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Physik Department T31, Technische Universität München,

James-Franck-Straße, D-85748 Garching, Germany

E-mail: pedro.ruiz-femenia@tum.de

Abstract: We show how to correctly treat threshold singularities in fixed-order perturba-

tive calculations of the electron anomalous magnetic moment and hadronic pair production

processes such as top pair production. With respect to the former, we demonstrate the

equivalence of the “non-perturbative”, resummed treatment of the vacuum polarization

contribution, whose spectral function exhibits bound state poles, with the fixed-order cal-

culation by identifying a threshold localized term in the four-loop spectral function. In

general, we find that a modification of the dispersion relation by threshold subtractions is

required to make fixed-order calculations well-defined and provide the subtraction term. We

then solve the apparent problem of a divergent convolution of the partonic cross section with

the parton luminosity in the computation of the top pair production cross section starting

from the fourth-order correction. We find that when the computation is performed in the

usual way as an integral of real and virtual corrections over phase space at a given order in

the expansion in the strong coupling, an additional contribution has to be added at N3LO.

Keywords: Heavy Quark Physics, Perturbative QCD, Precision QED, Resummation

ArXiv ePrint: 1606.02434

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2016)145

mailto:pedro.ruiz-femenia@tum.de
http://arxiv.org/abs/1606.02434
http://dx.doi.org/10.1007/JHEP08(2016)145


J
H
E
P
0
8
(
2
0
1
6
)
1
4
5

Contents

1 Introduction 1

2 Equivalence at O(α5) 2

3 Threshold-subtracted dispersion relations 5

4 Dispersive representation of a(vp)
e

beyond O(α4) 8

5 Hadronic pair production 9

6 Summary 12

1 Introduction

The photon vacuum polarization contribution to the electron anomalous magnetic moment

ge − 2, see figure 1 is given by [1, 2]

a(vp)e = −α

π

∫ 1

0
dx (1− x)Π

( −x2

1− x
m2

)

, (1.1)

with α the fine structure constant and m the electron mass. Exploiting the analyticity of

Π(s) and the standard on-shell renormalization condition Π(0) = 0, the once-subtracted

dispersion relation

Π(q2) =
q2

2πi

∮

ds
Π(s)

s (s− q2)
=

q2

π

∫ ∞

0

ds

s

ImΠ(s+ iη)

s− q2
(1.2)

holds, which allows us to rewrite (1.1) as

a(vp)e =
α

π2

∫ ∞

0

ds

s
ImΠ(s+ iη)K(s) (1.3)

with kernel function

K(s) =

∫ 1

0
dx

x2(1− x)

x2 + (1− x)s/m2
. (1.4)

The spectral function ImΠ(s) exhibits a series of positronium poles1 slightly below the

electron-positron threshold 4m2. In [3] it has been claimed that this results in an additional

1The spectral function is often discussed in connection with hadronic contributions to the anomalous

magnetic moment. Here we are concerned with QED effects only. We also note that in QED the discontinuity

of Π(s) starting at s = 0 is due to three-photon intermediate states, which first enter at O(α4) in the

perturbative vacuum polarization. For the purposes of this paper, we are only interested in the e+e−

physical cut, which starts at s = 4m2, and the positronium poles slightly below.
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Figure 1. Vacuum polarization contribution to the anomalous magnetic moment of the electron.

O(α5) contribution to the magnetic moment, which is not captured by the O(α5) QED

correction from the four-loop vacuum polarization function [4]. This claim has been quickly

refuted [5–7] — indeed, it is clear from (1.1) that the vacuum polarization is probed only

in the Euclidean region far from the electron-positron threshold, where an ordinary loop

expansion is valid —, but the arguments presented leave an interesting point open, namely

whether and how an order-by-order calculation of the spectral function gives the correct

result for the magnetic moment when the dispersive representation (1.3) is used. The

answer to this question, which we provide in this note, leads to more general considerations

on the formulation of the dispersion relation for spectral functions whose perturbative

expansions become more and more singular near pair-production thresholds as the order

of the expansion increases. This in turn has interesting ramifications for pair production

of heavy particles such as top quarks at the Large Hadron Collider as will be discussed.

2 Equivalence at O(α5)

The vacuum polarization function develops poles of e+e− bound states right below the

electron-positron threshold. They cannot be obtained at any finite order in QED pertur-

bation theory, but arise diagrammatically from the summation of an infinite number of

Coulomb-photon exchanges between the electron and positron. The systematic resumma-

tion can be performed within the framework of non-relativistic effective field theory, and

the relevant counting is v ≡
√

E/m ∼ α with E =
√
s− 2m.

The summation generates the bound-state poles and also significantly affects the e+e−

continuum near threshold. For the present discussion of O(α5) effects both are adequately

described by the leading-order Coulomb Green function. The photon vacuum polarization

near threshold (small E) is given by

Π0(E) =
2πα

m2
G0(0, 0;E) (2.1)

in terms of the zero-distance Coulomb Green function [8, 9]

G0(0, 0;E) =
m2

4π

[

−
√

−E

m
− α

{

− 1

4ǫ
+

1

2
ln

(−4mE

µ2

)

− 1

2
+ γE +Ψ(1− λ)

}]

, (2.2)

here regulated dimensionally in d = 4− 2ǫ dimensions. The Coulomb Green function sums

terms of order (α/v)n to all orders in α through the digamma function Ψ(1 − λ), where
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λ = α/(2
√

−E/m), and the poles of the digamma function at positive integer λ correspond

to the S-wave positronium bound states. The imaginary part of the Green function for

real energies reads

ImG0(0, 0;E) =
∞∑

n=1

(mα

2n

)3
δ(E − En) + θ(E)

m2

4π

πα

1− e−
πα
v

, (2.3)

where the second term is the continuum contribution known as the Sommerfeld factor and

the positronium bound states at energies En = −mα2/(4n2) are explicit in the first term.

We shall now compute the contribution to the anomalous magnetic moment in two ways.

First, “non-perturbative”, that is, using the all-order resummed spectral function above.

Second, we show that exactly the same result can be obtained at fixed five-loop order in

perturbation theory. We then explain why this implies that no additional contribution has

to be added to the known result [4].

For the “non-perturbative”, resummed evaluation we multiply (2.3) by 2πα/m2 and

insert the result into (1.3), obtaining

a(vp),rese =
α5

4π

∞∑

n=1

1

n3

K((2m+ En)
2)

1 + En/2m
+

α3

π

∫ ∞

0
dE

K((2m+ E)2)

2m+ E

1

1− e
− πα√

E/m

. (2.4)

The first term represents the positronium contribution. At O(α5) we can neglect the En/m

corrections, and the expression evaluates to α5ζ3/(4π) ×K(4m2), where ζk =
∑∞

n=1 1/n
k

is the Riemann zeta function. The integral over the continuum spectral function contains

lower order contributions starting fromO(α2), which are of no interest here, and is divergent

at large E, which is an artifact, since the employed approximation to ImG0 applies only

for small E ≪ m. Subtracting the lower order contributions and applying a cut-off Emax =

mv2max to the energy integral, we are left with

α3

π
K(4m2)

∫ vmax

0
dv v

(
1

1− e−
πα
v

− v

πα
− 1

2
− πα

12v

)

(2.5)

Note that we are allowed and must choose vmax such that α ≪ vmax ≪ 1 in order to include

the non-perturbative modification of the threshold region. It is straightforward to check

that the largest contribution to the integral is O(α2) and arises from the region v ∼ α,

while for v ≫ α the integrand behaves as α3/v2 and hence the contribution from that

region is at most of order α3/vmax ≪ α2. This allows us to set the upper integration limit

vmax to infinity and to obtain the analytic result −α5ζ3/(8π) × K(4m2) (already given

in [5]) for the above expression (2.5).2 Thus, the threshold contribution to the anomalous

2An even simpler way to obtain this result, which can be justified in the context of the threshold

expansion [10], is to apply an analytic regulator v → v1+λ to the integrand factor in (2.5) and to compute

∫
∞

0

dv v1+λ 1

1− e−
πα

v

= −
α2ζ3
8

+O(λ) ,

which extracts the contribution from v ∼ α, which cannot be obtained from the Taylor expansion of the

integrand in α.
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magnetic moment from the fourth-order vacuum polarization is

[
a(vp),rese

]

O(α5)
=

α5ζ3
4π

K(4m2)
︸ ︷︷ ︸

positronium poles

− α5ζ3
8π

K(4m2)
︸ ︷︷ ︸

continuum

. (2.6)

We now turn to the second, perturbative evaluation. The expansion of Π(E) in α can

be recovered by expanding G0(0, 0;E) in α, since the threshold approximation is sufficient

for the present purpose. Up to the four-loop order, we find

Πpert
0 (E) = −α

2

√

−E

m
− α2

4

(

− 1

2ǫ
+ ln

(−4mE

µ2

)

− 1

)

+
π2α3

24

1
√

−E/m

− α4

8

ζ3
E/m

+O(α5) . (2.7)

The O(α4) contribution proportional to 1/E is particularly relevant for the present discus-

sion.3 Interpreting Π(E) as a distribution with E → E+iη, where η is positive-infinitesimal,

this term implies a threshold-localized contribution to the four-loop spectral function given

by
[
ImΠpert

0 (E + iη)
]

O(α4)
=

πα4ζ3
8

mδ(E) . (2.8)

Using this in (1.3) we find that the threshold contribution to the anomalous magnetic

moment from the fourth-order vacuum polarization is

[
a(vp),perte

]

O(α5)
=

α5ζ3
8π

K(4m2) , (2.9)

in precise agreement with (2.6). Thus we have shown that the fixed-order perturbative

approximation accurately reproduces the threshold contribution of the exact spectral func-

tion including the positronium pole contribution, provided the threshold singularities of the

vacuum polarization are interpreted in the distribution sense.

Let us add the following remarks. 1) The “non-perturbative” evaluation essentially

coincides with the derivation in [5], but the perturbative one is different, since the δ(E)

term in ImΠpert
0 was not identified there. Instead, analyticity was invoked to relate the

energy integral over ImG0(0, 0;E), which appears in a
(vp)
e , to the asymptotic behaviour

of EG0(0, 0;E) at E → −∞. This step, while mathematically correct, is nevertheless

physically somewhat dubious, since it should not be necessary to appeal to the behaviour

of the Coulomb Green function outside its range of applicability. 2) The direct expansion

in α of ImG0 in (2.3) using δ(E−En) = δ(E)+O(α2) would yield the wrong result, namely

[
2πα

m2
ImGpert

0 (0, 0;E)

]

O(α4)

=
πα4ζ3

4
mδ(E) , (2.10)

which differs from the correct result (2.8) by a factor of two. One must either integrate the

resummed spectral function properly or derive the perturbative spectral function from the

3This term can also be identified from the most singular term in the threshold expansion of the full

four-loop vacuum polarization given in the appendix of [11].
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Cε

ImE

ReE

q2

Figure 2. Integration contour defining the dispersion relation for Π(E).

expansion of Π0(E) in the distribution sense. 3) Although the threshold contribution (2.6)

or (2.9) is non-zero, this does not imply that it has to be added to the result of [4]. In this

paper Π(s) is computed directly, and (1.1) is employed to obtain the anomalous magnetic

moment, hence the subtlety of the threshold-localized δ(E) in term in the four-loop spectral

function never arises.

3 Threshold-subtracted dispersion relations

The n-loop vacuum polarization behaves as Π(n)(s) ∝ αnE1−n/2 when E =
√
s− 2m → 0.

The existence of non-integrable singularities at the e+e− threshold starting at O(α4) calls

for a careful analysis of the dispersion relation (1.2). The first equality in (1.2) holds order

by order, hence

Π(n)(q2) =
q2

2πi

∮

ds
Π(n)(s)

s (s− q2)
. (3.1)

The integration contour in the variable E (with s = (2m+ E)2) is drawn in figure 2. For

the terms relevant in this paper the functions Π(n)(s) have a two-particle cut starting at

s = 4m2, equivalently E = 0. In order to avoid touching the singular point at E = 0,

we separate an infinitesimal circle Cε of radius ε, parametrized as E = ε eiϕ, ϕ ∈ (0, 2π)

from the remainder of the integration contour. The straight lines above and below the cut

extend from ε to +∞ and involve the difference Π(s+ iη)−Π(s− iη) = 2i ImΠ(s+ iη) with

η positive-infinitesimal. The circle at infinity does not contribute to the once-subtracted

dispersion relation, hence (3.1) can be written as

Π(n)(q2) =
q2

2πi

{

Π
(n)
Cε

(q2) + Π
(n)
cont(q

2)
}

=
q2

πi

∫

Cε

dE

2m+ E

Π(n)(E)

(2m+ E)2 − q2
+

2q2

π

∫ ∞

ε

dE

2m+ E

ImΠ(n)(E + iη)

(2m+ E)2 − q2
. (3.2)

The contribution from the small circle Cε vanishes for ε → 0, if the vacuum polarization

is less singular than 1/E at E = 0; however, this condition is not satisfied in general. For
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the computation of the small-circle contribution Π
(n)
Cε

(q2) we can use the expansion

Π(n)(E) = Π
(n)
0 (E) + Π

(n)
1 (E) + . . . (3.3)

of Π(n)(E) around threshold. The leading term, Π
(n)
0 (E), is given by the expansion in α of

the zero-distance Coulomb Green function G0(0, 0;E), see (2.1), (2.2) and (2.7). For n ≥ 3

we have

Π
(n)
0 (E) =

α2

2
λn−2 ζn−1 (λ = α/(2

√

−E/m)) , (3.4)

from the expansion of the Digamma function Ψ(1− λ). The next-to-leading term Π
(n)
1 (E)

is suppressed by
√

E/m, and equals the leading-order one times an O(α) hard matching

coefficient [12]:4

Π
(n)
1 (E) = −4α

π
Π

(n−1)
0 (E) . (3.5)

Similarly, Π
(n)
2 (E) can be extracted from the non-relativistic expansion of vacuum polar-

ization at next-to-next-to-leading order (NNLO), and so on.

It is clear that by construction the two integrals in (3.2) are well-defined, but each is

singular for small ε. We now show explicitly that the sum is well-defined in the limit ε → 0.

Because of the relation (3.5) it is sufficient to prove this for the leading term Π
(n)
0 (E) at the

orders in α relevant to this paper. Once Π
(n)
2 (E) is included, integrals logarithmic in energy

appear, but the generalization of the considerations below to this case is straightforward.

Since we are only interested in the region E ∼ ε → 0, we can expand the denominators in

the integrands of (3.2) in E/m and mE/(4m2 − q2). Then we have to prove that in the

limit ε → 0

I
(n,k)
Cε

(ε) + I
(n,k)
cont (ε) = O(ε0) , (3.6)

where

I
(n,k)
Cε

(ε) ≡ 1

2i

∫

Cε

dE Ek Π
(n)
0 (E) , (3.7)

I
(n,k)
cont (ε) ≡

∫ Emax

ε
dE Ek ImΠ

(n)
0 (E) , (3.8)

and k = 0, 1, 2 . . . . We have limited the integral along the cut up to a maximum energy

Emax because the expansion in E potentially leads to integrands which do not converge at

infinity; this is however irrelevant for the ε → 0 limit studied here.

Given (3.4) the evaluation of the two integrals is straightforward and we find (n ≥ 3)

I
(n,k)
Cε

(ε) =







αn

2n−1
ζn−1m

k+1 sin nπ
2

n/2− 2− k

(
ε

m

)k+2−n/2

k 6= n
2 − 2

− παn

2n−1
ζn−1 (−m)n/2−1 k = n

2 − 2

(3.9)

4The simplicity of this result is specific to the case of electrons, in which case the Coulomb potential

receives no radiative corrections.
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and

I
(n,k)
cont (ε) = − αn

2n−1
ζn−1m

k+1 sin nπ
2

n/2− 2− k

[(
ε

m

)k+2−n/2

−
(
Emax

m

)k+2−n/2
]

. (3.10)

Although we have chosen a particular form for the integration contour Cε surrounding E =

0, we would get the same result (3.9) for any contour which has E = ε ei2π
−

and E = ε ei0
+

as initial and final points, respectively. Eqs. (3.9) and (3.10) explicitly show the cancellation

of the ε-divergent terms between integrals I
(n,k)
Cε

(ε) and I
(n,k)
cont (ε) in the dispersion relation.

It is also worth noting that (3.10) vanishes for even n and so does (3.9), except for the

special case k = n/2− 2 in which there is only the contribution (3.9) from the small circle.

We have thus shown that the dispersion relation (1.2) must be modified in the presence

of threshold singularities. The correct dispersion relation is threshold-subtracted and reads

Π(n)(q2) =
q2

2πi
Π

(n)
Cε

(q2) +
q2

π

∫ ∞

(2m+ε)2
ds

ImΠ(n)(s+ iη)

s (s− q2)
. (3.11)

In the following we consider the four- and five-loop case explicitly.

The four-loop case is directly related to the discussion in section 2. For n = 4 we must

have k = 0, and with

I
(4,0)
Cε

(ε) =
πα4

8
ζ3m, (3.12)

the dispersion relation (3.11) for the O(α4) vacuum polarization is

Π(4)(q2) =
q2

8 (4m2 − q2)
α4ζ3 +

q2

π

∫ ∞

(2m+ε)2
ds

ImΠ(4)(s+ iη)

s (s− q2)
, (3.13)

where we have written back the continuum integral in terms of s. The first term in (3.13)

reproduces the α4/E term in Π0(E), see (2.7), if we specify q2 = (2m+ E)2. In section 2

we interpreted this term in the distribution sense to extract its imaginary part, which then

contributes to the electron anomalous moment. This contribution can now be understood

as arising from an additional term in the dispersion relation obeyed by the vacuum po-

larization (see following section). Note that the integration over the continuum starts at

s = 4m2 + O(ε). This prevents that the contribution from the α4/E term in Π(4)(E)

could be double-counted by including its imaginary part localized at E = 0 in the spectral

density in the continuum integral.

On the other hand, for perturbative contributions to the spectral density with odd n,

the contour integral around the threshold can be interpreted as providing the necessary

subtraction terms to regulate the divergence in ImΠ
(n)
0 when E → 0. Explicitly, at the

five-loop order, where the first divergence is found, since Π
(5)
0 (E) ∼ α5 (−E/m)−3/2, the

contribution from this term to the contour Cε reads

I
(5,k)
Cε

(ε) =
α5

8
ζ4m

k+1

(
ε

m

)k−1/2 1

1− 2k
, (3.14)

which is only divergent for k = 0. At O(α5) the NLO non-relativistic vacuum polarization

Π1(E) is divergent at E = 0 for the first time, and thus also contributes to the Cε-contour

– 7 –
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integral. The corresponding result is simply (−4α/π)I
(4,0)
Cε

(ε), see (3.5). Plugging this

together with (3.14) for k = 0 into the dispersion relation (3.2) or (3.11), we obtain

Π(5)(q2) =
q2

2 (4m2 − q2)

α5

π

(

ζ4
4

(
ε

m

)−1/2

− ζ3

)

+
q2

π

∫ ∞

(2m+ε)2
ds

ImΠ(5)(s+ iη)

s (s− q2)
, (3.15)

which, using (ε/m)−1/2 = 1/2
∫∞
ε dE/m (E/m)−3/2, can be rewritten as

Π(5)(q2) = − q2

4m2 − q2
α5

2π
ζ3 (3.16)

+
q2

π

∫ ∞

(2m+ε)2

ds

s

{
ImΠ(5)(s+ iη)

(s− q2)
+

α5 ζ4
32 (4m2 − q2)

√
s

m

(
m√

s− 2m

)3/2}

.

In this form of the integration over the spectral density is well-defined at the e+e− thresh-

old. The second term in curly brackets effectively acts as a subtraction of the divergent

behaviour of the first at s = 4m2, and the ε in the integration boundary is only required

as a reminder that the threshold-localized δ(E) term in ImΠ(5)(s) should not be included.

4 Dispersive representation of a(vp)
e

beyond O(α4)

In this section we use the result from above to provide the corrected dispersive represen-

tation (1.3) for the vacuum polarization contribution to the electron anomalous magnetic

moment.

At O(α5) and O(α6)5 we set q2 = −x2m2/(1 − x) and insert the dispersion rela-

tions (3.13), (3.15) for Π(4)(q2) and Π(5)(q2), respectively, into (1.1). The results read

a(vp),(5)e =
α5

8π
ζ3K(4m2) +

α

π2

∫ ∞

(2m+ε)2

ds

s
ImΠ(4)(s+ iη)K(s) (4.1)

and

a(vp),(6)e = − α6

2π2
ζ3K(4m2) (4.2)

+
α

π2

∫ ∞

(2m+ε)2

ds

s

{

ImΠ(5)(s+ iη)K(s) +
α5ζ4
32

√
s

m

(
m√

s− 2m

)3/2

K(4m2)

}

.

These two equations provide the correct expressions for the computation of the O(α5)

and (currently unknown) O(α6) corrections to the electron anomalous magnetic moment

induced by the O(α4) and O(α5) vacuum polarization insertions, respectively, exploiting

perturbative approximations to the spectral density from e+e− intermediate states6 without

5No correction is required in lower orders as should be clear from the foregoing.
6Recall that the spectral density from intermediate three-photon states, which start to contribute to the

vacuum polarization at O(α4), has to be added separately to the formulae above.
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e− e−

Π
(4)

Π
(1)

Figure 3. The relevant O(α6) contribution with two vacuum polarization insertions. The sym-

metric diagram must also be considered.

any resummation. In particular, the dispersive representation for a
(vp),(6)
e above is now

suitable for numerical integration, since the singular 1/(
√
s− 2m)3/2 behaviour of ImΠ(5)

at threshold gets cancelled by the second term. The small ε dependence in the lower

integration limit serves as a reminder that no imaginary part of the form δ(E) should be

accounted for in the spectral density.

The dispersive representation at even higher orders in α can obtained in a similar

way. At O(α7) one has to consider terms arising from the NNLO non-relativistic vacuum

polarization Π2(E) in the computation of Π
(n)
Cε

(q2). Given that the calculation of the O(α6)

electron anomalous magnetic moment has not yet been attempted, it is unlikely that the

expression for a
(vp),(7)
e would be needed in the foreseeable future, and we do not pursue

this order further here.

Let us finally mention that at O(α6) the dispersive representation of the diagrams

with two vacuum polarization insertions also receives an additional contribution. It is

easily obtained from the resummed version of (1.1) (see, for instance, eq. (70) of [13]).

Retaining the relevant term 2Π(4)Π(1), see figure 3, we have

δa(vp),(6)e =
2α

π

∫ 1

0
dx (1− x)Π(4)

( −x2

1− x
m2

)

Π(1)

( −x2

1− x
m2

)

. (4.3)

Inserting the dispersion relation (3.13) for Π(4) and treating Π(1) as part of a new kernel

function, we obtain

δa(vp),(6)e = −α5

4π
ζ3K

(1)(4m2)− 2α

π2

∫ ∞

(2m+ε)2

ds

s
ImΠ(4)(s+ iη)K(1)(s) , (4.4)

with

K(1)(s) ≡
∫ 1

0
dx

x2(1− x)

x2 + (1− x)s/m2
Π(1)

( −x2

1− x
m2

)

. (4.5)

The analytic expression for the one-loop vacuum polarization Π(1)(q2) can be found, for

instance, in [13].

5 Hadronic pair production

Threshold singularities are also present in higher-order perturbative calculations of heavy

particle pair production cross sections. The analysis of dispersion relations for the photon
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vacuum polarization provides the clue to solving a related divergence problem in the com-

putation of the total pair production cross section. The following applies to any particle

species (for instance, of supersymmetric particles), but we discuss it for the specific case of

top quark production in hadron collisions, which is presently the most relevant one. The

generalization should be evident.

The total hadronic cross section for the production of a tt̄+X final state in collisions

of hadrons N1,2 with centre-of-mass (cms) energy s is obtained from

σN1N2→tt̄X(s) =
∑

p,p′=q,q̄,g

∫ 1

4m2
t /s

dτ Lpp′(τ, µf ) σ̂pp′(sτ, µf )

=
∑

p,p′=q,q̄,g

∫
√

1−4m2
t /s

0
dβ Lpp′(β, µf )

8βm2
t

s(1− β2)2
σ̂pp′(β, µf ) . (5.1)

Here σ̂pp′(sτ, µf ) is the (factorization-scale dependent) partonic cross section for partonic

cms energy ŝ = τs, β =
√

1− 4m2
t /ŝ, and the parton luminosity is defined in terms of the

parton distributions functions (PDFs) via

Lpp′(τ, µ) =

∫ 1

0
dx1dx2 δ(x1x2 − τ) fp/N1

(x1, µ)fp′/N2
(x2, µ) . (5.2)

The parton luminosity approaches a constant near threshold ŝ → 4m2
t , equivalently β → 0.

The most singular behaviour of the partonic cross section is α2
s/m

2
t ×β× (αs/β)

k, where in

common terminology k = 1 refers to the next-to-leading order correction to the cross sec-

tion, k = 2 to NNLO, and so on. The leading behaviour is absent for k = 3, where instead

it is given by α2
s/m

2
t ×β×(αs/β)

2×αs ln
2 β [14]. Hence the convolution with the parton lu-

minosity diverges beginning at order O(α6
s) or N4LO. On the other hand, when the singular

terms are summed into the Coulomb Green function, the convolution becomes convergent

and the net effect of the Coulomb corrections is very small for the total cross section.

These facts were noted in [14], but lead to a puzzling situation. Resummation should not

be required to compute a small effect, or make the total cross section well-defined. Rather,

conventional fixed-order perturbation theory should provide the correct result directly.

To approach the problem, we note that the partonic cross sections can be related to

the discontinuity of the forward parton scattering amplitude

σ̂pp′(ŝ) =
1

ŝ
Im tt̄A(pp′ → pp′)(ŝ) . (5.3)

We then observe the similarity of the first line of (5.1) and the dispersive representation (1.3)

of the vacuum polarization to the electron anomalous magnetic moment, if we identify the

forward amplitude App′(τs) ≡ A(pp′ → pp′)(τs) with the vacuum polarization Π(s), and

the parton luminosity Lpp′(τ, µf ) with the kernel function K(s). The subscript “tt̄ ” in (5.3)

means that only the cuts with a top-antitop pair should be included. We can ignore the

other cuts, since they do not produce threshold singularities at 4m2
t , in the same way as

the three-photon intermediate states that contribute to the photon vacuum polarization

were of no relevance to the previous discussion.
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The correspondence makes it clear, how the convolution (5.1) should be defined, at

each order in perturbation theory, when the parton cross section develops non-integrable

threshold singularities. We first write down the dispersion relation for App′(ŝ) with a

circle of infinitesimal radius around 4m2
t separated, exactly as in (3.11). The integral

term in this relation leads to (5.1) with the lower limit modified to (2mt + ǫ)2/s and a

corresponding adjustment of the second line. The contribution A(n)
Cε, pp′

(ŝ) from the small

circle has to be added as an extra contribution to the hadronic cross section. Since both

terms in the subtracted dispersion relation (3.11) are separately divergent as ǫ → 0, it is

again convenient to rewrite the circle contribution as a subtraction in the integrand of the

cut contribution, similar to (3.15), (4.2). When this is done, only the threshold-localized

terms in the spectral function/imaginary part of the forward amplitude remain to be added

explicitly. In other words, the correct modification of (5.1) implies subtracting the partonic

cross sections appropriately and adding the delta-function contributions.

The subtraction terms can be determined from the expansion of the forward scattering

amplitude near the top threshold. It is convenient to split the production cross section into

contributions from tt̄ states in a given irreducible colour representation Rα. Near threshold,

the amplitude can be written in the form

iARα
pp′ =

∫

d4x 〈pp′|T[iORα†
pp′ (0)iORα

pp′ (x)]|pp′〉. (5.4)

where ORα
pp′ is a local operator, which produces a tt̄ pair in representation Rα from the pp′

parton initial state [14]. The leading term in the threshold expansion (similar to (3.3)) to

all orders in perturbation theory reads

1

ŝ
ARα

pp′,0(ŝ) =
4π2α2

s

m4
t

σRα
pp′ G

Rα
0 (0, 0;E) (5.5)

where GRα
0 (0, 0;E) is the Coulomb Green function for the colour representation Rα, given

by (2.2) with α → −αsDRα . The relevant cases are the attractive colour-singlet channel,

D1 = −CF = −4/3, and the repulsive octet one, D8 = 1/(2Nc) = 1/6.7 The constants

σRα
pp′ can be found by comparison with the threshold-limit of the Born cross section to be

σ1
gg =

1

96
, σ8

gg =
5

192
, σ1

qq̄ = 0 , σ8
qq̄ =

1

9
. (5.6)

The perturbative expansion of (5.5) is very similar to (3.4).

The inclusive top pair production cross section is presently known toO(α4
s) or NNLO in

perturbation theory [15]. It is therefore of particular interest to investigate the implications

of the above discussed modification of (5.1) at the next order, where indeed it arises for

7Although not relevant for the following, it is instructive to see how the equivalence of the “non-

perturbative”, resummed calculation and the fixed-order one discussed in section 2 works for a repulsive

Coulomb force (α < 0). The imaginary part (2.3) of the resummed spectral function has no bound-state

contribution in this case, while the expression for the Sommerfeld continuum remains unchanged. However,

the velocity integral in (2.5) and in the footnote there is proportional to −α|α|, and changes sign for neg-

ative α. As a consequence the first term in (2.6) is absent, while the second changes sign (that is, equals,

+α5ζ3/(8π)×K(4m2)), which yields again agreement with the perturbative result (2.9).

– 11 –



J
H
E
P
0
8
(
2
0
1
6
)
1
4
5

Tevatron LHC (7TeV) LHC (8TeV) LHC (13TeV) LHC (14TeV)

0.0017 0.15 0.21 0.63 0.74

Table 1. Additional threshold-localized contribution to the inclusive N3LO top quark pair pro-

duction cross section for the Tevatron pp̄ and LHC pp collider at various cms energies as given in

brackets. The MSTW NNLO PDFs [16] with µf = mt = 173.3GeV and αs = αs(mt) = 0.1085

have been used in the evaluation. All cross sections in pb.

the first time. We recall that at this order there is no explicit divergence of the convolution

integral, but since
1

ŝ
ARα,(5)

pp′,0 (ŝ) = − πα2
s

4m2
t

σRα
pp′ (−αsDRα)

3 ζ3
E/mt

(5.7)

causes a threshold-localized term δ(E), the threshold-subtracted dispersion relation con-

tains a non-vanishing contribution from the circle, as in (3.13), (4.1). The result therefore

reads

σN3LO
N1N2→tt̄X(s) =

π2ζ3α
5
s

s

∑

pp′=qq̄,gg

∑

Rα=1,8

(−DRα)
3σRα

pp′ Lpp′(4m
2
t /s, µf )

+
∑

p,p′=q,q̄,g

∫ 1

(2mt+ε)2/s
dτ Lpp′(τ, µf ) σ̂

N3LO
pp′ (sτ, µf ) . (5.8)

If it ever becomes feasible to compute the N3LO partonic cross section σ̂N3LO
pp′ (ŝ), it will most

likely be as a sum of virtual and real contributions, integrated numerically over phase space,

as presently done at NNLO [15]. In this case, the most singular behaviour would be found

to be 1/β2×ln2 β [14], but the delta-function contribution would be missed. The term in the

first line of the previous equation must be added explicitly to such a computation. Numeri-

cally, however, this additional contribution is very small, as shown in table 1. This amounts

to about or less than a per mil of the total top pair production cross section, and is about an

order of magnitude smaller than the cross section beyond NNLO due to the next-to-next-

to-leading logarithmic (NNLL) resummation of Coulomb and soft emission effects [17].8

The reason for the smallness of the additional contributions is that top pairs are pre-

dominantly produced in the colour-octet state, but the octet contribution to the first line

of (5.8) is suppressed by (D8/D1)
3 = −1/512 due to the small colour factor. If a new

species of heavy strongly interacting particles were produced in a singlet state or another

colour state with a strong Coulomb interaction, no matter whether attractive or repulsive,

the threshold-localized term could make a relevant contribution to the total cross section.

6 Summary

Inspired by a recent controversy over whether the positronium pole contribution needs to be

added explicitly to the dispersive representation of the vacuum polarization contribution

8Note that the first line of (5.8) is included in [17], since the resummed partonic cross section includes

the bound state poles and the Sommerfeld continuum, amounting to the “non-perturbative” computation

in the terminology employed here.
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to the electron magnetic moment, we showed how this contribution is accounted for in

a direct fixed-order computation. This has led us to a more general consideration of

dispersion relations in the presence of a pair particle production threshold. We find that

the dispersion relation requires threshold subtractions, see (3.11), similar to subtractions

that are often required to account for the ultraviolet behaviour. The threshold-subtraction

term can be determined from the expansion of vacuum polarization near the threshold.

While our results imply that the dispersion relation receives additional terms, no correction

of the anomalous magnetic moment is implied, since the evaluation in [4] is based on the

integration of the vacuum polarization at Euclidean momenta. On the other hand, we

find interesting ramifications for hadron-collider production of pairs of heavy particles,

for which a Euclidean formulation is not available. When the computation is performed

in the usual way as an integral of real and virtual corrections over phase space at a given

order in the expansion in the strong coupling, an additional contribution has to be added at

N3LO and the convolution of the partonic cross section with the parton luminosity must be

modified from N4LO. We explicitly evaluated the N3LO contribution for hadronic top pair

production and found that it is numerically small, of order of a per mil of the cross section.
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