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Bones are bio-composites with biologically tunable mechanical properties, where a polymer matrix of
nanofibrillar collagen is reinforced by apatite mineral crystals. Some bones, such as antler, form and change
rapidly, while other bone tissues, such as human tooth dentine, develop slowly and maintain constant
composition and architecture for entire lifetimes. When studying apatite mineral microarchitecture,
mineral distributions or mineralization activity of bone-forming cells, representative samples of tissue are
best studied at submicrometre resolution while minimizing sample-preparation damage. Here, we
demonstrate the power of ptychographic X-ray tomography to map variations in the mineral content
distribution in three dimensions and at the nanometre scale. Using this non-destructive method, we observe
nanostructures surrounding hollow tracts that exist in human dentine forming dentinal tubules. We reveal
unprecedented quantitative details of the ultrastructure clearly revealing the spatially varying
mineralization density. Such information is essential for understanding a variety of natural and therapeutic
effects for example in bone tissue healing and ageing.

T
he skeletal elements of all mammals are made of nanocomposites incorporating a carbonated apatite
(dahllite) mineral. Typical bone tissues comprise mineralized collagen nanofibrils, where the protein back-
bone is stiffened and embedded in nanometre sized tablets of dahllite1. The degree of mineralization is an

important contributor to the mechanical performance of the tissue and has been the subject of investigation for
many decades mainly in human bone2. Together with fibrillar orientation, the mineral density defines the
mechanical properties of bones, including toughness and susceptibility to fracture, hardness and stiffness. In
healing bones or osteoporosis for example, the degree of mineralization is a strong indicator of the state of tissue
pathology or the progress of biological repair3. Consequently, medical treatment is often directed at controlling or
increasing tissue mineral content, using measures of mineral density as indicators of therapy needs4.

In the crowns of human teeth bone tissue forms the dentine matrix that surrounds the pulp and supports an
outer layer of hard and brittle enamel5 as can be seen in Fig. 1. The matrix houses parallel, micrometre-thick
tubules, extending outwards from the pulp and often confined by a micrometre-thick rim of collagen-free
mineral. Dentine is thus a naturally occurring intertubular bony tissue (intertubular dentine, ITD) with regularly
spaced high-density mineral columns (peritubular dentine, PTD) surrounding empty (or dental liquid-filled)
voids6. Much is known about dentine structure and chemistry, and efforts are continuously made to obtain
reliable and precise measurements of the mineral characteristics, ideally in three dimensions7,8.

The most widely used methods to quantify mineral density in bony tissues are quantitative backscattered
electron microscopy imaging (BSE)9 and X-ray absorption microCT10. The former method benefits from the
nanometre resolution provided by electron microscopy methods, yet it suffers from being limited to analysis on
two dimensional (2D) surface slices, providing no tissue depth information. In addition, BSE requires sufficient
tissue volume to backscatter the electrons, typically micrometres in depth, and relies on the use of careful tissue
stabilization and sample preparation procedures. Absorption microCT, on the other hand, has the advantage of
providing 3D information non-destructively but suffers from poor sensitivity at high resolutions, as the signal
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collected is inherently weak, even when using high-intensity and
monochromatic X-ray sources such as synchrotron facilities.

Penetrating a multi-micrometre thick mineralized sample requires
X-rays with a photon energy of at least a few kiloelectron volts. At
this energy, the sample refracts the incident X-ray waves much more
efficiently than it attenuates them, rendering phase contrast methods
much more sensitive than absorption methods11. Thus, phase con-
trast X-ray imaging can be used to combine a high sensitivity com-
parable to BSE with the 3D nature of X-ray absorption micro
computed tomography (microCT).

Here, we explore the potential of ptychographic X-ray nanoCT
(PXCT)12 to reveal the three-dimensional mass density distribution
within mineralized human tooth dentine. Similar to other X-ray
phase contrast methods, e.g., Ref. 13, but without any assumption
about tissue composition, PXCT gives direct access to the distri-
bution of the electron density14 and thus to the mass density within
the specimen (see Methods section). PXCT is used to image juxta-
posed fully mineralized tissues with different densities, in 3D, at the
micrometre and sub-micrometre length scales.

We measured human dentine specimens by scanning thin (30–
50 mm) samples using a coherent micrometre-sized X-ray beam,
followed by ptychographic and tomographic reconstruction (see
Methods section). Figure 2 shows a comparison of typical BSE and
PXCT cross-sectional images from similar premolar bulk crown
tooth samples. Viewed orthogonal to the tubule axis, in both images,
the air-filled lumen of the dentinal tubules appears in black, while the
highly mineralized (bright) rings of PTD are seen to be scattered
within the ITD matrix. In a typical volume of interest, we observe

a range of density values with specific zones exhibiting mass densities
exceeding 2.5 g/cm3 corresponding to the PTD.

The spatial resolution of 158 nm in our reconstructed volume has
been calculated using the Fourier shell correlation method with the
half-bit threshold criterion15,16. This result has been confirmed
through analysis of the signal from the smallest features observed
in the PXCT images: a lateral tubule ‘‘branch’’, known to connect
neighbouring tubules in teeth17. The profile (Fig. 2 (c)) of the selected
branch (indicated with arrows in Fig. 2 (b)) has a full width at half
maximum of 190 nm (i.e. about 3 pixels of size 65 nm).

The isotropic nature of information provided by PXCT (given a
sufficient number of angular projections) ensures that the same spa-
tial resolution is obtained along orthogonal directions, as is shown in
Fig. 3 exhibiting some examples of the fine detail of the 3D data.
Orthogonal views of the sample are displayed in Fig. 3 (a) and (b) (see
also supplementary Movies 1 to 3) while panels (c) to (e) show 3D
color renderings of the reconstructed volume (see also supplement-
ary Movie 4). We observe that the thickness of the PTD cuffs varies
greatly around each tubule, ranging from 2 mm (see white arrow in
Fig. 3 (b)) to below 200 nm. The PTD appears to be thicker where
branching is seen (see Movie 3), and some of the fine branches are
seen to enter the ITD matrix and connect to neighbouring tubules. In
the supplementary Movies 1 to 3 it can also be seen that some of the
finer branches of tubules in the ITD regions are surrounded by a
mineralized sheath with a density similar to the density of PTD.

Density fluctuations can be observed in the ITD matrix, possibly
corresponding to variations in mineral density observed on 2D
sections18. To better understand the distribution of densities in the
tissue, a histogram of the data is shown in Fig. 4. Four distinct peaks,
labeled (I) to (IV) can be seen, corresponding to different materials
present in the specimen. To precisely quantify the mass density of the
main mineralized components in the sample, we have fitted peaks (I),
(III) and (IV) with Gaussian functions. The first peak arises from air
outside the sample and inside the tubules and has been used to
calibrate the density values of our measurements. The width of the
air peak (I) is due to noise and measurement errors, which are
stronger outside the specimen than inside it. Thus, the full-width
at half maximum of the air peak, equal to 0.15 g/cm3, provides an
estimate of the lowest limit of the density sensitivity of our data. The
central small peak marked II (encircled in green) corresponds to a
material that is less dense than the ITD, possibly the lamina-limitans
soft-tissue, that lines the interior of the tubules19. The presence of this
layer is especially visible in Fig. 3 (a) and (b), e.g., within the tubule at
the bottom of Fig. 3 (a) indicated by the arrow. Its density of approxi-
mately 1.35 g/cm3 corresponds to the density of typical organic
materials such as collagen20.

The two other peaks are associated with ITD (III) and PTD (IV).
Fits of these peaks yield density values of rITD 5 2.13 6 0.09 g/cm3

and rPTD 5 2.59 6 0.08 g/cm3 for the ITD and the PTD respectively

Figure 1 | Tubules in bulk dentine. (a) The parallel arrangement of

tubules (arrows) in dentine (D) below the enamel (E) is revealed by optical

microscopic imaging of a thin polished section. Scale bar: 500 mm (b) The

scanning electron microscopy (SEM) image of a fracture surface of dentine

reveals tubules (arrows) surrounded by dense peritubular dentine (PTD)

with a central empty void. Between tubules, the tissue is occupied by

intertubular dentine (ITD) where mineralized collagen fibers are visible.

Scale bar: 2 mm.

Figure 2 | Backscattered electron-microscopy imaging (BSE) versus ptychographic X-ray nanoCT (PXCT) of bulk crown dentine. Highly mineralized

islands of peritubular dentine in the intertubular matrix as revealed by (a) BSE microscopy at 10 keV and (b) PXCT at 6.2 keV. The mass density

range measured by PXCT is shown in g/cm3 in the colorbar of (b). The scale bar is 5 mm for both images. The full width at half maximum (FWHM) of the

profile plot taken across one of the branches of the tubules is used in panel (c) to evaluate the spatial resolution as described in the main text.
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(mean 6 standard deviation). The density of the ITD falls within the
range of values previously reported in the literature21,22. The density
of PTD in our specimen is higher than the interval of 2.16–2.28
g/cm3 reported from measurements obtained using density frac-
tionation of disaggregated bovine specimens6. We cannot rule out
the possibility that human PTD may indeed have a higher density
than bovine PTD or that, conversely, some ITD or demineralization
may affect results of density fractionation PTD measurements. We
stress that PXCT requires no chemical sample preparation, circum-
venting any risks of demineralization. Furthermore, the true 3D
nature of our data makes it possible to precisely pick out the tissue
type of interest and to quantitatively separate the different miner-
alization densities at the nanometre scale, with no need for cal-
ibration by chemical standards.

With precise estimates of the densities of the main dentine tissue
components, it is possible to derive the volume and mass fractions of
ITD and PTD (see Methods section). In our air-dried samples, ITD is
composed of collagen and mineral. Consequently and based on the
mass density measurements known for each component, we find that
the ITD mineral volume fraction is wm

ITD~45% and the mineral mass

fraction is mm
ITD~63%, as reported in Table 1. These estimates

obtained from the 3D PXCT data are in agreement with the literat-
ure, e.g., Refs. 5,7.

For PTD known to include proteolipid-phospholipid complexes23

and no collagen, we obtain a mineral volume fraction of wm
ITD~73%

with a mineral mass fraction of mm
ITD~86%, in agreement with

results reported in Ref. 23.
From our ultra high resolution, volumetric data by PXCT, it is thus

possible to obtain quantitative 3D measurements of mass density in
mineralized bony tissues such as those found in human teeth, with an
isotropic spatial resolution of less than 200 nm and a density sens-
itivity of 0.15 g/cm3. Such information makes it possible to identify
small but important differences in the distribution of mineral within
the same specimen and also between different samples. Recent devel-
opments in PXCT show that it is possible to achieve resolutions down
to 16 nm24 thus opening the way to study even finer bone micro-
structures such as collagen bundles embedded in the mineralized
matrix. Our results reveal 20% mineral density differences between
PTD and ITD in human dentine, exemplifying the strength of the
method to spatially separate juxtaposed differing mineral densities at
the micrometre length-scale. PXCT thus combines the advantages of
the techniques commonly used to investigate mineralized specimens,
i.e. BSE and X-ray absorption microCT, with minimal sample pre-
paration and is likely to forward our understanding of structural
variability, bone density variations and bone-tissue mineralization
dynamics25.

Methods
Sample preparation. Human caries-free teeth collected from clinics in accordance
with the guidelines provided by the Charité ethical committee from clinics in the
greater Berlin area (Germany) were used. Premolars were used for preparation of
samples for SEM and PXCT imaging of bulk crown-dentine (circumpulpal), known
to have thick PTD. A molar tooth was used to harvest mantle (near-enamel) dentine
where PTD is scarce or missing18, see Supplementary material. For scanning electron
microscopy (SEM), several samples were dehydrated in a series of ethanol solutions,
embedded in polymethylmethacrylate, then sliced and polished orthogonal to the
tubular orientation. Viewing in a Quanta 600 ESEM (FEI, Eindhoven, The
Netherlands) revealed the cross section at a depth of approximately 500 mm below the
enamel and dentin-enamel junction. The backscattered SEM image of the uncoated
sample (Fig. 1) reveals the typical distribution of tubules and corresponding voids,
and highlights subtle variations in mineral content. Sections cut from the buccal
(cheek side) of hydrated intact premolar crowns were used for PXCT imaging of bulk
crown dentine, based on our previous observations of well developed PTD18, while
sections cut from buccal cusps of a hydrated intact molar crown were used to prepare
samples for imaging mantle dentine. The wet samples were gently manually polished

Figure 3 | Ptychographic X-ray nanoCT (PXCT) volume rendering of dentine. Panels (a) and (b) show orthogonal views in the PXCT volume. The

dashed lines in these panels indicate where these two views intersect. These slices are both orthogonal to the one shown in panel (b) of Fig. 2. The scale bar

at the bottom right of panel (a) has a length of 5 mm and a height of 1.5 mm. The arrow in (a) indicates organic debris and the arrow in (b) points to the

PTD. The color bar associated to these images is shown below panel (b). Panels (c) to (e) show false-color 3D renderings of the same volume. In particular,

(d) and (e) highlight the architecture of the dentinal tubules (with a diameter from 1 to 2 mm) and their branches (diameter of approximately 200 nm).

Figure 4 | Histogram of dentine obtained by ptychographic X-ray
nanoCT. The four peaks (I) to (IV) correspond to air and the three

materials typically found in dentine. Gaussian fits to the air (I),

intertubular dentine ITD (III) and peritubular dentine PTD (IV) peaks are

shown with dashed color lines.
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into approximately 50 mm thick plates, from which splinters were cut and mounted
upright on holders used for imaging in the beamline.

Data acquisition. The X-ray ptychography experiments were performed at the
cSAXS beamline of the Swiss Light Source, Paul Scherrer Institut, Switzerland. X-rays
with an energy of 6.2 keV were used and a 3.2 mm pinhole was placed 4.7 mm
upstream of the sample to define a coherent illumination. A PILATUS single-photon
counting detector with a pixel side length of 172 mm positioned 7.14 m downstream
of the sample recorded diffraction patterns. To reduce X-ray scattering and
absorption in air, a tube flushed with Helium was positioned between the sample and
the detector.

For each angular view, 565 diffraction patterns were recorded by raster-scanning
an area of 62 3 25 mm2. A scan with concentric circles was performed to reduce grid
artifacts in the reconstructions known to arise due to aliasing by the periodical
stepping26. The exposure time for each diffraction pattern was 0.1s. This procedure
was repeated for 360 evenly spaced angular positions of the sample which rotated over
180u.

Ptychographic reconstruction. The ptychographic reconstruction was performed
with 250 iterations of an algorithm based on the difference map27 and a refinement
based on the maximum-likelihood approach (250 iterations)28. To account for partial
coherence in the incident beam, a modal decomposition of the probe into four modes
was used29. A region of 128 3 128 pixels of the diffraction patterns was used for the
reconstruction, resulting in a pixel size in the phase data of 65 nm.

Tomographic reconstruction. Phase unwrapping, phase ramp removal, and
alignment procedures performed on the phase reconstructions prior to tomographic
reconstruction are described in Ref. 30. The tomographic reconstructions were
performed on differentiated aligned data using the filtered back-projection algorithm
with a modified filter30.

From refractive index to mass density and mineral content. The quantity directly
measured with PXCT is the decrement of the refractive index d, which, far from the
absorption edges of the constituents of the material, is proportional to the material
electron density re 5 2pd/(rel

2) where re is the classical radius of the electron and l is
the wavelength of the radiation (2 Å in our measurements). For bone-like materials13,
the ratio between molar mass in grams A and the atomic number Z can be
approximated to 2. Thus, the relation between re and the mass density r becomes r 5

2re/NA, where NA is the Avogadro constant. In our measurements:
r g=cm3� �

^0:19|106d.
The mineral content in tooth tissues can be estimated by considering the effects

that the constituents of PTD and ITD have on the X-ray beams that we use. For dry
bone-like specimens, the signal in the diffraction patterns arises from X-ray inter-
actions with hydroxyapatite crystals and with the organic matter7. A variety of density
values have been published over more than 150 years for apatite and specifically
carbonated apatites (dahllite), and here we use the value of rm 5 3.00 g/cm3. Values
of density of collagen rc vary in the interval 1.33–1.45 g/cm3, and we consider rc 5

1.40 g/cm3 in our analysis. The non-collagenous protein in the PTD, is reported23 to
have a density of rp 5 1.33 g/cm3.

The volume fraction wm
ITD of the mineral in the ITD can be calculated from the

relation: wm
ITD~ rITD{rcð Þ= rm{rcð Þ. The volume fraction can be further converted

into mass fraction using the relation: mm
ITD~wm

ITDrm

�
rITD.

Analogous relations are used to calculate volume fraction and mass fraction of

PTD: wm
ITD~ rPTD{rp

� �.
rm{rp

� �
and mm

PTD~wm
PTDrm

�
rPTD.
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Table 1 | Results on intertubular (ITD) and peritubular (PTD) dentin.
Mass density r, mineral volume fraction wm and mineral mass
fraction mm of ITD and PTD calculated from the ptychographic
nanoCT volume

r (g/cm3) wm mm

ITD 2.13 6 0.09 0.45 0.63
PTD 2.59 6 0.08 0.63 0.86
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