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Statistical iterative reconstruction 
algorithm for X-ray phase-contrast 
CT
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Franz Pfeiffer1 & Peter B. Noël6

Grating-based phase-contrast computed tomography (PCCT) is a promising imaging tool on the 
horizon for pre-clinical and clinical applications. Until now PCCT has been plagued by strong artifacts 
when dense materials like bones are present. In this paper, we present a new statistical iterative 
reconstruction algorithm which overcomes this limitation. It makes use of the fact that an X-ray 
interferometer provides a conventional absorption as well as a dark-field signal in addition to the 
phase-contrast signal. The method is based on a statistical iterative reconstruction algorithm utilizing 
maximum-a-posteriori principles and integrating the statistical properties of the raw data as well 
as information of dense objects gained from the absorption signal. Reconstruction of a pre-clinical 
mouse scan illustrates that artifacts caused by bones are significantly reduced and image quality is 
improved when employing our approach. Especially small structures, which are usually lost because 
of streaks, are recovered in our results. In comparison with the current state-of-the-art algorithms 
our approach provides significantly improved image quality with respect to quantitative and 
qualitative results. In summary, we expect that our new statistical iterative reconstruction method to 
increase the general usability of PCCT imaging for medical diagnosis apart from applications focused 
solely on soft tissue visualization.

The limited ability to record the full dynamic range of a signal is a constant concern in imaging. In 
photography for instance, the camera sensor is most often unable to capture the full contrast of a scene, 
forcing the photographer to find a compromise between underexposed and saturated regions. Extension 
of the dynamic range can be achieved, among other ways, through a non-linear transformation of the sig-
nal or by combining multiple photographs taken with different exposure times. The non-linear approach 
typically involves important degradation of the signal-to-noise ratio, while the multiple-capture approach 
can lead to difficulties caused by subject motion or imperfect registration of the individual snapshots.

Difficulties related to limited dynamic range occur, in one form or the other, in all other branches 
of imaging. Conventional X-ray radiography relies on the attenuation of X-rays to produce contrast. 
Thanks to the negative exponential response of the attenuation with the integrated thickness of an 
object or a subject (known as the Beer-Lambert law), the signal of interest is naturally “compressed” 
non-linearly in transmission values that range from 100% to 0%. In this case, problems arise when 
highly absorbing elements - typically metallic implants in medical applications -- cause such high absorp-
tion that the transmitted X-rays are reduced to an undetectable level. When radiographs are combined 
for three-dimensional imaging, such implants usually lead to streak artifacts in computed tomographic 
reconstructions, an effect commonly termed “metal artifacts” in the literature1–6. Similarly, sufficient 
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contrast in soft tissue is not easily achieved with conventional computed tomography (CT) because of 
their weak absorption relative to bone of small variations of the attenuation coefficients between the 
elements that constitute soft tissue.

Higher soft-tissue contrast can be obtained with phase sensitive imaging methods7. These methods 
make use of the phase shift incurred to X-rays, instead of their absorption, as they pass through mat-
ter. Phase-contrast imaging leads to a soft-tissue contrast that is significantly higher than in absorption 
imaging8–12 and is able to deliver additional and complementary information13,14, owing to the fact that 
the variations in refraction between different soft-tissue materials are by orders of magnitude larger than 
those of the attenuation coefficients15,16. However, this high sensitivity to small density variations leads to 
a problem similar to the effects that metal has in conventional CT, this time manifesting itself as phase 
wrapping. Phase wrapping occurs in all phase-contrast techniques, as the quantity that is measured—the 
phase shift—is defined on the unit circle, i.e. in the interval [−  π,π]. If the phase shift of the X-rays is 
outside this interval, the value is wrapped back into this interval and thus leads to no longer uniquely 
defined measurements. Such a phenomenon usually happens when the X-rays are passing through dense 
objects, such as bones, and produces artifacts similar to those caused by metal in conventional CT, 
termed ‘bone artifacts’.

One of the most successful X-ray phase-contrast imaging techniques developed over the last decade 
is based on grating interferometry17–20. Grating interferometry imaging can work with standard labora-
tory sources21,22, possibly in compact setups23, making it especially promising for clinical application. In 
addition to the phase-contrast signal, the technique provides a conventional absorption image, as well as 
a dark-field signal, which maps small angle scattering inside an object24–27 (see fig. 1). These three dif-
ferent signals are measured and extracted simultaneously and are therefore naturally perfectly registered.

Initial investigations have illustrated the high potential of iterative as well as advanced reconstruction 
but also the need for specific algorithms which are designed for PCCT28,29. In this letter we show how 
it is possible to extend the effective dynamic range of a reconstructed tomographic volume through a 
combination of the three signals provided by a grating interferometry imaging system. Our approach 
eliminates most of the artifacts originating from dense objects. The soft-tissue regions, to which the 
phase-contrast signal is sensitive, are combined with information on the location of the dense parts, 
e.g. bones, taken from the absorption signal. The combination is described through a statistical model, 
modifying the statistical uncertainties which are primarily obtained from the dark-field signal and it is 
implemented within our in-house developed statistical iterative reconstruction framework.

We demonstrate the capabilities of this new statistical iterative reconstruction (SIR) algorithm with 
a study of preclinical relevance. The example is the abdominal region of a mouse with bones measured 
with synchrotron radiation. The results gained with the new algorithm are compared to those obtained 
with a conventional analytical reconstruction (filtered backprojection (FBP)) and a standard iterative 
reconstruction (IR) and show significant improvements in image quality and a strong reduction of the 
number and intensity of bone artifacts.

The Problem
We identified the following three primary causes that lead to the appearance of bone artifacts:

Figure 1. Standard FBP tomographic reconstructions from the three signals ((A) absorption, (B) phase-
contrast, (C) dark-field) available from a grating interferometry acquisition. These three different signals 
are measured and extracted simultaneously and are therefore naturally perfectly registered. The absorption 
signal allows for an accurate delineation of the bone, but soft-tissue contrast is limited. The phase-contrast 
reconstruction exhibits strong soft-tissue contrast but problems arise in the vicinity of high density objects. 
Different information is uncovered with the dark-field reconstruction (small-angle scattering).
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1. The strong absorption in dense materials leads to photon starvation and loss of information.
2. Small-angle scattering inside dense, porous materials causes a loss of coherence and thus limits the 

ability to reliably determine the phase shift.
3. The measurement of a phase shift is intrinsically restricted to the interval [− π,π]. If at any posi-

tion the gradient exceeds this range it will be wrapped back into this interval. This phase wrapping 
usually occurs at strong edges, where refraction and thus the differential phase shift is especially 
high, e.g. at the boundary between soft tissue and bones. In combination with 1., measurements 
close to the boundaries of the phase gradient interval can become wrapped due to higher noise 
fluctuations at positions where the count rate is lowered by strong absorption. This phenomenon 
is called statistical phase wrapping30,31.

All of the above effects lead to a phase signal that is no longer uniquely defined at certain positions 
and thus does not represent reliable information for the tomographic reconstruction.

Results
Unlike the case of reduction of metal artifacts in conventional CT, PCCT can make use of the three 
signals (phase-contrast, absorption, dark-field), which are naturally perfectly registered, to overcome the 
limited dynamic range problem occurring with dense objects.

Description of the algorithm. The first part of the reconstruction scheme is the signal extraction 
from the raw interferometer projections. This task is done in a weighted least-squares approach that fits a 
periodic function onto the stepping curves. The weights are taken directly from the measured intensities 
in form of the inverse variance of the intensity.

This information is subsequently utilized in the SIR algorithm, which is formulated as the minimiza-
tion of an objective function (see equation 1 in Methods). The first part of this function is the so-called 
data-fidelity term, that quantifies how well the reconstructed image fits to the measured data. It takes the 
form of a weighted least-squares term, containing the difference between the measured DPC projections 
and a forward model of the reconstruction problem—a projection operator and a derivative to account 
for the differential input data. This difference is weighted with the variances calculated during the signal 
extraction step, to control each individual projection pixel’s influence on the final reconstruction. Pixels 
with a high variance are considered to contain less reliable information and their influence on the data 
fidelity is reduced accordingly.

At this point the formulation of the algorithm is very general. Additional steps have to be taken to 
reduce phase wrapping artifacts caused by dense objects. We address the limited dynamic range problem 
by restricting the influence of presumably phase-wrapped pixels on the reconstruction. The locations of 
pixels with a high probability of being wrapped have to be determined. This is accomplished by making 
use of the absorption signal, precisely delineating bones or other dense objects. The following steps are 
performed and illustrated in Fig. 2:

1. reconstruction of absorption signal (Fig. 2(A))
2. dense object / bone segmentation via thresholding method (Fig. 2(B))
3. calculation of 3D gradient magnitude of segmented volume (Fig. 2(C))
4. forward projection of gradient volume
5. combining gradient projections with statistical weights (Fig. 2(D))

By thresholding the absorption reconstruction (step 2), the bones including their inner structures are 
preserved. The gradient calculation (step 3) is performed to determine the location of tissue-bone bound-
aries. At these boundaries the phase gradient will be especially large. A forward projection operation of 
these boundaries is then used to pinpoint the location of likely phase-wrapped pixels in projection space.

Reconstructing with the data fidelity alone does not provide adequate results, because CT or PCCT 
reconstruction is an ill-posed problem resulting in an unstable solution in the presence of noise. A 
stable solution is obtained by regularizing or constraining the objective function. Most regularization 
terms are based on some a-prior knowledge like an expected smoothness of connected regions. A simple 
quadratic regularization, for example, is defined as the sum of quadratic differences between one voxel 
and its nearest neighbors. The result is the penalty that is added to the objective function. In the optimi-
zation procedure this will lead to reduced value differences between neighboring voxels and thus helps 
to keep the resulting volume smooth. It should be noted that the expected reduced differences consti-
tute a known prior of the object to be reconstructed. The same principle is applied in edge-preserving 
regularization, where the quadratic function is replaced with a Huber potential function on the voxel 
differences. This piecewise-defined function is linear for differences above a choosable threshold and 
quadratic below to further smooth out already flat regions. In this work, the Huber term is applied with 
a mask to restrict its effect only to certain parts of the volume. For the treatment of the bone regions, a 
novel regularization term was designed. It is defined as the quadratic difference between a voxel of the 
phase reconstruction and the corresponding voxel of the absorption reconstruction. If a constant factor 
for bone material is assumed, this term forces the phase values corresponding to bone material towards 
realistic values, whereas before they were unreliable due to dynamic range problem in the projection 



www.nature.com/scientificreports/

4Scientific RepoRts | 5:10452 | DOi: 10.1038/srep10452

data, and effectively couples both signals. A similar regularizer has been used in propagation-based phase 
contrast imaging32. Just as the Huber term, the bone regularization contains a mask to restrict its effect 
to parts of the volume.

Experimental verification.  An ex-vivo phase-contrast CT of a formalin-fixed mouse was measured 
with a grating interferometer installed at beamline ID19 of the European Synchrotron Radiation Facility 
(ESRF). More information can be found in the Materials and Methods section and in33. The dataset was 
subsequently reconstructed using a standard PCCT FBP21, IR and our SIR algorithm.

The statistical weights resulting from the least-squares processing step were modified using the pro-
cedure as explained in the previous section and are illustrated in fig.  2, using the absorption signal 
retrieved from the same measurement. The quadratic regularization term was applied to the complete 
volume, whereas the Huber and bone regularization were only employed at complementary regions: a 
mask (Fig. 2B) was used to determine the non-overlapping regions (bone vs. soft-tissue) where the Huber 
or bone regularization are employed. More details on the reconstruction are given in the Methods.

Figure 3 presents the results of reconstructions performed using FBP (left column), standard IR (mid-
dle column) and the proposed SIR algorithm (right column) in the form of axial slices (A, B, C), as well 
as sagittal (D, E, F) and coronal (G, H, I) cuts through the center of the volume. All six images are win-
dowed in the same range of δ =  [4.067 ×  10−7,5.067 ×  10−7]. As already observed by other investigators, 
the FBP as well as the standard IR reconstruction suffer from strong streaking artifacts and shadowing 
around the bone in axial view and a noise-like texture in coronal view, obstructing most of the fine 
anatomical details. Results from our algorithm show that intensity and extension of bone artifacts are 
drastically reduced, and that the image quality is significantly improved. This becomes most apparent in 
the sagittal and coronal views, where the images appear significantly clearer and almost free of artifacts. 
Figure  4 shows an enlarged view of the part of the sagittal cut marked with a red dashed rectangle in 
fig. 3(D), and clearly illustrates the amount of artifact reduction and detail visibility with SIR (C) com-
pared to the standard FBP (A) and IR (B).

In order to quantify the reduction of artifacts, the bottom of fig.  3 shows a line plot along the red 
dashed circle in panel A. The 0° point is marked with a vertical bar on the circle and the data are 
collected in clockwise order. The gray line corresponds to the FBP, the blue line to the IR and the red 

Figure 2. Illustration of the steps necessary for creating the mask m for modification of the statistical 
weights in the cost function. This modification will reduce the effects of phase-wrapping at the 
transit regions between soft-tissue and dense objects. The mask is initially created from an absorption 
reconstruction (A), where dense regions—the bones—are segmented using a threshold method. In panel (B) 
an enlarged view of the segmented region marked with the red box in (A). The threshold was chosen in a 
way to maintain the full details of the bone. Besides being used in the creation of the weight modification, 
this segmented image is also directly used as a mask for the bone regularization and its inverse as a mask for 
the Huber regularization. To gain knowledge on the bone to soft-tissue boundaries, the gradient magnitude 
of the segmented image is calculated, as shown in panel (C). Finally, the gradient image is forward projected, 
normalized to the interval [0,1] and inverted to create the weight modification m. The result of multiplying 
the modification onto the statistical weights is shown in panel (D).
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line to the proposed SIR algorithm results. This plot shows the capability of the proposed algorithm 
to reduce streaks, while maintaining the underlying details. Examples for these details can be seen at 
around 135° and 220°, where both curves lie on top of each other, whereas in the other parts of the plot 
the FBP curve contains many more and stronger variations. In addition, the standard deviation of several 
regions-of-interest (ROI) were measured. The ROIs are marked with green rectangles in the left column 
images of fig. 3. The results are summarized in Table 1 and illustrate that a significant reduction of noise 
by factors of 1.5–2 is achieved.

Discussion
In this study we presented a new statistical iterative reconstruction algorithm specially designed for 
PCCT. When employing our algorithm on experimen data a reduction of bone artifacts and a signifi-
cantly improved image quality can be reported. By the incorporation of all three complementary signals 
our reconstruction approach enables one to overcome the limited dynamic range problem. This implies 

Figure 3. Results of reconstructions from an ex-vivo mouse X-ray phase-contrast CT measurement using 
FBP (left column), standard IR (middle column) and the proposed sSIR algorithm (right column) in the 
form of axial slices (A, B, C), as well as sagittal (D, E, F) and coronal (G, H, I) cuts through the center of 
the volume. When comparing the FBP results with results from our proposed algorithm, one can observe 
that the strong streaking artifacts and the shadowing around the bone in the FBP (A) as well as in the IR 
reconstruction (B) are clearly reduced in (C). In the sagittal view (D) the streaking artifacts lead to vertical 
lines which are strongest in the vicinity of bones. Even relatively far away from the bone the artifacts affect 
the image quality, as visible in the coronal view (G). Both of these effects obstruct the underlying small 
details, which become much clearer and easier to detect in our SIR reconstructions . A quantitative analysis 
of the streak reduction is shown on the bottom in the form of a line plot along the red, dashed circle in 
panel (A). This plot demonstrates the amount of artifact reduction possible with our method compared 
to FBP (gray line) and IR (blue line), while retaining the underlying tissue structure. In addition, several 
regions-of-interest are placed (green rectangles). The ROI results are given in Table 1.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:10452 | DOi: 10.1038/srep10452

that PCCT significantly benefits from our statistical iterative reconstruction algorithm since a wider 
range of pre-clinical samples can be successfully imaged.

Future work will focus on demonstrations that our algorithm performs well in other sub-optimal 
imaging scenarios where analytical reconstruction algorithms tend to provide poor image quality. With 
the experimental data used in this study, our algorithm provided robust and sound results, even consid-
ering the fact that both the X-ray energy and the chosen Talbot distance contributed to stronger streak 
artifacts. Low energy leads to an increased attenuation, which yields information loss. The high Talbot 
order—that is, a large distance between the phase and absorption grating—produces large transverse 
shifts of the interference pattern and thus increased the probability of phase wrapping. Proving the 
possibility of bone artifact reduction in such a difficult measurement setting demonstrates the poten-
tials of our approach in the context of translation to laboratory standard X-ray tubes. The translation 
to standard X-ray tubes marks an important step toward a successful clinical translation. Furthermore, 
current clinical standards, for example with respect to radiation exposure and acquisition speed, need 
to be maintained for a future clinical system. At the same time, the image quality of clinical PCCT FBP 
reconstructions will be significantly below an acceptable diagnostic demand, especially when bone is 
present. Thus it is absolutely essential to use an algorithmic solution like the one presented in this work 
as foundation to accelerate the clinical translation of PCCT. When employed in the clinical arena our 
applicability to handle and reduce bone artefacts will be of highest importance for any clinical indication.

In summary, we have shown on experimental data that the presented statistical iterative reconstruction 
algorithm increases the general usability of PCCT imaging for pre-clinical studies apart from applica-
tions focused solely on soft tissue visualization. This is a central milestone in transforming grating-based 
phase-contrast X-ray tomography from an experimental status to a robust and highly usable tool in 
small-animal imaging. The results of our investigation suggests a possible future clinical translation of 
PCCT.

Methods
Phase-Contrast and Absorption Computed Tomography. The principle of grating-based PCCT 
and its projection acquisition is explained in detail in8,18,19. The X-rays pass through the object and are 
attenuated and refracted. The refraction causes a change in the direction of the X-ray path, which can 
be measured indirectly using an interferometer. The phase-contrast and the absorption-contrast images 
are acquired simultaneously with this method. The experimental arrangement consists of a phase grating 
G1 and an analyser grating G2. The image contrast itself is formed via the combined effect of the two 
gratings. The second grating (G1) acts as a phase mask and imprints periodic phase modulations onto 

Figure 4. Enlarged view of the sagittal cut from fig. 3(D–F), which is marked with the red dashed rectangle. 
The region is in the vicinity of bones and demonstrates in more detail the drastic reduction of artifacts 
overlaying soft-tissue structures when using the proposed algorithm (C) compared to FBP (A) and IR (B).

region of interest FBP IR SIR σFBP/σSIR σIR/σSIR

axial (ROI 1) 5.01 ⋅  10−9 4.22 ⋅  10−9 3.78 ⋅  10−9 1.33 1.12

axial (ROI 2) 2.27 ⋅  10−9 1.85 ⋅  10−9 1.56 ⋅  10−9 1.46 1.39

sagittal (ROI 3) 2.42 ⋅  10−9 2.07 ⋅  10−9 1.16 ⋅  10−9 2.09 1.78

Table 1. Results of the standard deviation analysis of several regions of interest in fig. 3
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the incoming wave field. Through the Talbot effect, the phase modulation is transformed into an intensity 
modulation in the plane of G2. When one of the gratings is scanned along the transverse direction xg, 
the signal I(m,n) in each pixel (m,n) in the detector plane oscillates as function of xg

24:

I x a m n a m n cos kx m n 1m n g g0 1 1( )φ( ) = ( , ) + ( , ) + ( , ) , ( )( , )

where ai are the amplitude coefficients, φi the corresponding phase coefficients, and k the period of G2. 
Absorption, phase-contrast, and dark-field images can be obtained as the zero- and first-order compo-
nents of the Fourier transform, equivalent to fitting the obtained intensity curves I(m,n)(xg) to a cosine 
function or performing a least-square fit of cosine functions. A set of reference images (with superscript 
r) of the empty beam is acquired for normalization of the sample images so that the final images of 
absorption, phase, and dark-field are calculated by:
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Experiment details. The abdominal region of a mouse cadaver—fixed in formalin and placed in 
a plastic container—was measured in a two-grating interferometer installed at beamline ID19 of the 
European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The interferometer consisted of a 
phase grating with period and an absorption grating with period and an inter-grating distance of . This 
distance corresponds to the 9th fractional Talbot order. The measurement was performed with mono-
chromatic X-rays with an energy of 23 keV. The dataset was recorded in 902 projection views with four 
stepping images each. All images were recorded with a FReLoN camera, a scintillator lens-coupled CCD, 
with an effective pixel size of and image dimensions of 1453 ×  433 pixels. Since this detector type suffers 
from spatial crosstalk, the raw projection images were deconvolved before the signal extraction step to 
improve spatial resolution. As the point spread function of the detector system was not exactly known, 
it was estimated as a two-dimensional Gaussian function with σx,y =  1 pixel. To prevent phase wrapping 
at the edges of the container during the measurement, it was placed in a water bath that extended over 
the field of view.

Reconstruction parameters. The reconstruction shown in the left column of fig. 3 was done with 
a standard filtered backprojection algorithm using a Hilbert filter to handle differential phase-contrast 
data as described in22. The reconstruction in the right column of fig. 3 was performed with our presented 
statistical iterative algorithm. It consists of optimizing the objective function
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where s is the measured projection data, ∂xA is the differential forward projection operator, ρ corre-
sponds to the reconstructed quantity, σ2 represents the variance of the measured data and λR are the 
regularization terms with Q, H and B standing for quadratic, Huber, and bone, respectively. In the last 
term, the electron density ρ is coupled to the absorption density ρa through a proportionality constant 
δB / μB based on the a model for the X-ray index of refraction of bone material. Such a proportionality 
constant has been used in similar previous experiment34.

The optimization was done using a standard nonlinear conjugate gradient algorithm. The regulari-
zation strength parameters, as well as the threshold of the Huber term were chosen empirically, such 
that the result was visually and quantitatively most accurate. The results of both reconstructions were 
converted to units of the refractive index decrement δ by

p

d2 4H O
2

23keV2
δ

π
ρ δ= + , ( ),

where the addition of the refractive index decrement of water takes into account the offset created by 
the water bath.
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