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Zusammenfassung

Diese Arbeit behandelt die statistische Modellierung und Schätzung extremer stochastischer

Raum- und Raum-Zeit-Prozesse. Solche Prozesse finden in der Analyse umweltbezogener Daten

Anwendung, die den Fokus auf die Bewertung seltener und extremer Ereignisse in Raum und/oder

Zeit legen, wie z.B. Stürme, extremer Niederschlag oder Hitzewellen.

Betrachtet werden zwei Klassen in der Extremwerttheorie und -statistik bedeutender stochas-

tischer Prozesse: regulär variierende und deren Teilklasse der langschwänzigen max-stabilen

Prozesse, die auf Rd oder Rd−1 × [0,∞) definiert sind. Im ersten Fall werden die Prozesse

als räumlich und im zweiten als raum-zeitlich aufgefasst. Unter den max-stabilen Prozessen ist

das in der Arbeit führende Beispiel der Brown-Resnick-Prozess, der sowohl als räumliches als

auch als raum-zeitliches Modell definiert wird. Sowohl regulär variierende als auch max-stabile

Prozesse sind durch extreme Abhängigkeitsfunktionen charakterisiert.

Die beiden Hauptziele dieser Arbeit sind die folgenden: einerseits werden neue parametrische

Modelle für die extremen Abhängigkeitsfunktionen regulär variierender und max-stabiler Prozesse

entwickelt, die für die betrachteten Anwendungen geeignet sind. Andererseits werden neue In-

ferenzmethoden entwickelt, um die Modelle an beobachtete Daten anzupassen und relevante

asymptotische Eigenschaften der Schätzer wie Konsistenz und asymptotische Normalität be-

wiesen. Die Inferenzmethoden umfassen paarweise Likelihood-Schätzung von neuen anisotropen

Brown-Resnick-Prozessen in Raum und Zeit sowie sowohl empirische Verfahren als auch semi-

parametrische kleinste-Quadrate-Methoden, die auf die weitaus größere Klasse regulär variieren-

der Prozesse angewandt werden können. Sie beruhen auf empirischen Schätzern des räumlichen

oder raum-zeitlichen Extremogramms, welches der Kovarianzfunktion von Indikatorvariablen

von Überschreitungsereignissen im asymptotischen Sinne entspricht. Um die asymptotischen

Eigenschaften der Schätzer nachzuweisen, ist es notwendig, schwache Mischungs-Eigenschaften

zu formulieren und zu überprüfen.

Alle Inferenzmethoden funktionieren asymptotisch korrekt in sehr flexiblen Beobachtungss-

chemata. Das bedeutet beispielsweise im Raum-Zeit-Kontext, dass die Anzahl der räumlichen

Beobachtungen im Vergleich zur Anzahl der zeitlichen Beobachtungen sehr klein sein kann, was

oft in der Analyse realer Daten anzutreffen ist. Die Resultate dieser Arbeit decken aber auch

allgemeinere Schemata ab.

Alle Methoden werden sowohl in Simulationsstudien als auch in einer Analyse extremen Re-

genfalls in Florida, USA, verwendet und ein sehr gutes Verhalten im Falle endlicher Stichproben

nachgewiesen. Eine Reihe von Methoden zur Bewertung der Qualität des Modellfits und zur

Modellselektion werden vorgestellt und angewandt. Insbesondere kann die Hypothese verworfen

werden, dass die Messungen des Regenfalls in Florida einem räumlich isotropen Brown-Resnick

Prozess folgen.
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Abstract

This thesis deals with the statistical modelling and estimation of extremal spatial and space-time

stochastic processes. Such processes find applications in many areas of environmental analysis

with focus on the assessment of rare and extreme events in space and/or time such as wind

storms, extremal rainfall or heatwaves.

We consider two classes of stochastic processes that are prominent in extreme value theory and

extreme value statistics: regularly varying processes and their subclass of heavy tailed max-stable

processes that live on Rd or Rd−1×[0,∞). In the former case, we interpret the processes as spatial

and in the latter as space-time processes. Among the max-stable processes, our leading example

is the Brown-Resnick process, which we define both as a spatial and as a space-time model. Both

regularly varying and max-stable processes are characterised by extremal dependence functions.

The two central goals of this thesis are as follows: firstly, we develop new parametric models

for the extremal dependence functions of regularly varying and max-stable processes that are

suitable for the considered applications. Secondly, we introduce new inference methods to fit the

new models to data and prove relevant asymptotic properties such as consistency and asymptotic

normality of the estimates. The inference methods comprise pairwise likelihood estimation of new

spatially anisotropic Brown-Resnick space-time models as well as both empirical approaches and

semiparametric least squares methods which are applicable to the much larger class of regularly

varying processes. They rely on empirical estimates of the spatial or space-time extremogram,

which is the covariance function of indicator functions of exceedance events in an asymptotic

sense. In order to prove asymptotic properties of the estimates we need to state and verify weak

mixing conditions for the processes.

All inference methods work asymptotically correct in very flexible observation schemes. For

instance, in the space-time context, the number of spatial observations can be very small com-

pared to the number of temporal observations, which is a situation often found in real data.

However, our results also cover more general observation schemes.

We show all methods at work in both simulation studies and in an analysis of extremal

rainfall in Florida, USA, and confirm a very good finite sample behaviour. We propose and

apply a variety of goodness-of-fit test procedures to assess the quality of the model fit and to

perform model selection. In particular, we can reject the hypothesis that the Florida rainfall

data are observations of a spatially isotropic Brown-Resnick space-time process.
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Chapter 1

Introduction

1.1 Motivation and objectives of extreme value theory

The central aim of extreme value theory and extreme value statistics is to quantify and analyse

rare and extreme events and estimate tails rather than the median of underlying distributions.

These events comprise natural catastrophes such as extreme wind gusts, hurricanes or flooding.

They are typically very costly and thus of particular interest for society and industry. The

theory developed in this thesis is applied to daily rainfall maxima taken over hourly accumulated

measurements in inches at 144 spatial locations in the period 1999-2004. The locations lie on a

grid of size 12×12 in a region in Florida, USA. The measurements are block maxima both in space

and time and computed from raw data provided by the Southwest Florida Water Management

District (SWFWMD). Their position in Florida is visualised in Figure 1.1. More details on the

data are given in Sections 3.6 and 5.5.

From a historical point of view, there are basically three stages of evolution of extreme value

theory. The most classical one is univariate extreme value theory, which dates back to Fisher and

Tippett [36]. It deals with a number n ∈ N of univariate real observations X1, . . . , Xn. This can

be for instance the (extreme) amount of rainfall at a particular fixed location or site on earth,

such as the observed time series of daily maxima at a fixed location on the grid of size 12× 12

in Florida. For an exemplary fixed location, the daily maxima are visualised for the wet seasons

(June-September) of the years 1999-2004 in Figure 1.2. The observations are often assumed to

be independent, which is reasonable for example if they are given on a yearly basis. But this

assumption can be relaxed, which opens the door to a more general time series setting. A typical

question or task in univariate extreme value theory is to compute high quantiles of an extreme

value distribution underlying the observations. This can be interpreted as a value (e.g. rainfall

amount) that is exceeded at the fixed location extremely rarely, for example on average only

every 100 (or 200,...) years, and may not even have been observed yet. Profound introductions

into univariate extreme value theory can be found in Coles [16] and Embrechts et al. [32].

The next stage is the generalisation from univariate to d-variate observationsX1, . . . ,Xn ∈ Rd

for d ∈ N, summarised under the term multivariate extreme value theory. The Xi are vectors

1



Chapter 1 Introduction

Figure 1.1: Rainfall observation area in Florida

whose components may be interpreted as different distinct locations, thus constituting d series of

univariate observations. On top of treating each of those components (often called “univariate

margins”) with methods of univariate extreme value theory, the focus lies on modelling and

determining the structure of (extreme) dependence between them. One is particularly interested

in joint (i.e., simultaneous) exceedances of high levels or thresholds of the univariate margins.

In the context of the rainfall example, an interesting question might be “given high rainfall at

location A, how likely is high rainfall at a (nearby) location B?”. Detailed introductions into

multivariate extreme value theory are given in Beirlant et al. [3] and, with focus on the bivariate

case, in [16], Chapter 8.

As the last natural step, multivariate extreme value theory has been generalised to infinite

dimensions, which gives rise to stochastic extreme value processes {X(s) : s ∈ Rd} for some

d ∈ N. These processes are commonly interpreted as spatial processes but we stress that this

includes processes {X(s) : s ∈ Rd−1 × [0,∞)}, which we interpret as space-time processes,

and time series {X(t) : t ∈ [0,∞)}. In contrast to (finite-dimensional) multivariate extreme

value theory, extreme events are not modelled on a finite number of distinct locations, but on

a continuous spatial map and possibly in continuous time. A theoretical introduction into this

setting can be found in de Haan and Ferreira [25]. Observations of the processes are often given

on a grid in space and/or time, such as the daily rainfall maxima in Florida, which are visualised

on the regular grid of size 12×12 at four consecutive time points in Figure 1.3. Central aims are

to find and develop models for extreme value processes that are appropriate with respect to the

area of application. Furthermore, these models have to be fitted to the observed data and the

goodness of the fit needs to be assessed. This is the setting this thesis is mainly committed to.

2



1.2 Scope and goals of this thesis

Figure 1.2: Daily rainfall maxima in inches taken over hourly accumulated measurements from 1999-
2004 at some fixed location in Florida, USA.

1.2 Scope and goals of this thesis

This thesis pursues two central objectives. One aim is to develop new statistical models that can

be applied in a variety of different areas of applications in extreme value statistics. These models

need to capture extremal dependence properties in time series, spatial or space-time stochastic

processes appropriately.

The second central goal is to provide suitable inference methods which enable us to fit the

developed statistical extremal dependence models to real data such as the Florida rainfall data

visualised in Figures 1.1-1.3. These inference methods comprise parametric, semiparametric, as

well as non-parametric procedures.

Throughout this thesis we consider two classes of strictly stationary spatial (or space-time)

processes {X(s) : s ∈ Rd} with dimension d ∈ N, which are defined on a probability space

(Ω,F ,P) and prominent in extreme value theory.

Regularly varying stochastic processes

The first class consists of regularly varying processes. Here and in what follows, for two positive

functions f and g we write f(n) ∼ g(n) as n → ∞ for limn→∞ f(n)/g(n) = 1. A stochastic

process {X(s) : s ∈ Rd} is called regularly varying, if there exists some normalising sequence

(an)n∈N with 0 < an → ∞ such that P(|X(0)| > an) ∼ n−d as n → ∞ and for every finite set

I ⊂ Rd with cardinality |I| <∞,

ndP
(XI
an
∈ ·
)

=: µI,n(·) v→ µI(·), n→∞, (1.1)

3



Chapter 1 Introduction

Figure 1.3: Daily rainfall maxima in inches taken over hourly accumulated measurements at 144 gridded
locations in Florida, USA, and at four consecutive days (from left to right and top to bottom)
in the period 1999-2004.

for some non-null Radon measure µI on the Borel sets in R|I|\{0}; i.e., µI is finite on compact

sets. If I is a singleton; i.e., I = {s} for some s ∈ Rd, we set

µ{s}(·) = µ{0}(·) =: µ(·), (1.2)

which is justified by stationarity. We let R = R ∪ {−∞,∞} and we let XI denote the vector

(X(s) : s ∈ I). The notation
v→ stands for vague convergence meaning that∫

R|I|\{0}
f(x)µI,n(dx)→

∫
R|I|\{0}

f(x)µI(dx), n→∞, (1.3)

for all continuous nonnegative functions f : R|I|\{0} → (0,∞) with compact support. The limit

measure µI is furthermore homogeneous of order −β where β > 0 is called the index of regular

variation:

µI(xC) = x−βµI(C), x > 0,

4



1.2 Scope and goals of this thesis

for every Borel set C ⊂ R|I|\{0}. For more background on regular variation for stochastic

processes and vectors see Hult and Lindskog [40] and Resnick [57, 59].

Max-stable processes

The second class of processes we consider are heavy tailed max-stable processes, which constitute

a subclass of regularly varying processes. A process {X(s) : s ∈ Rd} is called max-stable if there

exist sequences an(s) > 0 and bn(s) for s ∈ Rd and n ∈ N such that

{
a−1
n (s)

( n∨
j=1

Xj(s)− bn(s)
)

: s ∈ Rd
}

d
= {X(s) : s ∈ Rd}, (1.4)

where {Xj(s) : s ∈ Rd} are independent replicates of {X(s) : s ∈ Rd} and the maximum is taken

componentwise. The symbol
d
= stands for equality in distribution. Max-stable processes provide

a useful framework for modelling extremal dependence in continuous time and/or space. A max-

stable process is a limit process which possesses a max-domain of attraction. A stochastic process

{Y (s) : s ∈ Rd} is in the max-domain of attraction of a max-stable process {X(s) : s ∈ Rd} if

there exist sequences cn(s) > 0 and dn(s) for s ∈ Rd and n ∈ N such that

{
c−1
n (s)

( n∨
j=1

Yj(s)− dn(s)
)

: s ∈ Rd
}

d→ {X(s) : s ∈ Rd}, n→∞, (1.5)

where {Yj(s) : s ∈ Rd} are independent replicates of {Y (s) : s ∈ Rd}. The symbol
d→ stands for

convergence in distribution.

For D = {s(1), . . . , s(|D|)} ⊂ Rd and y = (y1, . . . , y|D|) > 0 the finite-dimensional margins of

{X(s) : s ∈ Rd} are given by

P(X(s(1)) ≤ y1, X(s(2)) ≤ y2, · · · , X(s(|D|)) ≤ y|D|) = exp{−VD(y)}. (1.6)

Here VD denotes the exponent measure (cf. [3], Section 8.2.2).

The univariate margins of {X(s) : s ∈ Rd} follow a generalised extreme value distribution

(GEV) (cf. [32], Definition 3.4.1) given for shape parameter ξ ∈ R, location parameter µ ∈ R
and scale parameter σ > 0 by

GEV(ξ,µ,σ)(x) =


exp

{
−
[
1 + ξ

(
x−µ
σ

)]− 1
ξ
}
, if ξ 6= 0,

exp
{
− exp

[
−
(
x−µ
σ

)]}
, if ξ = 0.

(1.7)

The GEV is the classical model for univariate block maxima such as yearly or daily rainfall

maxima taken over blocks (consecutive values) of observations. Depending on the value of its

shape parameter ξ, a GEV (and its max-domain of attraction) can be assigned to three different

types (cf. [36]). The case ξ < 0 corresponds to the extremal Weibull class and ξ = 0 to the

Gumbel class. Of particular importance in this thesis is the case ξ > 0 corresponding to the heavy

tailed Fréchet class, which contains distributions with regularly varying right tail. Prominent

5



Chapter 1 Introduction

examples are the Pareto and the loggamma distributions and they find applications in insurance

and reinsurance industry. Hence max-stable processes with Fréchet marginal distributions are

regularly varying, but the class of regularly varying processes includes also processes which lie

in their max-domain of attraction. In this thesis the most prominent example of a max-stable

process is the strictly stationary Brown-Resnick process {η(s) : s ∈ Rd} with Fréchet marginal

distributions. It has representation

η(s) =
∞∨
j=1

{
ξj e

Wj(s)−δ(s)
}
, s ∈ Rd, (1.8)

where {ξj : j ∈ N} are points of a Poisson process on [0,∞) with intensity ξ−2dξ, the dependence

function δ is nonnegative and conditionally negative definite, and {Wj(s) : s ∈ Rd} are indepen-

dent replicates of a Gaussian process {W (s) : s ∈ Rd} with stationary increments, W (0) = 0,

E[W (s)] = 0 and covariance function

Cov[W (s(1)),W (s(2))] = δ(s(1)) + δ(s(2))− δ(s(1) − s(2)).

Representation (1.8) goes back to de Haan [24] and Giné et al. [39]. Brown-Resnick processes

have been studied by Brown and Resnick [8] in a time series context, as a spatial model by

Kabluchko et al. [47], and in a space-time setting by Huser and Davison [43], Davis et al. [19]

and Steinkohl [62]. From a geostatistical point of view, the dependence function δ is called the

semivariogram of the process {W (s) : s ∈ Rd} defined through 2δ(h) = Var[W (s)−W (s+ h)]

for s,h ∈ Rd and {η(s) : s ∈ Rd} is called the Brown-Resnick process associated to δ. For

D = {s, s + h} where s ∈ Rd and h ∈ Rd is some fixed lag vector, we get for the bivariate

exponent measure (1.6) of the Brown-Resnick process (cf. [19], Section 3),

VD(y1, y2) =
1

y1
Φ̃
(y2

y1

)
+

1

y2
Φ̃
(y1

y2

)
, y1, y2 > 0, (1.9)

with

Φ̃
(x
y

)
= Φ̃

(
h;
x

y

)
:= Φ

( log(x/y)√
2δ(h)

+

√
δ(h)

2

)
, x, y > 0. (1.10)

The finite-dimensional distributions of {η(s) : s ∈ Rd} are characterised by δ; hence modelling

the underlying extremal dependence structure is achieved by setting up parametric models for

δ or related functions such as the extremogram, which can be defined for regularly varying

processes as follows.

The extremogram as a correlogram for extreme events

The extremogram measures extremal dependence in a strictly stationary regularly varying

stochastic process and can be seen as a correlogram for extreme events. Introduced for time

series in Davis and Mikosch [17] and Fasen et al. [35], it has been generalised to spatial settings

in Cho et al. [15] and to space-time settings in Buhl et al. [14] and in Steinkohl [62]. In the

6



1.2 Scope and goals of this thesis

respective publications, asymptotic results like consistency and asymptotic normality of an em-

pirical extremogram are proved under weak mixing conditions. Davis et al. [21] give a profound

review of the estimation theory for time series with various examples. As stated in [17], the

extremogram can be regarded as the covariance function of indicator functions of exceedance

events in an asymptotic sense. It is defined for strictly stationary regularly varying processes

{X(s) : s ∈ Rd}. Consider a sequence 0 < an → ∞ as in (1.1). For µ as in (1.2) and two

µ-continuous Borel sets A and B in R\{0} (i.e., µ(∂A) = µ(∂B) = 0) such that µ(A) > 0, the

extremogram is defined as

ρAB(h) = lim
n→∞

P(X(0)/an ∈ A,X(h)/an ∈ B)

P(X(0)/an ∈ A)
, h ∈ Rd. (1.11)

For A = B = (1,∞), the extremogram ρAB(h) is the tail dependence coefficient and char-

acterises the extremal dependence structure between X(0) and X(h) (cf. [3], Section 9.5.1).

If ρ(1,∞),(1,∞)(h) = 0 then X(0) and X(h) are called asymptotically independent, in case

0 < ρ(1,∞),(1,∞)(h) ≤ 1 they are said to be asymptotically dependent. This reveals the im-

portance of developing appropriate inference methods in order to obtain extremogram estimates

with good asymptotic properties. The methods can be non-parametric and based on empirical

estimates, cf. [12, 15, 17] or Buhl and Klüppelberg [13]. They can also be parametric and rely on

a parametric model set up for the extremogram. Also a semiparametric method; that is, a com-

bination of both as carried out in [14], is possible. In this thesis we develop new, both parametric

and semiparametric inference methods for the extremogram of strictly stationary heavy tailed

max-stable processes and for more general regularly varying processes. In simulations studies

and in real data analyses, we apply them to Brown-Resnick processes as defined in (1.8). A list

of parametric models for their dependence function δ is given in the following.

Models for the dependence function of a Brown-Resnick process

As can be deduced from Lemma A.1 in Buhl and Klüppelberg [12], the extremogram ρAB of the

max-stable Brown-Resnick process defined in (1.8) is characterised by its dependence function

δ. Thus a parametric model for δ directly yields a model for the extremogram ρAB defined in

(1.11).

A spatial model for δ commonly used in environmental applications is the fractional class

{
δ(h) = C‖h‖α : h ∈ Rd, C ∈ (0,∞), α ∈ (0, 2]

}
. (1.12)

The special time series model, where δ(u) = |u|/2 for u ∈ R, which corresponds to the Gaus-

sian processes {Wj(t) : t ∈ [0,∞)} in (1.8) being standard Wiener processes, was introduced

in [8]. Another special case is the storm profile model introduced by Smith [61], which corre-

sponds to α = 2 in (1.12). It models a very smooth process, since the parameter α relates to

the smoothness of the sample paths of the underlying Gaussian processes, with the boundary

case α = 2 corresponding to mean-square differentiable processes. It was shown in [47] that

Brown-Resnick processes with dependence function δ as in (1.12) arise as limits of pointwise
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Chapter 1 Introduction

maxima of appropriately rescaled and normalised independent stationary Gaussian processes.

These Gaussian processes and the resulting Brown-Resnick limit process are spatially isotropic,

meaning that δ(h), and therefore extremal dependence between two process values η(0) and

η(h), only depend on the norm of the lag vector h, whereas directional influences are neglected.

For Brown-Resnick space-time processes {η(s, t) : s ∈ Rd−1, t ∈ [0,∞)}, model (1.12) was

generalised in [19] and [62] to the space-time fractional class

{
δ(h, u) = C1‖h‖α1 + C2|u|α2 : (h, u) ∈ Rd, C ∈ (0,∞), α ∈ (0, 2]

}
(1.13)

and applied in [62] to the gridded space-time maxima of rainfall in Florida visualised in Fig-

ures 1.1-1.3. This model is again spatially isotropic, which is an assumption that is often unreal-

istic in environmental analyses, since for instance wind and rainfall have directional preferences.

In Chapters 4 and 5 of this thesis, which are based on the publications Buhl and Klüppelberg

[13] and Buhl and Klüppelberg [11], we extend model (1.13) and allow for different rates of decay

of extremal dependence along the axes of a d-dimensional spatial grid (which we call principal

directions) by defining the dependence function δ(h, u) for spatial lag h = (h1, . . . , hd) ∈ Rd and

time lag u ∈ R as

{
δ(h, u) =

d−1∑
j=1

Cj |hj |αj + Cd|u|αd : (h, u) ∈ Rd, Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d}

(1.14)

In Chapter 5, we also provide a variety of goodness-of-fit test procedures. Firstly, we present

a procedure to test whether observed data originate from a max-stable process, which works

well in the considered space-time setting. Such tests should be conducted before the actual

fitting of a max-stable model in order to check whether this is an appropriate assumption.

We furthermore provide a test procedure to assess the quality of the model fit, which relies

on simulation diagnostics. Besides, based on the model fit, we present a method to test for

spatial anisotropy versus isotropy, which is designed for the new Brown-Resnick model (1.14).

We fit this model to the Florida rainfall data using pairwise likelihood estimation, which is

described in more detail below in this section. Model (1.14) can be further generalised to allow for

arbitrary principal orthogonal directions by considering a rotation matrix R and the dependence

function δR(h, u) = δ(Rh, u) for (h, u) ∈ Rd. This involves the rotation angle as a further model

parameter. We examine this rotated model in more detail in Chapter 4.

Also in that chapter we introduce in a general Brown-Resnick space-time model as defined

in (1.8) some influence of the spatial dependence from past values of the process. We do this by

time-shifting the Gaussian process {W (s, t) : s ∈ Rd−1, t ∈ [0,∞)} and setting

W (τ )(s, t) := W (s− tτ , t)

for some τ ∈ Rd−1, called the direction of propagation. This time-shift then directly translates

into the dependence function δ. The direction of propagation τ is a model parameter and needs

8



1.2 Scope and goals of this thesis

to be estimated from observed data. It reflects directional preferences of storms or other weather

extremes. Figure 1.4 visualises a realisation simulated from the space-time model (1.14) for d = 3

extended by a time-shift with direction of propagation τ = (1,−1).

Fitting of parametric extremal dependence and extremogram models requires appropriate

inference methods. In the following we give an overview over existing methods and present new

methods developed in this thesis.

Inference methods for extremal dependence models

A common approach to estimate the parameters of a model for max-stable processes such as the

Brown-Resnick process (1.8) is composite likelihood. Pairwise likelihood estimation based on the

bivariate density of the models has been proposed in Padoan et al. [54] for spatial processes and

studied in [43] and Davis et al. [20] and [62] in a space-time context. Results like consistency

and asymptotic normality for pairwise likelihood estimates of their proposed model (1.13) are

derived in [20]. Genton et al. [37] examine triplewise likelihood estimation for the max-stable

Smith storm profile model and report a gain in efficiency. This investigation is extended to

the more general Brown-Resnick processes as defined in (1.8) by Huser and Davison [42] who

show via simulations that the gain in efficiency is substantial only for very smooth processes,

for example for those which are associated to a dependence function δ as in (1.12) with a

parameter α close to 2. Composite likelihood methods have become widely used in parameter

estimation for max-stable processes since due to the exponential form of their finite-dimensional

distribution functions (cf. Eq. (1.6)), the number of terms in the corresponding densities and

thus in the likelihood function explodes. Recently, however, methods have been proposed that

open the door to full likelihood estimation in specific scenarios, see for instance Wadsworth [66]

who suggests to incorporate information on the occurence times of maxima, which simplifies the

likelihood, or Wadsworth and Tawn [67] and Engelke et al. [34], who suggest threshold-based

approaches. When full likelihood estimation is feasible, also frequentist or Bayesian approaches

are applicable, see for example Dombry et al. [29] and Thibaud et al. [65].

In this thesis, we propose the following inference methods involving non- and semiparametric

as well as likelihood-based approaches. In Chapter 2, which is based on the publication Buhl

and Klüppelberg [12] and in the first part of Chapter 4, which is based on Buhl and Klüppelberg

[13], we deal with empirical estimation of the extremogram (1.11) of a general regularly varying

process {X(s) : s ∈ Rd}. We assume to observe the process on some domain Dn ⊂ Rd whose

cardinality increases to infinity as n→∞. We choose further a set H ⊂ Rd of lag vectors which

the estimation is based on, and define for h ∈ H the set Dn(h) = {s ∈ Dn : s + h ∈ Dn} as

the set of vectors s ∈ Dn such that with s also the lagged vector s + h belongs to Dn. For

µ-continuous sets A and B in R\{0} such that µ(A) > 0 and a sequence m = mn → ∞ and

mn = o(n) as n→∞, the empirical extremogram is defined for h ∈ H as

ρ̂AB,mn(h) :=

1

|Dn(h)|
∑

s∈Dn(h)

1{X(s)/am∈A,X(s+h)/am∈B}

1

|Dn|
∑
s∈Dn

1{X(s)/am∈A}

. (1.15)
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Chapter 1 Introduction

Figure 1.4: Simulation from a time-shifted Brown-Resnick space-time model shown at four consecutive
time points (from left to right and top to bottom). The movement and scaling of the largest
peak in the top left plot from the upper corner of the grid to the lower corner in the bottom
right plot is clearly visible. Also smaller peaks can be observed to emerge and disappear.
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1.2 Scope and goals of this thesis

A central limit theorem (CLT) for the empirical extremogram (ρ̂AB,mn(h) : h ∈ H) centred

by the so-called pre-asymptotic extremogram is proved in [15]. The proof is mainly based on the

seminal paper [6] by Bolthausen.

The pre-asymptotic extremogram in the CLT can be replaced by the true one (1.11), if a

certain bias condition is satisfied; in particular, the difference between the pre-asymptotic and

the true extremogram must vanish with the same rate as the one given in the CLT. However, for

many processes the assumptions required in [15] are too restrictive to satisfy this bias condition.

In Chapter 2 we explain this in detail by means of two models which exactly fall into this

class; the max-moving average process and the Brown-Resnick process (1.8). As the latter, the

max-moving average process is max-stable with Fréchet margins.

We then prove a CLT for the empirical extremogram centred by the pre-asymptotic ex-

tremogram for strictly stationary regularly varying stochastic processes which relies on weaker

conditions than the CLT stated in [15]. Our proof also partly relies on Bolthausen’s CLT for

spatial processes in [6]; however, we make important modifications so that the bias condition

mentioned above can be satisfied, and thus CLTs for the empirical extremogram centred by the

true one with optimal rates become possible for many more processes. The proof is based on a

big block/small block argument, similarly as in the time series setting considered by [17].

Whether a CLT centred by the true extremogram is possible depends on the particular reg-

ularly varying process. If the process has finite-dimensional Fréchet distributions, we can state

necessary and sufficient assumptions such that a CLT of that kind is possible, relying on weaker

mixing conditions than given in [15]. Furthermore, under conditions such that a CLT centred

by the true extremogram is not possible, a bias-corrected estimator can be defined, which we

do in Chapter 4. This bias correction can also be introduced in order to improve the rate of

convergence.

In Chapter 2 we consider as the observation area Dn = {1, . . . , n}d a regular grid that increases

in all dimensions, which corresponds to the setting mostly considered so far, cf. [15, 17] or [62].

Irregularly observed data, possibly generated by a Poisson process, have been considered in [15]

(also in [62] in the context of pairwise likelihood estimation). The choice of a regular grid Dn
can be extended to arbitrary observation sets provided that they increase to Zd and satisfy a

central boundary condition required for Bolthausen’s CLT in [6].

In the first part of Chapter 4 we extend the observation scheme to settings which are more

realistic with regard to practical applications. In particular, instead of assuming that the obser-

vation area Dn increases in all dimensions, it is often more appropriate to assume Dn to increase

in only some but not all dimensions. This means that Dn can (possibly after reordering) be

decomposed into a fixed and an increasing part; i.e.,

Dn = F × In, (1.16)

where for q, w ∈ N satisfying w + q = d:

(1) F ⊂ Zq is a fixed domain independent of n, and

(2) In = {1, . . . , n}w ⊂ Nw is an increasing sequence of regular grids satisfying a boundary
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Chapter 1 Introduction

condition.

This includes the special case where the observation area is given by

Dn = F × {1, . . . , n} (1.17)

for F ⊂ Rd−1, and we interpret the observations as generated by a space-time process {X(s, t) :

s ∈ Rd−1, t ∈ [0,∞)} on a fixed spatial and an increasing temporal domain.

In Chapter 3, which is based on the publication Buhl et al. [14], we present a semiparametric

method to estimate the parameters of a parametric model for the extremogram ρAB defined

in (1.11) or the dependence function δ of Brown-Resnick space-time processes defined in (1.8).

The model we assume for δ is the space-time fractional class given in (1.13). The method relies

on the empirical extremogram (1.15) sampled at different lags h ∈ H and on its asymptotic

normality. Exploiting a specific closed-form expression of the theoretical extremogram of the

Brown-Resnick process which depends on the chosen parametric model for δ, we use the empirical

estimates to estimate the model parameters in an ordinary weighted linear regression setting. We

separate space and time and estimate the corresponding parameters separately, which is possible

due to the additive separability of the space-time model (1.13). We therefore require throughout

Chapter 3 an observation scheme such that both the number of temporal and the number of

spatial observations increase to infinity, which corresponds to q = 0 in (1.16). For the spatial

empirical extremogram we apply the CLT with mixing conditions as provided in Chapter 2, and

for the timewise estimate that of [17]. We then prove asymptotic normality of the weighted least

squares parameter estimates, where constrained optimisation has to be applied, since one of the

spatial and one of the time parameters in model (1.13) has bounded support. Also the limit laws

differ depending on whether the parameter lies on the boundary or not.

In the second part of Chapter 4, which is based on the publication Buhl and Klüppelberg [13],

we generalise the semiparametric estimation method introduced in Chapter 3 in various ways.

First of all, the observation scheme (1.16) underlying the empirical extremogram (1.15) is allowed

to be much more flexible, see the comments above. Secondly, the new method is not restricted

to max-stable Brown-Resnick processes, but can be applied to all regularly varying spatial and

space-time processes satisfying appropriate mixing conditions. Motivated by geostatistical least

squares variogram estimation as done in Lahiri et al. [48], we work in a generalised least squares

regression framework and can assume very general (identifiably parametrised) dependence mod-

els for the extremogram (1.11). These models need to satisfy certain regularity conditions which

we state in detail. All model parameters (spatial and temporal) are estimated simultaneously; in

particular, the method is not restricted to additively separable models as (1.13). We prove con-

sistency and asymptotic normality of the least squares parameter estimates, which respectively

rely on consistency and asymptotic normality of the empirical extremogram.

Finally, in Chapter 5, which is based on the publication [11], we propose a purely parametric

approach and generalise the pairwise likelihood estimation method proposed in [20] for the

space-time Brown-Resnick model (1.13) to the more flexible spatially anisotropic model (1.14).

The estimation is based on observations on a regular spatial grid SM = {1, . . . ,M}d−1 and at

12
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equidistant time points T = {1, . . . T} for M and T ∈ N; i.e., the observation area is given by

D = DM,T = SM × T . (1.18)

We show strong consistency and asymptotic normality of the estimates if both M and T tend to

infinity, relying on mild regularity and mixing conditions that hold for the space-time Brown-

Resnick process model (1.14). We furthermore allow for flexible observation schemes in the

sense that, for instance, in (1.18) the number M and thus the number of spatial observations

can remain fix such that only the number of observed time points T tends to infinity. This

corresponds to Eq. (1.17) above and accounts for the setting of a rather small number of spatial

observations compared to a large observed time series, which is a situation often found in real

applications. Also in this context we verify the asymptotic properties of the estimates, which

requires appropriate adaptations of the required regularity and mixing conditions.

Likelihood-based approaches often yield more accurate estimates than non- or semiparametric

methods; however, they can be substantially more time-consuming, see Chapter 6 in [62]. A way

to reduce computation time is to use the semiparametric estimates obtained in Chapters 3 and

4 as starting values in the likelihood optimisation routine.

What all estimation methods mentioned above have in common is that, applied to estimation

of the parameters of the dependence function δ of a Brown-Resnick process, the asymptotic

covariance matrices of the estimates are difficult to access. To produce reliable asymptotic confi-

dence intervals, we therefore use subsampling methods as proposed for random fields in Chapter 5

of Politis et al. [56]. Subsampling requires only weak assumptions to work asymptotically cor-

rect, including the existence of continuous limit distributions of the estimates, which holds in

all mentioned cases, and a particular mixing condition.

1.3 Outline of this thesis

This PhD thesis consists of the first four of the following six research papers. Each of Chap-

ters 2-5 corresponds to one of the papers [P1]-[P4], respectively, and is self-contained with its

own abstract and introduction. Notations and abbreviations might differ among the different

chapters since different notations seem reasonable in different settings. There are four appen-

dices at the end of this thesis, one for each chapter.

[P1] S. Buhl and C. Klüppelberg. Limit theory for the empirical extremogram of random fields.

Submitted for publication, 2017.

[P2] S. Buhl, R. Davis, C. Klüppelberg, and C. Steinkohl. A semiparametric estimation proce-

dure for max-stable space-time processes. Submitted for publication, 2017.

[P3] S. Buhl and C. Klüppelberg. Generalised least squares estimation of regularly varying space-

time processes based on flexible observation schemes. Submitted for publication, 2017.

[P4] S. Buhl and C. Klüppelberg. Anisotropic Brown-Resnick space-time processes: estimation

and model assessment. Extremes, 19(4): 627-660, 2016.
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[P5] E. Boergens, S. Buhl, D. Dettmering, C. Klüppelberg, and F. Seitz. Combination of multi-

mission altimetry data along the Mekong River with spatio-temporal kriging. Journal of Geodesy,

2016.

[P6] S. Buhl and A.C. Davison. Parametric change point detection in samples of random vari-

ables with adjustment for multiple testing under dependency. In preparation, 2017.

In Chapter 2 we define the extremogram of regularly varying spatial processes, its empirical

estimator and the pre-asymptotic version. We state conditions under which the empirical ex-

tremogram centred by the pre-asymptotic version is asymptotically normal and compare our

conditions to those of [15]. Under slightly stronger conditions we show a CLT centred by the

true extremogram. As two specific examples we examine the extremogram and its estimator for

the max-moving average process and the Brown-Resnick process.

In Chapter 3 we introduce the new two-step semiparametric method to estimate the parame-

ters of the Brown-Resnick space-time model (1.13), which is based on a closed-form expression of

its empirical extremogram, and define the ordinary weighted least squares estimator. We state

and verify its asymptotic properties. We examine the finite sample behaviour of the method

in a simulation study and conclude with an analysis of the Florida rainfall data visualised in

Figures 1.1-1.3.

The first part of Chapter 4 generalises the results concerning estimation of the empirical

extremogram of regularly varying processes obtained in Chapter 2 to very flexible observation

schemes as described in (1.16). For processes with Fréchet marginal distributions we give precise

conditions under which a CLT centred by the true extremogram can be obtained. In case those

conditions are not satisfied we introduce a bias-corrected empirical extremogram.

In the second part of Chapter 4 we generalise the semiparametric estimation method intro-

duced in Chapter 3 in the various ways described in Section 1.2. In particular, we define the

generalised least squares estimator and verify its properties of consistency and asymptotic nor-

mality. We apply the method to Brown-Resnick space-time processes. We give a list of existing

and new parametric models for its dependence function δ and estimate their parameters in the

course of a simulation study.

Chapter 5 is dedicated to pairwise likelihood estimation of the new spatially anisotropic

Brown-Resnick space-time model (1.14) from data that is observed within a flexible observa-

tion scheme. We state and verify the asymptotic properties of the pairwise likelihood estimates.

We show the method at work for finite samples in an analysis of the Florida rainfall data also

analysed in Chapter 3 and apply a variety of goodness-of-fit test procedures. In particular,

we reject the hypothesis of spatial isotropy of the process underlying the observations, thus

concluding that an anisotropic model is more appropriate than the isotropic model applied in

Chapter 3. Based on the model fit, we furthermore produce conditional probability fields an-

swering questions of the type “Conditional on extreme rainfall at location s1 at time t1, what

is the probability of extreme rainfall at a (nearby) location s2 at time t2?”, where “extreme

rainfall” is specified by means of a large empirical quantile.
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Chapter 2

Limit theory for the empirical
extremogram of random fields

Abstract

Regularly varying stochastic processes are able to model extremal dependence between process

values at locations in random fields. We investigate the empirical extremogram as an estimator

of dependence in the extremes. We provide conditions to ensure asymptotic normality of the

empirical extremogram centred by a pre-asymptotic version. The proof relies on a CLT for ex-

ceedance variables. For max-stable processes with Fréchet margins we provide conditions such

that the empirical extremogram centred by its true version is asymptotically normal. The results

of this chapter apply to a variety of spatial and space-time processes, and to time series models.

We apply our results to max-moving average processes and Brown-Resnick processes.

AMS 2010 Subject Classifications: primary: 60F05, 60G70, 62G32; secondary: 37A25, 62M30

Keywords: Brown-Resnick process; empirical extremogram; extremogram; max-moving average

process; max-stable process; random field; spatial CLT; spatial mixing

2.1 Introduction

The extremogram measures extremal dependence in a strictly stationary regularly varying

stochastic process and can hence be seen as a correlogram for extreme events. It was introduced

in Davis and Mikosch [17] for time series (also in Fasen et al. [35]), and they show consistency and

asymptotic normality of an empirical extremogram under weak mixing conditions. Davis et al.

[21] give a profound review of the estimation theory for time series with various examples. For

a discussion of the role of the extremogram in dependence modelling of extremes we refer again

to [17]. As it is spelt out there, it is the covariance function of indicator functions of exceedance

events in an asymptotic sense. Also in that paper classical mixing conditions as presented in

15
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Ibragimov and Linnik [45], on which we rely in our work, are compared to the extreme mixing

conditions D and D′ often used in extreme value theory (cf. Embrechts et al. [32], Section 4.4,

and Leadbetter et al. [49], Sections 3.1 and 3.2).

The extremogram and its empirical estimate have been formulated for spatial d-dimensional

stochastic processes by Cho et al. [15] and for space-time processes in Buhl et al. [14] and

Steinkohl [62], when observed on a regular grid. The extremogram is defined for strictly sta-

tionary regularly varying stochastic processes, where all finite-dimensional distributions are in

the maximum domain of attraction of some Fréchet distribution. Among other results, based on

the seminal paper [6] by Bolthausen, [15] prove a CLT for the empirical extremogram sampled

at different spatial lags, centred by the so-called pre-asymptotic extremogram. Such results also

compare with a CLT for sample space-time covariance estimators derived in Li et al. [51], also

based on [6].

The pre-asymptotic extremogram can be replaced in the CLT by the true one, if a certain

bias condition is satisfied; in particular, the difference between the pre-asymptotic and the true

extremogram must vanish with the same rate as the one given in the CLT. However, for many

processes the assumptions required in [15] are too restrictive to satisfy this bias condition. We

explain this in detail and present two models which exactly fall into this class; the max-moving

average process and the Brown-Resnick process. These two processes are max-stable with Fréchet

margins.

In this chapter, we prove a CLT for the empirical extremogram centred by the pre-asymptotic

extremogram for strictly stationary regularly varying stochastic processes, which relies on weaker

conditions than the CLT stated in [15]. Our proof also partly relies on Bolthausen’s CLT for

spatial processes in [6]; however, we make important modifications so that the bias condition

mentioned above can be satisfied, and thus a CLT for the empirical extremogram centred by

the true one for many more processes becomes possible. The proof is based on a big block/small

block argument, similarly to [17].

Our interest is of course in a CLT centred by the true extremogram, and whether such a

CLT is possible depends on the specific regularly varying process. If the process has finite-

dimensional max-stable distributions, in our framework equivalent to having finite-dimensional

Fréchet distributions, we can give conditions such that a CLT of that kind is possible. Here

we need the weaker mixing conditions of our version of Bolthausen’s CLT compared to [15].

Furthermore, under conditions such that a CLT centred by the true extremogram is not possible,

a bias-corrected estimator can be defined, which we do in Chapter 3 for the Brown-Resnick

process and in Chapter 4 for more general processes with Fréchet marginal distributions.

This chapter is organised as follows. In Section 2.2 we present the general model class of strictly

stationary regularly varying processes in Rd for d ∈ N. We also define here the extremogram for

such processes. In Section 2.3 we define the empirical extremogram based on grid observations,

and also the pre-asymptotic extremogram. Section 2.4 is devoted to the CLT for the empirical

extremogram centred by the pre-asymptotic extremogram and to our examples of max-stable

spatial processes; max-moving average processes and Brown-Resnick processes. We discuss in

detail the problem of a CLT for the empirical extremogram and compare our new conditions for
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the CLT to hold with those in previous work, particularly with those given in Cho et al. [15].

For processes with Fréchet margins we prove a CLT for the empirical extremogram centred by

the true extremogram. The proof of the CLT is given in Section 2.5.

2.2 Regularly varying spatial processes

As a natural model class in extreme value theory we consider strictly stationary regularly varying

processes {X(s) : s ∈ Rd} for d ∈ N, where all finite-dimensional distributions are regularly

varying (cf. Hult and Lindskog [41] for definitions and results in a general framework and Resnick

[59] for details about multivariate regular variation). As a prerequisite, we define for every finite

set I ⊂ Rd the vector

XI := (X(s) : s ∈ I)
ᵀ
.

Throughout we assume that XI inherits the strict stationarity from {X(s) : s ∈ Rd}, which is

guaranteed, if we consider lagged vectors of XI . Furthermore, |I| denotes the cardinality of I.

As usual, f(n) ∼ g(n) as n→∞ means that f(n)/g(n)→ 1 for two positive functions f and g.

Definition 2.1 (Regularly varying process). A strictly stationary stochastic process {X(s) : s ∈
Rd} is called regularly varying, if there exists some normalising sequence 0 < an →∞ such that

P(|X(0)| > an) ∼ n−d as n→∞ and for every finite set I ⊂ Rd

ndP
(XI
an
∈ ·
)

v→ µI(·), n→∞, (2.1)

for some non-null Radon measure µI on the Borel sets in R|I|\{0}, where R = R ∪ {−∞,∞}.
In that case,

µI(xC) = x−βµI(C), x > 0,

for every Borel set C ⊂ R|I|\{0}. The notation
v→ stands for vague convergence, and β > 0 is

called the index of regular variation.

For every s ∈ Rd and I = {s} we set µ{s}(·) = µ{0}(·) =: µ(·), which is justified by stationarity.

The focus of the present chapter is on the extremogram, defined for values in Rd as follows.

Definition 2.2 (Extremogram). Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying

process in Rd. For two µ-continuous Borel sets A and B in R\{0} (i.e., µ(∂A) = µ(∂B) = 0)

such that µ(A) > 0, the extremogram is defined as

ρAB(h) = lim
n→∞

P(X(0)/an ∈ A,X(h)/an ∈ B)

P(X(0)/an ∈ A)
, h ∈ Rd. (2.2)

Our goal is to estimate the extremogram for arbitrary strictly stationary regularly varying pro-

cesses by its empirical version and prove asymptotic properties like consistency and asymptotic

normality.

Such results also allow for semiparametric estimation in a parametric spatial or space-time

model as presented in Chapters 3 and 4.

17



Chapter 2 Limit theory for the empirical extremogram of random fields

Analogous asymptotic results for the empirical extremogram of time series have been shown in

Davis and Mikosch [17] and of d-dimensional random fields in Cho et al. [15]. However, in certain

situations, for example in the case of the Brown-Resnick process (2.26), the rates obtained in

[15] are too crude to allow for a CLT. We apply a small block/large block argument in space

(similarly to [17] for time series), which leads to more precise rates in the CLT. Arguments of

our proof are based on spatial mixing conditions, and rely on general results of Bolthausen [6]

and Ibragimov and Linnik [45].

2.3 Large sample properties of the spatial empirical extremogram

The estimation of the extremogram is based on data observed on

Sn = {1, . . . , n}d = {sj : j = 1, . . . , nd}, the regular grid of side length n.

Let ‖ · ‖ be an arbitrary norm on Rd. Define the following quantities for γ > 0:

B(0, γ) =
{
s ∈ Zd : ‖s‖ ≤ γ

}
,

B(s, γ) =
{
s′ ∈ Zd : ‖s− s′‖ ≤ γ

}
= s+B(0, γ), (2.3)

H ⊆ {h = s− s′ : s, s′ ∈ Sn} ∩B(0, γ), a finite set of observed lags. (2.4)

We further define the vectorised process {Y (s) : s ∈ Rd} by

Y (s) := XB(s,γ);

i.e., Y (s) is the vector of values of X with indices in B(s, γ) as defined in (2.3). We introduce

the balls B(0, γ) in order to express events like {X(s) ∈ A,X(s + h) ∈ B} or {X(s) ∈ A} for

s ∈ Rd and h ∈ H ⊆ B(0, γ) as well as Borel sets A,B in R\{0} through events {Y (s) ∈ C}
for appropriately chosen Borel sets C in R|B(0,γ)|\{0}. This notation simplifies the presentation

of the proofs of consistency and asymptotic normality considerably.

For j ∈ N let ej be the j-th unit vector in Rd. The choice of a regular grid Sn can be

extended to arbitrary observation sets provided that they increase to Zd and have boundaries

∂Sn := {s ∈ Sn : ∃ z ∈ Zd \ Sn and j ∈ N with ‖z − s‖ = ‖ej‖} satisfying limn→∞ |∂Sn|/|Sn| =
0. The natural extension to grids with different side lengths does not involve any additional

mathematical difficulty, but notational complexity, since our proofs are based on big/small block

arguments common in extreme value statistics, which are much simpler to formulate for a regular

grid.

For fixed n and observations on the grid Sn there will be points s ∈ Sn near the boundary,

such that not all components of Y (s) can be observed. However, since we investigate asymptotic

properties for Sn and the boundary points become negligible, this is irrelevant for our results

and we suppress such technical details. As a consequence, our results apply to spatial as well

as time series observations, thus include the frameworks considered in Cho et al. [15] and Davis

and Mikosch [17].
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2.3 Large sample properties of the spatial empirical extremogram

We shall also need the following relations and definitions, where the limits exist by regular

variation of {X(s) : s ∈ Rd}. Let C be a µB(0,γ)-continuous Borel set in R|B(0,γ)|\{0} and C×D
a τB(0,γ)×B(h,γ)-continuous Borel set in the product space, where we define

µB(0,γ)(C) := lim
n→∞

ndP
(Y (0)

an
∈ C

)
, (2.5)

τB(0,γ)×B(h,γ)(C ×D) := lim
n→∞

ndP
(Y (0)

an
∈ C, Y (h)

an
∈ D

)
. (2.6)

We enumerate the lags inH byH = {h1, . . . ,hp}. Following ideas of Davis and Mikosch [17] (also

used in Cho et al. [15]) we define µB(0,γ)-continuous Borel sets D1, . . . , Dp, Dp+1 in R|B(0,γ)|\{0}
by the property

{Y (s) ∈ Di} = {X(s) ∈ A,X(s+ hi) ∈ B} (2.7)

for i = 1, . . . , p, and {Y (s) ∈ Dp+1} = {X(s) ∈ A}. Note in particular that, by the relation

between {Y (s) : s ∈ Rd} and {X(s) : s ∈ Rd} and regular variation, for every µ-continuous

Borel set A in R \ {0},

µB(0,γ)(Dp+1) = lim
n→∞

ndP
(Y (0)

an
∈ Dp+1

)
= lim

n→∞
ndP

(X(0)

an
∈ A

)
= µ(A).

The extremogram can be estimated from data by the following empirical version.

Definition 2.3 (Empirical extremogram). Let {X(s) : s ∈ Rd} be a strictly stationary regularly

varying process in Rd, observed on Sn, and set Sn(h) := {s ∈ Sn : s+h ∈ Sn} for h ∈ H. Let A

and B be µ-continuous Borel sets in R\{0} such that µ(A) > 0. For a sequence m = mn → ∞
and mn = o(n) as n→∞, the empirical extremogram is defined for h ∈ H as

ρ̂AB,mn(h) :=

1

|Sn(h)|
∑

s∈Sn(h)

1{X(s)/am∈A,X(s+h)/am∈B}

1

|Sn|
∑
s∈Sn

1{X(s)/am∈A}

. (2.8)

The following pre-asymptotic extremogram plays an important role when proving asymptotic

normality of the empirical extremogram (2.8).

Definition 2.4 (Pre-asymptotic extremogram). Let {X(s) : s ∈ Rd} be a strictly stationary

regularly varying process in Rd. Let A and B be µ-continuous Borel sets in R\{0} such that

µ(A) > 0. For a sequence m = mn → ∞ and mn = o(n) as n → ∞, the pre-asymptotic

extremogram is defined as

ρAB,mn(h) =
P (X(0)/am ∈ A,X(h)/am ∈ B)

P(X(0)/am ∈ A)
. (2.9)

The next section is devoted to the asymptotic properties of the empirical extremogram and

the inherent bias-variance problem with its solution.
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Chapter 2 Limit theory for the empirical extremogram of random fields

2.4 Consistency and CLT for the empirical extremogram

In this section we derive relevant asymptotic properties of the empirical extremogram. First

we establish large sample properties of the empirical estimator of µB(0,γ)(C). Based on these

results, the asymptotic normality is established.

Throughout this section we assume that {X(s) : s ∈ Rd} is a strictly stationary regularly

varying process in Rd, observed on Sn.
We need the concept of α-mixing for such processes; see e.g. Bolthausen [6] or Doukhan [30].

Definition 2.5 (α-mixing coefficients and α-mixing). Consider a strictly stationary random field{
X(s) : s ∈ Rd

}
and let d(·, ·) be some metric induced by a norm ‖ · ‖ on Rd. For Λ1,Λ2 ⊂ Zd

set

d(Λ1,Λ2) := inf {‖s1 − s2‖ : s1 ∈ Λ1, s2 ∈ Λ2} .

Further, for i = 1, 2 denote FΛi = σ {X(s) : s ∈ Λi} the σ-algebra generated by {X(s) : s ∈ Λi}.

(i) The α-mixing coefficients are defined for k, ` ∈ N ∪ {∞} and r ≥ 0 by

αk,`(r) := sup{|P(A1 ∩A2)− P(A1)P(A2)| :

Ai ∈ FΛi , |Λ1| ≤ k, |Λ2| ≤ `, d(Λ1,Λ2) ≥ r}. (2.10)

(ii) The random field is called α-mixing, if αk,l(r)→ 0 as r →∞ for all k, ` ∈ N.

In what follows we have to control the dependence between vector processes {Y (s) = XB(s,γ) :

s ∈ Λ′1} and {Y (s) = XB(s,γ) : s ∈ Λ′2} for subsets Λ′i ⊂ Zd with cardinalities |Λ′1| ≤ k and

|Λ′2| ≤ `. In the context of Definition 2.5, this means that the Λi in (2.10) are unions of balls

Λi = ∪s∈Λ′i
B(s, γ). Since γ > 0 is some predetermined finite constant independent of n, we keep

notation simple by redefining the α-mixing coefficients with respect to the vector processes as

αk,`(r) := sup{|P(A1 ∩A2)− P(A1)P(A2)| :

Ai ∈ FΛi , Λi = ∪s∈Λ′i
B(s, γ), |Λ′1| ≤ k, |Λ′2| ≤ `, d(Λ′1,Λ

′
2) ≥ r}. (2.11)

Theorem 2.6. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process, observed

on Sn and let H = {h1, . . . ,hp} be a finite set of lags in Zd satisfying H ⊆ B(0, γ) for some

γ > 0. Suppose that the following conditions are satisfied:

(M1) {X(s) : s ∈ Rd} is α-mixing with α-mixing coefficients αk,`(r) defined in (2.10).

There exist sequences m = mn, r = rn → ∞ with mn/n → 0 and rn/mn → 0 as n → ∞ such

that the following hold:

(M2) m2
nr

2
n/n→ 0.
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2.4 Consistency and CLT for the empirical extremogram

(M3) For all ε > 0:

lim
k→∞

lim sup
n→∞

∑
h∈Zd:k<‖h‖≤rn

md
n

P
(

max
s∈B(0,γ)

|X(s)| > εam, max
s′∈B(h,γ)

|X(s′)| > εam

)
= 0.

(M4) (i) lim
n→∞

md
n

∑
h∈Zd:‖h‖>rn

α1,1(‖h‖) = 0,

(ii)
∑
h∈Zd

αp,q(‖h‖) <∞ for 2 ≤ p+ q ≤ 4,

(iii) lim
n→∞

m
d/2
n nd/2 α1,nd(rn) = 0,

Then the empirical extremogram ρ̂AB,mn(h) for h ∈ H as in (2.8), centred by the pre-asymptotic

extremogram in (2.9), is asymptotically normal; more precisely,( n

mn

)d/2(
ρ̂AB,mn(h)− ρAB,mn(h)

)
h∈H

d→ N (0,Π), n→∞, (2.12)

where Π = µ(A)−4FΣF
ᵀ ∈ Rp×p, and the matrix Σ ∈ R(p+1)×(p+1) has for 1 ≤ i, j ≤ p + 1

components

Σii = µB(0,γ)(Di) +
∑

h∈Zd\{0}

τB(0,γ)×B(h,γ)(Di ×Di) =: σ2
B(0,γ)(Di), (2.13)

Σij = µB(0,γ)(Di ∩Dj) +
∑

h∈Zd\{0}

τB(0,γ)×B(h,γ)(Di ×Dj), i 6= j. (2.14)

The matrix F consists of a diagonal matrix F1 and a vector F2 in the last column:

F = [F1, F2] with (2.15)

F1 = diag(µ(A)) ∈ Rp×p, F2 = (−µB(0,γ)(D1), . . . ,−µB(0,γ)(Dp))
ᵀ
.

Remark 2.7. (i) In the proof (given in Section 2.5) we use a big block/small block argument.

For simplicity we assume that n/mn is an integer and subdivide Sn into (n/mn)d non-overlapping

d-dimensional blocks with side length mn. Theorem 1 of Cho et al. [15] divides nd into nd/mn

blocks; i.e., their sequence mn corresponds to our md
n, so that their assumptions look slightly

different. In our notation, they require that m
2(d+1)
n /n→ 0 as n→∞, which is more restrictive

than condition (M2) of m2
nr

2
n/n → 0, and indeed too restrictive for processes such as the max-

moving average process and the Brown-Resnick process discussed below.

(ii) If the choice mn = nβ1 and rn = nβ2 with 0 < β2 < β1 < 1 satisfies conditions (M3) and

(M4), then for β1 ∈ (0, 1/2) and β2 ∈ (0,min{β1; 1/2− β1}) the condition (M2) also holds and

we obtain the CLT (2.12).

The pre-asymptotic extremogram (2.9) in the central limit theorem can be replaced by the

theoretical one (2.2), if it converges to the theoretical extremogram with the same convergence
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Chapter 2 Limit theory for the empirical extremogram of random fields

rate as the empirical extremogram to the pre-asymptotic extremogram; i.e., if( n

mn

)d/2
(ρAB,mn(h)− ρAB(h))h∈H → 0, n→∞. (2.16)

Relation (2.16) does not hold for every strictly stationary regularly varying spatial process or

time series for which (2.12) is satisfied. Theorem 2.8 states a necessary and sufficient condition for

processes with Fréchet marginal distributions such that both (2.12) and (2.16) hold. For general

regularly varying stochastic processes such a result would hold under second order conditions

on the finite-dimensional regularly varying distributions of the process, but we do not pursue

this topic further.

Theorem 2.8 (CLT for processes with Fréchet margins). Let {X(s) : s ∈ Rd} be a strictly

stationary max-stable process in Rd with standard unit Fréchet margins. Let ρAB be its ex-

tremogram (2.2) and ρAB,mn the corresponding pre-asymptotic version (2.9) for sets A = (a1, a2)

and B = (b1, b2) with 0 < a1 < a2 ≤ ∞ and 0 < b1 < b2 ≤ ∞. Assume that the process is ob-

served on Sn and let H = {h1, . . . ,hp} be a finite set of lags in Zd satisfying H ⊆ B(0, γ)

for some γ > 0. Furthermore, suppose that conditions (M1)–(M4) of Theorem 2.6 hold for ap-

propriately chosen sequences mn, rn → ∞. Then the limit relation (2.16) holds if and only if

n/m3
n → 0 as n→∞. In this case we obtain( n

mn

)d/2(
ρ̂AB,mn(h)− ρAB(h)

)
h∈H

d→ N (0,Π), n→∞, (2.17)

where Π is given in Theorem 2.6.

Proof. First note that, since all finite-dimensional distributions are max-stable distributions with

standard unit Fréchet margins, they are multivariate regularly varying. Let V2(h; ·, ·) be the

bivariate exponent measure defined through P(X(0) ≤ x1, X(h) ≤ x2) = exp{−V2(h;x1, x2)}
for x1, x2 > 0, cf. Beirlant et al. [3], Section 8.2.2. From Lemma A.1(b) we know that for h ∈ H

ρAB,mn(h) =
[
ρAB(h) +

1

2md
n

V
2
2(h)

]
(1 + o(1)), n→∞,

where V
2
2(h) := a1a2

a2−a1 (V 2
2 (h; a2, b2) + V 2

2 (h; a2, b1) + V 2
2 (h; a1, b2) + V 2

2 (h; a1, b1)) as given in

(A.3) and appropriate adaptations for a2 =∞ and/or b2 =∞ given in (A.4). Hence, for h ∈ H,

( n

mn

)d/2(
ρAB,mn(h)− ρAB(h)

)
∼
( n

m3
n

)d/2V 2
2(h)

2
,

which converges to 0 if and only if n/m3
n → 0.

Remark 2.9. The requirement n/m3
n → 0 as n → ∞ needed in Theorem 2.8 contradicts the

condition m
2(d+1)
n /n → 0 required in Cho et al. [15]; thus, under the conditions stated in that

paper, only the CLT (2.12) centred by the pre-asymptotic extremogram can be proved. However,

n/m3
n → 0 as n→∞ does not contradict the assumptions of Theorem 2.6 above, in particular,

the much weaker assumption (M2).
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2.4 Consistency and CLT for the empirical extremogram

(ii) From Theorem 2.8 in relation to Remark 2.7 (ii) we conclude that we need to choose

β1 > 1/3 in order to satisfy the CLT (2.17). This is not a contradiction to the conditions of

Theorem 2.6 and we conclude that for β1 ∈ (1/3, 1/2) and β2 ∈ (0,min{β1; 1/2− β1}), we have

n
d
2

(1−β1)
(
ρ̂AB,mn(h)− ρAB(h)

)
h∈H

d→ N (0,Π), n→∞. (2.18)

We discuss our findings for two prominent examples.

Example 2.10. [Max-moving average (MMA) process]

We start with a model for the process {X(s) : s ∈ Zd} corresponding to the discrete observation

scheme. It has been suggested in Cho et al. [15] based on a time series model of Davis and

Resnick [18]. Let Z(s) for s ∈ Zd be i.i.d. standard unit Fréchet random variables and set

X?(s) := max
z∈Zd

φ‖z‖Z(s− z), s ∈ Zd, (2.19)

for some 0 < φ < 1. Then {X?(s) : s ∈ Zd} is a stationary max-moving average (MMA) process,

also considered in equation (25) of [15]. As in [15] we deduce the following marginal distributions.

The number N(j) of lag vectors h ∈ Zd with norm j = ‖h‖ is of order O(jd−1) and

V1 :=
∑
h∈Zd

φ‖h‖ =
∑

0≤j<∞
φjN(j) <∞.

The univariate margins are unit Fréchet with scale parameter V1; i.e.,

P(X?(0) ≤ x) = exp
{
− V1

x

}
, x > 0.

Define Qh(j) :=
∣∣{s ∈ Zd : min{‖s‖, ‖s + h‖} = j}

∣∣ ≤ 2N(j). With V2(h) := V2(h; 1, 1) =∑
0≤j<∞Qh(j)φj , we have for the bivariate margins at lag h ∈ Zd,

P(X?(0) ≤ x,X?(h) ≤ x) = exp
{
− V2(h)

x

}
, x > 0.

We standardise the process (2.19) by setting

X(s) := X?(s)/V1, s ∈ Zd. (2.20)

As a consequence we can choose am = md
n in Definition 2.2. We further conclude that the

extremal coefficient (cf. Beirlant et al. [3], Section 8.2.7) at lag h ∈ Zd for the process (2.20) is

given by

θ(h) :=
V2(h)

V1
=

1

V1

∑
0≤j<∞

Qh(j)φj . (2.21)

Note that 2− θ(h) = 1
V1

∑
‖h‖/2≤j<∞ φ

j [2N(j)−Qh(j)], where we use that Qh(j) = 2N(j) for

j < ‖h‖/2; see [15], p. 8.

We now verify the conditions of Theorem 2.6 for the process {X(s) : s ∈ Zd} as in (2.20) and
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Chapter 2 Limit theory for the empirical extremogram of random fields

a chosen set of lags H ⊆ B(0, γ) for some γ > 0.

We start with an upper bound for the α-mixing coefficients αk,`(r) for k, ` ∈ N and r > 0

defined in (2.11). To simplify notation, we use C throughout to denote some positive constant,

although the actual value of C may change from line to line. We use Corollary 2.2 of Dombry

and Eyi-Minko [27] to deduce

αk,`(r) ≤ Ck` sup
‖h‖>r

2− θ(h)

≤ Ck` sup
‖h‖>r

∑
‖h‖/2≤j<∞

φj [2N(j)−Qh(j)]

≤ Ck`
∑

r/2≤j<∞

2N(j)φj ≤ Ck`
∑

r/2≤j<∞

jd−1 φj , (2.22)

since N(j) is of order O(jd−1) as mentioned above. An integral bound yields for fixed k, ` ∈ N
and sufficiently large r such that the sequence jd−1φj is monotonously decreasing for j ≥ r/2,

αk,`(r) ≤ C
(
rd−1φr/2 +

∫ ∞
r/2

td−1 φt dt
)

= C
(
rd−1φr/2 + | log(φ)|−dΓ

(
d,
r

2
| log(φ)|

))
≤ Cφr/2

(
rd−1 +

d−1∑
k=0

rk| log(φ)|k

2kk!

)
= O(rd−1 φr/2), (2.23)

as r → ∞. We denote by Γ(s, y) =
∫∞
y ts−1e−tdt = (s − 1)!e−y

∑s−1
i=0 y

i/i! for s ∈ N the

incomplete gamma function. Since rd−1φr/2 → 0, this implies that {X(s) : s ∈ Zd} is α-mixing;

thus (M1) is satisfied.

Now we verify (M3). To this end we compute for s, s′ ∈ Zd and x > 0, using a Taylor expansion,

the limit as x→∞:

P(X(s) > x,X(s′) > x) = 1− 2P(X(0) ≤ x) + P(X(s) ≤ x,X(s′) ≤ x)

= 1− 2 exp
{
− 1

x

}
+ exp

{
− V2(s− s′)

V1x

}
=

2

x
− V2(s− s′)

V1x
+O

( 1

x2

)
=

1

x
(2− θ(s− s′)) +O

( 1

x2

)
≤ C

x

∑
‖s−s′‖/2≤j<∞

jd−1 φj +O
( 1

x2

)
by (2.22). Hence, for ε > 0, as n→∞,

P
(

max
s∈B(0,γ)

X(s) > εmd
n, max
s′∈B(h,γ)

X(s′) > εmd
n

)
≤

∑
s∈B(0,γ)

∑
s′∈B(h,γ)

P
(
X(s) > εmd

n, X(s′) > εmd
n

)
≤

∑
s∈B(0,γ)

∑
s′∈B(h,γ)

{ C

εmd
n

∑
‖s−s′‖/2≤j<∞

jd−1 φj +O
( 1

m2d
n

)}
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≤
∑

s∈B(0,γ)

∑
s′∈B(h,γ)

{ C

εmd
n

‖s− s′‖d−1φ
‖s−s′‖

2 +O
( 1

m2d
n

)}
≤C|B(0, γ)|2

εmd
n

(‖h‖ − 2γ)d−1φ
‖h‖−2γ

2 +O
( 1

m2d
n

)
,

where in the second last step we use the same bound as in (2.23), and in the last step we use

that ‖h‖d−1φ‖h‖/2 decreases for sufficiently large ‖h‖. Therefore, we conclude

lim
k→∞

lim sup
n→∞

∑
h∈Zd:k<‖h‖≤rn

{
md
nP
(

max
s∈B(0,γ)

X(s) > εmd
n, max
s′∈B(h,γ)

X(s′) > εmd
n

)}
≤ lim
k→∞

lim sup
n→∞

C
∑

h∈Zd:k<‖h‖≤rn

{
(‖h‖ − 2γ)d−1φ

‖h‖−2γ
2

}
+ lim sup

n→∞
O
( rdn
md
n

)
= 0,

since rn = o(mn), where we use for the last inequality that
∣∣{h ∈ Zd : ‖h‖ ≤ rn}

∣∣ = O(rdn).

Turning to condition (M4i), using (2.23), we have as n→∞,

md
n

∑
h∈Zd:‖h‖>rn

α1,1(‖h‖) ≤ Cmd
n

∑
j>rn

jd−1 α1,1(j)

≤ Cmd
n

∑
j>rn

j2(d−1) φj/2 ≤ Cmd
nr

2(d−1)
n φrn/2,

which follows again from an integral bound. Since

md
nr

2(d−1)
n φrn/2 = exp{d log(mn)− rn| log(φ1/2)|+ 2(d− 1) log(rn)},

if we choose mn and rn such that

log(mn) = o(rn), n→∞, (2.24)

then condition (M4i) is satisfied.

Now observe that for 2 ≤ p+ q ≤ 4, using again (2.23),∑
h∈Zd

αp,q(‖h‖) ≤ αp,q(0) + C
∑
j>0

jd−1 αp,q(j) ≤ αp,q(0) + C
∑
j>0

j2(d−1) φj/2 <∞.

This shows (M4ii).

Finally, we turn to the condition (M4iii) and compute, using (2.22) and (2.23),

md/2
n nd/2α1,nd(rn) ≤ Cmd/2

n n(3d)/2rd−1
n φrn/2

= C exp
{3d

2
log(n)− rn| log(φ)|+ d

2
log(mn) + (d− 1) log(rn)

}
.

Thus, we must choose rn such that

log(n) = o(rn), n→∞. (2.25)
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To satisfy both (2.24) and (2.25) and the conditions rn = o(mn), mn = o(n), we can thus choose

mn = nβ1 and rn = nβ2 with 0 < β2 < β1 < 1. Hence, Remarks 2.7(ii) and 2.9(ii) apply such

that (2.18) holds for β1 ∈ (1/3, 1/2) and β2 ∈ (0,min{β1; 1/2− β1}).

Example 2.11. [Brown-Resnick process]

Consider a strictly stationary Brown-Resnick process, which has representation

X(s) =
∞∨
j=1

{
ξj e

Wj(s)−δ(s)
}
, s ∈ Rd. (2.26)

where {ξj : j ∈ N} are points of a Poisson process on [0,∞) with intensity ξ−2dξ, the dependence

function δ is non-negative and conditionally negative definite and {Wj(s) : s ∈ Rd} are indepen-

dent replicates of a Gaussian process {W (s) : s ∈ Rd} with stationary increments, W (0) = 0,

E[W (s)] = 0, and covariance function

Cov[W (s(1)),W (s(2))] = δ(s(1)) + δ(s(2))− δ(s(1) − s(2)).

All finite-dimensional distributions are multivariate extreme value distributions with standard

unit Fréchet margins. Representation (2.26) goes back to de Haan [24] and Giné et al. [39]; for

more details on Brown-Resnick processes we refer to Brown and Resnick [8], Davis et al. [19],

and Kabluchko et al. [47]. Brown-Resnick processes have been successfully fitted to time series,

spatial data and space-time data. Inference methods include both parametric and semi- or non-

parametric approaches. Empirical studies can for example be found in Buhl and Klüppelberg

[11], Davis et al. [20], Buhl et al. [14], Cho et al. [15], Huser and Davison [43], Padoan et al. [54]

and Steinkohl [62]. This important model is treated in detail in Chapter 3. There it is proved

that the mixing conditions of Theorem 2.6 hold for sequences rn = o(mn), mn = o(n) and that

we can choose mn = nβ1 and rn = nβ2 with 0 < β2 < β1 < 1. Hence, Remarks 2.7(ii) and 2.9(ii)

apply such that (2.18) holds for β1 ∈ (1/3, 1/2) and β2 ∈ (0,min{β1; 1/2 − β1}). Moreover,

we prove there that for β1 ≤ 1/3, the empirical extremogram can be bias-corrected such that

the resulting empirical estimator satisfies a CLT to the true extremogram. We further derive a

semiparametric estimator for a parametrised extremogram based on a least squares procedure,

investigate its behaviour in a simulation study, and apply it to space-time data.

2.5 Proof of Theorem 2.6

The empirical extremogram as defined in (2.8) can be viewed as a ratio of estimates of µB(0,γ)(C)

and µB(0,γ)(D) for two suitably chosen sets C and D. Thus we first derive a LLN and a CLT

for such estimates, formulated in the two Lemmas 2.12 and 2.13 below.

We consider estimates of µB(0,γ)(C), where C is a µB(0,γ)-continuous Borel set in R|B(0,γ)|\{0}
(i.e. µB(0,γ)(∂C) = 0). In particular, there exists some ε > 0 such that C ⊂ {x ∈ R|B(0,γ)| :
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2.5 Proof of Theorem 2.6

‖x‖ > ε}. In view of (2.5) a natural estimator for µB(0,γ)(C) is

µ̂B(0,γ),mn(C) :=
(mn

n

)d ∑
s∈Sn

1{Y (s)
am
∈C}. (2.27)

The proof is based on a big block/small block argument as follows. We choose sequences mn

and rn satisfying the conditions of Theorem 2.6, and divide the grid Sn into (n/mn)d big d-

dimensional blocks of side length mn, where for simplicity we assume that n/mn is an integer.

From those blocks we then cut off smaller blocks, which consist of the first rn elements in each of

the d dimensions. The large blocks are then separated (by these small blocks) with at least the

distance rn in all dimensions and shown to be asymptotically independent. The construction is

an extension of the corresponding time series construction; an interpretation of the big and small

blocks in that framework can be found for example in Davis et al. [21] at the end of page 15.

Lemma 2.12. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process in Rd.
Let C be some µB(0,γ)-continuous Borel set in R|B(0,γ)| \ {0}. Suppose that the following mixing

conditions are satisfied.

(1) {X(s) : s ∈ Rd} is α-mixing with α-mixing coefficients αk,l(r) defined in (2.10).

(2) There exist sequences m := mn, r := rn → ∞ with mn/n → 0 and rn/mn → 0 as n → ∞
such that (M3) and (M4i) hold.

Then, as n→∞,

E
[
µ̂B(0,γ),mn(C)

]
→ µB(0,γ)(C), (2.28)

Var
[
µ̂B(0,γ),mn(C)

]
∼
(mn

n

)d(
µB(0,γ)(C) +

∑
h∈Zd\{0}

τB(0,γ)×B(h,γ)(C × C)
)

=:
(mn

n

)d
σ2
B(0,γ)(C). (2.29)

If µB(0,γ)(C) = 0, (2.29) is interpreted as Var
[
µ̂B(0,γ),mn(C)

]
= o(mn/n). In particular, we have

µ̂B(0,γ),mn(C)
P→ µB(0,γ)(C), n→∞. (2.30)

Proof. Strict stationarity and relation (2.5) imply that

E
[
µ̂B(0,γ),mn(C)

]
=
(mn

n

)d ∑
s∈Sn

P
(Y (s)

am
∈ C

)
= md

nP
(Y (0)

am
∈ C

)
→ µB(0,γ)(C), n→∞.

Further observe that

Var
[
µ̂B(0,γ),mn(C)

]
=
(mn

n

)2d
Var

[ ∑
s∈Sn

1{Y (s)
am
∈C}
]
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=
(mn

n

)2d(
ndVar

[
1{Y (0)

am
∈C}
]

+
∑

s,s′∈Sn
s6=s′

Cov
[
1{Y (s)

am
∈C},1{Y (s′)

am
∈C}

])
=: A1 +A2. (2.31)

By (2.5) and since P(Y (0)/am ∈ C)→ 0 as n→∞,

A1 =
(m2

n

n

)d
P
(Y (0)

am
∈ C

)(
1− P

(Y (0)

am
∈ C

))
∼
(mn

n

)d
µB(0,γ)(C)→ 0.

Let

L = L(n) := {h = (s− s′) ∈ Zd : s, s′ ∈ Sn, s 6= s′}

be the set of spatial lags on the observation grid. We divide the spatial lags in L into different

sets. Observe that a spatial lag h = (h1, . . . , hd) appears in L exactly
∏d
j=1(n− |hj |) times. For

fixed k ∈ N we therefore have by stationarity

( n

mn

)d
A2 = md

n

∑
h∈L

d∏
j=1

(
1− |hj |

n

)
Cov[1{Y (0)

am
∈C},1{Y (h)

am
∈C}]

= md
n

( ∑
h∈L

0<‖h‖≤k

+
∑
h∈L

k<‖h‖≤rn

+
∑
h∈L
‖h‖>rn

)
d∏
j=1

(
1− |hj |

n

)
Cov

[
1{Y (0)

am
∈C},1{Y (h)

am
∈C}
]

=: A21 +A22 +A23. (2.32)

Concerning A21 we have,

A21 =md
n

∑
h∈L

0<‖h‖≤k

d∏
j=1

(
1− |hj |

n

)[
P
(Y (0)

am
∈ C, Y (h)

am
∈ C

)
− P

(Y (0)

am
∈ C

)2]
.

We have by (2.5),

md
nP
(Y (0)

am
∈ C

)2
∼ µB(0,γ)(C)P

(Y (0)

am
∈ C

)
→ 0, n→∞.

Moreover, for h ∈ Zd \ {0}, by (2.6),

md
nP
(Y (0)

am
∈ C, Y (h)

am
∈ C

)
→ τB(0,γ)×B(h,γ)(C × C), n→∞. (2.33)

Finally, by dominated convergence,

lim
k→∞

lim sup
n→∞

A21 =
∑

h∈Zd\{0}

τB(0,γ)×B(h,γ)(C × C). (2.34)
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As to A22, observe that for all n ≥ 0 we have
d∏
j=1

(1− |hj |n ) ≤ 1 for h ∈ L. Furthermore, since C

is bounded away from 0, there exists ε > 0 such that C ⊂ {x ∈ R|B(0,γ)|
: ‖x‖ > ε}. Hence, we

obtain

|A22| ≤
∑
h∈L

k<‖h‖≤rn

md
nP
(Y (0)

am
∈ C, Y (h)

am
∈ C

)
+md

nP
(Y (0)

am
∈ C

)2
≤

∑
h∈Zd

k<‖h‖≤rn

{
md
nP
(
‖Y (0)‖ > εam, ‖Y (h)‖ > εam

)
+

1

md
n

(
md
nP
(Y (0)

am
∈ C

))2}
.

From (2.5) we know that md
nP(Y (0) ∈ amC) → µB(0,γ)(C) and, hence, the second summand

can be estimated by (rn/mn)d → 0 as n→∞. The first sum tends to 0 by (M3), exploiting the

equivalence of norms on R|B(0,γ)|, and it follows that

lim
k→∞

lim sup
n→∞

A22 = 0

Using the definition of α-mixing for A1 = {Y (0)/am ∈ C} and A2 = {Y (h)/am ∈ C}, we

obtain,

|A23| ≤ md
n

∑
h∈L:‖h‖>rn

∣∣∣P(Y (0)

am
∈ C, Y (h)

am
∈ C

)
− P

(Y (0)

am
∈ C

)2∣∣∣
≤ md

n

∑
h∈Zd:‖h‖>rn

α1,1(‖h‖)→ 0, n→∞, (2.35)

by condition (M4i).

Summarising these computations, we obtain from (2.32) and (2.34) that

A2 ∼
(mn

n

)d ∑
h∈Zd\{0}

τB(0,γ)×B(h,γ)(C × C), n→∞,

and, therefore, (2.31) implies (2.29). Since mn/n→ 0 as n → ∞, equations (2.28) and (2.29)

imply (2.30).

For the proof of the next lemma, in contrast to Cho et al. [15], we proceed similarly as in

the proofs of Lemma 2.12 above and of Theorem 3.2 of Davis and Mikosch [17] and keep the

sequence rn (instead of mn in [15]) in (2.40) as the distance between the large blocks. This

construction allows for the much weaker conditions (M2).

Lemma 2.13. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process in Rd. Let

the assumptions of Theorem 2.6 hold for some γ ≥ 0. Let C be some µB(0,γ)-continuous Borel

set in R|B(0,γ)|\{0}. Then

ŜB(0,γ),mn :=
(mn

n

)d/2 ∑
s∈Sn

[
1{Y (s)

am
∈C} − P

(Y (s)

am
∈ C

)]
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=
( n

mn

)d/2
(µ̂B(0,γ),mn(C)− µB(0,γ),mn(C))

d→ N (0, σ2
B(0,γ)(C)), (2.36)

as n→∞ with µ̂B(0,γ),mn(C) as in (2.27), µB(0,γ),mn(C)) := md
nP(Y (0)/am ∈ C) and σ2

B(0,γ)(C)

given in (2.29).

Proof. Like Cho et al. [15] we follow Lemma 2 in Bolthausen [6] and define

I(s) := 1{Y (s)/am∈C} − P(Y (0)/am ∈ C), s ∈ Sn. (2.37)

Note that by stationarity,

ŜB(0,γ),mn =
(mn

n

)d/2 ∑
s∈Sn

I(s). (2.38)

The boundary condition required in equation (1) in Bolthausen [6] is trivially satisfied for the

regular grid Sn.

We first observe that 0 ≤ E[I(s)I(s′)] = Cov[1{Y (s)/am∈C},1{Y (s′)/am∈C}] and, using (2.29) for

the asymptotic result, that

0 < σ2
B(0,γ) ∼ Var[ŜB(0,γ),mn ], Var[ŜB(0,γ),mn ] ≤

(mn

n

)d ∑
s,s′∈Zd

|E[I(s)I(s′)]| <∞, (2.39)

such that
∑
s,s′∈Zd E[I(s)I(s′)] > 0. Finiteness in (2.39) follows from a classic result found e.g. in

Ibragimov and Linnik [45], Theorems 17.2.2 and 17.2.3, and the required summability conditions

of the α-mixing coefficients.

Next, we define

vn :=
(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖≤rn

E
[
I(s)I(s′)

]
. (2.40)

Decompose

vn =
(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖≤rn

E[I(s)I(s′)]

=
(mn

n

)d ∑
s,s′∈Sn

E[I(s)I(s′)]−
(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖>rn

E[I(s)I(s′)]

= Var[ŜB(0,γ),mn ]−
(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖>rn

E[I(s)I(s′)]. (2.41)

Hence, using the asymptotic result in (2.39),

vn

Var[ŜB(0,γ),mn ]
= 1−

(mn

n

)d 1

σ2
B(0,γ)(C)

∑
s,s′∈Sn
‖s−s′‖>rn

E[I(s)I(s′)](1 + o(1)).
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Now note that (mn

n

)d ∑
s,s′∈Sn
‖s−s′‖>rn

E[I(s)I(s′)]

≤md
n

∑
h∈L:‖h‖>rn

d∏
j=1

(
1− |hj |

n

)
∣∣∣P(Y (0)

am
∈ C, Y (h)

am
∈ C

)
−
[
P
(Y (0)

am
∈ C

)]2∣∣∣
≤md

n

∑
h∈Zd:‖h‖>rn

α1,1(‖h‖)→ 0, n→∞,

as in (2.35), with α-mixing coefficients defined in (2.11). Therefore,

vn ∼ Var[ŜB(0,γ),mn ]→ σ2
B(0,γ)(C), n→∞. (2.42)

Next we define the standardised quantities

Sn := v−1/2
n ŜB(0,γ),mn = v−1/2

n

(mn

n

)d/2 ∑
s∈Sn

I(s),

Ss,n := v−1/2
n

(mn

n

)d/2 ∑
s′∈Sn

‖s−s′‖≤rn

I(s′).

We now show condition (b) of Lemma 2 in Bolthausen [6]. To this end let i ∈ C be the complex

imaginary unit. If limn→∞ E
[
(iλ − Sn) exp{iλSn}

]
= 0 for all λ ∈ R, then (by Stein’s Lemma)

the law of Sn converges to the standard normal one and we obtain (2.36) by (2.38) and (2.42).

First note that for arbitrary λ ∈ R,

(iλ− Sn) exp{iλSn}

=iλ exp{iλSn}
(

1− v−1/2
n

∑
s∈Sn

(mn

n

)d/2
I(s)Ss,n

)
− v−1/2

n exp{iλSn}
∑
s∈Sn

(mn

n

)d/2
I(s)(1− exp{−iλSs,n} − iλSs,n)

− v−1/2
n

∑
s∈Sn

(mn

n

)d/2
I(s) exp{−iλ(Ss,n − Sn)}

=:B1 −B2 −B3.

Since | exp{ix}| = 1 for all x ∈ R, we compute

|B1| = |λ|
∣∣∣1− v−1

n

(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖≤rn

I(s)I(s′)
∣∣∣
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and, using (2.40),

|B1| = |λ|v−1
n

(mn

n

)d∣∣∣ ∑
‖s−s′‖≤rn

I(s)I(s′)−
∑

‖s−s′‖≤rn

E
[
I(s)I(s′)

]∣∣∣
= |λ|v−1

n

(mn

n

)d∣∣∣ ∑
‖s−s′‖≤rn

(
I(s)I(s′)− E

[
I(s)I(s′)

])∣∣∣,
such that

E[|B1|2] = λ2v−2
n

(mn

n

)2d ∑
‖s−s′‖≤rn

∑
‖`−`′‖≤rn

Cov
[
I(s)I(s′), I(`)I(`′)

]
.

We use definition (2.11) of the α-mixing coefficients for

Λ′1 = {s, s′} and Λ′2 = {`, `′},

then |Λ′1|, |Λ′2| ≤ 2, and for d(Λ′1,Λ
′
2) we consider the following two cases:

(1) ‖s − `‖ ≥ 3rn. Then 2rn ≤ (2/3)‖s − `‖ and d(Λ′1,Λ
′
2) ≥ ‖s − `‖ − 2rn. Since indicator

variables are bounded, by Theorem 17.2.1 of Ibragimov and Linnik [45] we have

|Cov
[
I(s)I(s′), I(`)I(`′)

]
| ≤ 4α2,2

(
‖s− `‖ − 2rn

)
≤ 4α2,2

(1

3
‖s− `‖

)
.

The last inequality holds, since α2,2 is a decreasing function.

(2) ‖s − `‖< 3rn. Set j := min{‖s − `‖, ‖s − `′‖, ‖s′ − `‖, ‖s′ − `′‖}, then d(Λ′1,Λ
′
2) ≥ j and,

again by Theorem 17.2.1 of [45],

Cov
[
I(s)I(s′), I(`)I(`′)

]
≤ 4αp,q(j), 2 ≤ p+ q ≤ 4.

Therefore,

E[|B1|2] ≤ 4λ2

v2
n

(mn

n

)2d

[ ∑
‖s−`‖≥3rn

∑
‖s−s′‖≤rn
‖`−`′‖≤rn

α2,2

(1

3
‖s− `‖

)
+

∑
‖s−`‖<3rn

∑
‖s−s′‖≤rn
‖`−`′‖≤rn

αp,q(j)
]

≤ 4λ2

v2
n

(mn

n

)2d
ndrn

2d
[ ∑
h∈Zd:‖h‖≥3rn

α2,2

(1

3
‖h‖

)
+

∑
h∈Zd:‖h‖<3rn

αp,q(‖h‖)
]
.

The last inequality unfolds by stationarity as follows: we obtain nd by summation over all s ∈ Sn,

whereas r2d
n arises from summation over all s′ and `′ such that ‖s− s′‖ ≤ rn and ‖`− `′‖ ≤ rn,

respectively. By (M4ii) the sums in brackets are finite and thus

E[|B1|2] = O
((m2

nr
2
n

n

)d)
,
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which converges to 0 as n→∞ by (M2).

Now we show that E[|B2|] → 0 as n → ∞. Since |1 − exp {−ix} − ix| ≤ x2/2 for x ∈ R and

|I(s)| ≤ 1 for s ∈ Sn, we find

|B2| ≤
1

2
λ2v−1/2

n

(mn

n

)d/2 ∑
s∈Sn

S
2
s,n.

By stationarity and (2.40) for the second equality below,

E[|B2|] ≤
1

2
λ2v−1/2

n

(mn

n

)d/2
ndE[S

2
0,n]

=
1

2
λ2v−3/2

n

(mn

n

)d/2
md
n

∑
s∈Sn:‖s‖≤rn

∑
s′∈Sn:‖s′‖≤rn

E[I(s)I(s′)]

≤ 1

2
λ2v−3/2

n

(mn

n

)d/2
rdn m

d
n

∑
s∈Sn

E[I(0)I(s)]

= O
((mn

n

)d/2
rdn

)
= O

((mnr
2
n

n

)d/2)
,

where we used (2.39) to obtain md
n

∑
s∈Sn E[I(0)I(s)] = O(1). Again by (M2) we find that

E[|B2|]→ 0 as n→∞.

Next we estimate B3:

E[B3] = v
− 1

2
n

(mn

n

)d/2 ∑
s∈Sn

E
[
I(s) exp

{
− iλ(Ss,n − Sn)

}]
= v

− 1
2

n

(mn

n

)d/2 ∑
s∈Sn

E
[
I(s) exp

{
iλv
− 1

2
n

(mn

n

)d/2 ∑
s′∈Sn

‖s−s′‖>rn

I(s′)
}]

= v
− 1

2
n md/2

n nd/2E
[
I(0) exp

{
iλv
− 1

2
n

(mn

n

)d/2 ∑
‖s‖>rn

I(s)
}]
,

where the last equality holds by stationarity. We use definition (2.11) of the α-mixing coefficients

for

Λ′1 = {0} and Λ′2 = {s ∈ Sn : ‖s‖ > rn},

then |Λ′1| = 1, |Λ′2| ≤ nd and d(Λ′1,Λ
′
2) > rn. Abbreviate

η(rn) := exp
{

iλv
− 1

2
n

(mn

n

)d/2 ∑
‖s‖>rn

I(s)
}
,

then I(0) and η(rn) are measurable with respect to FΛ1 and FΛ2 , respectively, where Λi =

∪s∈Λ′i
B(s, γ) for i = 1, 2. Now we apply Theorem 17.2.1 of Ibragimov and Linnik to obtain

|E[B3]| ≤ 4v−1/2
n md/2

n nd/2α1,nd(rn)→ 0,

where convergence to 0 is guaranteed by condition (M4iii).
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The proof of Theorem 2.6 follows now similarly as that of Corollary 3.4 in Davis and Mikosch

[17] (also used in Theorem 1 in Cho et al. [15]). In order to keep this chapter self-contained, we

summarise the main ideas.

Sketch of the proof of Theorem 2.6. For Borel sets C,D ⊆ R|B(0,γ)|\{0} such that µB(0,γ)(D) >

0, define the ratio

Rn(C,D) :=
P(Y (0)/am ∈ C)

P(Y (0)/am ∈ D)

and the correspondent empirical estimator

R̂n(C,D) :=

∑
s∈Sn

1{Y (s)/am∈C}∑
s∈Sn

1{Y (s)/am∈D}
.

Recall the definition of H = {h1, . . . ,hp}. For 1 ≤ i ≤ p fix a lag hi = (h1
i , . . . , h

d
i ) ∈ H and

denote as before

Sn(hi) = {s ∈ Sn : s+ hi ∈ Sn} with |Sn(hi)| =
d∏
j=1

(n− |hji |) ∼ n
d, n→∞.

Then the empirical extremogram as defined in (2.8) for Borel sets A,B in R\{0} satisfies as

n→∞,

ρ̂AB,mn(hi) ∼

∑
s∈Sn(hi)

1{X(s)/am∈A,X(s+hi)/am∈B}∑
s∈Sn

1{X(s)/am∈A}

∼

∑
s∈Sn

1{Y (s)/am∈Di}∑
s∈Sn

1{Y (s)/am∈Dp+1}
= R̂n(Di, Dp+1),

by definition (2.7) of the sets Di for i = 1, . . . , p. Moreover, the pre-asymptotic extremogram

defined in (2.9) can be written as

ρAB,mn(hi) =
P(X(0)/am ∈ A,X(hi)/am ∈ B)

P(X(0)/am ∈ A)
=

P(Y (0)/am ∈ Di)

P(Y (0)/am ∈ Dp+1)

= Rn(Di, Dp+1).

This implies that proving (2.12) requires a central limit theorem for the scaled vector of ratio

differences ( n

mn

)d/2[
R̂n(Di, Dp+1)−Rn(Di, Dp+1)

]
i=1,...,p

. (2.43)
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2.5 Proof of Theorem 2.6

Now observe that for fixed i ∈ {1, . . . , p},

R̂n(Di, Dp+1)−Rn(Di, Dp+1) =
µ̂B(0,γ),mn(Di)

µ̂B(0,γ),mn(Dp+1)
−

µB(0,γ),mn(Di)

µB(0,γ),mn(Dp+1)

=
µB(0,γ),mn(Dp+1)/µ̂B(0,γ),mn(Dp+1)

(µB(0,γ),mn(Dp+1))2

×
[
µ̂B(0,γ),mn(Di)µB(0,γ),mn(Dp+1)− µ̂B(0,γ),mn(Dp+1)µB(0,γ),mn(Di)

]
=

µB(0,γ),mn(Dp+1)/µ̂B(0,γ),mn(Dp+1)

(µB(0,γ),mn(Dp+1))2

×
[(
µ̂B(0,γ),mn(Di)− µB(0,γ),mn(Di)

)
µB(0,γ),mn(Dp+1)

−
(
µ̂B(0,γ),mn(Dp+1)− µB(0,γ),mn(Dp+1)

)
µB(0,γ),mn(Di)

]
=

1 + op(1)

(µB(0,γ)(Dp+1))2

×
[(
µ̂B(0,γ),mn(Di)− µB(0,γ),mn(Di)

)
µB(0,γ)(Dp+1)

−
(
µ̂B(0,γ),mn(Dp+1)− µB(0,γ),mn(Dp+1)

)
µB(0,γ)(Di)

]
by (2.5), Lemma 2.12 and Slutzky’s lemma. For the vector in (2.43), recalling that µB(0,γ)(Dp+1) =

µ(A), and F ∈ R(p+1)×(p+1) as given in (2.15), we find( n

mn

)d/2[
R̂n(Di, Dp+1)−Rn(Di, Dp+1)

]
i=1,...,p

=
( n

mn

)d/2 1 + op(1)

(µB(0,γ)(Dp+1))2
F


µ̂B(0,γ),mn(D1)− µB(0,γ),mn(D1)

...

µ̂B(0,γ),mn(Dp)− µB(0,γ),mn(Dp)

µ̂B(0,γ),mn(Dp+1)− µB(0,γ),mn(Dp+1)


=:
( n

mn

)d/2 1 + op(1)

(µB(0,γ)(Dp+1))2
F µmn .

Thus, it remains to prove that ( n

mn

)d/2
µmn

d→ N (0,Σ), (2.44)

where Σ is given in the statement of the Theorem. This can be done as in Davis and Mikosch [17],

Corollary 3.3 using the Cramér-Wold device and similar ideas as in the proofs of Lemmas 2.12

and 2.13. In particular, note that for all i, j ∈ {1, . . . , p+ 1} as n→∞,

Cov[µ̂B(0,γ),mn(Di), µ̂B(0,γ),mn(Dj)]

∼ mn

nd

(
µB(0,γ)(Di ∩Dj) +

∑
h∈Zd\{0}

τB(0,γ)×B(h,γ)(Di ×Dj)
)
.

�
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Chapter 3

Semiparametric estimation for
isotropic max-stable space-time

processes

Abstract

Max-stable space-time processes have been developed to study extremal dependence in space-

time data. We propose a semiparametric estimation procedure based on a closed form expression

of the extremogram to estimate the parameters in a max-stable space-time process. We estab-

lish the asymptotic properties of the resulting parameter estimates and propose subsampling

procedures to obtain asymptotically correct confidence intervals. A simulation study shows that

the proposed procedure works well for moderate sample sizes. Finally, we apply this estimation

procedure to fitting a max-stable model to radar rainfall measurements in a region in Florida.

AMS 2010 Subject Classifications: primary: 60G70, 62F12, 62G32; secondary: 62M10, 62M30,

62P12

Keywords: Brown-Resnick process; extremogram; max-stable process; semiparametric estima-

tion; space-time process; subsampling; mixing

3.1 Introduction

Max-stable processes are a natural extension of the generalised extreme value distributions

to infinite dimensions and provide a useful framework for modelling extremal dependence in

continuous time or space. In this chapter we focus on the max-stable Brown-Resnick process,

which was introduced in a time series framework in Brown and Resnick [8], in a spatial setting

in Kabluchko et al. [47], and extended to a space-time setting in Davis et al. [19].

In the literature, various max-stable models and estimation procedures have been proposed

for extremal data. For the Brown-Resnick process with parametrised dependence structure,
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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

inference has been based on composite likelihood methods. In particular, pairwise likelihood

estimation has been found useful to estimate parameters in a max-stable process. A description

of this method can be found in Padoan et al. [54] for the spatial setting, and Huser and Davison

[43] in a space-time setting. Asymptotic results for pairwise likelihood estimates and detailed

analyses in the space-time setting for the model analysed in this chapter are given in Davis et al.

[20]. Unfortunately, parameter estimation using composite likelihood methods can be laborious,

since the computation and subsequent optimisation of the objective function is time-consuming.

Also the choice of good initial values for the optimisation of the composite likelihood is essential.

In this chapter we introduce a new semiparametric estimation procedure as an alternative

to or as a prerequisite for composite likelihood methods. It is based on the extremogram as a

natural extremal analog of the correlation function for stationary processes. It was introduced in

Davis and Mikosch [17] for time series (also in Fasen et al. [35]), and they show consistency and

asymptotic normality of an empirical extremogram estimate under weak mixing conditions. The

empirical extremogram and its asymptotic properties in a spatial setting have been investigated

in Cho et al. [15] and Chapter 2 of this thesis, which is based on the publication Buhl and

Klüppelberg [12].

Assuming the same dependence structure for the Brown-Resnick space-time process as in

[19, 20], we obtain a closed form expression of the extremogram containing the parameters of

interest. We first estimate the extremogram nonparametrically by its empirical version, where

we separate space and time. Weighted linear regression is then applied in order to produce

parameter estimates.

Asymptotic normality of these semiparametric estimates requires asymptotic normality of the

extremogram. For the spatial estimate we apply the CLT with mixing conditions as provided in

Chapter 2, and for the timewise estimate that of [17]. The rate of convergence can be improved

by a bias correction term, which we explain in detail for space and time. In a second step

we prove then asymptotic normality of the weighted least squares parameter estimates, where

constrained optimisation has to be applied, since one of the space and one of the time parameters

has bounded support. Also the limit laws differ depending whether the parameter lies on the

boundary or not. Since the asymptotic covariance matrices in the normal limits are difficult

to access, we apply subsampling procedures to obtain pointwise confidence intervals for the

parameters, also taking care of the different normal limits.

This chapter is organised as follows. Section 3.2 defines the isotropic Brown-Resnick process

with its choice of dependence function used throughout for modelling extremes observed in space

and time. The extremogram is introduced and its parametric form for our model is given. Based

on gridded data, the nonparametric extremogram estimation is derived. Asymptotic normality of

the parameter estimates is established in Section 3.3. Section 3.3.1 is dedicated to the asymptotic

normality of the empirical spatial extremogram and its bias correction; Section 3.3.2 deals with

the asymptotic properties of the spatial parameter estimates. Sections 3.3.3 and 3.3.4 present the

analogues for the time parameters. In Section 3.4 we explain the subsampling procedure. We test

our new semiparametric estimation procedure in a simulation study in Section 3.5. The chapter

concludes with an analysis of daily rainfall maxima in a region in Florida in Section 3.6, where
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3.2 Model description and semiparametric estimates

we also compare the semiparametric estimates with the previously obtained pairwise likelihood

estimates. Some auxiliary results are summarised in an appendix.

3.2 Model description and semiparametric estimates

Throughout the chapter we consider a strictly stationary Brown-Resnick process in space and

time with representation

η(s, t) =
∞∨
j=1

{
ξj e

Wj(s,t)−δ(‖s‖,t)
}
, (s, t) ∈ R2 × [0,∞), (3.1)

where ‖ · ‖ is the Euclidean norm on R2, {ξj : j ∈ N} are points of a Poisson process on [0,∞)

with intensity ξ−2dξ and the dependence function δ is nonnegative and conditionally negative

definite; i.e., for every m ∈ N and every (s(1), t(1)), . . . , (s(m), t(m)) ∈ R2 × [0,∞), it holds that

m∑
i=1

m∑
j=1

aiajδ(‖s(i) − s(j)‖, |t(i) − t(j)|) ≤ 0

for all a1, . . . , am ∈ R summing up to 0. The processes {Wj(s, t) : s ∈ R2, t ∈ [0,∞)} are

independent replicates of a Gaussian process {W (s, t) : s ∈ R2, t ∈ [0,∞)} with stationary

increments, W (0, 0) = 0, E[W (s, t)] = 0 and covariance function

Cov[W (s(1), t(1)),W (s(2), t(2))]

= δ(‖s(1)‖, t(1)) + δ(‖s(2)‖, t(2))− δ(‖s(1) − s(2)‖, |t(1) − t(2)|).

Representation (3.1) goes back to de Haan [24], Giné et al. [39] and Kabluchko et al. [47]. All

finite-dimensional distributions are multivariate extreme value distributions with standard unit

Fréchet margins, hence they are in particular multivariate regularly varying. Furthermore, they

are perfectly characterised by the dependence function δ, which is termed the semivariogram of

the process {W (s, t)} in geostatistics: For (s(1), t(1)), (s(2), t(2)) ∈ R2 × [0,∞), it is given by

Var[W (s(1), t(1))−W (s(2), t(2))] = 2δ(‖s(1) − s(2)‖, |t(1) − t(2)|).

Since we assume δ to depend only on the norm of s(1)−s(2), the associated process is (spatially)

isotropic.

In this chapter we assume the dependence function δ to be given for v, u ≥ 0 by

δ(v, u) = 2θ1v
α1 + 2θ2u

α2 , (3.2)

where 0 < α1, α2 ≤ 2 and θ1, θ2 > 0. This is the fractional class frequently used for dependence

modelling, and here defined with respect to space and time.
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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

The bivariate distribution function of (η(0, 0), η(h, u)) is given for x1, x2 > 0 by

F (x1, x2) = exp

{
− 1

x1
Φ

(
log(x2/x1)√
2δ(‖h‖, |u|)

+

√
δ(‖h‖, |u|)

2

)

− 1

x2
Φ

(
log(x1/x2)√
2δ(‖h‖, |u|)

+

√
δ(‖h‖, |u|)

2

)}
, (3.3)

where Φ denotes the standard normal distribution function (cf. Davis et al. [19]).

The parameters of interest are contained in the dependence function δ. We refer to (θ1, α1) as

the spatial parameter and to (θ2, α2) as the temporal parameter. From the bivariate distribution

function in (3.3), the pairwise density can be derived and pairwise likelihood methods can be

used to estimate the parameters; cf. Davis et al. [20], Huser and Davison [43] and Padoan et al.

[54]. Full likelihood inference is typically hardly tractable in a general multidimensional setting,

as the number of terms occurring in the likelihood explode. More recently, however, parametric

inference methods based on higher-dimensional margins have been proposed that work in specific

scenarios, see for instance Genton et al. [37], who use triplewise instead of pairwise likelihood,

Engelke et al. [34], who propose a threshold-based approach, or Thibaud and Opitz [64] and

Wadsworth and Tawn [67], who use a censoring scheme for bias reduction.

In the following we introduce an alternative estimation approach, which is based on a closed

form expression of the extremogram. The latter was introduced for time series by Davis and

Mikosch [17] and for spatial and space-time processes by Cho et al. [15] and Steinkohl [62],

respectively, and can be regarded as a correlogram for extreme events.

In this chapter we consider an isotropic Brown-Resnick process as a regularly varying stochas-

tic processes {η(s) : s ∈ Rd} where d = 1 corresponds to a time series and d = 2 to a spatial

process, such that d = 3 holds for the space-time process.

More precisely, we consider strictly stationary regularly varying processes {η(s) : s ∈ Rd} for

d ∈ N, where all finite-dimensional distributions are regularly varying (cf. Hult and Lindskog [41]

for definitions and results in a general framework and Resnick [59] for details about multivariate

regular variation). As a prerequisite, we define for every finite set I ⊂ Rd with cardinality |I|
the vector

ηI := (η(s) : s ∈ I)
ᵀ
.

Throughout, we abbreviate R := R ∪ {−∞,∞}. For two positive functions f and g, we define

the relation “∼” as usually by f(n) ∼ g(n) as n→∞ if f(n)
g(n) → 1 as n→∞.

Definition 3.1 (Regularly varying stochastic process). A strictly stationary stochastic process

{η(s) : s ∈ Rd} is called regularly varying, if there exists some normalizing sequence 0 < an →∞
such that P(|η(0)| > an) ∼ n−d as n→∞, and if for every finite set I ⊂ Rd,

ndP
(ηI
an
∈ ·
)

v→ µI(·), n→∞, (3.4)

40



3.2 Model description and semiparametric estimates

for some non-null Radon measure µI on the Borel sets in R|I|\{0}. In that case,

µI(xC) = x−βµI(C), x > 0,

for every Borel set C in R|I|\{0}. The notation
v→ stands for vague convergence, and β > 0 is

called the index of regular variation.

For every s ∈ Rd and I = {s} we set µ{s}(·) = µ{0}(·) =: µ(·), which is justified by stationarity.

Assuming strict stationarity and spatial isotropy of a regularly varying space-time process

{η(s, t) : s ∈ R2, t ∈ [0,∞)} we can define its extremogram at two points (s1, t1) and (s2, t2)

only in terms of the spatial and temporal lags v := ‖s1 − s2‖ and u := |t1 − t2|.

Definition 3.2 (The extremogram). For a regularly varying strictly stationary isotropic space-

time process {η(s, t) : (s, t) ∈ R2 × [0,∞)} we define the space-time extremogram for two

µ-continuous Borel sets A and B in R\{0} (i.e. µ(∂A) = µ(∂B) = 0) such that µ(A) > 0 by

ρAB(v, u) = lim
n→∞

P (η(s1, t1)/an ∈ A, η(s2, t2)/an ∈ B)

P (η(s1, t1)/an ∈ A)
, (3.5)

where v = ‖s1 − s2‖ and u = |t1 − t2|.

SettingA = B = (1,∞), we rediscover the tail dependence coefficient χ(v, u) = ρ(1,∞)(1,∞)(v, u).

For the isotropic Brown-Resnick process there is a closed form expression for χ(v, u), which is

the basis for our estimation procedure.

Lemma 3.3 (Davis et al. [19], equation (3.1)). Let η be the strictly stationary isotropic Brown-

Resnick process in R2× [0,∞) as defined in (3.1) with dependence function given in (3.2). Then

for A = B = (1,∞) the extremogram of η is given by

χ(v, u) = 2
(

1− Φ
(√1

2
δ(v, u)

))
= 2
(
1− Φ(

√
θ1vα1 + θ2uα2)

)
, v, u ≥ 0. (3.6)

Solving equation (3.6) for δ(v, u) leads to

δ(v, u)

2
= θ1v

α1 + θ2u
α2 =

(
Φ−1

(
1− 1

2
χ(v, u)

))2
. (3.7)

For temporal lag 0 and taking the logarithm on both sides we have

2 log
(

Φ−1
(
1− 1

2
χ(v, 0)

))
= log(θ1) + α1 log v.

In the same way, we obtain

2 log
(

Φ−1
(
1− 1

2
χ(0, u)

))
= log(θ2) + α2 log u.

These equations are the basis for parameter estimates. We replace the extremogram on the left

hand side in both of these equations by nonparametric estimates at different lags. Then we
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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

use constrained weighted least squares estimation in a linear regression framework to obtain

parameter estimates.

The estimation procedure is based on the following observation scheme for the space-time

data.

Condition 3.4. (1) The locations lie on a regular 2-dimensional grid

Sn =
{

(i1, i2) : i1, i2 ∈ {1, . . . , n}
}

=
{
si : i = 1, . . . , n2

}
.

(2) The time points are equidistant, given by the set {t1, . . . , tT }.

Remark 3.5. The assumption of a regular grid can be relaxed in various ways. A simple, but

notationally more involved extension is the generalisation to rectangular grids, cf. Section 2.3.

Furthermore, it is possible to assume that the observation area consists of random locations

given by points of a Poisson process, see for instance Cho et al. [15], Section 2.3, or Steinkohl

[62], Section 4.5.2. Also deterministic, but irregularly spaced locations, could be considered as

treated in [62] in Section 4.5.1 in the context of pairwise likelihood estimation. In order to make

our method transparent we focus on observations on a regular grid.

The following scheme provides the semiparametric estimation procedure in detail.

Denote by V and U finite sets of spatial and temporal lags, on which the estimation is based. We

denote by “lag” the norm or absolute value of the difference of two spatial locations or two time

points, respectively. Concerning the choice of V and U , we generally include those lags which

show clear extremal dependence between locations or time points. Larger lags should not be

considered, since they may introduce a bias in the least squares estimates, similarly as in pair-

wise likelihood estimation; cf. Section 5.5.3. One way to determine the range of clear extremal

dependence are permutation tests, which we describe at the end of Section 3.6.

(1) Nonparametric estimates for the extremogram:

Summarise all pairs of Sn which give rise to the same spatial lag v ∈ V into

N(v) = {(i, j) ∈ {1, . . . , n2}2 : ‖si − sj‖ = v}.

For all t ∈ {t1, . . . , tT } estimate the spatial extremogram by

χ̂(t)(v, 0) =

1

|N(v)|
n2∑
i=1

n2∑
j=1

‖si−sj‖=v

1{η(si,t)>q,η(sj ,t)>q}

1

n2

n2∑
i=1

1{η(si,t)>q}

, v ∈ V, (3.8)

where q is a large quantile (to be specified) of the standard unit Frechét distribution.
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3.3 Estimation of the isotropic Brown-Resnick process

For all s ∈ Sn estimate the temporal extremogram by

χ̂(s)(0, u) =

1
T−u

T−u∑
k=1

1{η(s,tk)>q,η(s,tk+u)>q}

1
T

T∑
k=1

1{η(s,tk)>q}

, u ∈ U , (3.9)

where again q is a large (possibly different) quantile of the standard unit Frechét distribution

(2) The overall “spatial” and “temporal” extremogram estimates are defined as averages over

the temporal and spatial locations, respectively; i.e.,

χ̂(v, 0) =
1

T

T∑
k=1

χ̂(tk)(v, 0), v ∈ V, (3.10)

χ̂(0, u) =
1

n2

n2∑
i=1

χ̂(si)(0, u), u ∈ U . (3.11)

Parameter estimates for θ1, α1, θ2 and α2 are found by using constrained weighted least squares

estimation:(
θ̂1

α̂1

)
= arg min

θ1,α1>0

α1∈(0,2]

∑
v∈V

wv

(
2 log

(
Φ−1

(
1− 1

2
χ̂(v, 0)

))
−
(

log(θ1) + α1 log(v)
))2

, (3.12)

(
θ̂2

α̂2

)
= arg min

θ2,α2>0

α2∈(0,2]

∑
u∈U

wu

(
2 log

(
Φ−1(1− 1

2
χ̂(0, u))

)
−
(

log(θ2) + α2 log(u)
))2

, (3.13)

with weights wu > 0 and wv > 0.

We call the estimates (θ̂1, α̂1) and (θ̂2, α̂2) weighted least squares estimates (WLSE).

3.3 Estimation of the isotropic Brown-Resnick process

In this section we investigate asymptotic properties of the WLSE (θ̂1, α̂1) and (θ̂2, α̂2).

For a central limit theorem of the extremogram we need a sufficiently precise estimate for the

extremogram (3.6), which we give now.

Lemma 3.6. Let s,h ∈ R2 and t ∈ [0,∞). For every sequence an →∞ we have

P(η(s, t) > an, η(s+ h, t) > an)

P(η(s, t) > an)

=
[
χ(‖h‖, 0) +

1

2an

(
χ(‖h‖, 0)− 2

)(
χ(‖h‖, 0)− 1

)]
(1 + o(1)).

Lemma 3.6 is a direct application of Lemma A.1(b) for A = B = (1,∞) and equation (A.4).

This applies since {η(s, t) : s ∈ R2} has finite-dimensional standard unit Fréchet marginal

distributions. Also note that an ∼ n2 as n→∞ according to Definition 3.1.
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Since the WLSE are functions of the spatial and temporal extremograms, we first derive the

asymptotic properties of χ̂(t) and χ̂(s) for a fixed time point t and a fixed location s, respectively.

Sections 3.3.1 and 3.3.2 focus on the spatial parameters, whereas Sections 3.3.3 and 3.3.4 handle

the temporal parameters. We use several results for the extremogram provided in Appendix B.1

and in Chapter 2.

3.3.1 Asymptotics of the empirical spatial extremogram

We prove a central limit theorem for the empirical spatial extremogram of the Brown-Resnick

process (3.1) based on a finite set of spatial lags

V = {v1, . . . , vp},

which show clear extremal dependence as explained in Section 3.2. First we show that the

empirical extremogram centred by the pre-asymptotic version is asymptotically normal.

Theorem 3.7. For a fixed time point t ∈ {t1, . . . , tT }, consider the spatial Brown-Resnick

process
{
η(s, t) : s ∈ R2

}
as defined in (3.1) with dependence function given in (3.2). Set mn =

nβ1 for β1 ∈ (0, 1/2). Then the empirical spatial extremogram χ̂(t)(v, 0) defined in (3.8) with the

quantile q = m2
n satisfies

n

mn

(
χ̂(t)(v, 0)− χn(v, 0)

)
v∈V

d→ N (0,Π
(iso)
1 ), n→∞,

where the covariance matrix Π
(iso)
1 is specified in equation (3.19) below, and χn is the pre-

asymptotic spatial extremogram,

χn(v, 0) =
P(η(0, 0) > m2

n, η(h, 0) > m2
n)

P(η(0, 0) > m2
n)

, v = ‖h‖ ∈ V . (3.14)

Proof. As η(0, t) has standard unit Fréchet marginal distributions, we can choose amn = m2
n by

Definition 3.1 of regular variation.

We apply Theorem 2.6 by verifying conditions (M1)-(M4) of that theorem for {η(s, t) : s ∈ R2},
d = 2, and A = B = (1,∞). Condition (M1) is satisfied by equation (B.2).

To show conditions (M2)-(M4) we choose sequences mn = nβ1 and rn = nβ2 for 0 < β1 < 1/2

and 0 < β2 < β1. For this choice mn and rn increase to infinity with mn = o(n) and rn = o(mn)

as required.

Condition (M2); i.e., m2
nr

2
n/n = n2(β1+β2)−1 → 0 holds if and only if β2 ∈ (0,min{β1, (1/2−β1)}).

We now show condition (M3). Choose γ > 0, such that all lags in V lie in B(0, γ) := {s ∈ Z2 :

‖s‖ ≤ γ}. Denote by B(h, γ) := {s ∈ Z2 : ‖s − h‖ ≤ γ} = h + B(0, γ) for h ∈ R2. For ε > 0,

like in Example 2.10, we have for s, s′ ∈ R2 by a Taylor expansion,

P(η(s, t) > εm2
n, η(s′, t) > εm2

n)

= 1− 2P(η(0, 0) ≤ εm2
n) + P(η(s, t) ≤ εm2

n, η(s′, t) ≤ εm2
n)
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3.3 Estimation of the isotropic Brown-Resnick process

= 1− 2 exp
{
− 1

x

}
+ exp

{
− 2− χ(‖s− s′‖, 0)

εm2
n

}
=

1

εm2
n

χ(‖s− s′‖, 0) +O
( 1

m4
n

)
, n→∞.

Therefore, for ‖h‖ ≥ 2γ,

P( max
s∈B(0,γ)

η(s, t) > εm2
n, max
s′∈B(h,γ)

η(s′, t) > εm2
n)

≤
∑

s∈B(0,γ)

∑
s′∈B(h,γ)

P(η(s, t) > εm2
n, η(s′, t) > εm2

n)

=
∑

s∈B(0,γ)

∑
s′∈B(h,γ)

{ 1

εm2
n

χ(‖s− s′‖, 0) +O
( 1

m4
n

)}
≤2|B(0, γ)|2

εm2
n

(
1− Φ(

√
θ1(‖h‖ − 2γ)α1

)
+O

( 1

m4
n

)
, (3.15)

as n → ∞, where we have used (3.6). Summarise V := {v = ‖h‖ : h ∈ Z2} and note that

|{h ∈ Z2 : ‖h‖ = v}| = O(v). Therefore, for k ≥ 2γ,

Lmn := lim sup
n→∞

m2
n

∑
h∈Z2

k<‖h‖≤rn

P
(

max
s∈B(0,γ)

η(s, t) > εm2
n, max
s′∈B(h,γ)

η(s′, t) > εm2
n

)

≤ 2|B(0, γ)|2 lim sup
n→∞

{ ∑
h∈Z2

k<‖h‖≤rn

{1

ε
(1− Φ(

√
θ1(‖h‖ − 2γ)α1))

}
+O

(( rn
mn

)2)}

≤C1 lim sup
n→∞

∑
v∈V :

k<v≤rn

{v
ε

2
(
1− Φ(

√
θ1(v − 2γ)α1)

)}
,

for some constant C1 > 0. For the term O((rn/mn)2) we use that rn/mn → 0. From Lemma B.3

and the fact that 1− Φ(x) ≤ exp{−x2/2} for x > 0, we find for C2 > 0,

Lmn ≤C2k
2 exp

{
− 1

2
θ1(k − 2γ)α1

}
.

Since α1 > 0, the right hand side converges to 0 as k →∞ ensuring condition (M3).

Now we turn to the mixing conditions (M4).

We start with (M4i). With V as before, and with equation (B.2), we estimate, recalling from

above that the number of lags ‖h‖ = v is of oder O(v),

m2
n

∑
h∈Z2:‖h‖>rn

α1,1(‖h‖) ≤ C1m
2
n

∑
v∈V :v>rn

v α1,1(v) ≤ 4C1m
2
n

∑
v∈V :v>rn

v e−θ1v
α1/2.

By Lemma B.3 we find

m2
n

∑
v∈V :v>rn

v e−θ1v
α1/2 ≤ cm2

nr
2
n e
−θ1r

α1
n /2 = cm2

nr
2
n e
−θ1nα1β2/2 → 0, n→∞.
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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

By the same arguments condition (M4ii) is satisfied.

Condition (M4iii) holds by equation (B.2), since

mn nα1,n2(rn) ≤ 4n3mn e
−θ1r

α1
n /2 → 0, n→∞.

For the specification of the asymptotic covariance matrix we apply Theorem 2.6 for the isotropic

case, where each spatial lag vi arises from a set of different vectors h, all with same Euclidean

norm vi. For i ∈ {1, . . . , p} such that vi ∈ V, we summarise these into

L(vi) := {h ∈ Z2 : ‖h‖ = vi} = {h(i)
1 , . . . ,h

(i)
`i
},

where `i := |L(vi)|. Based on the preceding steps of the proof, we conclude from that theorem

that

n

mn

(
χ̂(t)(h

(i)
1 , 0)− χn(h

(i)
1 , 0), . . . , χ̂(t)(h

(i)
`i
, 0)− χn(h

(i)
`i
, 0)
)ᵀ
i=1,...,p

d→ N (0,Π
(space)
1 ),

where Π
(space)
1 is specified in equations (2.13)-(2.15). Furthermore, χ̂(t)(h, 0) is the empirical

extremogram for each vector h as specified above.

Define N(h) := {(i, j) ∈ {1, . . . , n2} : si − sj = h}, then the numerator in (3.8) normalises by

|N(h)| (instead of |N(v)|) and the sum runs over si− sj = h vector-wise (instead of equality in

norm). Hence, |N(vi)| =
∑
h∈L(vi)

|N(h)|. Isotropy implies for the pre-asymptotic extremogram

that χn(vi, 0) = χn(h, 0) for all h ∈ L(vi), such that

χn(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

χn(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

χn(h, 0) (3.16)

as well as, by the definition of the estimator in (3.8),

χ̂(t)(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

χ̂(t)(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

χ̂(t)(h, 0). (3.17)

We conclude by (3.16) and (3.17) that

χ̂(t)(vi, 0)− χn(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

(
χ̂(t)(h, 0)− χn(h, 0)

)
.

To obtain a concise representation of the asymptotic normal law for the isotropic extremogram,

we define row vectors (|N(h)|/|N(vi)| : h ∈ L(vi)) for i = 1, . . . , p. Set L :=
∑p

i=1 `i and define
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3.3 Estimation of the isotropic Brown-Resnick process

the p× L−matrix

N :=



(
|N(h)|
|N(v1)| : h ∈ L(v1)

)
0 0 0

0
(
|N(h)|
|N(v2)| : h ∈ L(v2)

)
0 0

...
...

. . . 0

0 0 0
(
|N(h)|
|N(vp)| : h ∈ L(vp)

)

 . (3.18)

Then we find

n

mn

(
χ̂(t)(vi, 0)− χn(vi, 0)

)ᵀ
i=1,...,p

=
n

mn
N
(
χ̂(t)(h

(i)
1 , 0)− χn(h

(i)
1 , 0), . . . , χ̂(t)(h

(i)
`i
, 0)− χn(h

(i)
`i
, 0)
)ᵀ
i=1,...,p

d→ N (0, NΠ
(space)
1 N

ᵀ
), n→∞,

such that

Π
(iso)
1 := NΠ

(space)
1 N

ᵀ
. (3.19)

Corollary 3.8. Under the conditions of Theorem 3.7 the averaged spatial extremogram in (3.10)

satisfies

n

mn

( 1

T

T∑
k=1

χ̂(tk)(v, 0)− χn(v, 0)
)
v∈V

d→ N (0,Π
(iso)
2 ), n→∞,

with covariance matrix Π
(iso)
2 specified in (3.23) below.

Proof. For the first part of the proof, we neglect spatial isotropy. This part is similar to the

proof of Theorem 2.6 and Corollary 3.4 of Davis and Mikosch [17]. We use the notation of the

proof of Theorem 3.7. Enumerate the set of spatial lag vectors inherent in the estimation of the

extremogram as {h(i)
1 , . . . ,h

(i)
`i

: i = 1, . . . , p} and let γ ≥ max{v1, . . . , vp}. Define the vector

process

{Y (s) : s ∈ R2} = {(η(s+ h, tk) : h ∈ B(0, γ))
ᵀ

k=1,...,T : s ∈ R2}.

Let A = B = (1,∞). Consider i = 1, . . . , p, j = 1, . . . , `i, and k = 1, . . . , T . Define sets D
(i)
j,k by

{Y (s) ∈ D(i)
j,k} = {η(s, tk) ∈ A, η(s′, tk) ∈ B : s− s′ = h

(i)
j },

and the sets Dk by

{Y (s) ∈ Dk} = {η(s, tk) ∈ A}.

For h ∈ R2 let BT (h, γ) := B(h, γ)× {t1, . . . , tT }. For µBT (0,γ)-continuous Borel sets C and D
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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

in RT |B(0,γ)|\{0}, regular variation yields the existence of the limit measures

µBT (0,γ)(C) := lim
n→∞

m2
nP
(Y (0)

m2
n

∈ C
)

τBT (0,γ)×BT (h,γ)(C ×D) := lim
n→∞

m2
nP
(Y (0)

m2
n

∈ C, Y (h)

m2
n

∈ D
)
.

By time stationarity we have µBT (0,γ)(Dk) = µ(A),

χ̂(tk)(h
(i)
j , 0) ∼ R̂mn(D

(i)
j,k, Dk) := µ̂BT (0,γ),mn(D

(i)
j,k)/µ̂BT (0,γ),mn(Dk), n→∞, (3.20)

where the µ̂BT (0,γ),mn(·) are empirical estimators of µBT (0,γ)(·) defined as

µ̂BT (0,γ),mn(·) :=
(mn

n

)2 ∑
s∈Sn

1{Y (s)

m2
n
∈·}. (3.21)

Likewise we have for the pre-asymptotic quantities

χn(h
(i)
j , 0) = Rmn(D

(i)
j,k, Dk) :=

P(Y (0)/m2
n ∈ D

(i)
j,k)

P(Y (0)/m2
n ∈ Dk)

=:
µBT (0,γ),mn(D

(i)
j,k)

µBT (0,γ),mn(Dk)
, (3.22)

which are independent of time tk by stationarity. For notational ease we abbreviate in the

following

µBT (0,γ)(·) = µγ(·), µBT (0,γ),mn(·) = µγ,mn(·), and µ̂BT (0,γ),mn(·) = µ̂γ,mn(·)

For each k ∈ {1, . . . , T} we now define the matrices

F (k) = [F1, F
(k)
2 ]

with F1 ∈ RL×L and F
(k)
2 ∈ RL given by

F1 = diag(µ(A)) and F
(k)
2 := (−µγ(D

(1)
1,k), . . . ,−µγ(D

(1)
`1,k

), . . . ,−µγ(D
(p)
`p,k

))>.

Although F
(k)
2 is constant over k ∈ {1, . . . , T} by time stationarity, we keep the index to clarify

the notation. Define the TL × T (L + 1)-matrix F and the column vector χ̂ − χn with TL

components as

F :=


F (1) 0 0 0

0 F (2) 0 0
...

...
. . . 0

0 0 0 F (T )

 and χ̂− χn :=



χ̂(t1)(h
(1)
1 , 0)− χn(h

(1)
1 , 0)

...

χ̂(t1)(h
(1)
`1
, 0)− χn(h

(1)
`1
, 0)

...

χ̂(t1)(h
(p)
`p
, 0)− χn(h

(p)
`p
, 0)

...

χ̂(tT )(h
(p)
`p
, 0)− χn(h

(p)
`p
, 0)


.
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3.3 Estimation of the isotropic Brown-Resnick process

Define the vector (R̂mn − Rmn) with the quantities from (3.20) and the corresponding pre-

asymptotic quantities from (3.22) exactly in the same way. Furthermore, define for k = 1, . . . , T

the vectors in RL+1

µ(k)
γ,mn =(
µγ,mn(D

(1)
1,k), . . . , µγ,mn(D

(1)
`1,k

), . . . . . . , µγ,mn(D
(p)
1,k), . . . , µγ,mn(D

(p)
`p,k

), µγ,mn(Dk)
)ᵀ
,

which we stack one on top of the other giving a vector µγ,mn in RT (L+1), and µ̂γ,mn analogously.

Then we obtain

χ̂− χn = (1 + o(1))(R̂mn −Rmn) =
1 + op(1)

µ(A)2
F (µ̂γ,mn − µγ,mn),

where the last step follows as in the proof of Theorem 2.6 and involves Slutzky’s theorem. Using

ideas of the proof of Lemma (2.12), we observe that as n→∞,

Cov
[
µ̂BT (0,γ),mn(C), µ̂BT (0,γ),mn(D)

]
∼
(mn

n

)2(
µBT (0,γ)(C ∩D) +

∑
06=h∈Z2

τBT (0,γ)×BT (h,γ)(C ×D)
)

=:
(mn

n

)2
cC,D.

With Σ ∈ RT (L+1)×T (L+1) defined as

Σ =


c
D

(1)
1,1,D

(1)
1,1

· · · c
D

(1)
1,1,D1

· · · c
D

(1)
1,1,D

(p)
1,T

· · · c
D

(1)
1,1,DT

...
. . .

...
. . .

...
. . .

...

c
DT ,D

(1)
1,1

· · · cDT ,D1 · · · c
DT ,D

(p)
1,T

· · · cDT ,DT

 ,

we thus conclude that

n

mn


χ̂(t1)(h

(1)
1 , 0)− χn(h

(1)
1 , 0)

...

χ̂(tT )(h
(p)
`p
, 0)− χn(h

(p)
`p
, 0)

 d→ N (0, µ(A)−4FΣ(F )>).

To obtain the asymptotic covariance matrix in the spatially isotropic case, we proceed as in the

proof of Theorem 3.7. We define the Tp× TL-matrix

N :=


N 0 0 0

0 N 0 0
...

...
. . . 0

0 0 0 N


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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

with N given in equation (3.18). Then we have

n

mn


χ̂(t1)(v1, 0)− χn(v1, 0)

...

χ̂(tT )(vp, 0)− χn(vp, 0)

 =
n

mn
N


χ̂(t1)(h

(1)
1 , 0)− χn(h

(1)
1 , 0)

...

χ̂(tT )(h
(p)
`p
, 0)− χn(h

(p)
`p
, 0)


d→ N (0, µ(A)−4NFΣ(NF )>), n→∞,

and we conclude that for the averaged spatial extremogram the statement holds with

Π
(iso)
2 =µ(A)−4T−2


1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

. . .

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1

NFΣ(NF )>


1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

. . .

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1


>

. (3.23)

Remark 3.9. In the central limit theorem the pre-asymptotic extremogram (3.14) can be re-

placed by the theoretical one (3.6), provided that

n

mn
(χn(v, 0)− χ(v, 0))→ 0, n→∞, (3.24)

is satisfied for all spatial lags v ∈ V. For the Brown-Resnick process (3.1) we obtain from

Lemma 3.6,

n

mn
(χn(v, 0)− χ(v, 0))

=
n

mn

(
P (η(s, t) > m2

n, η(s+ h, t) > m2
n)

P(η(s, t) > m2
n)

− χ(v, 0)

)
∼ n

2m3
n

(
χ(v, 0)− 2

)(
χ(v, 0)− 1

)
= n1−3β1 1

2

(
χ(v, 0)− 2

)(
χ(v, 0)− 1

)
→ 0 if and only if β1 > 1/3;

cf. Theorem 2.8. Thus we have to distinguish two cases:

(I) For β1 ≤ 1/3 we cannot replace the pre-asymptotic extremogram by the theoretical version,

but can resort to a bias correction, which is decribed in (3.27) below.

(II) For 1/3 < β1 < 1/2 we obtain indeed

n1−β1(χ̂(t)(v, 0)− χ(v, 0)
)
v∈V

d→ N (0,Π
(iso)
1 ), n→∞. (3.25)
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3.3 Estimation of the isotropic Brown-Resnick process

We now turn to the bias correction needed in case (I). By Lemma 3.6 the pre-asymptotic

extremogram has representation

χn(v, 0) =
[
χ(v, 0) +

1

2m2
n

(
χ(v, 0)− 2

)(
χ(v, 0)− 1

)]
(1 + o(1))

=
[
χ(v, 0) +

1

2m2
n

ν(v, 0)
]
(1 + o(1)), n→∞, (3.26)

where ν(v, 0) :=
(
χ(v, 0)− 2

)(
χ(v, 0)− 1

)
.

Consequently, we propose for fixed t ∈ {t1, . . . , tT } and all v ∈ V the bias corrected empirical

spatial extremogram

χ̂(t)(v, 0)− 1

2m2
n

(
χ̂(t)(v, 0)− 2

)(
χ̂(t)(v, 0)− 1

)
=: χ̂(t)(v, 0)− 1

2m2
n

ν̂(t)(v, 0),

and set

χ̃(t)(v, 0) :=


χ̂(t)(v, 0)− 1

2m2
n

ν̂(t)(v, 0) if mn = nβ1 with β1 ∈ (1
5 ,

1
3 ],

χ̂(t)(v, 0) if mn = nβ1 with β1 ∈ (1
3 ,

1
2).

(3.27)

Theorem 3.10 below shows asymptotic normality of the bias corrected extremogram centred by

the true one and, in particular, why β1 has to be larger than 1/5.

Theorem 3.10. For a fixed time point t ∈ {t1, . . . , tT } consider the spatial Brown-Resnick

process
{
η(s, t), s ∈ R2

}
defined in (3.1) with dependence function given in (3.2). Set mn = nβ1

for β1 ∈
(

1
5 ,

1
3

]
. Then the bias corrected empirical spatial extremogram (3.27) satisfies

n

mn

(
χ̃(t)(v, 0)− χ(v, 0)

)
v∈V

d→ N (0,Π
(iso)
1 ), n→∞, (3.28)

where Π
(iso)
1 is the covariance matrix as given in equation (3.19). Furthermore, the corresponding

bias corrected version of (3.10) satisfies

n

mn

( 1

T

T∑
k=1

χ̃(tk)(v, 0)− χ(v, 0)
)
v∈V

d→ N (0,Π
(iso)
2 ), n→∞,

with covariance matrix Π
(iso)
2 specified in (3.23).

Proof. For simplicity we suppress the time point t in the notation. By (3.26) and (3.27) we have

as n→∞,

n

mn
(χ̃(v, 0)− χ(v, 0)) ∼ n

mn
(χ̂(v, 0)− χn(v, 0))− n

2m3
n

(ν̂(v, 0)− ν(v, 0)).

By Theorem 3.7 it suffices to show that (n/(2m3
n))(ν̂(v, 0) − ν(v, 0))

P→ 0. Setting νn(v, 0) :=
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(
χn(v, 0)− 2

)(
χn(v, 0)− 1

)
we have

n

2m3
n

(ν̂(v, 0)− ν(v, 0)) =
n

2m3
n

(ν̂(v, 0)− νn(v, 0)) +
n

2m3
n

(νn(v, 0)− ν(v, 0)) =: A1 +A2.

We calculate

n

mn(2χ(v, 0)− 3)

(
ν̂(v, 0)− νn(v, 0)

)
=

n

mn(2χ(v, 0)− 3)

(
χ̂2(v, 0)− 3χ̂(v, 0)− (χ2

n(v, 0)− 3χn(v, 0))
)

=
n

mn(2χ(v, 0)− 3)

(
(χ̂(v, 0)− χn(v, 0))(χ̂(v, 0) + χn(v, 0))− 3(χ̂(v, 0)− χn(v, 0))

)
=

n

mn

(
χ̂(v, 0)− χn(v, 0)

) χ̂(v, 0) + χn(v, 0)− 3

2χ(v, 0)− 3
.

The first term converges by Theorem 3.7 weakly to a normal distribution, and the second term,

together with the fact that χ̂(v, 0)
P→ χ(v, 0) and χn(v, 0)

P→ χ(v, 0), converges to 1 in probability.

Hence, it follows from Slutzky’s theorem that A1
P→ 0. Now we turn to A2 and calculate

νn(v, 0) = χ2
n(v, 0)− 3χn(v, 0) + 2

∼
(
χ(v, 0) +

1

2m2
n

ν(v, 0)
)2
− 3
(
χ(v, 0) +

1

2m2
n

ν(v, 0)
)

+ 2

= χ2(v, 0)− 3χ(v, 0) + 2 +
1

m2
n

χ(v, 0)ν(v, 0) +
1

4m4
n

ν(v, 0)2 − 3

2m2
n

ν(v, 0)

=
(
χ(v, 0)− 2

)(
χ(v, 0)− 1

)
+

1

m2
n

χ(v, 0)ν(v, 0) +
1

4m4
n

ν(v, 0)2 − 3

2m2
n

ν(v, 0)

= ν(v, 0) +
ν(v, 0)

m2
n

(
χ(v, 0) +

1

4m2
n

ν(v, 0)− 3

2

)
,

where we have used (3.26). Therefore, A2 converges to 0, if n/m5
n → 0 as n→∞. With mn = nβ1

it follows that β1 >
1
5 . Finally, the last statement follows from Corollary 3.8.

Remark 3.11. Note that in (3.25) the rate of convergence is of the order na for a ∈ (1/2, 2/3).

On the other hand, after bias correction in (3.28) we obtain convergence of the order na for

a ∈ [2/3, 4/5); i.e. a better rate.

Example 3.12. We generate 100 realisations of the Brown-Resnick process in (3.1) using the

R-package RandomFields [60] and the exact method via extremal functions proposed in Dombry

et al. [28], Section 2. We then compare the empirical estimates of the spatial extremogram χ̂(v, 0)

in (3.8) and the bias corrected ones χ̃(v, 0) in (3.27) with the true theoretical extremogram

χ(v, 0) for lags v ∈ {1,
√

2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

17}. We choose the parameters θ1 = 0.4

and α1 = 1.5. The grid size and the number of time points are given by n = 70 and T = 10.

The results are summarised in Figure 3.1. We see that the bias corrected extremogram is closer

to the true one.
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3.3 Estimation of the isotropic Brown-Resnick process

Figure 3.1: Empirical spatial extremogram (left) and its bias corrected version (right) for one hundred
simulated max-stable random fields in (3.1) with δ(v, 0) = 2 · 0.4v1.5. The dotted line repre-
sents the theoretical spatial extremogram and the solid line is the mean over all estimates.

3.3.2 Asymptotic properties of spatial parameter estimates

In this section we prove asymptotic normality of the WLSE (θ̂1, α̂1) of Section 3.2. We use the

following notation:

yv := 2 log
(

Φ−1
(
1− 1

2
χ̃(v, 0)

))
and xv := log(v), v ∈ V,

with χ̃(v, 0) = 1
T

∑T
k=1 χ̃

(tk)(v, 0) as in (3.10), possibly after a bias correction, which depends on

the two cases described in Remark 3.9. Then (3.12) reads as(
θ̂1

α̂1

)
= arg min

θ1,α1>0

α1∈(0,2]

∑
v∈V

wv
(
yv −

(
log(θ1) + α1xv

))2
(3.29)

and we are in the setting of weighted linear regression. To show asymptotic normality of the

WLSE as in (3.29), we define the design matrix X and weight matrix W as

X = [1, (xv)
ᵀ

v∈V ] ∈ Rp×2 and W = diag{wv : v ∈ V} ∈ Rp×p,

respectively, where 1 = (1, . . . , 1)
ᵀ ∈ Rp. Let ψ1 = (log(θ1), α1)

ᵀ
be the parameter vector with

parameter space Ψ = R× (0, 2]. Then the WLSE; i.e., the solution to (3.29) is given by

ψ̂1 :=

(
log(θ̂1)

α̂1

)
= (X

ᵀ
WX)−1X

ᵀ
W (yv)

ᵀ

v∈V .

Without any constraints ψ̂1 may produce estimates of α1 outside its parameter space (0, 2]. In

such cases we set the parameter estimate equal to 2, and we denote the resulting estimate by

ψ̂
c

1 = (log(θ̂c1), α̂c1)
ᵀ
.

Theorem 3.13. Let ψ̂
c

1 = (log(θ̂c1), α̂c1)
ᵀ

denote the WLSE resulting from the constrained min-

imisation problem (3.29) and ψ∗1 = (log(θ∗1), α∗1)
ᵀ ∈ Ψ the true parameter vector. Set mn = nβ1
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for β1 ∈ (1/5, 1/2). Then as n→∞,

n

mn

(
ψ̂
c

1 −ψ∗1
)

d→

Z1 if α∗1 < 2,

Z2 if α∗1 = 2,
(3.30)

where Z1 ∼ N (0,Π
(iso)
3 ), and the distribution of Z2 is given by

P (Z2 ∈ B) =

∫
B∩{(b1,b2)∈R2:b2<0}

ϕ
0,Π

(iso)
3

(z1, z2)dz1dz2

+

∫ ∞
0

∫
{b1∈R:(b1,0)∈B}

ϕ
0,Π

(iso)
3

(
z1 −

1∑
v∈V wv

∑
v∈V

(wvxv) z2, z2

)
dz1dz2 (3.31)

for every Borel set B in R2, and ϕ0,Σ denotes the bivariate normal density with mean vector

0 and covariance matrix Σ. In particular, the joint distribution function of Z2 is given for

(p1, p2)
ᵀ ∈ R2 by

P
(
Z2 ≤ (p1, p2)

ᵀ)
=

min{0,p2}∫
−∞

p1∫
−∞

ϕ
0,Π

(iso)
3

(z1, z2)dz1dz2

+ 1{p2≥0}

∞∫
0

p1∫
−∞

ϕ
0,Π

(iso)
3

(
z1 −

1∑
v∈V wv

∑
v∈V

(wvxv) z2, z2

)
dz1dz2. (3.32)

The covariance matrix of Z1 has representation

Π
(iso)
3 = Q(w)

x GΠ
(iso)
2 GQ(w)

x

ᵀ
, (3.33)

where Π
(iso)
2 is the covariance matrix given in (3.23),

Q(w)
x = (X

ᵀ
WX)−1X

ᵀ
W and (3.34)

G = diag

{√
2π

θ∗1v
α∗1

exp
{1

2
θ∗1v

α∗1
}

: v ∈ V
}
. (3.35)

Proof. For v ∈ V we have yv = g(χ̃(v, 0)) with g(x) = 2 log(Φ−1(1 − x/2)). The derivative of g

is given by

g′(x) = −
(

Φ−1(1− x

2
)ϕ(Φ−1(1− x

2
))
)−1

,

where ϕ is the univariate standard normal density. Thus,

g′(χ(v, 0)) = −
(√

θ∗1v
α∗1 ϕ

(√
θ∗1v

α∗1
))−1

= −
√

2π

θ∗1v
α∗1

exp
{1

2
θ∗1v

α∗1
}
.

Using the multivariate delta method together with Theorems 3.7 and 3.10 it follows that

n

mn

(
yv − g(χ(v, 0))

)
v∈V

d→ N (0, GΠ
(iso)
2 G), n→∞,
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3.3 Estimation of the isotropic Brown-Resnick process

where G is defined in (3.35). Since

min
θ1,α1

α1∈(0,2]

∑
v∈V

wv
(
g(χ(v, 0))−

(
log(θ1) + α1xv

))2
=
∑
v∈V

wv
(
g(χ(v, 0))−

(
log(θ∗1) + α∗1xv

))2
,

we find the well-known property of unbiasedness of the WLSE,

Q(w)
x (g(χ(v, 0)))

ᵀ

v∈V = arg min
θ1,α1

α1∈(0,2]

∑
v∈V

wv
(
g(χ(v, 0))−

(
log(θ1) + α1xv

))2
= ψ∗1.

It follows that, as n→∞,

n

mn

(
ψ̂1 −ψ∗1

)
=

n

mn
Q(w)
x

(
yv − g(χ(v, 0))

)
v∈V

d→ N
(
0, Q(w)

x GΠ
(iso)
2 GQ(w)

x

ᵀ
)
.

We now turn to the constraints on α1. Since the objective function is quadratic, if the uncon-

strained estimate exceeds two, the constraint α1 ∈ (0, 2] results in an estimate α̂c1 = 2. We

consider separately the cases α∗1 < 2 and α∗1 = 2; i.e., the true parameter lies either in the inte-

rior or on the boundary of the parameter space. The constrained estimator ψ̂
c

1 can be written

as

ψ̂
c

1 = ψ̂11{α̂1≤2} + (θ̂1, 2)
ᵀ
1{α̂1>2}.

We calculate the asymptotic probabilities for the events {α̂1 ≤ 2} and {α̂1 > 2},

P(α̂1 ≤ 2) = P
( n

mn
(α̂1 − α∗1) ≤ n

mn
(2− α∗1)

)
.

Since for α∗1 < 2 as n→∞

n

mn

(
α̂1 − α∗1

) d→ N
(

0, (0, 1)Π
(iso)
3 (0, 1)

ᵀ
)

and
n

mn
(2− α∗1)→∞,

it follows that

P(α̂1 ≤ 2)→ 1 and P(α̂1 > 2)→ 0, n→∞. (3.36)

Therefore, for α∗1 < 2,
n

mn

(
ψ̂
c

1 −ψ∗1
) d→ N (0,Π

(iso)
3 ), n→∞.

We now consider the case α∗1 = 2 and α̂1 > 2 (the unconstrained estimate exceeds 2). In this

case (3.29) leads to the constrained optimisation problem

min
ψ1

{[W 1/2((yv)
ᵀ

v∈V −Xψ1)]
ᵀ
[W 1/2((yv)

ᵀ

v∈V −Xψ1]},

s.t. (0, 1)ψ1 = 2.

To obtain asymptotic results for ψ̂
c

1 − ψ∗1, the vector ψ̂1 − ψ∗1 is projected onto the line Λ =

{ψ ∈ R2, (0, 1)ψ = 0}, i.e., denoting by I2 the 2× 2-identity matrix, the projection matrix with
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respect to the induced norm ψ 7→ (ψ
ᵀ
X

ᵀ
WXψ)1/2 is given by (cf. Andrews [1], page 1365)

PΛ = I2 − (X
ᵀ
WX)−1(0, 1)

ᵀ
((0, 1)(X

ᵀ
WX)−1(0, 1)

ᵀ
)−1(0, 1).

For simplicity we use the abbreviation pwx =
∑

v∈V wvxv/
∑

v∈V wv. We calculate

(ψ̂
c

1 −ψ∗1)1{α̂1>2} = PΛ(ψ̂1 −ψ∗1)1{α̂1>2}

= (ψ̂1 −ψ∗1)1{α̂1>2} − (X
ᵀ
WX)−1(0, 1)

ᵀ (
(0, 1)(X

ᵀ
WX)−1(0, 1)

ᵀ)−1
(α̂1 − 2)1{α̂1>2}

= (ψ̂1 −ψ∗1)1{α̂1>2} +

(
pwx

−1

)
(α̂1 − 2)1{α̂1>2}.

For the joint constrained estimator ψc1 we obtain

ψ̂
c

1 −ψ∗1 = (ψ̂
c

1 −ψ∗1)1{α̂1≤2} + (ψ̂
c

1 −ψ∗1)1{α̂1>2}

= (ψ̂1 −ψ∗1)1{α̂1≤2} + (ψ̂1 −ψ∗1)1{α̂1>2} +

(
pwx

−1

)
(α̂1 − 2)1{α̂1>2}

= (ψ̂1 −ψ∗1) +

(
pwx

−1

)
(α̂1 − 2)1{α̂1>2}.

This implies

n

mn
(ψ̂

c

1 −ψ∗1) =
n

mn

(
(log(θ̂1)− log(θ∗1)) + pwx(α̂1 − 2)1{α̂1>2}

(α̂1 − 2)− (α̂1 − 2)1{α̂1>2}

)
.

Let f(x1, x2) = (x1 + pwxx21{x2>0}, x2 − x21{x2>0})
ᵀ

and observe that f(c(x1, x2)) = cf(x1, x2)

for c ≥ 0. For the asymptotic distribution we calculate

P
( n

mn
(ψ̂

c

1 −ψ∗1) ∈ B
)

= P
( n

mn
f(ψ̂1 −ψ∗1) ∈ B

)
= P

(
f
( n
mn

(ψ̂1 −ψ∗1)
)
∈ B

)
= P

( n

mn
(ψ̂1 −ψ∗1) ∈ f−1(B ∩ {(b1, b2) ∈ R2 : b2 < 0}) ∪ f−1(B ∩ {(b1, 0) : b1 ∈ R})

)
= P

( n

mn
(ψ̂1 −ψ∗1) ∈ (B ∩ {(b1, b2) ∈ R2 : b2 < 0})

∪ ({(b1 − pwxb2, b2), b2 ≥ 0, (b1, 0) ∈ B)
)

→
∫
B∩{(b1,b2)∈R2,b2<0}

ϕ
0,Π

(iso)
3

(z1, z2)dz1dz2

+

∫ ∞
0

∫
{b1∈R,(b1,0)∈B}

ϕ
0,Π

(iso)
3

(z1 − pwxz2, z2)dz1dz2, n→∞.

Plugging in B = (−∞, p1]× (−∞, p2] and using the Fubini-Tonelli theorem yields (3.32).

Remark 3.14. The derivation of the asymptotic properties for the constrained estimate is in

fact a special case of Corollary 1 in Andrews [1], who shows asymptotic properties of parameter
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estimates in a very general setting, when the true parameter is on the boundary of the parameter

space. The asymptotic distribution of the estimates in the case α∗1 = 2 results from the fact that

approximately half of the estimates lie above the true value and are therefore equal to two,

which is reflected by the second term in the asymptotic distribution of the estimates.

3.3.3 Asymptotic properties of the empirical temporal extremogram

The results for the temporal parameter (θ2, α2) are analogous to those for the spatial parameter

as presented in Sections 3.3.1 and 3.3.2. The finite set of temporal lags

U = {1, . . . , p},

used for the estimation are those which show clear extremal dependence as explained in Sec-

tion 3.2.

Theorem 3.15. For fixed location s ∈ Sn, consider the Brown-Resnick time series {η(s, t) : t ∈
[0,∞)} as defined in (3.1) with dependence function given in (3.2). Set mT = T β1 for β1 ∈ (0, 1).

Then the empirical temporal extremogram χ̂(s)(0, u) defined in (3.9) with the quantile q = mT

satisfies (
T

mT

)1/2 (
χ̂(s)(0, u)− χT (0, u)

)
u∈U

d→ N (0,Π
(time)
1 ), T →∞,

where the covariance matrix Π
(time)
1 is specified in Corollary 3.4 of Davis and Mikosch [17], and

χT is the pre-asymptotic extremogram

χT (0, u) =
P(η(0, 0) > mT , η(0, u) > mT )

P(η(0, 0) > mT )
, u ∈ U . (3.37)

Proof. We verify the mixing conditions for the central limit theorem of the temporal extremogram

in Davis and Mikosch [17], Corollary 3.4.

Define sequences mT = T β1 for β1 ∈ (0, 1) and rT = T β2 for 0 < β2 < β1, which both tend to in-

finity as T →∞ as well as mT /T → 0 and rT /mT → 0. From equation (B.3) and Lemma B.3 the

time series {η(s, t), t ∈ [0,∞)} is α-mixing with mixing coefficients α(u) ≤ Cu2 exp{−θ2u
α/2}

for some positive constant C. Hence, by Lemma B.3, and temporal parameters (θ2, α2),

mT

∞∑
u=rT

α(u) ≤ CmT

∞∑
u=rT

u2e−θ2u
α2/2 ≤ CmT r

3
T e
−θ2r

α2
T /2

= CT β1+3β2 exp
{
− 1

2
θ2T

α2β2
}
→ 0, T →∞. (3.38)

In addition, for arbitrary ε > 0,

mT

rT∑
u=k

P (‖(η(s, t1+u), . . . , η(s, t1+u+p))‖ > εmT , ‖(η(s, t1), . . . , η(s, t1+p))‖ > εmT )

≤ mT

∞∑
u=k

u+p∑
i=u

p∑
j=0

P (η(s, t1+i) > εmT , η(s, t1+j) > εmT ) .
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By a time-wise version of (3.15) and the fact that P(η(s, tk) > mT ) ∼ m−1
T , it suffices to show

that the following sum is finite, which we estimate by

∞∑
u=k

u+p∑
i=u

p∑
j=0

2
(

1− Φ
(√

θ2|ti+1 − tj+1|α2
))

≤2
∞∑
u=k

p∑
i=0

p∑
j=0

exp

{
−θ2

2
|ti+1 − tj+1|α2

}
<∞,

where we use that 1 − Φ(x) ≤ exp{−x2/2} for x > 0. This establishes Condition (M) in Davis

and Mikosch [17]. As in equation (3.38), we get for mT = T β1 ,

T

mT
α(rT ) ≤ CT 1+2β2−β1 exp

{
− 1

2
θ2T

α2β2
}
→ 0, T →∞.

Furthermore, we need one of the following conditions:

(I) mT = o(T 1/3), which is satisfied if and only if β1 < 1/3; or

(II) mT r
3
T /T = T β1+3β2−1 → 0 as T →∞,

which in particular holds for β1 ∈ [1
3 , 1) and β2 ∈ (0,min{β1,

1
3(1− β1)}), and

m4
TT
−1
∑mT

u=rT
α(u) ≤ CT 4β1+3β2−1 exp

{
− θ2T

α2β2/2
}
→ 0 as T →∞,

which is satisfied for β1 ∈ [1/3, 1) and β2 < β1.

Remark 3.16. The following is the time-wise analogue of Remark 3.9, and gives the convergence

rate of the pre-asymptotic extremogram (3.37) to the extremogram. First note that the pre-

asymptotic extremogram has for u ∈ U the representation

χT (0, u) =
[
χ(0, u) +

1

2mT

(
χ(0, u)− 2

)(
χ(0, u)− 1

)]
(1 + o(1)), T →∞, (3.39)

which can, similarly as Lemma 3.6, be deduced from equation (A.4). Hence we have for u ∈ U ,( T

mT

)1/2(
χT (0, u)− χ(0, u)

)
∼
( T

mT

)1/2 1

2mT

[(
χ(0, u)− 2

)(
χ(0, u)− 1

)]
→ 0, T →∞

for mT = T β1 if and only if β1 > 1/3. Thus we have the two cases:

(I) For β1 ≤ 1/3 we cannot replace the pre-asymptotic extremogram with the theoretical version,

but can resort to a bias correction, which is described in (3.41) below.

(II) For 1/3 < β1 < 1 we obtain indeed(
T

mT

)1/2 (
χ̂(s)(0, u)− χ(0, u)

)
u∈U

d→ N (0,Π
(time)
1 ), T →∞. (3.40)
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We now turn to the bias correction needed in case (I) for asymptotic normality. Motivated by

equation (3.39), we propose for fixed s ∈ Sn and all u ∈ U the bias corrected empirical temporal

extremogram

χ̂(s)(0, u)− 1

2mT

(
χ̂(s)(0, u)− 2

)(
χ̂(s)(0, u)− 1

)
, s ∈ Sn,

and set

χ̃(s)(0, u) := (3.41)χ̂
(s)(0, u)− 1

2mT

(
χ̂(s)(0, u)− 2

)(
χ̂(s)(0, u)− 1

)
if mT = T β1 with β1 ∈ (1

5 ,
1
3 ],

χ̂(s)(0, u) if mT = T β1 with β1 ∈ (1
3 , 1).

(3.42)

We conclude this section by proving asymptotic normality of the bias corrected temporal

extremogram centred by the true one. The proof is analogous to that of Theorem 3.10 and shows

in particular why β1 needs to be larger than 1/5. The extension of the statement to spatial means

of extremograms follows in the same way as in Corollary 3.8 by using the vectorised process

{Y (t) : t ∈ [0,∞)} = {(η(s, t), . . . , η(s, t+ p))
ᵀ

s∈Sn : t ∈ [0,∞)}

and defining sets Du,k and Dk for u = 1, . . . , p and k = 1, . . . , n2 properly to extend the

covariance matrix. This leads to the statement in (3.44), where

Π
(time)
2 =(nµ((1,∞)))−4


1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

. . .

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1

F ′Σ′(F ′)ᵀ


1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

. . .

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1


ᵀ

, (3.43)

and F ′ and Σ′ are defined in a similar fashion as the matrices F and Σ in Corollary 3.8.

Theorem 3.17. For a fixed location s ∈ Sn consider the Brown-Resnick time series {η(s, t), t ∈ [0,∞)}
as defined in (3.1) with dependence function given in (3.2). Set mT = T β1 for β1 ∈

(
1/5, 1/3

]
.

Then the bias corrected empirical temporal extremogram (3.41) satisfies(
T

mT

)1/2 (
χ̃(s)(0, u)− χ(0, u)

)
u∈U

d→ N (0,Π
(time)
1 ), T →∞,

with covariance matrix Π
(time)
1 as in Theorem 3.15. Furthermore, the corresponding bias corrected
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version χ̃(0, u) = n−2
∑n2

i=1 χ̃
(si)(0, u) of (3.11) satisfies

(
T

mT

)1/2 ( 1

n2

n2∑
i=1

χ̃(si)(0, u)− χ(0, u)
)
u∈U

d→ N (0,Π
(time)
2 ), T →∞, (3.44)

with covariance matrix Π
(time)
2 specified in equation (3.43).

Remark 3.18. Note that in (3.40) the rate of convergence is of the order na for a ∈ (0, 1/3).

On the other hand, after bias correction in (3.44) we obtain convergence of the order na for

a ∈ [1/3, 2/5). Thus, the bias correction leads to better rates compared to those in Davis and

Mikosch [17], where no bias correction is applied.

3.3.4 Asymptotic properties of temporal parameter estimates

The asymptotic normality of the WLSE (θ̂2, α̂2) of Section 3.2 can be derived in exactly the

same way as for the spatial parameter estimates (θ̂1, α̂1). Accordingly, we define

yu := 2 log
(

Φ−1
(
1− 1

2
χ̃(0, u)

))
and xu := log(u), u ∈ U ,

where χ̃(0, u) = 1
n2

∑n2

i=1 χ̃
(si)(0, u) as in (3.11), possibly after a bias correction, which depends

on the two cases described in Remark 3.16. Then (3.13) reads as(
θ̂2

α̂2

)
= arg min

θ2,α2>0

α2∈(0,2]

∑
v∈V

wv
(
yv −

(
log(θ2) + α2xv

))2
(3.45)

We also define the design matrix X and weight matrix W as

X = [1, (xu)
ᵀ

u∈U ] ∈ Rp×2 and W = diag{wu : u ∈ U} ∈ Rp×p,

where 1 = (1, . . . , 1)
ᵀ ∈ Rp. We state asymptotic normality of the WLSE of the time parameters.

Theorem 3.19. Let ψ̂
c

2 = (log(θ̂c2), α̂c2)
ᵀ

denote the WLSE resulting from the constrained

minimisation problem in (3.45) and ψ∗2 = (log(θ∗2), α∗2)
ᵀ ∈ Ψ the true parameter vector. Set

mT = T β1 for β1 ∈ (1/5, 1). Then as T →∞,

(
T

mT

)1/2 (
ψ̂
c

2 −ψ∗2
)

d→

Z1 if α∗2 < 2,

Z2 if α∗2 = 2,
(3.46)

where Z1 ∼ N (0,Π
(time)
3 ), and the distribution of Z2 is given by

P (Z2 ∈ B) =

∫
B∩{(b1,b2)∈R2:b2<0}

ϕ
0,Π

(time)
3

(z1, z2)dz1dz2

+

∫ ∞
0

∫
{b1∈R:(b1,0)∈B}

ϕ
0,Π

(time)
3

(
z1 −

1∑
u∈U wu

∑
u∈U

wuxu z2, z2

)
dz1dz2 (3.47)
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3.4 Subsampling for confidence regions

for every Borel set B ⊂ R, and ϕ0,Σ denotes the bivariate normal density with mean vector

0 and covariance matrix Σ. In particular, the joint distribution function of Z2 is given for

(p1, p2)
ᵀ ∈ R2 by

P
(
Z2 ≤ (p1, p2)

ᵀ)
=

min{0,p2}∫
−∞

p1∫
−∞

ϕ
0,Π

(time)
3

(z1, z2)dz1dz2

+ 1{p2≥0}

∞∫
0

p1∫
−∞

ϕ
0,Π

(time)
3

(
z1 −

1∑
u∈U wu

∑
u∈U

(wuxu) z2, z2

)
dz1dz2. (3.48)

The covariance matrix of Z1 has representation

Π
(time)
3 = Q(w)

x GΠ
(time)
2 GQ(w)

x

ᵀ
, (3.49)

where Π
(time)
2 is the covariance matrix given in (3.43),

Q(w)
x = (X

ᵀ
WX)−1X

ᵀ
W and (3.50)

G = diag

{√
2π

θ∗2u
α∗2

exp
{
θ∗2u

α∗2/2
}
, u ∈ U

}
. (3.51)

3.4 Subsampling for confidence regions

Let {η(s, t) : s ∈ R2, t ∈ [0,∞)} be the isotropic Brown-Resnick process as in (3.1) with

dependence function δ given in (3.2); i.e.,

δ(v, u) = 2θ1v
α1 + 2θ2u

α2 , v, u ≥ 0,

for θ1, θ2 > 0 and α1, α2 ∈ (0, 2]. We assume to observe the process on a regular grid Sn =

{(i1, i2) : i1, i2 ∈ {1, . . . , n}} and at time points {t1, . . . , tT } = {1, . . . , T} as specified in Condi-

tion 3.4. The estimation methods based on the spatial and temporal extremograms described in

Sections 3.2 and 3.3 yield consistent estimators ψ̂
c

1 = (log(θ̂c1), α̂c1)
ᵀ

and ψ̂
c

2 = (log(θ̂c2), α̂c2)
ᵀ

of the

true spatial and temporal parameters ψ?1 = (log(θ?1), α?1)
ᵀ

and ψ?2 = (log(θ?2), α?2)
ᵀ
, respectively.

Furthermore, we have the limit theorems

τn

(
ψ̂
c

1 −ψ?1
)

d→ Z(1), n→∞, and τT

(
ψ̂
c

2 −ψ?2
)

d→ Z(2), T →∞,

where the bivariate distributions of Z(1) and Z(2) depend on the true parameter values α?1 and

α?2, respectively. The rates of convergence are given by τn := n
mn

and τT :=
√

T
mT

, where mn

and mT are appropriately chosen scaling sequences.

Due to the complicated forms of the covariance matrices of Z(1) and Z(2) (cf. Theorems 3.13

and 3.19) we use resampling methods to construct asymptotic confidence regions of the parame-

ter vectors ψ?1 and ψ?2. One appealing method is subsampling (see Politis et al. [56], Chapter 5),

since it works under weak regularity conditions asymptotically correct. The central assumption is
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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

the existence of weak limit laws, which is guaranteed by Theorems 3.13 and 3.19. In Section 3.4.1

we consider the spatial case, whereas Section 3.4.2 deals with the temporal case.

Subsampling is also successfully applied for confidence bounds of pairwise likelihood esti-

mates of the space-time Brown-Resnick process in Section 5.4. The procedure is as follows:

understanding inequalities between vectors componentwise, we choose block lengths (1, 1, 1) ≤
b = (bs, bs, bt) ≤ (n, n, T ) and the degree of overlap (1, 1, 1) ≤ e = (es, es, et) ≤ (bs, bs, bt), where

e = (1, 1, 1) corresponds to maximum overlap and e = b to no overlap. The blocks are indexed

by i = (i1, i2, i3) ∈ N3 with ij ≤ qs for qs := bn−bses
c+ 1 and j = 1, 2 and i3 ≤ qt := bT−btet

c+ 1.

This results in a total number of q = q2
sqt blocks, which we summarise in the sets

Ei,b,e =
{

(s1, s2, t) ∈ Sn × {1, . . . , T} :(ij − 1)es + 1 ≤ sj ≤ (ij − 1)es + bs for j = 1, 2;

(i3 − 1)et + 1 ≤ t ≤ (i3 − 1)et + bt
}
.

We estimate θ1, α1, θ2, α2 based on the observations in each block as described in the previous

sections. This yields different estimates for each spatial and temporal parameter, which we

denote by ψ̂
c

1,i and ψ̂
c

2,i, respectively.

3.4.1 Subsampling: the spatial parameters

Our first theorem below provides a basis for constructing asymptotically valid confidence inter-

vals for the true spatial parameters θ?1 and α?1. We define τbs as the analogue of τn = n/mn = n1−β

where β ∈ (1/5, 1/2); i.e., τbs := b1−βs (cf. Remark 3.9 and Theorem 3.10)

Theorem 3.20. Assume that the conditions of Theorem 3.13 hold and, as n→∞,

(i) bs →∞ such that bs = o(n) (hence, τbs/τn = (bs/n)1−β → 0),

(ii) e does not depend on n.

Define the empirical distribution function Lbs,s

Lbs,s(x) :=
1

q

qs∑
i1=1

qs∑
i2=1

qt∑
i3=1

1{τbs‖ψ̂
c
1,i−ψ̂

c
1‖≤x}, x ∈ R,

and the empirical quantile function

cbs,s(1− α) := inf {x ∈ R : Lbs,s(x) ≥ 1− α} , α ∈ (0, 1).

Then

P
(
τn‖ψ̂

c

1 −ψ?1‖ ≤ cbs,s(1− α)
)
→ 1− α, n→∞. (3.52)

Proof. We apply Corollary 5.3.4 of Politis et al. [56]. Their main Assumption 5.3.4 is the existence

of a weak limit distribution of τn‖ψ̂
c

1−ψ?1‖. By Theorem 3.13, the continuous mapping theorem
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3.4 Subsampling for confidence regions

and the Fubini-Tonelli theorem we have for γ ≥ 0, as n→∞,

P(τn‖ψ̂
c

1 −ψ?1‖ ≤ γ)→ P(‖Z1‖ ≤ γ) = P(Z1 ∈ B(0, γ)) = 2

γ∫
−γ

√
γ2−r2∫
0

ϕ
0,Π

(iso)
3

(r, s)dsdr

if α?1 < 2. For α?1 = 2 we obtain

P(τn‖ψ̂
c

1 −ψ?1‖ ≤ γ) → P(‖Z2‖ ≤ γ) = P(Z2 ∈ B(0, γ))

=

γ∫
−γ

0∫
−
√
γ2−r2

ϕ
0,Π

(iso)
3

(r, s)dsdr

+

γ∫
−γ

∞∫
0

ϕ
0,Π

(iso)
3

(r − 1∑
v∈V wv

∑
v∈V

(wvxv)s, s)dsdr

=

γ∫
−γ

{ 0∫
−
√
γ2−r2

ϕ
0,Π

(iso)
3

(r, s)ds+

∞∫
0

ϕ
0,Π

(iso)
3

(
r − 1∑

v∈V wv

∑
v∈V

(wvxv)s, s
)
ds

}
dr.

In particular, the limiting distribution function of the scaled norm τn‖ψ̂
c

1 − ψ?1‖ is continuous

in γ both for α?1 < 2 and α?1 = 2. Assumptions (i) and (ii) are also presumed in Politis et al.

[56]. The required condition on the α-mixing coefficients is satisfied, similarly as in the proof of

Theorem 3.7, by equation (B.2) and Lemma B.3, and the result follows.

As a consequence of equation (3.52), for n large enough, an approximate (1 − α)-confidence

region for the true parameter vector ψ?1 = (log(θ?1), α?1) is given by

{ψ ∈ R× (0, 2] : ‖ψ − ψ̂
c

1‖ ≤ cbs,s(1− α)/τn}.

The one-dimensional approximate (1−α)-confidence intervals for the parameters θ?1 and α?1 can

be read off from this as[
θ̂c1 exp

{
−
cbs,s(1− α)

τn

}
, θ̂c1 exp

{cbs,s(1− α)

τn

}]
and[

α̂c1 −
cbs,s(1− α)

τn
, α̂c1 +

cbs,s(1− α)

τn

]
∩ (0, 2].

3.4.2 Subsampling: the temporal parameters

The theorem below provides a basis for constructing asymptotically valid confidence intervals for

the true temporal parameters θ?2 and α?2. We define τbt as the analogue of τT =
√

T
mT

= T (1−β)/2

where β ∈ (1/5, 1); i.e., τbt := b
(1−β)/2
t (cf. Remark 3.16 and Theorem 3.17). The proof is

completely analogous to that of Theorem 3.20 for the spatial parameters.

Theorem 3.21. Assume that the conditions of Theorem 3.19 hold and, as T →∞,
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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

(i) bt →∞ such that bt = o(T ) (hence, τbt/τT = (bt/T )(1−β)/2 → 0),

(ii) e does not depend on T .

Define the empirical distribution function Lbt,t

Lbt,t(x) :=
1

q

qs∑
i1=1

qs∑
i2=1

qt∑
i3=1

1{τbt‖ψ̂
c
2,i−ψ̂

c
2‖≤x}, x ∈ R,

and the empirical quantile function

cbt,t(1− α) := inf {x ∈ R : Lbt,t(x) ≥ 1− α} , α ∈ (0, 1).

Then

P
(
τT ‖ψ̂

c

2 −ψ?2‖ ≤ cbt,t(1− α)
)
→ 1− α, n→∞. (3.53)

As a consequence of equation (3.53), for T large enough, an approximate (1 − α)-confidence

region for the true parameter vector ψ?2 = (log(θ?2), α?2) is given by

{ψ ∈ R× (0, 2] : ‖ψ − ψ̂
c

2‖ ≤ cbt,t(1− α)/τT }.

The one-dimensional approximate (1−α)-confidence intervals for the parameters θ?2 and α?2 can

be read off from this as[
θ̂c2 exp

{
−
cbt,t(1− α)

τT

}
, θ̂c2 exp

{cbt,t(1− α)

τT

}]
and[

α̂c2 −
cbt,t(1− α)

τT
, α̂c2 +

cbt,t(1− α)

τT

]
∩ (0, 2].

3.5 Simulation study

We examine the performance of the WLSEs by a simulation study. The estimation of the spatial

parameters relies on a rather large number of spatial observations and the estimation of the

temporal parameters on a rather large number of observed time points. However, simulation of

Brown-Resnick space-time processes based on the exact method proposed by Dombry et al. [28]

can be time consuming, if both a large number of spatial locations and of time points is taken.

For a time-saving method we generate the process on two different space-time observation areas,

one for examining the performance of the spatial estimates and one for the temporal ones, which

we call S(1) × T (1) and S(2) × T (2), respectively. The design for the simulation experiment is

given in more details as follows:

1. We choose two space-time observation areas

S(1) × T (1) = {(i1, i2) : i1, i2 ∈ {1, . . . , 70}} × {1, . . . , 10}

S(2) × T (2) = {(i1, i2) : i1, i2 ∈ {1, . . . , 5}} × {1, . . . , 300}
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3.5 Simulation study

and the sets V = {1,
√

2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

17} and U = {1, . . . , 10}.

2. We simulate the Brown-Resnick space-time process (3.1) based on the exact method pro-

posed in Dombry et al. [28], using the R-package RandomFields [60]. The dependence

function δ is modelled as in (3.2); i.e.,

δ(v, u) = 2θ1v
α1 + 2θ2u

α2 , v, u ≥ 0,

with parameters

θ1 = 0.4, α1 = 1.5, θ2 = 0.2, α2 = 1.

3. The parameters θ1, α1, θ2 and α2 are estimated.

• For the estimation of the empirical extremograms (cf. equations 3.8-3.11) we have to

choose high empirical quantiles q. In practice, q is chosen from an interval of high

quantiles for which the empirical extremogram is robust, see the remarks of Davis

et al. [21] after Theorem 2.1. We choose the 90%−empirical quantile for the estimation

of the spatial parameters and the 70%−quantile for the temporal part. The quantile

for the temporal part is lower to ensure reliable estimation of the extremogram, be-

cause the number of time points (300) used for the estimation of the time parameters

is much smaller than the number of spatial locations (70 · 70 = 4900) used for the

estimation of the spatial parameters.

• The weights in the constrained weighted linear regression problem (see 3.29 and 3.45)

are chosen such that locations and time points which are further apart of each other

have less influence on the estimation. More precisely, we choose

wu = exp{−u2} for u ∈ U and wv = exp{−v2} for v ∈ V.

This choice of weights reflects the exponential decay of χ(v, 0) and χ(0, u) defined in (3.6),

which are tail probabilities of the standard normal distribution Φ.

4. Pointwise confidence bounds are computed by subsampling as described in Sections 3.4.1

and 3.4.2. We choose block lengths b = (60, 60, 10) and overlap e = (2, 2, 2) for the space-

time process with observation area S(1) × T (1) and b = (5, 5, 200), e = (1, 1, 1) for the

process with observation area S(2) × T (2).

5. Steps 1 - 5 are repeated 100 times.

Figures 3.2 and 3.3 show the estimates of the spatial parameters (θ1, α1) and temporal pa-

rameters (θ2, α2) for each of the 100 realisations of the Brown-Resnick space-time process. The

dotted lines above and below the dots are pointwise confidence intervals based on subsampling.

Table 3.1 shows the mean, RMSE and MAE of the 100 simulations. Altogether, we observe that

the estimates are close to the true values. Moreover, the spatial confidence intervals are more

accurate than the temporal ones, which is due to the larger number of observations in space

than in time.
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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

We carried out the same simulations with α1 = 2 and α2 = 2 and obtained equally satisfying

results. The WLSEs are again very accurate and the upper bounds of the subsampling confidence

intervals are equal to 2, thus again containing the true value.

MEAN RMSE MAE

θ1 0.4033 0.0678 0.0559

α1 1.4984 0.0521 0.0400

θ2 0.2249 0.0649 0.0526

α2 0.9563 0.0939 0.0767

Table 3.1: Mean, root mean squared error and mean absolute error of the WLSE.

Figure 3.2: WLSEs of θ1 (left) and α1 (right) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%−subsampling confidence intervals (dotted). The middle solid
line is the true value and the middle dotted line represents the mean over all estimates.

Figure 3.3: WLSEs of θ2 (left) and α2 (right) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%−subsampling confidence intervals (dotted). The middle solid
line is the true value and the middle dotted line represents the mean over all estimates.

In her Chapter 6, Steinkohl [62] carries out a detailed simulation study with the goal to com-

pare the performance of the semiparametric estimation method with the pairwise likelihood

approach in finite samples. To summarise her findings, the WLSE is slightly more biased than

the pairwise likelihood estimator. This is due to the fact that the bias correction in the semipara-

metric estimation depends crucially on the chosen threshold as it applies only asymptotically. A
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3.6 Analysis of radar rainfall measurements

big advantage of the semiparametric method is the substantial reduction of computation time

by about a factor 15 compared to the pairwise likelihood estimation.

3.6 Analysis of radar rainfall measurements

Finally, we apply the Brown-Resnick space-time model in (3.1) and the WLSE to radar rainfall

data. The data were collected by the Southwest Florida Water Management District (SWFWMD)∗.

Our objective is to quantify the extremal behaviour of radar rainfall data in a region in Florida

by using spatial and temporal block maxima and fitting a Brown-Resnick space-time model to

the block maxima.

The data base consists of radar values in inches measured on a 120×120km region containing

3600 grid locations. We calculate the spatial and temporal maxima over subregions of size

10×10km and over 24 subsequent measurements of the corresponding hourly accumulated time

series in the wet season (June to September) from the years 1999-2004 for further analysis. In

this way we obtain 12 × 12 locations during 732 days containing space-time block maxima of

rainfall observations.

We denote the set of locations by S = {(i1, i2), i1, i2 ∈ {1, . . . , 12}} and the space-time ob-

servations by {η(s, t), s ∈ S, t ∈ {t1, . . . , t732}}. This setup is also considered in Section 5.5 and

Steinkohl [62], Chapter 7. To make the results obtained there comparable with the results here,

we use the data preprocessed as there and after the same marginal modelling steps; for a precise

description cf. Section 5.5.1. Since the data do not fail the max-stability check described in

Section 5.5.2, we assume that {η(s, t), s ∈ S, t ∈ {t1, . . . , t732}} are realisations of a max-stable

space-time process with standard unit Fréchet margins.

We then fit the Brown-Resnick model (3.1) by estimating the extremal dependence structure

(3.2) as follows:

1. We estimate the parameters θ1, α1, θ2 and α2 by WLSE as described in Section 3.2 based

on the sets V = {1,
√

2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

17} and U = {1, . . . , 10} for the linear

regression. Permutation tests as described below and visualised in Figure 3.6 indicate

that these lags are sufficient to cover the relevant extremal dependence structure. Since

the true extremogram χ is unknown, we choose as weights for the different spatial and

temporal lags v ∈ V and u ∈ U the corresponding estimated averaged extremogram values;

i.e., wv = T−1
∑T

k=1 χ̃
(tk)(v, 0) and wu = n−2

∑n2

i=1 χ̃
(si)(0, u), respectively. Since the so

defined weights are random, what follows is conditional on the realisations of these weights.

As the number of spatial points in the analysis is rather small, we cannot choose a very

high empirical quantile q, since this would in turn result in a too small number of ex-

ceedances to get a reliable estimate of the extremogram. Hence, we choose q as the em-

pirical 60%−quantile, relying on the fact that the block maxima generate a max-stable

process.

For the temporal estimation, we choose the empirical 90%−quantile for q.

∗http://www.swfwmd.state.fl.us/
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Chapter 3 Semiparametric estimation for isotropic max-stable space-time processes

2. We perform subsampling (see Section 3.4) to construct 95%-confidence intervals for each

parameter estimate. As subsample block sizes we choose bs = 12 (due to the small number

of spatial locations) and bt = 300. We further choose es = et = 1, which corresponds to

the maximum degree of overlap.

The results are shown in Figures 3.5, 3.6 and Table 3.2. Figure 3.4 visualises the daily rainfall

maxima for the two grid locations (1, 1) and (5, 6). The semiparametric estimates together with

subsampling confidence intervals are given in Table 3.2.

For comparison we present the parameter estimates from the pairwise likelihood estimation

(for details for the isotropic Brown-Resnick model see Davis et al. [19] and [62], Chapter 7),

where we obtained θ̃1 = 0.3485, α̃1 = 0.8858, θ̃2 = 2.4190 and α̃2 = 0.1973. From Table 3.2 we

recognize that these estimates are close to the semiparametric estimates and even lie in most

cases in the 95%-subsampling confidence intervals.

Figure 3.5 shows the spatial and temporal mean of empirical temporal (left) and spatial (right)

extremograms as described in (3.10) and (3.11) together with 95% subsampling confidence in-

tervals. We perform a permutation test to test the presence of extremal independence. To this

end we randomly permute the space-time data and calculate empirical extremograms as before.

More precisely, we compute the empirical temporal extremogram as before and repeat the proce-

dure 1000 times. From the resulting temporal extremogram sample we determine nonparametric

97.5% and 2.5% empirical quantiles, which gives a 95%−confidence region for temporal extremal

independence. The analogue procedure is performed for the spatial extremogram.

The results are shown in Figure 3.6 together with the extremogram fit based on the WLSE.

The plots indicate that for time lags larger than 3 there is no temporal extremal dependence,

and for spatial lags larger than 4 no spatial extremal dependence.

Estimate θ̂1 0.3611 α̂1 0.9876

Subsampling-CI [0.3472,0.3755] [0.9482,1.0267]

Estimate θ̂2 2.3650 α̂2 0.0818

Subsampling-CI [1.9110,2.7381] [0.0000,0.2680]

Table 3.2: Semiparametric estimates for the spatial parameters θ1 and α1 and the temporal parameters
θ2 and α2 of the Brown-Resnick process in (3.1) together with 95% subsampling confidence
intervals.
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3.6 Analysis of radar rainfall measurements

Figure 3.4: Daily rainfall maxima over hourly accumulated measurements from 1999-2004 in inches for
two grid locations.

Figure 3.5: Empirical spatial (left) and temporal (right) extremogram based on spatial and tempo-
ral means for the space-time observations as given in (3.10) and (3.11) together with
95%−subsampling confidence intervals.

Figure 3.6: Permutation test for extremal independence: The gray lines show the 97.5%− and
2.5%−quantiles of the extremogram estimates for 1000 random space-time permutations
for the empirical spatial (left) and the temporal (right) extremogram estimates.
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3.7 Conclusions and Outlook

For the isotropic Brown-Resnick space-time process with flexible dependence structure we have

suggested a new semiparametric estimation method, which works remarkably well in an extreme

value setting. The method results in quite reliable estimates, much faster than the composite

likelihood methods used so far. These estimates can also be used as initial values for a composite

likelihood optimisation routine to obtain more accurate estimates.

Future work will be dedicated to generalisations of the semiparametric method based on

extremogram estimation. At present we work on three topics:

1. Generalise the dependence function (3.2) to anisotropic and appropriate mixed models.

2. Generalise the sampling scheme to allow for a fixed (small) number of spatial observations

and consider limit results for the number of temporal observations to tend to infinity.

3. Generalise the least squares estimation to estimate spatial and temporal parameters si-

multaneously, also in the situation described in topic 2.

Another interesting question concerns the optimal choice of the weight matrix W , such that

the asymptotic variance of the WLSE is minimal. Some ideas can be found in the geostatistics

literature in the context of least squares estimation of the variogram parameters; see e.g. Lahiri

et al. [48], Section 4. They describe the situation, where the optimal choice of the weight matrix

is given by the inverse of the asymptotic covariance matrix of the nonparametric estimates; i.e.,

of
(
T−1

∑T
k=1 χ̃

(tk)(v, 0)
)ᵀ
v∈V in the spatial case and of

(
n−2

∑n2

i=1 χ̃
(si)(0, u) − χ(0, u)

)ᵀ
u∈U in

the temporal case. In our case, however, this involves the matrices Π
(iso)
2 and Π

(time)
2 (given in

(2.13)-(2.15)), whose components are infinite sums.
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Chapter 4

Generalised least squares estimation
of regularly varying space-time

processes based on flexible
observation schemes

Abstract

Regularly varying stochastic processes model extreme dependence between process values at

different locations and/or time points. For such processes we propose a two-step parameter

estimation of the extremogram, when some part of the domain of interest is fixed and another

increasing. We provide conditions for consistency and asymptotic normality of the empirical

extremogram centred by a pre-asymptotic version for such observation schemes. For max-stable

processes with Fréchet margins we provide conditions, such that the empirical extremogram (or a

bias-corrected version) centred by its true version is asymptotically normal. In a second step, for

a parametric extremogram model, we fit the parameters by generalised least squares estimation

and prove consistency and asymptotic normality of the estimates. We propose subsampling

procedures to obtain asymptotically correct confidence intervals. Finally, we apply our results

to a variety of Brown-Resnick processes. A simulation study shows that the procedure works

well also for moderate sample sizes.

AMS 2010 Subject Classifications: primary: 60F05, 60G70, 62F12, 62G32

secondary: 37A25, 62M30 62P12,

Keywords: Brown-Resnick process; extremogram; generalised least squares estimation; max-

stable process; observations schemes; regularly varying process; semiparametric estimation; space-

time process.
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4.1 Introduction

Max-stable processes and regularly varying processes have in recent years attracted attention as

time series models, spatial processes and space-time processes. Regularly varying processes have

been investigated in Hult and Lindskog [41, 40] and basic results on max-stable processes can

be found in de Haan and Ferreira [25]. Such processes provide a useful framework for modelling

and estimation of extremal events in their different settings.

Among the various regularly varying models considered in the literature, max-stable Brown-

Resnick processes play a prominent role allowing for flexible fractional variogram models as

often observed in environmental data. They have been introduced for time series in Brown and

Resnick [8], for spatial processes in Kabluchko et al. [47], and in a space-time setting in Davis

et al. [19].

For max-stable processes with parametrised dependence structure, various estimation proce-

dures have been proposed for extremal data. Composite likelihood methods have been described

in Padoan et al. [54] and Huser and Davison [43]. Threshold-based likelihood methods have been

proposed in Engelke et al. [34] and Wadsworth and Tawn [67]. For the max-stable Brown-Resnick

process asymptotic results of composite likelihood estimators are derived in Huser and Davison

[42], Davis et al. [20] and Chapter 5 of this thesis, which is based on the publication Buhl and

Klüppelberg [11].

Parameter estimation based on likelihood methods can be laborious and time consuming, and

also the choice of good initial values for the optimisation procedure is essential. As a consequence,

a semiparametric estimation procedure can be an alternative or a prerequisite for a subsequent

likelihood method. Such an estimation method has been suggested and analysed for Brown-

Resnick processes in Steinkohl [62] and Chapter 3 based on the extremogram, which is a natural

extremal analogue of the correlation function for stationary processes. The extremogram was

introduced for time series in Davis and Mikosch [17] and Fasen et al. [35], and extended to a

spatial setting in Cho et al. [15] and space-time setting in [62]. A semiparametric estimation

requires a parametric extremogram model. The parameter estimation is then based on the

empirical extremogram, and a subsequent least squares estimation of the parameters.

The processes considered in [15, 62] and in Chapters 2 and 3, which are based on the pub-

lications Buhl and Klüppelberg [12] and Buhl et al. [14], are isotropic Brown-Resnick spatial

or space-time processes associated to the class of fractional variogram models with additively

separable dependence function in the space-time case, cf. model (I) in Section 4.5.3 below.

The central goal of this chapter is to generalise the semiparametric method developed for the

spatially anisotropic Brown-Resnick process in Chapter 3 in various aspects. Firstly, we allow

for general regularly varying processes, thus leaving the max-stable models for those in their

domains of attraction. Secondly, whereas in Chapter 3 we carried out least squares estimation

of the spatial and temporal dependence parameters separately, we allow for a much larger class

of dependence models provided they satisfy certain regularity conditions. Thirdly, we develop

a generalised least squares estimation, which estimates all dependence parameter in one go.

Fourthly, we focus on extremogram estimation based on gridded data, but extend the observa-
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4.1 Introduction

tion scheme to a more realistic setting. In practice one often observes data on a d-dimensional

grid (d ∈ N) which is small with respect to some of its dimensions (e.g. the spatial dimensions)

and large with respect to others (e.g. the temporal dimensions). Hence, with regard to such

cases, instead of assuming that the grid increases in all dimensions, it is appropriate to assume

for example a number of observed time points which tends to infinity, but a fixed and rather

small number of observed spatial data. The extension to such observation schemes makes it

necessary to split up every point and every lag in its components corresponding to the fixed

and increasing domain. For a parametric extremogram model we derive asymptotic results of

its generalised least squares estimators which differ considerably from those obtained when the

grid increases in all dimensions. As a general result and not surprisingly, the fixed observation

terms are still part of the limits.

This chapter is organised as follows. In Section 4.2 we introduce the theoretical framework

of strictly stationary regularly varying processes. We define the extremogram, the observation

scheme with its fixed and increasing dimensions as well as assumptions and asymptotic second

order properties following from regular variation. Section 4.3 presents the empirical extremogram

and its pre-asymptotic version. Here we prove a CLT for the empirical extremogram centred by

the pre-asymptotic extremogram. We also specify the asymptotic covariance matrix. We prove

a CLT for the empirical extremogram centred by the true extremogram under more restrictive

assumptions. To formally state the asymptotic properties of the empirical extremogram, we need

to quantify the dependence in a stochastic process, taking into account the different types of

observation areas. For processes with Fréchet margins we prove asymptotic normality of the

empirical extremogram centred by the true one. In case the required conditions are not satisfied,

we provide weaker assumptions under which a CLT for a bias corrected version of the empirical

extremogram can be obtained. Section 4.4 is dedicated to the parameter estimation by a gener-

alised least squares method. Under appropriate regularity conditions we prove consistency and

asymptotic normality, where the rate of convergence depends on the observation scheme. We

also present the covariance matrix in a semi-explicit form. In Section 4.5 we show our method at

work for Brown-Resnick space-time processes. We state conditions for Brown-Resnick processes

that imply the mixing conditions from Section 4.3 and are hence sufficient to obtain the corre-

sponding CLTs for the empirical extremogram. These conditions depend highly on the model for

the associated variogram. Finally, in Section 4.5.3 we apply these results to three different depen-

dence models of the Brown-Resnick process, and prove the mixing conditions, which guarantee

the asymptotic normality of the empirical extremogram, as well as the regularity conditions of

the generalised least squares estimates. In Section 4.6 we examine the finite sample properties

of the GLSEs in a simulation study, fitting the parametric models described in Section 4.5.3 to

simulated Brown-Resnick processes. We apply subsampling methods to obtain asymptotically

valid confidence bounds of the parameters. Many proofs are rather technical and postponed to

an Appendix.
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Chapter 4 GLSE based on flexible observation schemes

4.2 Model description and the observation scheme

We consider the same theoretical framework as in Chapters 2 and 3 of a strictly stationary

regularly varying stochastic process {X(s) : s ∈ Rd} for d ∈ N, defined on a probability space

(Ω,F ,P). This implies that there exists some normalizing sequence 0 < an → ∞ such that

P(|X(0)| > an) ∼ n−d as n→∞ and that for every finite set I ⊂ Rd with cardinality |I| <∞,

ndP
(XI
an
∈ ·
)

v→ µI(·), n→∞, (4.1)

for some non-null Radon measure µI on the Borel sets in R|I|\{0}, where R = R ∪ {−∞,∞}
and XI denotes the vector (X(s) : s ∈ I). The limit measure is homogeneous:

µI(xC) = x−βµI(C), x > 0,

for every Borel set C ⊂ R|I|\{0}. The notation
v→ stands for vague convergence, and β >

0 is called the index of regular variation. Furthermore, f(n) ∼ g(n) as n → ∞ means that

limn→∞ f(n)/g(n) = 1. If I is a singleton; i.e., I = {s} for some s ∈ Rd, we set

µ{s}(·) = µ{0}(·) =: µ(·), (4.2)

which is justified by stationarity. For more details see Chapter 2. For background on regular

variation for stochastic processes and vectors see Hult and Lindskog [40, 41] and Resnick [57, 59].

The extremogram for values in Rd is defined as follows.

Definition 4.1 (Extremogram). Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying

process and an →∞ a sequence satisfying (4.1). For µ as in (4.2) and two µ-continuous Borel

sets A and B in R\{0} (i.e., µ(∂A) = µ(∂B) = 0) such that µ(A) > 0, the extremogram is

defined as

ρAB(h) = lim
n→∞

P(X(0)/an ∈ A,X(h)/an ∈ B)

P(X(0)/an ∈ A)
, h ∈ Rd. (4.3)

For A = B = (1,∞), the extremogram ρAB(h) is the tail dependence coefficient between X(0)

and X(h) (cf. Beirlant et al. [3], Section 9.5.1).

For the data we allow for realistic observation schemes described in the following.

Assumption 4.2. The data are given in an observation area Dn ⊂ Zd that can (possibly after

reordering) be decomposed into

Dn = F × In, (4.4)

where for q, w ∈ N satisfying w + q = d:

(1) F ⊂ Zq is a fixed domain independent of n, and

(2) In = {1, . . . , n}w is an increasing sequence of regular grids.
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4.2 Model description and the observation scheme

This setting is similar to that used in Li et al. [51], where asymptotic properties of space-time

covariance estimators are derived. The natural extension of the regular grid In to grids with

different side lengths only increases notational complexity, which we avoid here. Our focus is on

observations schemes, which are partially fixed and partially tend to infinity.

Example 4.3. In the special case where the observation area is given by

Dn = F × {1, . . . , n}

for F ⊂ Rd−1, we interpret the observations as generated by a space-time process {X(s, t) : s ∈
Rd−1, t ∈ [0,∞)} on a fixed spatial and an increasing temporal domain.

We shall need some definitions and assumptions, which we summarise as follows.

Assumption 4.4.

(1) For some fixed γ > 0 and 0, ` ∈ Rd we define the balls

B(0, γ) =
{
s ∈ Zd : ‖s‖ ≤ γ

}
and B(`, γ) =

{
s ∈ Zd : ‖`− s‖ ≤ γ

}
= `+B(0, γ).

(2) The estimation of the extremogram is based on a set H = {h(1), . . . ,h(p)} ⊂ Zd ∩ B(0, γ)

of observed lag vectors.

(3) We decompose points s ∈ Rd with respect to the fixed and increasing domains into s =

(f , i) ∈ Rq × Rw.

(4) Similarly, we decompose lag vectors h = s − s′ or ` = s − s′ for some s, s′ ∈ Rd into

h = (hF ,hI) or ` = (`F , `I) in Rq × Rw. The letter h is used throughout as argument of the

extremogram or its estimators.

(5) We define the vectorised process {Y (s) : s ∈ Rd} by

Y (s) := XB(s,γ);

i.e., Y (s) is the vector of values of X with indices in the ball B(s, γ).

(6) We shall also need the following relations, also stated in Chapter 2. For an → ∞ as in

(4.1), the following limits exist by regular variation of {X(s) : s ∈ Rd}. For ` ∈ Rd and γ > 0,

µB(0,γ)(C) := lim
n→∞

ndP(Y (0)/an ∈ C), (4.5)

τB(0,γ)×B(`,γ)(C ×D) := lim
n→∞

ndP
(Y (0)

an
∈ C, Y (`)

an
∈ D

)
, (4.6)

for a µB(0,γ)-continuous Borel set C in R|B(0,γ)|\{0} and a τB(0,γ)×B(`,γ)-continuous Borel set

C ×D in the product space.

(7) We define sets D1, . . . , Dp, Dp+1 by the identity

{Y (s) ∈ Di} = {X(s) ∈ A,X(s+ h(i)) ∈ B} (4.7)
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Chapter 4 GLSE based on flexible observation schemes

for i = 1, . . . , p, and {Y (s) ∈ Dp+1} = {X(s) ∈ A}. Note in particular that, by the relation

between {Y (s) : s ∈ Rd} and {X(s) : s ∈ Rd} and regular variation, for every µ-continuous

Borel set A in R \ {0},

µB(0,γ)(Dp+1) = lim
n→∞

ndP(Y (0)/an ∈ Dp+1) = lim
n→∞

ndP(X(0)/an ∈ A) = µ(A).

�

4.3 Limit theory for the empirical extremogram

We suppose that a strictly stationary regularly varying process {X(s) : s ∈ Rd} is observed as

in Assumption 4.2 and derive asymptotic properties of the empirical extremogram. We do this

by formulating appropriate mixing conditions, generalising the results obtained in Chapter 2 to

the more realistic setting of this paper. The proofs are based on spatial mixing conditions, which

have to be adapted to the decomposition into a fixed and an increasing observation domain. In

principle, our proofs rely on general results of Ibragimov and Linnik [45] and Bolthausen [6].

The main theorem of this section states asymptotic normality of the empirical extremogram

sampled at lag vectors h ∈ H and centred by its pre-asymptotic counterpart. The empirical and

the pre-asymptotic extremograms are defined in Eq. (4.9) and (4.10).

For the definition of the empirical extremogram we need the following notation: for k ∈ N, an

arbitrary set Z ⊂ Zk and a fixed vector h ∈ Zk, define the sets

Z(h) := {z ∈ Z : z + h ∈ Z}, (4.8)

which is the set of vectors z ∈ Z such that with z also the lagged vector z + h belongs to Z.

Definition 4.5. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process, which is

observed on Dn = F × In as in (4.4). Let A and B be µ-continuous Borel sets in R\{0} such

that µ(A) > 0. For a sequence m = mn → ∞ and mn = o(n) as n → ∞ define the following

quantities:

(1) The empirical extremogram

ρ̂AB,mn(h) :=

1

|Dn(h)|
∑

s∈Dn(h)

1{X(s)/am∈A,X(s+h)/am∈B}

1

|Dn|
∑
s∈Dn

1{X(s)/am∈A}

, h ∈ H. (4.9)

For a fixed data set the value am = amn has to be specified as a large empirical quantile.

(2) The pre-asymptotic extremogram

ρAB,mn(h) =
P (X(0)/am ∈ A,X(h)/am ∈ B)

P(X(0)/am ∈ A)
, h ∈ Rd. (4.10)
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4.3 Limit theory for the empirical extremogram

Key of the proofs of consistency and asymptotic normality of the empirical extremogram

below is the fact that ρ̂AB,mn(h) is the empirical version of the pre-asymptotic extremogram

ρAB,mn(h), which can in turn be viewed as a ratio of pre-asymptotic versions of µB(0,γ)(C(h))

(cf. Eq. (4.5)) for suitably chosen sets C(h) that depend on A and B. In particular, by (4.7),

for h ∈ B(0, γ),

P
(X(0)

am
∈ A, X(h)

am
∈ B

)
= P

(Y (0)

am
∈ C(h)

)
with C(h) implicitly defined by {Y (s) ∈ C(h)} = {X(s) ∈ A,X(s+ h) ∈ B} for s ∈ Rd. Note

that if h = h(i) ∈ H, then C(h) = Di, and if h = 0 and A = B then C(h) = Dp+1.

In view of (4.5), µB(0,γ)(C(h)) can be estimated by an empirical mean, where the estimator

has to cope with Assumption 4.2 of an observation area with fixed and increasing domain.

Definition 4.6. Assume the situation of Definition 4.5. Based on observations on Dn = F ×In
as in (4.4) decompose the observations s = (f , i) ∈ F ×In and the lags h = (hF ,hI) ∈ H as in

Assumption 4.4(3) and (4). For hF ∈ H define F(hF ) as in (4.8). Then an empirical version of

µB(0,γ)(C(h)) is for h ∈ H given by

µ̂B(0,γ),mn(C(h)) :=
md
n

nw

∑
i∈In

1

|F(hF )|
∑

f∈F(hF )

1{Y (f ,i)
am

∈C(h)}. (4.11)

�

Observe that for fixed hF ∈ Zq and observations on Dn = F × In there will be points

s = (f , i) ∈ F(hF ) × In with i near the boundary of In, such that not all components of the

vector Y (s) = Y (f , i) are observed. However, since we investigate asymptotic properties of

In whose boundary points are negligible, we can ignore such technical details. As will be seen

in the proofs below, for every h ∈ H, the empirical extremogram ρ̂AB,mn(h) is asymptotically

equivalent to the ratio of estimates µ̂B(0,γ),mn(C(h))/µ̂B(0,γ),mn(Dp+1).

Limit results for the empirical extremogram (4.9) involve the calculation of mean and variance

of µ̂B(0,γ),mn(C(h(i))) = µ̂B(0,γ),mn(Di) for h(i) ∈ H. Strict stationarity and Assumption 4.4(6)

yields immediately by a law of large numbers that E[µ̂B(0,γ),mn(Di)] → µB(0,γ)(Di) as n → ∞.

Calculation of the variance involves the covariance structure and we decompose as in Assump-

tion 4.4(4) h(i) into h(i) = (h
(i)
F ,h

(i)
I ) ∈ Rq × Rw. We have to calculate for f ,f ′ ∈ F(h

(i)
F ) and

i, i′ ∈ In,

Cov
[
1{Y (f ,i)

am
∈Di}

,1{Y (f ′,i′)
am

∈Di}

]
= Cov

[
1{Y (0)

am
∈Di}

,1{Y (`F ,`I)
am

∈Di}

]
with `F = f − f ′ and `I = i− i′, where the equality holds by stationarity. The lag vectors `F

and `I are contained in

L
(i)
F = {f − f ′ : f ∈ F(h

(i)
F ),f ′ ∈ F(h

(i)
F )} and Ln := {i− i′ : i, i′ ∈ In}, (4.12)
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respectively. The number of appearances of the lag `F we denote by

N
(i)
F (`F ) :=

∑
f ,f ′∈F(h

(i)
F )

1{f−f ′=`F}. (4.13)

Observe that a spatial lag (`F , `I) with `I = (`
(1)
I , . . . , `

(w)
I ) appears in L

(i)
F × Ln exactly

N
(i)
F (`F )

∏w
j=1(n− |`(j)I |) times. We show in Lemma C.2 that

Var
[
µ̂B(0,γ),mn(Di)

]
=

m2d
n

n2w|F(h
(i)
F )|2

Var
[ ∑
f∈F(h

(i)
F )

∑
i∈In

1{Y (f ,i)
am

∈Di}
]

=
m2d
n

n2w|F(h
(i)
F )|2

(
|F(h

(i)
F )|nwVar

[
1{Y (0)

am
∈Di}

]
(4.14)

+
∑

f ,f ′∈F(h
(i)
F )

∑
i,i′∈In

(f ,i)6=(f ′,i′)

Cov
[
1{Y (f ,i)

am
∈Di}

,1{Y (f ′,i′)
am

∈Di}

])

∼ md
n

nw
1

|F(h
(i)
F )|

(
µB(0,γ)(Di) +

∑
`I∈Zw

1

|F(h
(i)
F )|

∑
`F∈L

(i)
F

(`F ,`I)6=0

N
(i)
F (`F ) τB(0,γ)×B((`F ,`I),γ)(Di ×Di)

)

=:
md
n

nw
σ2
B(0,γ)(Di), n→∞. (4.15)

Remark 4.7. For comparison we recall the expression in the corresponding Lemma 2.12, where

F is not fixed, but part of the increasing regular grid. Then |F(h
(i)
F )| ∼ N

(i)
F (`F ) ∼ nq as n→∞,

such that (4.14) can be approximated as follows:

Var
[
µ̂B(0,γ),mn(Di)

]
∼ md

n

nwnq

(
µB(0,γ)(Di) +

∑
`I∈Zw

∑
`F∈Zq

(`F ,`I)6=0

τB(0,γ)×B((`F ,`I),γ)(Di ×Di)
)

=
(mn

n

)d(
µB(0,γ)(Di) +

∑
`∈Zd\{0}

τB(0,γ)×B(`,γ)(Di ×Di)
)
, n→∞.

Thus, the difference from the setting of a partly fixed observation area F ⊂ Dn is that the

fixed observation terms do not disappear asymptotically, but remain as constants in the limit

expression.

4.3.1 The extremogram for regularly varying processes

For proving asymptotic normality of the empirical extremogram we have to require appropriate

mixing conditions and make use of a large/small block argument as in Chapter 2. For sim-

plicity we assume that nw/md
n is an integer and subdivide Dn into nw/md

n non-overlapping

d-dimensional large blocks F × Bi for i = 1, . . . , nw/md
n, where the Bi are w-dimensional cubes

with side lengths m
d/w
n . From those large blocks we then cut off smaller blocks, which consist of

the first rn elements in each of the w increasing dimensions. The large blocks are then separated

(by these small blocks) with at least the distance rn in all w increasing dimensions and shown
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4.3 Limit theory for the empirical extremogram

to be asymptotically independent.

In order to formulate the CLT below, in particular, the asymptotic covariance matrix, we need

to compute Cov[µ̂B(0,γ),mn(Di), µ̂B(0,γ),mn(Dj)] for possibly different i, j ∈ {1, . . . , p}. To this

end we extend the notation (4.12) and (4.13) as follows. The lag vectors `F are contained in

L
(i,j)
F := {f − f ′ : f ∈ F(h

(i)
F ),f ′ ∈ F(h

(j)
F )}, (4.16)

and we denote the number of appearances of the lag vector `F by

N
(i,j)
F (`F ) :=

∑
f∈F(h

(i)
F )

∑
f ′∈F(h

(j)
F )

1{f−f ′=`F} (4.17)

If i = j, then we obtain again (4.12) and (4.13).

The asymptotic results stated in Theorem 4.8 below extend those in Theorem 2.6, where the

observation area Dn is assumed to increase with n in all dimensions. The decomposition (4.4)

into a fixed domain F and an increasing domain In results in mixing conditions which focus on

properties for In increasing to Zw, while F remains fix and appears in the limit, similarly as in

Eq. (4.14).

Theorem 4.8. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process, which is

observed on Dn = F × In as in (4.4). Let H = {h(1), . . . ,h(p)} ⊂ Zd ∩ B(0, γ) for some γ > 0

be a set of observed lag vectors. Suppose that the following conditions are satisfied.

(M1) {X(s) : s ∈ Rd} is α-mixing with respect to Rw with mixing coefficients αk1,k2(·) defined

in (C.1).

There exist sequences mn, rn →∞ with md
n/n

w → 0 and rwn /m
d
n → 0 as n→∞ such that:

(M2) m2d
n r

2w
n /nw → 0.

(M3) For all ε > 0, and for all fixed `F ∈ Rq with am = amn →∞ as in (4.1),

lim
k→∞

lim sup
n→∞

∑
`I∈Zw

k<‖`I‖≤rn

md
n P( max

s∈B(0,γ)
|X(s)| > εam, max

s′∈B((`F ,`I),γ)
|X(s′)| > εam) = 0.

(M4) (i) lim
n→∞

md
n

∑
`∈Zw:‖`‖>rn

α1,1(‖`‖) = 0,

(ii)
∑
`∈Zw

αk1,k2(‖`‖) <∞ for 2 ≤ k1 + k2 ≤ 4,

(iii) lim
n→∞

m
d/2
n nw/2 α1,nw(rn) = 0.

Then the empirical extremogram ρ̂AB,mn defined in (4.9), sampled at lags in H and centred by

the pre-asymptotic extremogram ρAB,mn given in (4.10), is asymptotically normal; i.e.,√
nw

md
n

[
ρ̂AB,mn(h(i))− ρAB,mn(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (4.18)
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where Π = µ(A)−4FΣF
ᵀ ∈ Rp×p. Writing h(i) = (h

(i)
F ,h

(i)
I ) for 1 ≤ i ≤ p+1, with the convention

that (h
(p+1)
F ,h

(p+1)
I ) = 0, the matrix Σ ∈ R(p+1)×(p+1) has components

Σii =
1

|F(h
(i)
F )|

µB(0,γ)(Di)

+
∑
`I∈Zw

1

|F(h
(i)
F )|2

∑
`F∈L

(i)
F

(`F ,`I)6=0

N
(i)
F (`F ) τB(0,γ)×B((`F ,`I),γ)(Di ×Di)

=:σB(0,γ)(Di)
2, 1 ≤ i ≤ p+ 1, (4.19)

Σij =
1

|F(h
(i)
F )||F(h

(j)
F )|

(
|F(h

(i)
F ) ∩ F(h

(j)
F )|µB(0,γ)(Di ∩Dj)

+
∑
`I∈Zw

∑
`F∈L

(i,j)
F

(`F ,`I)6=0

N
(i,j)
F (`F ) τB(0,γ)×B((`F ,`I),γ)(Di ×Dj)

)
, 1 ≤ i 6= j ≤ p+ 1. (4.20)

The matrix F consists of a diagonal matrix F1 and a vector F2 in the last column:

F = [F1, F2] with F1 = diag(µ(A)) ∈ Rp×p, F2 = (−µB(0,γ)(D1), . . . ,−µB(0,γ)(Dp))
ᵀ
.

Corollary 4.9. Assume the situation as in Theorem 4.8. Suppose that the following conditions

are satisfied.

(1) {X(s) : s ∈ Rd} is α-mixing with respect to Rw with mixing coefficients αk1,k2(z) defined in

(C.1).

(2) There exist sequences m := mn, r := rn →∞ with md
n/n

w → 0 and rwn /m
d
n → 0 as n→∞

such that (M3) and (M4i) hold.

Then, as n→∞,

ρ̂AB,mn(h(i))
P→ ρAB(h(i)), i = 1, . . . , p,

Proof. As in part II of the proof of Theorem 4.8 (cf. Appendix C.2), we find that for i = 1, . . . , p,

as n→∞,

ρ̂AB,mn(h(i)) ∼
µ̂B(0,γ),mn(Di)

µ̂B(0,γ),mn(Dp+1)

P→
µB(0,γ)(Di)

µB(0,γ)(Dp+1)
= ρAB(h(i)),

where the setsDi andDp+1 are defined in (4.7). Convergence in probability follows by Lemma C.2

and Slutzky’s theorem. The last identity holds by definitions (4.3) and (4.5), recalling that

µB(0,γ)(Dp+1) = µ(A) > 0.

Remark 4.10. (i) If the choice mn = nβ1 and rn = nβ2 with 0 < β2 < β1d/w < 1 satisfies

conditions (M3) and (M4), then for β1 ∈ (0, w/(2d)) and β2 ∈ (0,min{β1d/w; 1/2−β1d/w}) the

condition (M2) also holds and we obtain the CLT (4.18).

(ii) The pre-asymptotic extremogram (4.10) in the CLT (4.18) can be replaced by the true

one (4.3), if the pre-asymptotic extremogram converges to the true extremogram with the same
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convergence rate; i.e., if√
nw

md
n

[
ρAB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

→ 0, n→∞. (4.21)

4.3.2 The extremogram of processes with Fréchet marginal distributions

There are strictly stationary regularly varying processes for which (4.18) is satisfied, but (4.21)

does not hold. Theorem 4.11 below states a necessary and sufficient condition for max-stable

processes with Fréchet marginal distributions such that both (4.18) and (4.21) hold, yielding

the CLT (4.28) for the empirical extremogram (4.9) centred by the the true one (4.3). In case

this condition is not satisfied, Theorem 4.12 states conditions such that (4.28) holds for a bias

corrected version of the empirical extremogram.

Theorem 4.11 (CLT for processes with Fréchet margins). Let {X(s) : s ∈ Rd} be a strictly

stationary max-stable process with standard unit Fréchet margins, which is observed on Dn =

F × In as in (4.4). Let H = {h(1), . . . ,h(p)} ⊂ Zd ∩B(0, γ) for some γ > 0 be a set of observed

lag vectors. Suppose that conditions (M1)–(M4) of Theorem 4.8 hold for appropriately chosen

sequences mn, rn →∞. Let ρAB be the extremogram (4.3) and ρAB,mn the pre-asymptotic version

(4.10) for sets A = (a1, a2) and B = (b1, b2) with 0 < a1 < a2 ≤ ∞ and 0 < b1 < b2 ≤ ∞. Then

the limit relation (4.21) holds if and only if nw/m3d
n → 0 as n→∞. In this case we obtain√

nw

md
n

[
ρ̂AB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (4.22)

with Π specified in Theorem 4.8.

Proof. All finite-dimensional distributions are max-stable distributions with standard unit Fréchet

margins, hence they are multivariate regularly varying. Furthermore we can choose am = md
n in

Definition 4.1. Let V2(h; ·, ·) be the bivariate exponent measure defined by P(X(0) ≤ x1, X(h) ≤
x2) = exp{−V2(h;x1, x2)} for x1, x2 > 0, cf. Beirlant et al. [3], Section 8.2.2. From Lemma A.1(b)

we know that for h ∈ H and with V
2
2(h) := a1a2/(a2 − a1)(V 2

2 (h; a2, b2) + V 2
2 (h; a2, b1) +

V 2
2 (h; a1, b2) + V 2

2 (h; a1, b1)),

ρAB,mn(h) = (1 + o(1))
[
ρAB(h) +

1

2md
n

V
2
2(h)

]
, n→∞. (4.23)

If a2 = ∞ and/or b2 = ∞, appropriate adaptations need to be taken, which are described in

Lemma A.1. Hence, for h ∈ H,√
nw

md
n

(
ρAB,mn(h)− ρAB(h)

)
= (1 + o(1))

√
nw

m3d
n

V
2
2(h)

2
, n→∞,

which converges to 0 if and only if nw/m3d
n → 0.

If nw/m3d
n 6→ 0 in Theorem 4.11, a CLT centred by the true extremogram can still be obtained
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Chapter 4 GLSE based on flexible observation schemes

for a bias corrected empirical estimator. Eq. (4.23) is the basis for such a bias correction if the

sets A and B are given by A = (a,∞) and B = (b,∞) with a, b > 0. In that case we have

ρAB,mn(h) =(1 + o(1))
[
ρAB(h) +

1

2md
na

(
ρAB(h)− 2

a

b

)(
ρAB(h)− 1

)]
, n→∞; (4.24)

see Eq. (A.4).

An asymptotically bias corrected estimator is given by

ρ̂AB,mn(h)− 1

2md
na

(
ρ̂AB,mn

(
h)− 2

a

b

)(
ρ̂AB,mn(h)− 1

)
and we set, covering both cases,

ρ̃AB,mn(h) := (4.25)
ρ̂AB,mn(h)− 1

2md
na

(
ρ̂AB,mn(h)− 2ab

)(
ρ̂AB,mn(h)− 1

)
if nw/m3d

n 6→ 0 but nw/m5d
n → 0,

ρ̂AB,mn(h) if nw/m3d
n → 0.

Theorem 4.12 below guarantees asymptotic normality of the bias corrected extremogram for

an—according to Theorem 4.8—valid sequence mn satisfying nw/m5d
n → 0. The proof, which is

given in Appendix C.3, generalises that of Theorem 3.10, which covers the special case a = b = 1

for Brown-Resnick processes.

Theorem 4.12 (CLT for the bias corrected extremogram for processes with Fréchet margins).

Let {X(s) : s ∈ Rd} be a strictly stationary max-stable process with standard unit Fréchet

margins. Assume the situation of Theorem 4.11 for sets A = (a,∞) and B = (b,∞) with a, b > 0.

Then if and only if nw/m5d
n → 0, the bias corrected extremogram (4.25) is asymptotically normal;

i.e., √
nw

md
n

[
ρ̃AB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

d→ N (0,Π), (4.26)

where Π is specified in Theorem 4.8.

Remark 4.13. From Theorems 4.11 and 4.12 in relation to Remark 4.10 (i) we deduce two

cases:

(I) For w/(5d) < β1 ≤ w/(3d) we cannot replace the pre-asymptotic extremogram by the

theoretical version in (4.22), but can resort to a bias correction as described in (4.25) to obtain

n(w−β1d)/2
[
ρ̃AB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (4.27)

for sets A = (a,∞) and B = (b,∞) with covariance matrix Π specified in Theorem 4.8.

(II) For w/(3d) < β1 < w/(2d) we obtain indeed

n(w−β1d)/2
[
ρ̂AB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (4.28)
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4.4 Generalised least squares extremogram estimates

with covariance matrix Π specified in Theorem 4.8.

Observe that Remark 4.13 generalises Remark 3.9.

4.4 Generalised least squares extremogram estimates

Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process observed on Dn = F ×In
as in (4.4). In this section we fit parametric models to the empirical extremogram using least

squares techniques for the parameter estimation. Our approach and extremogram models extend

the weighted least squares estimation developed in Chapter 3 and Steinkohl [62] considerably.

In that work the isotropic space-time Brown-Resnick model (I) of Section 4.5.3 below has been

estimated by separation of space and time, which is possible for that model, but not for all

models of interest. In what follows we present generalised least squares approaches to fit general

parametric extremogram models taking the observation scheme Dn = F × In of a fixed and

an increasing domain into account. The approach bears some similarity to the semiparametric

variogram estimation in Lahiri et al. [48].

Our setting is as follows. Let {ρAB,θ(h) : h ∈ Rd,θ ∈ Θ} be some parametric extremogram

model with parameter space Θ and continuous in h ∈ Rd. Assume that ρAB(·) = ρAB,θ?(·) with

true parameter vector θ? ∈ Θ. Denote by ρ̂AB,mn(h) any of the estimators of Theorem 4.8,

Theorem 4.11, or Theorem 4.12 for the appropriately chosen µ-continuous Borel sets A and B

such that µ(A) > 0 and lags h ∈ H = {h(1), . . . ,h(p)}.
First note that under the much weaker conditions of Corollary 4.9 the empirical extremogram

is a consistent estimator of the extremogram such that as n→∞,

ρ̂AB,mn(h(i))
P→ ρAB,θ?(h

(i)), i = 1, . . . , p, (4.29)

Under more restrictive conditions given in the three CLTs above,√
nw

md
n

[
ρ̂AB,mn(h(i))− ρAB,θ?(h(i))

]
i=1,...,p

d→ N (0,Π), (4.30)

where Π is the covariance matrix specified in Theorem 4.8.

As we shall prove below, consistency of the empirical extremogram entails consistent gen-

eralised least squares parameter estimates, whereas asymptotic normality of the empirical ex-

tremogram entails asymptotically normal generalised least squares parameter estimates.

Definition 4.14 (Generalised least squares extremogram estimator (GLSE)). Let {X(s) : s ∈
Rd} be a strictly stationary regularly varying process, which is observed on Dn = F × In as in

(4.4). Let A and B be µ-continuous Borel sets in R\{0}. For a sequence m = mn → ∞ and

mn = o(n) as n→∞ define for θ ∈ Θ the column vector

ĝn(θ) :=
[
ρ̂AB,mn(h(i))− ρAB,θ(h(i))

]ᵀ
i=1,...,p. (4.31)
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For some positive definite weight matrix V (θ) ∈ Rp×p, the GLSE is defined as

θ̂n,V := arg min
θ∈Θ

{ĝn(θ)
ᵀ
V (θ)ĝn(θ)}. (4.32)

Assumption 4.15 presents a set of conditions, which imply consistency and asymptotic nor-

mality of the GLSE.

Assumption 4.15. Assume the situation of Definition 4.14. We shall require the following

conditions.

(G1) Consistency: ρ̂AB,mn(h(i))
P→ ρAB,θ?(h

(i)) as n→∞ for i = 1, . . . , p.

(G2) Asymptotic normality:

√
nw

md
n

ĝn(θ?)
d→ N (0,Π) as n→∞.

(G3) (i) Identifiability condition: For all ε > 0 there exists some δ > 0 such that

inf
{ p∑
i=1

(ρAB,θ1(h(i))− ρAB,θ2(h(i)))2 : θ(1),θ(2) ∈ Θ, ‖θ(1) − θ(2)‖ ≥ ε
}
> δ.

(ii)
p∑
i=1

(ρAB,θ1(h(i))− ρAB,θ2(h(i)))2 > 0, θ(1) 6= θ(2) ∈ Θ.

Note that (i) implies (ii).

(G4) Smoothness condition 1: For all i = 1, . . . , p:

(i) sup
θ∈Θ
{ρAB,θ(h(i))} <∞.

(ii) ρAB,θ(h(i)) has continuous partial derivatives of order z1 ≥ 0 w.r.t. θ, where z1 = 0

corresponds to ρAB,θ(h(i)) being continuous in θ.

(G5) Smoothness condition 2:

(i) sup
θ∈Θ
{‖V (θ)‖M + ‖V (θ)−1‖M} <∞, where ‖ · ‖M is some arbitrary matrix norm.

(ii) The matrix valued function V (θ) has continuous derivatives of order z2 ≥ 0 w.r.t.

θ, where z2 = 0 corresponds to V (θ) being continuous in θ.

(G6) Rank condition: For θ = (θ1, . . . , θk) ∈ Θ ⊂ Rk we set

• ρ(`)
AB,θ(h(i)) := ∂

∂θ`
ρAB,θ(h(i)) for 1 ≤ i ≤ p, 1 ≤ ` ≤ k.

• ρ(`)
AB(θ) := (ρ

(`)
AB,θ(h(i)) : i = 1, . . . , p)

ᵀ
for 1 ≤ ` ≤ k.

• Denote by PAB(θ) the Jacobian matrix of (−ρAB,θ(h(1)), . . . ,−ρAB,θ(h(p)))
ᵀ
; i.e.,

PAB(θ) = (−ρ(1)
AB(θ), . . . ,−ρ(k)

AB(θ)) ∈ Rp×k. (4.33)

The Jacobi matrix has full rank: rank(PAB(θ?)) = k. �

The proof of the next theorem can be found in Appendix C.4.
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4.5 Estimation of Brown-Resnick space-time processes

Theorem 4.16 (Consistency and asymptotic normality of the GLSE). Assume the situation of

Definition 4.14. If Assumption 4.15(G1) and (G3) hold as well as (G4) and (G5) for z1 = z2 = 0,

respectively, then the GLSE is consistent; i.e.,

θ̂n,V
P→ θ?, n→∞. (4.34)

If Assumption 4.15(G2) and (G3) hold as well as (G4) and (G5) for z1 = z2 = 1, respectively,

and the rank condition (G6) holds, then the GLSE is asymptotically normal; i.e.,√
nw

md
n

(θ̂n,V − θ?)
d→ N (0,ΠV ), n→∞, (4.35)

with asymptotic covariance matrix

ΠV = B(θ?)PAB(θ?)
ᵀ
[V (θ?) + V (θ?)

ᵀ
] Π [V (θ?) + V (θ?)

ᵀ
]PAB(θ?)B(θ?),

where B(θ?) :=
(
PAB(θ?)

ᵀ
[V (θ?) + V (θ?)

ᵀ
]PAB(θ?)

)−1
and Π is the asymptotic covariance

matrix in Eq. (4.30).

Remark 4.17. The quality of the GLSE depends on the matrix V (θ). Simple choices for the

matrix V (θ) in (4.32) are the identity matrix, leading to the ordinary least squares estimator,

or some general weight matrix, leading to weighted least squares estimators.

An asymptotically optimal matrix V (θ) can be obtained as follows. Let Π = Π(θ?) be the

asymptotic covariance matrix of the empirical extremogram in Eq. (4.30). Assume that Π(θ?)

can be extended to a matrix function Π(θ) on the whole parameter space Θ and that Π(θ) is

invertible for all θ ∈ Θ. Assume also that V (θ) = Π−1(θ) satisfies the Assumption 4.15(G5) for

z2 = 1. Then, as pointed out in Lahiri et al. [48], Theorem 4.1, for spatial variogram estimators

and in Einmahl et al. [31], Corollary 2.3, for extreme parameter estimation based on iid random

vector observations, the resulting asymptotic covariance matrix ΠV = ΠV (θ?) of the GLSE in

(4.35) is asymptotically optimal among all valid matrices V ′ = V ′(θ). This means that ΠV is

minimal in the sense that for all valid matrices V ′, the difference ΠV ′−ΠV is positive semidefinite.

4.5 Estimation of Brown-Resnick space-time processes

4.5.1 Brown-Resnick processes

We consider a strictly stationary Brown-Resnick process with representation

η(s) =
∞∨
j=1

{
ξj e

Wj(s)−δ(s)
}
, s ∈ Rd, (4.36)

where {ξj : j ∈ N} are points of a Poisson process on [0,∞) with intensity ξ−2dξ, the dependence

function δ is nonnegative and conditionally negative definite, and {Wj(s) : s ∈ Rd} are indepen-

dent replicates of a Gaussian process {W (s) : s ∈ Rd} with stationary increments, W (0) = 0,
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Chapter 4 GLSE based on flexible observation schemes

E[W (s)] = 0 and covariance function

Cov[W (s(1)),W (s(2))] = δ(s(1)) + δ(s(2))− δ(s(1) − s(2)).

Representation (4.36) goes back to de Haan [24] and Giné, Hahn, and Vatan [39]. The univariate

margins of the process η follow standard unit Fréchet distributions. Non-stationary Brown-

Resnick models have recently been discussed and fitted to data by Engelke et al. [34] and Asadi

et al. [2].

There are various quantities to describe the dependence in (4.36), where explicit expressions

can be derived:

• In geostatistics, the dependence function δ is termed the semivariogram of the process {W (s) :

s ∈ Rd} based on the fact that for s(1), s(2) ∈ Rd,

Var[W (s(1))−W (s(2))] = 2δ(s(1) − s(2)).

• For h ∈ Rd, the tail dependence coefficient is given by (see e.g. Davis, Klüppelberg, and

Steinkohl [19], Section 3)

ρ(1,∞)(1,∞)(h) = lim
n→∞

P
(
η(h) > n

∣∣∣ η(0) > n
)

= 2
(

1− Φ
(√δ(h)

2

))
, (4.37)

where Φ denotes the standard normal distribution function.

• For D = {s(1), . . . , s(|D|)} and y = (y1, . . . , y|D|) > 0 the finite-dimensional margins are given

by

P(η(s(1)) ≤ y1, η(s(2)) ≤ y2, · · · , η(s(|D|)) ≤ y|D|) = exp{−VD(y)}. (4.38)

Here VD denotes the exponent measure (cf. Beirlant et al. [3], Section 8.2.2), which is homoge-

neous of order -1 and depends solely on the dependence function δ. For D = {s, s+h} where

s ∈ Rd and h ∈ Rd is some fixed lag vector, we get (cf. Davis et al. [19], Section 3)

V2(y1, y2) = V2(h; y1, y2) = VD(y1, y2) =
1

y1
Φ̃
(y2

y1

)
+

1

y2
Φ̃
(y1

y2

)
, y1, y2 > 0, (4.39)

with

Φ̃
(x
y

)
= Φ̃

(
h;
x

y

)
:= Φ

( log(x/y)√
2δ(h)

+

√
δ(h)

2

)
, x, y > 0. (4.40)

• For h ∈ Rd and sets A = (a1, a2) and B = (b1, b2) with 0 < a1 < a2 ≤ ∞ and 0 < b1 < b2 ≤ ∞,

the extremogram (4.3) is given by (see Eq. (A.1))

ρAB(h) =
a1a2

a2 − a1

(
− V2(a2, b2) + V2(a2, b1) + V2(a1, b2)− V2(a1, b1)

)
(4.41)
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for V2 as in (4.39). For A = (a,∞) and B = (b,∞) we get formula (31) of Cho et al. [15]:

ρAB(h) = a
{1

a

(
1− Φ̃

( b
a

))
+

1

b

(
1− Φ̃

(a
b

))}
. (4.42)

• The extremal coefficient ξD (see [3], Section 8.2.7) for any finite set D ⊂ Rd is defined as

P(η(s(1)) ≤ y, η(s(2)) ≤ y, · · · , η(s(|D|)) ≤ y) = exp{−ξD/y}, y > 0;

i.e., ξD = VD(1, . . . , 1). If |D| = 2 and h = s(1) − s(2), then

ξD = 2− ρ(1,∞)(1,∞)(h) = 2Φ
(√δ(h)

2

)
, (4.43)

where the first identity holds in general (cf. Beirlant et al. [3], Section 9.5.1), and the last one

by (4.37).

Our aim is to fit a parametric extremogram model of a Brown-Resnick process (4.36) based

on observations given in Dn = F × In as in (4.4). This approach is semiparametric in the sense

that we first compute (possibly bias corrected) empirical estimates (4.25) of the extremogram

ρAB(h) for different h ∈ H, and fit a parametric model ρAB,θ(h) by GLSE to the empirical

extremogram. For sets A = B = (a,∞) with a > 0, this yields an estimator of the dependence

function, since by (4.40) and (4.42) there is a one-to-one relation between extremogram and

dependence function.

4.5.2 Asymptotic properties of the empirical extremogram of a Brown-Resnick
process

Let {η(s) : s ∈ Rd} be a strictly stationary Brown-Resnick process as in (4.36) with some valid

(i.e., nonnegative and conditionally negative definite) dependence function δ. Before investigating

the asymptotic properties of the GLSE, we state sufficient conditions for δ so that the regularity

conditions of Theorem 4.8 are satisfied.

Theorem 4.18. Let {η(s) : s ∈ Rd} be a strictly stationary Brown-Resnick process as in (4.36),

observed on Dn = F × In as in (4.4). Let H = {h(1), . . . ,h(p)} ⊂ Zd ∩ B(0, γ) for some γ > 0

be a set of observed lag vectors. Assume sequences

mn, rn →∞, md
n/n

w → 0, rwn /m
d
n → 0, m2d

n r
2w
n /nw → 0, n→∞. (4.44)

Writing u = (uF ,uI) ∈ Rq × Rw according to the fixed and increasing domains, assume that

the dependence function δ satisfies for arbitrary fixed finite set L ⊂ Zq :

(A) md
n

∑
z>rn

zw−1 exp
{
− 1

4 inf
u∈L×Zw:‖uI‖≥z

δ(u)
}
→ 0 as n→∞.

(B) m
d/2
n n(3w)/2 exp

{
− 1

4 inf
u∈L×Zw:‖uI‖>rn

δ(u)
}
→ 0 as n→∞.
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Then conditions (M1)-(M4) of Theorem 4.8 are satisfied, and the empirical extremogram ρ̂AB,mn

defined in (4.9) sampled at lags in H and centred by the pre-asymptotic extremogram ρAB,mn

given in (4.10), is asymptotically normal; i.e.,√
nw

md
n

[
ρ̂AB,mn(h(i))− ρAB,mn(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (4.45)

where the covariance matrix Π is specified in Theorem 4.8.

Proof. First note that, since all finite-dimensional distributions are max-stable distributions with

standard unit Fréchet margins, they are multivariate regularly varying. We first show (M3). Let

ε > 0 and fix `F ∈ Rq. For γ > 0 define the set

Lγ(`F , `I) := {s1 − s2 : s1 ∈ B(0, γ), s2 ∈ B((`F , `I), γ)}.

Note that, writing s1 = (f1, i1) and s2 = (f2, i2) ∈ Rq × Rw according to the fixed and

increasing domains as before, it can be decomposed into Lγ(`F , `I) = L
(1)
γ × L

(2)
γ (`I) where

L
(1)
γ := {f1 − f2 : s1 ∈ B((0,0), γ), s2 ∈ B((`F ,0), γ)}, which is independent of `I , and

L
(2)
γ := {i1 − i2 : s1 ∈ B((0,0), γ), s2 ∈ B((`F , `I), γ)}. Then, recalling that am = md

n, and

using a second order Taylor expansion as in the proof of Theorem 3.7, we have as n→∞,

P( max
s∈B(0,γ)

η(s) > εam, max
s′∈B((`F ,`I),γ)

η(s′) > εam)

≤
∑

s∈B(0,γ)

∑
s′∈B((`F ,`I),γ)

P(η(s) > εmd
n, η(s′) > εmd

n)

=
∑

s∈B(0,γ)

∑
s′∈B((`F ,`I),γ)

(
1− 2 exp

{
− 1

εmd
n

}
+ exp

{
− 2

εmd
n

Φ
(√δ(s− s′)

2

)})
≤2|B(0, γ)|2

εmd
n

(
1− Φ

((1

2
inf

u∈Lγ(`F ,`I)
δ(u)

)1/2))
+O

( 1

m2d
n

)
.

Therefore,

lim sup
n→∞

∑
`I∈Zw

k<‖`I‖≤rn

md
nP( max

s∈B(0,γ)
η(s) > εam, max

s′∈B((`F ,`I),γ)
η(s′) > εam)

≤2|B(0, γ)|2 lim sup
n→∞

∑
`I∈Zw

k<‖`I‖≤rn

{1

ε

(
1− Φ

((1

2
inf

u∈Lγ(`F ,`I)
δ(u)

)1/2))
+O

( 1

md
n

)}
.

Since the number of grid points in Zw with norm z = ‖`I‖ is of order O(zw−1), there exists a

positive constant C such that the right hand side can be bounded from above by

2C|B(0, γ)|2 lim sup
n→∞

∑
k<z≤rn

{zw−1

ε

(
1− Φ

((1

2
inf

u∈Lγ(`F ,`I):`I∈Zw,‖`I‖=z
δ(u)

)1/2))
+O

(zw−1

md
n

)}
≤ 2C|B(0, γ)|2

ε
lim sup
n→∞

∑
k<z<∞

{
zw−1

(
exp

{
− 1

4
inf

u∈Lγ(`F ,`I):`I∈Zw,‖`I‖=z
δ(u)

})}
+O

( rwn
md
n

)
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≤ 2C|B(0, γ)|2

ε
lim sup
n→∞

∑
k<z<∞

{
zw−1

(
exp

{
− 1

4
inf

u∈L(1)
γ ×Zw:‖uI‖≥z−γ

δ(u)
})}

+O
( rwn
md
n

)
,

where we have used in the second last step that 1 − Φ(x) ≤ exp{−x2/2} for x > 0 and in the

last step the decomposition Lγ(`F , `I) = L
(1)
γ ×L(2)

γ (`I). By condition (A), since we can neglect

the constant γ, we have

lim
k→∞

∑
k<z<∞

zw−1 exp
{
− 1

4
inf

u∈L(1)
γ ×Zw:‖uI‖≥z−γ

δ(u)
}

= 0.

Together with rwn = o(md
n) as n→∞, this implies that

lim
k→∞

lim sup
n→∞

∑
k<z≤rn

{
zw−1

(
exp

{
− 1

4
inf

u∈L(1)
γ ×Zw:‖uI‖≥z−γ

δ(u)
})}

+O
( rwn
md
n

)
= 0.

Next we prove (M1) and (M4i)-(M4iii). To this end we bound the α-mixing coefficients αk1,k2(·)
for k1, k2 ∈ N of {η(s) : s ∈ Rd} with respect to Rw, which are defined in (C.2). Observe that

d(Λ1,Λ2) for sets Λi ⊂ Zw as in Definition C.1 can only get large within the increasing domain.

Define the set

LF := {s1 − s2 : s1, s2 ∈ F}.

We use Eq. (4.43), as well as Dombry and Eyi-Minko [27], Eq. (3) and Corollary 2.2 to obtain

αk1,k2(z) ≤ 2 sup
d(Λ1,Λ2)≥z

∑
s1∈F×Λ1

∑
s2∈F×Λ2

ρ(1,∞)(1,∞)(s1 − s2)

≤ 2k1k2|F|2 sup
u∈LF×Zw:‖uI‖≥z

ρ(1,∞)(1,∞)(u)

= 4k1k2|F|2
(

1− Φ
((1

2
inf

u∈LF×Zw:‖uI‖≥z
δ(u)

) 1
2
))

≤ 4k1k2|F|2 exp
{
− 1

4
inf

u∈LF×Zw:‖uI‖≥z
δ(u)

}
. (4.46)

By condition (A) we have αk1,k2(z)→ 0, since necessarily inf
u∈LF×Zw:‖uI‖≥z

δ(u)→∞ as z →∞

and, therefore, the process {η(s) : s ∈ Rd} is α-mixing; i.e., (M1) holds. We continue by

estimating

md
n

∑
`∈Zw:‖`‖>rn

α1,1(‖`‖) ≤ Cmd
n

∑
z>rn

zw−1α1,1(z)

≤ 4C|F|2md
n

∑
z>rn

zw−1 exp
{
− 1

4
inf

u∈LF×Zw:‖uI‖≥z
δ(u)

}
→ 0, n→∞,

by condition (A). This shows (M4i). Similarly, it can be shown that (M4ii) holds, if (A) is

satisfied. Finally, we show (M4iii). Using Eq. (4.46), we find

md/2
n nw/2α1,nw(rn) ≤ 4md/2

n n(3w)/2 exp
{
− 1

4
inf

u∈LF×Zw:‖uI‖≥rn
δ(u)

}
→ 0
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as n→∞ because of condition (B).

The following is an immediate corollary of Theorem 4.18.

Corollary 4.19. Assume the situation as in Theorem 4.18. Suppose that the dependence func-

tion δ satisfies for some positive constants C and α and for an arbitrary norm ‖ · ‖ on Rw (that

possibly differs from that considered in Theorem 4.18),

δ(u) ≥ C‖uI‖α (4.47)

for every u = (uF ,uI) ∈ L×Zw, where L ⊂ Zq is arbitrary, but fixed. In particular, δ(u)→∞
if ‖uI‖ → ∞. With mn = nβ1 and rn = nβ2 with β1 ∈ (0, w/(2d)) and β2 ∈ min{β1d/w; 1/2 −
β1d/w}, the conditions of Theorem 4.18 are satisfied for {η(s) : s ∈ Rd} and we conclude

n(w−dβ1)/2
[
ρ̂AB,mn(h(i))− ρAB,mn(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞. (4.48)

Proof. Due to equivalence of norms on Rw we will make no difference between the norm in (4.47)

and the one used in Theorem 4.18. Clearly the sequences mn and rn satisfy the requirements

mn, rn →∞, md
n/n

w → 0, rwn /m
d
n → 0 and m2d

n r
2w
n /nw → 0 as n→∞. We have for z > 0,

exp
{
− 1

4
inf

u∈L×Zw:‖uI‖>z
δ(u)

}
≤ exp

{
− 1

4
inf

u∈L×Zw:‖uI‖>z
C‖uI‖α

}
≤ exp

{
− Czα

4

}
.

Condition (B) of Theorem 4.18 is satisfied since

n(β1d)/2n(3w)/2 exp
{
− Crαn

4

}
= n(β1d)/2n(3w)/2 exp

{
− Cnβ2α

4

}
= exp

{
− Cnβ2α

4
+
β1d+ 3w

2
log(n)

}
→ 0

as n → ∞. Condition (A) holds since by Lemma B.3, there is a positive constant K such that

for sufficiently large n such that the sequence zw−1 exp{−Czα/4} is monotonously decreasing

for z ≥ rn,

md
n

∑
z>rn

zw−1 exp
{
− Czα

4

}
≤ Kmd

nr
w
n exp

{
− Crαn

4

}
= K exp

{
− Cnβ2α

4
+ (β1d+ β2w) log(n)

}
→ 0.

With the particular choice of sequences mn = nβ1 and rn = nβ2 given in Corollary 4.19, we are

in the setting of Remark 4.13. Hence, in addition to the CLT (4.48), we obtain the CLT (4.28)

of the empirical extremogram centred by the true one and the CLT (4.27) corresponding to the

bias corrected estimator.
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4.5.3 Space-time Brown-Resnick processes: different models for the extremogram

We explore the semiparametric estimation for strictly stationary Brown-Resnick processes in

their space-time form {η(s, t) : s ∈ Rd−1, t ∈ [0,∞)}. For three classes of parametric models for

the dependence function δθ we prove that the GLSE is consistent and asymptotically normal.

Note that by Eq. (4.42) every model {δθ : θ ∈ Θ} for the dependence function yields a model

{ρAB,θ : θ ∈ Θ} for its space-time extremogram. Moreover, the extremogram (4.42) is always of

the same form, and only Φ̃ in (4.40) changes with the model. We consider three different model

classes, which together cover a large field of environmental applications such as the modelling

of extreme precipitation (cf. [11], [14], [19], [23] and Chapters 3 and 5), extreme wind speed

(cf. [34]) or extremes on river networks (cf. [2]), provided they are valid (i.e., nonnegative and

conditionally negative definite) dependence functions in the considered metric.

(I) Fractional space-time model.

Davis et al. [19] introduce the spatially isotropic model

δθ(h, u) = C1‖h‖α1 + C2|u|α2 , (h, u) ∈ Rd, (4.49)

with parameter vector

θ ∈ {(C1, C2, α1, α2) : C1, C2 ∈ (0,∞), α1, α2 ∈ (0, 2]} .

The isotropy assumption, where (4.49) depends on the norm of the spatial lag h, can be relaxed

in a natural way by introducing geometric anisotropy. We only discuss the case d − 1 = 2, but

the approach is easily transferable to higher dimensions. Let ϕ ∈ [0, π/2) be a rotation angle

and R = R(ϕ) a rotation matrix, and T a dilution matrix with c > 0; more precisely,

R =

(
cosϕ − sinϕ

sinϕ cosϕ

)
and T =

(
1 0

0 c

)
.

The geometrically anisotropic model is then given by

δ̃
θ̃
(h, u) = δθ(Ah, u), (h, u) ∈ Rd (4.50)

where A = TR is the transformation matrix. The parameter vector of the transformed model is

θ̃ ∈ {(C1, C2, α1, α2, c, ϕ) : C1, C2 ∈ (0,∞), α1, α2 ∈ (0, 2], c > 0, ϕ ∈ [0, π/2)} .

For more details about geometric anisotropy see [19], Section 4.2, Blanchet and Davison [4],

Section 4.2, or Engelke et al. [34], Section 5.2.

(II) Spatial anisotropy along orthogonal spatial directions
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In Chapter 5 we generalise the fractional isotropic model (4.49) to

δθ(h, u) =

d−1∑
j=1

Cj |hj |αj + Cd|u|αd , (h, u) ∈ Rd (4.51)

with parameter vector

θ ∈ {(Cj , αj , j = 1, . . . , d) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d} .

It is more flexible than the isotropic model (I) as it allows for different rates of decay of extreme

dependence along the axes of a d-dimensional spatial grid. Arbitrary principal orthogonal di-

rections can be introduced by a rotation matrix R as introduced for the isotropic model in (I),

here described for the case d− 1 = 2:

δ̃
θ̃
(h, u) = C1|h1 cosϕ− h2 sinϕ|α1 + C2|h1 sinϕ+ h2 cosϕ|α2 + C3|u|α3 , (h, u) ∈ R3. (4.52)

The new parameter vector is

θ̃ ∈ {(C1, C2, C3, α1, α2, α3, ϕ) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, 2, 3, ϕ ∈ [0, π/2)} .

In Chapter 5 this model is applied to extreme precipitation in Florida and, according to a

specifically developed goodness-of-fit method, performs extremely well.

(III) Time-shifted Brown-Resnick processes

With the goal to allow for some influence of the spatial dependence from previous values of the

process we time-shift the Gaussian processes in the definition of the Brown-Resnick model (4.36).

For τ = (τ1, τ2) ∈ Rd−1 define

W (τ )(s, t) := W (s− tτ , t).

Then {W (τ )(s, t) : (s, t) ∈ Rd−1, t ∈ [0,∞)} is also a centred Gaussian process starting in 0

with stationary increments: for (s(1), t(1)), (s(2), t(2)) ∈ Rd−1 × [0,∞), because of the stationary

increments of {W (s, t)}, where
d
= stands for equality in distribution,

W (τ )(s(1), t(1))−W (τ )(s(1), t(1))
d
= W (s(1) − s(2) − (t(1) − t(2))τ , t(1) − t(2))

= W (τ )(s(1) − s(2), t(1) − t(2)),

The corresponding time-shifted dependence function is given by

δ(τ )(s, t) :=
1

2
Var[W (τ )(s, t)−W (τ )(0, 0)] =

1

2
Var[W (s− tτ , t)−W (0, 0)] = δ(s− tτ, t),

which yields the covariance function

Cov[W (τ )(s(1), t(1)),W (τ )(s(2), t(2))] =
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δ(τ )(s(1), t(1)) + δ(τ )(s(2), t(2))− δ(τ )(s(1) − s(2), t(1) − t(2)).

By Theorem 10 of Kabluchko et al. [47] the process

η(τ )(s, t) :=
∞∨
i=1

ξie
W

(τ)
i (s,t)−δ(τ)(s,t) = η(s− tτ , t), (s, t) ∈ Rd−1 × [0,∞), (4.53)

defines a strictly stationary space-time Brown-Resnick process.

This method does not depend on the specific dependence function: every Brown-Resnick

process {η(s, t) : (s, t) ∈ Rd−1, t ∈ [0,∞)} with dependence function {δθ,θ ∈ Θ} results in a

time-shifted Brown-Resnick process with dependence function {δ(τ )
θ ,θ ∈ Θ, τ ∈ Rd−1}. To give

an example, for the Brown-Resnick process (II) without rotation, the parametrised time-shifted

dependence function is given by

δ
(τ )
θ (h, u) =

d−1∑
i=1

Ci|hi − uτi|αi + Cd|u|αd , (h, u) ∈ Rd (4.54)

with parameter vector

(θ, τ ) ∈ {(Cj , αj , j = 1, . . . , d) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d} × Rd−1.

This model is somewhat motivated by the time-shifted moving maxima Brown-Resnick process

introduced by Embrechts et al. [33], it is however much simpler to analyse and to estimate.

In the following we show that models (I)-(III) satisfy Assumption 4.15 and the conditions of

Theorem 4.16 and Corollary 4.19.

Asymptotic properties of models (I)-(III)

As before, we assume space-time observations on Dn = S×T = (S×T )(n), where S ⊂ Zd−1 are

the spatial and T ⊂ Z the time series observations. Moreover, we assume that they decompose

into Dn = F × In, where F ⊂ Zq is some fixed domain and In = {1, . . . , n}w is a sequence of

regular grids, and q + w = d.

For two points (s(1), t(1)) and (s(2), t(2)) ∈ Rd−1 × [0,∞), we denote by (h, u) = (s(1), t(1)) −
(s(2), t(2)) ∈ Rd their space-time lag vector. Furthermore, we choose Borel sets A = B = (a,∞)

for some a > 0. We denote by ρ̂AB,mn(h, u) the (possibly bias-corrected) empirical space-time

extremogram (4.25), sampled at lags in H ⊂ Rd, and by θ̂n,V the GLSE (4.32), referring to some

positive definite weight matrix V .

To show consistency and asymptotic normality of the corresponding GLSE, we need to ver-

ify the assumptions required in Theorem 4.16; i.e. the relevant parts of Assumption 4.15. Note

that Corollary 4.19 applies for all models, since they all satisfy δθ(h, u) ≥ C|u|α for C > 0

and α ∈ (0, 2]. Thus we obtain the CLTs of the empirical extremogram centred by the pre-

asymptotic extremogram (4.48), centred by the true one (4.22) and of the bias corrected empir-

ical extremogram centred by the true one (4.27). Hence (G1) and (G2) hold for the empirical
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extremogram. Furthermore, we assume that the parameter space Θ ⊂ Rk, which contains the

true parameter θ?, is a compact subset of the spaces introduced above for the corresponding

models.

The following requirements concern the model-independent assumptions.

• In order to determine the GLSE we need to choose a matrix V (θ) for θ ∈ Θ, and we take

one, which satisfies condition (G5ii) with z2 = 1. Due to compactness of the parameter space

Θ, condition (G5i) is therefore automatically satisfied.

• We require that |H| ≥ k, such that the rank condition (G6) can be satisfied.

Next we discuss the model-dependent assumptions. First note that the smoothness condition

(G4ii) is satisfied for z1 = 0 for all models {ρAB,θ(·)} (equivalently {δθ(·)}). Due to compactness

of the parameter space, condition (G4i) is therefore automatically satisfied. Besides it suffices

to show condition (G3ii) in order to verify identifiability of the models. Condition (G3ii) is

satisfied for models (I)-(III) if for two distinct parameter vectors θ(1) 6= θ(2) there is at least

one (h, u) ∈ H such that ρAB,θ(1)(h, u) 6= ρAB,θ(2)(h, u). This holds due to the power function

structure of the models. For the geometric anisotropic model in (I) we need to exclude c = 1 to

ensure identifiability of the angle ϕ; however, if c = 1 then ϕ has no influence on the dependence

function and can be neglected. Thus, the GLSEs are consistent according to Theorem 4.16.

We now turn to the CLT (4.35), where it remains to show (G4ii) for z1 = 1. Difficulties arise

due to norms and absolute values of certain parameters in the model equations:

• In their basic forms without rotation or dilution, models (I) and (II) are infinitely often

continuously partially differentiable in the model parameters. Hence asymptotic normality of

the GLSEs follows by Theorem 4.16.

• If rotation and/or dilution parameters are included, continuous partial differentiability still

holds under the following restrictions: Let α1 (for model (I)) or α1, . . . , αd−1 (for model (II)) be

the spatial smoothness parameters. Since they are the powers of some norm or absolute value,

restricting them to values in [1, 2] makes the models continuously partially differentiable. As

to model (II), in the case d − 1 = 2, one of the parameters α1 and α2 being larger than 1 is

already sufficient. To see this, recall that the spatial part of the dependence function is given

by

C1|h1 cosϕ− h2 sinϕ|α1 + C2|h1 sinϕ+ h2 cosϕ|α2 , (h1, h2) ∈ R2.

Assume w.l.o.g that α2 > 1. Then critical values of ϕ ∈ [0, π/2) are the roots of h1 cosϕ −
h2 sinϕ. Given a value h2 ∈ R we need to choose h1 ∈ R such that h1 6= h2 tanϕ for all

ϕ ∈ [0, π/2). Since tanϕ > 0 for ϕ ∈ [0, π2), we can choose h1 such that sgn(h1) = −sgn(h2).

If all lags (h1, h2, u) ∈ H are chosen such that (h1, h2) have opposite signs (or, trivially, are

equal to (0, 0)) and if rank(PAB(θ?)) = k, then the GLSE is asymptotically normal.

• Model (III) is continuous partially differentiable, if the spatial smoothness parameters αi for

i = 1, . . . , d − 1 are all larger than 1. If αi ≤ 1 for some i, then the term Ci|hi − uτi|αi is,

as a function of τi, not differentiable at τi = hi/u ∈ R. However, it is possible to restrict the

parameter space such that such equalities do not occur.
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4.6 Simulation study

Specifications

Consider the framework of Section 4.5.3. In particular, let {η(s, t) : s ∈ R2, t ∈ [0,∞)} be a

strictly stationary space-time Brown-Resnick process (4.36) observed on Dn = F × In. Denote

by ρ̂AB,mn(h, u) the space-time version of the (possibly bias corrected) empirical extremogram

given in (4.25), sampled at lags in H ⊂ Rd, where H is specified below and we choose the sets

A = B = (1,∞). As already indicated in its Definition 4.5(1), the computation involves the

practical issue of choosing the value amn = mn =: q as a large quantile, where the first equality

is due to the standard unit Fréchet distribution of the marginals of the Brown-Resnick model, so

that q should be chosen as a large quantile of the standard unit Fréchet distribution. In a data

example it should be chosen from a set Q of large empirical quantiles of {η(s, t) : (s, t) ∈ Dn}
for which the empirical extremograms ρ̂AB,q(h, u), are robust; cf. also Davis et al. [21] after their

Theorem 2.1

In order to test the small sample performance of the GLSE θ̂n,V defined in (4.32), we consider

some of the models (I)-(III) for the dependence function δθ. For the simulations we use the

R-package RandomFields [60] and the exact method via extremal functions proposed in Dombry

et al. [28], Section 2.

(i) Spatially isotropic fractional space-time model

We generate 100 realisations from the model (4.49) on a grid of size 15x15x300. This corresponds

to the situation of a fixed spatial and an increasing temporal observation area; i.e., it is given

by Dn = F × In with F = {1, . . . , 15}2 and In = {1, . . . , 300}. We simulate the model with the

true parameter vector

θ?1 = (0.8, 0.4, 1.5, 1),

which we assume to lie in a compact subset of

Θ1 = {(C1, C2, α1, α2) : C1, C2 ∈ (0,∞), α1, α2 ∈ (0, 2]} .

As the large empirical quantile q we take the 96%-quantile of {η(s, t) : (s, t) ∈ Dn}.

(ii) Geometrically anisotropic fractional space-time model

We generate 100 realisations from model (4.50) on a grid of size 15x15x300. This corresponds

to the same situation as in (i). We simulate the model with the true parameter vector

θ?2 = (0.8, 0.4, 1.5, 0.5, 3, π/4),

which we assume to lie in a compact subset of

Θ2 = {(C1, C2, α1, α2, c, ϕ) : C1, C2 ∈ (0,∞), α1 ∈ [1, 2], α2 ∈ (0, 2], c > 0, ϕ ∈ [0, π/2)} ,

where we choose α1 ≥ 1 to ensure differentiability of the model, cf. the discussion in Section 4.5.3.

As the large empirical quantile q we take the 97%-quantile of {η(s, t) : (s, t) ∈ Dn}.
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(iii) Spatially anisotropic time-shifted model

We generate 100 realisations from model (4.54) on a grid of size 40x40x40, and consider this as

a situation where the observation area increases in all dimensions; i.e., it is given by Dn = In
with In = {1, . . . , 40}3. We simulate the model with the true parameter vector

θ?3 = (0.4, 0.8, 0.5, 1.5, 1.5, 1, 1, 1),

which we assume to lie in a compact subset of

Θ3 = {(C1, C2, C3, α1, α2, α3, τ1, τ2) : Cj ∈ (0,∞), α1, α2 ∈ [1, 2], α3 ∈ (0, 2], τj ∈ R} ,

where we choose α1, α2 ≥ 1 to ensure differentiability of the model, cf. the discussion in Sec-

tion 4.5.3. As the large empirical quantile q we take the 95%-quantile of {η(s, t) : (s, t) ∈ Dn}.
�

In all three settings we base the estimation on the set H of lags given by

H = {(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0), (2, 1, 0), (4, 2, 0),

(1, 2, 0), (2, 4, 0), (1, 1, 1), (2, 2, 2), (1, 3, 2)}.

With this choice we ensure that the lag vectors vary in all three dimensions so that we obtain

reliable estimates. Generally one should choose H such that the whole range of clear extremal

dependence is covered. However, beyond that, no lags should be included for the estimation,

since independence effects can introduce a bias in the least squares estimates, similarly as in

pairwise likelihood estimation; cf. Section 5.5.3. One way to determine the range of extremal

dependence are permutation tests, which are described in Section 3.6. From those tests we know

that our choice of lags satisfies this requirement for all three models.

For the weight matrix V in (4.32) we propose two choices, which yield equally good results

in our statistical analysis. The first choice is V1 = diag{exp(−‖(h, u)‖2) : (h, u) ∈ H}, which

reflects the exponential decay of the tail dependence coefficients ρ(1,∞)(1,∞)(h, u) of Brown-

Resnick processes given by tail probabilities of the standard normal distribution. The second

choice is to include the (possibly bias corrected) empirical extremogram estimates as in V2 =

diag{ρ̂(1,∞)(1,∞),q(h, u) : (h, u) ∈ H}. Since the so defined weight matrix is random, what follows

is conditional on its realisation. It is in practice not possible to incorporate the asymptotic

covariance matrix Π of the empirical extremogram estimates (ρ̂(1,∞)(1,∞),q(h, u) : (h, u) ∈ H)

(cf. Remark 4.17) to obtain a weight matrix that is optimal in theory. As can be seen from its

specification in Theorem 4.8, it contains infinite sums and is, hence, numerically hardly tractable.

Results

For each of the scenarios (i)-(iii) we report the mean, the root mean squared error (RMSE) and

the mean absolute error (MAE) of the resulting GLSEs for the 100 simulations. The results are

summarised in Tables 4.1-4.3. Furthermore, in Figures 4.1-4.3 we plot the parameter estimates
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and add 95%-confidence bounds found by subsampling; cf. Politis et al. [56], Chapter 5. We

use subsampling methods, since the asymptotic covariance matrix ΠV specified in Theorem 4.16

contains the matrix Π as specified in Theorem 4.8, which is, as explained above, hardly tractable.

The fact that subsampling yields asymptotically valid confidence intervals for the true parameter

vectors θ?i for i = 1, 2, 3 can be proved analogously to the proof of Theorem 3.20 based on

Corollary 5.3.4 of [56]. It requires mainly the existence of continuous limit distributions of√
nw/md

n‖(θ̂n,V − θ?i )‖, which are guaranteed by Theorem 4.32, and some conditions on the

α-mixing coefficients, which can be shown similarly as those required in Theorem 4.8.

TRUE MEAN RMSE MAE

Ĉ1 0.8 0.7856 0.1763 0.1353

Ĉ2 0.4 0.3987 0.0995 0.0785

α̂1 1.5 1.4830 0.1131 0.0897

α̂2 1 0.9916 0.0820 0.0625

Table 4.1: True parameter values (first column) and mean, RMSE and MAE of the estimates of the
parameters of model (i).

TRUE MEAN RMSE MAE

Ĉ1 0.8 0.7270 0.335 0.2750

Ĉ2 0.4 0.3708 0.1377 0.1097

α̂1 1.5 1.4349 0.2692 0.2274

α̂2 0.5 0.5143 0.0684 0.0491

ĉ 3 2.9441 0.2645 0.1365

ϕ̂ π/4 0.7906 0.1567 0.1214

Table 4.2: True parameter values (first column) and mean, RMSE and MAE of the estimates of the
parameters of model (ii).

TRUE MEAN RMSE MAE

Ĉ1 0.4 0.4072 0.0898 0.0690

Ĉ2 0.8 0.8482 0.2187 0.1667

Ĉ3 0.5 0.5003 0.1366 0.1085

α̂1 1.5 1.5144 0.0781 0.0594

α̂2 1.5 1.5043 0.1282 0.1054

α̂3 1 0.9694 0.1415 0.1082

τ̂1 1 1.0459 0.1250 0.0945

τ̂2 1 0.9916 0.0420 0.0320

Table 4.3: True parameter values (first column) and mean, RMSE and MAE of the estimates of the
parameters of model (iii).

Summary

Summarising our results, we find that the GLSE estimates the model parameters very accurately.

Bias and variance are largest for the parameter estimates of model (ii). There are two main

reasons for this. Compared to model (i), for model (ii) we estimate two more parameters based

on the same observation scheme. However, one is a direction, which to estimate is a non-trivial
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Figure 4.1: GLSEs of the parameters of model (i) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%-subsampling confidence intervals (dotted). First row: C1, α1,
second row: C2, α2. The middle solid line is the true parameter value and the middle dotted
line represents the mean over all estimates.
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Figure 4.2: GLSEs of the parameters of model (ii) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%-subsampling confidence intervals (dotted). First row: C1, α1,
middle row: C2, α2, last row: ϕ and c. The middle solid line is the true value and the middle
dotted line represents the mean over all estimates.
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4.6 Simulation study

task and decreases the overall quality of the estimates. For the estimation of model (iii) the

observation scheme is different; in particular, there is a relatively large number of both spatial

and temporal observations available. In contrast, in the setting of models (i) and (ii) only the

number of temporal observations is large.

It is obvious from Tables 4.1 and 4.2 that bias and variance of the spatial parameter estimates

Ĉ1 and α̂1 are considerably larger than bias and variance of the temporal parameter estimates

Ĉ2 and α̂2. Again this is due to the fact that only the number of temporal observations is large.

From Table 4.3 we read off that the variance of the estimates Ĉ1 and α̂1, which correspond

to the first spatial dimension, are considerably smaller than those of Ĉ2 and α̂2. This is due to

the lag vectors we included in the set H, which show more variation with respect to the first

dimension than with respect to the second.

Compared to likelihood-based methods computation time of semiparametric estimation is

substantially lower. This is also found in Section 3.5, and Steinkohl [62], Chapter 6, however,

for a much simpler model, where simple least squares estimation applied.
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Figure 4.3: GLSEs of the parameters of model (iii) for 100 simulated Brown-Resnick space-time pro-
cesses together with pointwise 95%-subsampling confidence intervals (dotted). First row:
C1, α1, second row: C2, α2, third row: C3, α3, fourth row: τ1, τ2. The middle solid line is
the true value and the middle dotted line represents the mean over all estimates.
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Chapter 5

Anisotropic Brown-Resnick
space-time processes: estimation

and model assessment

Abstract

Spatially isotropic max-stable processes have been used to model extreme spatial or space-time

observations. One prominent model is the Brown-Resnick process, which has been successfully

fitted to time series, spatial data and space-time data. This chapter extends the process to pos-

sibly anisotropic spatial structures. For regular grid observations we prove strong consistency

and asymptotic normality of pairwise maximum likelihood estimates for fixed and increasing

spatial domain, when the number of observations in time tends to infinity. We also present a

statistical test for isotropy versus anisotropy. We apply our test to precipitation data in Florida,

and present some diagnostic tools for model assessment. Finally, we present a method to predict

conditional probability fields and apply it to the data.

AMS 2010 Subject Classifications: primary: 62G32, 62M40, 62P12; secondary: 62F05, 62F12

Keywords: anisotropic space-time process; Brown-Resnick space-time process; hypothesis test

for spatial isotropy; max-stable process; max-stable model check; pairwise likelihood; pairwise

maximum likelihood estimate

5.1 Introduction

Max-stable processes, such as the Brown-Resnick process, have been successfully fitted to time

series, spatial and recently to space-time data. Methods for inference include pairwise likelihood

based on the bivariate density of the models (cf. Padoan et al. [54]), censored likelihood (cf.

Wadsworth and Tawn [67]) or threshold-based approaches (cf. Engelke et al. [34]). In Davis

et al. [20] a spatially isotropic Brown-Resnick space-time process is suggested and applied to
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Chapter 5 Anisotropic Brown-Resnick space-time processes: estimation and model assessment

precipitation data. Pairwise maximum likelihood estimates are shown to be strongly consistent

and asymptotically normal, provided the domain of observations increases jointly in space and

time. Their approach is restricted to isotropic spatial dependence.

In the present chapter we generalise the Brown-Resnick model to allow anisotropy in space.

The new model allows for different extremal behaviour along orthogonal spatial directions.

Anisotropy is often observed on Earth, for example in Middle Europe with its westerly winds

or near the equator where trade winds involve predominant easterlies. All dependence parame-

ters are summarised in the semivariogram of an underlying Gaussian space-time process. This

semivariogram then defines the dependence structure of the max-stable process and, as a con-

sequence, the tail dependence coefficient between two process values evaluated at two location

and two time points.

Furthermore, since in real world applications, observations are often recorded over a large

number of time points, but only at a comparably small number of spatial locations, we consider

both a fixed and increasing spatial domain in combination with an increasing temporal domain.

For both settings, fixed and increasing spatial domain, we prove strong consistency and asymp-

totic normality of the pairwise maximum likelihood estimates in the anisotropic model based on

regular grid observations. This requires in particular to prove space-time and temporal mixing

conditions in both settings for the anisotropic model.

We also provide tests for isotropy versus anisotropy again in both settings, which are designed

for the new model. The asymptotic normality of the parameter estimates determines in principle

the rejection areas of the test. However, the covariance matrices of the normal limit laws are

not available in closed form. We formulate a subsampling procedure in the terminology of the

Brown-Resnick space-time process and prove its convergence for fixed and increasing spatial

domain.

We conclude with an analysis of space-time block maxima of radar rainfall measurements in

Florida. Firstly, we present a simple procedure to test whether they originate from a max-stable

process. As this cannot be rejected, we fit the Brown-Resnick space-time model to the data,

using pairwise maximum likelihood estimation. Subsequently we apply the new isotropy test.

Both the estimation and the test are based on the setting of a fixed spatial domain and increasing

time series. In particular, since the Brown-Resnick space-time process satisfies the strong mixing

conditions for increasing spatial and time domain as well as for fixed spatial and increasing time

domain, the estimation and test procedure are independent of the specific setting: it works in

both settings in exactly the same way, taking the different asymptotic covariance matrices into

account. Finally, we assess the goodness of fit of the estimated model by a simulation diagnostics

based on a large number of i.i.d. simulated anisotropic Brown-Resnick space-time processes. As a

result, there is no statistical significance that the anisotropic Brown-Resnick space-time process

with the fitted parameters should be rejected.

This chapter is organised as follows. In Section 5.2 we present the Brown-Resnick space-time

model, which allows for anisotropic effects in space, and various dependence measures, includ-

ing the parameterised dependence function. In Section 5.3 we compute the pairwise maximum

likelihood estimates for the new model and prove their strong consistency and asymptotic nor-
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mality for both settings, fixed and increasing spatial domain. Section 5.4 presents hypothesis

tests for spatial isotropy and derives rejection areas based on a subsampling procedure. A data

analysis is performed in Section 5.5 with focus on model assessment. The isotropy test rejects

spatial isotropy for these data in favour of our new anisotropic model. Based on two other test

procedures, we conclude that the anisotropic Brown-Resnick space-time process with the given

dependence parameters is an appropriate model for the block-maxima data. We conclude by

predicting conditional probability fields, which give the probability of a high value (for example

of the amount of precipitation) at some space-time location given a high value at some other

location.

5.2 Spatially anisotropic Brown-Resnick processes

Throughout the chapter we consider a stationary Brown-Resnick space-time process with repre-

sentation

η(s, t) =
∞∨
j=1

{
ξj e

Wj(s,t)−δ(s,t)
}
, (s, t) ∈ Rd × [0,∞), (5.1)

where {ξj : j ∈ N} are points of a Poisson process on [0,∞) with intensity ξ−2dξ, the dependence

function δ is nonnegative and conditionally negative definite and {Wj(s, t) : s ∈ Rd, t ∈ [0,∞)}
are independent replicates of a Gaussian process

{W (s, t) : s ∈ Rd, t ∈ [0,∞)} with stationary increments, W (0, 0) = 0, E[W (s, t)] = 0 and

covariance function

Cov[W (s(1), t(1)),W (s(2), t(2))] = δ(s(1), t(1)) + δ(s(2), t(2))− δ(s(1) − s(2), t(1) − t(2)).

Representation (5.1) goes back to de Haan [24] and Giné et al. [39]. Brown-Resnick processes

have been studied by Brown and Resnick [8] in a time series context, as a spatial model by

Kabluchko et al. [47], and in a space-time setting by Davis et al. [19] and Huser and Davison

[43]. The univariate margins of the process η follow standard Fréchet distributions.

There are various quantities to describe the dependence in (5.1):

• In geostatistics, the dependence function δ is termed the semivariogram of the process

{W (s, t)}: For (s(1), t(1)), (s(2), t(2)) ∈ Rd × [0,∞), it holds that

Var[W (s(1), t(1))−W (s(2), t(2))] = 2δ(s(1) − s(2), t(1) − t(2)).

• For h ∈ Rd and u ∈ R, the tail dependence coefficient χ(h, u) is given by (cf. Kabluchko

et al. [47], Remark 25 or Davis et al. [19], Section 3)

χ(h, u) := lim
y→∞

P
(
η(s(1), t(1)) > y | η(s(2), t(2)) > y

)
= 2

(
1− Φ

(√
δ(h, u)

2

))
, (5.2)

where h = s(1) − s(2), u = t(1) − t(2), and Φ denotes the standard normal distribution
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function.

• For D = {(s(1), t(1)), . . . , (s(|D|), t(|D|))} and y = (y1, . . . , y|D|) > 0 the finite-dimensional

margins are given by

P(η(s(1), t(1)) ≤ y1, η(s(2), t(2)) ≤ y2, . . . , η(s(|D|), t(|D|)) ≤ y|D|) = e−VD(y). (5.3)

Here VD denotes the exponent measure, which is homogeneous of order -1.

• The extremal coefficient ξD for any finite set D ⊂ Rd × [0,∞) is defined through

P(η(s(1), t(1)) ≤ y, η(s(2), t(2)) ≤ y, . . . , η(s(|D|), t(|D|)) ≤ y) = e−ξD/y, y > 0;

i.e., ξD = VD(1, . . . , 1). If |D| = 2, then (cf. Beirlant et al. [3], Section 9.5.1)

χ(s(1) − s(2), t(1) − t(2)) = 2− ξD.

In this chapter we assume the dependence function δ to be given for spatial lag h and time

lag u by

δ(h, u) =

d∑
j=1

Cj |hj |αj + Cd+1|u|αd+1 , (h, u) = (h1, . . . , hd, u) ∈ Rd+1, (5.4)

with parameters Cj > 0 and αj ∈ (0, 2] for j = 1, . . . , d+ 1.

Model (5.4) allows for different rates of decay of extreme dependence in different directions. This

particularly holds along the axes of a d-dimensional spatial grid, but also for other directions.

For example in the case d = 2, the decreases of dependence along the directions (1, 2) and (2, 1)

differ. Model (5.4) can be generalised by a simple rotation to a setting, where not necessarily the

axes, but other principal orthogonal directions play the major role. The rotation angle then needs

to be estimated together with the other model parameters. A similar approach has been applied

to introduce geometric or zonal anisotropy into a spatial isotropic model (see e.g. Blanchet

and Davison [4], Section 4.2, or Engelke et al. [34], Section 5.2). For a justification of model

(5.4) see Buhl [9], Sections 4.1 and 4.2. There it is shown that Brown-Resnick processes with

this dependence function arise as limits of appropriately rescaled maxima of Gaussian processes

with a large variety of correlation functions.

5.3 Pairwise maximum likelihood estimation

We extend the pairwise maximum likelihood procedure described in Davis et al. [20] for spatially

isotropic space-time Brown-Resnick processes to the anisotropic case. We focus on the difference

introduced by the spatial anisotropy and refer to the corresponding formulas in Davis et al. [20],

where also a short introduction to composite likelihood estimation and further references can be

found.
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The pairwise likelihood function uses the bivariate distribution function of (η(s, t), η(s+h, t+

u))
d
= (η(0, 0), η(h, u)) (equal in distribution by stationarity) for h ∈ Rd and u ∈ R, which is

given as

G(y1, y2) = exp{−V (y1, y2)}, y1, y2 > 0, (5.5)

where the exponent measure V = VD for D = {(s(1), t(1)), (s(2), t(2))} has the representation

V (y1, y2) =
1

y1
Φ

(
log(y2/y1)√

2δ(h, u)
+

√
δ(h, u)

2

)
+

1

y2
Φ

(
log(y1/y2)√

2δ(h, u)
+

√
δ(h, u)

2

)
, (5.6)

which is a particular form of Eq. (2.7) in Hüsler and Reiss [44]. The dependence function δ is

given by (5.4). For a derivation of (5.6) see for instance Oesting [53], Satz und Definition 2.4.

From this we can calculate the pairwise density g(y1, y2) = gθ(y1, y2) of G by differentiation.

The parameter vector θ = (C1, . . . , Cd+1, α1, . . . , αd+1) lies in the parameter space

Θ := {(C1, . . . , Cd+1, α1, . . . , αd+1) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d+ 1} .

We focus on data on a regular spatial grid and at equidistant time points. More precisely, we

assume that the spatial observations lie on a regular d-dimensional lattice,

SM = {s = (s1, . . . , sd) ∈ {1, . . . ,M}d}

for M ∈ N, and that the time points are given by the set TT = {1, . . . , T} for T ∈ N.

For the computation of the pairwise likelihood it is common not to include observations on all

available space-time pairs, but only on those that lie within some prespecified spatio-temporal

distance. This is motivated by the fact that pairs which lie sufficiently far apart in a space-time

sense have little influence on the dependence parameters, see Nott and Rydén [52], Section 2.1.

To express this notationally, we take inspiration from that paper and use a design mask adapted

to the anisotropic setting; that is, for r = (r1, . . . , rd) ∈ Nd0, fix a set Hr as one with maximum

cardinality among all sets H′r that satisfy

H′r ⊆
{
h = (h1, . . . , hd) ∈ Zd : |h| ≤ r

}
such that [0 6= h ∈ H′r ⇒ −h /∈ H′r], (5.7)

where the operations | · | and ≤ are taken componentwise. Note that this definition is not unique.

We are now ready to define the pairwise log-likelihood function and the resulting estimate.

Definition 5.1 (Pairwise likelihood estimate). The pairwise log-likelihood function based on

space-time pairs, whose maximum spatial lag is r ∈ Nd0 and maximum time lag is p ∈ N0, such

that (r, p) 6= (0, 0), is defined as

PL(M,T )(θ) :=
∑
s∈SM

T∑
t=1

∑
h∈Hr
s+h∈SM

p∑
u=0

t+u≤T

1{(h,u)6=(0,0)} log {gθ (η(s, t), η(s+ h, t+ u))}
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=
∑
s∈SM

T∑
t=1

qθ(s, t; r, p)−R(M,T )(θ), θ ∈ Θ, (5.8)

where

qθ(s, t; r, p) :=
∑
h∈Hr

p∑
u=0

1{(h,u)6=(0,0)} log {gθ (η(s, t), η(s+ h, t+ u))} (5.9)

and

R(M,T )(θ) :=
∑
s∈SM

T∑
t=1

∑
h∈Hr

p∑
u=0

1{s+h/∈SM or t+u>T} log {gθ (η(s, t), η(s+ h, t+ u))}

=
∑
h∈Hr

p∑
u=0

∑
(s,t)∈GM,T (h,u)

log {gθ (η(s, t), η(s+ h, t+ u))} , (5.10)

with

GM,T (h, u) := {(s, t) ∈ SM × TT : s+ h /∈ SM or t+ u > T} . (5.11)

for (h, u) ∈ Nd+1. The pairwise maximum likelihood estimate (PMLE) is given by

θ̂ = argmax
θ∈Θ

PL(M,T )(θ). (5.12)

We derive the asymptotic properties of the PMLE for two scenarios. The first one is based

on regularly spaced observations with an increasing spatio-temporal domain. For this scenario

we follow the proofs in Davis et al. [20] and show that the properties of strong consistency and

asymptotic normality also hold if the dependence structure δ allows for spatially anisotropic

effects as in (5.4). In the second scenario, the observations are taken from a fixed spatial domain

and an increasing temporal domain.

5.3.1 Increasing spatio-temporal domain

Lemma 5.2. For (h, u) ∈ Hr × {0, . . . , p}, it holds that

|GM,T (h, u)| ≤ K2(Md−1T +Md),

where K2 is a constant independent of M and T .

Proof. The number of space-time points within the space-time observation area, from which

some grid point outside the observation area is within a lag (h, u) ∈ Hr×{0, . . . , p}, is bounded

by 2Md−1T
d∑
j=1

rj +Mdp. Thus we obtain

|GM,T (h, u)| ≤ 2Md−1T

d∑
j=1

rj +Mdp ≤ K2(Md−1T +Md),
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where K2 := max
{

2
∑d

j=1 rj , p
}

is a constant independent of M and T .

Theorem 5.3 (Strong consistency for large M and T ). Let
{
η(s, t) : s ∈ Rd, t ∈ [0,∞)

}
be a

Brown-Resnick process as in (5.1) with dependence structure

δ(h, u) =
d∑
j=1

Cj |hj |αj + Cd+1|u|αd+1 , (h, u) ∈ Rd+1,

where 0 < αj ≤ 2 and Cj > 0 for j = 1, . . . , d+ 1. Denote the parameter vector by

θ = (C1, . . . , Cd+1, α1, . . . , αd+1).

Assume that the true parameter vector θ? lies in a compact set

Θ? ⊂ {(C1, . . . , Cd+1, α1, . . . , αd+1) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d+ 1} . (5.13)

Suppose that the following identifiability condition holds for all (s, t) ∈ SM × TT :

θ = θ̃ ⇔ (5.14)

gθ (η(s, t), η(s+ h, t+ u)) = gθ̃ (η(s, t), η(s+ h, t+ u)) , h ∈ Hr, 0 ≤ u ≤ p.

Then, the PMLE

θ̂
(M,T )

= argmax
θ∈Θ?

PL(M,T )(θ)

is strongly consistent:

θ̂
(M,T ) a.s.→ θ? as M,T →∞.

Proof. The proof uses the method of Wald [68]. One aim is to show that for some chosen

maximum space-time lag (r, p) ∈ Nd+1
0 \ {0} and θ ∈ Θ?,

1

MdT
PL(M,T )(θ)

=
1

MdT

( ∑
s∈SM

T∑
t=1

qθ(s, t; r, p)−R(M,T )(θ)
)

a.s.→ PL(θ) := E[qθ(1, 1; r, p)]

as M,T →∞. This is done by verifying the following two limit results: Uniformly on Θ?,

(A)
1

MdT

∑
s∈SM

T∑
t=1

qθ(s, t; r, p)
a.s.→ PL(θ) as M,T →∞,

(B)
1

MdT
R(M,T )(θ)

a.s.→ 0 as M,T →∞.

Furthermore, we need to show:

(C) The limit function PL(θ) is uniquely maximised at the true parameter vector θ? ∈ Θ?.

We show (A). The almost sure convergence holds because qθ(·) is a measurable function of

lagged versions of η(s, t) for s ∈ SM , t ∈ TT . Proposition 3 of Davis et al. [20] implies a strong
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law of large numbers. What remains to show is that the convergence is uniform on the compact

parameter space Θ?. This can be done by carefully following the lines of the proof of Theorem 1

of Davis et al. [20], adapting it to the spatially anisotropic setting. For details we refer to Buhl

[9], Theorem 4.4. We find that there is a positive finite constant K1, independent of θ,M and

T , such that

E
[∣∣ log gθ

(
η(s(1), t(1)), η(s(2), t(2))

)∣∣] < K1, (s(1), t(1)), (s(2), t(2)) ∈ Nd+1, (5.15)

and that E
[

supθ∈Θ? |qθ(1, 1; r, p)|
]
<∞. Theorem 2.7 of Straumann [63] implies that the con-

vergence is uniform.

Next we show (B). Using Proposition 3 of Davis et al. [20] and (5.15) we have that, uniformly

on Θ?,

∑
h∈Hr

p∑
u=0

1

|GM,T (h, u)|
∑

(s,t)∈GM,T (h,u)

log {gθ (η(s, t), η(s+ h, t+ u))}

a.s.→ E
[ ∑
h∈Hr

p∑
u=0

log {gθ (η(1, 1), η(1 + h, 1 + u))}
]

as M,T →∞.

By Lemma 5.2 and (5.15) it follows that, uniformly on Θ?,

1

MdT
|R(M,T )(θ)|

≤ K2

( 1

M
+

1

T

)∣∣∣∣ ∑
h∈Hr

p∑
u=0

1

|GM,T (h, u)|
∑

(s,t)∈GM,T (h,u)

log {gθ (η(s, t), η(s+ h, t+ u))}
∣∣∣∣

a.s.→ 0 as M,T →∞,

Finally, we prove (C). Let θ 6= θ?. For s ∈ SM and t ∈ TT , Jensen’s inequality yields

E
[
log

{
gθ (η(s, t), η(s+ h, t+ u))

gθ? (η(s, t), η(s+ h, t+ u))

}]
≤ log

{
E
[
gθ (η(s, t), η(s+ h, t+ u))

gθ? (η(s, t), η(s+ h, t+ u))

]}
= log

{ ∫
(0,∞)2

gθ(y1, y2)

gθ?(y1, y2)
gθ?(y1, y2) d(y1, y2)

}

= log
{ ∫

(0,∞)2

gθ(y1, y2) d(y1, y2)
}

= 0,

and it directly follows from (5.9) that PL(θ) ≤ PL(θ?). As θ 6= θ?, the identifiability condition

(5.14) yields (C).

Remark 5.4. There are combinations of maximum space-time lags that lead to non-identifiable

parameters, see Table 5.1. However, Theorem 5.3 still applies to all identifiable parameters (cf.

Davis et al. [20], Remark 2).

Next we prove asymptotic normality of the PMLE defined in (5.12). As in the proof of The-
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r1 r2 p identifiable parameters
1 0 0 C1

1 1 0 C1, C2

1 1 1 C1, C2, C3

> 1 0 0 C1, α1

> 1 > 1 > 1 C1, α1, C2, α2, C3, α3

Table 5.1: Identifiable parameters for model (5.4) with d = 2 for some examples of maximum space-time
lags (r1, r2, p).

orem 5.3 we follow the lines of proof of Davis et al. [20], Section 5, adapting the arguments to

the anisotropic setting. We start with some basic results needed throughout the remainder of

the section.

Lemma 5.5. Assume that all conditions of Theorem 5.3 are satisfied. Then for s(1), s(2) ∈ Rd

and t(1), t(2) ∈ [0,∞), the following assertions hold componentwise:

(1) The gradient of the bivariate log-density satisfies

E
[∣∣∣∇θ log gθ(η(s(1), t(1)), η(s(2), t(2)))

∣∣∣3] <∞, θ ∈ Θ?.

(2) The Hessian matrix of the bivariate log-density satisfies

E
[

sup
θ∈Θ?

∣∣∣∇2
θ log gθ(η(s(1), t(1)), η(s(2), t(2)))

∣∣∣] <∞.
Proof. Assume identifiability of all parameters Cj , αj for j = 1, . . . , d + 1. For y1, y2 ∈ (0,∞)

and for (h, u) ∈ Rd+1 \ {0} lengthy but simple calculations of derivatives of (5.5) yield

∇θ log gθ(y1, y2) =
∂ log gθ(y1, y2)

∂δ(h, u)
∇θδ(h, u),

∂δ(h, u)

∂Cj
= |hj |αj ,

∂δ(h, u)

∂αj
= Cj |hj |αj log |hj |, j = 1, . . . d,

and
∂δ(h, u)

∂Cd+1
= |u|αd+1 ,

∂δ(h, u)

∂αd+1
= Cd+1|u|αd+1 log |u|.

By compactness of the parameter space, as required in (5.13), we can bound those first partial

derivatives as well as the second order partial derivatives from above and below. So it remains

to show that for s(1), s(2) ∈ S and t(1), t(2) ∈ T ,

Eθ?
[∣∣∣∣∂ log{gθ(η(s(1), t(1)), η(s(2), t(2)))}

∂δ(h, u)

∣∣∣∣3] <∞
and

Eθ?
[

sup
θ∈Θ?

∣∣∣∣∂2 log{gθ(η(s(1), t(1)), η(s(2), t(2)))}
∂2δ(h, u)

∣∣∣∣] <∞,
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where the function δ(h, u) can be treated as a constant since it is bounded away from 0 by

(5.13). Hence, for the rest of the proof we refer to that of Davis et al. [20], Lemma 1.

For a central limit theorem we need certain mixing properties for a space-time setting (cf.

Davis et al. [20], Section 5.1 and Huser and Davison [43], Section 3.2).

Definition 5.6 (Mixing coefficients and α-mixing). Let {η(s, t) : s ∈ Zd, t ∈ N} be a space-time

process. Let d be some metric induced by a norm on Rd+1. For Λ1,Λ2 ⊂ Zd × N let

d(Λ1,Λ2) := inf{d((s(1), t(1)), (s(2), t(2))) : (s(1), t(1)) ∈ Λ1, (s
(2), t(2)) ∈ Λ2}.

(1) For k, `, n ≥ 0 the mixing coefficients are defined as

αk,`(n) := sup{|P(A1 ∩A2)− P(A1)P(A2)| :

A1 ∈ FΛ1 , A2 ∈ FΛ2 , |Λ1| ≤ k, |Λ2| ≤ `, d(Λ1,Λ2) ≥ n}, (5.16)

where FΛi = σ(η(s, t) : (s, t) ∈ Λi) for i = 1, 2.

(2) {η(s, t) : s ∈ Zd, t ∈ N} is called α-mixing if for all k, ` > 0,

αk,`(n)→ 0, n→∞.

Recall from Eq. (5.2) that for (h, u) ∈ Rd+1 with δ as in (5.4) the tail dependence coefficient

of the Brown-Resnick process is given by

χ(h, u) = 2

(
1− Φ

(√
1

2

[
C1|h1|α1 + · · ·+ Cd|hd|αd + Cd+1|u|αd+1

]))
.

Corollary 2.2 of Dombry and Eyi-Minko [27] links the α-mixing coefficients with the tail

dependence coefficients, and we will use this for the next result.

Proposition 5.7. Let {η(s, t) : s ∈ Rd, t ∈ [0,∞)} be the Brown-Resnick process (5.1) with

dependence function δ given by (5.4). Then the process {η(s, t) : s ∈ Zd, t ∈ N} is α-mixing,

where the mixing coefficients in (5.16) satisfy for Hr as in (5.7)

(1)
∞∑
n=1

ndαk,`(n) <∞ for k + l ≤ 4(|Hr|+ 1)(p+ 1),

(2) α(|Hr |+1)(p+1),∞(n) = o(n−(d+1)) as n→∞,

(3)
∞∑
n=1

ndα(|Hr |+1)(p+1),(|Hr |+1)(p+1)(n)
1
3 <∞.

Proof. Note that for (h, u) ∈ Rd+1, by the equivalence of norms, for some positive constant L,

d((h, u), (0, 0)) ≤ 1

L
max{|h1|, . . . , |hd|, |u|}
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Therefore, for n ∈ N, presuming d((h, u), (0, 0)) ≥ n results in max{|h1|, . . . , |hd|, |u|} ≥ Ln, so

that by Corollary 2.2 and Eq. (3) of Dombry and Eyi-Minko [27] we get

αk,`(n) ≤ 2k` sup
d((h,u),(0,0))≥n

χ(h, u) ≤ 2k` sup
max{|h1|,...,|hd|,|u|}≥Ln

χ(h, u), (5.17)

αk,∞(n) ≤ 2k
∑

d((h,u),(0,0))≥n

χ(h, u) ≤ 2k
∑

max{|h1|,...,|hd|,|u|}≥Ln

χ(h, u). (5.18)

In the following we use the notation ‖(h, u)‖∞ := max{|h1|, . . . , |hd|, |u|} for (h, u) ∈ Zd × N.
Using 1− Φ(x) ≤ exp{−1

2x
2} for x > 0 and Eq. (5.2) and (5.17), we find for all k, ` ≥ 0,

αk,`(n) ≤ 4k` sup
‖(h,u)‖∞≥Ln

(
1− Φ(

√
δ(h, u)

2

)

≤ 4k` sup
‖(h,u)‖∞≥Ln

exp

{
−δ(h, u)

4

}
= 4k` sup

‖(h,u)‖∞≥Ln
exp

{
−1

4
[C1|h1|α1 + . . .+ Cd|hd|αd + Cd+1|u|αd+1 ]

}
≤ 4k` sup

‖(h,u)‖∞≥Ln
exp

{
−1

4
min{|C1|, . . . , |Cd+1|}‖(h, u)‖min{α1,...,αd+1}

∞

}
≤ 4k` exp

{
−1

4
min{|C1|, . . . , |Cd+1|}(Ln)min{α1,...,αd+1}

}
(5.19)

→ 0 as n→∞.

This implies α-mixing.

By similar arguments we obtain by (5.18) for all k ≥ 0,

αk,∞(n) ≤

4k
∑

‖(h,u)‖∞≥Ln

exp

{
−1

4
min{|C1|, . . . , |Cd+1|}‖(h, u)‖min{α1,...,αd+1}

∞

}
. (5.20)

We use the above bounds to prove assertions (1)-(3).

(1) For k + ` ≤ 4(|Hr|+ 1)(p+ 1) we have by (5.19),

∞∑
n=1

ndαk,`(n) ≤ 4k`
∞∑
n=1

nd exp

{
−1

4
min{|C1|, . . . , |Cd+1|}(Ln)min{α1,...,αd+1}

}
< ∞.

(2) First note that the number of grid points (h, u) ∈ Rd+1 with ‖(h, u)‖∞ = i for i ∈ N equals

(i + 1)d+1 − id+1, and is therefore of order O(id). We use (5.20) and a more precise estimate

than in part (1) to obtain for sufficiently large n

nd+1α(|Hr |+1)(p+1),∞(n)

≤ 4nd+1(|Hr|+ 1)(p+ 1)
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∑
‖(h,u)‖∞≥Ln

exp

{
−1

4
min{|C1|, . . . , |Cd+1|}‖(h, u)‖min{α1,...,αd+1}

∞

}

≤ K3n
d+1(|Hr|+ 1)(p+ 1)

∞∑
i=bLnc

id exp
{
− 1

4
min{C1, . . . , Cd+1}imin{α1,...,αd+1}

}
→ 0 as n→∞,

where K3 is a positive constant. Convergence to 0 follows using the integral test for power series

convergence and Lemma D.1, Eq. (D.1).

(3) We find, using again (5.19),

∞∑
n=1

ndα(|Hr |+1)(p+1),(|Hr |+1)(p+1)(n)
1
3

≤
(
4
[

(|Hr|+ 1)(p+ 1)
]2) 1

3

·
∞∑
n=1

nd exp
{
− 1

12
min{C1, . . . , Cd+1}(Ln)min{α1,...,αd+1}

}
<∞

as in (1).

Because of Lemma 5.5 and Proposition 5.7 the following central limit theorem of Bolthausen

[6] holds.

Corollary 5.8. Consider the process {∇θqθ?(s, t; r, p) : s ∈ Zd, t ∈ N}. Then

1

M
d
2

√
T

∑
s∈SM

T∑
t=1

∇θqθ?(s, t; r, p)
d→ N (0,Σ1) as M,T →∞,

where

Σ1 :=
∞∑

s1=−∞
· · ·

∞∑
sd=−∞

∞∑
t=1

Cov [∇θqθ?(1, 1; r, p),∇θqθ?(s1, . . . , sd, t; r, p)] . (5.21)

Now we formulate the main result of this section.

Theorem 5.9 (Asymptotic normality for large M and T ). Assume the same conditions as in

Theorem 5.3. Then

√
MdT (θ̂ − θ?) d→ N (0, Σ̃1) as M,T →∞, (5.22)

where Σ̃1 := F−1
1 Σ1(F−1

1 )> with Σ1 given in (5.21) and

F1 := E
[
−∇2

θqθ?(1, 1; r, p)
]
.

Proof. A Taylor expansion of the score function∇θPL(M,T )(θ) around the true parameter vector
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5.3 Pairwise maximum likelihood estimation

θ? yields for some θ̃ ∈ [θ̂,θ?] :

0 = ∇θPL(M,T )(θ̂) = ∇θPL(M,T )(θ?) +∇2
θPL

(M,T )(θ̃)(θ̂ − θ?).

Therefore,

M
d
2

√
T (θ̂ − θ?) = −

( 1

MdT
∇2
θPL

(M,T )(θ̃)
)−1( 1

M
d
2

√
T
∇θPL(M,T )(θ?)

)
= −

( 1

MdT

∑
s∈SM

T∑
t=1

∇2
θqθ̃(s, t; r, p)− 1

MdT
∇2
θR(M,T )(θ̃)

)−1

( 1

M
d
2

√
T

∑
s∈SM

T∑
t=1

∇θqθ?(s, t; r, p)−
1

M
d
2

√
T
∇θR(M,T )(θ?)

)
=: −(I1 − I2)−1(J1 − J2).

Note the following:

• Corollary 5.8 implies that J1
d→ N (0,Σ1) as M,T →∞.

• Using representation (5.10) of the boundary term R(M,T )(·) and Lemma 5.2, we find

‖J2‖ =
1

M
d
2

√
T

∥∥∥∥ ∑
h∈Hr

p∑
u=0

∑
(s,t)∈GM,T (h,u)

∇θ log{gθ?(η(s, t), η(s+ h, t+ u))}
∥∥∥∥

≤
√
K2

√
Md−1T +Md

M
d
2

√
T∥∥∥∥ ∑

h∈Hr

p∑
u=0

1√
|GM,T (h, u)|

∑
(s,t)∈GM,T (h,u)

∇θ log{gθ?(η(s, t), η(s+ h, t+ u))}
∥∥∥∥

≤
√
K2(

1√
M

+
1√
T

)∥∥∥∥ ∑
h∈Hr

p∑
u=0

1√
|GM,T (h, u)|

∑
(s,t)∈GM,T (h,u)

∇θ log{gθ?(η(s, t), η(s+ h, t+ u))}
∥∥∥∥

In the same way as done in Corollary 5.8 for the process {∇θqθ?(s, t; r, p) : s ∈ Zd, t ∈ N},
we can apply Bolthausen’s central limit theorem to the processes {∇θ log{gθ?(η(s, t), η(s+

h, t+ u))} : s ∈ Zd, t ∈ N} for h ∈ Hr, u ∈ {0, . . . , p}. We conclude that

∑
h∈Hr

p∑
u=0

1√
|GM,T (h, u)|

∑
(s,t)∈GM,T (h,u)

∇θ log{gθ?(η(s, t), η(s+ h, t+ u))}

converges weakly to a normal distribution as M,T → ∞, and it follows that J2
P→ 0 as

M,T →∞.

113



Chapter 5 Anisotropic Brown-Resnick space-time processes: estimation and model assessment

• As {η(s, t) : s ∈ Zd, t ∈ N} is α-mixing, the process

{∇2
θqθ(s, t; r, p) : s ∈ Zd, t ∈ N}

is α-mixing as a set of measurable functions of mixing lagged processes. Furthermore, as

θ̃ ∈ [θ̂,θ?] and θ̂ is strongly consistent, we have that I1
a.s.→ −F1 as M,T → ∞. The

convergence is uniform on Θ? by Lemma 5.5 which implies that

E
[

sup
θ∈Θ?

∣∣∇2
θqθ(1, 1; r, p)

∣∣] <∞.
• Concerning I2, the law of large numbers applied to{

∇2
θ log{gθ(η(s, t), η(s+ h, t+ u))} : s ∈ Zd, t ∈ N

}
results in the fact that, in the same way as in part (B) of the proof of Theorem 5.3, I2

a.s.→ 0

as M,T →∞.

Finally, summarising these results, Slutzky’s Lemma yields (5.22).

5.3.2 Fixed spatial domain and increasing temporal domain

As before we compute the PMLE based on observations on the area SM × TT , but now we

consider M fixed, whereas T tends to infinity.

We define the temporal α-mixing coefficients (cf. Ibragimov and Linnik [45], Definition 17.2.1

or Bradley [7], Definition 1.6).

Definition 5.10 (Temporal mixing coefficients and temporal α-mixing). Let {η(s, t) : s ∈
SM , t ∈ N} be a space-time process. Consider the metric d(·) of Definition 5.6.

(1) Let T (1), T (2) ⊂ N. For n ≥ 0 the temporal α-mixing coefficients are defined as

α(n) := sup{|P (A1 ∩A2)− P (A1)P (A2)| :

A1 ∈ FSM×T (1) , A2 ∈ FSM×T (2) , d(SM × T (1),SM × T (2)) ≥ n}, (5.23)

where FSM×T (i) = σ(η(s, t) : (s, t) ∈ SM × T (i)) for i = 1, 2.

(2) {η(s, t) : s ∈ SM , t ∈ N} is called temporally α-mixing, if

α(n)→ 0, n→∞. (5.24)

Proposition 5.11. Let {η(s, t) : s ∈ Rd, t ∈ [0,∞)} be the Brown-Resnick process (5.1) with

dependence function δ given by (5.4). Then the process {η(s, t) : s ∈ SM , t ∈ N} is temporally

α-mixing, where the mixing coefficients (5.23) satisfy

∞∑
n=1

|α(n)|
1
3 <∞. (5.25)
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5.3 Pairwise maximum likelihood estimation

Proof. We use Eq. (3) and Corollary 2.2 of Dombry and Eyi-Minko [27] and (5.2) to obtain for

n ∈ N

α(n)

≤ 2 sup
d(SM×T (1),SM×T (2))≥n

∑
(s(1),t(1))

∈SM×T
(1)

∑
(s(2),t(2))

∈SM×T
(2)

χ(s(1) − s(2), t(1) − t(2))

= 4 sup
d(SM×T (1),SM×T (2))≥n

∑
(s(1),t(1))

∈SM×T
(1)

∑
(s(2),t(2))

∈SM×T
(2)(

1− Φ
(√1

2

[
C1|s(1)

1 − s
(2)
1 |α1 + · · ·+ Cd|s

(1)
d − s

(2)
d |αd + Cd+1|t(1) − t(2)|αd+1

]))
≤ 4M2d sup

d(SM×T (1),SM×T (2))≥n

∑
(t(1),t(2))

∈T (1)×T (2)

(
1− Φ

(√1

2

[
Cd+1|t(1) − t(2)|αd+1

]))

≤ 4M2d sup
d(SM×T (1),SM×T (2))≥n

∑
(t(1),t(2))

∈T (1)×T (2)

exp
{
− 1

4
Cd+1|t(1) − t(2)|αd+1

}
,

where the last inequality follows from 1 − Φ(x) ≤ exp{−1
2x

2} for x > 0. We bound α(n) for

large n further by

α(n) ≤ 4M2d
∑

t(1)∈{−∞,...,0}

∑
t(2)∈{n,...,∞}

exp
{
− 1

4
Cd+1|t(1) − t(2)|αd+1

}
.

In the double sum a temporal lag u = |t(1) − t(2)| ≥ n appears exactly u − (n − 1) times. This

yields

α(n) ≤ 4M2d
∞∑
u=n

(u− (n− 1)) exp
{
− 1

4
Cd+1u

αd+1

}
≤ 4M2d

∞∑
u=n

u exp
{
− 1

4
Cd+1u

αd+1

}
.

Convergence of the series (5.25) now follows by the integral test and Lemma D.1.

In the following we show that strong consistency of the PMLE also holds, if the spatial domain

remains fixed.

Theorem 5.12 (Strong consistency for fixed M and large T ). Assume the same conditions as

in Theorem 5.3 restricted to the fixed space SM . Then the PMLE

θ̂
(M,T )

= argmax
θ∈Θ?

PL(M,T )(θ)

is strongly consistent, that is,

θ̂
(M,T ) a.s.→ θ? as T →∞.
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Proof. For θ ∈ Θ? and t ∈ N, set

qMθ (t; r, p) :=
∑
s∈SM

∑
h∈Hr
s+h∈SM

p∑
u=0

t+u≤T

1{(h,u)6=(0,0)} log {gθ (η(s, t), η(s+ h, t+ u))} .

Then

PL(M,T )(θ) =
T∑
t=1

qMθ (t; r, p).

Following carefully the lines of the proof of Theorem 5.3, the following conditions hold for fixed

spatial domain:

(A)
1

T

T∑
t=1

qMθ (t; r, p)
a.s.→ PLM (θ) := E[(qMθ (1; r, p)] as T → ∞ uniformly on the compact pa-

rameter space Θ?. The main argument is that qMθ (·) is a function of temporally mixing

lagged processes, then we apply again Theorem 2.7 of Straumann [63].

(B) The limit function PLM (θ) is uniquely maximised at the true parameter vector θ? ∈ Θ?.

Now we formulate the main result of this section.

Theorem 5.13 (Asymptotic normality for fixed M and large T ). Assume the same conditions

as in Theorem 5.3 restricted to the fixed space SM . Then

√
T (θ̂ − θ?) d→ N (0, Σ̃2) as T →∞, (5.26)

where Σ̃2 := F−1
2 Σ2(F−1

2 )> with

F2 := E[−∇2
θq
M
θ?(1; r, p)]

and

Σ2 := Var[∇θqMθ?(1; r, p)] + 2

∞∑
t=2

Cov[∇θqMθ?(1; r, p),∇θqMθ?(t; r, p)].

Proof. By its definition as a function of lagged temporally mixing processes, (∇θqMθ?(t; r, p))t∈N
is also temporally α-mixing with coefficients α′(n) = α(n− p). Furthermore,

E [∇θ log {gθ? (η(0, 0), η(h, u))}] = 0, (h, u) ∈ Nd+1
0 ,

because Lemma 5.5 implies regularity conditions of the pairwise log-likelihood (5.8) allowing

to interchange differentiation and integration. Now note that Lemma 5.5 and Proposition 5.11

imply that

• E[|∇θqMθ?(t; r, p)|
3] < ∞ for t ∈ N and every maximum spatial lag r and time lag p, and

that
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•
∞∑
n=1
|α′(n)|

1
3 <∞.

Therefore, the conditions of Theorem 18.5.3 of Ibragimov and Linnik [45] (see also Bradley [7],

Theorem 10.7) are satisfied and we conclude that

1√
T

T∑
t=1

∇θqMθ?(t; r, p)
d→ N (0,Σ2) as T →∞. (5.27)

Taylor expansion of the score function ∇θPL(M,T )(θ) around the true parameter vector θ? yields

for some θ̃ ∈ [θ̂,θ?] :

0 = ∇θPL(M,T )(θ̂) = ∇θPL(M,T )(θ?) +∇2
θPL

(M,T )(θ̃)(θ̂ − θ?).

Therefore,

√
T (θ̂ − θ?) = −

( 1

T
∇2
θPL

(M,T )(θ̃)
)−1( 1√

T
∇θPL(M,T )(θ?)

)
= −

( 1

T

T∑
t=1

∇2
θq
M
θ̃

(t; r, p)
)−1( 1√

T

T∑
t=1

∇θqMθ?(t; r, p)
)

=: −I−1J.

Note the following:

• (5.27) implies that J
d→ N (0,Σ2) as T →∞.

• Uniform convergence holds because of Lemma 5.5 which implies that componentwise

E
[

sup
θ∈Θ?

∣∣∇2
θq
M
θ (1; r, p)

∣∣] <∞.
By temporal α-mixing, since θ̃ ∈ [θ̂,θ?], and θ̂ is strongly consistent, we have I

a.s.→ −F2

as T →∞.

Finally, summarising those results, Slutzky’s Lemma yields (5.26).

Throughout this section we have proved asymptotic properties of the parameter estimates of

model (5.4) by classical results for ML estimators in combination with a spatio-temporal central

limit theorem. Such results can also be applied to other models like geometrically anisotropic

models, provided the required rates for α-mixing hold.

5.4 Test for spatial isotropy

We use the results of Section 5.3 to formulate statistical tests for spatial isotropy versus anisotropy

based on the model (5.4),

δ(h, u) =

d∑
j=1

Cj |hj |αj + Cd+1|u|αd+1 ,
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for spatial lags (h, u) = (h1, . . . , hd, u) ∈ Rd+1. We derive the necessary results for d = 2.

Generalisations to higher dimensions are possible, but notationally much more involved. Again

we consider the two cases of an increasing and fixed spatial domain.

Due to the structure of model (5.4) a test for isotropy versus anisotropy is a test of

H0 : {C1 = C2 and α1 = α2} versus H1 : {C1 6= C2 or α1 6= α2}. (5.28)

5.4.1 Increasing spatial domain

From Theorem 5.9 we know that, under suitable regularity conditions, the PMLE

θ̂ = (Ĉ1, Ĉ2, Ĉ3, α̂1, α̂2, α̂3)

is asymptotically normal; more precisely, for M2 spatial observations on a regular grid and for

T equidistant time points we have

M
√
T



Ĉ1 − C1

Ĉ2 − C2

Ĉ3 − C3

α̂1 − α1

α̂2 − α2

α̂3 − α3


d→ N (0, Σ̃1) as M,T →∞, (5.29)

where Σ̃1 ∈ R6×6 is the asymptotic covariance matrix given in Theorem 5.9.

Our test is based on the spatial parameters only. Moreover, we test the two equalities in H0

separately and use Bonferroni’s inequality to solve the multiple test problem.

Lemma 5.14. Assume the conditions of Theorem 5.9. Setting A1 := (−1, 1, 0, 0, 0, 0) and A2 :=

(0, 0, 0,−1, 1, 0), we have that, as M,T →∞,

M
√
T ((Ĉ2 − Ĉ1)− (C2 − C1))

d→ N (0, A1Σ̃1A
>
1 ), (5.30)

M
√
T ((α̂2 − α̂1)− (α2 − α1))

d→ N (0, A2Σ̃1A
>
2 ). (5.31)

Proof. We obtain the left hand side of (5.30) and (5.31) by multiplying A1 and A2 to (5.29),

respectively. This yields the limits on the right hand side by the continuous mapping theorem.

We define

θC := (C2 − C1), θ̂C := (Ĉ2 − Ĉ1), θα := (α2 − α1), θ̂α := (α̂2 − α̂1).

Then the multiple test problem (5.28) becomes

H0,1 : {θC = 0} versus H1,1 : {θC 6= 0} (5.32)

H0,2 : {θα = 0} versus H1,2 : {θα 6= 0}. (5.33)
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Since the variances in (5.30) and (5.31) are not known explicitly, we find the rejection areas of

the two tests by subsampling as suggested in Politis et al. [56], Chapter 5. Their main Assump-

tion 5.3.1, the existence of a weak limit law of the estimates, is satisfied by Lemma 5.14.

We formulate the subsampling procedure in the terminology of the space-time process {η(s, t) :

s ∈ SM , t ∈ TT }. We choose space-time block lengths b = (b1, b2, b3) ≥ (1, 1, 1) and the degree of

overlap e = (e1, e2, e3) ≤ (M,M,T ). The blocks are indexed by i = (i1, i2, i3) ∈ N3 with ij ≤ qj
for qj := bM−bjej

c+ 1, j = 1, 2 and q3 := bT−bjej
c+ 1. This results in a total number of q = q1q2q3

blocks, which we summarise in the set

Ei,b,e =
{

(s1, s2, t) ∈ SM × TT : (ij − 1)ej + 1 ≤ sj ≤ (ij − 1)ej + bj , j = 1, 2,

(i3 − 1)e3 + 1 ≤ t ≤ (i3 − 1)e3 + b3
}
.

Now we estimate θC and θα based on all observations in a block, hence getting q different

estimates, which we denote by θ̂C,b,i and θ̂α,b,i.

In order to find rejection areas for the isotropy test, we will use Lemma 5.14, and take care

of the unknown variance in the normal limit by a subsampling result.

Theorem 5.15. Denote by τM,T := M
√
T and τb =

√
b1b2b3 the square roots of the number of

observations in total and in each block, respectively. Assume that the conditions of Theorem 5.9

hold and, as M,T →∞,

(i) bi →∞ for i = 1, 2, 3, such that bi = o(M) for i = 1, 2, and b3 = o(T ) (hence, τb/τM,T →
0),

(ii) e does not depend on M or T .

In the following θ̂ stands for either θ̂C or θ̂α. Define the empirical distribution function

L
b,θ̂

(x) :=
1

q

q1∑
i1=1

q2∑
i2=1

q3∑
i3=1

1{τb|θ̂b,i−θ̂|≤x}, x ∈ R, (5.34)

and the empirical quantile function

c
b,θ̂

(1− β) := inf
{
x ∈ R : L

b,θ̂
(x) ≥ 1− β

}
, β ∈ (0, 1). (5.35)

Then the following statements hold for M,T →∞:

(1) Denote by Φσ(·) the distribution function of a mean 0 normal random variable Z with

variance

σ2 =

A1Σ̃1A
>
1 , in case of θ̂C ,

A2Σ̃1A
>
2 , in case of θ̂α,

and recall that 2Φσ(·)− 1 is the distribution function of |Z|. Then

L
b,θ̂

(x)
P→ 2Φσ(x)− 1, x ∈ R.
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(2) Set J
θ̂
(x) := P(τM,T |θ̂ − θ| ≤ x) for x ∈ R, then

sup
x∈R

∣∣∣Lb,θ̂(x)− J
θ̂
(x)
∣∣∣ P→ 0.

(3) For β ∈ (0, 1),

P
(
τM,T |θ̂ − θ| ≤ cb,θ̂(1− β)

)
→ 1− β. (5.36)

Proof. We apply Corollary 5.3.1 of Politis et al. [56]. Their main Assumption 5.3.1; i.e., the

existence of a continuous limit distribution, is satisfied by Lemma 5.14. Assumptions (i)-(ii)

are also presumed by Politis et al. [56]. The required condition on the α-mixing coefficients is

satisfied similarly as in the proof of Proposition 5.7 by Lemma D.1 and the result holds.

From (5.36), we find rejection areas for the test statistics τM,T θ̂ at confidence level β ∈ (0, 1)

as (recall that θ̂ stands for either θ̂C or θ̂α)

Rej
(M,T )

θ̂
:= (−∞,−c

b,θ̂
(1− β)) ∪ (c

b,θ̂
(1− β),∞) = [−c

b,θ̂
(1− β), c

b,θ̂
(1− β)]c.

Bonferroni’s inequality

P(reject H0,1 or H0,2) ≤ P(reject H0,1) + P(reject H0,2) ≤ 2β,

applies and solves the multiple test problem.

5.4.2 Fixed spatial domain

First note that an analogue of Lemma 5.14 holds with rate
√
T instead of M

√
T and with the

asymptotic covariance matrix Σ̃2 as given in Theorem 5.13.

The subsampling statement corresponding to Theorem 5.15 then reads as follows.

Theorem 5.16. Denote by τT :=
√
T and τb3 =

√
b3 the square roots of the number of time

points of observations in total and in each block, respectively. Assume that the conditions of

Theorem 5.13 are satisfied and that Lemma 5.14 holds for T → ∞ with rate
√
T instead of

M
√
T and with the asymptotic covariance matrix Σ̃2 as given in Theorem 5.13. Assume further

that as T →∞,

(i) b3 →∞ such that b3 = o(T ) (hence, τb3/τT → 0),

(ii) e does not depend on T ,

(iii) b1, b2 →M .

Let b = (b1, b2, b3), τb =
√
b1b2b3 and τM,T = M

√
T . With Σ̃1 as in Theorem 5.15 replaced by

M2Σ̃2, conclusions (a), (b), and (c) of Theorem 5.15 remain true as T tends to infinity.

Proof. We apply Corollary 5.3.2 of Politis et al. [56]. The required temporal mixing condition is

satisfied similarly as in the proof of Proposition 5.11 by Lemma D.1.
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5.5 Data analysis

Figure 5.1: Rainfall observation area in Florida

Remark 5.17. We can in practice apply the same procedure of subsampling as in Section 5.4.1.

This is justified by the fact that τb3/τT → 0 implies that τb/τM,T → 0 as T → ∞ under

conditions (i)-(iii) of Theorem 5.16. In particular, the rejection area for τT θ̂ (where again θ̂

stands for either θ̂C or θ̂α) is found as

Rej
(T )

θ̂
:=

1

M
Rej

(M,T )

θ̂
.

5.5 Data analysis

We fit the Brown-Resnick space-time process (5.1) with dependence structure given by the model

(5.4) to radar rainfall data, which were provided by the Southwest Florida Water Management

District (SWFWMD). The data used for the analysis are rainfall measurements on a square of

120km×120km in Florida (see Figure 5.1) over the years 1999-2004. The raw data consist of

measurements in inches on a regular grid in space every two kilometres and every 15 minutes.

Since there exist wet seasons and dry seasons with almost no rain we consider only the wet season

June-September. Moreover, the area is basically flat with predominant easterly winds due to its

closeness to the equator and, therefore, existing trade winds. Hence, (5.4) with parameters that

possibly differ along both spatial axes fits well without introducing a rotation matrix.

5.5.1 Data transformation and marginal modelling

We carry out a block-maxima method in space and time as follows: We calculate cumulated

hourly rainfall by adding up four consecutive measurements. Then we take block-maxima over

24 consecutive hours and over 10km×10km areas; i.e., the daily maxima over 25 locations,
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resulting in a 12× 12 grid in space for all 6× 122 days of the wet seasons giving a time series of

dimension 12×12 and of length 732. Taking smaller areas than 10km×10km squares or a higher

temporal resolution (e.g. 12-hour-maxima) results in observations that are not max-stable and

the max-stability test described in Section 5.5.2 would reject.

By removing possible seasonal effects, we transform the data to stationarity. We obtain the

observations

{η̃((s1, s2), t) : s1, s2 = 1, . . . , 12, t = 1, . . . , 732} . (5.37)

Taking daily maxima removes for every location most of the dependence in the time series.

This implies that marginal parameter estimates found by maximum likelihood estimation are

consistent and asymptotically normal.

To give some details: for each fixed location (s1, s2), we fit a univariate generalised extreme

value distribution (cf. Embrechts et al. [32], Definition 3.4.1) to the associated time series. The

estimated shape parameters are all sufficiently close to 0 to motivate a Gumbel distribution

as appropriate model. We therefore fit a Gumbel distribution Λµ,σ(x) = exp{−e−
x−µ
σ } with

parameters µ = µ(s1, s2) ∈ R and σ = σ(s1, s2) > 0 and obtain estimates µ̂ = µ̂(s1, s2) and

σ̂ = σ̂(s1, s2).

Depending on different statistical questions and methods, we transform (5.37) either to stan-

dard Gumbel or standard Fréchet margins. In the first case we set

η1((s1, s2), t) :=
η̃((s1, s2), t)− µ̂

σ̂
, t = 1, . . . , 732, (5.38)

and in the latter case, with Λµ̂,σ̂ denoting the Gumbel distribution with estimated parameters,

η2((s1, s2), t) := − 1

log
{

Λµ̂,σ̂(η̃((s1, s2), t))
} , t = 1, . . . , 732. (5.39)

We assess the goodness of the marginal fits by qq-plots of the observations (5.38) versus the

standard Gumbel quantiles for every spatial location. Figure 5.2 depicts the qq-plots at four

exemplary spatial locations (1, 1), (6, 8), (9, 4) and (11, 10). ∗ Confidence bounds are based on

the Kolmogorov-Smirnov statistic (cf. Doksum and Sievers [26], Theorem 1 and Remark 1). All

graphs show a reasonably good fit.

In the following data analysis we regard (5.39) as realisations of the space-time Brown-Resnick

process (5.1) with dependence structure δ as in (5.4):

δ(h1, h2, u) = C1|h1|α1 + C2|h2|α2 + C3|u|α3 , (5.40)

with h1 = s
(1)
1 − s

(2)
1 , h2 = s

(1)
2 − s

(2)
2 , u = t(1) − t(2), for two spatial locations s(1) = (s

(1)
1 , s

(1)
2 )

and s(2) = (s
(2)
1 , s

(2)
2 ) and two time points t(1) and t(2).

∗We use the R-package extRemes (Gilleland and Katz [38]).
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5.5 Data analysis

Figure 5.2: qq-plots of the Gumbel transformed time series values versus the standard Gumbel distri-
bution for four locations: (1,1) (top left), (6,8) (top right), (9,4) (bottom left) and (11,10)
(bottom right). Dashed blue lines mark 95% confidence bounds. Solid red lines correspond
to no deviation.

5.5.2 Testing for max-stability in the data

We first want to check if the block-maxima data originate from a max-stable process. A diagnostic

tool is based on a multivariate Gumbel model (cf. Wadsworth [66]), and we explain first the

method in general. We assume a space-time model of a general spatial dimension d ∈ N. As

before, we denote the regular grid of space-time observations by

SM × TT = {1, . . . ,M}d × {1, . . . , T}.

We define a hypothesis test based on the standard Gumbel transformed space-time observations

(5.38) by

H0 : {η1(s, t) : (s, t) ∈ Rd × [0,∞)} is max-stable. (5.41)
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Under H0 all finite-dimensional margins are max-stable; particularly, for every D ⊆ SM × TT ,

the multivariate distribution function of {η1(s, t) : (s, t) ∈ D} is given by

GD(y1, . . . , y|D|) = exp{−VD(ey1 , . . . , ey|D|)}, (y1, . . . , y|D|) ∈ R|D|,

where VD is the exponent measure from (5.3). Since VD is homogeneous of order -1, the random

variable

ηD := max{η1(s, t) : (s, t) ∈ D}

has univariate Gumbel distribution function

P(ηD ≤ y) = GD(y, . . . , y) = exp{−e−yVD(1, . . . , 1)} = e−e−(y−µD)
, y ∈ R; (5.42)

i.e., µD := log VD(1, . . . , 1) is the location parameter and, since 1 ≤ VD(1, . . . , 1) ≤ |D|, we

have 0 ≤ µD ≤ log |D|. These considerations can be used to construct a graphical test for

max-stability: First, choose different subsets D with the same fixed cardinality. Then extract

several independent realisations of the random variables ηD from the data and test by means of

a qq-plot, if they follow a Gumbel distribution.

We apply this test to the standardised Gumbel transformed data (5.38). As indicated above,

taking daily maxima removes for every location most of the dependence in the time series. For

this test we want to take every precaution to make sure that we work indeed with independent

data. Preliminary tests show that spatial observations, which are a small number of B2 days

apart (to be specified below), show only very little time-dependence.

Consequently, we define time blocks of size B1 of spatial observations, which are in turn

separated by time blocks of size B2 as

SM × T (i) = {1, . . . ,M}2 × {(i− 1)(B1 +B2) + t : t = 1, . . . , B1}, (5.43)

for i = 1, . . . , R = b T
B1+B2

c. The numbers B1 and B2 need to be chosen in such a way that the

blocks can be considered as independent. This results in R independent time blocks of length

B1 of spatial data and thus in R independent realisations of ηD for every D ⊆ SM ×{1, . . . , B1}.
The procedure is illustrated in Figure 5.3.

We use these i.i.d. realisations to estimate µD for every D by maximum likelihood estimation

restricted to [0, log |D|]. Since the MLE of the location parameter of a Gumbel distribution is

not unbiased (cf. Johnson et al. [46], Section 9.6), we perform a bias correction.

For the diagnostic we take K ∈ N and consider subsets D with cardinality |D| = K. As the

total number
(
B1M2

K

)
of those subsets is in most cases intractably large, we randomly choose

m := min{R,
(
B1M2

K

)
} subsets and obtain in total N = m · R subsets, which we denote by D

(i)
j

for j = 1, . . . ,m and i = 1, . . . , R. For every j = 1, . . . ,m we estimate µDj by MLE based on

the i.i.d. random variables η
(i)
Dj

:= η
D

(i)
j

, i = 1, . . . , R. Then we perform qq-plots of

η
(1)
D1
− µD1 , . . . , η

(m)
Dm
− µDm
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5.5 Data analysis

Figure 5.3: R independent realisations of ηD for different subsets D of the space-time observation area.

versus the standard Gumbel distribution. As a measure of variability of the estimates, non-

parametric block bootstrap methods (cf. Politis and Romano [55], Section 3.2) are applied to

obtain 95% pointwise confidence bounds. Using bootstrap methods, we preserve the dependence

between different subsets D in the confidence intervals. Under H0, the bisecting line should lie

within these confidence bounds.

The Florida daily rainfall maxima show only little temporal dependence beyond one day.

Hence we choose B1 = 2 and B2 = 1, which yields R = b732
3 c = 244 mutually independent

time blocks of spatial data. We perform the described procedure for K = 2, 3, 4, 5, which entails

m = R = 244. Thus we obtain a total number of N = 2442 = 59 536 subsets. The power of this

diagnostic test increases with K (cf. Wadsworth [66]) as it gets less likely to include sets of space-

time points that are K-wise independent. Figure 5.4 shows the results for the different choices of

K. The solid red bisecting lines lie inside the confidence bounds. Hence, there is no statistically

significant evidence of the space-time process generating the data not to be max-stable.

5.5.3 Pairwise maximum likelihood estimation

We apply the pairwise maximum likelihood estimation to the standard Fréchet transformed data

(5.39). The parameters to estimate are those of the function δ in (5.40); i.e., C1, C2, C3 ∈ (0,∞)

and α1, α2, α3 ∈ (0, 2].

In the definition of the pairwise log-likelihood function (5.8), the maximum spatial and tempo-

ral lags are specified by the numbers r1, r2 and p, respectively. Immediately by model (5.40) for δ,

the parameters of the three different dimensions (space and time) are separated in the extremal

setting. This has also been noticed in Davis et al. [20], where a simulation study in Section 7 for

the isotropic model shows that estimating the spatial and temporal parameter pairs individually

leads to very good results in terms of root-mean-square error and mean absolute error. Hence,

for example for parameter estimates for C1 and α1, we can set the maximum lags corresponding

to the remaining parameters equal to 0 (i.e., we set r2 = p = 0). This means that we basically
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Figure 5.4: qq-plots of theoretical standard Gumbel quantiles versus the empirical quantiles (black
dots). The latter correspond to the empirical distribution of maxima taken over groups of
cardinality K. Dashed blue lines mark 95% pointwise confidence bounds obtained by block
bootstrap. Solid red lines correspond to no deviation.

fit univariate models to the respective spatial and temporal parts of the dependence function

(5.40). Hence, this separation simplifies the statistical estimation. However, proving asymptotic

properties of the pairwise likelihood estimator in the special case of a univariate model would

for instance still involve showing the required mixing conditions and thus not remove much of

the complexity.

Furthermore, we know that we should not include too many lags in space or time into the

likelihood, since independence effects can introduce a bias in the estimates, see for example

Nott and Rydén [52], Section 2.1, or Huser and Davison [43], Section 4. On the other hand, an

empirical analysis showed that extremal spatial dependence of the Florida daily rainfall maxima

ranges up to lag 4 and extremal temporal dependence does not last more than one or two days, cf.

Figure 7.2.6 in Steinkohl [62]. Hence, we perform the PMLE for maximum spatial and temporal

lags up to 4 and 2, respectively, thus also assuring identifiability of all parameters according

to Table 5.1. The results are summarised in Table 5.2. Setting r1, r2 or p equal to 1 results
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max. lags Ĉi α̂i

(2,0,0) 0.6287
[0.5928, 0.6646]

0.9437
[0.9065, 0.9808]

(3,0,0) 0.6358
[0.5989, 0.6728]

0.8599
[0.8189, 0.9009]

(4,0,0) 0.6438
[0.6051, 0.6825]

0.8107
[0.7690, 0.8525]

(0,2,0) 0.7271
[0.6492, 0.8050]

0.9517
[0.8715, 1.0320]

(0,3,0) 0.7370
[0.6586, 0.8154]

0.8521
[0.7737, 0.9305]

(0,4,0) 0.7476
[0.6677, 0.8275]

0.7931
[0.7039, 0.8822]

(0,0,2) 4.8378
[4.4282, 5.2474]

0.1981
[0.0177, 0.3784]

Table 5.2: Estimates of the parameter pairs (C1, α1), (C2, α2) and (C3, α3) for different maximum spatial
and temporal lags. Intervals below the point estimates are asymptotic 95%-confidence bounds
based on subsampling.

in non-identifiability of the corresponding parameters α1, α2 or α3, respectively; cf. Table 5.1.

Therefore, they are not shown in Table 5.2.

The combination of a rather large estimate for Ĉ3 and a rather small estimate for α̂3 indicates

that there is only little extremal temporal dependence, see Steinkohl [62], Section 7.2. Asymptotic

95%-confidence intervals are based on asymptotic normality of the parameter estimates and

estimated using subsampling methods (cf. Section 5.4).

5.5.4 Isotropic versus anisotropic model

Using the results of Section 5.4, we want to apply the test (5.28) for spatial isotropy to the

hypothesis

H0 : {C1 = C2 and α1 = α2} versus H1 : {C1 6= C2 or α1 6= α2}.

For the block maxima of the precipitation data we have d = 2, M = 12 and T = 732. This

corresponds to the situation of a fixed spatial domain with τT =
√

732.

We use the spatial PMLEs based on maximum lags 2-4, which can be read off from Table 5.2.

We obtain the rejection areas from Theorem 5.16. We choose b1 = b2 = 5, thus ensuring that

the full range of spatial dependence is contained in the subsamples and simultaneously achieving

that their number is large. Concerning the number of time points in each subsample, we take

b3 = 600. Here we choose a large number to ensure that Theorem 5.16, where T → ∞, is

applicable. This results in τb3 =
√
b3 =

√
600. In order to obtain a large number of subsamples,

we further choose e1 = e2 = e3 = 1 as the degree of overlap.
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max.

lag

τT Ĉ2−Ĉ1 τT (Ĉ2 − Ĉ1) Rej
(T )

θ̂C
97.5%-CI

for C2 − C1

Reject

C1 = C2

2 27.055 0.098 2.651 [−2.400, 2.400]c [0.010, 0.187] yes

3 27.055 0.101 2.738 [−2.392, 2.392]c [0.013, 0.190] yes

4 27.055 0.104 2.808 [−2.393, 2.393]c [0.015, 0.192] yes

Table 5.3: Test results for parameters C1 and C2. All values are rounded to three positions after decimal
point.

max.
lag

τT α̂2− α̂1 τT (α̂2 − α̂1) Rej
(T )

θ̂α
97.5%-CI
for (α2 − α1)

Reject
α1 = α2

2 27.055 0.008 0.216 [−2.162, 2.162]c [−0.072, 0.088] no

3 27.055 -0.008 -0.216 [−2.130, 2.130]c [−0.087, 0.071] no

4 27.055 -0.018 -0.477 [−2.342, 2.342]c [−0.104, 0.069] no

Table 5.4: Test results for parameters α1 and α2. All values are rounded to three positions after decimal
point.

Tables 5.3 and 5.4 present the results of the two tests at individual confidence levels β = 2.5%

giving a test for (5.28) at a confidence level 2β = 5% by Bonferroni’s inequality. The differences

(Ĉ2 − Ĉ1) and (α̂2 − α̂1) can be obtained from Table 5.2.

Since we can reject the individual hypothesis that C1 = C2 at a confidence level of 2.5%, we

can reject the overall hypothesis H0 of (5.28) at a confidence level of 5% and conclude that our

data originate from a spatially anisotropic max-stable Brown-Resnick process. Further note the

interesting fact that, although the asymptotic confidence interval for the difference C2−C1 does

not include 0, the individual intervals for C1 and C2 overlap, see Table 5.2. This is due to the

fact that the individual confidence bounds are estimated independently of each other, whereas

the estimated bounds for the difference reflect how far the parameter estimates lie apart in one

fixed particular (sub)sample.

5.5.5 Model check

Finally, having fitted the Brown-Resnick space-time model (5.1) to the precipitation data, we

want to assess the quality of the fit. We take inspiration from Section 7 of Davison et al. [22]

and compare maxima taken over subsets of the space-time precipitation data with simulated

counterparts.

Similarly as in Section 5.5.2, we consider subsets of the observations on a regular grid for L

spatial locations and for time points 1, . . . , B1,

D = {(s(`)
1 , s

(`)
2 , 1), . . . , (s

(`)
1 , s

(`)
2 , B1) : ` = 1, . . . , L}.

We follow the procedure as in (5.43) to extract R independent realisations of {η1(s, t) : (s, t) ∈
D} from the standard Gumbel transformed space-time observations (5.38). This yields in turn

R independent realisations of ηD = max{η1(s, t) : (s, t) ∈ D}, which we summarise in the
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ordered vector ηdata := (η
(1)
D , . . . , η

(R)
D ). Now we simulate a corresponding vector, denoted by

η̂sim := (η̂
(1)
D , . . . , η̂

(R)
D ). To this end we need reliable Monte Carlo values as elements of η̂sim. We

obtain them by simulating empirical order statistics as follows. We simulate m ·R independent

copies of the Brown-Resnick space-time process on D with dependence structure δ as in (5.4)

with the PMLEs from Table 5.2, where we take the estimates based on maximum lag 4 (for the

spatial parameters) and 2 (for the temporal parameters), which are the maximum lags, where

dependence is still present. We transform the univariate margins to standard Gumbel. This

results in corresponding m ·R independent simulations of ηD and we consider them as m blocks

of size R. We order the R values in each block and define η̂
(i)
D as the mean of all simulated ith

order statistics for i = 1, . . . , R, which gives η̂sim := (η̂
(1)
D , . . . , η̂

(R)
D ).

Figure 5.5: Goodness of fit qq-plots for different spatial locations and different L. Top left: L = 2: (1,1)
and (1,2). Top right: L = 3: (1,1), (1,2) and (3,1). Bottom left: L = 4: (1,1), (1,2), (3,1)
and (3,2). Bottom right: L = 5: (1,1), (1,2), (3,1), (3,2) and (2,1). PMLEs underlying the
simulations are based on maximum spatial and temporal lags 4 and 2, respectively. Dashed
blue lines mark 95% pointwise confidence bounds. Solid red lines correspond to no deviation.

The vectors ηdata and η̂sim are compared by qq-plots. If the fit is good, the points in the plots

lie approximately on the bisecting line. Pointwise 95%-confidence bands are determined by the
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Figure 5.6: Predicted conditional probability fields based on daily maxima for reference space-time
points (1,1,1), (5,6,1), (8,10,1) and (10,7,1) and rainfall levels z = z? = 2.5 (clockwise from
the top left to the bottom right).

2.5% and the 97.5% quantiles of the simulated order statistics. As in Section 5.5.3, we choose

B1 = 2. The number of simulations is N = m · R = 100 · 244 = 24400. Figure 5.5 presents the

results for four exemplary groups of locations. The plots reveal a good model fit.

We carried out the simulations using the exact method recently suggested in Dombry et al.

[28], Sections 3.3 and 5.2. For an overview and comparison of different simulation methods for

Brown-Resnick processes we refer to Leber [50].

5.5.6 Application: conditional probability fields

Based on the fitted model, we want to answer questions like: Given there is extreme rain at

some space-time reference point (s?1, s
?
2, t

?) ∈ {1, . . . , 12}2 × {1, . . . , 732}, what is the estimated

probability of extreme rain at some prediction space-time point (sp1, s
p
2, t

p)? In other words, we

want to estimate the probabilities

P (η̃((sp1, s
p
2), tp) > z | η̃((s?1, s

?
2), t?) > z?) , (5.44)

where {η̃((s1, s2), t) : s1, s2 = 1, . . . , 12, t = 1, . . . , 732} are the stationary observations (5.37)

and z and z? are prediction and reference rainfall levels, respectively. Denote by Λµ,σ the Gumbel

distribution with location and scale parameters µ and σ (cf. Section 5.5.1) and set µ̂p := µ̂(sp1, s
p
2),
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σ̂p := σ̂(sp1, s
p
2), µ̂? := µ̂(s?1, s

?
2) and σ̂? := σ̂(s?1, s

?
2), which are the marginal Gumbel parameter

estimates. Simple computations show that (5.44) can be estimated by

1

1− Λµ̂?,σ̂?(z?)

(
1− Λµ̂?,σ̂?(z

?)− Λµ̂p,σ̂p(z)

+ exp
{
− V̂D

(
− 1

log
{

Λµ̂p,σ̂p(z)
} ,− 1

log
{

Λµ̂?,σ̂?(z?)
})}),

where V̂D is the estimate of the exponent measure (5.6) obtained by plugging in the PMLEs

of the parameters of the dependence function δ. Figure 5.6 shows four predicted conditional

probability fields for the reference points (1, 1, 1), (5, 6, 1), (8, 10, 1) and (10, 7, 1) and for high

empirical rainfall levels z = z? = 2.5. Because of the little temporal dependence in the daily

maxima, we only consider equal time points for spatial predictions.
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Appendix to Chapter 2

A.1 Taylor expansion for the pre-asymptotic extremogram

Lemma A.1. Let the assumptions of Theorem 2.8 hold.

(a) For h ∈ Rd the true extremogram is given by

ρAB(h) =
a1a2

a2 − a1

(
− V2(a2, b2) + V2(a2, b1) + V2(a1, b2)− V2(a1, b1)

)
, (A.1)

where V2(·, ·) = V2(h; ·, ·) is the bivariate exponent measure (cf. Beirlant et al. [3], Section 8.2.2)

defined by

P(X(0) ≤ x1, X(h) ≤ x2) = exp{−V2(x1, x2)}, x1, x2 > 0.

For A = (a,∞) and B = (b,∞) we obtain

ρAB(h) = a
(1

a
+

1

b
− V2(a, b)

)
. (A.2)

(b) For fixed h ∈ Rd and the sequence mn satisfying the conditions of Theorem 2.6, the pre-

asymptotic extremogram satisfies as n→∞,

ρAB,mn(h) = (1 + o(1))
[
ρAB(h)+ (A.3)

1

2md
n

a1a2

a2 − a1

(
V 2

2 (a2, b2) + V 2
2 (a2, b1) + V 2

2 (a1, b2) + V 2
2 (a1, b1)

)]
.

For A = (a,∞) and B = (b,∞) this reduces to

ρAB,mn(h) =(1 + o(1))
[
ρAB(h) +

1

2md
na

(ρAB(h)− 2
a

b
)(ρAB(h)− 1)

]
. (A.4)

Proof. Throughout the proof all asymptotic results hold as n → ∞. Since {X(s : s ∈ Rd} has

standard unit Fréchet margins, we can and do choose an = nd in (2.1) such that P(X(0) >

nd) = 1− exp{−n−d} ∼ n−d.
(a) We first show (A.1). With this choice of an, equation (2.2) is equivalent to

ρAB(h) = lim
n→∞

ndP(X(0) ∈ ndA,X(h) ∈ ndB)

ndP(X(0) ∈ ndA)
.
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We set A = (a1, a2) and B = (b1, b2). For the denominator we obtain by a first order Taylor

expansion

ndP(X(0) ∈ nd(a1, a2)) =nd[P(X(0) ≤ nda2)− P(X(0) ≤ nda1)]

=nd
[

exp{− 1

nda2
} − exp{− 1

nda1
}
]

(A.5)

=
1

a1
− 1

a2
+O(n−d)→ 1

a1
− 1

a2
=
a2 − a1

a1a2
> 0.

Since by homogeneity V2(kx1, kx2)) = k−1V2(x1, x2) for k > 0, we find for the numerator

ndP((X(0), X(h)) ∈ nd(a1, a2)× nd(b1, b2))

=nd

[
exp

{
− 1

nd
V2(a2, b2)

}
− exp

{
− 1

nd
V2(a2, b1)

}
− exp

{
− 1

nd
V2(a1, b2)

}
+ exp

{
− 1

nd
V2(a1, b1)

}]
(A.6)

=− V2(a2, b2) + V2(a2, b1) + V2(a1, b2)− V2(a1, b1) +O(n−d).

This yields (A.1).

Furthermore, V2(a,∞) = 1/a, V2(∞, b) = 1/b and V2(∞,∞) = 0, see for instance Resnick [58],

p. 268. Together with the fact that the denominator converges to 1/a, this gives (A.2).

(b) For an estimate of the pre-asymptotic extremogram we need to improve the first order

asymptotics of part (a). For an interval (a, b) we abbreviate Φn(a, b) := exp{− 1
mdn
V2(a, b)}.

From equation (2.9) together with (A.5) and (A.6) we obtain

ρAB,mn(h) =
P(X(0) ∈ md

nA,X(h) ∈ md
nB)

P(X(0) ∈ md
nA)

=
Φn(a2, b2)− Φn(a2, b1)− Φn(a1, b2) + Φn(a1, b1)

exp{− 1
a2mdn

} − exp{− 1
a1mdn

}

= ρAB(h) +
1

exp{− 1
a2mdn

} − exp{− 1
a1mdn

}[
Φn(a2, b2)− Φn(a2, b1)− Φn(a1, b2) + Φn(a1, b1)

−
(

exp
{
− 1

a2md
n

}
− exp

{
− 1

a1md
n

})
ρAB(h)

]
= ρAB(h) +

a1a2

a2 − a1
md
n(1 + o(1))[

Φn(a2, b2)− Φn(a2, b1)− Φn(a1, b2) + Φn(a1, b1)

−
(

exp
{
− 1

a2md
n

}
− exp

{
− 1

a1md
n

})
ρAB(h)

]
(A.7)

By a second order Taylor expansion of Φn it follows that, using (A.1) and (A.5),

ρAB,mn(h) =(1 + o(1))
[
ρAB(h)+
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A.1 Taylor expansion for the pre-asymptotic extremogram

1

2md
n

a1a2

a2 − a1

(
V 2

2 (a2, b2) + V 2
2 (a2, b1) + V 2

2 (a1, b2) + V 2
2 (a1, b1)

)]
.

This shows (A.3).

Now let A = (a,∞) and B = (b,∞). Then a1a2/(a2 − a1) = a1 + o(1) as a2 → ∞ and the

expression in the rectangular bracket in (A.7) becomes[
· · ·
]

= 1− exp
{
− 1

bmd
n

}
− exp

{
− 1

amd
n

}
+ exp

{
− 1

md
n

V2(a, b)
}

−
(

1− exp
{
− 1

amd
n

})
ρAB(h). (A.8)

Abbreviating V2 := V2(a, b), a second order Taylor expansion gives with (A.2) for the right-hand

side of (A.8), ( 1

amd
n

− 1

2a2m2d
n

)
+
( 1

bmd
n

− 1

2b2m2d
n

)
−
( 1

md
n

V2 −
1

2m2d
n

V 2
2

)
−
( 1

md
n

− 1

2am2d
n

)(1

a
+

1

b
− V2

)
+ o(m−2d

n )

=
1

2m2d
n

{(
V 2

2 −
1

a2
− 1

b2

)
+

1

a

(1

a
+

1

b
− V2

)}
+ o(m−2d

n ). (A.9)

Solving (A.2) for V2 gives V2 = V2(a, b) = 1
a(1 − ρAB(h)) + 1

b such that we obtain for the

expression in the curly brackets of (A.9),

(1

a
(1− ρAB(h)) +

1

b

)2 − 1

a2
− 1

b2
+

1

a2
ρAB(h) =

1

a2
(ρAB(h)− 2

a

b
)(ρAB(h)− 1).

Going backwards with this expression proves (A.4).
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B.1 α-mixing of the Brown-Resnick space-time process

In the following we define α-mixing for spatial processes; see e.g. Doukhan [30] or Bolthausen

[6].

Definition B.1. For d ∈ N, consider a strictly stationary random field
{
X(s) : s ∈ Rd

}
and let

d(·, ·) be some metric induced by a norm on Rd. For Λ1,Λ2 ⊂ Zd set

d(Λ1,Λ2) := inf {d(s1, s2) : s1 ∈ Λ1, s2 ∈ Λ2} .

Further, for i = 1, 2 denote by FΛi = σ {X(s), s ∈ Λi} the σ-algebra generated by {X(s) : s ∈
Λi}.

(i) The α-mixing coefficients are defined for k, l ∈ N ∪ {∞} and r ≥ 0 by

αk,l(r) = sup {|P(A1 ∩A2)− P(A1)P(A2)| : Ai ∈ FΛi , |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ r} ,
(B.1)

where |Λi| is the cardinality of the set Λi for i = 1, 2.

(ii) The random field is called α-mixing, if αk,l(r)→ 0 as r →∞ for all k, l ∈ N.

For a strictly stationary max-stable processes Corollary 2.2 of Dombry and Eyi-Minko [27]

shows that the α-mixing coefficients can be related to the extremogram of the max-stable process.

Equations (B.2) and (B.3) follow as in the proofs of Proposition 5.7 and 5.11.

Proposition B.2. For all fixed time points t ∈ N the random field
{
η(s, t), s ∈ Z2

}
(3.1) is

α-mixing with mixing coefficients satisfying

αk,l(r) ≤ 2kl sup
s≥r

χ(s, 0) ≤ 4kle−θ1r
α1/2, k, l ∈ N, r ≥ 0. (B.2)

For all fixed locations s ∈ R2 the time series {η(s, t) : t ∈ [0,∞)} in (3.1) is α-mixing with

mixing coefficients satisfying for some constant c > 0

α(r) := α∞,∞(r) ≤ c
∞∑
u=r

ue−θ2u
α2/2, r ≥ 0. (B.3)
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We will make frequent use of the following simple result.

Lemma B.3. Let z ∈ N. For (θ, α) ∈ {(θ1, α1), (θ2, α2)} and sufficiently large r such that the

sequence uze−θu
α/2 is monotonously decreasing for u ≥ r, we have

gz(r) =
∞∑
u=r

uze−θu
α/2 ≤ ce−θrα/2rz+1, r ∈ N.

for some constant c = c(z) > 0.

Proof. An integral bound together with a change of variables yields

gz(r) = rze−θr
α/2 +

∞∑
u=r+1

uze−θu
α/2 ≤ rze−θrα/2 +

∫ ∞
r

uze−θu
α/2du

= rze−θr
α/2 +

(
2

θ

)(z+1)/α 1

α

∫ ∞
θrα/2

t(z+1)/α−1e−tdt

≤ rze−θrα/2 + c1Γ (d(z + 1)/αe , θrα/2)

= rze−θr
α/2 + c1 (d(z + 1)/αe − 1)! e−θr

α/2

d(z+1)/αe−1∑
k=0

θkrαk

2kk!

≤ rze−θrα/2 + c2e
−θrα/2rα(d(z+1)/αe−1)

≤ ce−θrα/2rz+1,

where Γ(s, r) =
∫∞
r ts−1e−tdt = (s−1)!e−r

∑s−1
k=0 r

k/k!, s ∈ N, is the incomplete gamma function

and c1, c > 0 are constants depending on z.
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C.1 α-mixing with respect to the increasing dimensions

We need the concept of α-mixing for the process {X(s) : s ∈ Rd} with respect to Rw. In a

space-time setting with fixed spatial setting and increasing time series this is called temporal

α-mixing.

Definition C.1 (α-mixing and α-mixing coefficients). Consider a strictly stationary process{
X(s) : s ∈ Rd

}
and let d(·, ·) be some metric induced by a norm ‖ · ‖ on Rd. For Λ1,Λ2 ⊂ Zw

define

d(Λ1,Λ2) := inf {‖s1 − s2‖ : s1 ∈ F × Λ1, s2 ∈ F × Λ2} .

Further, for i = 1, 2 denote by σF×Λi = σ {X(s) : s ∈ F × Λi} the σ-algebra generated by {X(s) :

s ∈ F × Λi}.

(i) We define the α-mixing coefficients with respect to Rw for k1, k2 ∈ N and z ≥ 0 as

αk1,k2(z) := sup {|P(A1 ∩A2)− P(A1)P(A2)| : Ai ∈ σF×Λi , |Λi| ≤ ki, d(Λ1,Λ2) ≥ z} . (C.1)

(ii) We call {X(s) : s ∈ Rd} α-mixing with respect to Rw, if αk1,k2(z) → 0 as z → ∞ for all

k1, k2 ∈ N.

We have to control the dependence between vector processes {Y (s) = XB(s,γ) : s ∈ Λ′1} and

{Y (s) = XB(s,γ) : s ∈ Λ′2} for subsets Λ′i ⊂ Zw with cardinalities |Λ′1| ≤ k1 and |Λ′2| ≤ k2.. This

entails dealing with unions of balls Λi = ∪s∈F×Λ′i
B(s, γ). Since γ > 0 is some predetermined

finite constant independent of n, we keep notation simple by redefining the α-mixing coefficients

corresponding to the vector processes for k1, k2 ∈ N and z ≥ 0 as

αk1,k2(z) := sup{|P(A1 ∩A2)− P(A1)P(A2)| :

Ai ∈ σΛi , Λi = ∪s∈F×Λ′i
B(s, γ), |Λ′i| ≤ ki, d(Λ′1,Λ

′
2) ≥ z}. (C.2)
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C.2 Proof of Theorem 4.8

The proof of Theorem 4.8 is divided into two parts. In the first part we prove a LLN and

a CLT in Lemmas C.2 and C.3 for the estimators µ̂B(0,γ),mn in (4.11). In the second part of

the proof we derive the CLT for the empirical extremogram ρ̂AB,mn in (4.9), and compute the

asymptotic covariance matrix Π. The proof generalises corresponding proofs in Chapter 2 (where

the observation area increases in all dimensions) in a non-trivial way. We recall the separation

of every point and every lag in its components corresponding to the fixed domain, indicated

by the sub index F , and the remaining components, indicated by I, from Assumption 4.4. In

particular, we decompose h(i) = (h
(i)
F ,h

(i)
I ) ∈ H.

The separation of the observation space with its fixed domain has to be introduced into the

proofs given in Chapter 2, which is even in the regular grid situation highly non-trivial. We will

give detailed references to those proofs, whenever possible, to support the understanding. On

the other hand, if arguments just follow a previous proof line by line we avoid the details.

Part I: LLN and CLT for µ̂B(0,γ),mn

As in Section 2.5, we make use of a large/small block argument. For simplicity we assume that

nw/md
n is an integer and subdivide Dn into nw/md

n non-overlapping d-dimensional large blocks

F × Bi for i = 1, . . . , nw/md
n, where the Bi are w-dimensional cubes with side lengths m

d/w
n .

From those large blocks we then cut off smaller blocks, which consist of the first rn elements in

each of the w increasing dimensions. The large blocks are then separated (by these small blocks)

with at least the distance rn in all w increasing dimensions and shown to be asymptotically

independent.

We divide the spatial lags in Ln into different sets according to the large and small blocks.

Recall the notation of (4.12) and (4.16) and around. Observe that a spatial lag (`F , `I) with

`I = (`
(1)
I , . . . , `

(w)
I ) appears in L

(i)
F ×Ln exactly N

(i)
F (`F )

∏w
j=1(n−|`(j)I |) times, where N

(i)
F (`F ) =

N
(i,i)
F (`F ) is defined in (4.17). This term will replace

∏d
j=1(n− |hj |) in the proofs of Chapter 2.

Lemma C.2. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process observed on

Dn = F ×In as in (4.4). For i ∈ {1, . . . , p}, let h(i) = (h
(i)
F ,h

(i)
I ) ∈ H ⊆ B(0, γ) for some γ > 0

be a fixed lag vector and use as before the convention that (h
(p+1)
F ,h

(p+1)
I ) = 0. Suppose that the

following mixing conditions are satisfied.

(1) {X(s) : s ∈ Rd} is α-mixing with respect to Rw with mixing coefficients αk1,k2(·) defined in

(C.1).

(2) There exist sequences m := mn, r := rn →∞ with md
n/n

w → 0 and rwn /m
d
n → 0 as n→∞

such that (M3) and (M4i) hold.

Then for every fixed i = 1, . . . , p+ 1, as n→∞,

E
[
µ̂B(0,γ),mn(Di)

]
→ µB(0,γ)(Di), (C.3)

Var
[
µ̂B(0,γ),mn(Di)

]
∼ md

n

nw
σ2
B(0,γ)(Di), (C.4)
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with σ2
B(0,γ)(Di) specified in (4.14). If µB(0,γ)(Di) = 0, then (C.4) is interpreted as

Var
[
µ̂B(0,γ),mn(Di)

]
= o(md

n/n
w). In particular,

µ̂B(0,γ),mn(Di)
P→ µB(0,γ)(Di), n→∞. (C.5)

Proof of Lemma C.2. We suppress the superscript (i) of h(i) (respectively h
(i)
F ) for notational

ease. Strict stationarity and relation (4.5) imply that

E
[
µ̂B(0,γ),mn(Di)

]
=
md
n

nw

∑
i∈In

|F(hF )|
|F(hF )|

P
(Y (0)

am
∈ Di

)
= md

nP
(Y (0)

am
∈ Di

)
→ µB(0,γ)(Di).

As to the asymptotic variance, we start from (4.14), where it has been calculated that

Var
[
µ̂B(0,γ),mn(Di)

]
=

m2d
n

n2w|F(hF )|2
(
|F(hF )|nwVar

[
1{Y (0)

am
∈Di}

]
+

∑
f ,f ′∈F(hF )

∑
i,i′∈In

(f ,i)6=(f ′,i′)

Cov
[
1{Y (f ,i)

am
∈Di}

,1{Y (f ′,i′)
am

∈Di}

])
=: A1 +A2. (C.6)

By (4.5) and since P(Y (0)/am ∈ Di)→ 0,

A1 =
m2d
n

nw|F(hF )|
P
(Y (0)

am
∈ Di

)(
1− P

(Y (0)

am
∈ Di

))
∼ md

n

nw|F(hF )|
µB(0,γ)(Di)→ 0, n→∞.

Counting the spatial lags as explained above this proof, for fixed k ∈ N we have by stationarity

the analogy of Eq. (2.32).

nw

md
n

A2 =
md
n

|F(hF )|2
( ∑

`I∈Ln
0≤‖`I‖≤k

+
∑
`I∈Ln

k<‖`I‖≤rn

+
∑
`I∈Ln
‖`I‖>rn

)
∑

`F∈L
(i)
F

(`F ,`I)6=0

N
(i)
F (`F )

w∏
j=1

(
1−
|`(j)I |
n

)
Cov[1{Y (0)

am
∈Di}

,1{Y (`F ,`I)
am

∈Di}
]

=: A21 +A22 +A23. (C.7)

Concerning A21 we have,

A21 =
md
n

|F(hF )|2
∑
`I∈Ln

0≤‖`I‖≤k

∑
`F∈L

(i)
F

(`F ,`I)6=0

N
(i)
F (`F )

w∏
j=1

(
1−
|`(j)I |
n

)
[
P
(Y (0)

am
∈ Di,

Y (`F , `I)

am
∈ Di

)
− P

(Y (0)

am
∈ Di

)2]
.
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With (4.5) and (4.6) we obtain by dominated convergence,

lim
k→∞

lim sup
n→∞

A21 =
1

|F(hF )|2
∑
`I∈Zw

∑
`F∈L

(i)
F

(`F ,`I)6=0

N
(i)
F (`F )τB(0,γ)×B((`F ,`I),γ)(Di ×Di). (C.8)

As to A22, observe that for all n ≥ 0 we have
w∏
j=1

(1− |`
(j)
I |
n ) ≤ 1 for `I ∈ Ln. Furthermore, since

Di is bounded away from 0, there exists ε > 0 such that Di ⊂ {x ∈ R|B(0,γ)|
: ‖x‖ > ε}. Hence,

we obtain

|A22| ≤
1

|F(hF )|2
∑

`F∈L
(i)
F

N
(i)
F (`F )

∑
`I∈Zw

k<‖`I‖≤rn

{
md
nP
(
‖Y (0)‖ > εam, ‖Y (`F , `I)‖ > εam

)

+
1

md
n

(
md
nP
(Y (0)

am
∈ Di

))2}
.

which differs from the corresponding expression in Chapter 2 only by finite factors. Thus by

an obvious modification of the arguments in that paper it follows that, using rwn /m
d
n → 0 and

condition (M3),

lim
k→∞

lim sup
n→∞

A22 = 0.

Using the definition (C.2) of α-mixing for A1 = {Y (0)/am ∈ Di} and A2 = {Y (`F , `I)/am ∈
Di}, we obtain by (M4i),

|A23| ≤
1

|F(hF )|2
∑

`F∈L
(i)
F

N
(i)
F (`F )md

n

∑
`I∈Zw:‖`I‖>rn

α1,1(‖`I‖)→ 0, n→∞. (C.9)

Summarising these computations, we conclude from (C.7) and (C.8) that for n→∞,

A2 ∼
md
n

nw

∑
`I∈Zw

1

|F(hF )|2
∑

`F∈L
(i)
F

(`F ,`I)6=0

N
(i)
F (`F )τB(0,γ)×B((`F ,`I),γ)(Di ×Di),

and, therefore, (C.6) implies (C.4). Since md
n/n

w → 0 as n → ∞, equations (C.3) and (C.4)

imply (C.5).

Lemma C.3. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process observed

on Dn = F × In. For i ∈ {1, . . . , p}, let h(i) = (h
(i)
F ,h

(i)
I ) ∈ H ⊆ B(0, γ) for some γ > 0 be a

fixed lag vector and take as before the convention that (h
(p+1)
F ,h

(p+1)
I ) = 0. Let the assumptions

of Theorem 4.8 hold. Then for every fixed i = 1, . . . , p+ 1,

ŜB(0,γ),mn :=

√
md
n

nw

∑
i∈In

[ 1

|F(hF )|

( ∑
f∈F(hF )

1{Y (f ,i)
am

∈Di}

)
− P

(Y (f , i)

am
∈ Di

)]

=

√
nw

md
n

[
µ̂B(0,γ),mn(Di)− µB(0,γ),mn(Di)

] d→ N (0, σ2
B(0,γ)(Di)), n→∞, (C.10)
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with µ̂B(0,γ),mn(Di) as in (4.11), µB(0,γ),mn(Di)) := md
nP(Y (0)/am ∈ Di) and σ2

B(0,γ)(Di) given

in (4.19).

Proof. Again we suppress the superscript (i) of h(i) and h
(i)
F . As for the proof of consistency

above, we generalise the proof of the CLT in Chapter 2 (based on Bolthausen [6]) to the new

setting. We consider the process

{ √
md
n

|F(hF )|

( ∑
f∈F(hF )

1{Y (f ,i)
am

∈Di}

)
: i ∈ Zw

}
,

observed on the w-dimensional regular grid In. In analogy to Eq. (2.37) define

I(i) :=
1

|F(hF )|

( ∑
f∈F(hF )

1{Y (f ,i)
am

∈Di}

)
− P

(Y (0)

am
∈ Di

)
, i ∈ In, (C.11)

and note that by stationarity,

ŜB(0,γ),mn =

√
md
n

nw

∑
i∈In

I(i). (C.12)

The boundary condition required in Eq. (1) in Bolthausen [6] is satisfied for the regular grid In.

By the same arguments as in Chapter 2,

0 < σ2
B(0,γ)(Di) ∼ Var[ŜB(0,γ),mn ] ≤ md

n

nw

∑
i,i′∈Zw

|E[I(i)I(i′)]| <∞, (C.13)

such that
∑
i,i′∈Zw Cov[I(i), I(i′)] > 0. Replacing Sn in Chapter 2 by In and nd by nw, we define

vn :=
md
n

nw

∑
i,i′∈In
‖i−i′‖≤rn

E
[
I(i)I(i′)

]
. (C.14)

and obtain by the same arguments that

vn

Var[ŜB(0,γ),mn ]
= 1− md

n

nw
1

σ2
B(0,γ)(Di)

∑
i,i′∈In
‖i−i′‖>rn

E[I(i)I(i′)](1 + o(1)).

Now note that

md
n

nw

∑
i,i′∈In
‖i−i′‖>rn

E[I(i)I(i′)] ≤ 1

|F(hF )|2
∑

`F∈L
(i)
F

N
(i)
F (`F )md

n

∑
`I∈Zq :‖`I‖>rn

α1,1(‖`I‖)→ 0, n→∞,

as in (C.9), with mixing coefficients defined in (C.2). Therefore,

vn ∼ Var[ŜB(0,γ),mn ]→ σ2
B(0,γ)(Di), n→∞. (C.15)
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The standardized quantities are again as in Chapter 2, with Sn replaced by In and nd by nw,

by

Sn := v−1/2
n ŜB(0,γ),mn = v−1/2

n

√
md
n

nw

∑
i∈In

I(i) and Si,n := v−1/2
n

√
md
n

nw

∑
i′∈In

‖i−i′‖≤rn

I(i′).

The proof continues as in Chapter 2, with nd replaced by nw, by estimating the quantities B1,

B2 and B3. The estimation of B1 follows the same lines of the proof, resulting in

E[|B1|2] = λ2v−2
n

(md
n

nw

)2 ∑
‖i−i′‖≤rn

∑
‖j−j′‖≤rn

Cov
[
I(i)I(i′), I(j)I(j′)

]
.

We use definition (C.2) of the α-mixing coefficients for

Λ′1 = {i, i′} and Λ′2 = {j, j′},

then |Λ′1|, |Λ′2| ≤ 2 and for d(Λ′1,Λ
′
2) we consider the following two cases:

(1) ‖i − j‖ ≥ 3rn. Then 2rn ≤ (2/3)‖i − j‖ and d(Λ′1,Λ
′
2) ≥ ‖i − j‖ − 2rn. Since indicator

variables are bounded and α2,2 is a decreasing function,

|Cov
[
I(i)I(i′), I(j)I(j′)

]
| ≤ 4α2,2

(
‖i− j‖ − 2rn

)
≤ 4α2,2

(1

3
‖i− j‖

)
.

(2) ‖i − j‖< 3rn. Set z := min{‖i − j‖, ‖i − j′‖, ‖i′ − j‖, ‖i′ − j′‖}, then d(Λ′1,Λ
′
2) ≥ z and,

hence,

Cov
[
I(i)I(i′), I(j)I(j′)

]
≤ 4αk1,k2(z), 2 ≤ k1 + k2 ≤ 4.

Therefore,

E[|B1|2] ≤4λ2

v2
n

(md
n

nw

)2[ ∑
‖i−j‖≥3rn

∑
‖i−i′‖≤rn
‖j−j′‖≤rn

α2,2

(1

3
‖i− j‖

)
+

∑
‖i−j‖<3rn

∑
‖i−i′‖≤rn
‖j−j′‖≤rn

αk1,k2(z)
]

≤4λ2

v2
n

(md
n

nw

)2
nwr2w

n

[ ∑
`I∈Zw:‖`I‖≥3rn

α2,2

(1

3
‖`I‖

)
+

∑
`I∈Zw:‖`I‖<3rn

αk1,k2(‖`I‖)
]
.

The analogous argument as in Chapter 2 yields

E[|B1|2] = O
(m2d

n r
2w
n

nw

)
→ 0.

Next, E[|B2|] → 0 as n → ∞ by the same arguments as in Chapter 2, replacing Sn by In and

nd by nw. Then we find for B3 with the same replacements

E[B3] = v
− 1

2
n md/2

n nw/2E
[
I(0) exp

{
iλv
− 1

2
n

√
md
n

nw

∑
‖i‖>rn

I(i)
}]
.
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C.2 Proof of Theorem 4.8

We use definition (C.2) of the α-mixing coefficients for

Λ′1 = {0} and Λ′2 = {i ∈ In : ‖i‖ > rn},

such that |Λ′1| = 1, |Λ′2| ≤ nw and d(Λ′1,Λ
′
2) > rn. Abbreviate

η(rn) := exp
{
iλv
− 1

2
n

√
md
n

nw

∑
‖i‖>rn

I(i)
}
,

then I(0) and η(rn) are measurable with respect to σΛ1 and σΛ2 , respectively, where Λi =

∪s∈F×Λ′i
B(s, γ). Now we apply Theorem 17.2.1 of Ibragimov and Linnik to obtain

|E[B3]| ≤ 4v−1/2
n md/2

n nw/2α1,nw(rn)→ 0,

where convergence to 0 is guaranteed by condition (M4iii).

Part II: CLT for ρ̂AB,mn and limit covariance matrix

Recall the definition of H = {h(1), . . . ,h(p)}. For i ∈ {1, . . . , p}, write h(i) = (h
(i)
F ,h

(i)
I ) with

respect to the fixed and increasing domains F and In. Write further h
(i)
F = (h

(i,1)
F , . . . , h

(i,q)
F )

and h
(i)
I = (h

(i,1)
I , . . . , h

(i,w)
I ). Now we define the ratio

Rn(Di, Dp+1) :=
P(Y (0)/am ∈ Di)

P(Y (0)/am ∈ Dp+1)
=

µB(0,γ),mn(Di)

µB(0,γ),mn(Dp+1)

and the corresponding empirical estimator

R̂n(Di, Dp+1) :=
|F|
∑
i∈In

∑
f∈F(h

(i)
F )

1{Y (f ,i)/am∈Di}

|F(h
(i)
F )|

∑
i∈In

∑
f∈F 1{Y (f ,i)/am∈Dp+1}

=

mdn
nw
∑
i∈In

1

|F(h
(i)
F )|

∑
f∈F(h

(i)
F )

1{Y (f ,i)/am∈Di}

mdn
nw
∑
i∈In

1
|F(0)|

∑
f∈F(0) 1{Y (f ,i)/am∈Dp+1}

=
µ̂B(0,γ),mn(Di)

µ̂B(0,γ),mn(Dp+1)
,

using that F(0) = F . Observe that

|Dn(h(i))| = |F(h
(i)
F )|

w∏
j=1

(n− |h(i,j)
I |) ∼ |F(h

(i)
F )|nw, n→∞.

Then the empirical extremogram as defined in (4.9) for µ-continuous Borel sets A,B in R\{0}
satisfies as n→∞,

ρ̂AB,mn(h(i)) =

1
|Dn(h(i))|

∑
s∈Dn(h(i))

1{X(s)/am∈A,X(s+h(i))/am∈B}

1
|Dn|

∑
s∈Dn

1{X(s)/am∈A}

145



Appendix to Chapter 4

∼
1

|F(h
(i)
F )|nw

∑
i∈In(h

(i)
I )

∑
f∈F(h

(i)
F )

1{X(f ,i)/am∈A,X(f+h
(i)
F ,i+h

(i)
I )/am∈B}

1
|F|nw

∑
i∈In

∑
f∈F 1{X(f ,i)/am∈Dp+1}

∼
|F|
∑
i∈In

∑
f∈F(h

(i)
F )

1{Y (f ,i)/am∈Di}

|F(h
(i)
F )|

∑
i∈In

∑
f∈F 1{Y (f ,i)/am∈Dp+1}

= R̂n(Di, Dp+1),

by definition (4.7) of the sets Di for i = 1, . . . , p. The remaining proof follows exactly as that of

Theorem 2.6, where in the last part the decomposition into a fixed and increasing grid has to

be taken into account. �

C.3 Proof of Theorem 4.12

Throughout this proof, we suppress the sub index mn of ρ̂AB,mn and ρ̂AB,mn for notational

ease. The case, where nw/m3d
n → 0 as n → ∞, is covered by Theorem 4.11, so we assume that

nw/m3d
n 6→ 0. Hence, by definition (4.25) we have to consider

ρ̃AB(h) = ρ̂AB(h)− 1

2md
na

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)

]
.

Observe that for h ∈ H = {h(1), . . . ,h(p)}, as n→∞,

ρ̃AB(h)− ρAB(h)

=ρ̂AB(h)− ρAB,mn(h) + ρAB,mn(h)− 1

2md
na

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)

]
− ρAB(h)

=(1 + o(1))
{
ρ̂AB(h)− ρAB,mn(h) + ρAB(h) +

1

2md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− 1

2md
na

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)

]
− ρAB(h)

}
Since the conditions of Theorem 4.8 are satisfied we have that√

nw

md
n

[
ρ̂AB(h(i))− ρAB,mn(h(i))

]
i=1,...,p

d→ N (0,Π)

and thus, by the continuous mapping theorem, it remains to show that for h ∈ H,√
nw

4m3d
n

1

a

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)− (ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
P→ 0.

We rewrite the latter as√
nw

4m3d
n

1

a

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)− (ρAB,mn(h)− 2

a

b
)(ρAB,mn(h)− 1)

+ (ρAB,mn(h)− 2
a

b
)(ρAB,mn(h)− 1)− (ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
=: A1 +A2.
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As to A1, we calculate√
nw

4md
n

1

2ρAB(h)− (2ab + 1)

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)− (ρAB,mn(h)− 2

a

b
)(ρAB,mn(h)− 1)

]
=

√
nw

4md
n

1

2ρAB(h)− (2ab + 1)

[
ρ̂AB(h)2 − (2

a

b
+ 1)ρ̂AB(h)−

(
ρ2
AB,mn(h)− (2

a

b
+ 1)ρAB,mn(h)

)]
=

√
nw

4md
n

1

2ρAB(h)− (2ab + 1)

[
(ρ̂AB(h)− ρAB,mn(h))(ρ̂AB(h) + ρAB,mn(h))

− (2
a

b
+ 1)(ρ̂AB(h)− ρAB,mn(h))

]
=

√
nw

4md
n

(ρ̂AB(h)− ρAB,mn(h))
ρ̂AB(h) + ρAB,mn(h)− (2ab + 1)

2ρAB(h)− (2ab + 1)
.

By Theorem 4.8, the first term converges weakly to a normal distribution. Since ρ̂AB(h)
P→

ρAB(h) and ρAB,mn(h) → ρAB(h) as n → ∞, the second term converges to 1 in probability.

Slutzky’s theorem hence yields that A1
P→ 0. As to A2, observe that

−
√

4m3d
n

nw
aA2 = ρ2

AB(h)− ρ2
AB,mn(h)) + (2

a

b
+ 1)(ρAB,mn(h)− ρAB(h))

= (1 + o(1))
{
ρ2
AB(h)−

[
ρAB(h) +

1

2md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]]2

+ (2
a

b
+ 1)

[
ρAB(h) +

1

2md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− ρAB(h)

]}
= (1 + o(1))

{
ρ2
AB(h)− ρ2

AB(h)− ρAB(h)

md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− 1

4m2d
n a

2

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]2

+ (2
a

b
+ 1)

[
ρAB(h) +

1

2md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− ρAB(h)

]}
= (1 + o(1))

{ 1

md
na

[
(
a

b
+

1

2
− ρAB(h))

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− 1

4md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]2]}
.

Therefore A2 converges to 0 if and only if
√
nw/m3d

n m
−d
n =

√
nw/m5d

n converges to 0. �

C.4 Proof of Theorem 4.16

We start with the proof of consistency and use a subsequence argument. Let n′ = n′(n) be some

arbitrary subsequence of n. We show that there exists a further subsequence n′′ = n′′(n′) such

that θ̂n′′,V
a.s.→ θ? as n→∞, which in turn implies (4.34).

By (G1) we have for i = 1, . . . , p that ρ̂AB,mn(h(i))
P→ ρAB,θ?(h

(i)) as n → ∞. Hence, there
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exists a subsequence n′′ of n′ such that

[
ρ̂AB,mn′′ (h

(i))
]
i=1,...,p

a.s.→
[
ρAB,θ?(h

(i))
]
i=1,...,p

, (C.16)

as n→∞. For θ ∈ Θ, we define the column vector and the quadratic forms

g(θ) :=
[
ρAB,θ?(h

(i))− ρAB,θ(h(i)) : i = 1, . . . , p
]ᵀ
i=1,...,p,

Q(θ) := g(θ)TV (θ)g(θ) and Q̂n(θ) := ĝn(θ)
ᵀ
V (θ)ĝn(θ),

where we recall from (4.31) that ĝn(θ) =
[
ρ̂AB,mn(h(i))−ρAB,θ(h(i))

]ᵀ
i=1,...,p. Assumptions (G1)

and (G3) imply that Q(θ) > 0 for θ? 6= θ ∈ Θ and that Q(θ?) = 0, so θ? is the unique minimizer

of Q. Smoothness and continuity of the functions ρAB,θ(h(i)) and V (θ) (Assumptions (G4) and

(G5) with z1 = z2 = 0) and (C.16) yield

∆̂n′′ := sup
θ∈Θ
{|Q̂n′′(θ)−Q(θ)|} a.s.→ 0, n→∞. (C.17)

Now assume that there exists some ω ∈ Ω such that (C.17) holds, but θ̂n′′,V (ω) 6→ θ?. Then

there exist ε > 0 and a subsequence n′′′ = n′′′(n′′) such that for all n ≥ 1,

‖θ̂n′′′,V (ω)− θ?‖ > ε.

Thus,

Q̂n′′′(θ̂n′′′,V (ω))− Q̂n′′′(θ?)

= −(Q(θ̂n′′′,V (ω))− Q̂n′′′(θ̂n′′′,V (ω))) +Q(θ̂n′′′,V (ω))− (Q̂n′′′(θ
?)−Q(θ?))−Q(θ?)

≥ Q(θ̂n′′′,V (ω))−Q(θ?)− 2∆̂n′′′ = Q(θ̂n′′′,V (ω))− 2∆̂n′′′

≥ inf{Q(θ) : ‖θ − θ?‖ > ε} − 2∆̂n′′′ > 0

for all n ≥ n0 for some n0 ≥ 1. But this contradicts the definition of θ̂n′′′,V as the minimizer of

Q̂n′′′(θ), θ ∈ Θ. Hence θ̂n′′,V
a.s.→ θ? as n→∞ and this shows (4.34).

To prove the CLT (4.35), we introduce the following notation:

• We denote by e` ∈ Rk the `th unit vector.

• For 1 ≤ i, j ≤ p, let vij(θ) := (V (θ))ij be the entry in the ith row and jth column of V (θ).

• Set v
(`)
ij (θ) := ∂

∂θ`
vij(θ) and V (`)(θ) := (v

(`)
ij (θ))1≤i,j≤p, 1 ≤ ` ≤ k.

As θ̂n,V minimizes ĝn(θ)
ᵀ
V (θ)ĝn(θ) w.r.t. θ, we obtain for 1 ≤ ` ≤ k,

0 =
∂

∂θ`
(ĝn(θ)

ᵀ
V (θ)ĝn(θ))

∣∣∣
θ=θ̂n,V

= ĝn(θ̂n,V )
ᵀ
V (`)(θ̂n,V )ĝn(θ̂n,V )− ρ(`)

AB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]ĝn(θ̂n,V ). (C.18)

Now define the p×k-matrix P̂AB,n :=
∫ 1

0 PAB(uθ?+ (1−u)θ̂n,V ) du, where the integral is taken
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componentwise. Assumptions (G4) and (G5) with z1 = z2 = 1 allow for a multivariate Taylor

expansion of order 0 with integral remainder term of ĝn(θ̂n,V ) around the true parameter vector

θ?, which yields

ĝn(θ̂n,V ) = ĝn(θ?) + P̂AB,n · (θ̂n,V − θ?).

Plugging this into (C.18) and rearranging terms, we find(
− ρ(`)

AB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + (θ̂n,V − θ?)

ᵀ
P̂AB,n

ᵀ
V (`)(θ̂n,V )P̂AB,n

)
(θ̂n,V − θ?)

=ρ
(`)
AB(θ̂n,V )

ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]ĝn(θ?)− ĝn(θ?)

ᵀ
V (`)(θ̂n,V )ĝn(θ?)

− ĝn(θ?)
ᵀ
[V (`)(θ̂n,V ) + V (`)(θ̂n,V )

ᵀ
]P̂AB,n(θ̂n,V − θ?) (C.19)

for 1 ≤ ` ≤ k. Defining R̂n,V as the k × k-matrix whose `th row is given by

(θ̂n,V − θ?)
ᵀ
P̂AB,n

ᵀ
V (`)(θ̂n,V )P̂AB,n, 1 ≤ ` ≤ k,

the system of equations (C.19) can be written in compact matrix form as

(PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + R̂n,V )(θ̂n,V − θ?)

=− PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]ĝn(θ?)−

k∑
`=1

ĝn(θ?)
ᵀ
V (`)(θ̂n,V )ĝn(θ?)e`

−
k∑
`=1

ĝn(θ?)
ᵀ
[V (`)(θ̂n,V ) + V (`)(θ̂n,V )

ᵀ
]P̂AB,n(θ̂n,V − θ?)e`. (C.20)

Hence, multiplying (C.20) by
√
nw/md

n and rearranging terms, we have,√
nw

md
n

(θ̂n,V − θ?)

=− {PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + R̂n,V }−1

× PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]

√
nw

md
n

ĝn(θ?)

− {PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + R̂n,V }−1

k∑
`=1

√
nw

md
n

ĝn(θ?)
ᵀ
V (`)(θ̂n,V )ĝn(θ?)e`

− {PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + R̂n,V }−1

×
k∑
`=1

√
nw

md
n

ĝn(θ?)
ᵀ
[V (`)(θ̂n,V ) + V (`)(θ̂n,V )

ᵀ
]P̂AB,n(θ̂n,V − θ?)e`

=: −A−B − C.

Observe that the smoothness conditions (G4) and (G5) and the rank condition (G6) ensure

invertibility of the terms in curly brackets and boundedness of its inverse. For the remainder of
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the proof, we can hence use Slutsky’s theorem; to this end note that, as n→∞:

• By conditions (G4i) and (G5i) with z1 = z2 = 1, the matrices V (θ) and PAB(θ) are con-

tinuous in θ, hence V (θ̂n,V )
P→ V (θ?) and PAB(θ̂n,V )

P→ PAB(θ?) by continuous mapping.

• Using (4.34), we find that (θ̂n,V − θ?)
P→ 0, R̂n,V

P→ (0, . . . ,0) and P̂AB,n
P→ PAB(θ?).

• The previous bullet point directly implies that C
P→ 0.

• As to A, condition (G2) directly yields
√

nw

mdn
ĝn(θ?)

d→ N (0,Π).

• Furthermore, ĝn(θ?)
P→ 0 by (G1) and therefore B

P→ 0.

Finally, summarising those results, with B(θ?) =
(
PAB(θ?)

ᵀ
[V (θ?) + V (θ?)

ᵀ
]PAB(θ?)

)−1
, we

obtain (4.35). �
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D.1 An auxiliary lemma

Lemma D.1. The following two bounds hold true for r ≥ 1, α ∈ (0, 2] and C > 0:

∞∫
y
ure−Cu

α
du ∼ 1

Cαy
r−α+1e−Cy

α
, y →∞, (D.1)

∞∫
1

( ∞∫
y
ure−Cu

α
du
) 1

3
dy <∞. (D.2)

Proof. First note that integrals of the form
∫∞

0 ure−Cu
α

du are finite for every r > −1, α ∈ (0, 2],

and C > 0, since they are transformations of the gamma function Γ(x) =
∫∞

0 tx−1e−t dt, which

exists for positive x. We prove (D.1) by an application of l’Hôpital’s rule:

lim
y→∞

∫∞
y ure−Cu

α
du

1
Cαy

r−α+1e−Cyα
= lim

y→∞

−yre−Cyα(
−yr + r−α+1

Cα yr−α
)

e−Cyα
= lim

y→∞

yr

yr
(
1− r−α+1

Cα y−α
) = 1.

In order to prove (D.2) first note that it follows from (D.1) that for every ε > 0 there exists

y0 = y0(ε) such that for all y ≥ y0,

( ∞∫
y

ure−Cu
α

du
) 1

3 ≤ (1 + ε)
( 1

Cα

) 1
3
y
r−α+1

3 e−
C
3
yα . (D.3)

Now we split the double integral of (D.2) up into

y0∫
1

( ∞∫
y

ure−Cu
α

du
) 1

3
dy +

∞∫
y0

( ∞∫
y

ure−Cu
α

du
) 1

3
dy =: I1 + I2.

For I1 we obtain

I1 ≤
y0∫

1

( y0∫
y

ure−Cu
α

du
) 1

3
dy +

y0∫
1

( ∞∫
y0

ure−Cu
α

du
) 1

3
dy =: I

(1)
1 + I

(2)
1 .
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I
(1)
1 is obviously finite, and to bound I

(2)
1 we use (D.3), which yields

I
(2)
1 ≤ (y0 − 1)(1 + ε)

( 1

Cα

) 1
3
y
r−α+1

3
0 e−

C
3
yα0 <∞.

Concerning I2, note that

I2 ≤ (1 + ε)
( 1

Cα

) 1
3

∞∫
y0

y
r−α+1

3 e−
C
3
yα dy,

which is finite by finiteness of the gamma function.
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l’Institut Mathématique (Beograd), 80:121–140, 2006.

[42] R. Huser and A. Davison. Composite likelihood estimation for the Brown-Resnick process.

Biometrika, 100(2):511–518, 2013.

[43] R. Huser and A. Davison. Space-time modelling of extreme events. Journal of the Royal

Statistical Society B, 76(2):439–461, 2014.

155

https://arxiv.org/abs/1611.05602
https://arxiv.org/abs/1601.04826
https://arxiv.org/abs/1601.04826


Bibliography

[44] J. Hüsler and R.-D. Reiss. Maxima of normal random vectors: between independence and

complete dependence. Statistics and Probability Letters, 7(4):283–286, 1989.

[45] I. Ibragimov and Y. Linnik. Independent and Stationary Sequences of Random Variables.

Groningen: Wolters-Noordhoff, 1971.

[46] N. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions - Volume

2. Wiley, New York, 2nd edition, 1995.

[47] Z. Kabluchko, M. Schlather, and L. de Haan. Stationary max-stable fields associated to

negative definite functions. Annals of Probability, 37(5):2042–2065, 2009.

[48] S. N. Lahiri, Y. Lee, and N. Cressie. On asymptotic distribution and asymptotic efficiency

of least squares estimators of spatial variogram parameters. Journal of Statistical Planning

and Inference, 103(1):65–85, 2002.

[49] M. Leadbetter, G. Lindgren, and H. Rootzén. Extremes and Related Properties of Random

Sequences and Processes. Springer Verlag, New York, 1983.

[50] D. Leber. Comparison of Simulation Methods of Brown-Resnick processes. Master’s thesis,

Technische Universität München, 2015. Available under https://mediatum.ub.tum.de/

doc/1286600/1286600.pdf.

[51] B. Li, M. Genton, and M. Sherman. On the asymptotic joint distribution of sample space-

time covariance estimators. Bernoulli, 14(1):208–248, 2008.

[52] D. J. Nott and T. Rydén. Pairwise likelihood methods for inference in image models.

Biometrika, 86(3):661–676, 1999.

[53] M. Oesting. Simulationsverfahren für Brown-Resnick-Prozesse. Diploma thesis, Georg-

August-Universität zu Göttingen, 2009. Available under https://arxiv.org/abs/0911.

4389v2.

[54] S. Padoan, M. Ribatet, and S. Sisson. Likelihood-based inference for max-stable processes.

Journal of the American Statistical Association, 105(489):263–277, 2010.

[55] D. N. Politis and J. P. Romano. Nonparametric resampling for homogeneous strong mixing

random fields. Journal of Multivariate Analysis, 47:301–328, 1993.

[56] D. N. Politis, J. P. Romano, and M. Wolf. Subsampling. Springer, New York, 1999.

[57] S. Resnick. Point processes, regular variation and weak convergence. Advances in Applied

Probability, 18(1):66–138, 1986.

[58] S. Resnick. Extreme Values, Regular Variation, and Point Processes. Springer, New York,

1987.

[59] S. Resnick. Heavy-Tail Phenomena, Probabilistic and Statistical Modeling. Springer Series

in Operations Research and Financial Engineering, 2007.

156

https://mediatum.ub.tum.de/doc/1286600/1286600.pdf
https://mediatum.ub.tum.de/doc/1286600/1286600.pdf
https://arxiv.org/abs/0911.4389v2
https://arxiv.org/abs/0911.4389v2


Bibliography

[60] M. Schlather. RandomFields, contributed package on random field simulation for R. http:

//cran.r-project.org/web/packages/RandomFields.

[61] R. L. Smith. Max-stable processes and spatial extremes. Unpublished manuscript, Univer-

sity of North California, 1990.

[62] C. Steinkohl. Statistical Modelling of Extremes in Space and Time using Max-Stable Pro-

cesses. Dissertation, Technische Universität München, München, 2013. Available under

https://mediatum.ub.tum.de/doc/1120541/1120541.pdf.

[63] D. Straumann. Estimation in Conditionally Heteroscedastic Time Series Models. Lecture

Notes in Statistics, Springer, Berlin, 2004.

[64] E. Thibaud and T. Opitz. Efficient inference and simulation for elliptical Pareto processes.

Biometrika, 102(4):855–870, 2015.

[65] E. Thibaud, J. Aalto, D. Cooley, A. Davison, and J. Heikkinen. Bayesian inference for the

BrownResnick process, with an application to extreme low temperatures. Annals of Applied

Statistics, 10(4):2303–2324, 2016.

[66] J. Wadsworth. On the occurrence times of componentwise maxima and bias in likelihood

inference for multivariate max-stable distributions. Biometrika, 102(3):705–711, 2015.

[67] J. Wadsworth and J. Tawn. Efficient inference for spatial extreme value processes associated

to log-Gaussian random functions. Biometrika, 101(1):1–15, 2014.

[68] A. Wald. Note on the consistency of the maximum likelihood estimate. Annals of Mathe-

matical Statistics, 20(4):595–601, 1946.

157

http://cran.r-project.org/web/packages/RandomFields
http://cran.r-project.org/web/packages/RandomFields
https://mediatum.ub.tum.de/doc/1120541/1120541.pdf

	Zusammenfassung
	Abstract
	Acknowledgements
	Introduction
	Motivation and objectives of extreme value theory
	Scope and goals of this thesis
	Outline of this thesis

	Limit theory for the empirical extremogram of random fields
	Introduction
	Regularly varying spatial processes
	Large sample properties of the spatial empirical extremogram
	Consistency and CLT for the empirical extremogram
	Proof of Theorem 2.6

	Semiparametric estimation for isotropic max-stable space-time processes
	Introduction
	Model description and semiparametric estimates
	Estimation of the isotropic Brown-Resnick process
	Subsampling for confidence regions
	Simulation study
	Analysis of radar rainfall measurements
	Conclusions and Outlook

	Generalised least squares estimation of regularly varying space-time processes based on flexible observation schemes
	Introduction
	Model description and the observation scheme
	Limit theory for the empirical extremogram
	Generalised least squares extremogram estimates
	Estimation of Brown-Resnick space-time processes
	Simulation study

	Anisotropic Brown-Resnick space-time processes: estimation and model assessment
	Introduction
	Spatially anisotropic Brown-Resnick processes
	Pairwise maximum likelihood estimation
	Test for spatial isotropy
	Data analysis

	Appendix to Chapter 2
	Taylor expansion for the pre-asymptotic extremogram

	Appendix to Chapter 3
	-mixing of the Brown-Resnick space-time process

	Appendix to Chapter 4
	-mixing with respect to the increasing dimensions
	Proof of Theorem 4.8
	Proof of Theorem 4.12
	Proof of Theorem 4.16

	Appendix to Chapter 5
	An auxiliary lemma

	Bibliography

