5 0 0 0 0 0
ld-2.24.so libstdc++.so.6.0.22 - 1 1 0 0 0 0 0 0
mysqld libstdc++.so.6.0.22 - 1 1 1 0 0 0 0 0
heap libnss_files-2.24.so X 16 12 3 0 0 0 0 0
heap libc-2.24.so X 5 3 1 0 0 0 0 0
heap mysqld X 4400 1515 191 5 3 2 1 0
stack libc-2.24.so X 74 26 23 0 0 0 0 0
stack libstdc++.so.6.0.22 - 4 4 4 0 0 0 0 0
stack libpthread-2.24.so X 5 3 3 0 0 0 0 0
stack ld-2.24.so X 13 6 6 0 0 0 0 0
stack mysqld X 734 189 160 8 8 0 7 0

Table A.6.: Detailed results of pointer destinations in userspace CPE
experiment with PIE enabled mysqld process

199

Bibliography

[1] ARM Architecture Reference Manual: ARMv7-A and ARMv7-R edi-
tion, July 2012.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow
integrity. In 12th ACM conference on Computer and communications
security, CCS ’05, pages 340–353, New York, NY, USA, 2005. ACM.

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Trans-
actions on Information and System Security (TISSEC), 2009.

[4] L. O. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, 1994.

[5] D. Andriesse, H. Bos, and A. Slowinska. Parallax: Implicit Code
Integrity Verification Using Return-Oriented Programming. In 2015
45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 125–135. IEEE, 2015.

[6] D. Andriesse, A. Slowinska, and H. Bos. Compiler-Agnostic Function
Detection in Binaries. In EuroS&P, Apr. 2017.

[7] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee,
and D. Xu. DKSM: Subverting Virtual Machine Introspection for
Fun and Profit. In 29th IEEE International Symposium on Reliable
Distributed Systems (SRDS 2010), New Delhi, India, October 2010.

201

Bibliography

[8] A. Baliga, V. Ganapathy, and L. Iftode. Detecting Kernel-Level
Rootkits using Data Structure Invariants. IEEE Transactions on
Dependable and Secure Computing, 8(5):670–684, 2011.

[9] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vad-
han, and K. Yang. On the (im) possibility of obfuscating programs.
In Annual International Cryptology Conference, pages 1–18. Springer,
2001.

[10] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vad-
han, and K. Yang. On the (Im)Possibility of Obfuscating Programs.
Journal of the ACM, 59(2):6:1–6:48, May 2012.

[11] A. Bianchi, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Blacksheep:
Detecting Compromised Hosts in Homogeneous Crowds. In Conference
on Computer and Communications Security (CCS). ACM, 2012.

[12] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented pro-
gramming: a new class of code-reuse attack. In 6th ACM Symposium
on Information, Computer and Communications Security, ASIACCS
’11, pages 30–40, New York, NY, USA, 2011. ACM.

[13] J. Bonwick. The slab allocator: An object-caching kernel memory al-
locator. In USENIX Summer 1994 Technical Conference on USENIX
Summer 1994 Technical Conference - Volume 1, USTC’94, pages 6–6,
Berkeley, CA, USA, 1994. USENIX Association.

[14] E. Bosman and H. Bos. Framing Signals - A Return to Portable
Shellcode. In 2014 IEEE Symposium on Security and Privacy, SP
’14, pages 243–258, Washington, DC, USA, 2014. IEEE Computer
Society.

[15] D. Bounov, R. Kici, and S. Lerner. Protecting c++ dynamic dispatch
through vtable interleaving. In Annual Network and Distributed
System Security Symposium (NDSS), 2016.

[16] S. Brookes and S. Taylor. Rethinking operating system design: Asym-
metric multiprocessing for security and performance. In 2016 Work-
shop on New Security Paradigms, 2016.

[17] J. Butler. Dkom (direct kernel object manipulation). Black Hat
Windows Security, 2004.

[18] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang.
Mapping Kernel Objects to Enable Systematic Integrity Checking.

202

Bibliography

In 16th ACM conference on Computer and Communications Security
(CCS’09), pages 555–565. ACM, 2009.

[19] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity. In 24th
USENIX Security Symposium (USENIX Security 15), pages 161–176,
Washington, D.C., 2015. USENIX Association.

[20] N. Carlini and D. Wagner. ROP is Still Dangerous: Breaking Modern
Defenses. In 23rd USENIX Security Symposium (USENIX Security
14), pages 385–399, San Diego, CA, 2014. USENIX Association.

[21] H. Chang and M. J. Atallah. Protecting software code by guards.
In ACM Workshop on Digital Rights Management, pages 160–175.
Springer, 2001.

[22] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-oriented programming without returns.
In 17th ACM conference on Computer and communications security,
CCS ’10, pages 559–572, New York, NY, USA, 2010. ACM.

[23] P. Chen, X. Xing, B. Mao, and L. Xie. Return-Oriented Rootkit
without Returns (on the x86). In M. Soriano, S. Qing, and J. López,
editors, Information and Communications Security, volume 6476 of
Lecture Notes in Computer Science, pages 340–354. Springer Berlin
Heidelberg, 2010.

[24] P. M. Chen and B. D. Noble. When virtual is better than real
[operating system relocation to virtual machines]. In Eighth Workshop
on Hot Topics in Operating Systems. IEEE, 2001.

[25] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A
Generic and Practical Approach For Defending Against ROP Attacks.
In NDSS. The Internet Society, 2014.

[26] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete Control-
Flow Integrity for Commodity Operating System Kernels. In IEEE
Symposium on Security and Privacy, 2014.

[27] L. Davi, P. Koeberl, and A.-R. Sadeghi. Hardware-Assisted Fine-
Grained Control-Flow Integrity: Towards Efficient Protection of
Embedded Systems Against Software Exploitation. In 51st Annual
Design Automation Conference, pages 133:1–133:6, New York, NY,
USA, 2014. ACM.

203

Bibliography

[28] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose. Iso-
meron: Code randomization resilient to (just-in-time) return-oriented
programming. Proc. 22nd Network and Distributed Systems Security
Sym.(NDSS), 2015.

[29] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching
the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 401–416, San Diego, CA, 2014. USENIX Associa-
tion.

[30] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Robust
signatures for kernel data structures. In 16th ACM conference on
Computer and communications security. ACM, 2009.

[31] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon System for Dynamic Detection
of likely Invariants. Science of Computer Programming, 69(1):35–45,
2007.

[32] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi. Miss-
ing the Point(er): On the Effectiveness of Code Pointer Integrity. In
IEEE Symposium on Security and Privacy (Oakland’15), May 2015.

[33] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos. Control Jujutsu: On the Weaknesses
of Fine-Grained Control Flow Integrity. In 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15,
pages 901–913, New York, NY, USA, 2015. ACM.

[34] A. Fischer, T. Kittel, B. Kolosnjaji, T. K. Lengyel, W. Mandarawi,
H. P. Reiser, B. Taubmann, E. Weishäupl, H. de Meer, T. Müller,
and M. Protsenko. CloudIDEA: A Malware Defense Architecture
for Cloud Data Centers. In 5th International Symposium on Cloud
Computing, Trusted Computing and Secure Virtual Infrastructures -
Cloud and Trusted Computing (C&TC 2015), 2015.

[35] M. Frantzen and M. Shuey. StackGhost: Hardware Facilitated Stack
Protection. In USENIX Security Symposium, 2001.

[36] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra:
A virtual machine-based platform for trusted computing. In ACM

204

Bibliography

SIGOPS Operating Systems Review, volume 37, pages 193–206. ACM,
2003.

[37] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In In Proc. Network and
Distributed Systems Security Symposium, pages 191–206, 2003.

[38] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-Grained Control-
Flow Integrity for Kernel Software. In IEEE European Symposium
on Security and Privacy, pages 179–194, Mar. 2016.

[39] X. Ge, H. Vijayakumar, and T. Jaeger. SPROBES: Enforcing Kernel
Code Integrity on the TrustZone Architecture. 2014.

[40] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
Control: Overcoming Control-Flow Integrity. In 2014 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society, 2014.

[41] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis. Size Does Matter: Why Using Gadget-Chain Length to
Prevent Code-Reuse Attacks is Hard. In 23rd USENIX Security Sym-
posium (USENIX Security 14), pages 417–432, San Diego, CA, 2014.
USENIX Association.

[42] GRSecurity. PAGEEXEC. https://pax.grsecurity.net/docs/
pageexec.txt, December 30 2006.

[43] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel. Ensuring
Operating System Kernel Integrity with OSck. In R. Gupta and T. C.
Mowry, editors, ASPLOS, pages 279–290. ACM, 2011.

[44] R. Hund, T. Holz, and F. C. Freiling. Return-Oriented Rootkits: By-
passing Kernel Code Integrity Protection Mechanisms. In Proceedings
of 18th USENIX Security Symposium, 2009.

[45] Intel Corporation. 5-Level Paging and 5-Level EPT. Technical report,
December 2016.

[46] Intel Corporation. Intel R© 64 and IA-32 Architectures Software De-
veloper’s Manual, June 2016.

[47] Intel Corporation. Control-flow Enforcement Technology Preview,
June 2017.

[48] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion. Sok:
Introspections on trust and the semantic gap. In Security and Privacy
(SP), 2014 IEEE Symposium on, pages 605–620. IEEE, 2014.

205

https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt

Bibliography

[49] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Securing C++
Virtual Calls from Memory Corruption Attacks. In NDSS, 2014.

[50] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis. ret2dir:
Rethinking Kernel Isolation. In 23rd USENIX Security Symposium.
USENIX Association, 2014.

[51] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard:
Lightweight Kernel Protection Against Return-to-user Attacks. In
21st USENIX Conference on Security Symposium, Security’12, pages
39–39, Berkeley, CA, USA, 2012. USENIX Association.

[52] G. H. Kim and E. H. Spafford. The design and implementation of
tripwire: A file system integrity checker. In 2nd ACM Conference on
Computer and Communications Security, pages 18–29. ACM, 1994.

[53] T. Kittel, S. Vogl, J. Kisch, and C. Eckert. Counteracting Data-
Only Malware with Code Pointer Examination. In 18th International
Symposium on Research in Attacks, Intrusions and Defenses, 2015.

[54] T. Kittel, S. Vogl, T. K. Lengyel, J. Pfoh, and C. Eckert. Code
Validation for Modern OS Kernels. In Workshop on Malware Memory
Forensics (MMF), 2014.

[55] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-Pointer Integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pages
147–163, Broomfield, CO, 2014. USENIX Association.

[56] Z. Liang, H. Yin, and D. Song. Hookfinder: Identifying and under-
standing malware hooking behaviors. Department of Electrical and
Computing Engineering, page 41, 2008.

[57] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor support for iden-
tifying covertly executing binaries. In 17th Usenix Security Symposium,
pages 243–258, Berkeley, CA, USA, 2008. USENIX Association.

[58] L. Litty and D. Lie. Manitou: a layer-below approach to fighting
malware. In 1st workshop on Architectural and system support for
improving software dependability, pages 6–11, New York, NY, USA,
2006. ACM Press.

[59] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D. McDonell.
Linux Kernel Integrity Measurement using Contextual Inspection. In

206

Bibliography

Proceedings of the 2007 ACM workshop on Scalable trusted computing,
pages 21–29. ACM, 2007.

[60] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz.
Opaque Control-Flow Integrity. In NDSS, 2015.

[61] D. Oliveira, J. Navarro, N. Wetzel, and M. Bucci. Ianus: Secure
and Holistic Coexistence with Kernel Extensions - a Immune System-
inspired Approach. In 29th Annual ACM Symposium on Applied
Computing, SAC ’14, pages 1672–1679, New York, NY, USA, 2014.
ACM.

[62] V. Pappas. kBouncer: Efficient and transparent ROP mitigation.
2012.

[63] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent
ROP Exploit Mitigation Using Indirect Branch Tracing. In Presented
as part of the 22nd USENIX Security Symposium (USENIX Security
13), pages 447–462, Washington, D.C., 2013. USENIX.

[64] B. D. Payne. Simplifying Virtual Machine Introspection Using LibVMI.
http://libvmi.com/, October 2012.

[65] B. D. Payne, M. Carbone, M. I. Sharif, and W. Lee. Lares: An
Architecture for Secure Active Monitoring Using Virtualization. In
IEEE Symposium on Security and Privacy, pages 233–247. IEEE,
2008.

[66] J. A. Pendergrass and K. N. McGill. LKIM: The Linux Kernel
Integrity Measurer. Johns Hopkins APL Technical Digest, 32(2):509,
2013.

[67] N. L. Petroni, Jr., T. Fraser, A. Walters, and W. A. Arbaugh. An
Architecture for Specification-Based Detection of Semantic Integrity
Violations in Kernel Dynamic Data. In 15th USENIX Security Sym-
posium. USENIX Association, 2006.

[68] N. L. Petroni, Jr. and M. Hicks. Automated Detection of Persistent
Kernel Control-Flow Attacks. In 14th ACM conference on Computer
and communications security, CCS ’07, New York, NY, USA, 2007.
ACM.

[69] N. L. J. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot
- a Coprocessor-based Kernel Runtime Integrity Monitor. In 13th

207

http://libvmi.com/

Bibliography

USENIX Security Symposium, pages 179–194. USENIX Association,
2004.

[70] J. Pfoh, C. Schneider, and C. Eckert. A Formal Model for Virtual
Machine Introspection. In 2nd Workshop on Virtual Machine Security
(VMSec ’09), pages 1–10, Chicago, Illinois, USA, 2009. ACM Press.

[71] J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based System
Call Tracing for Virtual Machines. In Advances in Information and
Computer Security, volume 7038 of Lecture Notes in Computer Science,
pages 96–112. Springer, 2011.

[72] S. Proskurin. Forensic analysis utilizing virtualization on-the-fly.
Master’s thesis, Technische Universität München, 2016.

[73] N. A. Quynh. Capstone: Next-gen Disassembly Framework. Black
Hat USA, 2014.

[74] Rekall. Memory Forensics Analysis framework. http://www.rekall-
forensic.com/, October 2016.

[75] J. Rhee, R. Riley, D. Xu, and X. Jiang. Defeating Dynamic Data
Kernel Rootkit Attacks via VMM-Based Guest-Transparent Moni-
toring. In Proceeings of the International Conference on Availability,
Reliability and Security. IEEE, 2009.

[76] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention of
Kernel Rootkits with VMM-Based Memory Shadowing. In 11th
international symposium on Recent Advances in Intrusion Detection,
RAID ’08, pages 1–20, Berlin, Heidelberg, 2008. Springer-Verlag.

[77] J. Rutkowska. Introducing blue pill. The official blog of the invisi-
blethings. org, 22, 2006.

[78] A.-R. Sadeghi, L. Davi, and P. Larsen. Securing Legacy Software
against Real-World Code-Reuse Exploits: Utopia, Alchemy, or Possi-
ble Future? - Keynote -. In 10th ACM Symposium on Information,
Computer and Communications Security (ASIACCS 2015), 2015.
Keynote.

[79] C. Schneider. Full Virtual Machine State Reconstruction for Security
Applications. Dissertation, Technische Universität München, 2013.

[80] C. Schneider, J. Pfoh, and C. Eckert. A universal semantic bridge
for virtual machine introspection. In Information Systems Security,
pages 370–373. Springer, 2011.

208

http://www.rekall-forensic.com/
http://www.rekall-forensic.com/

Bibliography

[81] C. Schneider, J. Pfoh, and C. Eckert. Bridging the Semantic Gap
Through Static Code Analysis. In Proceedings of EuroSec’12, 5th
European Workshop on System Security. ACM Press, 2012.

[82] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz. Counterfeit Object-oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications. In 36th
IEEE Symposium on Security and Privacy (Oakland), 2015.

[83] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes. In
Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, SOSP ’07, pages 335–350, New York, NY, USA,
2007. ACM.

[84] A. Seshadri, M. Luk, E. Shi, A. Perrig, and L. van Doorn andPradeep
Khosla. Pioneer: verifying code integrity and enforcing untampered
code execution on legacy systems. In twentieth ACM symposium on
Operating Systems Principles, pages 1–16, New York, NY, USA, 2005.
ACM Press.

[85] H. Shacham. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In 14th ACM conference
on Computer and communications security, CCS ’07, pages 552–561,
New York, NY, USA, 2007. ACM.

[86] R. Shapiro, S. Bratus, and S. W. Smith. “Weird Machines” in ELF:
A Spotlight on the Underappreciated Metadata. In Presented as part
of the 7th USENIX Workshop on Offensive Technologies, Berkeley,
CA, 2013. USENIX.

[87] S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent runtime
shadow stack: Protection against malicious return address modifica-
tions, 2008.

[88] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization. In 2013 IEEE Sympo-
sium on Security and Privacy. Institute of Electrical and Electronics
Engineers (IEEE), may 2013.

[89] Solar Designer. Getting Around Non-Executable Stack (and Fix).
Bugtraq Mailing List, Aug. 1997.

209

Bibliography

[90] A. Srivastava and J. T. Giffin. Efficient Monitoring of Untrusted
Kernel-Mode Execution. In NDSS, 2011.

[91] D. M. Stanley. Improved Kernel Security Through Code Validation,
Diversification, and Minimization. PhD thesis, Purdue University, 12
2013.

[92] D. M. Stanley, Z. Deng, D. Xu, R. Porter, and S. Snyder. Guest-
Transparent Instruction Authentication for Self-Patching Kernels.
In MILCOM 2012-2012 IEEE Military Communications Conference.
IEEE, 2012.

[93] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in
Memory. In 2013 IEEE Symposium on Security and Privacy, SP ’13,
pages 48–62, Washington, DC, USA, 2013. IEEE Computer Society.

[94] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike. Enforcing forward-edge control-flow integrity
in GCC & LLVM. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 941–955, 2014.

[95] J. Torrey. MoRE: measurement of running executables. In 9th Annual
Cyber and Information Security Research Conference, pages 117–120.
ACM, 2014.

[96] Trusted Computing Group. TPM Specification, March 2011.
[97] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,

S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida. A
Tough Call: Mitigating Advanced Code-Reuse Attacks at the Binary
Level. In 2016 IEEE Symposium on Security and Privacy (SP), 2016.

[98] S. Vogl and C. Eckert. Using Hardware Performance Events for
Instruction-Level Monitoring on the x86 Architecture. In Proceedings
of EuroSec’12, 5th European Workshop on System Security. ACM
Press, 2012.

[99] S. Vogl, R. Gawlik, B. Garmany, T. Kittel, J. Pfoh, C. Eckert, and
T. Holz. Dynamic Hooks: Hiding Control Flow Changes within
Non-Control Data. In 23rd USENIX Security Symposium. USENIX,
2014.

[100] S. Vogl, J. Pfoh, T. Kittel, and C. Eckert. Persistent Data-only
Malware: Function Hooks without Code. In 21th Annual Network &
Distributed System Security Symposium (NDSS), 2014.

210

Bibliography

[101] S. W. Vogl. Data-only Malware. Dissertation, Technische Universität
München, 2015.

[102] Volatility. The Volatility Framework: Volatile memory artifact
extraction utility framework. https://www.volatilesystems.com/
default/volatility, January 2014.

[103] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach to
Provide Lifetime Hypervisor Control-Flow Integrity. In Security and
Privacy (SP), 2010 IEEE Symposium on, pages 380–395, 2010.

[104] R. Wojtczuk. The Advanced return-into-lib (c) Exploits: PaX case
study. Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of
0x0e, 2001.

[105] G. Wurster, P. Van Oorschot, and A. Somayaji. A generic attack
on checksumming-based software tamper resistance. In Security and
Privacy, 2005 IEEE Symposium on, pages 127–138. IEEE, 2005.

[106] B. Zeng, G. Tan, and G. Morrisett. Combining Control-flow Integrity
and Static Analysis for Efficient and Validated Data Sandboxing. In
18th ACM Conference on Computer and Communications Security,
CCS ’11, pages 29–40, New York, NY, USA, 2011. ACM.

[107] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song.
VTrust: Regaining trust on virtual calls. In Annual Network and
Distributed System Security Symposium (NDSS), 2016.

[108] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and random-
ization for binary executables. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 559–573. IEEE, 2013.

[109] M. Zhang and R. Sekar. Control flow integrity for COTS binaries.
In 22nd USENIX Security Symposium (USENIX Security 13), 2013.

[110] M. Zhang and R. Sekar. Control Flow and Code Integrity for COTS
Binaries: An Effective Defense Against Real-World ROP Attacks.
In 31st Annual Computer Security Applications Conference, ACSAC
2015, 2015.

[111] R. Zhang, L. Wang, and S. Zhang. Windows Memory Analysis
Based on KPCR. In 2009 Fifth International Conference on Infor-
mation Assurance and Security - Volume 02, IAS ’09, pages 677–680,
Washington, DC, USA, 2009. IEEE Computer Society.

211

https://www.volatilesystems.com/default/volatility
https://www.volatilesystems.com/default/volatility

	List of Figures
	List of Tables
	List of Publications
	Introduction
	Research Questions
	Contributions
	Outline

	Background
	Hardware and Operating System Background
	Virtual Address Translation
	Kernel Code Protection Mechanisms

	Virtual Machine Introspection
	The Semantic Gap
	Combination of Approaches
	Virtual Machine Introspection Frameworks

	Code Reuse Attacks
	Simple Code Reuse Attacks
	Persistent Data-only Malware

	Related Work
	Code Integrity Validation
	Early Hash-based Approaches
	Hypervisor-based Hash-based Approaches
	Handling code modifications
	Recent Approaches
	Summary

	Kernel Data Integrity Validation
	Mapping Kernel Objects
	Semantic Data Integrity Validation
	Summary

	Control Flow Integrity and its Limitations
	Coarse grained cfi
	Fine Grained cfi
	Forward edge validation
	Backward edge validation

	cfi for Kernel Software
	Summary

	Runtime Kernel Code Integrity
	Problem statement
	Kernel Runtime Patching
	Position Independent Code
	Configuration-specific Patching
	Summary

	System Design
	Requirements & Goals
	Preselector (PS)
	Runtime Verifier (RV)
	Lazy Loader (LL)

	Implementation
	Identifying Executable Pages
	Handling Load Time Patching
	Handling Runtime Patching

	Evaluation
	Effectiveness
	Performance
	(Not) Trusting the Guest State

	User Code in the Linux Kernel
	Delimitation from previous work
	Summary

	Code Pointer Examination
	Problem statement
	Attacker Model & Assumptions
	Proposed Approach
	Control Flow Related Data Structures
	Pointer Identification
	Pointer Classification

	Implementation
	Kernel Object Validation
	Code Pointer Examination
	Detection of Dispatcher Calls

	Evaluation
	Experiments
	Discussion

	Summary

	Dynamic Integrity Validation for Userspace Applications
	Problem statement
	Code and State Integrity Validation
	Process State Validation
	Process and Library loading
	Detection of additional code pages
	Userspace Code Validation

	Code Pointer Examination
	Kernel Code Pointers within Userspace Applications
	Classification of Userspace Code Pointers

	Experimental results
	Userspace Code Integrity Validation
	Kernel Code Pointers in Userspace
	Userspace Code Pointers

	Discussion and Limitations
	Application of the Kernel Integrity Framework
	Summary

	Conclusion and Future Work
	Contributions
	Practical Application
	Future Work
	Final Words

	Appendix
	Tables

	Bibliography

