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Abstract

First-principles modeling of chemical reactions in electrolytic environments is at the center
of modern computational chemistry. Continuum implicit solvation methods have thereby
become a standard means for computationally efficient descriptions of solvated systems.
Poisson-Boltzmann (PB) techniques on the other hand have been successful in the modeling
of ionic charge distributions. In this thesis, we develop a combined implicit solvation-PB
approach which notably also accounts for non-electrostatic ion-specific effects by intro-
ducing a finite size and Stern layer modified PB (SMPB) method. We implemented the
full methodology into the highly parallelizable numerically tabulated atom-centered or-
bitals (NAO)-based all-electron density functional theory (DFT) package FHI-aims.[1]

Thereby, the key obstacle is the solution of a non-linear partial differential equation (PDE):
The SMPB equation (SMPBE) relates the total charge density to the mean-field electrostatic
potential. Commonly, such PDEs are solved via grid- or function-space-based numerical solu-
tion schemes like the finite difference method (FDM) or finite element method (FEM).[2–4]

However, the all-electron framework of FHI-aims utilizing an irregular integration grid
structure to optimally resolve the Coulomb singularity and wave-function cusps close to the
nuclei renders such approaches in practice numerically inefficient. Therefore, we develop
here a novel function-space-based approach utilizing multi-center multipole representations
of the electrostatic potential. Such a multipole basis is particularly well suited for the solu-
tion of non-local Green’s function integrals. We use this property by employing the Newton
method to linearize the SMPBE and a multipole expansion relaxation method (MERM) to
solve the resulting linearized PDE by iterative Green’s function integrations of a screened
Poisson equation (SPE). By this, we make optimal use of the already present multi-center
multipole framework in FHI-aims which we show to give fast convergence of energies and
forces with the order of the expansion.

As a coarse-grained effective model, the developed SMPB-density functional theory
(DFT) scheme relies on a number of parameters defining the solute’s interactions with the
electrolyte. Solvent-specific parameters determing among others the dielectric function
have been obtained already in previous studies for the case of molecular solutes in aqueous
solutions by fitting to experimental hydration energies.[5,6] In this thesis, we focus on the
ionic parameters for which coherent parametrization strategies are lacking so far. A so far
rarely considered but valuable route to such parameters are experimentally measurable
properties related to the ion effect on the solvation energy as mean activity[7] or Setschenow
coefficients.[8] We use these quantities to assess the SMPB parameter space in the here
considered case of monovalent aqueous salt solutions and detect the Stern layer thickness
expressed in units of the solute’s electron density as the crucial parameter to explain
experimentally observed ion-specific effects. The efficiency of our Stern layer model
is studied at the example of neutral molecules by optimizing the Stern layer thickness
parameter to reproduce tabulated experimentally measured Setschenow coefficients. The
resulting low root mean square errors as well as a physically meaningful scaling of the
optimized Stern layer thicknesses with ionic hydration numbers[9] demonstrates the high



transferability of the parametrization strategy and motivates future studies on more complex
electrolytic systems.



Zusammenfassung

Die first-principles Modellierung von chemischen Reaktionen in elektrolytischen Umge-
bungen stellt eine der zentralsten Herausforderungen der modernen Computerchemie
dar. Von besonderer Bedeutung sind in diesem Zusammenhang implizite Kontinuum-
Solvatationsmethoden, die heutzutage standardmäßig für rechnerisch effiziente Simu-
lationen von solvatisierten Systemen eingesetzt werden. Ionische Ladungsverteilungen
können des Weiteren oft akkurat durch sogenannte Poisson-Boltzmann (PB) Methoden
beschrieben werden. In dieser Doktorarbeit wurde ein implizites Lösungsmittelmodell mit
einem PB Ansatz kombiniert, der zusätzlich zu mean-field elektrostatischen auch nicht-
elektrostatische ionen-spezifische Effekte berücksichtigt. Letzteres wird erreicht durch
die Einführung einer finiten Ionengröße und eines ionen-freien Stern-Schicht Modells
(SMPB Modell). Die komplette Methodik wurde in das hoch-parallelisierbare Allelektronen-
Dichtefunktionaltheorie (DFT) Programmpaket FHI-aims implementiert, welches nu-
merische atom-zentrierte (NAO) Orbitalbasisfunktionen verwendet.[1] Eine zentrale Hürde
stellt dabei die Lösung der nicht-linearen partiellen Differentialgleichung (PDE), der SMPB
Gleichung dar, welche die totale Ladungsdichte mit dem elektrostatischen mean-field Poten-
tial verknüpft. Üblicherweise werden solche PDEs über gitter- oder funktionenraumbasierte
numerische Algorithmen wie Finite Differenzen oder Finite Elemente Methoden gelöst.[2–4]

Für all-Elektronen-DFT Programme wie FHI-aims werden solche Methoden allerdings
in der Anwendung ineffizient, da Erstere eine für Letztere ungeeignete irreguläre Inte-
grationsgitterstruktur benutzen um die Coulomb Singularität und Wellenfunktionsspitze
nahe der Atomkerne optimal aufzulösen. Aus diesem Grund entwickeln wir hier einen
neuartigen Ansatz im Funktionenraum, der auf Multizentren-Multipol-Repräsentationen
des elektrostatischen Potentials basiert. Die Benutzung einer solchen Basis ist speziell
geeignet um nicht-lokale Green’s Funktionenintegrale zu lösen. Unsere Methode benutzt
diese Eigenschaft, indem sie erst die SMPB Gleichung linearisiert und anschließend die
resultierende linearisierte PDE mit einer Multipol-Expansions-Relaxationsmethode (MERM)
löst. Die MERM vollführt dabei iterative Integrationen über die Green’s Funktion der
gescreenten Poisson Gleichung. Dieser Ansatz ermöglicht eine optimale Nutzung der schon
vorhandenen Multizentren-Multipol Infrastruktur in FHI-aims, für welche wir schnelle
Konvergenz von Energien und Kräften mit der Ordnung der Expansion zeigen.

Wie jedes effektive Modell, welches sich aus einem coarse-graining physikalischer Wech-
selwirkungen herleitet, hängt auch die entwickelte SMPB-DFT Methode von einer Reihe an
Parametern ab. Lösungsmittel-spezifische Parameter, die z.B. die dielektrische Funktion fest-
legen, wurden bereits im Voraus im Rahmen anderer Arbeiten für den Fall von Molekülen in
wässrigen Lösungen durch einen Fit an experimentelle Hydratationsenergien bestimmt.[5,6]

In dieser Doktorarbeit liegt deshalb ein spezifischer Fokus auf den übrigen ionischen Pa-
rametern, für die es bisher keine kohärenten Parametrisierungsstrategien gibt. Für eine
Analyse des Parameterraumes nutzen wir den experimentell messbaren Ioneneffekt auf die
Solvatisierungsenergie, der in der Literatur oft als mittlerer Aktivitätskoeffizient[7] oder
Setschenow Koeffizient[8] tabelliert ist. Für den hier betrachteten Fall von monovalenten



wässrigen Salzlösungen können wir schließlich so den Parameterraum auf einen einzigen
Stern-Schichtdicke Parameter einengen, der in Einheiten der Elektronendichte des gelösten
Stoffes gemessen wird und die experimentell beobachteten ionen-spezifischen Effekte
eindeutig erkärt. Die Effizienz eines solchen Ansatzes wird in dieser Arbeit am Beispiel
von gelösten neutralen Molekülen untersucht, wobei der Stern-Schichtdicke Parameter
optimiert wird, um experimentell gemessene Setschenow Koeffizienten zu reproduzieren.
Die resultierenden niedrigen mittleren quadratischen Fehler zusammen mit der physikalisch
sinnvollen Skalierung der optimierten Stern-Schichtdicken mit Hydratationszahlen der
entsprechenden Ionen (hydration numbers[9]) unterstreichen die hohe Transferabilität der
Parametrisierungsstrategie und motivieren zukünftige Studien an komplexeren elektroly-
tischen Systemen.



Contents

1 Introduction 1

2 Theoretical Background 7
2.1 Charge Distributions in Dielectric Media: Implicit Solvation . . . . . . . . . 7

2.1.1 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Electrostatic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Quantum Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . 12
2.2.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Atomic Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Modeling Finite Ionic Strengths: Poisson-Boltzmann Theory . . . . . . . . . 18
2.3.1 PB Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Debye-Hückel Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Improvements on PB Theory . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Finite Size and Stern layer Modified PB Model . . . . . . . . . . . . . 21

3 Methods 33
3.1 Physical Observables of Interest . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Combining Modified PB Theory and DFT . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Modified Kohn-Sham Free Energy Functional . . . . . . . . . . . . . 34
3.2.2 Modeling Functions for Solute-Electrolyte Interactions . . . . . . . . 35
3.2.3 Modified Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . 39
3.2.4 SMPB Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.5 Minimum Free Energy Expression . . . . . . . . . . . . . . . . . . . . 41
3.2.6 Modified Debye-Hückel Theory . . . . . . . . . . . . . . . . . . . . . 42

3.3 All-Electron DFT with NAO Basis Sets: FHI-aims . . . . . . . . . . . . . . . 43
3.3.1 General Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Electrostatic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Default Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.4 Total Energy Expression . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.5 Multipole Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.6 Atomic Forces in FHI-aims . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 PB in FHI-aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



3.4.1 Solving the Modified PB Equation . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Total Energy and Multipole Correction . . . . . . . . . . . . . . . . . 61
3.4.3 Coupling Modified PB and Kohn-Sham Equations . . . . . . . . . . . 62
3.4.4 Atomic Forces in the PB Scheme of FHI-aims . . . . . . . . . . . . . 68

4 Parametrization 73
4.1 Solvation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 PB Ionic Charge Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Stern Layer and Finite Ion Size . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Experimental Reference Properties . . . . . . . . . . . . . . . . . . . 79
4.2.3 The Case of Charged Solutes . . . . . . . . . . . . . . . . . . . . . . 80
4.2.4 The Case of Neutral Solutes . . . . . . . . . . . . . . . . . . . . . . . 82

5 Summary and Outlook 97

List of Acronyms 101

Bibliography 103

Acknowledgements 111

Appendix

A Supplementary Material 115
A.1 KS Hamiltonian for Modified Debye-Hückel Theory . . . . . . . . . . . . . . 115
A.2 Laplace Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2.1 Taylor Expansion of the Green’s Function . . . . . . . . . . . . . . . 116
A.2.2 Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2.3 Radial Integral Splitting . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.3 Multipole Correction to the Hartree Energy . . . . . . . . . . . . . . . . . . 117
A.4 Derivation of the Newton Method . . . . . . . . . . . . . . . . . . . . . . . . 117
A.5 Multipole Correction to the Electrostatic Energy in the PB Case . . . . . . . 119
A.6 Multipole Correction to the Forces in the PB Case . . . . . . . . . . . . . . . 121
A.7 Numerical Convergence of Energies . . . . . . . . . . . . . . . . . . . . . . . 122
A.8 Databases of Setschenow Coefficients . . . . . . . . . . . . . . . . . . . . . . 125

B Computer Code Infrastructure 129



1Introduction

Most of the known chemical and biological processes in nature happen in electrolytic
environments. Although the presence of solvent molecules and ions is known to often
substantially alter thermodynamic stabilities and reaction rates, particularly ion effects
remain largely elusive to quantitative understanding. Notwithstanding the technical and
methodological advance in experimental and computer technologies over the last decades,
the investigation of such systems remains a huge challenge and has still not succeeded to
overcome the large prevailing knowledge gap.

From the theoretical modeling point of view, the largest difficulty arises thereby from the
huge phase space inherent to liquid media. Even small solutes require a large number of
solvent molecules to accurately describe their solvation environment. Being in the liquid
phase each of the solvent molecules possesses a large degree of freedom to explore phase
space. The resulting huge number of solvent configurations requires elaborate thermo-
dynamic sampling to converge macroscopic properties of interest. In cases where more
accurate theoretical methods like quantum-chemical electronic structure calculations are
needed to describe the chemical system, this renders corresponding simulations computa-
tionally intractable. This becomes even more problematic when dissolved ions have to be
accounted as well, as their low concentrations – generally at least one order of magnitude
lower than the solvent molecules – require even longer simulations. A possible way to
overcome this hurdle is the use of embedding techniques. These partition the system into
a chemically active region treated with a high methodological accuracy e.g. by applying
quantum mechanics (QM) techniques and a remaining background regime treated on a
more coarse-grained level e.g. by the use of molecular mechanics (MM). Although such
QM/MM techniques have been successfully applied in various contexts,[10–12] the appear-
ing QM-MM interface often gives rise to conceptual or numerical problems. These comprise
e.g. the definition of interactions or forces across the interface or the penetration of solvent
molecules into the QM region.[10,11] Furthermore, even such elegant approaches do in
general not provide a convergence of essential bulk properties like e.g. the dielectric solvent
response which in the case of aqueous solutions often dominates the overall solvation
effect.[5]

These major drawbacks of QM/MM approaches led to the rebirth of implicit solvation
techniques approximating the solvent as a mere dielectric continuum. Such a rather harsh
coarse-graining of the liquid phase requires a careful modeling of the dielectric function
which uniquely defines the electrostatic solvation energy. Early studies of Born on the
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1. Introduction

dielectric embedding of ions thereby assumed a simple dielectric step function adopting
the value of the isotropic, low-frequency limit bulk dielectric permittiviy in the solvent
and the vacuum value of one inside the so called solvation cavity around the solute.[13]

Nowadays, corresponding solvation cavities are commonly defined on the basis of structural
information of the solute as obtained from e.g. density functional theory (DFT) or force
field program packages.[5,14–18] Additionally, the inclusion of further parametrized non-
mean-field correction terms has been shown to be crucial in order to account for e.g. cavity
creation energies or dispersive solute-solvent interactions. Although implicit solvation
schemes are by construction limited in the modeling of dynamic interactions, such as
hydrogen bonds,[18] they have shown to often provide reasonably accurate estimates of
the thermodynamic solvation effect while at the same time requiring low computational
resources.[18,19] The additional recent advance of corresponding parametrization schemes
has further made them become a standard tool for the modeling of chemical reactions in
solvents, in particular in biology[20–22] and electrochemistry[23,24]

In contrast to the reasonably well studied nature of solute-solvent interactions, little
is known so far about the influence of finite ionic strengths. Chemically, ions are often
assumed to merely play the role of spectators. This view is supported by the fact that
ion effects are in general around one order of magnitude smaller than e.g. hydration
effects. In spite of this, the presence of ions was shown to crucially impact for example
biological systems (cf. Fig. 1.1), leading to substantial modifications of chemical stabilities
and thermodynamic equilibria[25] like e.g. acid dissociation[26] or protein denaturation.[27]

Corresponding empirical observations already date back to the studies of Hofmeister
who started to systematically order ions in the famous Hofmeister series according to
their ability to induce certain ion-specific effects.[28] Although the Hofmeister series was
intensively studied over the years, a general physical understanding is to a large extent
still missing and it remains object of current research.[25] From a computational modeling
perspective, difficulties arise mainly from the large computational expense of entirely
explicit simulations, as biomolecules already typically consist of thousands of atoms.

Fortunately, the dominating ion effects can in many cases be traced back to a simple
electrostatic screening of solute charges. This allows to also coarse-grain the ionic charge
distributions and the related interactions with the solute. Systematic investigations in
this direction were already performed over a century ago in the context of electrochem-
istry (cf. Fig. 1.1) where ions were found to form the electric double layer. The sum of
diffusive ions and rigid ions in the double layer efficiently screens electrode charges and
establishes a constant electrochemical potential at the electrode surface. Related early
studies led to the development of diffusive ion models such as the Poisson-Boltzmann (PB)
(or Debye-Hückel (DH)/Gouy-Chapman (GC)[32–35]) theory approximating the ions as
ideal point charges interacting only via a mean-field electrostatic potential. Despite its
conceptual and mathematical simplicity, PB theory has experienced a long history of
success[36–39,39–47] and has until today been applied in various areas of science such as
chemistry,[48] (electro)catalysis,[49–51] electrochemistry,[52–54] electrokinetics[55,56] and bi-
ology.[36,37,45,47,57–63] Notwithstanding this enormous success, the intensive application of
PB theory also revealed substantial limitations of the original approach in particular in cases
of high ionic charge densities as emerging close to large electrostatic potentials,[60,64–72]

higher-valent ions[73] or large ion sizes. In order to extend the validity to these particular
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electrolytes

biology

electro-

chemistry

Figure 1.1.: Schematic representations for two of the most important research areas in which electrolytes
play a major role: In biology, the presence of ions and solvents critically influences e.g. protein
conformer stabilities, protein denaturation abilities or enzyme activities. Shown in the inset is DNA
and some surrounding ions and water molecules. [29] In electrochemistry and -catalysis ions are not
only supplying charge transfer between the electrodes, but the electric double layer also determines
the electrode potential. [30] The image in the center shows a molecular dynamics snapshot from a NaCl
aquous solution. [31]

situations, a number of modifications were proposed such as the inclusion of a Stern
layer,[74] ion-correlation effects[73,75–77] or finite ionic size corrections.[60,64–71] In the
scope of this thesis, we will be exclusively concerned with monovalent ions for which
ion-correlation effects at moderate ionic strenghts can commonly be safely ignored.[73]

Besides the already mentioned finite-size modification of the ions the treatment of such
salt solutions furthermore requires the consideration of a Stern layer which is typically
viewed as an ion-free region consisting of the solute’s solvation layer and the rigid sol-
vation shells of the ions. Considering both these modifications leads to the finite size
and Stern layer modified PB (SMPB) theory which has been recently applied in different
contexts.[23,24,60,72,78]

The wide success of implicit solvation and PB methods in various areas of science moti-
vates to combine both approaches in a methodological framework for a full modeling of
electrolyte effects. Although corresponding implementations have recently been reported in
DFT[23,24,79–83] or force field (FF)[58,60,63,84,85] program packages, an important bottleneck
remains the parametrization of the underlying coarse-grained physical interactions. While
the parametrization of ion-free implicit solvation models is already a complex issue of cur-
rent research, there exist to date no comparable strategies for the ionic part of such methods.
Moreover, the assumption of a complete decoupling of ionic and solvent parametrizations
might not be valid in cases where the solvent structure is substantially influenced by the

3



1. Introduction

presence of the ions. In this thesis, we will, however, show that there exists also a wide
range of systems where both effects at least partly decouple, thus allowing the development
of separate transferable parametrization schemes for solvent and ion induced interactions.

DFT

PB

Figure 1.2.: Our SMPB-DFT scheme coarse-grains the electrolyte by replacing the solvent with a dielectric
continuum as well as the ions with continuous charge distributions (illustrated by the arbitrarily chosen
blue and red contour planes). The solute of choice (here nitrobenzene) is thereby embedded into a
solvation cavity which is defined by the transition of a dielectric function from its solvent bulk value to
one (shown schematically as white line) parametrized in terms of the solute’s electron density nel. Ions
are on the other hand modeled by introducing a statistical lattice model leading to the appearance of
an ionic size parameter a. Solute and ions furthermore interact via a repulsive potential vrep which is
also expressed in terms of nel. Reproduced in part with permission from ref. [86]. © 2016 American
Chemical Society.

Combinations with DFT program packages are especially useful in the context of elec-
trocatalytical applications[23,24] where a quantum-mechanical treatment of electrons is
generally unavoidable. In the context of electrochemistry, the modeling of electrodes and
catalysts often requires the modeling of extended surface slabs. This is normally done
using solid-state specialized DFT program packages, such as VASP[87–90] or CASTEP[91]

which utilize plane-wave basis sets to expand the Kohn-Sham (KS) orbitals and replace the
explicit core electron density by effective pseudo-potentials.[92–95] Necessary integrations
are commonly carried out on regular integration grids which are optimally suited to re-
solve the smooth periodic functions. Such a grid architecture also simplifies the solution
of partial differential equations (PDEs) like the Poisson equation by applying advanced
finite difference method (FDM) schemes. Similar strategies can be utilized to solve the PB
equation (PBE) which yields the electrostatic potential of the combined solute-electrolyte
system. Unfortunately, such combined PB-DFT schemes are to date not publicly available
and there has been furthermore no attempt to implement such schemes into potentially
more accurate all-electron localized basis functions DFT program packages like FHI-aims
(Fritz Haber Institute ab-initio molecular simulations).[1,96] One reason for that is the

4



commonly irregular integration grid structure inherent to such programs which optimally
resolves the wave-function cusp and Coulomb singularity at the atomic centers but com-
plicates the direct application of grid-based solution schemes for the PB-equation. On the
other hand, the usage of FHI-aims is particularly appealing, since it not only provides an
explicit description of core electrons but also a wide range of advanced methodological
features like explicitly-correlated exchange-correlation (xc)-functionals and excited states
related implementations (Møller-Plesset perturbation theory of 2nd order (MP2), random
phase approximation (RPA), GW, ...),[96] many-body dispersion (MBD)[97,98] and van der
Waals corrections,[99] density functional perturbation theory (DFPT)[100] or a solid-state
QM/MM embedding infrastructure.[101] This extended functionality has proven to be par-
ticularly suited for the modeling of catalytic materials,[12,102–104] while the full-potential
character and excellent scalability with system size and number of central processing
units (CPUs)[1] favors the application to larger biological systems.[105–108] The wide appli-
cability of FHI-aims on the same footing for both biological as electrochemical applications
motivated us to implement a PB implicit solvation scheme in order to arrive at a powerful
framework for the modeling of chemical reactions in electrolytes (cf. Fig. 1.2).

This thesis is structured as follows. In Chapter 2 we first shortly introduce into the basics
of electrostatics as pertaining to the foundations of implicit solvation models, followed by a
concise summary of the principles of quantum chemistry and DFT. Subsequently we present
a full derivation of the SMPB implicit solvation theory utilizing statistical thermodynamics
and path integral formulations.

Following this merely theoretical preface, Chapter 3 then focuses on methodological
issues and begins by deriving the necessary modifications of standard DFT needed for the
implementation of the SMPB scheme. After having derived the full SMPB-DFT formalism,
we then give an introduction into the peculiarities of FHI-aims as an all-electron DFT
program package. The following central part of this chapter then deals with the solution of
the SMPB-equation in FHI-aims, for which we developed an efficient function-space ori-
ented Newton scheme coupled with a self-consistent solver of the resulting linearized PDE
utilizing a multipole expansion relaxation method (MERM). Finally, we derive modified
atomic force expressions to enable dynamic modeling within the SMPB-DFT approach.

As already mentioned before, deriving transferable parameters is essential for the applica-
tion of effective methods like implicit solvation or PB schemes. Chapter 4 therefore expands
on this issue by first adopting the parametrization of the implicit solvation model for water
as a solvent as performed by Andreussi et al.[5] in order to validate the numerical efficiency
of the implementation. In the second part, we then explicitly study the ionic part of the
parameters and perform an extensive analysis and assessment of the PB parameter space by
comparing to experimental observables like activity[7] and Setschenow coefficients.[8,109]

By fitting to experimental training sets, we then arrive at transferable parametrizations for
the particular case of neutral molecules in monovalent salt solutions.
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2Theoretical Background

2.1. Charge Distributions in Dielectric Media: Implicit Solvation

2.1.1. Polarization
If a static electric field E acts on a polarizable dielectric medium, a corresponding displace-
ment field D will be created in the dielectric acting contrary to the perturbation:

D = E + P − 1
2∇Q+ ... . (2.1)

Here, P is the polarization or dipole moment density and Q the tensor of the quadrupole
moment density (cf. ref. [110]) of the dielectric medium. Throughout this thesis atomic
units will be used if not mentioned otherwise. Commonly, the expansion in Eq. (2.1) is
truncated already after the second term.[110] The polarization density P can be expressed
as the sum over all microscopic dipole moments pj per volume unit V of the dielectric
material

P =

∑
j
pj

V
. (2.2)

In order to circumvent an explicit calculation of the microscopic dipole moments, the
polarization density can be Taylor expanded in the electric field:

Pα =
∑
β

χ
(1)
αβEβ +

∑
βγ

χ
(2)
αβγEβEγ +

∑
βγδ

χ
(3)
αβγδEβEγEδ + ... , (2.3)

with the expansion coefficients being the n-th order susceptibilities tensors χ(n) which are
a measure of the polarization of a material in response to the electric field. In isotropic
materials, these tensors can be diagonalized with the respective eigenvalues being degener-
ate. The polarization density is consequently parallel to the electric field simplifying the
equation to:

P = χ(1)E + χ(2)E2 + χ(3)E3 + ... (2.4)

In the case of a linear response of the dielectric medium, Eq. (2.4) can be truncated after
the first term to yield

P = χ(1)E = (ε− 1)E , (2.5)
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2. Theoretical Background

and therefore also
D = E + P = εE , (2.6)

where we replaced the susceptibilities with the more frequently used dielectric permittivity
ε. Correspondingly, also the microscopic dipole moments are in the linear response regime
linearly related to the electric field by the static dipole polarizability tensor α0,j

pj = α0,jE . (2.7)

Further, for isotropic materials, one can then as before replace the tensor α0,j with a scalar,
the static isotropic dipole polarizability αiso

0,j .
Eqs. (2.5) to (2.7) are valid for linear, isotropic dielectric media under the assumption

of static electric fields. In the case of time-dependent perturbations, one instead has to
consider the complex frequency dependent dielectric permittivity ε(ω) which yields the
static permittivity in the low-frequency limit ε = lim

ω→0
ε(ω). The real part is shown exem-

plarily in Fig. 2.1 for water indicating that at low electric field frequencies the molecular
dipole polarization of water is dominating the overall dielectric response. Changes of the
temperature can further influence the clustering of molecular dipoles and therefore lead to
changes of the dielectric permittivity.
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Figure 2.1.: Measured real part of the dielectric permittivity spectrum of water at different temperatures.
The figure was modified from Fig. 3 in ref. [111] by schematically indicating the different dominating
dielectric response regimes, i.e. molecular, atomic and electronic.

2.1.2. Electric Field
We consider now a charge distribution nsol as source of the above considered electric
perturbation field which is then defined according to the first Maxwell equation (Gauss’s
law) as

∇E(r) = 4πnsol(r) . (2.8)

In terms of implicit solvation methods, nsol(r) denotes the solute’s charge density which
is attempted to be embedded into a liquid. In order to coarse-grain such system, one can
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2.1. Charge Distributions in Dielectric Media: Implicit Solvation

formally integrate out the solvent degrees of freedom. This naturally leads to a separation
of space into regions, one with explicitly treated solute charges (ε = 1) and another with
continuum dielectric response (ε = εs,bulk), as illustrated in Fig. 2.2. εs,bulk is thereby
in most implicit solvation methods taken as the low-frequency limit, isotropic dielectric
permittiviy of the bulk solvent assuming that the dielectric tensor can be diagonalized with
all eigenvalues being roughly the same.[18] The dielectric transition region is called the
solvation cavity and sensitively defines the overall solvation effect. The parametrization of
the now spatially dependent dielectric function ε(r) by utilizing known solute properties
is at the heart of implicit solvation techniques. We here postpone a detailed discussion to
Section 3.2.2 where we present a functional form utilizing the solute’s electron density as
descriptor.

nsol

P(r)

nsolv

ε=
1ε=

ε s,bulk

Figure 2.2.: Schematic representation of the implicit solvation model approach. A charge distribution
nsol is embedded into a dielectric continuum with a certain static dielectric permittivity εs,bulk. The
solvent molecules (in this case water) react to the electric field created by the fixed charge distribution
by orienting around highly charged regions. This creates a divergence in the polarization density
which can be related to an effective charge density nsolv. The sum of the two charge densities creates
a new electric field according to Gauss’s law (cf. Eq. (2.10)).

Solvent molecules are often polar molecules which orient according to the electric field
of the solute and thereby screen the solute’s charges. The increased density of oriented
molecules closer to the charge distribution induces a divergence in the polarization density
(cf. Fig. 2.2) which can by using Gauss’s law be associated to a charge density nsolv:

∇P (r) = −4πnsolv(r) . (2.9)

The overall charge density that enters the right hand side of Eq. (2.8) is therefore now the
sum of the solute charge density and the effective charge density of the solvent, giving

∇E(r) = 4πnsol(r) + 4πnsolv(r)︸ ︷︷ ︸
−∇P (r)

⇔ ∇D(r) = ∇ [ε(r)E(r)] = 4πnsol(r) , (2.10)

where we used Eq. (2.6) to introduce the displacement field and the spatially dependent
dielectric function ε(r). We now introduce the electrostatic potential v by using E = −∇v

9



2. Theoretical Background

and obtain a partial differential equation (PDE), the generalized Poisson equation (GPE)
for a charge distribution in a dielectric medium

∇ · [ε(r)∇v] = −4πnsol . (2.11)

From here onwards we drop the r-dependencies of all but the dielectric function, for an
increased legibility.

2.1.3. Electrostatic Energy

In the last section, we have derived the generalized Poisson equation which defines the
electrostatic potential of a charge distribution nsol as embedded into a dielectric medium.
Of more interest in the application of implicit solvent methods are, however, integrated
properties like free energies which can be more easily compared to experimental mea-
surements. The assembly of a charge distribution nsol in the dielectric medium gives for
instance rise to an electrostatic energy cost which is defined by both the charge density and
the electrostatic potential. To derive a corresponding expression, we start by searching for
an energy functional of v which is constructed in such a way that the electrostatic potential
at its minimum v◦ fulfills exactly the generalized Poisson equation Eq. (2.11). Such a func-
tional can be then in principle also used in variational functional minimization techniques
to determine the electrostatic potential instead of directly solving the generalized Poisson
equation.

We start by writing down the self-energy of an electric field E = −∇v in a dielectric
medium described by the dielectric function ε(r):

Eelstat[v] = 1
8π

∫
drε(r)|∇v|2 . (2.12)

We aim to minimize this functional with respect to v, i.e. find the roots of the functional
derivative with respect to v. In general, for functionals of the form

F [ρ] =
∫

drg (r, ρ(r),∇ρ(r)) (2.13)

the functional derivative with respect to a function ρ is given by

δF
δρ

= δ

δρ

[∫
drg[ρ,∇ρ]

]
=
[
∂g

∂ρ
−∇ · ∂g

∂(∇ρ)

]
. (2.14)

In the case of Eq. (2.12) we can then associate ρ with v and obtain

δEelstat

δv
= − 1

4π∇ [ε(r)∇v] = 0 , (2.15)

which is the homogeneous generalized Poisson equation or generalized Laplace equation.
In order to also account for the presence of a finite solute’s charge density to arrive instead
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2.2. Quantum Chemistry

at Eq. (2.11), we can modify this functional by adding the generalized Poisson equation as
a constraint using a Lagrange multiplier function λ:

Eelstat[v] = 1
8π

∫
dr
{
ε(r)|∇v|2 + λ

( 1
4π∇ · [ε(r)∇v] + nsol

)}
= 1

8π

∫
drε(r)

(
|∇v|2 − 2(∇v)(∇λ)

)
+ 1

4π

∮
dA [ε(r)∇v]λ+

∫
drnsolλ ,

(2.16)

where we in the second step used the product rule and furthermore
∫

dr∇f(r) =
∮

dAf(r)
where

∮
denotes an integral over the boundary surface. By comparing Eq. (2.16) to

Eq. (2.12), we can easily see that choosing the Lagrange multiplier as λ = v leads to a
functional

Eelstat[v] =
∫

dr
{
− 1

8πε(r)|∇v|2 + nsolv

}
, (2.17)

which minimizes as desired to the generalized Poisson equation. The surface integral in
Eq. (2.16) thereby vanishes for the here considered Dirichlet boundary condition v → 0 for
|r| → ∞ which we will consistently apply throughout the thesis.

With Eq. (2.17), we have arrived at a proper energy functional which at its minimum
equals the electrostatic energy of charge distributions embedded into dielectric media.
Inserting the generalized Poisson equation Eq. (2.11) into Eq. (2.17), then finally yields
the well-known expression for the electrostatic energy

Eelstat
◦ = 1

2

∫
drnsolv◦ , (2.18)

where we introduced the subscript “◦” to indicate that this expression resembles the
minimum of a functional.

2.2. Quantum Chemistry
So far, we have derived all necessary equations to describe classical charge distributions
embedded into dielectric media. To calculate the energy of such a system via Eq. (2.18)
one, however, requires knowledge about the actual charge distribution which then defines
the electrostatic potential v via the generalized Poisson equation. In this thesis, we are
interested in the modeling of chemical systems for which a wide range of computational
techniques provide different levels of approximations to the corresponding charge densities.
Such approaches range from highly coarse-grained bead-models in biology in which func-
tional groups are considered as single particles up to highly accurate quantum-mechanical
theories catching most of the correlated interactions between the charge assembly of atomic
nuclei and electrons. In this thesis, we concentrate on density functional theory (density
functional theory (DFT)) because it offers for most chemical systems of interest a good
compromise between accuracy and computational speed. As in all electronic structure
theories, the solute charge density is thereby expressed as a sum of electronic nel and
nuclear contributions nnuc

nsol = nel −
Nat∑
at
Zatδ(r −Rat) = nel + nnuc(r −Rat) , (2.19)
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2. Theoretical Background

where Zat,Rat and Nat are the nuclear charges, positions and the total number, respectively.
Note that in agreement with the common convention in DFT, we will adapt the positive
sign convention for the electronic charge density.

2.2.1. Schrödinger Equation

A system consisting of electrons and nuclei is generally described by the Hamiltonian Ĥ
given as

Ĥ = Ĥel({r}, {R}) + T̂n({R})
Ĥel = T̂el + V̂ee + V̂en + V̂nn , (2.20)

where Ĥel is the electronic Hamiltonian and T̂el and T̂n denote the kinetic energies of the
electrons and nuclei, respectively. The potential energy operators V̂ee, V̂en and V̂nn cover the
electron-electron, electron-nuclei and nuclei-nuclei interactions, respectively. The electron
coordinates are thereby given as {r} = {r1, ..., ri, ..., rNe}, with the total number of
electrons Ne, while the nuclear coordinates are expressed as {R} = {R1, ...,Rat, ...,RNat}.

The Hamiltonian in Eq. (2.20) can be utilized in a fully quantum mechanical treatment
of protons and electrons described by the time-dependent many-particle wave function Φ
and the system state then evolves according to the time-dependent Schrödinger equation
(TD-SE)

i~
∂Φ({r}, {R}, t)

∂t
= Ĥ({r}, {R})Φ({r}, {R}, t) . (2.21)

2.2.2. Born-Oppenheimer Approximation
The solution of the Schrödinger equation (SE) can in many cases be simplified by separating
the fast electronic motion from the much slower nuclear motion. Electrons are thereby
assumed to adjust instantaneously to the motion of the nuclei and can for each nuclear
arrangement be found in an electronic state Ei({R}) (Born-Oppenheimer approximation
(BOA)). The BOA is one of the most important approximations in quantum chemistry
because it allows the simulation of a broad range of complex systems. Exceptions are so
called nonadiabatic processes which can be observed e.g. in the dynamics of molecules at
metal surfaces.

The electronic states Ei({R}) define an energy landscape in the space of nuclear co-
ordinates commonly referred to as potential energy surface (PES). The often also called
Born-Oppenheimer (BO) or adiabatic states Ei({R}) are defined as eigenvalues of the
electronic Hamiltonian with the corresponding time-independent electronic SE given by

Ĥel({r}, {R})Ψi({r}, {R}) = Ei({R})Ψi({r}, {R}) , (2.22)

We can expand the wave function Φ({r}, {R}, t) in terms of these states with the expansion
coefficients Ξi({R}, t) then depending on the nuclear coordinates and the time (due to the
kinetic energy operator of the nuclei):

Φ({r}, {R}, t) =
∑
i

Ξi({R}, t)Ψi({r}, {R}) (2.23)
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2.2. Quantum Chemistry

If the coupling between nuclear and electronic motion is large, Φ({r}, {R}, t) is given
at each time by a combination of several BO wave functions Ψi({r}, {R}) (nonadiabatic
regime) and one has to perform computationally expensive quantum dynamics or combined
quantum-classical techniques (surface hopping, Ehrenfest dynamics,...) to evolve the
system’s coordinates. On the other hand, if the coupling is small, the nuclear motion
evolves on a PES built up by a single BO wave function Ψi({r}, {R}) or adiabatic state
(adiabatic dynamics or standard molecular dynamics). In this case the time-independent
SE Eq. (2.22) is enough to describe the system at a specific nuclear arrangement and the
time evolution in the nuclear coordinates can be performed classically. Fortunately, for
most chemical systems as also in this thesis, one generally finds nuclear motion to evolve
classically on the ground state PES E◦({R}).

2.2.3. Density Functional Theory

2.2.3.1. Hohenberg-Kohn Theorem

Although the BOA allows for many systems to decouple electronic and nuclear motion and
therefore to solve the SE only for a specific nuclear arrangement (we will therefore from
now on drop the dependency of Ψ on the nuclear positions for better readability), the
many-particle wave function

Ψ({r1, . . . , rNe}, {σ1, . . . , σNe}) (2.24)

is still of a high dimensionality of 3Ne spatial and Ne spin coordinates {σi = ±1
2}. The

strength of DFT now arises from the Hohenberg-Kohn theorem which states that the three-
dimensional electron density

nel(r) = Ne
∑
σ1

· · ·
∑
σNe

∫
dr2

∫
dr3 · · ·

∫
drNe |Ψ|2 (2.25)

already contains all necessary information required for an exact ground state theory. More
precisely, one can show, that the electron density nel uniquely defines the nuclear positions
and in consequence also the nuclear potential Ven, more generally denoted as external
potential V ext. For a fixed number of electrons, this potential, however, resembles the only
system-dependent contribution to the electronic Hamiltonian in Eq. (2.20), while all other
parts can be readily written as unique functionals of nel. In consequence, one can then with
the knowledge of V ext define a SE which unique solution is given by the ground state wave
function Ψ. In sum, there exists therefore a unique map from nel to Ψ[nel], i.e. Ψ[nel] is a
unique functional of the electron density. This also implies that we can write the energy
expectation value as a functional of the electron density:

E[nel] = 〈Ψ[nel]|Ĥel|Ψ[nel]〉

= 〈Ψ[nel]|T̂el + V̂ee|Ψ[nel]〉+
∫

drV̂ extnel︸ ︷︷ ︸
V ext[nel]

+Vnn . (2.26)

The Hohenberg-Kohn theorem also states that for any specific external potential V ext the
ground state is a global minimum of this functional minimized by the ground state electron
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density nel,◦. Thus, the ground state energy is obtained by functional minimization with
respect to nel:

E◦ = min
nel

E[nel] . (2.27)

This variational principle provides the basis of using energy minimization techniques to
determine the ground state in DFT calculations based on Eq. (2.26).

2.2.3.2. Kohn-Sham Equation

Although the Hohenberg-Kohn theorem states the existence of a unique map of the electron
density to the many-body wave function Ψ[nel], the exact analytical expression performing
this map is unknown. This necessitates to approximate this relation e.g. by turning off all
inter-electronic interactions. For such a reference system of non-interacting electrons, we
then write the Hamiltonian of the system as Ĥ = T̂ S + V̂ S, where T̂ S is the kinetic energy
and V̂ S an effective potential. Since the potential V̂ S uniquely determines the electronic
ground state, we can also choose it in such a way that the ground state electron density of
the system of non-interacting electrons coincides with that of the many-body system. The
goal has therefore switched from finding a map between Ψ and nel to the determination of
an effective potential contributing to the operator V̂ S which gives us the same ground state
as in the many-body system.

Starting from Eq. (2.26), the energy functional of the system can then be written as:

EKS[v, nel] = T S[nel] + V S[v, nel] , (2.28)

where we introduced a dependency on the still to be determined electrostatic potential
v = ves + vnuc with the electronic Hartree potential ves and the known nuclear potential
vnuc = −

∑
at

Zat
|r−Rat| . The electron density is given by a simple sum over single-electron

orbitals ψl

nel =
Nstates∑
l=1
|ψl|2 , (2.29)

with the ψl being the single-electron wave-function and Nstates the corresponding total
number of such states . Eq. (2.29) results from the fact that the many-electron wave-
function in the case of non-interacting electrons is given by a Slater determinant of
single-electron wave-functions ψl. The kinetic energy functional in Eq. (2.28) is therefore
given by

T S[nel] = 〈Ψ[nel]|T̂ S|Ψ[nel]〉 =
Nstates∑
l=1
〈ψl|t̂s|ψl〉 . (2.30)

The effective potential energy functional is expressed in terms of the electrostatic energy
functional as given in Eq. (2.17) (with ε = 1):

V S[v, nel] = Eelstat[v, nel] + Exc[nel] =
∫

dr
{
− 1

8π |∇v|
2 + nelv + nnucv

}
+ Exc[nel] ,

(2.31)
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where the exchange-correlation (xc) energy Exc contains all non-mean-field electron-
electron interactions as well as kinetic energy corrections.

Minimization of the Kohn-Sham (KS) functional Eq. (2.28) with respect to the electro-
static potential v leads to the Poisson equation in vacuum (cf. Section 2.1.3). In order
to also find the minimum in the direction of the electron density, we additionally ensure
the orthonormalization of the single-electron wave functions by constructing a Lagrangian
functional

L[v, nel] = EKS[v, nel] +
Nstates∑
l=1

Nstates∑
k=1

λlk

[∫
drψ∗l ψk − δlk

]
, (2.32)

with δlk being the Kronecker delta. We then minimize this functional with respect to the
single-electron orbitals

δL[nel, v]
δψ∗l

= 0 ∀l, (2.33)

and by again applying Eq. (2.14) to evaluate the functional derivatives, we get:

∑
k

λlkψk = δL
δψ∗l

= δT S[nel]
δψ∗l︸ ︷︷ ︸

t̂s=− 1
2∇2ψl

+ δV S[v, nel]
δnel︸ ︷︷ ︸
vs

dnel
dψ∗l︸ ︷︷ ︸
ψl

= ĥKSψl , (2.34)

where we introduced the KS operator ĥKS = t̂s + vs with vs = v + vxc and

vxc = δExc

δnel
. (2.35)

Applying a unitary conformation, these equations can be recast into the KS equations

ĥKSψl = εlψl , (2.36)

where we have replaced the Lagrange multipliers λl with the single-electron states εl.
Solving the KS equations yields the single-electron wave functions defining the ground
state electron density. However, since vs depends on the electron density itself, fixed
point iteration techniques have to be applied. In most DFT program packages simple
self-consistent field (SCF) cycles are used in combination with mixing schemes to increase
the overall convergence.

Finally, we point out that all derivations in this section as in the whole thesis are
performed for the case of a spin-less electron density for simplicity, although it is straight-
forward to generalize the method to include spin. Indeed, the results as presented in
Chapter 4 were performed using spin-polarized DFT calculations.

2.2.3.3. Total Energy Expression

The Poisson and KS equations can be inserted into the KS functional in order to arrive at
the ground state or minimum energy expression. Inserting the optimal electron density
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nel,◦ and electrostatic potential v◦ into Eq. (2.31) and using the validity of the Poisson
equation we then get for the effective potential

V S[nel,◦] = V S[v◦, nel,◦] = Ees[ves,◦, nel,◦] + Een[nel,◦] + Enn + Exc[nel,◦] , (2.37)

where ves,◦ is the solution to the Poisson equation with the electronic charge density nel,◦.
Ees is the Coulomb integral or Hartree energy representing mean-field electron-electron
interactions (cf. Eq. (2.18)):

Ees[ves,◦, nel,◦] = 1
2

∫
drnel,◦ves,◦ . (2.38)

Correspondingly, Een denotes the electron-nuclei interaction energy and Enn the nuclei-
nuclei interaction energy. The minimum free energy is then given by

E◦ = min
nel,v

EKS[v, nel] = T S[nel,◦] + Ees[ves,◦, nel,◦] + Een[nel,◦] + Enn + Exc[nel,◦] .

(2.39)

In many cases, it can be useful to express the total energy in terms of the single-electron
states εl,◦. To achieve this, we can expand the electron density in the single-electron orbitals
according to Eq. (2.29), replace the operators with the KS operator and finally insert the
KS equation to obtain:

E◦ = EKS[v◦, nel,◦] =
Nstates∑
l=1

εl,◦ −
∫

drnel,◦v
xc + Exc[nel,◦]−

1
2

∫
drnel,◦ves,◦︸ ︷︷ ︸
Edouble

+Enn ,

(2.40)

where Edouble denotes the so called double-counting correction.

2.2.3.4. Exchange-Correlation Functionals

Exchange-correlation energy contributions are comprised of the Pauli-repulsion or exchange
correction and the electron-electron correlation energy. Although DFT itself is an exact
theory, the lacking knowledge about the correct analytical form of the xc-functional renders
it an approximation. More precisely, corresponding analytical expressions are only available
for specific systems as e.g. the homogeneous electron gas (HEG). The local density
approximation (LDA) makes use of this limiting case by expressing the xc-energy in terms
of the local electron density and the corresponding HEG xc energy density εxc,LDA:

Exc,LDA[nel] =
∫

drnelε
xc,LDA (nel) . (2.41)

Although the LDA is useful in the case of highly delocalized electrons and a smooth electron
density as one usually finds in metalic systems, more localized systems such as molecules
are often represented with an insufficient accuracy. To correct on this bottleneck, more
advanced generalized gradient approximation (GGA) xc-functionals explicitely consider
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also the local gradient of the electron density as a parameter for the xc-energy. Through
this the accuracy can be drastically increased in particular in situations where the electron
density changes rapidly. In this thesis, we will exclusively rely on the Perdew-Burke-
Ernzerhof-generalized gradient approximation (PBE-GGA) variant[112,113] for which the
xc-functional is parameterized as

Exc,PBE[nel] =
∫

drnelε
xc,PBE (rs(r), s(r)) (2.42)

with s = |∇nel|
2kFnel

denoting the reduced density gradient (kF = (3π2nel)1/3) and rs = (4πnel)−1/3

the Wigner-Seitz radius. Since the Poisson-Boltzmann (PB) equation (PBE)-functional re-
duces to the LDA version in the case of small electron density gradients, it in practice
not only performs well for molecules[113] but importantly and in contrast to many other
GGAs also reproduces accurately metallic properties like the bulk modulus or the cohesive
energy.[114,115] It therefore offers in many cases a good compromise between computational
speed and accuracy and represents a widely used standard xc-functional. For that purpose,
we use PBE-GGA throughout the whole thesis. We, however, found that properties of inter-
est as solvation energies show only a slight dependence on the choice of the xc-functional.
This is somehow expected since solvation cavities that determine such effects are located
far away from the nuclei where electron densities are commonly small.

2.2.4. Atomic Forces
So far, we introduced DFT as an efficient method for solving the electronic SE and obtaining
the electronic ground state for a fixed nuclear configuration. Often, one is additionally
interested in the dynamics of the system, which in the BOA arises on a single PES. The
gradient of this multi-dimensional object along the direction of a particular nuclear coor-
dinate then resembles the force acting on the respective atom. Starting from the energy
expectation value Eq. (2.26), we can calculate the atomic force by performing the total
derivative with respect to the position of the respective atom:

Fat = −dE[nel,◦]
dRat

= −
〈

Ψ
∣∣∣∣∣ dĤel
dRat

∣∣∣∣∣Ψ
〉

︸ ︷︷ ︸
FHF

at

−2
〈 dΨ

dRat

∣∣∣∣ Ĥel

∣∣∣∣Ψ〉︸ ︷︷ ︸
FPulay

at

, (2.43)

where we used the hermiticity of the Hamiltonian. The first term is called Hellmann-
Feynman (HF) forces and arises from the position dependence of the electronic Hamilto-
nian:

FHF
at = −

〈
Ψ
∣∣∣∣∣dV̂en + V̂nn

dRat

∣∣∣∣∣Ψ
〉

. (2.44)

The second part in Eq. (2.43) is called Pulay forces. If Ψ is an exact solution of the electronic
SE, this term vanishes (HF theorem):

F Pulay
at = 2E◦〈

dΨ
dRat

|Ψ〉 = 2E◦
d

dRat
〈Ψ|Ψ〉︸ ︷︷ ︸

=1

= 0 . (2.45)
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In general, however, the exact solution Ψ is not known and one approximates it by a finite
expansion in basis functions which is why one can not simply replace ĤelΨ with E◦Ψ. If
the basis functions are plane-waves, the Pulay forces still vanish since the approximated
Ψ does then not depend on the atomic positions and therefore dΨ

dRat
= 0. In the case

of atom-centered basis functions, the representation of Ψ in a truncated basis set leads,
however, to non-vanishing derivatives and therefore necessitates the explicit calculation of
Pulay forces.

2.3. Modeling Finite Ionic Strengths: Poisson-Boltzmann
Theory

In Section 2.1, we introduced the basics of implicit solvation methods by deriving the
generalized Poisson equation and the corresponding electrostatic energy expression de-
scribing charge distributions in dielectric media. This section now deals with modifications
of this theory necessary to account also for the presence of dissolved ions leading to the
well-known PB theory.

2.3.1. PB Theory
The modeling of electrolytes is a long-standing scientific challenge with its roots reaching
back to the very beginnings of electrochemistry. Since the early studies of Helmholtz
over 150 years ago,[116] the solid-electrolyte interface has been of continuous interest and
motivated the development of a wide range of different theoretical models. Figure 2.3
illustrates the current view of the structural composition of this interface (cf. ref. [117]).
Close to the charged electrode surface the accumulation of ions leads to the creation
of a double layer, i.e. a capacitor like arrangement of counter-ions which effectively
screen the charges causing a linear drop in the total electrostatic potential. At the outer
Helmholtz plane, the double layer descends into the diffuse ion layer which can be in
general well described by the famous Gouy-Chapman (GC) or PB theory. Thereby, diffusive
ions are approximated as point charges distributed according to the mean-field electrostatic
potential.[32–35,117] Considering again the generalized Poisson equation Eq. (2.11), the
previously introduced solute charge density is here simply given by the electrode charge and
the inclusion of ions requires merely the addition of the ionic charge density distribution
nPB

ion on top of the total charge density resulting in the PBE:

∇ · [ε(r)∇v(r)] = −4πnsol(r)− 4πnPB
ion(r) . (2.46)

v here denotes the total electrostatic potential as created by both ionic and solute charge
densities. The ionic charge densities can be expressed in terms of the ion concentrations via

nPB
ion(r) = z

[
cs

+(r)− cs
−(r)

]
, (2.47)

which implies that the electrolyte consists of cations and anions with the same charge z.
The focus in this thesis on such so called z:z electrolytes is mainly motivated from the fact
that a larger amount of experimental reference data is available which is in general needed
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to benchmark and parameterize PB models (cf. Section 4.2). Yet, equivalent relations for
other salts can be derived analogously[64] and the methodology developed here should be
in principle also applicable for those cases.

The ion concentrations introduced in Eq. (2.47) can be expressed as a function of the
potential of mean force (PMF) w±:[118]

cs
±(r) = cs,bulke∓βw±(r) , (2.48)

where cs,bulk denotes the ionic bulk concentration and β = 1/(kBT ) with the temperature T
and the Boltzmann constant kB. The PMF w± equals the average work that has to be done
to bring the ion of charge ± to the position r with the fixed local charge density nsol. In
order to obtain w± one has to therefore perform explicit simulations of the electrolyte and
average out all interactions of the depicted ion yielding the averaged interaction energy.
Fortunately, such an elaborate effort can in many cases be avoided by approximating the
PMF with the mean-field electrostatic potential v which is the main assumption behind PB
theory. As an example, in the original formulation of PB theory the ion concentrations are
then simply given by:[118]

cs
±(r) = cs,bulke∓βv(r) . (2.49)

2.3.2. Debye-Hückel Theory

In most PB variants, the ionic charge density is a nonlinear function of the potential v which
complicates the numerical solution of the corresponding PBE Eq. (2.46). In the limit of low
electrostatic potentials (|v| � 25 mV for monovalent ions at room temperature[35,65,119])
the PBE can, however, be drastically simplified by Taylor expanding the ionic charge density
nPB

ion around v = 0 up to 1st order in v

nLPB
ion = nPB

ion

∣∣∣
v=0︸ ︷︷ ︸

− 1
4π κ̄

2
0

+ ∂nPB
ion
∂v

∣∣∣∣∣
v=0︸ ︷︷ ︸

− 1
4π κ̄

2

v , (2.50)

where κ̄0 is an often zero offset and κ̄ the modified Debye-Hückel (DH) coefficient. Applying
this formalism to standard PB theory with the ion concentrations given in Eq. (2.49), then
yields the DH theory with κ̄0 = 0 and κ̄2 = κ2εs,bulk and κ denoting the standard DH
coefficient given as

κ =

√
8πcs,bulkz2β

εs,bulk . (2.51)

In this limit, the main ionic effect in dilute solutions is the screening of the Coulomb
interactions characterized by the DH screening length κ−1 (cf. Fig. 2.3). In aqueous
electrolytes κ−1 is in the order of nanometers and therefore much smaller than any
macroscopic length, thus the bulk solution containing diffusing ions stays quasineutral.
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Figure 2.3.: Schematic representation of the electrolytic aqueous environment of a negatively charged
electrode. Shown is the electrostatic potential v in black, the concentration of the cations cs

+ in blue
and the anions cs

− in red. In the here considered case we explicitly account for possibly present
specifically adsorbed co-ions at the electrode surface. Without such ions, there is no sign inversion
of the electrostatic field at the outer Helmholtz plane indicated by the dashed black line. Close to
the negatively charged surface one finds high concentrations of hydrated cations balancing out the
negative surface charge leading to the creation of an electric double layer. The separation layer
between ions and surface built up by solvent molecules is called the Stern layer. Outside the outer
Helmholtz plane, in the diffusive ion regime, the ion concentrations decay exponentially according to
GC/PB theory. The Debye length κ−1 is commonly considered as the beginning of bulk-like behaviour
of the electrolyte.

Inserting the approximated ionic charge density into the PBE then gives the linearized
PB (LPB) equation (LPBE):

(∇ · [ε(r)∇] v = −4πnsol − 4πnLPB
ion

m
(∇ · [ε(r)∇]− κ̄2(r))v = L̂0v = −4πnsol + κ̄2

0 , (2.52)

with the linear operator L̂0.

2.3.3. Improvements on PB Theory

As appealing as the conceptual simplicity of the original PB or DH theory is, such approaches
have proven insufficient for the modeling of e.g. highly charged solutes, enzyme active
sites,[63,120] or charged surfaces like Langmuir monolayers.[64] The failure of standard PB
theory in these particular cases can be thereby attributed to the point-like description of
the ions leading to an overestimation of ionic charge densities close to high electrostatic
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potentials.[60,64–72] Two most prominent avenues to improve on this limitation are the
finite size modified PB (MPB) and Stern layer modified PB (SPB) (or GC-Stern model)
approaches. MPB theory accounts for solvated ion-ion short-range repulsions by introducing
finite ion sizes via a statistical lattice model in which the lattice cells are only allowed to
be occupied by one ion at a time.[60,64,65,68,69,71,72] This creates an upper bound for local
ionic charge accretion and thereby avoids an overshooting of ion concentrations e.g. close
to high electrostatic potentials. The Stern layer concept[74] on the other hand accounts for
the existence of a finite layer of solvent molecules or specifically adsorbed ions separating
the solute (or electrode) from the diffusive ionic charge distribution (cf. Fig. 2.3). In SPB
theory the Stern layer is accounted for by simply introducing an ion-free (ion-exclusion)
region between the solvation cavity and the diffusive ionic solution. As discussed in detail in
Section 4.2 the ion-exclusion Stern layer may thereby partly arise from the solvation shells
around the ions, which also prevent the latter from further approaching the solute.[121–123]

Although MPB and SPB theory both correct for the overestimation of ionic charge
densities with the PB method, they do in principle adress completely different physical
shortcomings of PB theory. While the MPB model introduces solvated ion-ion repulsions and
thereby introduces a volume-based ion exclusion, the Stern layer in the finite size and Stern
layer modified PB (SMPB) model is mainly caused by repulsive solute-ion interactions.
This fact led to the combination of both strands into the SMPB theory.[23,24,60,72,78] In
the following section, we will derive a corresponding SMPB free energy functional for
our system of interest, i.e. a charge distribution embedded into a dielectric continuum
containing now also an ionic charge distribution. At its minimum with respect to the
electrostatic potential v this functional then recovers the corresponding SMPB equation
(SMPBE) which provides an improved description of ionic charge distributions compared
to Eq. (2.49).

2.3.4. Finite Size and Stern layer Modified PB Model
We will start the derivation of SMPB theory by first constructing a model Hamiltonian
for the system which then defines the partition function. This lets us then derive all
thermodynamic properties of interest such as ion distributions or a corresponding free
energy functional which minimizes to the SMPBE. The procedure is thereby partly guided
by the discussions of refs. [64] and [124], but to our knowledge there exists so far no
published full derivation taking into account both finite ion sizes and the existence of a
Stern layer, as well as a fixed solute charge distribution.

2.3.4.1. Hamiltonian

We start by again considering a system consisting of a solvation cavity inside of which
ε = 1 and a surrounding region where ε = εs,bulk (solvent) as illustrated in Fig. 2.4 and
introduced in the previous sections. To this we then add an ensemble of N = N+ +N−+N0
particles, with N+ cations, N− anions and N0 solvent molecules. The interactions between
all ions are defined by the electrostatic potential vion which is the solution of the generalized
Poisson equation Eq. (2.11), given here as:

∇[ε(r)∇vion] = −4πnion (2.53)
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with

nion =
N∑
j

sjzδ(r − rj) (2.54)

with rj being the positions of the ions and solvent molecules and sj the sign of the particle’s
charge adopting the value of ±1 for the ions and 0 for solvent molecules. vion can be
expressed in terms of the ionic charge density by the help of the corresponding Green’s
function G(r, r′) which is the solution of the PDE

∇
[
ε(r)∇G(r, r′)

]
= −δ(r − r′) . (2.55)

The electrostatic potential created by the ions vion can then (neglecting all surface integrals)
be written as

vion =
∫

dr′δ(r − r′)vion(r′) = −
∫

dr′∇
[
ε(r)∇G(r, r′)

]
vion(r′)

= −
∫

dr′G(r, r′)∇
[
ε(r)∇v(r′)

]
= 4π

∫
dr′G(r, r′)

N∑
j

sjzδ(r′ − rj)

= 4π
N∑
j

sjzG(r, rj) . (2.56)

Following Eq. (2.18), the potential energy of the electrolyte becomes[64,71]

Velt = 1
2

∫
drnionvion +

N∑
j

N∑
j′ 6=j

velt,rep(rj , rj′)

= 4π
2

N∑
j

N∑
j′

sjsj′z
2G(rj , rj′) +

N∑
j

N∑
j′ 6=j

velt,rep(rj , rj′) . (2.57)

We thereby added a hard-sphere repulsion potential velt,rep which becomes infinite
for |rj − rj′ | ≤ a and zero elsewise. Ions and solvent molecules are therefore equally
approximated as hard spheres with a sphere radius of a. Such a modification avoids
unphysically high local ion concentrations arising within the original PB formulation
considering only point-like particles.
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Figure 2.4.: Schematic representation of the SMPB-DFT model. DFT is used to describe the continuous
solute charge density nsol with the main part residing in a vacuum-like region in which ε = 1.
This charge density is embedded into a solvent represented by the bulk dielectric permittivity εs,bulk.
Solvent molecules (symbol “0”) and dissolved ions (symbols “+” and “-”) are introduced by discretizing
the whole space into Nsites = V

a3 lattice cells of site length a which is then filled and coupled to a
corresponding reservoir. Ions can interact via repulsive interactions vsol,rep

± with the solute charge
density which prevents them from approaching the solute closer than a certain distance, creating an
ion-free layer around the solvation cavity, the Stern layer.

Next, we introduce a fixed charge distribution consisting of electrons and nuclei located
at positions ri and Rat in space and the potential energy then becomes

V(0) = Velt − 4π
N∑
j

∫
drsjznelG(rj , r)

︸ ︷︷ ︸
e↔±

+4π
N∑
j

Nat∑
at
sjzZatG(rj ,Rat)︸ ︷︷ ︸

n↔±

+ 4π
2

∫
drdr′nel(r)nel(r′)G(r, r′)︸ ︷︷ ︸

e↔e

−4π
Nat∑
at

∫
drZatnelG(r,Rat)︸ ︷︷ ︸

e↔n

+ 4π
2

Nat∑
at

Nat′∑
at′

ZatZat′G(Rat,Rat′)︸ ︷︷ ︸
n↔n

, (2.58)
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where the respective interactions between electrons (“e”), nuclei (“n”) and ions (“±”) have
been indicated. This can be written in a much more condensed form by introducing the
total charge density

n = nion + nsol (2.59)

and the total electrostatic potential

v = 4π
∫

dr′G(r, r′)n(r′) . (2.60)

If we then insert Eq. (2.60) into the electrostatic energy as given by Eq. (2.18) however
using the charge density n instead of just nsol we obtain

V(0) = 4π
2

∫
drdr′n(r)G(r, r′)n(r′) + ESIC[n] +

N∑
j

N∑
j′ 6=j

velt,rep(rj , rj′) . (2.61)

where we now also added a term ESIC which corrects for the self-interaction of all particles
which are incorrectly included in the first integral.

So far, we have assumed that the ions interact with the solute merely on the basis of
electrostatic interactions. The finite size of the ions, however, leads to additional repulsive
forces which we account for by introducing a solute-ion repulsion potential vsol,rep

sj . This
leads to an additional potential energy contribution given by

V ′ =
N∑
j

vsol,rep
sj (rj) . (2.62)

As seen from Eq. (2.62), we thereby account for different repulsion potentials of cations,
anions and solvent molecules. Solute-solvent repulsive interactions are already partly
included by the chosen form of the dielectric function which defines the minimal distance
between solvent molecules and solute. Indeed, we will later show that non-electrostatic
solute-solvent interactions can be reliably expressed in terms of the dielectric function. A
corresponding effective free energy correction term (later called Ωnon−mf

ε ) can then also
be directly added to the final free energy expression derived in this section. This removes
the necessity to include such interactions here in the Hamiltonian, which is why we simply
set vsol,rep

0 = 0. Since in most cases the ions will be further apart from the solute than the
solvent (cf. Section 4.2), we will in the scope of this thesis discuss the modification in
Eq. (2.62) as Stern layer correction.
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2.3.4.2. Grand Partition Function

Combining the total potential energy V = V(0) + V ′ with the kinetic energy T =
N∑
j

pj
2mj of

all solvent molecules and ions (the solute charge density is assumed to be fixed), we arrive
at the full Hamiltonian of the system

H =
N∑
j

pj
2mj

+ 4π
2

∫
drdr′n(r)G(r, r′)n(r′) + ESIC[n] +

N∑
j

N∑
j′ 6=j

velt,rep(rj , rj′)

+
N∑
j

vsol,rep
sj (rj) . (2.63)

Since the number of solvent molecules and ions is always much larger than the number of
solute particles, we further introduce a reservoir of ions and solvent molecules which keeps
the respective chemical potentials {µ±, µ0} of ions and solvent molecules constant. The
grand-partition function of the system is thus given by

ZG(µ0, µ+, µ−, V, T ) =
∞∑

N0=0

∞∑
N+=0

∞∑
N−=0

e
∑N

j
βµjZ({N0, N+, N−}, V, T ) , (2.64)

with V the volume and Z the canonical partition function of the system given as

Z({N0, N+, N−}, V, T ) = 1
N0!N+!N−!h3N

∫
d{r}d{p}e−βH({r},{p})

= 1
N0!N+!N−!Λ3N0

0 Λ3N+
+ Λ3N−

−

∫
d{r}e−βV({r}}) , (2.65)

where {p} and {r} denote the phase spaces of all ions and solvent molecules and
Λ±/0 = h√

2πm±/0β
is the thermodynamic de Broglie wave length. Thereby, we applied

the ideal gas approximation for the kinetic energies of solvent molecules and ions to enable
the analytic solution of the integral over momentum space.

Eq. (2.65) is the fundamental equation from which different PB theories can be derived.
In the original PB theory of Gouy and Chapman, one assumes that a = 0 and the multi-
dimensional integral of position space in Eq. (2.65) then separates into a product over
single-particle integrals. Such a product of integrals can be straightforwardly solved[124]

leading to a free energy expression which minimizes to the original PBE as given by
Eqs. (2.46), (2.47) and (2.49). In the general case of a 6= 0 the solution of this integral is,
however, far from trivial and requires the use of approximations. One possible approach is
the introduction of a lattice model in which all lattice cells are occupied by either solvent
molecules or ions (cf. Fig. 2.4). In the grand-partition function, one then has to sum over
all possible partitionings of the total number of lattice sites (which are equal to the number
of particles) N into numbers of cations, anions and solvent molecules:

ZG(µ0, µ+, µ−, V, T ) =
Npart∑
i

eβ
∑N

j
µj,iZ({N0,i, N+,i, N−,i}, V, T ) (2.66)
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where µj,i denotes the chemical potential of particle j and {N0,i, N+,i, N−,i} the number
of solvent molecules, cations and anions in the current partitioning i. In total there are
Npart = 1

2
(
(N + 1)2 + (N + 1)

)
of such ways to partition N into the three numbers.

The corresponding canonical partition function becomes a discrete sum over all possible
configurations Nconf,i =

( N
N+,i

)(N−N+,i
N−,i

)
of the particles {N0,i, N+,i, N−,i} on the lattice sites,

hence:

Z({N0,i, N+,i, N−,i}, V, T ) =
Nconf,i∑
k

e−βV({rj,ik})

=
Nconf,i∑
k

exp
(
− β 4π

2

∫
drdr′nik(r)G(r, r′)nik(r′) +

N∑
j

vsol,rep
sj,i (rj,ik)

)
(2.67)

where {rj,ik} and {sj,i} denote the positions and spin-like variables of all particles, respec-
tively, and nik the total charge density in the current partitioning i and lattice configuration
k. The hard-sphere repulsion operator velt,rep can thereby be neglected since the considered
lattice configurations do not allow particles to come closer than a. In accordance with the
literature, we thereby additionally neglected the self-interaction contributions ESIC,[64,124]

but note that electronic self-interaction is later accounted for by means of the xc-functional
(cf. Section 3.2.1). We further ignored the kinetic energies of ions and solvent molecules as
these are usually not accounted for in lattice-based PB models.[64]

In order to simplify Eq. (2.67), we first consider the two-center integral in the argument of
the exponent which represents the correlated charge interactions. It can be simplified with
the help of common Gaussian integrals, a procedure also known as Hubbard-Stratonovitch
transformation.[64] To this end, we consider the well known relation[125,126]

e
1
2J

ᵀA−1J =
√

det(A)
(2π)3M

∫
dx1 . . . dx3Me−

1
2x

ᵀAx+Jᵀx , (2.68)

where J and x are vectors of dimension 3M andA a square matrix of dimensions 3M×3M .
The elements of the vectors J and x can be associated with the values of respective functions
J(r) and x(r) at a number of 3M discrete grid points. Analogously, the elements of the
matrix A can be seen as values of a two-centered function A(r, r′) on a number of 3M × 2
grid points. For M →∞ and by making the increments of the vectors infinitely small, we
can therefore replace the dot products by integrals[124,126] yielding

e
1
2

∫
drdr′J(r)A−1(r,r′)J(r′) =

√
det(A)

∫
Dx(r)e−

1
2

∫
drdr′x(r)A(r,r′)x(r′)+

∫
drJx , (2.69)

where we introduced the path integral measure

Dx(r) = lim
ξ→0,3M→∞

(
2π/ξ3

)−(3M)/2
dx1 . . . dx3M , (2.70)
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with the spatial increment ξ. We use this expression to simplify Eq. (2.67) by substituting
J = −inik, A = (4πβG)−1 and x = Ψ where Ψ then takes the role of the auxiliary function
to get:

exp
(
− β 4π

2

∫
drdr′nik(r)G(r, r′)nik(r′)

)
1√

det(4πG)

∫
DΨ(r)exp

(
−
[ 1

2β

∫
drdr′Ψ(r)(4πG)−1(r, r′)Ψ(r′) + i

∫
drnikΨ

])
= 1√

det(4πG)

∫
DΨ(r)exp

(
−βKik[Ψ]

)
, (2.71)

with the modified path integral measureDΨ(r) = lim
ξ→0,3M→∞

(
2πβ/ξ3)−(3M)/2 dΨ1 . . . dΨ3M

and the functional Kik[Ψ]. If K[Ψ] >> kBT and Kik[Ψ] has a stationary phase point at
Ψ = Ψ̄, i.e. δKik[Ψ]

δΨ(r)

∣∣∣
Ψ=Ψ̄

= 0, this can be expected to dominate the value for the whole
functional integral due to the exponential function (stationary phase approximation or
saddle point approximation).[127] We can then expand the functional Kik[Ψ] in a Taylor
series around the stationary point Ψ̄:

Kik[Ψ] ≈ Kik[Ψ̄] + 1
2

∫
drdr′Ψ(r) δ2Kik[Ψ]

δΨ(r)δΨ(r′)

∣∣∣∣∣
Ψ=Ψ̄︸ ︷︷ ︸

1
4πβG

−1(r,r′)

Ψ(r′) , (2.72)

where we used G = Gᵀ. The linear term thereby vanishes since the expansion is done
around a stationary point. The second integral in Eq. (2.72) can again be rewritten by the
help of Eq. (2.69) with J = 0, x = Ψ and A = 1

4πβG
−1 yielding:∫

DΨ(r)exp
(
−1

2

∫
drdr′Ψ(r) 1

4πβG
−1(r, r′)Ψ(r′)

)
=
√

det(4πG) . (2.73)

Finally, we arrive at

e−β
4π
2

∫
drdr′nik(r)G(r,r′)nik(r′) = e−βKik[Ψ̄]

= exp
(
−
[ 1

2β

∫
drdr′Ψ̄(r)(4πG)−1(r, r′)Ψ̄(r′) + i

∫
drnikΨ̄

])
. (2.74)

This method of replacing the fluctuating field Ψ by its value Ψ̄ at the stationary point is
often also called mean-field approximation.[124]

The grand-canonical partition function is now given as

ZG({µ0, µ+, µ−}, V, T )

= exp
(
−
[ 1

2β

∫
drdr′Ψ̄(r) (4πG)−1 (r, r′)Ψ̄(r′) + i

∫
drnsolΨ̄

])

×
Npart∑
i

Nconf,i∑
k

 exp

− β N∑
j

[
−µj,i + i

β
sj,izΨ̄(rj,ik) + vsol,rep

sj,i (rj,ik)
]

 , (2.75)
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where we separated the charge density into solute and ionic contributions where only the
latter depends on the configuration and partitioning of the lattice.

The sums over all partitions and configurations give in total Ntotconf =
Npart∑
i
Nconf,i = 3N

terms, since each of the N lattice sites is occupied by one of three different species (solvent
molecule, cation or anion). Considering this, we can simplify Eq. (2.75) by changing from
a sum in the exponential over all particles to a sum over all lattice sites located at rm (cf.
also ref. [64]):

ZG({µ0, µ+, µ−}, V, T )

= exp
(
−
[ 1

2β

∫
drdr′Ψ̄(r) (4πG)−1 (r, r′)Ψ̄(r′) + i

∫
drnsolΨ̄

])

×
Ntotconf∑

l

 exp

− β N∑
m

[
−µm,l + i

β
sm,lzΨ̄(rm) + vsol,rep

sm,l
(rm)

]
︸ ︷︷ ︸

hsm,l (rm)


 , (2.76)

where we introduced the auxiliary function hsm,l . Compared to Eq. (2.75), the arising
position vectors do now not anymore depend on the configurational sum which enables us
to further rewrite this as

Ntotconf∑
l

 exp

− β N∑
m

hsm,l(rm)


 =

e
−β
[
N∑
m

h0(rm)
]

+ e
−β
[
N−1∑
m

h0(rm)+h+(rN )
]

+ · · ·+ e
−β
[
N−1∑
m

h+(rm)+h0(rN )
]

+ · · ·+ e
−β
[
N∑
m

h−(rm)
]

 3N terms

=
N∏
m

(
e−βh0(rm) + e−βh+(rm) + e−βh−(rm)

)

= exp
(

N∑
m

ln
[
e−βh0(rm) + e−βh+(rm) + e−βh−(rm)

])

≈ exp
( 1
a3

∫
dr ln

[
e−βh0(r) + e−βh+(r) + e−βh−(r)

])
, (2.77)

where in the last step we replaced the sum again with an integral. This is justified,
because the size of a single lattice cell is small compared to macroscopic volumes. We
now further recast the partly infinite and therefore numerically not tractable solute-ion
repulsive potentials vsol,rep

± into equivalent ionic exclusion functions by defining vsol,rep
± =

− 1
β ln

(
α±ion

)
. The exclusion functions are correspondingly zero close to the solute (highly

repulsive solute-ion potential) and one in the bulk electrolyte (zero repulsive solute-ion
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potential). Furthermore, the chemical potential reference state for salt solutions is the
ion-free solution which enables us to set µ0 = 0[64] and we get:

Eq. (2.77) = exp
( 1
a3

∫
dr ln

[
1 + α+

ione−β
(
i
β
zΨ̄−µ+

)
+ α−ione−β

(
− i
β
zΨ̄−µ−

)])
. (2.78)

The grand-canonical partition function then becomes

ZG({µ+, µ−}, V, T ) = exp

− β
 1

2β2

∫
drdr′Ψ̄(r)(4πG)−1(r, r′)Ψ̄(r′) + i

β

∫
drnsolΨ̄

− 1
a3β

∫
dr ln

[
1 + α+

ione−β
(
i
β
zΨ̄−µ+

)
+ α−ione−β

(
− i
β
zΨ̄−µ−

)]
 .

(2.79)

In principle the auxiliary function can be chosen freely. However, as we show below,
choosing a different auxiliary function v = i

β Ψ̄ gives a physically meaningful result. We
therefore first switch to v as an auxiliary function and get

ZG({µ+, µ−}, V, T ) = exp

− β
− 1

2

∫
drdr′v(r)(4πG)−1(r, r′)v(r′) +

∫
drnsolv

− 1
a3β

∫
dr ln

[
1 + α+

ione−β(zv−µ+) + α−ione−β(−zv−µ−)
]
 . (2.80)

The first two-center integral in the argument of the exponential can be further simplified
into a single integral by making use of the Green’s function definition in Eq. (2.55):∫

drdr′v(r)(4πG)−1(r, r′)v(r′) = 1
4π

∫
drdr′v(r)v(r′)

∫
dr′′δ(r′ − r′′)G−1(r, r′′)

= − 1
4π

∫
drdr′v(r)v(r′)

∫
dr′′∇′ ·

[
ε(r′)∇′G(r′, r′′)

]
G−1(r, r′′)

= − 1
4π

∫
drdr′v(r)∇′ ·

[
ε(r′)∇′v(r′)

] ∫
dr′′G(r′, r′′)G−1(r, r′′)

= − 1
4π

∫
drdr′v(r)∇′ ·

[
ε(r′)∇′v(r′)

]
δ(r′ − r)

= − 1
4π

∫
drv(r)∇ · [ε(r)∇v(r)]

= 1
4π

∫
drε(r)|∇v(r)|2 , (2.81)
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with ∇′ = ∇r′ and we neglected the surface integrals (again using the boundary condition
v → 0 for |r| → ∞). Inserting this expression into the grand partition function, gives:

ZG({µ+, µ−}, V, T ) = exp

− β
∫ dr

{
− 1

8πε(r)|∇v(r)|2 + nsolv

}

− 1
βa3

∫
dr ln

[
1 + α+

ione−β(zv−µ+) + α−ione−β(−zv−µ−)
]
 . (2.82)

The first line represents electrostatic energy contributions as one can immediately see by
comparing to Eq. (2.17) which we derived for the ion-free case. The auxiliary potential v
has therefore been chosen wisely in the sense that v can be associated with the electrostatic
mean-field potential of the considered system and the resulting functional minimizes to an
ionic strength modified generalized Poisson equation.

2.3.4.3. Ionic Concentrations, Chemical Potentials and Grand Potential

The grand partition function in Eq. (2.82) can be used to calculate the average number of
ionic particles in the system:

〈N±〉 =
∫

drcs
±(r) = ∂1/β ln(ZG)

∂µ±

=
∫

drα±ion(r) eβµ±∓βzv

1 + α+
ion(r)e−β(zv−µ+) + α−ion(r)e−β(−zv−µ−) , (2.83)

where we introduced the spatially dependent ion concentrations cs
±

cs
±(r) = α±ion(r) eβµ±∓βzv

1 + α+
ion(r)e−β(zv−µ+) + α−ion(r)e−β(−zv−µ−) , (2.84)

In the bulk electrolyte we have v → 0 and α±ion(r) → 1, giving the electrolyte bulk
concentrations:

cs,bulk
± = lim

v→0
c±(r) = eβµ±

1 + eβµ+ + eβµ− . (2.85)

Furthermore, in the bulk solvent there exists no net charge, so cs,bulk
+ = cs,bulk

− and therefore

eβµ+ = eβµ− . (2.86)

Eq. (2.86) can be inserted into Eq. (2.85) and then solved for the chemical potentials:

eβµ± = 1
2

φ0
1− φ0

, (2.87)

30



2.3. Modeling Finite Ionic Strengths: Poisson-Boltzmann Theory

where we introduced the volume fraction of ion occupied sites φ0 = 2cs,bulka3. This
expression can now be inserted into Eq. (2.84) to get a simplified expression for the ion
concentrations:

cs
± = cs,bulkα±ion(r) e∓βzv

1− φ0 + 1
2φ0

[
α+

ion(r)e−βzv + α−ion(r)eβzv
] . (2.88)

Inserting these into Eq. (2.47) makes the PBE Eq. (2.46) the finite ion size and Stern layer
modified PBE (SMPBE)

∇ · [ε(r)∇v(r)] = −4πnsol(r)− 4πnSMPB
ion (r) , (2.89)

with the ionic charge density given as

nSMPB
ion = zcs,bulk α+

ion(r)e−βzv − α−ion(r)eβzv

1− φ0 + 1
2φ0

[
α+

ion(r)e−βzv + α−ion(r)eβzv
] . (2.90)

Inserting the chemical potentials into the energy functional in Eq. (2.82), finally yields the
SMPB grand potential of the system

Ωmf
ε,α±ion

({µ+, µ−}, V, T )[v, nel] = −1/β ln (ZG) =∫
dr
{
− 1

8πε(r)|∇v(r)|2 + nsolv

− 1
βa3 ln

(
1 + 1

2
φ0

1− φ0

[
α+

ion(r)e−βzv + α−ion(r)eβzv
])}

, (2.91)

where the superscript “mf” was introduced to indicate that the functional was derived from
a mean-field model.
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In the last chapter, we derived a complete theory for the modeling of electrolytes by means
of a SMPB implicit solvation approach. We also briefly discussed the principles of DFT
which has become a wide-spread standard tool in various fields of chemistry. In this chapter,
we now combine the two methodologies and derive all necessary equations needed for
the implementation of a corresponding SMPB-DFT framework. After this, we describe the
technical details related to the implementation of the SMPB-DFT scheme in the FHI-aims[1]

all-electron DFT program package. There, a special focus lies on the particularly challenging
numerical solution of the SMPBE which results from minimizing the grand potential
function Eq. (2.91) with respect to the electrostatic potential. For this purpose, we develop
here a function-space-based approach utilizing multipole representations of the electrostatic
potential. Since a detailed discussion of the SMPB-DFT implementation was already
published by us recently, this chapter closely follows and includes parts of the corresponding
work [86].

3.1. Physical Observables of Interest

A main observable of interest in an implicit solvation scheme is the solvation (or elec-
trolyzation) free energy ∆Gsol which resembles the free energy change induced by the
combination of previously separated solute and solvent. It is defined for a particular ionic
strength as

∆Gsol = Ω◦(εs,bulk, cs,bulk, nsol(r))
− Ω◦(εs,bulk = 1, cs,bulk = 0, nsol(r))− Ω◦(εs,bulk, cs,bulk, nsol(r) = 0) , (3.1)

where Ω◦(εs,bulk, cs,bulk, nsol(r)) is the free energy of the solute embedded into a solvent
connected to a reservoir of solvent molecules and ions, Ω◦(εs,bulk = 1, cs,bulk = 0, nsol(r))
the free energy of the solute in vacuum, and Ω◦(εs,bulk, cs,bulk, nsol(r) = 0) the free energy
of the pure electrolyte.

* Reproduced in part with permission from ref. [86]. © 2016 American Chemical Society.
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If one is interested in the specific effect of ions, another well-investigated quantity is the
ion effect on the solvation free energy, given by the difference of solvation energies induced
by a finite ionic strength:

∆∆Gion = ∆Gsol(cs,bulk)−∆Gsol(cs,bulk = 0) . (3.2)

Solvation energies and ion effects on solvation energies are experimentally accessible for
a wide range of different solutes, opening up the possibility to also utilize these e.g. for
the parametrization of continuum models. As an effective model, our SMPB scheme gives
rise to a number of parameters defining among others the dielectric or ion exclusion
functions which we discuss in detail in Section 3.2.2. These a priori unknown variables
can be determined by utilizing experimentally measured quantities like those presented
here. In Chapter 4 we show that this leads to transferable parameter sets describing both
solute-solvent as solute-ion interactions.

3.2. Combining Modified PB Theory and DFT

3.2.1. Modified Kohn-Sham Free Energy Functional
In Section 2.3, we introduced a statistical lattice model providing a mean-field theoretical
ansatz for the desription of finite-sized ion distributions around a fixed charge distribution
embedded into a dielectric continuum. The resulting SMPB approach led to the derivation
of a free energy functional as given in Eq. (2.91) depending on both the electrostatic
potential v and the (fixed) solute charge density nsol. However, since this derivation was
based on a mean-field approximation for the electrostatic potential, correlated interactions
are by construction not included. While ionic correlation effects can be safely ignored
at least for the case of monovalent ions,[73] dynamic interactions between electrons are
often critical for chemical reactions. To account for this, we introduced in Section 2.2.3 the
xc functional correcting both for Pauli repulsions as for correlated interactions between
the electrons. In the spirit of DFT, the free energy energy functional of Eq. (2.91) can be
rewritten as modified KS functional (cf. Eq. (2.28))

Ωε,α±ion
[v, nel] = T S[nel] + Exc[nel] + Ωmf

ε,α±ion
[v, nel] + Ωnon−mf

ε [nel] . (3.3)

Eq. (3.3) also considers the kinetic energy of the electrons, while at the same time
neglecting finite temperature corrections for the nuclear motion. Such contributions,
while in principle accessible from e.g. ab initio atomistic thermodynamics,[128] are often
assumed to be not largely effected by the presence of an electrolytic environment.[5,14,16]

In consequence these cancel out in the evaluation of energy differences like solvation
energies or ion effects on solvation energies which are the only properties of interest in the
scope of this thesis (cf. Section 3.1). We will therefore throughout this work neglect finite
temperature effects of the nuclei.

While the derived SMPB model explicitly accounts for solute-ion repulsions, we did so far
not consider the presence of non-mean-field non-electrostatic solute-solvent interactions.
As briefly mentioned in the introductory chapter, we correct for this by adding a further
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term in the KS functional which is denoted as Ωnon−mf
ε in Eq. (3.3). While in principle

far from trivial, such a functional can to a good degree of accuracy be modeled as a
linear function of volume and surface of the cavity formed around the solute.[16] This
seemingly crude approximation was shown by Andreussi et al.[5] to be reasonably accurate
for the evaluation of macroscopic properties like solvation energies, as in detail discussed in
Section 4.1. As further described in the following section, both cavity surface and volume
can thereby be written as integrals over the electron density, which is why we consider
here only a dependence on nel for this term.

3.2.2. Modeling Functions for Solute-Electrolyte Interactions

The most sensitive part in effective implicit solvation schemes is the functional form of
the dielectric function which determines the predicted electrostatic solvation energies.
In case of our developed SMPB scheme, additional models have to be defined for the
non-mean-field solute-solvent interactions and ion exclusion functions. Since effective
solvation schemes model only the solute explicitly, corresponding functional forms have to
be constructed solely on the basis of properties of the solute. When choosing descriptors
and functions wisely, this enables to derive transferable parameters which can be applied
without re-optimization to a wide range of different solutes. As later shown in Chapter 4
the electron density of the solute resembles such an efficient descriptor which is easily
accessible from DFT and enables a predictive modeling of solvation and ion effects.

3.2.2.1. Dielectric Function

As discussed in Section 2.1.1, the solvent’s dielectric function is generally a highly com-
plicated, frequency-dependent tensorial quantity. It can in principle be obtained from
explicit solvent simulations as recently achieved for the anisotropic dielectric spectrum of
water at the level of force-field molecular dynamics (MD) simulations.[129] Although such
studies are important to reveal the physical nature of the dielectric response, an explicit
treatment of solvent molecules is generally not tractable on the level of DFT calculations.
Fortunately, the dielectric function can be, however, often efficiently approximated as a
simple step function varying from the isotropic, low-frequency limit dielectric permittivity
of the solvent to the vacuum permittivity at the solvation cavity (cf. Section 2.1.2). This
fact eventually led to the rise and wide success of implicit solvation methods differing
mainly in the definition of the solvation cavity or dielectric transition region.[18,19] The
transition region uniquely defines the electrostatic solvation energy (cf. Eq. (2.17)) making
it a crucial factor for the performance of such effective approaches. Recently, such cavities
have been successfully defined in terms of an isosurface of the solute’s electron density
yielding highly transferable parametrizations.[5,14,18,23] Assuming a sharp step function for
the dielectric transition further simplifies the solution of the generalized Poisson equation
and enables a separate treatment of the solvent and solute regions. The two resulting linear
Poisson equations are then coupled by the respective boundary conditions on the solvation
cavity.[18]

Although such sharp-cavity approaches were shown to often be sufficient for reasonably
accurate solvation energies, a physically more realistic treatment is to further introduce
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a parameter describing the smoothness of the dielectric transition.[5,14,16] Such an ap-
proach also provides a numerically stable definition of all physical properties on the full
computational domain and simplifies a systematic assessment and improvement of the
methodological setup. In this thesis, we therefore also utilize a smooth parametrization of
the dielectric function and adopt a form as suggested by Andreussi et al.,[5] given as

εnmin,nmax [nel] =


1 nel > nmax,

exp (tnmin,nmax (ln(nel))) nmin < nel < nmax ,

εs,bulk nel < nmin

(3.4)

with

tnmin,nmax (ln(nel)) =ln(εs,bulk)
2π

[
2π ln(nmax)− ln(nel)

ln(nmax)− ln(nmin) − sin
(

2π ln(nmax)− ln(nel)
ln(nmax)− ln(nmin)

)]
.

(3.5)

This function goes to one for large nel close to the nuclei and switches smoothly to εs,bulk

for low nel far away. The transition region – i.e. its position and width with respect
to the electron density – is controlled by the two parameters nmin and nmax. There are
two main benefits to this particular functional form. First, that its gradients are exactly
zero outside of the transition region. Second, that also ∇ ln(ε[nel]), which appears in
the function-space-based solution scheme developed here (cf. Eqs. (3.74) and (3.76) in
Section 3.4.1.1 below), is a smooth function[5] increasing both numerical stability and
convergence. Fig. 3.1 exemplarily depicts such a dielectric function for a nitrobenzene
molecule embedded in implicit water.

Finally, the choice of the electron density used in the definition of the dielectric transition
deserves further mention. In principle, the evaluation could either be based on the true
electron density nel in each SCF step of the KS equation solver, or it could be based on a
rigid electron density obtained e.g. by mere superposition of free atom densities. In contrast
to other authors[24] we hitherto found only a negligible impact of a fully self-consistent
cavity on the SCF convergence as long as the cavity lies within reasonable distances to the
charge distribution, cf. Fig. 3.7 below. All calculations in this thesis are correspondingly
performed using the self-consistent density, through which we are able to model the mutual
influence of the dielectric function and the electron density.

3.2.2.2. Non-Mean-Field Solute-Solvent Interactions

In general, the solvation cavity defined through the transition functions also governs the
non-mean-field part of the free energy functional Ωnon−mf [nel]. Non-mean-field free energy
contributions mainly result from the exclusion of solvent molecules from the cavity and
non-bonded short-range, as well as dispersion interactions

Ωnon−mf
ε [nel] = Ωcav

ε [nel] + Ωrep
ε [nel] + Ωdis

ε [nel] , (3.6)

respectively. In this work we employ the effective parametrization for these terms suggested
by Andreussi et al.,[5] which provide these terms as mere functions of the “quantum surface”
S and the “quantum volume” V of the solvation cavity

Ωnon−mf
ε [nel] = (α+ γ)S[nel] + βV [nel] , (3.7)
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Figure 3.1.: Schematic visualization of nitrobenzene dissolved in water containing a 1 M 1:1 electrolyte as
described at the level of SMPB theory with additional ion exclusion (Stern) layer. The gray innermost
part around the molecule denotes the solvation cavity, in which ε[nel] = 1, the remaining area denotes
the solvent region, in which ε[nel] = εs,bulk. A contour plot of the ionic charge density nSMPB

ion [v, nel] is
overlaid (using the intuitive sign convention), where the striped region depicts the ion-free Stern layer.
On the right ε[nel] and nSMPB

ion [v, nel] are shown as 1D cut along the dashed line through the center of
the molecule. Reproduced with permission from ref. [86]. © 2016 American Chemical Society.

with γ the surface tension of the solvent. α and β constitute additional free parameters of
the model. V and S are hereby defined as

V =
∫

drϑ[nel] (3.8)

and

S =
∫

dr
{(

ϑ

[
nel + ∆

2

]
− ϑ

[
nel −

∆
2

])
× |∇nel|

∆

}
, (3.9)

with the switching function ϑ defined in terms of the chosen dielectric function

ϑ [nel] = εs,bulk − ε[nel]
εs,bulk − 1 . (3.10)

The integrand of Eq. (3.9) is a numerical derivative of the switching function evaluated
through finite differences with a parameter ∆. In the present work this parameter is set
to a low value of 10−8, with negligible effect of variations around this value on reported
solvation free energies.

The free parameters {(α + γ), β, nmin, nmax} determining the solvation cavity and the
non-mean-field free energy contribution of solute-solvent interactions were optimized by
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Andreussi et al. in order to reproduce experimental hydration energies for a large test set of
neutral molecules.[5] In Section 4.1, we present these results and show the generally good
accuracy achieved with the their parametrization. Throughout this thesis we therefore use
the parameter set of Andreussi and co-workers without further optimization.

3.2.2.3. Ionic Exclusion Function

From a physical point of view, solvated ions are expected to interact with the solute not
only via the mean-field electrostatic potential but also via repulsive interactions. In this
thesis, we assume that such repulsions can – in analogy to the solute-solvent interactions –
also be parametrized as a function of the solute’s electron density. In Section 4.2 we show
that this approach indeed leads to transferable parameter sets for the case of monovalent
salt solutions. Utilizing the same functional form as for the dielectric function, the ion
exclusion functions are given by

α±
ion,nα,±min ,n

α,±
max

[nel] =


0 nel > nα,±max

1
εs,bulk−1(exp

(
tnα,±min ,n

α,±
max

(ln(nel))
)
− 1) nα,±min < nel < nα,±max ,

1 nel < nα,±min
(3.11)

where the ion-dependent parameters {nα,±min, n
α,±
max} define the concentration transition for

cations and anions and

tnα,±min ,n
α,±
max

(ln(nel)) =ln(εs,bulk)
2π

[
2π ln(nα,±max)− ln(nel)

ln(nα,±max)− ln(nα,±min)
− sin

(
2π ln(nα,±max)− ln(nel)

ln(nα,±max)− ln(nα,±min)

)]
.

(3.12)

Physically, both dielectric and ion exclusion function transitions are related to each other
since both depend on the effective size of the solute as described here by isosurfaces of the
solute’s electron density. We therefore substitute the ion parameters with a shift d±αion and a
scaling parameter ξ±αion defined with respect to the parameters of the dielectric transition

nα,±min/max = exp
(
a±min/max ± (a±max − a±min)

1− ξ±αion

2

)
(3.13)

with
a±min/max = ln(nmin/max) + (ln(nmin)− ln(nmax)) d±αion . (3.14)

d±αion > 0 then corresponds to the inclusion of a Stern layer or non-diffusive ion region
around the solvation cavity and an increase (decrease) of ξ±αion to a smoothening (sharp-
ening) of the Stern layer transition. In the case of aqueous solutions the inclusion of an
ion-free Stern layer physically accounts for both the more or less rigid hydration shells of
the ions and the hydration layer of the solute (cf. Section 4.2). Figure 3.1 shows exem-
plarily for nitrobenzene the ionic charge density as resulting from the above presented
parametrization strategy.
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3.2.3. Modified Kohn-Sham Equations
In Section 3.2.1, we introduced the modified KS free energy functional Ωε,α±ion

[v, nel] given
in Eq. (3.3), which provides the basis of the combined SMPB-DFT formalism. In order to
calculate physically relevant properties of systems, one has to find the minimum of this
functional with respect to both nel and v. Analogously to standard DFT (cf. Section 2.2.3.2),
the minimization with respect to the electron density yields KS equations which define the
optimal electron density nel,◦. Similarly, the dependency on the electrostatic potential can
be removed by minimization, leading to a Poisson-like equation, in our case the SMPBE.

We start by constructing, analogously to Section 2.2.3.2, a Lagrangian functional which
constrains the orthonormality of the orbitals:

L[v, nel] = Ωε,α±ion
[v, nel] +

Nstates∑
l=1

Nstates∑
k=1

λlk

[∫
drψ∗l ψk − δlk

]
. (3.15)

This functional can be utilized for a variational minimization with respect to the single-
electron wave-functions ψl

δL[v, nel]
δψ∗l

= 0 ∀l , (3.16)

which then yields the modified KS equations

Nstates∑
k=1

λlkψk = δT S[nel]
δψ∗l

+

δExc[nel]
δnel

+
δΩmf

ε,α±ion
[v, nel]

δnel
+ δΩnon−mf

ε [nel]
δnel

 dnel
dψ∗l

= 1
2∇

2ψl +

vxc +
δΩmf

ε,α±ion
[v, nel]

δnel
+ δΩnon−mf

ε [nel]
δnel

ψl . (3.17)

Applying Eq. (2.14) to evaluate the functional derivative of the mean-field part then gives

δΩmf
ε,α±ion

[v, nel]

δnel

= v − 1
8π

∂ε[nel]
∂nel

|∇v|2 − 1
2
φ0
βa3

∂α+
ion[nel]
∂nel

e−βzv + ∂α−ion[nel]
∂nel

eβzv

1− φ0 + 1
2φ0

[
α+

ion[nel]e−βzv + α−ion[nel]eβzv
] , (3.18)

while the non-mean-field part separates into two parts

δΩnon−mf
ε [nel]
δnel

= (α+ γ) δS[nel]
δnel

+ β
∂ϑ[nel]
∂nel

. (3.19)

The first term of the last equation can be further recast into

(α+ γ)δS[nel]
δnel

= (α+ γ)
[
∂s[nel]
∂nel

+∇∂s[nel]
∂∇nel

]
(3.20)
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with

∂s[nel]
∂nel

=

∂ϑ
[
nel + ∆

2

]
∂nel

−
∂ϑ
[
nel − ∆

2

]
∂nel

× |∇nel|
∆ (3.21)

and

∇∂s[nel]
∂∇nel

= ∇
{(

ϑ

[
nel + ∆

2

]
− ϑ

[
nel −

∆
2

]) 1
∆
∇nel
|∇nel|

}
. (3.22)

While the first partial derivative can be easily evaluated, the second requires the calculation
of computationally expensive Hessian matrix elements of the basis functions ϕi (for the
definition cf. Eqs. (3.34) and (3.35) below). In static DFT calculations, one, however, only
needs to evaluate KS operator matrix elements, for which the ∇-operator can be transfered
to the basis functions similarily to the procedure commonly used for the GGA-xc-operator[1]

and which gets rid of this bottleneck:

−
∫

drϕiϕj
(
∇∂s[nel]
∂∇nel

)
=
∫

dr∇ [ϕiϕj ]
∂s[nel]
∂∇nel

. (3.23)

While the implemented SMPB-DFT methodology supports a fully self-consistent mini-
mization of the KS functional, it can often be useful to treat the non-mean-field part
Ωnon−mf
ε as a non-self-consistent post-correction of the free energy, thereby assuming that

δΩnon−mf
ε [nel]
δnel

≈ 0. The results of Section 4.1 show that such an approximation yields only
negligible errors, while simultaneously allowing to avoid the demanding computation of
the second derivatives of the free energy functional as well as to circumvent numerical
instabilities that were observed before.[130]

After determining all necessary derivatives, we can then again perform a unitary trans-
formation on Eq. (3.17) to arrive at the modified KS equations (cf. Eq. (2.34)) with the
modified KS operator

ĥKS = t̂s + vxc + v

− 1
8π

∂ε[nel]
∂nel
|∇v|2 − 1

2
φ0
βa3

∂α+
ion[nel]
∂nel

e−βzv+
∂α−ion[nel]
∂nel

eβzv

1−φ0+ 1
2φ0[α+

ion[nel]e−βzv+α−ion[nel]eβzv]
+(α+ γ)

[
∂s[nel]
∂nel

+∇∂s[nel]
∂∇nel

]
+ β ∂ϑ

∂nel

 δvKS,SMPB
ε,αion [v, nel] .

(3.24)

Here we introduced δvKS,SMPB
ε,αion representing the perturbation on the KS Hamiltonian

induced by the embedding into the electrolytic environment.

3.2.4. SMPB Equation
The modified KS equations derived above allows us to evaluate the self-consistent electron
density nel,◦ of the solute as embedded into the electrolytic environment. Similarly, the
electrostatic potential v◦ of the system has to be determined from the modified KS functional
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(Eq. (3.3)) by functional minimization with respect to v, again using Eq. (2.14). This leads
to the SMPBE, Eq. (2.89)

∇ · [ε[nel]∇v] = −4πnsol − 4πnSMPB
ion [v, nel] , (3.25)

but with the ionic charge densities given by (cf. Eq. (2.90))

nSMPB
ion [v, nel] = zcs,bulk α+

ion[nel]e−βzv − α−ion[nel]eβzv

1− φ0 + 1
2φ0

[
α+

ion[nel]e−βzv + α−ion[nel]eβzv
] . (3.26)

3.2.5. Minimum Free Energy Expression
The modified KS and SMPB equations can now be inserted into Eq. (3.3) analogously to
the procedure in Section 2.2.3.3 in order to obtain the minimum free energy expression in
the SMPB-DFT model:

Ω◦(εs,bulk, cs,bulk, nsol,◦)

=
Nstates∑
l=1

εl,◦ −
∫

drnel,◦v
xc
◦ + Exc[nel,◦]−

1
2

∫
drnel,◦v◦ + 1

2

∫
drnnucv◦

−
∫

drnel,◦δv
KS,SMPB
ε,αion,◦ +

∫
dr
{
−1

2n
SMPB
ion [v◦, nel,◦]v◦

− 1
βa3 ln

(
1 + 1

2
φ0

1− φ0

[
α+

ion[nel,◦]e−βzv◦ + α−ion[nel,◦]eβzv◦
)]}


Ωion
α±ion

[v◦, nel,◦]

+ Ωnon−mf
ε [nel,◦] . (3.27)

In this equation, the part highlighted in blue is equivalent to the expression in standard
DFT (cf. Eq. (2.40)) and comprises the sum over all eigenstates, xc and electrostatic energy
correction terms. The latter correspond to the sum of double-counting correction and nuclei-
nuclei interaction energies in standard DFT. The red part denotes the KS Hamiltonian
correction terms which arise due to the electron density dependence of the dielectric and
ion exclusion functions. Finally, highlighted in dark green are ionic correction terms to
the standard DFT expression Ωion

α±ion
and in lighter green the non-mean-field solute-solvent

interaction energy.
For the later derivations in this chapter, a different notation for Ω◦ in terms of electrostatic

and nonelectrostatic contributions will be useful. For that, we again consider the KS
functional as given in Eq. (3.3):

Ω◦(εs,bulk, cs,bulk, nsol,◦) = T S[nel,◦] + Exc[nel,◦]
+ Ωelstat[nel,◦, v◦] + Ωnonel

α±ion
[nel,◦, v◦]︸ ︷︷ ︸

Ωmf
ε,α±ion

[v◦,nel,◦]

+Ωnon−mf
ε [nel,◦] , (3.28)
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where we rewrote the functional Ωmf
ε,α±ion

in terms of its electrostatic and nonelectrostatic

contributions, given as

Ωelstat[nel,◦, v◦] = 1
2

∫
drntot,◦v◦

Ωnonel
α±ion

[nel,◦, v◦] = Ωion
α±ion

[nel,◦, v◦]−
1
2

∫
drnSMPB

ion [nel,◦, v◦]v◦ , (3.29)

with the total charge density ntot = nsol + nSMPB
ion .

3.2.6. Modified Debye-Hückel Theory

The complicated non-linear ionic charge density expression given in Eq. (3.26) can in
many cases be simplified by expansion into a Taylor series up to 1st order around v = 0,
analogously to the procedure in standard DH theory (cf. Section 2.3.2). This yields the
charge density of the LPBE

nLPB
ion [v, nel] = −κ

2εs,bulk

4π

− 1
2βz

α+
ion[nel]− α−ion[nel]

1− φ0 + 1
2φ0

[
α+

ion[nel] + α−ion[nel]
]

+
φ0α

+
ion[nel]α−ion[nel]− 1

2(φ0 − 1)
[
α+

ion[nel] + α−ion[nel]
]

(
1− φ0 + 1

2φ0
[
α+

ion[nel] + α−ion[nel]
])2 v


= κ̄2

0[nel] + κ̄2[nel]v , (3.30)

which becomes the well-known DH expression nLPB
ion = − 1

4πε
s,bulkκ2v in the case of α±ion = 1

and a = 0. Although Eq. (3.30) is still a relatively complicated function of the electron
density, it depends linearly on the electrostatic potential which drastically simplifies the
numerical solution of the resulting linearized PDE, the LPBE, as given in Eq. (2.52).

Similarly to the ionic charge density, one can also obtain a corresponding simplified KS
functional by expanding the logarithmic function in Eq. (2.91) as a Taylor series around
v = 0 up to 2nd order and the mean-field functional then becomes

Ωmf,LPB
ε,α±ion

[v, nel] =
∫

dr
{
−ε[nel]

8π |∇v|
2 + nsolv

− 1
βa3 ln

(
1 + 1

2
φ0

1− φ0

[
α+

ion[nel] + α−ion[nel]
])

+ 1
2n

LPB
ion [v, nel]v

}
.

(3.31)

Setting the functional derivative of Ωmf,LPB
ε,α±ion

[v, nel] with respect to v to zero then yields

the LPBE as defined above. Note again that in the case α±ion = 1 and a = 0 we recover
a free energy expression which minimizes to the original DH-LPBE with a minimum free
energy expression being just the electrostatic energy as given in Eq. (2.18) (plus a constant
non-relevant factor), since all non-electrostatic interactions and entropy terms are removed.
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Setting the functional derivative with respect to nel equal to zero leads to the correspond-
ing modified KS equations with the additional operator (defined analogously to δvSMPB

KS in
Eq. (3.24))

δvLPB
KS [v, nel] = − 1

8π
∂ε[nel]
∂nel

|∇v|2 + 1
2
∂nLPB

ion [v, nel]
∂nel

v2

− 1
2βa3

(
1 + 1

2
φ0

1− φ0

[
α+

ion[nel] + α−ion[nel]
])−1

× φ0
1− φ0

(
∂α+

ion[nel]
∂nel

+ ∂α−ion[nel]
∂nel

)
, (3.32)

with the remaining partial derivative ∂nLPB
ion
∂nel

given explicitly in Appendix A.1.
Inserting both modified KS equation and LPBE into the modified KS functional in

Eq. (3.31) gives the minimum free energy expression in the LPB approximation

ΩLPB
◦ (εs,bulk, cs,bulk, nsol,◦)

=
Nstates∑
l=1

εl,◦ −
∫

drnel,◦v
xc
◦ + Exc[nel,◦]−

1
2

∫
drnel,◦v◦ + 1

2

∫
drnnucv◦

−
∫

drnel,◦δv
KS,LPB
ε,αion,◦ −

1
βa3

∫
dr
{

ln
(

1 + 1
2

φ0
1− φ0

[
α+

ion[nel,◦] + α−ion[nel,◦]
])}

+ Ωnon−mf [nel,◦] . (3.33)

Replacing the SMPB electrostatic potential with the one obtained from solving the LPBE
is justified in cases where βzv � 1 which has often been found to be the case e.g. in
biomolecular simulations.[118] Unfortunately, however, differences are generally more
critical in the actual free energies ΩSPB/LPB

◦ and simply inserting the LPB potential in the
SMPB free energy expression will most often not work.[118] In this thesis, we restrict this
discussion to the theoretical derivations presented in this section and leave it to future
work to investigate limits and means of such an approximation.

3.3. All-Electron DFT with NAO Basis Sets: FHI-aims
In this section we introduce FHI-aims as example for an all-electron DFT program pack-
age. We thereby particularly focus on technical peculiarities which are relevant for the
implementation of the derived SMPB-DFT scheme. We remark that most of the information
given here has been taken from the respective FHI-aims publication ref. [1].

3.3.1. General Infrastructure
In FHI-aims, the single-electron wave-functions ψl are expanded into a number Nbasis of
numerically tabulated atom-centered orbitalss (NAOs) ϕi:

ψl =
Nbasis∑
li

cliϕi , (3.34)
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Figure 3.2.: Sketch of the confinement potential and the radii defining the region of confinement. The
confinement potential leads to a localization of radial atom-centered functions fat as e.g. the radial
basis functions ui or the free atom electron density nfree

el,at.

with the expansion coefficients cli and the basis functions

ϕi = ui(rat)
r

Ylm(Ωat) . (3.35)

Here, Ylm denote the real-valued spherical harmonics functions, and rat and Ωat = {θat, φat}
spherical coordinates with respect to the atom center the basis function ϕi is assigned to.
The radial functions ui(r) are directly obtained from the numerical solution of Schrödinger-
like radial equations[

−1
2

d2

dr2
at

+ l(l + 1)
r2

at
+ vi(rat) + vcut,at(rat)

]
ui(rat) = εiui(rat) (3.36)

providing an accurate description of all electrons and optimally resolving the Coulomb
singularity. vi thereby defines the character of the basis functions and is for a minimal basis
set simply set to the free atoms potential vfree

at introduced in the next section. To achieve
fast convergence of all calculated properties, the Hamiltonian in the Schrödinger-like
equation is furthermore extended by a radial confinement potential vat,cut which locally
confines all basis functions {ϕi} to atomic radii rat = |r − Rat| < rcut,at as illustrated
in Fig. 3.2. The radial Schrödinger equation is solved on a dense 1D logarithmic grid
rat(i) = rat,0e(i−1)α with i = {1, . . . , Nlog} with αlog, rat,0 and the total number of grid
points Nlog being adjustable numerical parameters.

All variables in FHI-aims depending on three spatial coordinates are discretized and all
corresponding integrals solved on an integration grid which is located on atom-centered
spherical shells. The radial shells are placed at logarithmic distances from the atom centers:

rat(i) = router,at
ln
(
1− [i/(Nr + 1)]2

)
ln
(
1− [Nr/(Nr + 1)]2

) , (3.37)

with the outer shell radius router,at and the total number of radial shells Nr being adjustable
numerical parameters. As seen from Fig. 3.3 this so defined integration grid is particularly
dense at the nuclei and thus enables to optimally resolve the sometimes strong variations of
calculated properties at the atomic centers while reducing the computation costs in regions
where the respective functions are sufficiently smooth. Starting from this initial grid, the
user can then simply increase the radial grid accuracy by raising a parameter called the
radial_multiplier which places additional shells at integer fractions of the original grid.
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A radial_multiplier = 2 for example places a single additional grid shell between all
shells and in- and outside of the previous grid.

The placing of angular grid points is done by a predefined Lebedev procedure which
enables an exact integration of all angular momentum functions up to a certain order and
is in detail described in the FHI-aims publication.[1] These settings have been shown to
provide system-independent accurate energy and force calculations, although the FHI-aims
input file also in principle enables the user to manually adjust the number of grid points
between specific radii.

−5 0 5 10
x (a0)
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0

5

10
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(a
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0.0

Figure 3.3.: FHI-aims light integration grid in the bonding plane of an HCl molecule. Circles indicate
the radial grid shells of both H-atom (left grid center) and Cl-atom (right grid center). For the H-atom,
all grid points except for the ones close to the nuclei and the ones where the H-atom partition function
pH is exactly zero are explicitly shown and colored by the value of pH.

For an efficient CPU parallelization of the implemented integration schemes all numerical
integrals are partitioned into blocks of grid points. This is achieved in FHI-aims by an
atom-centered partition of unity scheme using the partition functions

pat(r) = gat(r)∑
at′
gat′(r) . (3.38)
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FHI-aims provides several options for the function gat, for example by making use of the
superposition of free atom electron densities nfree

el,at as introduced in the next section

gat(r) =
nfree

el,at
2(rat)

2rat
. (3.39)

In this thesis, we apply the more advanced Stratmann-approach[131] for gat which is the
default setting in FHI-aims and is depicted exemplarily in Fig. 3.3. For a more detailed
account, we refer the reader to the corresponding ref. [131].

3.3.2. Electrostatic Potential

3.3.2.1. Regularization

In order evaluate the Hartree energy Ees in Eq. (2.38) every DFT program package needs
to solve the Poisson equation to obtain the electrostatic potential v◦ created by the electron
density nel. In an all-electron framework the explicit consideration of core electrons leads
to the well-known cusps of the electron density at the atomic centers as well as singularities
in the electrostatic potential complicating the numerical solution of the Poisson equation. In
order to solve this issue, FHI-aims regularizes the electron density with the superposition
of free atom electron densities nfree

el

nel =
∑
at
nfree

el,at(|r −Rat|) + δnel = nfree
el + δnel . (3.40)

Here, the electron density for a particular atom nfree
el,at is obtained from the solution of a

radial Schrödinger equation, analogously to the procedure for the radial basis functions,
but including the same xc functional as in the subsequent SCF cycle. Thereby, one uses by
default the same confinement potential as for the radial basis functions. Similarly, the full
electrostatic potential of electrons and nuclei is also expressed in terms of the sum of the
corresponding free atom potentials

v =
∑
at
vfree

at (|r −Rat|) + δv = vfree + δv . (3.41)

Both nfree
el and vfree are accurately stored as 1D cubic spline interpolations on dense radial

logarithmic grids. The remaining difference functions δnel and δv are both smooth and
free of singularities and can therefore efficiently be expressed in terms of other smooth
functions such as e.g. spherical harmonics (see next section).

In practice, FHI-aims further uses the fact that the electrostatic potential of the nuclei is
well known. The free atom potential can thus be expressed as

vfree
at = vfree

es −
∑
at

Zat
|r −Rat|

, (3.42)

where vfree
es is the electronic part of the free atom potential. The electronic part of the full

electrostatic potential is then given as

ves = vfree
es + δv (3.43)
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3.3.2.2. Multi-Center Multipole Expansion

In order to solve the Poisson equation and obtain the electrostatic potential δv from the
electron density δnel, it is useful to express δnel first as a sum over its atomic contributions
patδnel which are expanded into a basis of spherical harmonics

δnel =
∑
at
patδnel =

∑
at

∑
l

m∑
−m

nel,at,lm(rat)Ylm(Ωat) . (3.44)

nel,at,lm are the multipolar components of δnel which are given by the projection of the
atom-centered functions patδnel onto the space of spherical harmonics

nel,at,lm =
∫
rat

d2ΩatYlm(Ωat)patδnel , (3.45)

with d2Ωat = dθatdφat sin (θat). These radial functions can also be utilized to express the
electrostatic potential δv via (cf. Eq. (2.56))

δv = 4π
∫

dr′δnel(r′)G0(|r − r′|)

= 4π
∑
at

∑
l

m∑
−m

∫
dr′δnel,at,lm(r′at)Ylm(Ω′at)G0(|r − r′|) (3.46)

with the Green’s function G0(|r − r′|) = 1
4π|r−r′| being the solution of the PDE

∆G0(|r − r′|) = −δ(r − r′) . (3.47)

The integrations in Eq. (3.46) can be also carried out in a coordinate system centered
at the respective atoms. Shifting the center of integrations to the respective atoms, i.e.
r′ → r′at = r′ −Rat, Eq. (3.46) then becomes

δv = 4π
∑
at

∑
l

m∑
−m

∫
dr′atδnel,at,lm(r′at)Ylm(Ω′at)G0(|rat − r′at|) . (3.48)

The now atom-centered Green’s function can be expressed in terms of spherical harmonics
by making use of the Laplace expansion (for a full derivation cf. Appendix A.2)

G0(|rat−r′at|) =
∑
at

∑
l

m∑
−m

1
2l + 1Ylm(Ωat)Y ∗lm(Ω′at) ·


r′lat
rl+1

at
= gl(r′at, rat) for rat > r′at

rlat
r′l+1

at
= gl(rat, r

′
at) for r′at > rat

.

(3.49)
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Insertion into Eq. (3.48), splitting of the radial integral (cf. Appendix A.2) and recasting
then yields

δv(r) =
∑
at

∑
l

m∑
−m

∑
l′

m′∑
−m′

1
2l + 1

[ rat∫
0

dr′atδnel,at,lm(r′at)gl′(rat, r
′
at)

+
∞∫

rat

dr′atδnel,at,lm(r′at)gl′(r′at, rat)
]
×
[∫

d2Ω′atYlm(Ω′at)Y ∗l′m′(Ω′at)
]

︸ ︷︷ ︸
δll′δmm′

Yl′m′(Ωat)

=
∑
at

∑
l

m∑
−m


1

2l+1

[
rat∫
0

dr′atδnel,at,lm(r′at)gl(rat, r
′
at)

+
∞∫
rat

dr′atδnel,at,lm(r′at)gl(r′at, rat)
]


︸ ︷︷ ︸
δvat,lm(rat)

Ylm(Ωat)

=
∑
at

∑
l

m∑
−m

δvat,lm(rat)Ylm(Ωat) , (3.50)

where the first part of δvat,lm denotes the interior (rat < r′at) and the second the exterior
(rat > r′at) multipole components. The radial integrals are evaluated on the dense 1D
logarithmic grid which is also used for the solution of the radial Schrödinger equation (cf.
Section 3.3.1). In practise, the multipole expansion in Eq. (3.50) has to be truncated at a
particular angular momentum lhartree,at leading to an error in the Hartree energy Ees (cf.
Section 3.3.5). For standard FHI-aims calculations, a value of lhartree,at = 6 was shown to
be sufficient for most systems providing meV-converged energy differences.[1]

3.3.3. Default Settings

So far, we have introduced several numerical parameters in FHI-aims which are sometimes
critically influencing the outcome of calculations. By modifying the FHI-aims input file,
they can be tuned either individually or in groups by changing the default settings as listed
in Tab. 3.1. An increase in the order light, tight up to really tight settings leads to higher
accuracy in the integration grid, a larger set of basis functions, larger confinement radii and
higher orders in the multipole expansion of the electrostatic potential. The angular grid
is in the case of very high lhartree,at – if differing from the default settings – automatically
adjusted by FHI-aims to give numerically stable spherical harmonics representations.
Finally, 1D integrations on the logarithmic grid are no computational bottleneck and the
corresponding grid can be therefore always chosen fine enough for all possible systems
using αlog = ln(1.0123), rat,0 = 0.0001/Zat and rat(Nlog) = 100 for all default settings
corresponding for an H-atom to Nlog = b 1

α ln
(
rat(Nlog)
rat,0

)
+ 1c = 1131 grid points.
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light tight really tight/

safe

gr
id

router,at (Å) 5 7 7

Nr 24 24 24

radial_multiplier 1 2 2

Ngrid 302 434 590

v
cu

t,
at ronset,at (Å) 3.5 4.0 4.0

rcut,at (Å) 5.0 6.0 6.0

ba
si

s lhartree,at 4 6 8

Nbasis 5 15 15

Table 3.1.: Default settings in FHI-aims at the example of an H-atom. The first block represents settings
of the 3D integration grid with Ngrid being the total number of grid points. Further, the second block
refers to parameters adjusting the confinement potential and the last one comprises basis specific
settings adjusting the multipole or NAO basis expansion.

3.3.4. Total Energy Expression

Starting from Eq. (2.40), the total energy is in FHI-aims evaluated via:

Etot =
Nstates∑
l=1

εl,◦ −
∫

drnel,◦v
xc + Exc[nel,◦]

+ (Efree
double + Efree

en ) + (δEdouble + δEen) + (Enn − Efree
en )− δEen . (3.51)

In the last line, the electron-nuclei interaction energy Een was added and subtracted.
This leads to charge neutral electrostatic terms which increase the numerical stability of
the energy expression.[1] Moreover, we separated both Een as Edouble into a free atom
contribution and a δ-term defined as:

Efree
double = −1

2

∫
drnfree

el vfree
es

δEdouble = Edouble − Efree
double = −1

2

∫
dr
[
δnel,◦v

free
es + nel,◦δv◦

]
Efree

en = −1
2

∫
drnfree

el vnuc

δEen = Een − Efree
en = −1

2

∫
drδnel,◦vnuc = −1

2
∑
at
Zat

[
lim
r→Rat

δv◦(r)
]

. (3.52)
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The arising energy terms in Eq. (3.51) are then evaluated in practice via

Efree
double + Efree

en = −1
2

∫
drnfree

el vfree

δEdouble + δEen = −1
2

∫
dr
[
nel,◦v◦ − nfree

el vfree
]

Enn − Efree
en = −1

2
∑
at
Zat

 ∑
at′ 6=at

Zat′

|Rat −Rat′ |
+ vfree

es (Rat)

 . (3.53)

3.3.5. Multipole Correction

In Section 3.3.2 we introduced the multi-center multipole expansion approach as an
efficient method for solving the Poisson equation. In practice, the unavoidable truncation
of this expansion, however, leads to an error in the electrostatic potential and therefore
the total energy which vanishes with increasing maximum angular momentum lhartree,at.
Considering the KS functional given in Eq. (2.39) the only part that depends on the
error-carrying electrostatic potential δv is the Hartree energy (cf. Eq. (2.38))

Ees = 1
2

∫
drnel,◦ves,◦ = 1

2

∫
drnel,◦v

mp
es,◦ + 1

2

∫
drnel,◦v

res
es,◦︸ ︷︷ ︸

∆Emp
es

, (3.54)

with vres
es,◦ = ves,◦ − vmp

es,◦ and vmp
es,◦ being the multipole expansion approximated electrostatic

potential. The term ∆Emp
es denotes the error in the total energy that comes from the

approximation of ves,◦ by vmp
es,◦ in the evaluation of the Hartree energy. By introducing the

multipole approximated electron density nmp
el,◦ and the corresponding error nres

el,◦, we can
rewrite this expression as (for a full derivation cf. Appendix A.3)[132]

Ees =
∫

drnel,◦v
mp
es,◦ −

1
2

∫
drnmp

el,◦v
mp
es,◦︸ ︷︷ ︸

Ẽes

+1
2

∫
drnres

el,◦v
res
es,◦ . (3.55)

The last term can be rewritten using the Green’s function G0 as

1
2

∫
drnres

el,◦v
res
es,◦ = 2π

∫
drdr′nres

el,◦(r)nres
el,◦(r′)G0(|r − r′|) . (3.56)

Comparing the two residual terms ∆Emp
es and Eq. (3.56), one immediately sees that the

convergence with respect to the multipole error in the electron density increases from
linear to quadratic when neglecting Eq. (3.56) instead of ∆Emp

es in the evaluation of the
Hartree energy. In FHI-aims the Hartree energy is therefore evaluated as

Ẽes =
∫

drnel,◦v
mp
es,◦︸ ︷︷ ︸

included in
Nstates∑

l

εl,◦

−1
2

∫
drnmp

el,◦v
mp
es,◦︸ ︷︷ ︸

Ẽdouble

, (3.57)
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where the respective parts of the Hartree energy in the total energy expression Eq. (3.51)
have been indicated. Compared to the expressions given in Eq. (3.53) this induces the
following changes of the energy term evaluations

Een →Ẽen = −1
2

∫
drnmp

el,◦vnuc

δEdouble + δEen →δẼdouble + δẼen = −1
2

∫
dr
[
nmp

el,◦v
mp
◦ − nfree

el vfree
]

(3.58)

where the electron-nuclei interaction energy is now also evaluated with the multipole
expanded electron density.

3.3.6. Atomic Forces in FHI-aims

3.3.6.1. Hellmann-Feynman and Pulay Forces

In Section 2.2.4, we already derived atomic forces as arising from the atomic position
dependence of the Hamiltonian (HF forces) and the basis functions (Pulay forces). To
derive corresponding expressions in FHI-aims, we start by writing down the derivative of
the total energy expression Etot with respect to the atomic positions:

Fat = −dEtot
dRat

. (3.59)

Instead of now writing the total energy as an expectation value as in Section 2.2.4, we
here aim for a different formulation which can be directly utilized also for the derivation
of forces in the SMPB-DFT method (cf. Section 3.4.4). It is then useful to consider again
the definition of the Lagrangian energy functional in Eq. (2.32) in its unitary transformed
form:

L[v, nel] = EKS[v, nel] +
Nstates∑
l=1

εl

[∫
drψlψ∗l − 1

]
, (3.60)

and express the total energy in terms of this functional

Etot = min(L[v, nel]) = L[v◦, nel,◦] =
∫

dr`[v◦, nel,◦] , (3.61)

where we introduced the Lagrangian energy functional density `. The Lagrangian L
depends directly on the nuclear positions via the nuclear charge density and implicitly via
the electrostatic potential v◦ and its gradient ∇v◦. Moreover, since the atom-centered basis
set moves with the nuclei, also the orbitals and its gradients variations have to be taken
into account. Although generally the basis expansion coefficients {cli,◦} depend on the
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nuclear positions as well, the respective partial derivative ∂Etot
∂cli,◦

vanishes at self-consistency,
since Etot is variational with respect to the {cli,◦}. One can then calculate the forces as

Fat = −
∫

drd`[v◦, {ψl,◦}, {Rat}]
dRat

= −
Nstates∑
l=1

{∫
dr ∂`

∂ψl,◦
∇atψl,◦ + ∂`

∂∇ψl,◦
∇at [∇ψl,◦]

}
+ c.c.

−
∫

dr
{
∂`

∂v◦
∇atv◦ + ∂`

∂∇v◦
∇at [∇v◦]

}
−
∫

dr ∂`

∂nnuc
∇atnnuc , (3.62)

where we introduced the gradient with respect to Rat as ∇at. We thereby made use of the
fact that df(Rat)

dRat
= ∇atf(Rat) with f(Rat) = {ψl,◦,∇atψl,◦, v◦,∇atv◦, nnuc}.

We can now move the ∇-operator from the terms ∇at [∇ψl,◦] and ∇at [∇v◦] onto the
respective prefactor derivatives by integrating by parts and omitting the surface terms.
Using again Eq. (2.14), we can then rewrite the expression using functional derivatives

Fat = −2
Nstates∑
l=1

∫
dr
{

δL
δψl,◦︸ ︷︷ ︸

(ĥKS
◦ −εl,◦)ψ∗l,◦

∇atψl,◦

}
−
∫

dr
{

δL
δnnuc︸ ︷︷ ︸
v◦

∇atnnuc

}
−
∫

dr
{
δL
δv◦︸︷︷︸
=0

∇atv◦

}

= −2
Nstates∑
l=1

∫
dr∇atψl,◦

(
ĥKS
◦ − εl,◦

)
ψ∗l,◦︸ ︷︷ ︸

FPulay
at

−
∫

dr {v◦∇atnnuc}︸ ︷︷ ︸
FHF

at

, (3.63)

where we made use of both KS and Poisson equations, valid at self-consistency. The resulting
expression separates into HF FHF

at and Pulay force terms F Pulay
at (cf. Section 2.2.4). The HF

forces can be further rewritten as

FHF
at = −

∫
dr {v◦∇atnnuc} = −

∫
dr {vnuc∇atnnuc} −

∫
dr {ves,◦∇atnnuc}

= −4π
∫

drdr′
{
nnuc∇at

(
G0(|r − r′|)nnuc

)}
− 4π

∫
drdr′

{
nel,◦∇at

(
G0(|r − r′|)nnuc

)}
= −

∫
dr {nnuc∇atvnuc} −

∫
dr {nel,◦∇atvnuc}

=
∑

at,at′ 6=at

ZatZat′

|Rat −Rat′ |3
(Rat −Rat′)−

∫
drnel,◦

∑
at

Zat
|r −Rat|3

(r −Rat) , (3.64)

where we utilized the independence of the Green’s function G0 of the atomic positions.

3.3.6.2. Multipole Correction Force

The truncation of the multipole expansion in the evaluation of the Hartree potential ves
leads to an error in the total energy. However, by evaluating the Hartree energy via
Eq. (3.57), we showed that this error vanishes quadratically with the order of the multipole
expansion. The corresponding necessary modification of the energy expression leads to

52



3.3. All-Electron DFT with NAO Basis Sets: FHI-aims

modified force terms which we will derive in this section. We start by writing down the
multipole corrected energy expression by making use of Eq. (2.39):

Ẽtot = min(L[v, nel]) = L[vmp
◦ , nel,◦]

= T S[nel,◦] + Ẽes[vmp
es,◦, nel,◦, n

mp
el,◦] + Een[nel,◦, vnuc] + Enn[nnuc, vnuc]

+ Exc[nel,◦] +
Nstates∑
l=1

εl,◦

[∫
drψl,◦ψ∗l,◦ − 1

]
, (3.65)

where all dependencies on the atomic position dependent functions
{nel,◦({ψl}), nnuc, vnuc, n

mp
el,◦, v

mp
es,◦} are explicitly given in brackets. In comparison to the

previous section, we therefore additionally have to consider the multipole approximated
variables as separate test functions. Analogously to before, we can then again utilize
functional derivatives to derive a corresponding atomic force expression:

Fat = − d
dRat

Ẽtot = −2
Nstates∑
l=1

∫
dr
{

δL
δψl,◦︸ ︷︷ ︸

(ĥKS
◦ −εl,◦)ψ∗l,◦

∇atψl,◦

}

︸ ︷︷ ︸
FPulay

at

−
∫

dr
{

δL
δnnuc

∇atnnuc

}

−
∫

dr
{

δL
δvnuc

∇atvnuc

}
−
∫

dr
{

δL
δnmp

el,◦
∇atn

mp
el,◦

}
−
∫

dr
{

δL
δvmp

es,◦
∇atv

mp
es,◦

}
. (3.66)

The derivative with respect to the KS orbitals gives again the Pulay force defined by the same
equation as in the previous section, only now evaluated with the multipole approximated
vmp

es,◦. The remaining terms can be further recast to:

Fat = F Pulay
at −

∫
dr
{
δEnn
δnnuc︸ ︷︷ ︸
1
2vnuc

∇atnnuc + δ (Een + Enn)
δvnuc︸ ︷︷ ︸

nel,◦+ 1
2nnuc

∇atvnuc

}

︸ ︷︷ ︸
v◦∇atnnuc︸ ︷︷ ︸

FHF
at

−
∫

dr
{
δẼes
δnmp

el,◦
∇atn

mp
el,◦ + δẼes

δvmp
es,◦
∇atv

mp
es,◦

}
︸ ︷︷ ︸

Fmp
at

, (3.67)

where we utilized again the independence of the Green’s function G0 of atomic positions
to rewrite the first line. Compared to Eq. (3.63), we find the same expression for the HF
force. The only new force term is the last term which we denote as multipole correction
force Fmp

at . It results from the additional functional dependence of the Hartree energy on
the multipole approximated properties. Performing the respective functional derivatives
and reordering leads to

Fmp
at =

∫
dr
{1

2
(
vmp

es,◦∇atn
mp
el,◦ + nmp

el,◦∇atv
mp
es,◦

)
− nel,◦∇atv

mp
es,◦

}
. (3.68)
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We can now express the potential as a Green’s function integral over the electron density
(cf. Eq. (2.56)) and again utilize the independence of the Green’s function G0(|r − r′|) on
the atomic positions to rewrite this as

Fmp
at =

∫
dr
(
nmp

el,◦ − nel,◦
)
∇atv

mp
es,◦ . (3.69)

3.4. PB in FHI-aims

As discussed in the last section, employing an all-electron DFT program package like
FHI-aims gives rise to a range of technical peculiarities which have to be taken into
account when integrating the SMPB-DFT scheme. This section now deals with the specific
implementation of the SMPB-DFT scheme in FHI-aims. Of particular importance is thereby
the numerical solution of the SMPBE defined in Eqs. (3.25) and (3.26) for which we
developed a function-space-based scheme optimally making use of the multipole expansion
infrastructure of FHI-aims. Following this, we then derive the minimum free energy
expression as evaluated in FHI-aims including a modified multipole correction term. We
then present technical details of the coupling of SCF cycle and SMPBE solution scheme
and investigate the overall numerical convergence and accuracy. Finally, we then derive
atomic forces for the SMPB-DFT scheme in FHI-aims as needed for e.g. molecular structure
relaxations or dynamics.

3.4.1. Solving the Modified PB Equation

We start in the following by first developing a function-space-based solution scheme of the
SMPBE, Eqs. (3.25) and (3.26), that is adapted to the peculiarities of a full-potential DFT
program package like FHI-aims. The non-rectangular integration grids of FHI-aims thereby
severely hamper solving the SMPBE using standard methods such as multi-grid finite
difference method (FDM) or finite element method (FEM) schemes[23,24] due to the high
costs of interpolation onto regular meshes. Additionally, the singularities and cusps present
in an all-electron treatment can contribute to higher computational cost of the common
methods. Regular meshes here would require very small step sizes and a correspondingly
large number of nodes, in order to resolve the regions close to the nuclei. Unstructured
meshes instead require an a priori grid generation step, which, for large problems, can
easily become the bottleneck. This is further complicated through the rapid variation of the
ion exclusion function and the dielectric function close to the cavity’s boundary, which itself
changes during the SCF-cycle. As discussed in Section 3.3.2, FHI-aims achieves an efficient
solution of the plain Poisson equation through a regularization of the electrostatic potential
v by subtraction of a superposition of free-atom electrostatic potentials vfree and by utilizing
the analytic Laplace expansion of the unscreened Green’s function G0(|r − r′|) = 1

4π|r−r′|
in order to solve the two-center integrals (cf. Section 3.3.2). Our own function-space-
based solution scheme for the SMPBE follows a similar strategy by utilizing multipole
representations specifically designed for radial integration grids. We thereby automatically
resolve the rapid variation close to the nuclei and also avoid interpolating between two
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very different grids. Furthermore, we can exploit the efficient machinery for operating on
multipole representations built-in into FHI-aims.

3.4.1.1. Newton Method

The formulation of PDEs like the SMPBE in a function-space oriented solution approach
is nowadays quite common.[3] This is mainly due to the availability of highly efficient
solution schemes, like Newton methods, offering fast quadratical convergence.[133] In our
implementation we employ such a Newton solver, albeit not based on commonly used
FEM,[3] but rather using a multipole basis expansion. This lets us exploit the highly parallel
and efficient machinery of FHI-aims without the overhead for mesh generation or uniform
grids and any additional interpolation steps.

As a first step we thus reformulate the SMPBE, Eqs. (3.25) and (3.26), as a functional
root-finding problem with respect to v

F [v] = ∇ · [ε∇v] + 4π(nsol + nSMPB
ion [v]) = 0 . (3.70)

Here and in the remainder of this section we thereby drop the explicit nel-dependence of
ε[nel] and α±ion[nel] in the equations for clarity, recognizing that for the SMPBE solver only
the v-dependence matters. Regularizing v as in Eq. (3.41) the root with respect to the
difference potential δv can then be obtained through an iterative Newton method

F ′[vn](δvn+1 − δvn) = −F [vn] , (3.71)

where F ′ is the Fréchet derivative of F , the existence of which is proven in Appendix A.4.
Inserting F and F ′ yields a LPB-type equation, i.e. a linear PDE in the updated difference
potential δvn+1 (for the full derivation see Appendix A.4)(

∇ · [ε∇]− h2[vn]
)
δvn+1 = −4πεq[vn] (3.72)

with

h2[vn] =
φ0α

+
ionα

−
ion − 1

2(φ0 − 1)
[
α+

ion[nel]e−βzv + α−ion[nel]eβzv
]

(
1− φ0 + 1

2φ0
[
α+

ion[nel]e−βzv + α−ion[nel]eβzv
])2 εs,bulkκ2 (3.73)

and a modified source term

−4πεq[vn] = −4π
(
nel + nSMPB

ion [vn]− εnfree
)
−ε(∇ ln(ε)) · (∇vfree)−h2[vn]δvn . (3.74)

Straightforward solution of this LPB-type equation can be achieved by rewriting it in
form of a screened Poisson equation (SPE)(

∆− κ2
)
δvn+1 = −4πq[vn] + L̂1[vn]δvn+1 (3.75)

with the response operator

L̂1[vn] = −(∇ ln(ε)) · ∇ −
(
κ2 − h2[vn]

ε

)
. (3.76)
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The equations (3.72) or (3.75) could in principle be discretized using one of the standard
techniques, such as FDM or FEM. The resulting linear algebraic system then needs to
be solved numerically, usually employing an iterative solver. A common prerequisite is a
suitable preconditioner for the linear system, which reduces the number of iteration steps.
Here, we instead follow a different strategy and perform the preconditioning directly on
the function space level.

In principle, a preconditioner can be regarded as an approximation to the inverse of
the operator defining our linear problem. In Eq. (3.75) the latter is (∆ − κ2 − L̂1[vn]),
and for (∆ − κ2) we know the inverse, which is determined by the screened Green’s
function G1(|r − r′|) = 1

4π|r−r′|e
−κ|r−r′|. Using the Green’s function for preconditioning,

we multiply Eq. (3.75) with G1(|r − r′|) and integrate over space to arrive at

δvn+1(r) = −
∫

dr′G1(|r − r′|)
(
−4πq[vn(r′)] + L̂1[vn(r′)]δvn+1(r′)

)
, (3.77)

with surface terms vanishing due to the boundary conditions applied on the potential
(v → 0 for |r| → ∞). For the special case L̂1[vn] = 0 a single evaluation of the right hand
side of Eq. (3.77) would yield δvn+1 for the next Newton step from the given vn of the
current Newton step. The integration is performed by expanding δvn+1 in multi-center
multipoles as further described in the next subsection. Newton steps are then repeated
until convergence in δv is reached. In contrast, in the general case L̂1[vn] 6= 0, the right
hand side of Eq. (3.77) also depends on δvn+1, requiring this equation to be solved self-
consistently. For that purpose we perform iterative integrations applying our developed
multipole expansion relaxation method (MERM). In this method we apply a simple linear
mixing scheme with a mixing parameter η to the source term −4πq[vn] + L̂1[vn]δvn+1.
Thereby, at each Newton step we iteratively solve Eq. (3.77) for fixed q[vn] and L̂1[vn]
until δvn+1 is converged. This converged δvn+1 is subsequently used to update q[vn+1]
and L̂1[vn+1] for the next Newton step defining a new SPE to be solved by the relaxation
method. As in the special case, Newton steps are then repeated until convergence of δv is
reached.

The multi-center multipole expansion for the integrations in Eq. (3.77) is not a prereq-
uisite, but other approaches can also be employed, in particular any solver for SPEs with
fixed right hand sides. Which solver to use can be decided depending on the available
infrastructure of the DFT program package at hand. Also the iterative linear solver could
be replaced by more sophisticated schemes such as Conjugate Gradient.[79] However, we
find that the above approach converges sufficiently fast in all our tests and therefore do not
expect the extra amount of CPU load per iteration of higher-level methods to pay off (cf.
Section 3.4.3.2).

As a side note, Andreussi et al. developed a similar iterative scheme to solve the
generalized Poisson equation for a solvent without ions, Eq. (2.11), by their self-consistent
continuum solvation method (SCCS) scheme.[5] When used with fast Fourier transforms to
solve the SPE instead of multipole expansions, our approach formally reduces to the SCCS
method for ion-free solvents with cs,bulk = 0. While the SCCS makes use of the Poisson
equation using the unscreened G0 as preconditioner, the SMPB method utilizes the SPE and
the screened G1. We find our approach favored when solving the PBE or SMPBE, as the
SPE then describes exactly the bulk limit for |r| → ∞, i.e. nSMPB

ion → − 1
4π ε

s,bulkκ2v. This
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has a beneficial effect on the numerics of the relaxation method as will be addressed in
detail in the following section.

3.4.1.2. Multipole Expansion Relaxation Method
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Figure 3.4.: Modified spherical Bessel functions of the first il and second kl kind shown here exemplarily
for orders l = 0 to l = 7 (along increasing brightness) and two ion concentrations cs,bulk = 10 M and
cs,bulk = 1 M (T = 300 K, εs,bulk = 78.36,z = 1).

The main numerical effort of the derived SMPB Newton solver lies in solving the SPE by
numerical integration of the right hand side of Eq. (3.75) via Eq. (3.77). The developed
Newton-MERM scheme is generally applicable and computationally efficient approaches to
this integration task will depend on the particular program environment into which the
scheme is incorporated. A basic solver for SPEs is in fact often already present in diverse
DFT program packages[1,134,135] in the form of Kerker preconditioners[136] for the electron
density. In case of the Kerker preconditioner utilized by the NAO-based DFT program
package FHI-aims,[1] the screened atom-centered Green’s function is first expanded into
spherical harmonics similar to the Laplace expansion of the unscreened Green’s function (cf.
Eq. (3.49)) by applying Gegenbauer’s addition theorem[137–139] (for a derivation utilizing
the more common plane-wave or Rayleigh expansion cf. ref. [140])

G1(|rat − r′at|) = 8κ
4π
∑
l

m∑
−m

Ylm(Ωat)Y ∗lm(Ω′at)
{
kl(κrat)il(κr′at) for r′at < rat

kl(κr′at)il(κrat) for rat < r′at
, (3.78)
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where il and kl are the modified spherical Bessel functions of first and second kind,
respectively. These functions illustrated in Fig. 3.4 are given as[141]

in(z) =
√
π

2z In+1/2(z) = zn
( d
zdz

)n sinh(z)
z

kn(z) =
√
π

2zKn+1/2(z) = (−1)nπ2 z
n
( d
zdz

)n e−z

z
, (3.79)

where In+1/2 and Kn+1/2 are the modified Bessel functions of first and second kind,
respectively, which can be evaluated by applying common recursion rules.[142] Inserting
Eq. (3.78) into Eq. (3.77) yields a multi-center multipole expansion of δvn+1 analogous to
Eq. (3.50)

δvn+1 =
∑
at

lmax,at∑
l=0

l∑
m=−l

δvat,lm,n+1(rat)Ylm(Ωat) , (3.80)

with the atom-specific maximum order of the multipole expansion lmax,at and the corre-
sponding multipole moments δvat,lm,n+1 given by radial integrals

δvat,lm,n+1(rat) =

− 8κ
4π

[
−4πkl(κrat)

rat∫
0

dr′at

{
il(κr′at)qat,lm(r′at)

}

+ kl(κrat)
rat∫
0

dr′at

{
il(κr′at)

{
L̂1δvn+1

}
at,lm

(r′at)
}

− 4πil(κrat)
∞∫

rat

dr′at

{
kl(κr′at)qat,lm(r′at)

}

+ il(κrat)
∞∫

rat

dr′at

{
kl(κr′at)

{
L̂1δvn+1

}
at,lm

(r′at)
}]

, (3.81)

where qat,lm and
{
L̂1δvn+1

}
at,lm

are the SPE source term multipole moments obtained by

angular integration over the source term itself

− 4πqat,lm(rat) = −4π
∫

rat

d2Ωat

{
patq[vn]Ylm(Ωat)

}
(3.82)

and {
L̂1δvn+1

}
at,lm

(rat) =
∫

rat

d2Ωat

{
pat(r)

(
L̂1[vn]δvn+1(r)

)
Ylm(Ωat)

}
. (3.83)

Numerical evaluation of the radial integral of Eq. (3.81) can then efficiently exploit the
internal FHI-aims integration grids. Specifically, we interpolate the radial functions on
the extra-fine 1D logarithmic grid also used by FHI-aims for the solution of the radial

58



3.4. PB in FHI-aims

Schrödinger equation (cf. Section 3.3.1) and then employ a multistep Adams-Moulton
integrator.[143] This allows to optimally resolve the strong variations of δv in the vicinity of
the nuclei, but involves only a numerically undemanding 1D cubic spline interpolation that
is not performance critical compared to the summation of the multipole moments.

As already discussed in Section 3.3.1 the extent of the radial basis functions is limited
in FHI-aims by an atom-specific confinement potential vcut,at. Due to this and the multi-
plication with the atom-centered partition function pat in Eq. (3.82), many contributions
to the multipole moments qat,lm(rat) arising from electron density dependencies in q[vn]
are also automatically confined. Confined-source multipole moments are beneficial for
computational scaling with system size and speed.[1] In our approach we therefore also
aim to spatially confine all parts of qat,lm(rat) and

{
L̂1δvn+1

}
at,lm

(rat) arising from other

terms in Eqs. (3.74) and (3.76). For instance, by choosing a dielectric function of the form
of Eq. (3.4) that has a zero gradient outside the transition region many terms in qat,lm(rat)
and

{
L̂1δvn+1

}
at,lm

(rat) associated with ∇ε terms in Eqs. (3.74) and (3.76) vanish already

after the dielectric transition region, which is usually much closer to the nuclei than ronset,at.

The remaining terms coming from the functions κ2 − h2[vn]
ε and nSMPB

ion [vn]
ε yield multipole

moments which become negligibly small already before ronset,at for all test cases considered
here. Yet, this detailed convergence with cutoff radius must, of course, be checked for every
individual problem, cf. Section 3.4.3.2. The fast decay of the function κ2 − h2[vn]

ε is thereby
also the main reason why we recast the Newton method into a SPE instead of a Poisson
equation as e.g. done by Andreussi et al.[5] Using a Poisson equation as resolvent would
instead give rise to a term h2[vn]

ε in L̂1[vn]. This term would take a constant value of κ2 in

the bulk solvent, leading to overall unconfined
{
L̂1δvn+1

}
at,lm

(rat) multipole moments.

A similar argumentation motivated us not to regularize v with the vacuum potential (cf.
Eq. (3.41)) as obtained from a solvent-free calculation in FHI-aims as this also leads to
unconfined source multipole moments.

Due to the spatially-confined multipole moments qat,lm(rat) and
{
L̂1δvn+1

}
at,lm

(rat),
the explicit radial integration in Eq. (3.81) is in principle bounded by the cutoff radius.
For grid points rat < rcut,at, this means that the integration of the third and fourth term in
Eq. (3.81) only needs to be carried out up to rcut,at. At grid points rat > rcut,at in the far
field, the numerical gain is even more pronounced. For such points Eq. (3.81) reduces to

δvff
at,lm,n+1(rat) = −8κ

4π

− 4πkl(κrat)
rcut

at∫
0

dr′atil(κr′at)qat,lm(r′at)

+ kl(κrat)
rcut

at∫
0

dr′atil(κr′at)
(
L̂1δvn+1

)
at,lm

(r′at)

 . (3.84)

To evaluate δvff
at,lm,n+1, we thus need no additional integration steps in the Adams-Moulton

integrator, since the radial integral is independent of rat and therefore fixed for all
rat > rcut,at. Apart from the obvious numerical gain compared to having to run the
Adams-Moulton integrator over a much larger number of grid points, this also implies that
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the solution of the SPE and therefore also of the SMPBE is free of finite integration errors
or surface integral terms, since due to the spatially-confined integrand all integrations are
formally carried out over the whole space.

Next to these optimized integration routines, the computational efficiency of the iterative
multipole-expansion scheme can additionally be improved by exploiting the rapid decay of
high-l multipole moments in the far field. Similar to the regular multipole-based solution
of the Poisson equation,[1] significant speed-ups and a greatly improved scaling of the
SMPBE solver can in particular be obtained for large systems by restricting the actual
calculation to low-l multipole moments in the far field. Our implementation of the iterative
solver furthermore evaluates the angular and radial integrals associated with q[vn] only
once at the beginning of each Newton step. At each iterative step in the MERM then only
integrals associated to L̂1[vn]δvn+1 have to be carried out. Due to the spatial confinement
of L̂1[vn]δvn+1 this update is, however, not necessary on the whole integration grid, but
instead only on the points where L̂1[vn]δvn+1 6= 0. A full update of δvn+1 according to
Eq. (3.80) on the entire integration grid is correspondingly only done after the last iterative
MERM step. While generally increasing the computational efficiency, this update strategy
is particularly effective for solvent calculations without ions. In this case δvn+1 has to be
updated during the MERM only on the integration grid points of the dielectric transition
region and the majority of the integration points close to the nuclei are only considered
in the final update. The presented alternative solution strategy can be switched on in the
FHI-aims input file by setting the flag MERM_in_SPE_solver = .True. (cf. Appendix B).

3.4.1.3. Solution scheme for the Linearized PB Equation

The developed MERM is generally suited to solve any LPB-type equations since these can,
in principle, be rewritten in the form of a SPE. It may therefore also be applied to solve the
LPBE that arises from the Taylor expansion of the non-linear ionic charge density, given in
Eqs. (2.52) and (3.30). As discussed in Section 3.2.6 a solution could not only be of interest
for comparison with other PB software, but also offers a faster alternative to the coupled
Newton-MERM solution of the SMPBE for cases where the LPBE is a good approximation.

The recasting of the LPBE of Eqs. (2.52) and (3.30) into a SPE of the form of Eq. (3.75)
is analogous to the procedure described in Section 3.4.1.1 and leads to an LPB modified
source term

− 4πεqLPB = −4π
(
nel − εnfree

el

)
− ε (∇ ln (ε)) ·

(
∇vfree

)
+ κ̄2

0 + κ̄2vfree (3.85)

with the modified DH coefficient as given by Eq. (3.30) and the LPB response operator

L̂LPB
1 = − (∇ ln (ε)) · ∇+

(
κ̄2

ε
− κ2

)
. (3.86)

Furthermore, qLPB and L̂LPB
1 are exactly zero beyond the cutoff radius as long as both

ionic and dielectric transitions lie inside the confinement region. This avoids any numerical
instabilities in the update procedure of the electrostatic potential which could appear in
the SMPB case using q[vn] and L̂1[vn].
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3.4.2. Total Energy and Multipole Correction
The fact that we approximate the potential δv◦ by a multipole expansion gives rise to errors
in the evaluated total energy. In contrast to the vacuum case presented in Section 3.3.5
the multipole-expanded potential δv◦ contains, however, now also contributions from the
nuclear and ionic charges (cf. Appendix A.4). Furthermore, the truncation of the multipole
expansion induces not only an error in the Hartree or electrostatic energy Ωelstat, but in
principle on all energy terms in the modified KS functional given in Eq. (3.3) that depend
on δv◦. In contrast to the vacuum case, the multipole expanded potential δvmp

◦ is now
generated by the source term qmp

iter,◦ = qmp
◦ − 1

4π L̂1δv
mp
◦ instead of δnmp

el,◦ (cf. Eq. (3.77)). The
by far largest contribution to the multipole expansion truncation error comes thereby from
the electrostatic energy 1

2
∫

drnsol,◦v◦. Ionic contributions resulting from the evaluation
of Ωion

α±ion
with δvmp

◦ are commonly small as discussed in more detail in Appendix A.3.

Introducing the source term multipole error qres
iter,◦ = qmp

iter,◦ − qiter,◦, we can then employ an
analogous approach to Section 3.3.5 to write this as (for a full derivation cf. Appendix A.5):

1
2

∫
drnsol,◦v◦ =

∫
drnsol,◦v

mp
◦ −

1
2

∫
dr
(
nsol,◦ − qres

iter,◦

)
vmp
◦ + 1

2

∫
drqres

iter,◦v
res
◦ .

(3.87)

Expressing the residues of the electrostatic potential vres
◦ in terms of the source term qiter,◦

and the Green’s function G1(|r − r′|), we can rewrite the last term as

1
2

∫
drqres

iter,◦v
res
◦ = 2π

∫
drdr′qres

iter,◦(r)qres
iter,◦(r′)G1(|r − r′|) . (3.88)

The final expression thus vanishes quadratically with the source term multipole error.
Further recasting the remaining integrals in Eq. (3.87) we can associate the energy terms
again with the double counting correction, electron-nuclei and nuclei-nuclei interactions
(cf. Eq. (3.51)):

1
2

∫
drnsol,◦v◦ ≈

∫
drnel,◦v

mp
◦︸ ︷︷ ︸

included in
Nstates∑

l

εl

+ 1
2

∫
drnnucv

mp
◦︸ ︷︷ ︸

Ẽnn−Ẽen,1

−1
2

∫
dr(nel,◦ − qres

iter,◦)vmp
◦︸ ︷︷ ︸

Ẽdouble+Ẽen,2

.

(3.89)

Compared to Eq. (3.27), the first term reappears in the sum of eigenstates while the
remaining parts comprise multipole corrected nuclei-nuclei and double counting energy
terms. As appealing as the mathematical simplicity of the final expression is, it has to be
taken with caution. Regarding for example the terms labeled as electron-nuclei interactions

Ẽen,1 = −1
2

∫
drnnucv

mp
es,◦ (3.90)

and

Ẽen,2 = −1
2

∫
dr
(
nel,◦ − qres

iter,◦

)
vmp

nuc , (3.91)
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we realize that these are not equivalent. Due to the non-linearity of the SMPBE, there exists
no Green’s function, and electronic and nuclear contributions to the electrostatic potential
can thus not easily be separated. We, nevertheless, keep this notation, since it simplifies the
comparison with the original FHI-aims implementation. The energy differences introduced
in Eq. (3.89) are then calculated in FHI-aims by again separating them into free-atom
contributions and δ-correction terms:

Ẽnn − Ẽen,1 =
(
Efree

nn − Efree
en

)
+
(
δẼnn − δẼen,1

)
, (3.92)

with

δẼnn − δẼen,1 =
∑
at

[
Zatδv

mp
at,◦(0) +

∑
at′
δvmp

at′,◦(Rat −Rat′)
]

, (3.93)

where δvat,◦ denotes the contribution of the atom “at” to δv◦

δvmp
at,◦ =

lmax,at∑
l=0

l∑
m=−l

δvat,lm,◦(rat)Ylm(Ωat) . (3.94)

Furthermore, we get

Ẽdouble + Ẽen,2 =
(
Efree

double + Efree
en

)
+
(
δẼdouble + δẼen,2

)
, (3.95)

with

δẼdouble + δẼen,2 = −1
2

∫
dr
[(
nel,◦ − qres

iter,◦

)
vmp
◦ − nfree

el,◦v
free
◦

]
, (3.96)

where the free atoms parts of both expressions are again defined as in Eq. (3.53). We
can now rewrite the minimum free energy expression given in Eq. (3.27) as evaluated in
FHI-aims as:

Ω◦(εs,bulk, cs,bulk, nsol,◦)

=
Nstates∑
l=1

εl,◦ −
∫

drnel,◦v
xc
◦ + Exc[nel,◦]−

∫
drnel,◦δv

KS,SMPB
ε,αion,◦

+
∫

dr
{
−1

2n
SMPB
ion [vmp

◦ , nel,◦]vmp
◦ −

1
βa3 ln

(
1 + 1

2
φ0

1− φ0

[
α+

ione−βzv
mp
◦ + α−ioneβzv

mp
◦
)]}

+ Ωnon−mf
ε [nel,◦]

+ (Efree
double + Efree

en ) + (δẼdouble + δẼen) + (Efree
nn − Efree

en ) +
(
δẼnn − δẼen

)
. (3.97)

3.4.3. Coupling Modified PB and Kohn-Sham Equations

3.4.3.1. Iterative Functional Minimization

So far, we have focused on the theoretical derivation of the Newton-MERM scheme and
the resulting necessary modifications of the energy expression. This section now deals
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with the actual implementation of the methodology into FHI-aims with the basic workflow
illustrated in Fig. 3.6. The workflow for the also implemented MERM-based LPBE solver is
analogous and shown in Fig. 3.5. FHI-aims solves the modified KS equations containing
the additional term δvKS,SMPB

ε,αion of Eq. (3.24) through an SCF cycle. At each corresponding
SCF step, i.e. for the then given nel, the SMPBE of Eqs. (3.25) and (3.26) are solved
with the Newton-MERM scheme. For this, the iterative Newton scheme to optimize δv
is initiated, with each Newton step involving the self-consistent solution of the SPE of
Eq. (3.75) through the MERM. Once the SCF cycle is converged, the resulting ground-state
electron density and electrostatic potential are used to evaluate the free energy of the
solute Ω0 in the presence of solvent and ions through Eq. (3.97).

The SCF cycle is initialized with the superposition of free-atom electron densities nfree
el

and the superposition of free-atom potentials vfree. In principle, it could be beneficial to start
solving the SMPBE only after a certain number of SCF steps, i.e. avoid the additional cost
of solving the SMPBE in the first SCF steps when the electron density still changes rapidly.
However, in practice we obtained a faster SCF convergence in fewer steps when including
the SMPBE solver directly from the second SCF step onwards. To initiate the SMPBE solver,
ε[nel] and αion[nel] are first evaluated from the nel of the given SCF step. At the very first
time the SMPBE solver is executed, δv is initialized with the solution of the corresponding
LPBE, cf. Section 3.4.1.3, with δv = 0 in the case of the SMPBE scheme, whereas for LPB
calculations, cf. Section 3.4.1.3, we simply set δv = 0. At all later SCF steps, δv is initialized
with the self-consistent δv of the preceding SCF step. The initialized quantities are used
to evaluate the SPE source functions −4πq[vn] and L̂1[vn]δvn+1 (SMPBE) or −4πqLPB and
L̂LPB

1 δv (LPBE), and the resulting SPE is solved via the MERM until self-consistency in
δvn+1 (SMPBE) or δv (LPBE) is reached. In case of the SMPBE solver, the updated δvn+1
is then used to update the SPE source functions, n→ n+ 1, and restart the MERM until
overall convergence of δv is reached. With this converged δv, the KS Hamiltonian ĥKS is
updated and the eigenvalue problem is solved in the next SCF step.
FHI-aims measures the numerical convergence of the electron density by evaluating the

integrated root mean square change of nel from one SCF step to the next[1]

τSCF =
√∫

dr
{

(δnel,new(r)− δnel,old(r))2
}

. (3.98)

In analogy, the convergence of the Newton method and the MERM is measured through
convergence criteria τNewton and τMERM, respectively, which calculate the corresponding
change in the iteratively optimized potential

τNewton/MERM =
√∫

dr
{

(δvnew(r)− δvold(r))2
}

. (3.99)

3.4.3.2. Numerical convergence

We assess the numerical convergence of the implemented SMPB-DFT scheme by calculating
a test set of 13 differently functionalized neutral, organic molecules dissolved in water
(εs,bulk = 78.36 at room temperature,[14] cf. Fig. 2.1) containing a 1 M electrolyte with
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Figure 3.5.: Workflow of the MERM-based LPB solver inside FHI-aims. Always one SCF step is performed
in approaching the minimum of nel and then δv is converged as solution of the LPBE by the MERM.
The converged v is used to update the KS operator, the KS equation is solved and the electron
density updated. The process is repeated until overall self-consistency in energy, electron density
and eigenvalues has been reached. Reproduced with permission from ref. [86]. © 2016 American
Chemical Society.
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Figure 3.6.: Workflow of the Newton-MERM-based SMPB solver inside FHI-aims. At each electronic
SCF step of FHI-aims the iterative Newton scheme to optimize δv is initiated. Each Newton step then
involves the self-consistent solution of the SPE of Eq. (3.75) through the MERM. Reproduced with
permission from ref. [86]. © 2016 American Chemical Society.

ionic charges z = 1. This set constitutes a sub-set of the test set introduced by Shivakumar
et al.[144] and is given in Tab. 3.2. For all calculations we employ the parametrization of
Andreussi et al. for the dielectric function (nmin and nmax) and for the non-mean-field
solvent-solute interaction part of the solvation energy Ωnon−mf

ε ((α+ γ) and β) as obtained
by their best fit to experimental solvation energies (“fitg03+β”) (cf. Section 4.1).[5] For
the ion-specific SMPBE parameters representative values a = 5 Å, d±αion = dαion = 0.5,
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3.4. PB in FHI-aims

ξ±αion = ξαion = 1 and T = 300 K are used, cf. Section 4.2. As mentioned in the introduction,
PBE-GGA[112] is used as DFT xc functional for all calculations in this thesis.

index name index name index name
13 piperazine 90 morpholine 163 tert-butyl methyl ether
16 trimethylamine 117 propanoic acid 200 propiononitrile
36 butyraldehyde 140 cyclopropane 206 nitrobenzene
69 4-methyl-1H-imidazole 142 diethyl disulfide
79 biphenyl 160 1,3-dioxolane

Table 3.2.: Test set of neutral molecules used for the convergence tests. The index numbers refer to the
number in the large test set from Shivakumar et al., [144] from which these molecules were drawn.

For this test set, using conservative default convergence criteria of
τNewton/MERM < 1 · 10−10 is found to be more than enough to obtain highly converged
electrostatic potentials and solvation free energies. Fastest convergence of the MERM is
observed for a linear mixing parameter η = 0.5. For this η the self-consistent solution of the
SPE converged below the convergence criterion for τMERM is similarly quickly achieved for
all tested molecules – independent of their size and polarity. The number of corresponding
MERM steps is initially typically around 60 and then decreases quickly to about five in
subsequent Newton and SCF steps (cf. the case of nitrobenzene in Fig. 3.8 as an example),
which proves the efficiency of the employed preconditioner. The maximum number of
Newton steps required to reach the τNewton < 1 · 10−10 convergence criterion is three. As
illustrated in Fig. 3.7, at these settings the incorporation of the SMPBE solver has only an
insignificant effect on the SCF convergence, i.e. the total number of SCF steps required
to reach the predefined τSCF convergence criterion is about the same with or without
the additional solvent calculations. This finding also extends to the case, where the rigid
superposition of free atom densities nfree

el is employed in the evaluation of the dielectric and
ion exclusion function, cf. Section 3.2.2.1.

In general, the computational overhead due to the solvation calculation is therefore
mostly determined by the SPE solving step. Therein, the multipole summation is the most
expensive computational transformation scaling O(N2) with system size.[1] This is, however,
drastically improved for larger systems where the confinement of the source multipole
moments due to the neglect of all fast-dying far field multipole moments δvff

at,lm,n+1(rat)
with lmax,at > 0 crucially reduces the computational time of the multipole summation. For
smaller systems of the size of those of the molecular test set, this saving is not yet noticeable,
as the integration grid does not extend significantly beyond the cutoff radius. The parallel
scalability of our implemented SMPBE solver depends thereby entirely on the scaling of the
computational bottleneck in form of the multipole summation. Since FHI-aims uses atom-
centered integration grids that are designed for optimal parallel scalability, the multipole
summations can be very efficiently parallelized, cf. Fig. (10) in ref. [1].

As the MERM scheme performs the numerical integration to solve the SPE on the
FHI-aims internal integration grids, it is subject to the same truncation and integration grid
parameters already present in any regular FHI-aims DFT calculation. In detail, these are
the radial_multiplier defining the radial integration grid density, the maximum angular
momentum in the multipole expansion lmax,at, cf. Eq. (3.80), and the radii ronset,at and
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Figure 3.7.: Illustration of the SCF convergence for the SMPB-DFT scheme in FHI-aims (default tight
settings) using a nitrobenzene molecule dissolved in water containing a 1 M 1:1 electrolyte as example.
Compared is the integrated root mean square change of nel, τSCF, as a function of SCF steps for the
molecule in vacuum (black dotted line) and in the electrolyte (orange solid line). Additionally shown
(blue dashed line) is the convergence when the superposition of free atom densities nfree

el is used in
the evaluation of the dielectric and ion exclusion function for the solvated case, cf. Section 3.2.2.
Reproduced with permission from ref. [86]. © 2016 American Chemical Society.
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Figure 3.8.: Convergence of electron density and electrostatic potential during a SMPB-DFT calculation
of nitrobenzene dissolved in water containing a 1 M 1:1 electrolyte (shown for all SCF steps > 1,
“tight" settings). The contour lines show the weighted root mean square change in nel and v at each
SCF and Newton step. The dot size represents the number of relaxation steps needed to solve the
SPE until self-consistence at each Newton step (the first initialization cycle was not considered). All
SMPB-DFT parameters are as for Fig. 3.7. Reproduced with permission from ref. [86]. © 2016
American Chemical Society.

rcut,at defined by the confinement potential vcut,at. Convergence of ∆Gsol and ∆∆Gion for
the molecular test set is obtained at the meV-level for the default tight production settings for
these values as listed in Tab. 3.1 with lmax,at replacing the multipole truncation parameter
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lhartree,at. As a consequence, this eliminates the need to introduce separate truncation and
integration grid parameters for the MERM. As further detailed in Appendix A.7, equivalent
findings are obtained for the convergence of ∆Gsol and ∆∆Gion with the NAO basis, i.e.
also here meV-level convergence is obtained at the predefined default settings.

In practice, SMPB-DFT solvation free energy calculations can thus be performed at the
recommended tight production settings of FHI-aims.[1] Further increase of the truncation
and integration grid parameters allows to also converge a quantity like the ionic charge
distribution nSMPB

ion , which is highly sensitive to small changes in the outer electrostatic
potential. In order to evaluate the performance of the Newton-MERM scheme to resolve
such functions, we compare results with the adaptive FEM program package KARDOS[145]

in which we implemented both the SMPBE and LPBE.[146] FEMs are optimally suited for
reference calculations due to the inherent hierarchical basis set providing a systematic way
to increase the accuracy of the results. In order to solve the same PDEs in KARDOS as in
FHI-aims, certain functions have to be transferred between both program packages. The
vacuum δ-electron density δnel as obtained by FHI-aims and used for the evaluation of
ε and α±ion is written out on a regular grid and interpolated by a piecewise polynomial
function represented as a tensor product of one-dimensional b-splines. To avoid numerical
instabilities due to the singularities in the electrostatic potential, we use the same regu-
larization as in FHI-aims of v with vfree and transfer the required free-atom potentials via
the corresponding spline coefficients as defined in FHI-aims. In order to simplify the com-
parison we focus on linear molecules which additionally let us exploit the axial symmetry
of the resulting PDEs to perform fast and highly accurate benchmark calculations. The
resulting two-dimensional problem is solved on a domain of spatial dimensions 64× 320
and by relaxing a corresponding time-depending problem to stationary state. The initial
grid consists of 250 triangles and we require a spatial accuracy of 10−6 in δv. With these
settings, the grid is adaptively refined 11 times, resulting in a mesh with roughly 100, 000
triangles and a minimal grid spacing of ≈ 10−2. We furthermore apply homogeneous
Dirichlet boundary conditions δv = 0 at the edge of the domain.

To illustrate the comparison between KARDOS and FHI-aims , we first considered the
ground-state charge distribution for the linear HCCH molecule in vacuum as obtained
at the level of DFT with the PBE-GGA functional.[112] For this fixed nel, the SMPBE was
then solved in FHI-aims and in the equivalent external implementation of the SMPBE
in KARDOS again for water containing a 1 M 1:1 electrolyte and using the same SMPB
parameters as before. Figure 3.9 compares the corresponding results for the ionic charge
density nSMPB

ion obtained by both methods. The left panel shows the results from a highly
accurate FEM benchmark calculation, while the upper right panel shows the results from
FHI-aims calculation using lmax,at = 6 ∀ at (default tight settings) and the lower right
panel using lmax,at = 8 ∀ at (really tight settings). As can be seen, qualitative agreement
of the ion density is already achieved at FHI-aims production settings. The residual error
in the electrostatic potential which we showed to be negligibly small on an energy scale
(cf. Appendix A.7) is further reduced by increasing the order of the multipole expansion.
Changing to a charged molecule, we even got excellent agreement for the difference of
ionic charge densities nSMPB

ion − nLPB
ion , a quantity particularly challenging to resolve. A

corresponding plot is shown in Fig. 3.10.
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Figure 3.9.: Comparison of the ionic charge distribution nSMPB
ion as calculated for HCCH dissolved in

water containing a 1 M 1:1 electrolyte (shown with intuitive sign convention), once with the adaptive
finite-element program package KARDOS (left half) and with the implementation in FHI-aims (right
half). The FHI-aims calculations were performed with the default numerical settings lmax,at = 6 ∀ at
(upper panel) and with a higher accuracy of the multipole expansion lmax,at = 8 ∀ at (lower panel).
Reproduced with permission from ref. [86]. © 2016 American Chemical Society.

3.4.4. Atomic Forces in the PB Scheme of FHI-aims
In order to extend the functionality of our SMPB-DFT scheme to dynamic simulations it
is necessary to derive the corresponding atomic forces from the minimum free energy
expression. To this end, we apply a similar strategy as in Section 3.3.6 leading to analogous
expressions for HF, Pulay and multipole correction forces.

3.4.4.1. Hellmann-Feynman and Pulay Forces

Analogously to Section 3.3.6, we evaluate atomic forces also in the SMPB-DFT formalism
from the total derivative of the minimum free energy expression, in this case Ω◦ as given in
Eq. (3.27)

Fat = − dΩ◦
dRat

. (3.100)

Utilizing the Lagrangian in Eq. (3.15) in its unitary transformed form

L[v, nel] = Ωε,α±ion
[v, nel] +

Nstates∑
l=1

εl

[∫
drψlψ∗l − 1

]
, (3.101)

we can express the minimum free energy in terms of this functional

Ω◦ = min(L[v, nel]) = L[v◦, nel,◦] =
∫

dr`[v◦, nel,◦] , (3.102)
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Figure 3.10.: Comparison of the ionic charge density nSMPB
ion (left) and difference of ionic charge densities

nSMPB
ion − nLPB

ion (right) as calculated for HCCH+ dissolved in water containing a 1 M 1:1 electrolyte
(shown with intuitive sign convention), once with the adaptive finite-element program package KARDOS
(left half) and with the implementation in FHI-aims (right half). The FHI-aims calculations were
performed with the default tight settings (lmax,at = 6 ∀ at). Reproduced with permission from ref.
[86]. © 2016 American Chemical Society.

with the Lagrangian energy functional density `. Using the same procedure as in Sec-
tion 3.3.6, we can express the atomic forces by an integral over functional derivatives of
L with respect to ψl,◦, nnuc and v◦ which results analogously to Eq. (3.63) in the same
expressions for HF and Pulay forces

Fat = − dΩ◦
dRat

= −2
Nstates∑
l=1

∫
dr∇atψl,◦

(
ĥKS
◦ − εl,◦

)
ψ∗l,◦︸ ︷︷ ︸

FPulay
at

−
∫

dr {v◦∇atnnuc}︸ ︷︷ ︸
FHF

at

, (3.103)
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In contrast to the vacuum case, the HF forces can, however, not be separated into electronic
and nuclear contributions anymore. Instead, they have to be rewritten as

FHF
at = −

∫
dr {v◦∇atnnuc} =

∫
dr
{
v◦∇at

(∑
at′
Zat′δ(rat′)

)}

=
∫

dr {v◦Zat∇atδ(rat)}

= −
∫

dr {v◦Zat∇δ(rat)} =
∫

dr
{(∑

at′
∇vat′,◦(rat′)

)
Zatδ(rat)

}

= −
∫

dr
{(∑

at′
∇at′vat′,◦(rat′)

)
Zatδ(rat)

}
= −Zat

∑
at′
∇at′vat′,◦(Rat −Rat′) = Zat

∑
at′
∇atvat′,◦(Rat −Rat′)

→ Zat

(∇atv
free
es,at +∇atδvat,◦

)∣∣∣
r=Rat

+
∑

at′ 6=at
∇atvat′,◦(Rat −Rat′)

 , (3.104)

where we removed the nuclear charge interaction with their own potential gradient in the
last step. We thereby made use of the fact that both v as δv can be decomposed into their
atomic contributions (cf. Eq. (3.80)).

Evaluating the Pulay force terms is in principle straightforward, if we apply the modified
KS operator that was derived in Section 3.2.3. In contrast to energy calculations, the
evaluation of forces does, however, now imply the need for the explicit evaluation of the
Hessian matrix due to the xc correlation term Exc (in the case of a GGA xc-functional[1])
and the term Ωnon−mf

ε both depending on the gradient of the electron density. While in
static DFT calculations, this can be avoided by moving the gradient onto the basis functions
as shown in Eq. (3.23). The gradient of the basis functions is in this case already present.

Considering the Ωnon−mf
ε -part of the KS Hamiltonian given in Eq. (3.19) the resulting

contribution to the Pulay force is given by:

F Pulay,Ωnon−mf

at = −2
Nstates∑
l=1

∫
dr∇atψl,◦

({
(α+ γ) ∂ϑ◦

∂nel,◦
+ β

∂s◦
∂nel,◦

}
− εl,◦

)
ψ∗l,◦

− 2
Nstates∑
l=1

∫
dr∇atψl,◦

{
β∇ · ∂s◦

∂∇nel,◦

}
ψ∗l,◦ . (3.105)

The second part can then be rewritten by moving the ∇-operator onto the basis functions
(neglecting the surface integrals):

F Pulay,Ωnon−mf

at = −2
Nstates∑
l=1

∫
dr∇atψl,◦

({
(α+ γ) ∂ϑ◦

∂nel,◦
+ β

∂s◦
∂nel,◦

}
− εl,◦

)
ψ∗l,◦

+ 2
∫

drβ ∂s◦
∂∇nel,◦

Nstates∑
l=1

(
[∇at∇ψl,◦]ψl,◦ + (∇atψl,◦) (∇ψl,◦)

)}
.

(3.106)
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The resulting expression now contains the above mentioned second derivatives of the
single-electron wave-functions ψl,◦ requiring the explicit evaluation of the Hessian matrix.

3.4.4.2. Multipole Correction Force

Analogously to Section 3.3.6.2 we can also in the SMPB case derive modified force terms
that take into account the multipole correction of the total energy as presented in Sec-
tion 3.4.2. We start by writing down the multipole corrected minimum SMPB free energy as
the minimum of the corresponding Lagrangian functional. After introducing a new function
qmp
nel,◦ = nsol,◦ − qres

iter,◦, this is given by:

Ω̃◦ = min(L[v, nel]) = L[v◦, nel,◦]
= T S[nel,◦] + Exc[nel,◦] + Ω̃mf

ε,α±ion
[nel,◦, nnuc, q

mp
nel,◦, v

mp
◦ ]

+ Ωnon−mf
ε [nel,◦] +

Nstates∑
l=1

εl,◦

[∫
drψl,◦ψ∗l,◦ − 1

]
, (3.107)

with

Ω̃mf
ε,α±ion

=
∫

drnsol,◦v
mp
◦ −

1
2

∫
drqmp

nel,◦v
mp
◦ + Ωion

α±ion
[nel,◦, v

mp
◦ ] . (3.108)

In order to calculate the corresponding atomic forces, we again rely on the formulation in
terms of functional derivatives, here with respect to {nel,◦({ψl}), nnuc, q

mp
nel,◦, v

mp
◦ }:

Fat = − d
dRat

Ω̃◦ = −2
Nstates∑
l=1

∫
dr
{

δL
δψl,◦︸ ︷︷ ︸

(ĥKS
◦ −εl,◦)ψ∗l,◦

∇atψl,◦

}

︸ ︷︷ ︸
FPulay

at

−
∫

dr
{

δL
δnnuc︸ ︷︷ ︸
vmp
◦

∇atnnuc

}
︸ ︷︷ ︸

FHF
at

−
∫

dr
{

δL
δqmp
nel,◦︸ ︷︷ ︸

− 1
2v

mp
◦

∇atq
mp
nel,◦ −

δL
δvmp
◦︸ ︷︷ ︸

nsol,◦− 1
2 q

mp
nel,◦

∇atv
mp
◦

}

︸ ︷︷ ︸
Fmp

at

. (3.109)

The first and second terms represent as before the HF and Pulay force contributions,
respectively. In contrast to the vacuum case, we now have to evaluate both terms with the
multipole approximated potential vmp

◦ , not only the Pulay force. The remaining derivatives
with respect to the multipole expanded properties constitute again the multipole correction
force Fmp

at . We thereby ignored the dependence of the ionic part of the free energy on the

multipole potential, i.e. we assumed
∂Ωion

α±ion
∂vmp
◦
≈ 0. As discussed in detail in Appendix A.3, A.5

and A.6, we expect that the presence of the ions does not critically influence the multipole
convergence of energies and atomic forces. We, however, stress that such an approximation

71



3. Methods

has to be tested thoroughly in the future and an implementation of the missing terms
should be generally straightforward. Following this argumentation, we then get for Fmp

at :

Fmp
at =

∫
dr
{1

2
(
vmp
◦ ∇atq

mp
nel,◦ + qmp

nel,◦∇atv
mp
◦

)
− nsol,◦∇atv

mp
◦

}
≈ −qres

iter,◦∇atv◦ , (3.110)

where the last line follows from the recasting presented in Appendix A.6. The multipole
correction force thus adopts an analogous functional form to the vacuum-expression in
FHI-aims, given in Eq. (3.69). As discussed in detail in Appendix A.6, Eq. (3.110) is exactly
valid only for the vacuum case and approximately for the solvent case. We have proven
this for some molecular test systems by performing multipole order convergence tests and
comparing to numerical forces obtained from a finite difference scheme discretizing the
∇at-operator.[147] For finite ionic strengths, the non-linearity of the SMPB leads to a much
more complex result for the multipole correction force. Since we, however, as mentioned
above, assume ions to induce only a negligible effect on the multipole convergence of the
atomic forces (cf. argumentation in Appendix A.3), Eq. (3.110) will most probably also hold
in these cases. We leave it here to future studies to evaluate the validity of this statement
by performing profound convergence studies and comparing to FDM calculations.
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4Parametrization∗†

Continuum solvation methods are effective approaches which integrate out the electrolyte’s
degrees of freedom and thereby avoid an explicit modeling of the liquid phase. As a
consequence, their capabilities and reliability stand and fall with the parametrization of the
coarse-grained interactions. Our SMPB-DFT scheme builds on a total of four parameters
defining the solute-solvent interactions: {nmin, nmax} describing the solvation cavity and
dielectric function transition and {(α+ γ), β}, governing the non-mean-field free energy
contributions. In the following, the electron density iso-values {nmin, nmax} will be refer-
enced to in atomic units. In accordance with literature we use cgs units for (α+γ)(dyn/cm)
and SI units for β(GPa).[5] Solute-ion interactions on the other hand depend on the choice
of the ionic parameters {a, d±αion , ξ

±
αion} describing the finite ion size and the thickness and

smoothness of the Stern layer, respectively, whereby a will be given in Å and the Stern layer
parameters are unitless.

Aspiring to derive a transferable parameter set that holds for a wide range of systems and
conditions, we suggest to separately determine and optimize the prior non-ionic parameter
group through solvation calculations for ion-free solvents. Such an approach will be
particularly suitable for weakly charged or neutral solutes, but may also fail if the solvent
structure and dielectric permittivity are largely influenced by the ionic charges. The latter
leads for example to the well-known dielectric decrement effect which describes a reduction
of the dielectric permittiviy in regions of high ion concentrations.[149–152] In this thesis we
focus on the simpler case where solute interactions with both ions and solvent molecules
are expected to decouple. Furthermore, although our method is in principle not limited
to a specific solvent, we restrict our studies to water for which the wide availability of
experimental reference data enables the construction of training sets which can be used for
the derivation of transferable parameters. Corresponding solvation model parameters have
already been obtained with the so called SCCS scheme,[5] to which our SMPB-DFT scheme
reduces in the case of zero ionic strengths. In these studies, parameters applicable to both
neutral[5] and charged[6] molecular solutes have been determined, yielding reasonably
accurate agreement (neutral molecules: mean absolute error (MAE)≈50 meV, cations:
MAE≈100 meV, anions: MAE≈240 meV) with experimental hydration energies. In this

* Reproduced in part with permission from ref. [86]. © 2016 American Chemical Society
† Reproduced in part with permission from ref. [148]. © 2017 AIP Publishing
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chapter, we therefore adopt these parameters and use the results as a quality check for the
numerical accuracy of our implementation.

While there have been many studies on parametrization strategies for ion-free implicit
solvation models,[18] only little is known about ion-specific PB parameters defining e.g. the
Stern layer or the ion size.[60,63,78] Moreover, even though PB methods have been applied ex-
tensively in chemistry,[48] in particular in (electro-)catalysis,[49–51] electrochemistry,[52–54]

electrokinetics[55,56] and biology,[36,37,45,47,57–63] it is still often not even clear which of
the two mentioned modifications is essential for an accurate modeling of ion-specific ef-
fects. This ambiguity eventually led to the pragmatic combination of both strands into
SMPB models.[23,24,60,72,78] This prevailing knowledge gap stands in contrast to the fact
that ion-specific parameters often sensitively affect the outcome of PB-based solvation
calculations,[60,63,78] highlighting the need to more extended studies.

In this chapter, we therefore start with a basic assessment of the SMPB ionic parameter
space by simulating different solutes with varying ionic parameters and comparing to
experimental reference data. In particular, we consider properties related to the ion effect
on the solvation energy ∆∆Gion as e.g. mean activity[7] or Setschenow coefficients[8]

which have been experimentally widely studied and can be easily extracted from SMPB-DFT
calculations. From this first analysis, we then find that the ionic parameter space can be
condensed into a single relevant parameter dαion . In order to determine this parameter for
a particular salt solution, we utilize again Setschenow coefficients which are available for
sufficiently large databases of various neutral solutes. As a result, we arrive at transferable
parameters for a wide range of monovalent salt solutions whereby the optimized parameters
satisfy physically realistic trends with hydration number[9,121] of the respective ions.

Finally, we refer the reader also to the respective publications [86] and [148] from
which large parts have been included in this chapter.

4.1. Solvation Model

In the ion-free case, our developed SMPB-DFT model reduces formally to the implicit
solvation model (SCCS scheme) as introduced by the work of Andreussi et al.[5] While
the SCCS scheme uses Fourier transforms instead of multipole expansions to solve the
appearing Green’s function integral (cf. Section 3.4.1.2 and Eqs. (49)-(51) in ref. [5]),
the parametrization protocol as presented in Section 3.2.2 is equivalent. This allows us
to adopt the already available parameters for water as a solvent. In order to optimize
these parameters for the case of neutral solutes, Andreussi et al. fitted to the experimental
hydration free energies ∆Gexp

sol of the 240-molecule test set of Shivakumar et al.[144] to
obtain the “fitg03+β” parameter set: nmin = 0.0001, nmax = 0.005, α + γ = 50 dyn/cm,
β = −0.35 GPa (using εs,bulk = 78.36). Similarly, they arrived at optimized parameter
sets for charged solutes, i.e. the “fit cations” (nmin = 0.0002, nmax = 0.0035, α + γ =
5 dyn/cm, β = 0.125 GPa) and the “fit anions” (nmin = 0.0024, nmax = 0.0155, α + γ = 0,
β = 0.450 GPa) parameter sets. In Fig. 4.1 we compare the solvation free energies of
the neutral molecule test set, calculated with our implementation and the “fitg03+β”
parameters of Andreussi et al.[5] to their respective results. Specifically, we show the
deviation with respect to the experimental reference. For a maximum comparability we
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Figure 4.1.: Deviations of calculated room-temperature solvation free energies ∆Gsol(cs,bulk = 0) from
experimental values for the Shivakumar test set of 240 neutral molecules. [144] Compared are published
results from the SCCS solver of Andreussi et al. [5] with our implementation in FHI-aims (tight settings),
both using the optimized “fitg03+β” parameter set. The MAE of the present implementation with
respect to experiment is 53 meV, the MAE with respect to the SCCS solver is 9.3 meV. Reproduced with
permission from ref. [86]. © 2016 American Chemical Society.

employ the reference geometries provided by Andreussi et al. and the same DFT PBE-GGA
functional.[112] The agreement between both solvers is excellent with an MAE of 9.3 meV
over the whole test set. A large part of this already small difference can be traced back to
the different basis sets employed in the two DFT program packages. These in turn affect the
position of the solvation cavity via the density cutoffs. Using e.g. a Gaussian aug-cc-pVDZ
basis in the FHI-aims implementation indeed reduces the MAE to an insignificant 6.5 meV
(cf. Fig. 4.2).

Note, that we performed all calculations in this section using a non-self-consistent evalu-
ation of the Ωnon−mf

ε term, i.e. we assumed that δΩnon−mf
ε
δnel

≈ 0 which cancels the respective
term in the modified KS-Hamiltonian in Eq. (3.24). We found this approximation to be
valid for the case of neutral solutes as the non-mean-field contributions exert only negli-
gible influence on the electron density, justifying the computationally efficient treatment
of this contribution as a post-correction. In contrast to other authors who neglect these
contributions outright,[130,153] we expect this approach in general to capture the majority
of non-electrostatic effects. Such an approach can in general also avoid problems related
to a numerically instable representation of corresponding derivatives (cf. Section 3.2.3)
on the integration grid as observed by other authors before.[154] In the case of molecular
systems, we did, however, not observe such numerical instabilities. Starting from Sec-
tion 4.2.4, where we additionally account for finite ionic strengths, we therefore switch
to a fully-self-consistent calculation of non-electrostatic contributions which avoids any
possible inaccuracies stemming from an approximate post-corrective treatment.
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Figure 4.2.: Deviations of calculated solvation free energies ∆Gsol(cs,bulk = 0) from experimental values
for the Shivakumar test set of 240 neutral molecules. [144] Compared are published results from
the SCCS solver of Andreussi et al. [5] with our implementation in FHI-aims using an aug-cc-pVDZ
Gaussian basis set. Both solvers use the optimized “fitg03+β” parameter set. Reproduced with
permission from ref. [86]. © 2016 American Chemical Society.

4.2. PB Ionic Charge Model
The true potential of the SMPB approach unfolds in the application to electrolyte solutions,
where it accounts for effects of a finite ionic strength on top of the pure solvation effects.
For this, five further ion-specific parameters need to be specified, {a, d±αion , ξ

±
αion}, describing

the finite ion size, thickness and shape of the Stern layer, respectively. Notwithstanding
the sensitivity of ionic effects on the choice of these parameters,[60,63,78] it is to date not
clear which of these are most crucial for the outcome of PB simulations and there exists no
general parametrization protocol that would provide them for a wide range of systems and
conditions. This section, therefore, focuses first on a basic study and assessment of the ionic
parameter space following a discussion and development of a coherent and transferable
parametrization strategy. Our focus will thereby entirely be on aqueous monovalent salt
electrolytes, due to the both wider availability of reference data and the current limitations
of the here developed SMPB ion model. Extending the scope to higher-valent ions would
e.g. also give rise to stronger ion correlation effects[73] which are beyond the reach of the
mean-field scheme.

4.2.1. Stern Layer and Finite Ion Size
As already mentioned in the introduction, one of the main hurdles to determining the
ionic parameters is a lack of knowledge about the physical interactions dominating the
experimentally observed ion effects. In Fig. 4.3 we show all such interactions as accounted
for on the level of SMPB theory at the example of a neutral solute embedded into an aqueous
salt solution. In ionic mean-field models, stabilization of the solute occurs exclusively by
electrostatic interactions of the solute with the mean-field of the ions, which are expected
to be important in particular in the case of charged or highly polar solutes. Repulsive solute-
ion interactions on the other hand lead to the creation of an ion-free Stern layer which

76



4.2. PB Ionic Charge Model

consists of a solvation layer around the solute and the more rigid part of the hydration shell
of the ions.[121] Finally, hydrated ion-ion repulsions close to the solvation cavity can again
destabilize the solute in solution. In general, an overall reduction of the solute’s solvation
energy at high salt concentrations is often denoted as salting-out effect.[109]
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Figure 4.3.: Schematic representation of an electrolytic environment around a molecular solute, illus-
trating two prominent modifications of standard PB theory: A solvent Stern layer of thickness rStern
separates the solute from the diffusive ions in the SPB approach, while MPB theory accounts for more
or less rigid solvation shells around the ions by describing them with a finite size a. As apparent from
the drawing, the Stern layer can receive contributions from both the solute’s solvation layer and the
solvation shells around the ions leading to correlation between the corresponding model parameters.
Reproduced from ref. [148], with the permission of AIP Publishing.

In most realistic systems the existence of a Stern layer is undisputed[52,122,123,155,156]

apart from a few specific cases, such as for instance highly charged solutes in contact
with ions of low complexing ability.[157] Empirically, such a layer can be observed as
a shift of the solute-ion radial distribution functions (RDFs) further outward than the
solute-solvent RDF, cf. Fig. 4.3. While finite ion sizes as included in the MPB model can
also prevent over-crowding of ions by the introduction of steric ion-ion repulsions, only the
explicit inclusion of solute-ion interaction potentials can provide this observed different
offset of the solute-ion RDF. This is illustrated in Fig. 4.4 where we calculated the ionic
concentrations in an aqueous solution around a potassium cation by using the SMPB-DFT
scheme and different choices of the parameters a and d±αion = dαion . While sometimes
disputed,[62,72] the inclusion of a volume-based (MPB) ion exclusion does therefore not
suppress the need for a distance-based (SPB) ion exclusion (Stern layer correction), since
both modifications address different physical short-comings of PB theory (cf. Fig. 4.4).[63]

Similarly, there are indications that inclusion of solvated ion-ion interactions through
MPB does give additional improvement that can not be reached by a Stern layer alone,
in particular for large ions or close to high electrostatic potentials due to high local ion
densities.[62,63,72,156] While this generally motivates the use of the combined SMPB model,
it is also clear that both corrections, MPB and SPB, are partly correlated, cf. Fig. 4.3.
Parameter optimization disregarding one or the other correction may therefore lead to
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physically unrealistic parameters,[60,78] while simultaneous unconstrained optimization
may lead to overfitted models with little transferability (vide infra).
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Figure 4.4.: Ionic charge concentrations cs
±(r) around a potassium cation as obtained from a SMPB-DFT

calculation. Different choices have been made for the Stern layer thickness d±αion = dαion = {0.5, 1.0}
and the ion size parameter a = 0.6 Å(ξ±αion = 1.0). As seen from the picture, the ionic size parameter a
merely reduces the charge density, but does not change the onset of the ionic charge distribution, while
the Stern layer thickness parameter alters both. The inset shows a zoom into the onset region to clarify
this statement. Other parameters are: tight settings, T = 300 K, cs,bulk = 1 M, {(α+γ), β, nmin, nmax}
from the “fit cations” parameter set [158] (cf. Section 4.1).

Considering their related physical origin, the ion size parameter a and the Stern layer
thickness rStern should depend on ionic properties like hydrated radii or hydration numbers
of the ions.[9,121] For the size parameter a exclusive correlations with hydrated ion sizes
have a reasonable legitimation,[78] since it represents the size of the singly-occupied lattice
cells and thus correlates with the strength of the solvated ion-ion repulsions. In contrast,
the Stern layer thickness is an effective parameter that results from the interactions of
multiple different species such as attractive[59,159–163] and repulsive solute-ion, solute-
solvent, or ion-ion interactions. It will therefore also depend strongly on the properties of
the solute. This makes it unlikely that parametrization strategies for rStern that exclusively
draw on solute-independent ion sizes[63,72,84,85,157,160] will lead to the targeted degree of
transferability. More general procedures that also consider an explicit dependence on the
solute have hitherto only met limited success.[78,164,165] Transferable models of the Stern
layer that can utilize the same parameters for a wide range of chemically most diverse
solutes are lacking so far.[157] In the SMPB-DFT approach, this problem can efficiently be
addressed by modeling the Stern layer thickness as a function of both ionic properties and
the solute’s electron density. With a single choice of the parameters d±αion and ξ±αion for a
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4.2. PB Ionic Charge Model

particular salt solution, rStern will then automatically adapt to the size of the solute as
measured by the extent of the electron density.

4.2.2. Experimental Reference Properties

The determination of transferable SMPB parameters requires accurate experimental data
covering a diverse range of solute molecules, salts and ionic strengths. Among experimen-
tally accessible observables, properties related to solvation free energy changes with ionic
strengths ∆∆Gion(cs,bulk) are hereby particularly appealing due to their availability for a
great number of solutes and salts. In the case of charged, electrolytic solutes like simple
monovalent salts, these are often tabulated in literature in terms of mean molar activity
coefficients[7]

ln(γmean) = 1
2

(
ln(γ−) + ln(γ+)

)
, (4.1)

where an average is taken over anionic and cationic contributions. The activity coefficients
of anions, γ−, and cations, γ+, can be expressed as

1
β

ln(γ±(cs,bulk)) = µ±(cs,bulk)− µ±(cs,bulk = 0) = ∆∆G±ion . (4.2)

Here, µ±(cs,bulk) and µ±(cs,bulk = 0) are the chemical potentials of cation/anion in an
electrolyte of salt concentration cs,bulk and pure solvent, respectively. Since these chemical
potentials represent the free energy change ∂Ω◦

∂n±
of the electrolyte or pure solvent system in-

duced by changes in solute charge density nsol, respectively, the difference of these chemical
potentials is just the already introduced ion effect on the solvation free energies ∆∆G±ion.
Mean activity coefficients as defined above are optimally suited for the investigation of ion
effects, since they are highly sensitive to the respective salt solution[110,166–168] and are
tabulated accurately for a wide range of experimental conditions.[169,170] Unfortunately,
however, mean activity coefficients are commonly only available for small charged solutes
(e.g. alkali halides) embedded into an aqueous solutions containing a certain concentration
of the solute itself. The construction of a training set and the derivation of transferable
parameters, however, requires knowledge of ion effects for various different solutes embed-
ded into the same salt solution. In this respect it is better to consider neutral molecules as
solutes for which the ion effect on the solvation energy can be for most salts up to 2-5 M
molarities[109,171–174] written as

∆∆Gion = ks
1

β log10(e)c
s,bulk (linear) . (4.3)

ks is the so-called Setschenow coefficient, a property of the solute and salt of choice.[8,109]

For most systems, ks is positive indicating a reduction of the solubility of the dissolved
molecules, i.e. the already mentioned salting-out effect. Setschenow coefficients are
tabulated for many different salt solutions and most importantly various solutes making
them highly useful in actual parametrization schemes.
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4.2.3. The Case of Charged Solutes
Charged solutes strongly attract ions and the resulting high degree of ionic screening
leads generally to strong solubility changes. In some cases such effects can be accurately
modeled by mean-field theories like our SMPB-scheme, but often also correlated interac-
tions contribute substantially to the solvation energy. Furthermore, charged solutes and
ions compete to align solvent molecules in their solvation shells.[152] Such mutual effects
induce a stronger coupling of solvation and ion effects rendering a simple adoption of
ion-free solvation models as discussed in Section 4.1 and a separate determination of ionic
parameters at least doubtful. Moreover, experimental data for the ionic strength-dependent
solubility of charged molecular solutes is rare and limited to more complex properties like
acid dissociation constants[26] which are often difficult to model on the level of contin-
uum methods already in the ion-free case.[175] These facts render it nearly impossible to
construct appropriate training sets which could be used to verify advanced PB methods
and arrive at transferable parametrizations. Notwithstanding this both theoretically and
experimentally challenging task, the often strong ion effects arising in these systems make
them still most interesting to study also from the viewpoint of PB theory. For the above
discussed reasons, we focus in this section on a simple test system, the KCl aqueous solution
for which experimental data is accurately accessible in terms of the mean activity coefficient.
Furthermore, we expect the chemical simplicity of such a system expressed among others
by the low ionic charge to render a mean-field PB treatment of the ions a particularly
valuable approximation. While considering only a single system does not offer a path to
a transferable parametrization, the studies will be helpful to understand the influence of
the ionic SMPB-parameters on changes of experimentally measurable properties with ionic
strengths.

We start by evaluating the mean activity coefficients γmean of KCl aqueous solutions from
two separate SMPB-DFT calculations for an electrolyzed K+ and a Cl− ion, and the respec-
tive two ion-free solvent calculations performed by the LPB-DFT solver. Figure 4.5 depicts
the corresponding results obtained with a solvent parameter set {(α + γ), β, nmin, nmax}
which was optimized for cationic and anionic solutes. This set differs remarkably from
the neutral solute parameter set especially for cationic solutes.[158] Finite ion sizes were
considered by choosing parameters a > 0 and we used a small value for the thickness of the
Stern layer of d±αion = dαion = 0.5. Fig. 4.5 further depicts the experimental reference data
(where we used ms,bulk ≈ cs,bulk for aqueous solutions at room temperature, where ms,bulk

is the molality of the solution) up to ion concentrations close to the limit of saturated
solutions (ms,bulk = 4.803 mol/g),[170] as well as the analytic DH limiting law

ln(γmean(cs,bulk)) = − βz2κ

2εs,bulk = −1.166M−1/2
√
cs,bulk . (4.4)

It is obtained within LPB theory for the purely electrostatic interaction of a point-like charge
embedded in a homogeneous dielectric medium with point-like ions of concentration cs,bulk

± .
Quite clearly, the deviation of the experimental data from the DH limit cannot be accounted
for solely on the basis of finite size ions. Only large values of a = 6 Å yield a significant
deviation of the calculated activity coefficient away from the linear DH dependence, but do
then not produce a curvature that matches the experimental data. Furthermore, such large
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ion sizes also lack a physical legitimation as seen by comparing to experimentally measured
average hydrated ion sizes: From size exclusion chromatography measurements, K+ and
Cl− ions were found to have dynamic hydration radii of ≈2 Å[121] which are significantly
lower than the value of the ionic size parameter a = 6 Å for which strong derivations from
the activity coefficient curve are observed.
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a = 4 Å
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Figure 4.5.: Mean molar activity coefficient γmean at room temperature as a function of the square root
of the ionic bulk concentration cs,bulk of a KCl aqueous solution. The solid black line indicates the
experimental curve, [170] while the dashed black straight line represents the limit of the DH limiting
law. Compared are calculated activity coefficients using a range of a values to account for finite size
ions. Other parameters are: tight settings, {(α + γ), β, nmin, nmax} from the “fit cations” and “fit
anions” parameter sets, [158] dαion = 0.5, ξαion = 1.0. Reproduced with permission from ref. [86].
© 2016 American Chemical Society.

This highlights the necessity to consider an additional Stern layer correction in the PB
model. Figure 4.6 correspondingly explores the effect of the Stern layer defining parameters
dαion and ξαion , which for the present KCl system are chosen to be identical for the anionic
and cationic case. Since we found the results to be rather insensitive to the exact value of
a, as had also been reported by Harris et al.,[78] the results shown in Fig. 4.6 are obtained
for a physically reasonable a = 2 Å. The calculated activity coefficients vary sensitively with
the chosen (dαion , ξαion)-pair, indicating that a good account of the experimental variation
with ion concentration can be achieved within this two-dimensional parameter space. The
light green curve in Fig. 4.6 demonstrates this for optimized parameter values dαion = 1.54
and ξαion = 0.137 as resulting from a simple Nelder-Mead[176] fit to the experimental
reference data. For these parameter values the SMPB-DFT approach achieves a decent
description over a wide range of ionic concentrations, even without any further fine-tuning
of the other SMPB parameters. For these optimized ionic parameters, the calculated ionic
charge density profile nSMPB

ion around the central ion shows a good coincidence of the Stern
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Figure 4.6.: Same as Fig. 4.5, but this time exploring the effect of different choices of the ionic parameters
dαion and ξαion describing the Stern layer correction. The four upper red curves explore different ξαion

values for dαion = 2, the lower blue curves the same for dαion = 1. The middle light green curve is the
result of an optimum fit to the experimental data achieved for dαion = 1.54 and ξαion = 0.137. The
inset compares the absolute value of the ionic charge density nMPB

ion obtained for the latter parameter
values with a typical radial distribution function gKCl obtained from explicit FF-MD simulations for
this system. [167] Other parameters as in Fig. 4.5 with a = 2 Å. Reproduced with permission from ref.
[86]. © 2016 American Chemical Society.

layer onset with the location of the first solvation shell as derived from explicit solvation
molecular dynamics simulations by Lenart et al.,[167] cf. inset in Fig. 4.6.

The good agreement between the modeled ionic charge density and the radial distribution
function gives additional physical legitimation to the introduction of an ion-free Stern
layer. This finding motivated us to also evaluate mean activity coefficients for other alkali
halide salts whereby we indeed could find a correlation between the Stern layer thicknesses
and mean ionic distances as available in literature.[177,178] The inclusion of a Stern layer
in PB models therefore allows to capture the dominating ion-specific effects underlying
experimentally measured activity coefficients. Hydrated ion-ion interactions as induced
by the finite ion size a, on the other hand, are expected to be only relevant at high ionic
strengths.[78]

4.2.4. The Case of Neutral Solutes

Neutral solutes commonly exhibit weaker interactions with ions in the solution than
charged solutes due to the reduced electrostatic attractions. Observable ion effects are
therefore rather influenced by non-electrostatic interactions as the solute-ion repulsions
leading to the creation of Stern layers with a thickness depending on both solute and salt.
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The theoretical treatment is thereby simplified by the fact that the solvation effects often
completely decouple from the ion effects. The study of ionic phenomena is therefore in
general not limited by the accuracy of the solvation model. Moreover, due to the fact
that we focus in this thesis on monovalent salt solutions, parametrization protocols can
make use of the linear Setschenow regime given in Eq. (4.3) commonly holding up to
concentrations as high as 2-5 M with the corresponding Setschenow coefficients being
widely available for various molecular solutes.[109,171–174]

We start this section by first describing the databases of experimentally measured
Setschenow coefficients which we constructed for various monovalent salts and molecular
solutes. Analogously to the case of charged solutes, we then assess a meaningful ionic
parameter space and fit the remaining relevant Stern layer thickness parameter to the
Setschenow coefficient database of NaCl solutions. Finally, we apply a similar strategy to
other monovalent salt solutions. Despite the scarcity of the thereby utilized experimental
reference data, we show that the observed trends are physically reasonable and can be
condensed into a simple linear scaling with the experimentally determined average number
of strongly bound water molecules around the ions, the hydration number. As such, this
relation can even be used to derive SMPB parameters for salts not explicitly covered in this
work.

4.2.4.1. Database of Setschenow coefficients

Over the years different collections of molecular Setschenow coefficients in aqueous NaCl
solutions have been put forward.[174,179–182] They often contain data from early experi-
mental measurements though, which are likely more strongly affected by experimental
uncertainties. Setschenow coefficients obtained from fitting entirely to experimental mea-
surements at low ion concentrations are for instance by now known to be prone to large
systematic errors which can easily yield uncertaincies up to 0.04 l/mol.[174,181] Likewise,
ks for strongly polar molecules obtained from solubility measurements are masked by
solute-solute self-interaction energy changes.[109] From initially about 150 experimentally
measured molecular Setschenow coefficients found in literature[109,123,174,179–182] we have
therefore selected a database with 95 entries (database I[109,123,180–182]), listed in Tab. A.1
in Appendix A.8. Our selection was based not only on gaining the highest apparent ex-
perimental accuracy, but also to arrive at a balanced and broad range of different organic
functionalities and physical properties (cf. dipole, polarity and isotropic static dipole po-
larizability distributions in Fig. 4.7) in the database. This database was exclusively used
in the fitting of the SMPB parameters described below. In addition we collected a second
validation database (database Ival

[182]) containing 33 Setschenow coefficients of mainly
apolar aromatic molecules, cf. Tab. A.2 in Appendix A.8 and Fig. 4.7, which we used to test
the transferability of the determined parameters.

Unfortunately, experimental Setschenow coefficients for salts other than NaCl are very
scarce. This does generally not allow to discard data for balanced sets of different organic
functionalities. Nevertheless applying similar quality criteria as for NaCl we collect another
database II for various alkali halides as well as NaNO3 and NH4Cl salt solutions that in total
contains 195 entries.[109,172,180,183–199]). The individual number of molecular reference
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Figure 4.7.: Left panel: Distributions of absolute dipole moments and hydration energies for the
molecules in database I visualized via a Gaussian kernel density estimation using a bandwidth of
0.25×sd, where sd is the standard deviation of the respective sample. Right panel: Distribution of
isotropic, static dipole polarizabilities and hydration energies over the databases I and Ival. Respective
1D density plots are depicted on top respectively to the right of the corresponding 2D distribution plots.
All properties were calculated with FHI-aims, [1] the polarizabilities with DFPT, [100] and the hydration
energies with the SMPB solver (cf. Section 4.1). Reproduced from ref. [148], with the permission of
AIP Publishing.

values for each salt is listed in Tab. 4.2 below, while the whole database is explicitly listed
in Tab. A.3 in Appendix A.8.

All FHI-aims calculations on molecules from these databases were carried out using
tight accuracy settings. Solute molecule geometries were first relaxed in vacuum until
residual forces fell below 0.23 kcal/(mol/Å). These geometries were then taken as starting
point for a subsequent optimization in implicit water using the newly implemented force
functionality of the SMPB solver in FHI-aims. Test calculations showed only negligible
further geometry changes when reoptimizing these relaxed geometries at finite ionic
strength. The experimental Setschenow coefficients in the databases were measured at
room temperature. For consistency, we therefore also employed T = 298.14 K as ionic
temperature in the SMPB model. However, we note that for many neutral solutes ks
does not show a strong temperature dependence, typically a few percent for variations of
±20 K.[200,201]

4.2.4.2. Assessment of SMPB Parameter Space

In its full generality, the SMPB model contains five ionic parameters {a, d+
αion , d−αion , ξ+

αion ,
ξ−αion} that need to be optimized. This already assumes a single ion size a for both cations
and anions, and extensions would have to be implemented for the application to salts with
very different anion and cation sizes.[60] As discussed above, correlations between these
ionic parameters are to be expected. An unconstrained optimization by simultaneously
fitting all parameters to experimental Setschenow coefficients is therefore likely to get
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trapped in local minima and lead to overfitted models of low predictive quality. In the
following we thus first concentrate on NaCl solutions, for which we can draw on a large
experimental database to first meaningfully assess the ionic parameter space.

As already mentioned above, ion effects on the stability of neutral solutes are mainly non-
electrostatic in nature. This allows us to derive an approximate analytical expression for
∆∆Gion which is much cheaper to evaluate than the performance of a fully self-consistent
SMPB-DFT calculation. The realization that neutral molecular solutes do not exhibit
strong electrostatic fields and therefore lead to only weak ionic accumulation, suggests
to approximate the electron density of the solute nel and the electrostatic potential v as
unaffected by a finite ionic strength. Starting from the general minimal SMPB free energy
expression, Eq. (3.27), this leads to the following approximate expression for the solvation
free energy change

∆∆Gion = Ω◦(cs)− Ω◦(nsol = 0, cs)− Ω◦(cs = 0) + Ω◦(nsol = 0, cs = 0)

≈
∫

dr
{
− 1
βa3 ln

(
1 + 1

2
φ0

1− φ0

(
α+

ione−βzv + α−ioneβzv
))

︸ ︷︷ ︸
Ω◦(cs)−Ω◦(cs=0)

+ 1
βa3 ln

( 1
1− φ0

)
︸ ︷︷ ︸

Ω◦(nsol=0,cs=0)−Ω◦(nsol=0,cs)

}

= − 1
βa3

∫
dr ln

(
1 + φ0

[1
2
(
α+

ione−βzv + α−ioneβzv
)
− 1

])
. (4.5)

Taylor expanding the exponential function to 0th order allows to further simplify Eq. (4.5)
to

ks ≈ −
log10(e)
cs,bulka3

∫
dr ln

(
1 + φ0

(
α+

ion + α−ion
2 − 1

))
, (4.6)

where the expression is given here directly in terms of the Setschenow coefficient as defined
by Eq. (4.3).

This derived equation reveals that in the general case of a 6= 0 the Setschenow coefficient
can not be constant, but varies with the ionic concentration. Only the limit a→ 0 allows to
recover a linear Setschenow regime as observed experimentally. Taking this limit and using
lim
x→0

1
x ln(1 + bx) = b we get

ks(a→ 0) ≈ log10(e) (V +
ion,cav + V −ion,cav) , (4.7)

where V ±ion,cav =
∫

dr(1− α±ion) are the volumes of the ionic cavities as determined by the
DFT electron density of the solute in ion-free implicit water and the chosen Stern layer
parameters. In the case of identical ion exclusion functions for cations and anions, we
arrive at

ks(a→ 0) ≈ 2 log10(e)Vion,cav . (4.8)

In the limit a → 0, the Setschenow coefficient is thus uniquely given by the ionic cavity
volume. This is consistent with the known correlation of Setschenow coefficients with the
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solute molecular volume.[180–182] It also agrees with the current understanding that the
dominant contribution for the salting-out effect of neutral molecules is a change of the
cohesive energy of the aqueous solution by the presence of the ions and the concomitant
higher ionic cavity creation costs.[123]
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Figure 4.8.: Calculated ∆∆Gion as a function of ionic bulk concentration cs,bulk for the highly polar
molecule cytosine (upper panel) and the apolar molecule isopropylbenzene (lower panel). Compared
are the results from full SMPB-DFT calculations (filled circles) with the analytical expressions for the
Setschenow coefficient of Eq. (4.6) (red lines) and Eq. (4.8) (blue lines). Shown are results for two
different ionic sizes a (red vs. blue data) and Stern layer thicknesses d±αion = dαion (dashed vs. solid
lines). The Stern layer smoothness parameter is fixed to ξ±αion = 0.5. In the case a = 7 Å, the ionic
bulk concentration cs,bulk = 2.42 M represents the upper bound for the physically realistic region in
which the lattice occupation of the MPB model by ions φ0 < 1. Reproduced from ref. [148], with the
permission of AIP Publishing.

In Fig. 4.8 we compare the approximate expressions for the Setschenow coefficient
with numerical results obtained from full SMPB-DFT calculations for both a highly polar
(cytosine) and an apolar (isopropylbenzene) molecule. Deferring the analysis of different
ionic cavity volumes to below, this comparison considers the same Stern layer parameter
dαion and fixed smoothness parameters ξ±αion = 0.5 for both cations and anions. For two
very different sets of values of dαion and the ionic size parameter a, excellent agreement is
achieved across a wide range of ionic concentrations. Only for the highly polar cytosine
and thin Stern layers minor deviations can be discerned at the highest ionic concentrations
shown. In this regime, ions accumulate significantly in regions of higher electrostatic
potential and the approximations behind the approximate analytical expressions start to
break down.
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4.2. PB Ionic Charge Model

Having validated the approximate analytical expressions, we can now proceed to analyze
the SMPB parameter space. For the class of neutral molecules, use of any finite ion size
parameter a will intrinsically lead to deviations from the linear Setschenow regime, in
particular at higher ionic concentrations. The actual value of the Setschenow coefficient is
instead primarily governed through the choice of the Stern layer thickness, d±αion and the
smoothness of the ionic transition, ξ±αion , as these are the central parameters determining
the ionic cavity volumes for a given solute. As apparent from Fig. 4.8, the choice of a
larger ion size parameter can in principle also lead to an increasing slope of ∆∆Gion in a
pseudo-linear regime at lower ionic concentrations and could therefore also be used to
effectively fit experimental values for ∆∆Gion at a particular concentration. This highlights
the correlations in the SMPB parameter space discussed earlier. On the basis of the obtained
analytical understanding, we expect a low transferability of corresponding a 6= 0 parameter
sets. Instead, we set a = 0 – and thus discard the effect of size modification on the PBE –
for the targeted class of neutral solutes at low to medium ion concentrations. Our analytical
treatment of ∆∆Gion, Eq. (4.8), shows that such MPB-like modifications with finite a are
only useful to describe deviations from the Setschenow law at high ion concentrations or
in regions of high local ion concentrations as expected e.g. for large ion sizes or charged
solutes.

To further analyze the role of the remaining four ionic parameters, we compute the
Setschenow coefficients for the whole database I with the approximate Eq. (4.7) for varying
choices of d±αion and ξ±αion . These calculations are done for an ionic bulk concentration of
cs,bulk = 1M, at which the Setschenow law is known to hold for most monovalent salt
solutions. Evaluating the root mean square error (RMSE) of the thus estimated Setschenow
coefficients for each set of SMPB parameter values with respect to the experimental data
clearly demonstrates the expected effect of the total ionic cavity volume as the central
feature governing the accuracy of the fit. Parameter combinations that effectively lead to
the same total volume (V +

ion,cav +V −ion,cav) generally achieve the same RMSE. As exemplified
by Fig. 4.9, a larger cationic volume through choice of a larger cationic Stern layer thickness
d+
αion can for instance be compensated by a smaller anionic volume through choice of a

smaller Stern layer thickness d−αion to yield the same RMSE fit. For the given functional
form of the transition function for the ionic cavity, Eq. (3.11), changes of the smoothness
parameters ξ±αion lead to (albeit small) variations of the enclosed volume. Correspondingly,
we also obtain a weak sensitivity of the RMSE to the choice of this parameter, where
effective increases of the volume through ξ±αion can again be compensated by reductions of
the Stern layer thickness (cf. Fig. 4.10).

Given these correlations, unconstrained fitting of all four parameters is clearly not
advisable. For the targeted alkali-halide electrolytes and their roughly similar cationic and
anionic sizes we instead employ identical Stern layer thicknesses d±αion = dαion and shapes
ξ±αion = ξαion for both ion types. Since the Stern layer shape has a similar but weaker impact
on the total ionic cavity volume than the thickness parameter, we simply fix it to a value
ξαion = 0.5 that yields a reasonable agreement with the MD data shown in Fig. 4.11 below.
In total, this thus leaves only the Stern layer thickness as meaningful SMPB parameter to
be optimized by fitting to the experimental database.
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Figure 4.9.: RMSE for the NaCl training set (database I) between calculated (through Eq. (4.7)) and
measured Setschenow coefficients as obtained for different choices of Stern layer parameters d+

αion
and d−αion (a = 0, ξ±αion = 0.5). The optimum RMSE of the full SMPB-DFT approach, achieved for
d±αion = dαion = 0.68 is indicated by a white cross. Reproduced from ref. [148], with the permission
of AIP Publishing.

4.2.4.3. Optimized SMPB Model: Strengths and Limitations

Under the constraint of equal Stern layer thicknesses for cations and anions, an optimum
RMSE of 0.068 l/mol to the experimental Setschenow coefficients of database I is achieved
for dαion = 0.68, cf. Fig. 4.9. At a bulk ion concentration of 1 M, this corresponds to an
excellent prediction of the solvation free energy change on average to within∼ 0.1 kcal/mol.
A good transferability of the thus determined SMPB parameter set is thereby indicated by
essentially the same RMSE for the validation database Ival (cf. Tab. 4.1). We attribute this
predictive power to successfully capturing the correct physics of the ion-specific effects with
the established SMPB ion distribution model. This is for instance indicated by comparison
to the explicit solute-solvent and solute-ion RDFs obtained from all-atom MD simulations
for naphthalene in NaCl solutions by Li et al.[123] As shown in Fig. 4.11 the onset of the
solute solvation shell and the outward Stern layer shift of the ion distribution as modeled by
the nel and αion functions of the optimized SMPB model agree almost exactly. Note that we
found this onset to also be independent of the specific dielectric function parametrization
(cf. Fig. 4.12) as expected from the validity of Eqs. (4.7) and (4.8), additionally supporting
the generality of the drawn conclusions about the role of the SMPB parameters.

Interestingly, the RMSE achieved with the effective one-parameter SMPB model is only
slightly worse than the one achieved with state-of-the-art multi-parameter data regression
models, cf. Tab. 4.1. The main contribution to this RMSE in the training (I) and validation
(Ival) databases thereby arises from a small number of highly functionalized and polar
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Figure 4.10.: RMSE for the NaCl training set (database I) between calculated (through Eq. (4.8))
and measured Setschenow coefficients as obtained for different choices of Stern layer parameters
dαion = d±αion and ξαion = ξ±αion (a = 0). The optimum RMSE of the full SMPB-DFT approach,
achieved for d±αion = 0.68 and ξ±αion = 0.5, is indicated by a white cross. Reproduced from ref. [148],
with the permission of AIP Publishing.

descriptor/ #pa– training validation
method rams size RMSE size RMSE
SMPB 1 95 0.068 33 0.064
pp-LFER[181] 5 43 0.030 91 0.047
QSPR[202] 4 71 0.030 30 0.043
QSPR (SVM)[203] 4 51 0.019 50 0.029
connect. inx[204] 3 71 0.041 30 0.038
TIP3P/TI[123] - - - 43 0.084
SEA[123] - - - 43 0.050

Table 4.1.: Comparison of the achieved accuracy of the present optimized SMPB model in reproducing
experimental Setschenow coefficient databases against models from the literature. This comprises both
physically motivated models (TIP3P/TI, [123] semi-explicit assembly (SEA) [123]) and descriptor-based
approaches (all others [181,182,202–204]). Stated is the number of parameters involved in the model
(#params), the sizes of the training and validation set and the achieved RMSE (in l/mol) in both
sets. Other acronyms: Polyparameter linear free energy relationship (pp-LFER), quantitative structure-
property relationship (QSPR), connectivity index (connect. inx), thermodynamic integration (TI).
Reproduced from ref. [148], with the permission of AIP Publishing.

molecules, for which the SMPB model strongly overestimates the Setschenow coefficients.
These outliers are illustrated in Fig. 4.13. A similar overestimation for polar molecules has
also been reported for regression-model studies,[181] which points towards experimental
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Figure 4.11.: Comparison of the solvation environment around the COM of naphthalene in a 2.18 M
NaCl solution. Shown are the spherically-averaged RDFs of the oxygen atoms in the water solvent
(gH2O, dashed red line) and of the sum of both ion types (gion, dashed black line) as reported by Li et al.
from all-atom molecular dynamics simulations, [123] as well as the corresponding spherically-averaged
dielectric function ε(r) (solid red line) and ion exclusion function αion(r) (solid black line) as obtained
with the optimized SMPB model. Both the onset of the solute solvation shell and the radial Stern layer
shift of the ionic distribution are well reproduced. To better grasp the involved scales, two dotted
vertical lines illustrate the radial distance to the molecule COM as shown in the top view in the inset.
Reproduced from ref. [148], with the permission of AIP Publishing.

uncertainties or an incorrect account of experimental conditions in the models as reason
for the discrepancies. An important aspect here could be the actual protonation state of the
solute in the measurements, as reference values for ks are often obtained by averaging over
solubility measurements at different pH values.[205] Since stabilizing electrostatic solute-
ion interactions drastically increase for charged molecules, deviations in the protonation
state can have a large impact on the determined Setschenow coefficient. In this respect,
it is intriguing to realize that amino acids are a prominent group among the outliers in
Fig. 4.13. Close to their isoelectric point amino acids adopt a zwitterionic form, rather than
the neutral geometry which we considered in the calculations by default. Recalculating
the SMPB Setschenow coefficients for four such amino acids in the zwitterionic geometry
indeed leads to much reduced ks values in much better agreement with the experimental
reference data, cf. Fig. 4.13.

While this underscores the importance of accurate experimental reference data obtained
in carefully adjusted physical conditions, it is nevertheless clear that the SMPB model
generally performs worse with increasing polarity of the solute. In fact, when taking the
solvation free energy ∆Gsol(cs,bulk = 0) as a measure for this polarity, a good correlation can
actually be obtained with the signed error in the Setschenow coefficient (kSMPB−DFT

s −kexp
s )

(cf. Fig. 4.14). This indicates that the SMPB model fails to capture interactions which are
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Figure 4.12.: Comparison of the solvation environment around the COM of naphthalene in a 2.18 M
NaCl solution. Shown are the spherically-averaged RDFs of the oxygen atoms in the water solvent
(gH2O, dashed red line) and of the sum of both ion types (gion, dashed black line) as reported by Li et al.
from all-atom molecular dynamics simulations, [123] as well as the corresponding spherically-averaged
dielectric functions ε(r) (solid red lines) and ion exclusion functions αion(r) (solid black lines) as
obtained with the optimized SMPB model. To better grasp the involved scales, two dotted vertical
lines illustrate the radial distance to the molecule COM as shown in the top view in the inset. Two
different dielectric function parametrizations have been used, ε1 (nmin = 0.0001, nmax = 0.005)
and ε2 (nmin = 0.0004, nmax = 0.007) to test the influence of the solvation model definition on
the calculated ion effect. dαion was then for both solvation models optimized in order to perfectly
reproduce the experimental Setschenow coefficient of naphthalene. As seen from the figure, both
optimizations predict the same ionic distributions. Reproduced from ref. [148], with the permission
of AIP Publishing.

particularly strong for highly polar molecules. This could comprise ion complexation, a
reduction of the dielectric permittivity by strong ion-polar group interactions (dielectric
decrement[149–152]), or solute-ion dispersive interactions, all of which would increase the
attractive solute-ion interactions and therewith yield lower ks values than the ones presently
calculated.

More insight can be obtained by considering the vacuum isotropic and static dipole polar-
izability as obtained from the trace of the diagonalized polarizability tensor αiso

0 = tr (α0) /3
calculated with density-functional perturbation theory in FHI-aims.[100] As put forward
by Ninham, Parsons and Boström, solute-ion dipole dispersion interactions which scale
with the solute’s polarizability are suspected to play an important role in the explanation
of ion-specific effects.[59,159–163] While, however, the polarizability correlates well with
the modeled Setschenow coefficients kSMPB−DFT

s , we found experimental values to be
largely independent of it (cf. Fig. 4.14). At first sight, the introduction of such artificial
correlation could indicate that the electron density representation of the solute volume
employed in the present SMPB model might not be optimal to introduce volume corre-
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Figure 4.13.: Comparison of Setschenow coefficients obtained by the optimized SMPB model with the
experimental references from the training database I (filled circles) and the validation database Ival
(empty circles). The light blue region around the correlation line marks an error within 0.05 l/mol.
The largest outliers are explicitly labeled with the solute name. Amino acid solutes are marked by
darker label color. The black arrows visualize the shift of the calculated Setschenow coefficients for
four amino acids when considering a zwitterion molecular structure, see text. Reproduced from ref.
[148], with the permission of AIP Publishing.

lations in the Setschenow coefficient, at least not throughout the whole database I. The
good transferability of our SMPB model, however, renders it more plausible that the found
correlation would eventually be compensated by the inclusion of other, so far neglected
physical interactions discussed above. Among all possible such interactions, we do not
expect solute-ion dispersion interactions to play a major role, as indicated by the missing
correlation of the experimental data with the dipole polarizabilities. However, in the end,
this can only be decided through the development of more advanced PB methods in order
to gain more insight into the complex physics of solute-ion interactions.

4.2.4.4. Parameter Sets for other Monovalent Salt Solutions

In principle, the SMPB parametrization strategy developed for NaCl solutions can straight-
forwardly be extended to other monovalent salt solutions. For each salt, an optimized Stern
layer thickness is determined by fitting to the experimental Setschenow coefficients of this
salt contained in database II. Table 4.2 summarizes the thus optimized dopt

αion values. The
RMSEs also reported in Tab. 4.2 and the correlation plot in Fig. 4.15 generally indicate a
similar capability and limitations to reproduce the experimental reference data as found
for NaCl before. Somewhat higher RMSEs are only obtained for the iodides. We attribute
this to strongly attractive solute-ion interactions beyond the reach of the SMPB model. For
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Figure 4.14.: Correlations of molecular descriptors evaluated with FHI-aims with the signed error in the
prediction of Setschenow coefficients (top panels) and the SMPB predicted Setchenow coefficients
(bottom panel). The following correlation coefficients were obtained: top left: R2 = 0.58, top right:
R2 = 0.02, bottom: R2 = 0.60 by using the SMPB parameters ξαion = 0.5, a = 0, dαion = 0.677.
Hydration energies and static, isotropic dipole polarizabilities αiso

0 (with DFPT [100]) were calculated
for all molecules from the databases I and database Ival. In the top left panel separately to hydration
energy ∆Gsol (black crosses) are shown the electrostatic solvation energies ∆Gelstat

sol as filled blue
circles (R2 = 0.56). Reproduced from ref. [148], with the permission of AIP Publishing.

corresponding molecules like lindane or γ-butyrolactone these forces would even result in
an overall salting-in effect, i.e. negative experimental Setschenow coefficients, which the
current SMPB model is unable to reproduce.

Unfortunately, the transferability of the thus optimized Stern layer parameters for the
other salts is also not as clear as it was the case for the NaCl solution. The corresponding
experimental data sets are generally smaller than database I, for some salts like LiBr, NaF,
NaI or KF even considerably smaller, cf. Tab. 4.2. It is thus not possible to ensure a balanced
and broad range of different organic functionalities in the data set, as was done in database
I for NaCl. Every reliable empirical Setschenow coefficient is needed for the training; no
validation databases can be spared. To nevertheless arrive at some form of independent
validation we recall the physical picture behind different Stern layer parameters for the
different salts in the SMPB model. As apparent from Fig. 4.3, corresponding variations
would be attributed to different sizes of the hydrated salt ions. As such, one would expect
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salt size dopt
αion RMSE

LiCl 30 0.46 0.047
LiBr 8 0.27 0.021
NaF 7 1.51 0.026
NaCl 95 0.68 0.068
NaBr 21 0.34 0.064
NaI 6 0.07* 0.127*
KF 9 1.34 0.080
KCl 48 0.48 0.063
KBr 29 0.09* 0.071*
KI 14 0.09* 0.136*
NH4Cl 11 0.13 0.047
NaNO3 12 0.08* 0.076*

Table 4.2.: Optimized Stern layer parameters dopt
αion for monovalent salt solutions. Listed is for each salt

the size of the employed training set of experimental Setschenow coefficients, as well as the achieved
RMSE (in l/mol) over the training set. Detailed lists of the various training sets (database II) are
provided in Tab. A.3 in Appendix A.8. Data marked with an asterisk could not be completely converged,
as the implemented SMPB solver exhibits numerical instabilities at dαion . 0.09. Reproduced from ref.
[148], with the permission of AIP Publishing.

the optimized Stern layer thicknesses for the different salts to roughly scale with empirical
hydrated ion sizes.

Static observables like mean ion-water nuclear distances[206,207] provide only an inappro-
priate representation of the Stern layer thickness though, as they do not include information
about the bonding strength of the hydration shells. Consistent with this expectation we
indeed do not find a correlation of the Stern layer parameters with such quantities reported
in literature. A more helpful set of descriptors are instead dynamic hydration sizes which
resemble the average sizes of hydrated ions as they propagate through the solution.[121]

These sizes are directly related to the number of strongly bound water molecules (hydration
numbers) which can be obtained by different experimental techniques.[208] Figure 4.16
shows that the optimized Stern layer parameters indeed correlate well with such hydration
numbers as obtained from bulk electrolyte compressibility measurements at the infinite
dilution limit.[9] We thereby averaged the available empirical cation and anion hydration
numbers[9] to be consistent with the SMPB model using identical Stern layer thicknesses
for both ion types. This correlation is another good indicator for the transferability of
the Stern layer parameters given in Tab. 4.2. Note that the Stern layer parameters with
the largest deviations from the regression line were also those obtained with the smallest
training set sizes, while NaCl values – obtained from a converged training set – is found
directly on top of the line.

The reported correlation reveals that ion-specific effects on neutral molecular systems can
indeed be explained by varying Stern layer thicknesses, which by themselves are determined
by the hydration state of the ions. Moreover, the relation between the optimized Stern
layer parameters and the hydration numbers can serve as a predictor for the parameters of
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Figure 4.15.: Correlation of SMPB-DFT calculated Setschenow coefficients with the experimental refer-
ences of database II. For each salt, the optimized Stern layer thickness parameter dopt

αion from Tab. 4.2
is used. The light blue region around the correlation line marks an error within 0.05 l/mol. Some of
the points with largest deviations have been exemplarily labeled using the following abbreviations:
1,4-BQ = 1,4-benzoquinone, 4-NA = 4-nitroaniline, 2-NBA = 2-nitrobenzaldehyde. Reproduced from
ref. [148], with the permission of AIP Publishing.

other monovalent salts for which little or no experimental Setschenow data is available.
Using the obtained regression expression

dopt
αion = 0.52 h.n.− 0.85 , (4.9)

with h.n. the hydration number – to derive the Stern layer thickness parameter, we expect
that salt effects can be predicted to a good degree of accuracy for most molecules and
monovalent salts. Overall we thus arrive at a rather optimistic perspective on the obtained
optimized SMPB models, which suggests their applicability in production first-principles
electrolytic solvation calculations. Notwithstanding, more reliable reference Setschenow
coefficients from experiment would clearly be desirable to fully validate the parameter
transferability.
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Figure 4.16.: Correlation of the optimized Stern layer thicknesses dopt
αion for different monovalent salts,

cf. Tab. 4.2, with the hydration numbers h.n. as obtained from bulk electrolyte compressibility data
and reported by Marcus. [9] The linear regression showed a low sd = 0.17 and a high coefficient of
determination R2 = 0.90. The Stern layer parameters marked in red were obtained with training sets
containing less than 20 molecules. Reproduced from ref. [148], with the permission of AIP Publishing.
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In the last few years, new developments in the computational modeling of solvent effects
have enabled studies of various chemical systems in liquid environments.[23,24,60,62,209]

Among the most prominently applied simulation methods are continuum embedding
approaches which model solutes on an accurate first-principles level and coarse-grain the
environmental liquid down to a mere dielectric medium. Notwithstanding the conceptual
simplicity of such approaches, efficient parametrization schemes have been developed
yielding predictive and computationally efficient methodologies.[5,18]

In this thesis, we combined a recently developed implicit solvation model[5] with an
account for finite ionic strengths via a modified variant of the PB theory, the SMPB theory.
In the past, similar PB methods have been integrated into different force field and DFT
program packages[23,24,58,60,63,79–85] whereby the often present regular and rectangular
mesh structures supported the use of FDM schemes for the solution of the non-linear PBE.
All-electron DFT program packages like FHI-aims,[1] however, utilize non-rectangular
integration grids to optimally resolve the Coulomb singularity, rendering the direct usage
of common grid- or function-space-based approaches computationally inefficient. On the
other hand, in particular FHI-aims does not only provide an explicit description of core
electrons, but also offers a highly parallelizable infrastructure equipped with advanced
computational techniques[96–101] which facilitate the accurate modeling of a wide range of
different chemical systems.[12,102–108] These arguments finally motivated the present work
in which we developed a novel function-space-based solution scheme for the SMPBE and
established an efficient integration into the infrastructure of FHI-aims.

Non-linear PDEs like the SMPBE require sufficiently robust numerical solution schemes.
In this thesis, we utilize the Newton method to transform the SMPBE into a simpler
linearized PDE which can then be solved by a simple relaxation scheme. To that end we
rewrote the linearized PDE as an analytically invertible screened Poisson equation and
performed successive Green’s function integrations until self-consistency of the electrostatic
potential was reached. The arising two-center integrals can be efficiently solved with the
help of the already present multi-center multipole expansion infrastructure in FHI-aims.
In summary, such a Newton-MERM scheme was shown in this thesis to provide an efficient,
fast converging and highly parallelizable alternative to grid-based approaches thereby being
particularly suited for the integration into all-electron DFT program packages.

A central problem in the application of effective models like the SMPB implicit solvation
scheme to realistic systems is the parametrization of the coarse-grained interactions. For
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the case of the solute-solvent interactions, we adopted the parametrization of Andreussi et
al. for water as a solvent which was shown to give accurate hydration energies for a wide
range of molecular solutes.[5] Solute-ion interactions and the respective SMPB-parameters
have, on the other hand, so far only rarely been studied.[60,63,78] In this thesis we presented
a first systematic assessment of the SMPB ionic parameter space comprising the parameters
d±αion and ξ±αion describing the Stern layer thickness and shape in terms of the solute’s
electron density, respectively, as well as the ion size parameter a. We thereby compared
to experimentally measured Setschenow coefficients which in the case of neutral solutes
scale linearly with the ion effect on the solvation energy up to ionic molarities as high as
2-5 M.[109,171–174] By studying these coefficients in NaCl aqueous solutions, we observed
that finite ion sizes a > 0 lead to deviations from the expected linear Setschenow regime.
On the other hand, finite ion size effects were found to be important in agreement with
calculations on charged solutes, in the case of high ionic charge densities. Eventually,
we could reduce the ionic parameter space to a single relevant parameter describing the
Stern layer thickness dαion . Optimizing this remaining free variable for various monovalent
salt solutions, we ended up with Stern layer thickness parameters which showed a strong
correlation with the ionic hydration numbers obtained from experimental bulk electrolyte
compressibility data. This relation can in principle also be used to predict ion effects for
any other monovalent salt solution for which experimental data is scarce. This finding
gives a physical reasoning for the electron density-based Stern-layer model and was further
supported by the fact that ionic charge radial distribution functions as obtained by the
optimized SMPB-DFT method showed a similar onset as those obtained from molecular
dynamics simulations.

The comparison with experimental data, which led to the derivation of transferable
parametrizations for both solute-solvent as solute-ion interactions motivates the devel-
opment of more sophisticated approaches. Future developments could e.g. focus on an
improved description of so far rarely studied non-mean-field solute-solvent interactions
or consider so far unaccounted effects like ionic correlations[73] or the reduction of the
dielectric permittivity by the presence of ions (dielectric decrement).[150,151] Ultimately,
parametrization strategies as introduced in this thesis can then again be invoked to re-
optimize such complex models. In terms of the solvation model, it will further be interesting
to derive so far missing parametrizations for non-aqueous solutions, a project we are cur-
rently working on. Regarding applications, it will moreover be desirable to also improve
upon the algorithmic side of the implementation and to speed up the convergence of the
MERM e.g. by using more advanced mixing techniques or gradient-based optimization
schemes.

Notwithstanding the mentioned possibilities to methodologically and technically improve
on the SMPB-DFT scheme in FHI-aims, the so far achieved efficient parametrization
strategies already enable its application in typical molecular cluster calculations. Of
particular interest are e.g. first-principles studies on biological systems which are a central
issue in FHI-aims conducted computer simulations.[105–108] The here developed SMPB-
DFT scheme enables for the first time to perform such calculations in electrolytic media
which has been shown to be critical for a wide range of biochemical processes.[25] Finally,
a future implementation of periodic boundary conditions will also enable the application of
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the SMPB-DFT scheme for the modeling of extended systems like solid-liquid interfaces as
present e.g. in electrochemical systems.
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List of Acronyms

BO Born-Oppenheimer
BOA Born-Oppenheimer approximation
COM center of mass
CPU central processing unit
DFPT density functional perturbation theory
DFT density functional theory
DH Debye-Hückel
DNA deoxyribonucleic acid
FDM finite difference method
FEM finite element method
FF force field
GC Gouy-Chapman
GGA generalized gradient approximation
GPE generalized Poisson equation
HEG homogeneous electron gas
KS Kohn-Sham
LDA local density approximation
LPB linearized PB
LPBE LPB equation
MAE mean absolute error
MBD many-body dispersion
MD molecular dynamics
MERM multipole expansion relaxation method
MM molecular mechanics
MP2 Møller-Plesset perturbation theory of 2nd order
MPB finite size modified PB
NAO numerically tabulated atom-centered orbitals
PB Poisson-Boltzmann
PBE PB equation
PBE-GGA Perdew-Burke-Ernzerhof-generalized gradient approximation
PDE partial differential equation
PES potential energy surface
PMF potential of mean force
QM quantum mechanics
RDF radial distribution function
RMSE root mean square error
RPA random phase approximation
SCCS self-consistent continuum solvation method
SCF self-consistent field
sd standard deviation

101



5. Summary and Outlook

SE Schrödinger equation
SI supplementary information
SMPB finite size and Stern layer modified PB
SMPBE SMPB equation
SPB Stern layer modified PB
SPE screened Poisson equation
HF Hellmann-Feynman
TD-SE time-dependent Schrödinger equation
xc exchange-correlation
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ASupplementary Material

A.1. KS Hamiltonian for Modified Debye-Hückel Theory

The derivative of the LPB ionic charge density with respect to electron density is given by

∂nLPB
ion

∂nel
= ∂κ̄2

0
∂nel

+ ∂
(
κ̄2v

)
∂nel

, (A.1)

with

∂κ̄2
0

∂nel
= zcs,bulk

{ ∂α+
ion[nel]
∂nel

(
1− φ0 + φ0α

−
ion[nel]

)
− ∂α−ion[nel]

∂nel

(
1− φ0 + φ0α

+
ion[nel]

)
(
1− φ0 + 1

2φ0
[
α+

ion[nel] + α−ion[nel]
])2

}
(A.2)

and

∂
(
κ̄2v

)
∂nel

= −κ
2εs,bulkv

4π
1(

1− φ0 + 1
2φ0

[
α+

ion[nel] + α−ion[nel]
])3

×


φ0

∂α+
ion[nel]
∂nel

α−ion[nel] + φ0
∂α−ion[nel]
∂nel

α+
ion[nel]

− 1
2(φ0 − 1)

[
∂α+

ion[nel]
∂nel

+ ∂α−ion[nel]
∂nel

](1− φ0 + 1
2φ0

[
α+

ion[nel] + α−ion[nel]
])

− 1
2φ0

[
∂α+

ion[nel]
∂nel

+ ∂α−ion[nel]
∂nel

]

×
(
φ0α

+
ion[nel]α−ion[nel]−

1
2(φ0 − 1)

[
α+

ion[nel] + α−ion[nel]
]) . (A.3)
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A.2. Laplace Expansion

A.2.1. Taylor Expansion of the Green’s Function

We start by introducing the angle γ between two vectors rat and r′at which enables us to
rewrite the atom-centered Green’s function G0 as:

G0(|rat − r′at|) = 1
4π|rat − r′at|

= 1

4π
√
r2

at + r′2at − 2ratr′at cos(γ)

=


1

4πrat
1√

1+h2−2h cos(γ)
case I

1
4πr′at

1√
1+h′2−2h′ cos(γ)

case II
, (A.4)

with h = r′at
rat

and h′ = rat
r′at

. We can expand the second factor in the case I in a Taylor series
around h = 0:

1√
1 + h2 − 2h cos(γ)

= 1 + h cos(γ) + 1
2h

2(3 cos2(γ)− 1) + . . .

=
∞∑
l=0

hlPl(cos(γ)) , (A.5)

where we introduced the Legendre polynomials Pl. The expanded function is therefore a
generating function for the Legendre polynomials with the arising sum converging fast with
l if h ≈ 0 (rat � r′at). Analogously, we can in the case II expand the function around h′ = 0
with fast convergence for h′ ≈ 0 (r′at � rat). Utilizing the spherical harmonics addition
theorem

Pl(cos(γ)) = 4π
2l + 1

l∑
m=−l

Ylm(Ωat)Y ∗lm(Ω′at) , (A.6)

we then arrive at the spherical harmonics expansion of the Green’s function as given in
Eq. (3.49).

A.2.2. Physical Interpretation

According to Eq. (3.50), each atom-centered multipole component of δv is given as

δvat,lm(rat)Ylm(Ωat) = 4π
∫

dr′atδnel,at,lm(r′at)Ylm(Ω′at)G0(|rat − r′at|) . (A.7)

Expansion of G0 around h = 0 according to case I therefore corresponds to a situation
where the observation point (at which δvat,lm is evaluated) is much farer from the atom
center then the partitioned charged density at that atom δnel,at,lm which is why this case is
often called the far-field case. Analogously, the case II can be considered as the near-field
case.
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A.2.3. Radial Integral Splitting

The calculation of the atom-centered multipole components of δv according to Eq. (A.7)
requires a 1-d integration over all possible distances to the respective atom center. We
know that for r′at < rat the Taylor expansion according to case I will be rather accurate
while for r′at > rat the case II expansion should be more reliable. We make use of this fact
by splitting the radial integral into two integrals representing the two expansion limits as
performed in Eq. (3.50).

A.3. Multipole Correction to the Hartree Energy

We start by writing down the Hartree energy and recast the expression:

Ees = 1
2

∫
drnel,◦ves,◦ =

∫
drnel,◦v

mp
es,◦ −

1
2

∫
drnel,◦v

mp
es,◦ + 1

2

∫
drnel,◦v

res
es,◦

=
∫

drnel,◦v
mp
es,◦ −

1
2

∫
drnmp

el,◦v
mp
es,◦ −

1
2

∫
drnres

el,◦v
mp
es,◦ + 1

2

∫
drnel,◦v

res
es,◦

=
∫

drnel,◦v
mp
es,◦ −

1
2

∫
drnmp

el,◦v
mp
es,◦ + 1

2

∫
drnres

el,◦v
res
es,◦

+ 1
2

∫
dr
[
nmp

el,◦v
res
es,◦ − nres

el,◦v
mp
es,◦

]
︸ ︷︷ ︸

=0

. (A.8)

The last term vanishes, since nel,◦ and ves,◦ are related by the Green’s function G0:∫
drnmp

el,◦v
res
es,◦ = 4π

∫
drdr′nmp

el,◦(r)nres
el,◦(r′)G0(|r − r′|) =

∫
drnres

el,◦v
mp
es,◦ (A.9)

A.4. Derivation of the Newton Method∗

The derivation of the function-space variant of the Newton method as presented here was
adapted from the one presented in the supplementary information (SI) of the respective ref.
[86]. We start by introducing the regularized free atom electrostatic potential, v = vfree+δv,
into Eq. (3.70)

F [v] = ∇ ·
[
ε∇vfree

]
+∇ · [ε∇δv] + 4π

(
nsol + nSMPB

ion [v]
)

= 4π
(
nel − εnfree

el

)
+ (∇ε) · (∇vfree) +∇ · [ε∇δv] + 4πnSMPB

ion [v]

= 0 , (A.10)

with ∆vfree = −4πnfree
el − 4πnnuc. For improved legibility we do not explicitly write down

the dependencies on nel in this section. To find the root of this equation with respect to δv
we then employ a Newton scheme, which necessitates the calculation of the first derivative

* Reproduced in part with permission from ref. [86]. © 2016 American Chemical Society.
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of the functional F [v]. Such a function space derivative F ′[v], generally known as the
Fréchet derivative, is defined through the following relation

lim
t→0

||F [v + t]−F [v]− D̂F [v]t||
||t||

= 0 , (A.11)

where D̂ is a bounded linear operator D̂F [v] : X → Y . If there exists such an operator D̂
which fulfills this equation, then the Fréchet derivative of F [v] is given by

F ′[v] = D̂F [v] . (A.12)

To show the existence of D̂ and obtain F ′[v], we first calculate the difference

F [v + t]−F [v] = ∇ · [ε∇t] + 4π
(
nSMPB

ion [v + t]− nSMPB
ion [v]

)
, (A.13)

where the last term can be expanded in a Taylor series around t = 0:

4π
(
nSMPB

ion [v + t]− nSMPB
ion [v]

)
=

4πzcs,bulk α+
ion[nel]e−βz(v+t) − α−ion[nel]eβz(v+t)

1− φ0 + 1
2φ0

[
α+

ion[nel]e−βz(v+t) + α−ion[nel]eβz(v+t)
]
− 4πnSMPB

ion [v]

=

4πnSMPB
ion [v]−

φ0α
+
ionα

−
ion − 1

2(φ0 − 1)
[
α+

ion[nel]e−βzv + α−ion[nel]eβzv
]

(
1− φ0 + 1

2φ0
[
α+

ion[nel]e−βzv + α−ion[nel]eβzv
])2 εs,bulkκ2 · t+O(t2)


− 4πnSMPB

ion [v]

= −
φ0α

+
ionα

−
ion − 1

2(φ0 − 1)
[
α+

ion[nel]e−βzv + α−ion[nel]eβzv
]

(
1− φ0 + 1

2φ0
[
α+

ion[nel]e−βzv + α−ion[nel]eβzv
])2 εs,bulkκ2 · t+O(t2)

= −h2[v]t+O(t2) . (A.14)

Putting it all together we get

F [v + t]−F [v] = ∇ · [ε∇t]− h2[v]t+O(t2) = L̂′[v]t+O(t2) , (A.15)

with the linear operator
L̂′[v] = ∇ · [ε∇]− h2[v] . (A.16)

This implies existence of the Fréchet derivative

F ′[v] = D̂F [v] = L̂′[v] , (A.17)

if higher-order terms vanish

lim
t→0

||O(t2)||
||t||

= 0 . (A.18)

In our case this condition is indeed fulfilled, since the numerator converges faster to zero
than the denominator. Consequently, Eq. (A.17) is valid and we have found the Fréchet
derivative. Inserting these results for F ′ and F into Eq. (3.71) finally yields Eq. (3.72) of
the main text.
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A.5. Multipole Correction to the Electrostatic Energy in the PB
Case
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Figure A.1.: qres
iter,◦ in the bonding plane of an H2O molecule embedded into a model SMPB aqueous

electrolyte (εs,bulk = 78.36, nmin = 0.0001, nmax = 0.005, dαion = 0.5, ξαion = 1.0, a = 5 Å,
T = 300 K) calculated with lmax,at = 4 ∀ at (left panel) and lmax,at = 6 ∀ at (right panel). Additionally
shown are contour lines at the transition regions of dielectric function (gray) and ion exclusion function
(red) and the water molecule bonds (solid black lines).
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We proceed analogously to Appendix A.3, but now rewrite the electrostatic energy of the
solute instead of the Hartree energy:

1
2

∫
drnsol,◦v◦ =
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+ 1
2
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[(
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iter,◦
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iter,◦v
mp
◦

]
︸ ︷︷ ︸

≈0

. (A.19)

Note, that the last term is in general non-zero in contrast to the vacuum case. An exact
evaluation is, however, not possible, since the multipole error in the electrostatic potential
vres
◦ is usually unknown. In order to analyze this term, we rewrite it using the Green’s

function G1:
1
2

∫
dr
[(
nsol,◦ − qres

iter,◦

)
vres
◦ − qres

iter,◦v
mp
◦

]
= 4π

2
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2
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(((
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4π
2

∫
drdr′qres

iter,◦(r)qres
iter,◦(r′)G1(|r − r′|)

= 1
2

∫
drqres

iter,◦(r)
[
4π
∫

dr′nsol,◦(r′)G1(|r − r′|)− v◦
]

. (A.20)

From this reformulation we can conclude, that the last term in Eq. (A.19) vanishes only if

v◦ ≈ 4π
∫

dr′nsol,◦(r′)G1(|r − r′|) ,where qres
iter,◦ 6= 0 . (A.21)

This equation will be exactly fulfilled in the vacuum case, where ε = 1 and κ = 0. In the
presence of solvent and ions, v◦ is instead defined as solution of the non-linear SMPBE

∇ [ε[nel]∇v◦] = −4πnsol,◦ − 4πnSMPB
ion,◦ [v◦, nel,◦] , (A.22)

for which no analytic Green’s function like G1 is available. Since, however, qiter,◦ is confined
to the region inside the solvation cavity (cf. Section 3.4.1.2), the same is also true for
the multipole error qres

iter,◦ (cf. Fig. A.1). Inside the solvation cavity where qres
iter,◦ 6= 0 , the

SMPBE becomes for κ = 0 the Poisson equation in vacuum

∆v◦ = −4πnsol,◦ (A.23)

since ε = 1. For zero ionic strengths Eq. (A.21) thus approximately holds and the last term
in Eq. (A.19) vanishes. For finite ionic strengths (κ 6= 0), Eq. (A.21) is generally not valid,
since the corresponding PDE to G1, the SPE(

∆− κ2
)
v◦ = −4πnsol,◦ (A.24)
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does not represent the limit of the SMPBE inside the solvation cavity. When performing
multipole order convergence tests of free energy differences (cf. Appendix A.7), we, how-
ever, find the last term of Eq. (A.19) to be still negligible for all considered test systems
even for finite ionic strengths. A possible explanation might be that charges at the outside
of the solvation cavity only lead to a nearly constant shift of the electrostatic potential
inside the solvation cavity where multipole errors are largest. Such an offset does not
require higher orders in the multipole expansion of v◦. We therefore expect the presence of
ions to induce in general only a small multipole truncation error on the total energy, but
leave a detailed testing also for other, possibly charged solutes to future studies.

A.6. Multipole Correction to the Forces in the PB Case
We start with the expression for the multipole correction force as given in the main text:

Fmp
at =

∫
dr
{1

2
(
vmp
◦ ∇atq

mp
nel,◦ + qmp

nel,◦∇atv
mp
◦

)
− nsol,◦∇atv

mp
◦

}
= −1

2

∫
dr
{
nsol,◦∇atv

mp
◦ − vmp

◦ ∇atnsol,◦ + qres
iter,◦∇atv

mp
◦ + vmp

◦ ∇atq
res
iter,◦

}
,

(A.25)

where the second line follows from the definition of qmp
nel,◦. We now replace vmp

◦ with
v◦ − vres

◦ :

Fmp
at = −1

2

∫
dr
{

[nsol,◦∇atv◦ − v◦∇atnsol,◦]− [nsol,◦∇atv
res
◦ − vres

◦ ∇atnsol,◦]

+
[
qres

iter,◦∇atv◦ + v◦∇atq
res
iter,◦

]
+
[
qres

iter,◦∇atv
res
◦ + vres

◦ ∇atq
res
iter,◦

]}
. (A.26)

We consider now first the ion-free case (κ = 0) for which a Green’s function exists for the
inversion of the GPE (cf. Eq. (2.55)), hence:

v◦ = 4π
∫

dr′nsol,◦(r′)G(r, r′) . (A.27)

Using this equation, the first term in Eq. (A.26) vanishes and the multipole correction force
becomes:

Fmp
at = 1

2

∫
dr
{

[nsol,◦∇atv
res
◦ − vres

◦ ∇atnsol,◦]−
[
qres

iter,◦∇atv◦ + v◦∇atq
res
iter,◦

]}
+
∫

drqres
iter,◦∇atv

res
◦ , (A.28)

where we used the Green’s function G0 (= G1 for κ = 0) to shorten the last two terms. As
already mentioned in the previous section and in the main text, qiter,◦ is confined to the
region of the solvation cavity. Inside the solvation cavity, the vacuum Poisson equation
holds and we can thus write

v◦ = 4π
∫

dr′nsol,◦(r′)G0(|r − r′|) , (A.29)
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which leads to

Fmp
at = 1

2

∫
dr
{

[nsol,◦∇atv
res
◦ − vres

◦ ∇atnsol,◦]

−
∫

dr′G0(|r − r′|)
[
qres

iter,◦(r)∇atnsol,◦(r′) + nsol,◦(r′)qres
iter,◦(r)

]}
+
∫

drqres
iter,◦∇atv

res
◦ . (A.30)

Considering now that still for κ = 0

vres
◦ = 4π

∫
dr′qres

iter,◦(r′)G0(|r − r′|) , (A.31)

we then get

Fmp
at = 1

2

∫
drdr′G0(|r − r′|)

{[
((((

(((
(((

nsol,◦(r)∇atq
res
iter,◦(r′)− qres

iter,◦(r′)∇atnsol,◦(r)
]

−
[
qres

iter,◦(r)∇atnsol,◦(r′) +
((((

((((
((

nsol,◦(r′)∇atq
res
iter,◦(r)

]}
+
∫

drqres
iter,◦∇atv

res
◦

= −
∫

drqres
iter,◦∇atv◦ +

∫
drqres

iter,◦∇atv
res
◦ , (A.32)

where we in the last step again used the confinement of qiter. The second term in the last
line converges quadratically with the multipole error and can be neglected at standard
FHI-aims settings. We proved this and the accuracy of the resulting multipole correction
force expression

Fmp
at = −qres

iter,◦∇atv◦ (A.33)

by comparing to FDM calculations in which we discretized the ∇at-operator to derive
numerical forces.[147] By evaluating forces on the methanol-O atom, we found a maximum
angular momentum of lmax,at = 4 to be already sufficient to reproduce the numerical
forces.

The derivation presented above is strongly valid only for the ion-free case where κ = 0.
Nevertheless, as already discussed in the previous section, we expect ions to induce only a
small multipole error on the total energy and therefore also the corresponding forces. We
leave it here to future studies to perform an extensive testing of the validity of Eq. (A.33)
for the cases of finite ionic strengths.

A.7. Numerical Convergence of Energies†

All numerical convergence tests here and in the main text have been performed with
the test set of 13 organic molecules listed in Tab. 3.2. The following figures detail the
convergence behavior as a function of the major numerical integration grid and truncation

† Reproduced in part with permission from ref. [86]. © 2016 American Chemical Society.
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parameters of FHI-aims, as well as of the NAO basis set size (cf. Section 3.3.1 and 3.3.3).
By default all calculations have been performed with tight settings, at T = 300 K and with
the following SMPB parameters: The parameters from the “fitg03+β” fit from Andreussi
et al.,[5] a = 5 Å, z = 1, dαion = d±αion = 0.5, ξαion = ξ±αion = 1. Each figure displays
for each molecule the variation of the deviation of the calculated solvation free energy
∆Gsol at cs,bulk = 1 M and the variation of the deviation of the calculated ion effect on
the solvation free energy ∆∆Gion when selectively increasing one particular parameter.
The zero reference for this deviation of ∆Gsol and ∆∆Gion is each time the value obtained
with the largest parameter value shown. The conclusion to draw from all performed
tests is that the standard FHI-aims production settings, i.e. tight settings with lmax,at = 6,
radial_multiplier = 2 and rcut,at = 4 Å yields well-converged results in the meV to
sub-meV region. Thus, the SMPB-DFT solver does not necessitate any higher accuracy
settings than standard semi-local DFT.
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−0.008

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

0.000

∆
∆

G
io

n
−

∆
∆

G
io

n(
r o

ns
et

,a
t
=

7Å
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Figure A.2.: Convergence of deviation of ∆Gsol (left) and ∆∆Gion (right) with ronset,at. The red vertical
line indicates the standard FHI-aims production settings. Reproduced with permission from ref. [86].
© 2016 American Chemical Society.

4 5 6 7 8 9 10 11 12
lmax

−0.05

0.00

0.05

∆
G

so
l−

∆
G

so
l(l

m
ax

=
12

)(
kc

al
/m

ol
)

13
16
36
69
79
90
117

140
142
160
163
200
206

−3

−2

−1

0

1

2

3

4

(m
eV

)

,at
4 5 6 7 8 9 10 11 12

lmax

0.000

0.005

0.010

0.015

0.020

∆
∆

G
io

n
−
∆
∆

G
io

n(
l m

ax
=

12
)(

kc
al

/m
ol

)

13
16
36
69
79
90
117

140
142
160
163
200
206

0.0

0.2

0.4

0.6

0.8

1.0

(m
eV

)

,at

Figure A.3.: Convergence of deviation of ∆Gsol (left) and ∆∆Gion (right) with lmax,at chosen here equal
for all atoms. The red vertical line indicates the standard FHI-aims production settings. Reproduced
with permission from ref. [86]. © 2016 American Chemical Society.
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Figure A.4.: Convergence of deviation of ∆Gsol (left) and ∆∆Gion (right) with NAO basis. Reproduced
with permission from ref. [86]. © 2016 American Chemical Society.
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A.8. Databases of Setschenow Coefficients‡

molecule ks molecule ks molecule ks
1,2,3-trimethylbenzene 0.321 propanoic acid 0.132 4-ethyl-3-hexanol 0.291
1,2,4-trimethylbenzene 0.293 butanoic acid 0.166 2-butoxyethanol 0.211
1,3,5-trimethylbenzene 0.318 hexanoic acid 0.220 methyl-phenyl sulfoxide 0.166
naphthalene 0.220 methyl acetate 0.185 atrazine 0.274
o-xylene 0.227 ethyl acetate 0.172 cysteine -0.068
p-xylene 0.251 n-propyl acetate 0.201 leucine 0.114
anthracene 0.326 n-butyl acetate 0.224 glycine 0.002
benzene 0.195 n-pentyl acetate 0.283 tyrosine 0.048
biphenyl 0.276 isobutyl acetate 0.225 phenylacetic acid 0.190
isopropylbenzene 0.316 aniline 0.136 1,2-dinitrobenzene 0.124
m-xylene 0.248 piperidine 0.156 1,3-dinitrobenzene 0.109
ethylbenzene 0.234 toluene 0.221 phenylthiourea 0.184
pyrene 0.320 n-propylbenzene 0.262 phenytoin 0.191
hexan-1-ol 0.232 n-butylbenzene 0.285 theophylline 0.100
phenol 0.111 2-phenylphenol 0.274 cytosine -0.005
1-naphthol 0.207 2,5-dimethylpyrazine 0.209 theobromine 0.056
2-naphthol 0.220 4-iodophenol 0.162 sulfanilamide 0.124
m-cresol 0.182 4-fluorophenol 0.168 5-fluoro-uracil 0.014
2-nitrophenol 0.136 4-aminobiphenyl 0.208 2,2’-bipyridine 0.251
3-nitrophenol 0.147 caffeine 0.114 trimethylamine 0.160
4-nitrophenol 0.165 4-nitroanisole 0.126 acetone 0.096
cyclohexanone 0.202 carbazole 0.232 diacetone alcohol 0.159
methane 0.127 Bisphenol A 0.174 lindane 0.166
ethane 0.162 acetanilide 0.197 2-phthalic acid 0.178
propane 0.194 2,2,2-trifluoroethanol 0.125 benzoic acid 0.182
cyclohexane 0.277 hexafluorisopropanol 0.222 2-chlorobenzoic acid 0.182
methylcyclopentane 0.273 1-nitropentane 0.203 3-chlorobenzoic acid 0.180
n-butane 0.217 1-nitrohexane 0.236 salicylic acid 0.172
n-hexane 0.276 2-hexanone 0.198 benzylamine 0.112
n-pentane 0.221 2-nonanone 0.306 4-nitroaniline 0.100
ethene 0.127 heptanal 0.237 3-nitroaniline 0.105
acetic acid 0.064 octanal 0.265

Table A.1.: Database I (NaCl training set) of Setschenow coefficients ks (l/mol)§for various organic
molecules in NaCl aqueous solution at T = 298.14 K. The data was collected from Li et al., [123] Endo
et al.,, [181] Ni et al. [182] and other sources. [109,180,185–187,191] Reproduced from ref. [148], with the
permission of AIP Publishing.

‡ Reproduced with permission from ref. [148]. © 2017 AIP Publishing.
§Some of the Setschenow coefficients have originally been measured in inverse molality rather than molarity

units and have not been directly converted by the respective experimental groups. In water as a solvent
this does, however, only change the values of the coefficients very slightly, usually below the accuracy in
which they can be accurately measured. Also, the experimental temperature sometimes varies slightly from
room temperature (±5K). The same is valid also for the other databases.
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molecule ks molecule ks molecule ks
1,2,4-trichlorobenzene 0.250 chlorobenzene 0.198 1,4-dichlorobenzene 0.240
1,2-benzanthracene 0.354 chrysene 0.336 1,4-dinitrobenzene 0.097
1-ethylanthracene 0.313 cycloheptane 0.343 p-nitrotoluene 0.163
1-ethylnaphthalene 0.273 cyclopentane 0.182 p-toluidine 0.170
1-methylnaphthalene 0.200 fluoranthene 0.339 phenanthrene 0.272
2,4,6-trichlorophenol 0.228 fluorene 0.267 progesterone 0.288
2,4-dichlorophenol 0.218 heptanoic acid 0.242 s-butyl acetate 0.241
2-methylanthracene 0.336 hexyl acetate 0.312 s-butylbenzene 0.288
6-mercaptopurine 0.048 1,3-dichlorobenzene 0.226 t-butyl acetate 0.269
acenaphthene 0.238 methylcyclohexane 0.274 t-butylbenzene 0.243
benzo[a]pyrene 0.328 1,2-dichlorobenzene 0.247 testosterone 0.326

Table A.2.: Database Ival (NaCl validation set) of Setschenow coefficients ks (l/mol) for various organic
molecules in NaCl aqueous solution at T = 298.14 K. This database comprises all Setschenow
coefficients from Ni et al. [182] which were not already included in database I. Reproduced from ref.
[148], with the permission of AIP Publishing.
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molecule LiCl KCl KBr LiBr NaF NaBr NaI KF KI NaNO3 NH4Cl
2-chlorobenzoic acid [180] 0.193 0.139 0.099 - - - - - - - -
benzene [109,180,184] 0.141 0.166 0.119 0.126 0.255 0.155 0.095 0.250 - 0.119 0.103
4-nitroaniline [185] 0.118 0.051 -0.037 - - - - - -0.116 - -
1,4-benzoquinone [185] 0.075 0.029 -0.024 - - - - - -0.117 - -
propanoic acid [183] 0.130 0.091 0.076 0.107 - 0.104 - - - - -
theophylline [172] 0.099 0.068 0.000 - - - - 0.230 - - -
4-nitrophenol [185] 0.176 0.051 -0.017 - - - - - -0.112 - -
diacetone alcohol [109] 0.092 0.142 0.118 - - 0.131 0.063 - - - -
phenol [109,186] 0.143 0.122 0.111 - - 0.155 - - - 0.113 -
salicylic acid [187] 0.191 0.122 0.087 - - - - - - - -
2-phthalic acid [109] 0.224 0.093 0.073 - - - - - 0.041 0.073 0.118
3-nitroaniline [185] 0.121 0.077 0.017 - - - - - 0.141 - -
acetic acid [188] 0.075 0.033 0.014 0.073 - 0.067 - - - 0.031 -
naphthalene [180,184] 0.180 0.186 0.130 0.097 0.343 0.162 - 0.326 - 0.131 0.071
acetone [109,189,190] 0.066 0.091 0.060 - - - - - 0.020 - -
toluene [180] 0.168 0.206 0.138 0.113 0.329 0.191 - 0.282 - 0.144 0.136
theobromine [172] 0.104 0.074 -0.028 - - - - 0.196 - - -
lindane [191] 0.135 0.149 0.043 - 0.415 0.131 -0.088 0.544 -0.127 - 0.066
benzoic acid [109] 0.189 0.144 0.109 - - - - - 0.049 0.075 -
trimethylamine [109] 0.090 0.200 0.160 - - 0.150 0.110 - 0.130 - -
o-xylene [180] 0.180 0.205 0.156 0.120 0.349 0.178 - 0.342 - 0.141 0.102
m-xylene [180] 0.185 0.222 0.170 0.125 0.379 0.144 - 0.354 - 0.165 0.153
p-xylene [180] 0.187 0.217 0.168 0.133 0.347 0.198 - 0.339 - 0.146 0.099
3-chlorobenzoic acid [180] 0.193 0.142 0.090 - - - - - - - -
biphenyl [184] 0.218 0.255 - - - 0.209 - - - - -
1,2,4-trichlorobenzene [180] - 0.239 - - - - - - - - -
3-methylbenzoic acid [180] - 0.160 0.140 - - - - - 0.130 - -
chlorobenzene [180] - 0.176 - - - 0.129 - - - - -
n-hexane [180] - 0.244 - - - 0.161 - - - - 0.181
2-methylbenzoic acid [180] - 0.230 0.210 - - - - - 0.190 - -
piperidine [186] 0.056 0.167 - - - - - - - - -
caffeine [192] - - - - - -0.0058 - - - - -
1,3-dichlorobenzene [180] - 0.201 - - - - - - - - -
γ-butyrolactone [109] - 0.028 - - - 0.001 -0.092 - -0.115 - -
1-naphthol [193] - 0.199 - - - - - - - - -
2-nitrobenzaldehyde [194] - 0.034 - - - - - - - -0.130 -
phenanthrene [180] - 0.279 - - - 0.211 - - - - 0.195
1,4-dichlorobenzene [180] - 0.192 - - - 0.174 - - - - -
4-chlorobenzoic acid [180] - 0.138 - - - - - - - - -
naphthalene-1,5-diol [193] - 0.151 - - - - - - - - -
1,3-dinitrobenzene [197] - 0.014 - - - - - - - - -
benzylamine [186] 0.084 0.140 - - - 0.024 0.000 - - - -
ethyl acetate [198] 0.117 0.133 - - - - - - - - -
4-amino-3-hydroxy-1-naphtha–
lenesulphonic acid [193] - 0.287 - - - - - - - - -

1,2-dichlorobenzene [180] - 0.207 - - - - - - - - -
ethene [195] - 0.064 0.050 - - 0.080 - - - 0.050 0.023
chloroacetic acid [196] - 0.026 0.008 - - - - - - - -
ethane [199] 0.130 - - - - - - - 0.107 - -
4-methylbenzoic acid [180] - 0.200 0.190 - - - - - - - -
aniline [186] - 0.115 - - - - - - - - -
methane [199] 0.104 - - - - - - - 0.105 - -

Table A.3.: Database II of Setschenow coefficients ks (l/mol) for various organic molecules in different
salt solutions at T = 298.14 K. The table explicitly excludes solubility data for highly polar molecules
which is expected to be masked by solute-solute self-interaction effects. [109] Reproduced from ref.
[148], with the permission of AIP Publishing.
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BComputer Code Infrastructure

The SMPB-DFT infrastructure in FHI-aims is invoked by using the key tag solvent_mpb in
the FHI-aims input file control.in. All additional user options (subtags) are provided in
Tab. B.1 including a short explanation.

Fig. B.1 shows all implemented subroutines and modules comprising the SMPB infras-
tructure in FHI-aims as created within this thesis and Tab. B.2 lists them again with a short
description. All subtags given in Tab. B.1 are read in by the subroutine read_mpb_data.f90
which inherits all variables and functions from the modules lpb_solver_utilities.f90
and mpb_solver_utilities.f90. initialize_scf.f90 initializes all variables needed
for the SMPB-DFT calculation. During each SCF step first the electron density is up-
dated from the single-electron wave-functions (update_density_and_forces_p2.f90
or update_density_and_forces_densmat.f90 if the density matrix should be used
to update the electron density), run_mpb_solver.f90 is called as a wrapper to the
SMPBE or LPBE solver, sum_up_whole_potential_p1.f90 is invoked to use the just
obtained electrostatic potential v to evaluate the KS-Hamiltonian and energy con-
tributions such as double counting correction or nuclei-nuclei interaction energy,
integrate_hamiltonian_matrix_p2.f90 solves KS-eigenvalue problem and finally the
total energy is calculated and outputted by the routine get_total_energy.f90.

tag explanation

so
lv

en
t

dielec_func kind εs,bulk par1 par2 Define the dielectric function. kind=0 selects
a function as suggested by Fattebert et al.[14]

using the parameters par1=β and par2=n0,
kind=1 takes the standard function of An-
dreussi et al. (par1=nmin, par2=nmax) as
used in this thesis (default).[5]

set_nonelstat_params Set the parameters defining the Ωnon−mf
ε

(α+ γ) (dyn/cm) β (GPa) term. Default: (α + γ) = 50 dyn/cm and
β = −0.35 GPa.

dynamic_cavity_off If set, ε is parameterized in the beginning by
the usage of nfree

el and then fixed during the
SCF cycle. Default: not set.
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io
n

s

ions_temp T (K) Set temperature in SMPB lattice model. Default:
T = 300 K.

ions_conc cs,bulk (M) Set ionic bulk concentration. Default: cs,bulk = 1 M
ions_charge z Set ionic charge. Default: z = 1
ions_size a (Å) Set ionic size given as the side length of a lattice

cell. Default: a = 5 Å
ions_kind kind Use either sharp step function for the ionic exclu-

sion functions α±ion (kind=0) or the default smooth
function as used in this thesis (kind=1).

ions_mod_alpha d+
αion ξ

+
αion Set parameters for cationic ion exclusion function

α+
ion. Default: d+

αion = 0.5, ξ+
αion = 1.0. Within

the more common sign convention of negatively
charged electrons, these are the parameters for the
anions!

ions_mod_alpha_anion d−αion ξ
−
αion Set parameters for anionic ion exclusion function

α−ion. Default: d−αion = d+
αion , ξ−αion = ξ+

αion . Within
the more common sign convention of negatively
charged electrons, these are the parameters for the
cations!

dynamic_ions_off If set, the exclusion functions α±ion are evaluated
from nfree

el and then fixed during the SCF cycle. De-
fault: not set.

SP
E

SPE_lmax lmax Set maximum limiting value for all lmax,at.
Default: max

at
(lhartree,at). The atom-specific

maximum angular momenta are given by
lmax,at = min (lmax, lhartree,at).

SPE_cut_and_lmax_ff rmp
cut,at l

ff
max rmp

cut,at: value of rat at which far field is turned
on, default: multipole_radius_free+2.0 Å where
multipole_radius_free is the radius of the inner-
most radial grid shell at which nfree

el,at is still zero.
lffmax: maximum angular momentum in the far field,
default: lmax

M
ER

M

delta_rho_in_merm Setting this keyword, evaluates the change of the
source term 4πq[vn]−L̂1[vn]δvn+1 during the MERM
iteration and solves the SPE for this change rather
than the full source density.

MERM_in_SPE_solver T/F Perform the MERM iterations inside the
SPE_solver.f90 routine without updating
δvn+1 on the full integration grid at each step, but
only at the points where we actually need it to form
the source term (cf. Section 3.4.1.2 and Tab. B.2).
Default: .True.

SPE_conv τMERM η MERM convergence parameters. Defaults:
τMERM = 10−10, η = 0.5
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nonsc_Gnonmf Setting this keyword, calculates the free energy term Ωnon−mf
ε

as a post-correction to be added after the SCF cycle, no
corresponding correction term is added to ĥKS. Default: not
set.

not_converge_rho_mpb Setting this keyword, runs a vacuum calculation first and
then subsequently solves the SMPBE once with the vacuum
electron density and then outputs all energetics. Default: not
set.

solve_lpbe_only T/F Solve the LPBE Eqs. (2.52) and (3.30) instead of the SMPBE
and use corresponding energetics from modified Debye-
Hückel theory (cf. Section 3.2.6). Default: .False..

Table B.1.: All currently available user options (subtags) for the implemented SMPB-DFT method. If not
indicated elsewise the input values are in atomic units.
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scf_solver.f90

sum_up_whole_potential_p1.f90

initialize_scf.f90

main.f90

read_control.f90

read_mpb_data.f90

get_total_energy.f90

run_mpb_solver.f90

run_newton_mpb.f90

solve_lpbe_only
.True.

.False.

lpb_solver.f90
.False.

MERM_in_SPE_solver

solve_SPE

.True.

lpb_solver_utilities.f90

mpb_solver_utilities.f90

1

1

SMPB modules

1

2

2

1 2

1 2

1 2

1

1 2

1 2

3

3

3

SPE_solver.f903

integrate_hamiltonian_matrix_p2.f90

update_density_and_forces_p2.f90

Pulay_forces_densmat.f90

use_density_matrix

1

1

1

SMPB subroutines
FHI-aims subroutines FHI-aims modules

.True.

.False.

Figure B.1.: Scheme which visualizes the integration of the SMPB-DFT scheme into the code structure
of FHI-aims. Blue and gray boxes denote FHI-aims routines and modules which have been partly
modified. Subroutines that have been newly created within the scope of this thesis are shown as green
boxes (cf. also Tab. B.2), while the new modules are highlighted with a red background color. All
routines that all used within a particular file are connected to it to the right by a line with a filled
circle. Arrows indicate the inheritance of variables and functions from modules. Finally, the subroutine
solve_SPE is part of the module SPE_solver.f90 indicated by the module number inset.
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file content

read_mpb_data.f90 The subroutine read_mpb_data is called from the FHI-aims
routine read_control.f90 which reads the FHI-aims input file
control.in. read_mpb_data reads the SMPB-specific part of
the control.in file, i.e. all parameters listed in Tab. B.1.

run_newton_mpb.f90 The subroutine run_newton_mpb performs the iterations of the
Newton solver. For that purpose, it repeatedly evaluates the
functions −4πεq[vn] and h2[vn] which define the LPBE-like PDE
Eq. (3.72) which is solved by the called routine lpb_solver.f90
until convergence of the Newton method.

lpb_solver.f90 The subroutine lpb_solver solves any LPBE-type of PDEs.
This can be either Eq. (3.72) when coupling the routine
to the Newton solver or directly the LPBE Eqs. (2.52)
and (3.30) as resulting from modified Debye-Hückel theory.
If MERM_in_SPE_solver=F, the MERM iterations are performed
within this routine and the arising SPE is solved by the subrou-
tine solve_SPE from the module SPE_solver.f90. In the case
of MERM_in_SPE_solver=T the iterations are outsourced to the
routine solve_SPE with the linear mixing applied directly on
the source term multipole components (cf. Section 3.4.1.2).

SPE_solver.f90 This module contains all subroutines and functions necessary
for the solution of SPE-like equations as e.g. Eq. (3.75).
The module is a modified version of the FHI-aims module
precondition.f90 which contains the Kerker preconditioner
used for increasing the convergence of the SCF cycle.[136] In the
case of MERM_in_SPE_solver=T the routine solve_SPE solves
instead a LPBE-like equation (cf. Section 3.4.1.2).

run_mpb_solver.f90 Wrapper routine calling either solve_SPE, run_newton_mpb
or lpb_solver depending if the vacuum Poisson equa-
tion in FHI-aims should be replaced by the SPE
(solve_lpbwith_constant_dielec=T, experimental), SMPBE
(default) or LPBE (solve_lpbe_only=T), respectively.

lpb_solver_utilities.f90 This module contains all basic routines and functions needed
in the SMPB-DFT framework as e.g. routines evaluating the
dielectric and ion exclusion function and their gradients, KS-
Hamiltonian correction terms or terms related to the atomic
forces. Moreover, it includes all routines needed by the
LPB-solver which calculate e.g. the source term −4πq[vn] +
L̂1[vn]δvn+1 or the MERM convergence criterium τMERM.

mpb_solver_utilities.f90 This module contains all SMPB specific routines and functions
needed for the Newton method evaluating e.g. the h2[vn]-
function, the ionic charge density nSMPB

ion or SMPB free energy
contributions.

Table B.2.: Short description of all Fortran files of the SMPB implementation in FHI-aims that were
created within this thesis.
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