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Quasi-orders, that is, reflexive and transitive binary relations, have numerous applications.

In educational theories, the dependencies of mastery among the problems of a test can

be modeled by quasi-orders. Methods such as item tree or Boolean analysis that mine

for quasi-orders in empirical data are sensitive to the underlying quasi-order structure.

These data mining techniques have to be compared based on extensive simulation

studies, with unbiased samples of randomly generated quasi-orders at their basis. In

this paper, we develop techniques that can provide the required quasi-order samples.

We introduce a discrete doubly inductive procedure for incrementally constructing the set

of all quasi-orders on a finite item set. A randomization of this deterministic procedure

allows us to generate representative samples of random quasi-orders. With an outer level

inductive algorithm, we consider the uniform random extensions of the trace quasi-orders

to higher dimension. This is combined with an inner level inductive algorithm to correct

the extensions that violate the transitivity property. The inner level correction step entails

sampling biases. We propose three algorithms for bias correction and investigate them

in simulation. It is evident that, on even up to 50 items, the new algorithms create close

to representative quasi-order samples within acceptable computing time. Hence, the

principled approach is a significant improvement to existing methods that are used to

draw quasi-orders uniformly at random but cannot cope with reasonably large item sets.

Keywords: discrete doubly inductive quasi-order construction, simple random sampling, stratified sampling,

absolute rejection, resampling, item tree analysis, knowledge or learning space theory, representative random

quasi-order

1. INTRODUCTION

We begin with motivational considerations. We address why discrete modeling with quasi-orders
is useful and why we need to sample quasi-orders we want to be representative. In addition, this
section gives an overview of the main contributions and organization of this paper.

1.1. Why Discrete Order Structures Are Important
A quasi-order on a set, for instance, of educational or psychological test or questionnaire items,
is any binary relation that is reflexive and transitive. Relational dependencies or discrete order
structures such as the quasi-orders can model the dependencies of mastery or precedence relations
among the problems of an achievement test or the statements of an attitude questionnaire. The
general idea is to represent any empirically plausible dependency of the type “The mastery of
problem y implies the mastery of problem x” between the questions x and y of the test I as the
item pair x ≤ y of a quasi-order ≤ on I. This quasi-order structure imposed on the test can be
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employed to design efficient test administration procedures. One
can mimic the adaptive approach of a teacher, for instance, when
the teacher’s experience and knowledge about the prerequisite
relations between the problems are used to avoid asking a student
questions that are either too easy or too difficult. The most
pertinent protagonist of this idea is the theory of knowledge or
learning spaces (Doignon and Falmagne, 1985, 1999; Falmagne
andDoignon, 2011; Falmagne et al., 2013). In this theory, discrete
mathematical concepts, including the quasi-orders, have played
an important role. They have been employed for the adaptive
modeling, assessment, and training of knowledge, competence,
and learning dynamics in human (e.g., student) populations.
More generally, orders may be deemed a pivotal contribution
to the behavioral and social sciences, amongst others. For a
thorough motivation of orders and knowledge or learning space
theory, including further references (see Schrepp and Ünlü,
2015).

1.2. Why Representative Quasi-Order
Samples Are Important
Methods that reconstruct quasi-orders from empirical data
are computational. Examples are the algorithms of item tree
analysis (van Leeuwe, 1974; Schrepp, 1999; Sargin and Ünlü,
2009). For applications of item tree analysis to real datasets in
knowledge or learning space theory, (see also Schrepp, 2002,
2003, 2006; Ünlü and Sargin, 2010). Computational methods
of this sort have been developed, evaluated, and compared
predominantly based on extensive simulation studies. It is worth
mentioning that simulation is the key methodology relied on
in this field, as the objective as well as systematic approach to
studying these computer-oriented data mining techniques. The
design of the conducted simulation studies critically depends
on large samples of randomly generated quasi-orders used at
their basis. Why? Each quasi-order of the sample is posited
to represent the true relational dependencies that a tested
mining algorithm has to reconstruct from simulated data,
so one wants to ensure that no interesting quasi-order has
been missed. All of the algorithms depend on the underlying
quasi-order structure. For some structural types, it may be
easier to detect the correct dependencies based on a dataset
compared with others, and this may vary across the methods
or with different datasets. Moreover, in practical contexts, the
structure of the true quasi-order is typically unknown. These
considerations warrant the importance of simulation studies and
of controlling in these studies for the dependency on quasi-order
structure.

If we do not want to exclude quasi-orders a priori from
consideration, which is generally not ideal, a natural solution is to
evaluate and compare the performance of the mining algorithms
in the set of all possible quasi-orders. However, considering all of
the quasi-orders in a simulation study is not feasible in general.
A sample is needed. Once again, a natural choice is to give each
quasi-order on the item set the same chance of being included in
the simulation study. This will produce the least-biased results
when generalizing the findings obtained from the simulation
study to the population of all possible quasi-orders on the item
set. Thus, it is essential for us to base any simulation study

that aims to investigate the performance of such data mining
techniques in a meaningful and reliable manner on representative
quasi-order samples.

Definition 1. In the sequel, the representativeness of a random
sample of quasi-orders means that each quasi-order on the item set
has the same probability of being selected as part of the sample.

Why sampling quasi-orders is necessary for us was also
concretized in Ünlü and Schrepp (2015). In their study, the
importance of representative sampling of quasi-orders and
the biases and errors induced by non-representative samples
were clearly evidenced. The representativeness of the quasi-
orders employed in extensive simulation studies was seen
to be an important requirement for the sound comparison
of such exploratory data analysis methods as item tree
analysis. In particular, Ünlü and Schrepp (2015) found that
utilizing non-representative quasi-order samples yielded biased
simulative assessment results with regard to the recovery
and coverage qualities associated with the existing item tree
analysis algorithms. For further motivation of representative
random quasi-orders (see also Schrepp and Ünlü, 2015, Section
Introduction).

1.3. Content and Structure of This Work
Schrepp and Ünlü (2015) introduced an inductive algorithm,
which represents the state-of-affairs sampling technique for
quasi-orders. In this procedure, trace quasi-orders of lower
dimension l are extended, uniformly at random, to dimension
l + 1. This construction step is described later in detail. It
constitutes one of the two inductive components of the proposed
procedure. These random extensions are checked for transitivity.
Transitive extensions are retained. Non-transitive relations are
rejected without further analysis. This algorithm improves on
two direct methods for drawing representative random quasi-
orders (for details, see Schrepp and Ünlü, 2015). However,
when the number of items n increases, all of these procedures
become computationally too intensive, particularly because the
proportion of extensions representing quasi-orders decreases
very quickly with n.

We introduce a constructive procedure that in a second
inductive step corrects the extensions that violate the transitivity
property. Thus, on all trials of the new procedure, quasi-orders
are obtained. Correcting for transitivity in a combinatorial
manner, this randomized doubly inductive procedure is biased.
However, bias correction is possible. Three algorithms are
proposed. A truly representative variant, termed absolute
rejection method, outright rejects the randomly generated quasi-
orders based on the penalizing weights that can be computed
using the inductive correction procedure. Here, the penalizing
weight corresponding to a random quasi-order is the number
of possible uniform extensions that, when being corrected
according to the algorithm, do yield the quasi-order under
reference. The second and third variants, respectively termed
simple resampling method and stratified resampling method, apply
proportional weighting based on the procedural bias correction
factors. These methods take resamples from the constructed
sample as if it were the population. The simple resampling
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method operates on the quasi-orders directly as the units being
weighted and resampled. With the stratified resampling method,
the quasi-orders of the sample are divided into strata defined by
those weights before resampling. The strata are the units being
weighted and resampled, and simple random sampling is applied
within each drawn stratum to obtain a quasi-order sample.
The two resampling-based methods are the recommended
procedures. In extensive simulation studies, we will see that these
algorithms are efficient and feasible for reasonably large item
sets while providing close to representative random quasi-order
samples.

This paper is organized as follows. In Section 2, we describe
the methods currently available for sampling quasi-orders,
including the pertinent inductive uniform extension approach
by Schrepp and Ünlü (2015). In Section 3, we introduce the
discrete doubly inductive procedure for the construction of
potentially all quasi-orders on a finite item set. In Section 4, the
doubly inductive procedure is randomized, thereby yielding a
probabilistic procedure for quasi-order sampling. The sampling
biases induced in the process of randomization are addressed,
and the corresponding bias correction factors are derived. In
Section 5, we propose the three algorithms for bias correction, the
absolute rejection method, the simple resampling method, and
the stratified resamplingmethod. Section 6 reports the simulation
results obtained for these sampling techniques. In Section 7, we
summarize our findings, and we conclude with final remarks and
suggestions for further research.

2. STATE-OF-THE-ART SAMPLING
TECHNIQUES

2.1. Flexible but Non-representative Ad hoc

Strategies
We present two example strategies of this sort that have been
published in the literature. Because these methods are ad hoc,
modifications or alternative procedures are easily possible. Ad
hoc strategies are flexible and quick to compute. However,
they generally lack representativeness of the generated sets
of quasi-orders. For this class of procedures, it seems to be
very complicated to address the issue of representativeness
on a principled theoretical basis, if it can be addressed at
all. Nonetheless, samples obtained from these techniques may
approximate true distributions reasonably well by adjusting their
parameters fittingly.

One method is based on the normal distribution, the other on
the uniform distribution. Both come in two variants, absolute and
averaged. Let I be an item set of size |I| = n.

1. Start with the diagonal relation on I consisting of all reflexive
item pairs (i, i) with i ∈ I.

2. Let δ ∼ N(µ, σ ) for the normal method or δ ∼ U(0, b) for
the uniform method. The parameters µ (mean), σ (standard
deviation), and b (upper interval bound) are specified in such
a way that the realization δ constitutes a probability value
between 0 and 1.
Example specifications in Sargin and Ünlü (2009) are µ =

0.16 and σ = 0.06, with the additional boundary restrictions

that δ values < 0 or > 0.3 are set to 0 or 0.3, respectively. For
the uniform method (Schrepp, 1999), b can be set to 0.4 or 1,
for instance.

3. For any non-reflexive item pair, add that pair to the diagonal
relation with probability δ (or discard it with probability 1−δ).
This yields a binary relation R, which is reflexive.

4. To satisfy transitivity, take the transitive closure of R. (The
transitive closure of a binary relation R on an item set I
is the smallest binary relation on I that contains R and is
transitive. Note that the transitive closure always exists for any
binary relation.) The resulting binary relation is the random
quasi-order obtained according to the ad hoc strategy.

5. In the absolute variant, for each random δ, only one random
quasi-order is drawn. In the averaged variant, for each random
δ, multiple random quasi-orders are generated and jointly
used in the analyses.

As shown in Ünlü and Schrepp (2015), these ad hoc
random processes yield non-representative quasi-order samples.
In decreasing order of representativeness were the averaged
followed by the absolute normal variants, whereas both variants
of the uniform method produced the worst results with random
samples of overly represented large quasi-orders.

2.2. Representative but Infeasible Direct
Methods
Two direct or natural sampling techniques that do yield
representative random quasi-orders are census-like and entry-
wise uniform sampling.

In census-like uniform sampling, all possible quasi-orders
on a small-sized item set are constructed and known. The
quasi-orders are randomly chosen from an accessible population.
However, constructing, storing, and uniformly sampling from
a known population only works for a small item number n.
The total (labeled) quasi-order counts increase very rapidly
(Brinkmann and McKay, 2002, 2005; Pfeiffer, 2004). For
example, the counts are 9, 535, 241/642, 779, 354/63, 260, 289,
423/8, 977, 053, 873, 043 for 7/8/9/10 items, respectively. In Ünlü
and Schrepp (2015), the census-like sampling approach was
demonstrated with six items, where we have a total of 209, 527
quasi-orders in the population. In this method, each draw, if
feasible, is a quasi-order, although the equal sampling probability
for each quasi-order may be very small.

Entry-wise uniform sampling uses the relational (or adjacency)
matrix representation of a quasi-order (defined below). For
reflexivity, the diagonal entries are set to 1 beforehand. Each
of the remaining entries of the relational matrix are randomly
filled with equal probability 1/2: 1 (in relation) or 0 (not in
relation). The resulting random reflexive relation is retained if
it satisfies transitivity. Otherwise, the relation is rejected without
further analysis.1 This procedure also becomes infeasible in n

1If we take the transitive closure of a rejected random reflexive relation, the result
is a quasi-order. This modified entry-wise uniform sampling approach represents
an ad hoc strategy. Although flexible, it lacks representativeness.
The impact of forming the transitive closure of a random relation on the notion of
representativeness, to our knowledge, seems to be an interesting and open problem
for further research. Note that this problem cannot be answered with the current
paper. The transitive closure used to correct for transitivity is different from the
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(Schrepp and Ünlü, 2015). The probability of selecting any of
the reflexive and, in particular, transitive relations is the same,
0.5n(n−1). The proportion of quasi-orders among all reflexive
relations very rapidly decreases with increasing item number n.
There are 2n(n−1) reflexive relations, and for 6 ≤ n ≤ 10, the
proportions are 1.95 · 10−4, 2.17 · 10−6, 8.92 · 10−9, 1.34 · 10−11,
and 7.25·10−15, respectively. This very small proportion gives the
probability for a draw to result in the set of all quasi-orders on
n items, denoted by Qn. Thus, draws under entry-wise uniform
sampling are almost exclusively reflexive relations that do not
satisfy the transitivity property. This is true especially in realistic
contexts with larger item numbers. However, given a draw that
occurs inQn, the probability for any quasi-order of being selected
is the same, 1/|Qn|.

2.3. Inductive Uniform Extension Approach
by Schrepp and Ünlü (2015)
The direct procedures are theoretically representative but
practically infeasible. The ad hoc procedures are practically
feasible but theoretically not representative. The inductive
uniform extension approach by Schrepp and Ünlü (2015) is a
good compromise in this regard. It relies on the same idea as
the entry-wise uniform sampling but at a more informational
level of matrix structures. For these matrix structures, the
proportion of quasi-orders becomes sparse only for higher
item numbers. Thus, the inductive procedure improves on the
feasibility of the entry-wise uniform sampling method for larger
values of n. It can be shown that samples generated under this
approach remain representative. For details (see Schrepp and
Ünlü, 2015).

The inductive uniform extension technique is essential.
It constitutes one of the two inductive components of the
proposed randomized doubly inductive procedure. To describe
this method, we introduce the required notation. Let R ⊂ I × I
be a binary relation on the item set I = {1, 2, . . . , n}. A pair
(i, j) ∈ R is also denoted by iRj for i, j ∈ I. The relational
or adjacency matrix rR of R is the binary matrix (rij) i=1,...,n,

j=1,...,n

(indexing omitted subsequently) defined by rij = 1 if iRj, and 0
otherwise.

In this notation, “R is reflexive” means rii = 1 for all i =

1, . . . , n. The transitivity of R states that for all 1 ≤ i, j, k ≤ n,
if rij = 1 and rjk = 1, then rik = 1. Moreover, the entry-
wise uniform sampling can be recapped: rii := 1 for all i ∈ I,
and rij ∼iid Bernoulli(1/2) for all i, j ∈ I with i 6= j. Here,
Bernoulli(1/2) is the Bernoulli distribution with success (i.e.,
rij = 1) probability p = 1/2, and iid stands for “independent
and identically distributed” (subsequently being omitted). In
the entry-wise uniform sampling, all off-diagonal entries of the
relational matrix are randomly filled. Exemplified with n = 3
items, these entries are marked:

inductive correction procedure C introduced in Section 4.1. The transitive closure
is the most parsimonious extension of a relation that additionally contains all
indirectly accessible transitive pairs. The procedure C, however, can add and/or
remove pairs according to the specific inductive routine to obtain transitivity.
Thus, it is not obvious how a similar discussion can be elaborated for the transitive
closure as a correction operator.





r11 := 1 r12 r13
r21 r22 := 1 r23
r31 r32 r33 := 1





and r12, r13, r21, r23, r31, r32 ∼ Bernoulli(1/2).
Let R be a trace quasi-order on the items 1, . . . , l. In the

inductive uniform extension approach, we construct a random
reflexive relation on the items 1, . . . , l, l + 1, which extends the
relational matrix rR of R with a new (l + 1)th row and (l + 1)th
column, retaining the original values of rR. The new entries are
randomly filled (except for the diagonal element, which is set to
1). Exemplified with l = 2, for a trace adjacency matrix rR of
dimension 2× 2, the randomly filled entries are marked:







r′13rR r′23

r′31 r
′
32 r′33 := 1







and r′13, r
′
23, r

′
31, r

′
32 ∼ Bernoulli(1/2).

More generally, we use a random variable formulation. Let
(rij) be a trace reflexive matrix of independent random variables
rij ∼ Bernoulli(pij), with success probabilities pij of either 0, 1,
or 1/2, and with pii = 1 for all i = 1, . . . , l. Any realization of
this matrix random vector defines the relational (or adjacency)
matrix of a random reflexive relation on I = {1, . . . , l}. A random
variable reflexive extension of this trace matrix random vector is
the matrix (r′ij) of random variables r′ij := rij for all i, j = 1, . . . , l

(extension), of r′(l+1)j ∼ Bernoulli(p(l+1)j) for j = 1, . . . , l+1 with

p(l+1)j = 1 for j = l + 1 (reflexivity) and 1/2 otherwise, and of
r′i(l+1) ∼ Bernoulli(pi(l+1)) for i = 1, . . . , l + 1 with pi(l+1) = 1/2

for all i 6= l+ 1. Any realization of this random variable reflexive
extension (on l + 1 items) that coincides with a realization of
the trace matrix random vector (on l items) is called a random
reflexive extension of this trace reflexive relation.

The method proposed by Schrepp and Ünlü (2015) is
inductive and relies on this notion of a random reflexive
extension.

Anchoring. The inductive procedure starts with a representa-
tive sample of quasi-orders on a sufficiently small number of
items, l. This may include the complete inventory of all possible
quasi-orders.
For example, the procedure can be anchored by using the set of
all 355 (labeled) quasi-orders on l = 4 items, or with a simple
random sample of 1000 quasi-orders for l = 6 items.

Inductive step. Suppose we have a representative sample of
quasi-orders on n ≥ l items, denoted byQ(n). (Note thatQ(n) ⊂
Qn.) For each quasi-order in Q(n), we compute a pre-specified
number z of random reflexive extensions of the quasi-order.
These extensions are checked for transitivity. Non-transitive
extensions are excluded without further analysis. The transitive
extensions are added to a new collection of quasi-orders on n+ 1
items,Q(n+ 1).
Modifications are possible. Duplicates can be removed from
Q(n + 1), depending on the envisaged application. An
intermediate-step Q(n + 1) can be reduced to a simple random
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sample of feasibly limited size if the inductive construction is
repeated several times to run from small to larger item numbers.

Schrepp and Ünlü (2015) showed that this procedure
theoretically yields representative samples. Their study also
investigated the quality of the inductive uniform extension
approach in simulation. On up to 15 items, this method
created representative quasi-order samples within acceptable
computing time. This procedure improves on the two direct
methods (Section 2.2). However, with more items, it too
becomes computationally intensive. The randomized doubly
inductive procedure described in the following sections
significantly improves on the efficiency and feasibility of this
method.

3. DOUBLY INDUCTIVE PROCEDURE FOR
QUASI-ORDER CONSTRUCTION

The driving force for the new procedure is to develop a
discrete combinatorial algorithm for the construction of, in
principle, all quasi-orders on a given item set (the doubly
inductive component). This algorithm then can be obtained
probabilistically by randomization in individual construction
steps (the randomized component), eventually yielding a random
process for quasi-order sampling.

3.1. Description of the Deterministic
Construction Procedure
The discrete construction procedure can be termed doubly
inductive in the following sense. The outer level, or Level 2,
parallels the inductive uniform extension method (UEM) by
Schrepp and Ünlü (2015). The trace quasi-orders of lower
dimensions, l < n, are successively extended in each step by
one more item, l + 1, to eventually yield final quasi-orders on
n items. The inner level, or Level 1, is nested within each unit (i.e.,
intermediate l-dimensional trace quasi-order) at the higher Level
2. The entries of the added (l+ 1)th column and (l+ 1)th row of
the relational matrix are filled, again inductively, according to a
specific procedure we call top-down–right-left inductive discrete
extension.

This strategy starts from a given trace quasi-order on the
items 1, . . . , l and extends it, in doubly inductive manner, to a
quasi-order on the items 1, . . . , l, l + 1, . . . , n. This approach is
conceptually depicted by Figure 1.

Throughout, we use the adjacency matrix notation. Let n :=
{1, . . . , n}. The set of all quasi-orders on n is Qn. The introduced
procedure allows one to construct from Qn the set of all quasi-
orders on n+ 1, Qn+1. For rn = (rij) ∈ Qn, let r⋄n := {rn+1 ∈

Qn+1 : rn+1
⋂

n × n = rn}. That is, r⋄n is the parent family of rn
of quasi-orders or extensions rn+1 on n+ 1 that coincide with rn
when restricted to n ⊂ n+ 1. It holds that

Qn+1 =
∑

rn∈Qn

r⋄n ,

in the sense that {r⋄n :rn ∈ Qn} forms a partition ofQn+1. Thus, the
target quasi-orders in Qn+1 can be generated by constructing for

any trace quasi-order rn ∈ Qn the corresponding parent family
r⋄n . This can be achieved as follows.

Let the additional (n + 1)th column and (n + 1)th row
of any extension rn+1 ∈ r⋄n of rn ∈ Qn be denoted by
r1,n+1, r2,n+1, . . . , rn,n+1 and rn+1,n, rn+1,n−1, . . . , rn+1,1, which
are listed in the order in which they are filled. Note that all other
entries of rn+1 are known. More precisely, rn+1,n+1 := 1, and the
entries related to n are inherited from rn. Thus, the construction
of r⋄n means constructing all 2n-dimensional binary vectors

x = (r1,n+1, r2,n+1, . . . , rn,n+1, rn+1,n, rn+1,n−1, . . . , rn+1,1),

x ∈ {0, 1}2n

such that rn+1(x), that is, the matrix rn extended with these
fillings, satisfies the transitivity property. Instead of filling these
entries all at once and then testing for transitivity overall in
the full matrix, the construction is inductive. A next step of the
construction is built based on the construction steps preceding it.

Here is the description of the top-down–right-left inductive
discrete extension procedure. We will verify that this procedure
leads to a construction of the parent family r⋄n (Proposition 2).

Filling the column n+1 such that transitivity holds (top - down

component):

The order of filling the column entries is r1,n+1, followed by
r2,n+1, . . ., and finally, rn,n+1 is filled (see Figure 1).

Anchoring. The first entry r1,n+1 can be set to any of the values
0 and 1. No violation of transitivity occurs in either case in the
sense of the two conditions required when filling the next entries
rk,n+1, k = 2, . . . , n (detailed below in the inductive step).
For each of the admissible values r1,n+1 := 0 and 1, all of the
subsequent construction steps are carried out.

Inductive step. Suppose the K entries rk,n+1 for 1 ≤ k ≤ K <

n have been filled with 1’s or 0’s such that the following two
transitivity conditions are satisfied, respectively:2

Condition C1(k), when rk,n+1 := 1. For all i ∈ {1, . . . , k− 1},
it holds that ri,k = 0 or ri,n+1 = 1 (inclusive “or”).

Condition C2(k), when rk,n+1 := 0. For all i ∈ {1, . . . , k− 1},
it holds that rk,i = 0 or ri,n+1 = 0.

For the construction procedure to yield the whole set r⋄n , all of
the admissible values for any of the entries must be combined
with one another.
For the (k + 1)th entry rk+ 1,n+1, the inductive step, 1 or 0
must be assigned to rk+ 1,n+1, if they are admissible, that is, if
C1(k + 1) or C2(k + 1) are satisfied, respectively. According

2For any k = 1, . . . , n, if the condition C1(k) holds true, we call the value 1
admissible for the entry rk,n+1. Similarly, for any k = 1, . . . , n, if C2(k) is satisfied,
0 is admissible for rk,n+1.
In particular, C1(k) and C2(k) can be interpreted as follows. When filling an
entry rk,n+1 at the kth position, only the previously filled entries at the positions
1, 2, . . . , k − 1 of the (n + 1)th column are relevant. The possible values that may
be chosen for the remaining unfilled entries of the added (n + 1)th column and
(n+ 1)th row need not be considered.
For k = 1, the anchoring, C1(k = 1) and C2(1) are trivially satisfied. Thus, 0 and 1
are admissible for r1,n+1. In the construction process, r1,n+1 must take both values
for the procedure to yield all of r⋄n .
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FIGURE 1 | The doubly inductive construction procedure exemplified with l = 2. For one Level 2 inductive step leading from l to l + 1, and with four and six
Level 1 inductive steps within the Level 2 units or trace quasi-orders (in relational matrix notation), rl×l and r(l+1)×(l+1), respectively. This leads to discrete reflexive
extensions of rl×l on three items and of r(l+1)×(l+1) on four items. The symbols ⋆i and ⋆′i denote the entries of the adjacency matrices that are deterministically filled
with 0’s and 1’s (random fillings follow later) according to the top-down–right-left inductive extension.
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to Proposition 2, at least one of the two conditions necessarily
holds true.
For each of the admissible values for rk+ 1,n+1, all of the
subsequent construction steps are carried out.
The inductive step is repeated until K = n and the column
n + 1 is fully specified. We denote with S1 = S1(rn) the set of
all possible specifications of admissible values for the (n+ 1)th
column, which depends on the trace quasi-order rn ∈ Qn.

An example may help to illustrate this top-down construction
component. On n = 2 items, consider the trace quasi-order

[

1 1
1 1

]

.

The entry r1,3 of the added third column can be set to any of the
admissible values 0 and 1,







1 1 0

1 1
1













1 1 1

1 1
1






.

Filling the entry r2,3 yields the following possible patterns







1 1 0

1 1 0

1













1 1 0

1 1 1

1













1 1 1

1 1 0

1













1 1 1

1 1 1

1






,

where the values not admissible for this entry are highlighted in
red. The two patterns containing inadmissible values are rejected
in subsequent construction steps.

For any resulting and thus subsequently given values

c = (r1,n+1, r2,n+1, . . . , rn,n+1) ∈ S1,

the procedure continues to fill the entries of the (n+ 1)th row.

Filling the row n+1 such that transitivity holds (right-left

component):

The order of filling the row is rn+1,n, rn+1,n−1, . . . , rn+1,1 (see
Figure 1). In this case, the value 1 is called admissible for an entry
rn+1,k (1 ≤ k ≤ n) if the following two transitivity conditions are
satisfied:3

Condition R1a(k), when rn+1,k := 1. For all i ∈ {1, . . . , n} \
{k}, it holds that ri,k = 1 or ri,n+1 = 0.
Condition R1b(k), when rn+1,k := 1. For all i ∈ {k +

1, . . . , n}, it holds that rk,i = 0 or rn+1,i = 1.

The value 0 is admissible for an entry rn+1,k (1 ≤ k ≤ n) if the
following transitivity condition is fulfilled:

Condition R2(k), when rn+1,k := 0. For all i ∈ {k+ 1, . . . , n},
it holds that ri,k = 0 or rn+1,i = 0.

3Analogous to the top-down component, the three conditions can be interpreted
as follows. For filling the entries rn+1,k of the row n + 1, only knowledge of the
previously filled entries is relevant. Here, the previously filled entries are rn+1,i for
i = k + 1, . . . , n in the (n+ 1)th row [conditions R1b(k) and R2(k)] and ri,n+1 for
i = 1, . . . , n in the (n+ 1)th column [condition R1a(k)].

All of the admissible values for any of the entries must be
combined with one another for the construction procedure to
yield every element of r⋄n .

Anchoring. The first entry rn+1,n can be set to 0, sinceR2(k= n)
is trivially satisfied (independent of any given c ∈ S1). The
value 1 is admissible for rn+1,n if condition R1a(n) is satisfied
[condition R1b(n) holds true trivially]. For each of the admissible
values for rn+1,n, all of the subsequent construction steps are
carried out.

Inductive step. Suppose the K entries rn+1,k (1 < n− k + 1 ≤

k ≤ n) have been filled with 1’s or 0’s such that the conditions
R1a(k) and R1b(k) or R2(k) are satisfied, respectively.
For the (k + 1)th entry rn+1,n−K , the inductive step, 1 or 0
must be assigned to rn+1,n−K , if they are admissible, that is, if
the conditions R1a(n − K) and R1b(n − K) or R2(n − K) are
satisfied, respectively. According to Proposition 2, at least one of
the conditionsR1a(n−K) andR1b(n−K) orR2(n−K) necessarily
holds true.
For each of the admissible values for rn+1,n−K , all of the
subsequent construction steps are carried out.
The inductive step is repeated until K = n and the row n + 1
is fully specified. We denote with S2 = S2(c, rn) the set of all
possible specifications of admissible values for the (n+1)th row,
which depends on the vector c = (r1,n+1, r2,n+1, . . . , rn,n+1) ∈

S1 and trace quasi-order rn ∈ Qn.

In the above example, the patterns to be further filled are




1 1 0
1 1 0

1









1 1 1
1 1 1

1



 .

Filling the entry r3,2 gives







1 1 0
1 1 0

0 1













1 1 0
1 1 0

1 1













1 1 1
1 1 1

0 1













1 1 1
1 1 1

1 1






.

All of the possible patterns contain admissible values. The entry
r3,1 must be filled for each of these patterns, yielding







1 1 0
1 1 0

0 0 1













1 1 0
1 1 0

0 1 1













1 1 1
1 1 1

0 0 1













1 1 1
1 1 1

0 1 1







and






1 1 0
1 1 0

1 0 1













1 1 0
1 1 0

1 1 1













1 1 1
1 1 1

1 0 1













1 1 1
1 1 1

1 1 1






.

Inadmissible values for this entry are shown in red and the
corresponding matrices do violate the transitivity conditions.
Thus, the parent family of the quasi-order

r2 =

[

1 1
1 1

]
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of all reflexive and transitive extensions on 3 that coincide with r2
when restricted to 2 ⊂ 3 is

r⋄2 =











1 1 0
1 1 0
0 0 1



 ,





1 1 0
1 1 0
1 1 1



 ,





1 1 1
1 1 1
0 0 1



 ,





1 1 1
1 1 1
1 1 1











.

3.2. Properties of the Doubly Inductive
Procedure
We discuss a few important properties of this construction
procedure. From the example above, we can see that for any
position that is filled, one or both of the values 0 or 1 is admissible.
For instance, in the construction step





1 1 0
1 1 0

1



 −→







1 1 0
1 1 0

0 1






,







1 1 0
1 1 0

1 1






,

both 0 and 1 are admissible values for the entry r3,2. In a
subsequent step of filling the entry r3,1,





1 1 0
1 1 0
0 1



 −→







1 1 0
1 1 0

0 0 1






,

the value 0 is the only admissible. Moreover, surveying the known
population of all quasi-orders on a set of three items, we have
verified in the example that the extensions constructed according
to the procedure are exactly those quasi-orders in that population
which have the initial quasi-order r2 as the trace. In the example,
the corresponding parent family r⋄2 has been constructed and
consists of four quasi-orders.

The aforementioned properties are not specific to the example
and can be proven in the general case.

Proposition 2. Under the aforementioned prerequisites and
notation, we have:

1. In any step of the construction procedure, that is, for any of the
entries r1,n+1, r2,n+1, . . ., rn,n+1, rn+1,n, rn+1,n−1, . . ., rn+1,1, at
least one of the values 1 or 0 is always admissible for the position
that is filled. More precisely:

(a) In the case of filling column n + 1, for any position k =

1, . . . , n, at least one of the conditions C1(k) or C2(k) is
satisfied.

(b) In the case of filling row n + 1, for any position k =

1, . . . , n, the conditions R1a(k) and R1b(k) are satisfied or
the condition R2(k) is fulfilled.

2. The set of all relational matrices resulting from this construction
is equal to the parent family r⋄n of rn ∈ Qn. More precisely:

T :=
{

rn+1 (x) : x = (c1, c2), c1 ∈ S1(rn), and c2 ∈ S2(c1, rn)
}

= r⋄n ,

where rn+1(x) is the matrix rn extended with the fillings in x as
the (n+ 1)th column and (n+ 1)th row added to rn.

Proof. 1, a. Assume that k > 1 is the smallest position such that
both conditions C1(k) and C2(k) are violated. Then, there
exist an i1 ≤ k − 1 with ri1 ,k = 1 and ri1 ,n+1 = 0, and an
i2 ≤ k − 1 with rk,i2 = 1 and ri2 ,n+1 = 1. If i1 = i2, the
contradiction is 0 = ri1 ,n+1 = ri2 ,n+1 = 1. Let i1 6= i2. Since
rn is a quasi-order on n, we have ri1 ,i2 = 1. If i1 < i2, since
k is the smallest such critical position and ri2 ,n+1 = 1, the
condition C1(i2) is satisfied. Since ri1 ,n+1 = 0, it follows 0 =

ri1 ,i2 = 1. If i2 < i1, because ri1 ,n+1 = 0, the condition C2(i1)
is fulfilled. Since ri2 ,n+1 = 1, the resulting contradiction is
0 = ri1 ,i2 = 1.

1, b. Assume that k < n is the largest position such that
R1a(k) or R1b(k) is violated and the condition R2(k) is not
satisfied. Then, there is an i1 ∈ n, i1 6= k, with ri1 ,k = 0 and
ri1 ,n+1 = 1, or there is an k < i2 ≤ n such that rk,i2 = 1 and
rn+1,i2 = 0, and we have an k < i3 ≤ n with ri3 ,k = 1 and
rn+1,i3 = 1. First, consider the case of i1 and i3. If i1 = i3,
0 = ri1 ,k = ri3 ,k = 1. Let i1 6= i3. Since k is the largest such
critical position, i3 > k, and rn+1,i3 = 1, the conditionR1a(i3)
is fulfilled. Since i1 ∈ n \ {i3} and ri1 ,n+1 = 1, this implies
ri1 ,i3 = 1. Since rn on n is transitive and ri3 ,k = 1, we obtain
the contradiction 0 = ri1 ,k = 1. Second, consider the case of
i2 and i3. If i2 = i3, 0 = rn+1,i2 = rn+1,i3 = 1. Let i2 6= i3.
Since rn is transitive, and ri3 ,k = 1 and rk,i2 = 1, it holds that
ri3 ,i2 = 1. If (k <) i3 < i2, since rn+1,i3 = 1, R1b(i3) holds
true. Because rn+1,i2 = 0, we have ri3 ,i2 = 0. If i2 < i3, since
rn+1,i2 = 0, R2(i2) is satisfied. Therefore, ri3 ,i2 = 0, because
rn+1,i3 = 1. In both cases, this is in contradiction to ri3 ,i2 = 1.

2, T ⊆ r⋄n . Obviously, rn+1(x) is reflexive, and rn+1(x)
⋂

n × n = rn. We show that rn+1(x) on n+ 1 is transitive.
We have to distinguish three cases, with x, y ∈ n, x 6= y: (a)
rn+1,x = 1 and rx,y = 1 implies rn+1,y = 1, (b) rx,n+1 = 1 and
rn+1,y = 1 implies rx,y = 1, and (c) rx,y = 1 and ry,n+1 = 1
implies rx,n+1 = 1.
Re (a): Let x < y. Since rn+1,x = 1 is an admissible value set
in the (n+1)th row, R1b(x) is true. Because rx,y = 1, it follows
rn+1,y = 1. Let y < x. Assume that rn+1,y = 0. This leads to
a contradiction. The condition R2(y) would hold true. Since
rx,y = 1, this would imply rn+1,x = 0. According to the first
part of the proposition, thus rn+1,y = 1.
Re (b): The filling rn+1,y = 1 is admissible and R1a(y) is
fulfilled. Thus, rx,n+1 = 1 implies rx,y = 1.
Re (c): Let x < y. The filling ry,n+1 = 1 in the (n + 1)th
column is admissible and C1(y) is satisfied. Then, rx,y = 1
implies rx,n+1 = 1. Let y < x. Assume that the xth position
filled in the (n + 1)th column is rx,n+1 = 0. The condition
C2(x) would be fulfilled, and rx,y = 1 would imply ry,n+1 = 0.
This contradicts the assumption ry,n+1 = 1. The first part of
the proposition yields rx,n+1 = 1.

2, r⋄n ⊆ T. Let rn+1 ∈ r⋄n . That is, rn+1 is a quasi-order
on {1, . . . , n + 1}, and rn+1

⋂

n × n = rn. Let x =

(r1,n+1, . . . , rn,n+1, rn+1,n, . . . , rn+1,1), with rn+1(x) = rn+1,
be the relevant entries of rn+1 the construction needs to
retrieve. We show that (a) (r1,n+1, r2,n+1, . . . , rn,n+1) ∈

S1(rn) and (b) (rn+1,n, rn+1,n−1, . . . , rn+1,1) ∈

S2((r1,n+1, r2,n+1, . . . , rn,n+1), rn).
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Re (a): Assume that there exists an k = 2, . . . , n such that the
value rk,n+1 is not admissible for the kth entry of the column
n + 1, presupposing the given specifications r1,n+1,. . . ,rk,n+1

up to this critical position. If rk,n+1 = 1, C1(k) must be
violated. Then, there is an i < k such that ri,k = 1 and
ri,n+1 = 0. This contradicts the assumption that rn+1 is
transitive on {1, . . . , n + 1}. If rk,n+1 = 0, C2(k) is violated.
Then, for an i < k, rk,i = 1 and ri,n+1 = 1. However,
rk,n+1 = 0. Thus, c1 := (r1,n+1, r2,n+1, . . . , rn,n+1) ∈ S1(rn).
Re (b): Assume that there exists an k = 1, . . . , n
such that the value rn+1,k is not admissible for that
entry of the row n + 1, conditional on the given values
c1, rn+1,n, rn+1,n−1, . . . , rn+1,k. If rn+1,k = 1, R1a(k) or R1b(k)
must be violated. If R1a(k) is not satisfied, there is an i 6= k
such that ri,n+1 = 1. However, ri,k = 0. If R1b(k) is not
satisfied, there exists an i > kwith rk,i = 1. However, rn+1,i =

0. If rn+1,k = 0, R2(k) must be violated. Then, there is an
i > k such that rn+1,i = 1 and ri,k = 1. However, rn+1,k = 0.
Thus, c2 := (rn+1,n, rn+1,n−1, . . . , rn+1,1) ∈ S2(c1, rn).

The overall deterministic construction procedure starts with
the set of all quasi-orders Ql on a sufficiently small number
of items l. Based on the top-down–right-left inductive discrete
extension method, every rl ∈ Ql is extended by one more item.
This yields the parent families r⋄l . Thus, Ql+1 is constructed. This
process is repeated withQl+1 to generateQl+2, and so forth, until
a targeted set Qn of all quasi-orders for some n > l has been
achieved.

4. RANDOMIZATION OF THE DISCRETE
DOUBLY INDUCTIVE CONSTRUCTION
PROCEDURE

This section introduces a probabilistic modification of the
deterministic construction that will be used for the representative
sampling of quasi-orders. The general aim is to randomize
based on the discrete uniform distribution the construction
procedure shown in Figure 1 to transform it into a Laplace
random experiment. Another view on the proposed sampling
method is to combine the deterministic construction with
the uniform extension approach described in Section 2.3.
That is, the top-down–right-left method is deployed to
correct the random reflexive extensions of the Schrepp and
Ünlü (2015) approach that do not satisfy the transitivity
property.

4.1. Description of the Probabilistic
Sampling Procedure
The proposed doubly inductive procedure consists of two levels:
the outer Level 2 and inner Level 1 inductive constructions, which
are alternated. It starts with a sufficiently small number of items l
successively extending lower-dimensional trace quasi-orders by
one additional item to eventually yield final quasi-orders on a
larger number of items n > l (see Figure 1). It suffices to
randomize Level 1 computations, which is the top-down–right-
left inductive discrete extension method.

There is a disadvantage of the randomization procedure. The
applied corrections are of a combinatorial or non-probabilistic
type and entail sampling biases. However, the bias correction
factors can be computed based on the following notion of a
biasing position (see Proposition 4).

Definition 3. Traversing the entries r1,n+1, . . . , rn,n+1, rn+1,n,
. . . , rn+1,1 to be filled in the successive order given according to
the procedure below, a position of this sequence is called biasing
if one, and only one, of the values 0 or 1 is admissible for this
position.

Randomized Level 1 procedure:

Presuppose a given Level 2 trace quasi-order rn ∈ Qn. To
randomly extend it to n+ 1, rn+1, we pursue the following
strategy (cf. Section 3.1).

1. Randomly fill r1,n+1 ∼ Bernoulli(1/2). No checks are
necessary. Both of the simulated values 1 and 0 are admissible
for this position according to C1(k = 1) and C2(1), respec-
tively. (Because the position r1,n+1 can always be set to any
of the two values 0 and 1 without violating the transitivity
conditions, the first entry always represents a non-biasing
position.)

2. Randomly fill r2,n+1 ∼ Bernoulli(1/2). The conditions
C1(k = 2) and C2(2) are tested. If the simulated value is
admissible, we keep it and proceed to fill the next position.
(In this case, the second position may or may not be a
biasing position. This depends on whether the complementary
value, 1 − r2,n+1, is inadmissible or admissible for this
entry, respectively.) If the simulated value is not admissible,
1 − r2,n+1 is assigned, which necessarily must be admissible
according to Proposition 2. (Obviously, the second entry is a
biasing position in this case.)
This process is repeated until the last entry rn,n+1 ∼

Bernoulli(1/2) of column n + 1 is randomly filled, the
conditions C1(k = n) and C2(n) are checked, and an admissi-
ble value is assigned to this position. Overall, this yields a
random vector c of admissible values inS1(rn) fully specifying
column n+ 1.

3. The sampling procedure continues to randomly fill the
positions in the (n + 1)th row based on the conditions R1a,
R1b, and R2. First, rn+1,n ∼ Bernoulli(1/2) needs to be checked
for admissibility only if it equals 1. If the sampled value is
admissible, we keep that value and continue. Otherwise, if
we sampled 1 and R1a(n) is not satisfied, the complementary
value 0 is admissible (Proposition 2) and assigned to this
position.

4. Then, rn+1,n−1 ∼ Bernoulli(1/2) is randomly filled. The
conditions R1a(k = n − 1) and R1b(n − 1) or R2(n − 1) are
examined, and analogously, an admissible value is assigned
to this position. This process is repeated until the last entry
of row n + 1 is filled, rn+1,1 ∼ Bernoulli(1/2). Based on the
conditions R1a(k = 1) and R1b(1) or R2(1), the admissibility
of the simulated value is checked and, if necessary, replaced by
the complementary value.
This fully specifies the (n + 1)th row with a random vector
of admissible values in S2(c, rn). Thus, the whole relational
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matrix for rn+1 has been randomly constructed, which must
be a quasi-order on n+ 1 according to Proposition 2.

An examplemay be helpful. Consider the quasi-order given by

r3 =





1 1 1
0 1 1
0 0 1



 ,

which is the relational matrix of a chain structure. Applying the
above probabilistic procedure, this quasi-order may be randomly
extended by onemore item as follows. The first entry is filled with
any of the possible Bernoulli realizations, say r1,4 = 1,











1 1 1 1

0 1 1
0 0 1

1











.

Both 0 and 1 are then admissible values for the entry r2,4. The
procedure selects one of the two values uniformly at random, say
r2,4 = 0,











1 1 1 1

0 1 1 0

0 0 1
1











.

Given the previous values, we see that for r3,4 the only admissible
value is 0. This value is assigned,











1 1 1 1
0 1 1 0

0 0 1 0

1











.

With this vector of admissible values fully specifying the fourth
column, both the values 0 and 1 are admissible for the entry r4,3.
A Bernoulli realization is taken to fill this entry, say r4,3 = 1,











1 1 1 1
0 1 1 0
0 0 1 0

1 1











.

For the entry r4,2, both the values 0 and 1 are admissible. A value
is assigned uniformly at random, say r4,2 = 0,











1 1 1 1
0 1 1 0
0 0 1 0

0 1 1











.

Then, for r4,1, the only admissible value is 0. This yields

r4 =











1 1 1 1
0 1 1 0
0 0 1 0

0 0 1 1











.

In this example, there are two biasing positions. For each of the
entries r3,4 and r4,1, the only admissible value is 0.4

The overall probabilistic sampling procedure is a randomized
counterpart of the discrete construction procedure shown in
Figure 1. It starts with a representative collection of quasi-orders
Q(l) on a sufficiently small number of items l. Applying the
randomized top-down–right-left inductive extension, every rl ∈
Q(l) is extended by one more item. Thus, a sample Q(l + 1) of
random quasi-orders rl+1 is generated. This process is repeated
withQ(l+1) to create someQ(l+2), and so forth, until a targeted
sample Q(n) of random quasi-orders for some n > l has been
achieved.

This sampling procedure can be viewed as a correction
technique for the uniform extension approach by Schrepp and
Ünlü (2015). This procedure can be used to correct the random
extensions that violate the transitivity property. Subsequently, we
follow the line of reasoning in the proof of the part “2, r⋄n ⊆ T”
of Proposition 2. In the next section, this result will be used to
determine the correction factors needed to balance the sampling
biases induced by the combinatorial corrections.

Correcting random reflexive extensions to satisfy

transitivity, C:

Assume that r′n+1 is a random reflexive, but not necessarily
transitive, extension on n+ 1 of a quasi-order rn on n (in the
sense of the definition given in Section 2.3).

Let r1,n+1, . . ., rn,n+1, and rn+1,n, . . ., rn+1,1 be the relevant
entries of r′n+1 that we want to correct if necessary. In this
order, we successively apply the admissibility tests. Entry for
entry, the transitivity conditions C1, C2, R1a, R1b, and R2
are verified. If a value in this sequence is not admissible for
the corresponding position (necessarily a biasing position), we
replace it with the complementary value. This assigned new
value must be admissible (Proposition 2). However, if a value
in this sequence is admissible for the corresponding position,
we leave it intact. (Such a position may or may not be biasing.
If the complementary value is also admissible, this position is
non-biasing. Otherwise, it is a biasing position.)
The resulting corrected matrix C(r′n+1) is the adjacency matrix
of a quasi-order on n+ 1, unlike r′n+1 obtained in the original
approach by Schrepp and Ünlü (2015). It extends the quasi-order
rn as the trace on n.

4Note that with this procedure, we randomize the values filled into the positions
r1,n+1, . . . , rn,n+1, rn+1,n, . . . , rn+1,1, but not the order in which these positions
are filled. A randomized order approach would probably make impossible the
exhaustive discrete construction or would complicate the probabilistic extension.
In the latter case, it may be difficult to correct for transitivity, and thus
accompanied by induced sampling biases, even more intricate to determine the
required bias correction factors. In Proposition 4, we will see that this is possible,
and relatively straightforward, for the fixed order approach of this paper.

Frontiers in Psychology | www.frontiersin.org 10 November 2016 | Volume 7 | Article 1656

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Ünlü and Schrepp Principled Sampling Theory for Quasi-Orders

If we replace one or both of the biasing positions r3,4 = 0
or r4,1 = 0 of the quasi-order r4 constructed in the preceding
example with the complementary value 1 (in red), the resulting
extensions (of r3)

r′4 :









1 1 1 1
0 1 1 0
0 0 1 1
0 0 1 1









,









1 1 1 1
0 1 1 0
0 0 1 0
1 0 1 1









,









1 1 1 1
0 1 1 0
0 0 1 1
1 0 1 1









are reflexive but not transitive. Such a matrix may be obtained
in the inductive uniform extension approach. We can apply the
procedure C to correct for transitivity. For any of these matrices
r′4, it holds that C(r

′
4) = r4.

4.2. Induced Sampling Biases and Bias
Correction Factors
This sampling procedure has the advantage that it can generate,
very quickly and efficiently, samples of random quasi-orders on
very large item sets. The disadvantage is that the combinatorial
corrections entail sampling biases in the random process of
quasi-order generation. However, as we will discuss next, the
induced biases can be corrected.

Why are sampling biases induced in this procedure? That is,
why can two quasi-orders rn+1 and sn+1 with corresponding

trace quasi-orders rn and sn, or similarly, r(1)n+1 and r(2)n+1 with the
same trace quasi-order rn, be drawn with different probabilities?
The sampling procedure is equivalent to uniformly creating
random reflexive extensions in a first probabilistic step, and
these extensions are corrected for transitivity using the strategy
described in the previous section in a second deterministic step.
For an item number n, all random reflexive extensions have the
same probability 2−2n of being drawn. Thus, the probabilities

for sampling rn+1 and sn+1, or r
(1)
n+1 and r(2)n+1, are proportional

to the numbers of random reflexive extensions that yield the
corresponding quasi-orders under reference when corrected
according to the procedure. (The same proportionality factor
is 2−2n.) Those sets generally do differ in their cardinalities.
However, we can determine their sizes and use this information
to adjust for an equal, or approximately equal, sampling
probability (Proposition 4).

We require some notation. Let Rn+1 denote the set of all
reflexive relations on n+ 1. For a trace quasi-order rn ∈ Qn, let
r�n := {r′n+1 ∈ Rn+1 : r′n+1

⋂

n× n = rn} be the set of all possible
random reflexive extensions of rn. The correction of random
reflexive extensions described in Section 4.1 can be viewed as
the operator C : r�n → Qn+1, r′n+1 7→ C(r′n+1). For a sampled
quasi-order rn+1 ∈ r⋄n , let r

�

n [rn+1] := {r′n+1 ∈ r�n : C(r′n+1) =

rn+1} denote the set of all random reflexive extensions of the
underlying trace quasi-order rn that yield the quasi-order rn+1

when corrected according to the correction procedure C.

Proposition 4. Let rn+1 be a quasi-order randomly generated
from a trace quasi-order rn according to the sampling procedure.
It holds that:

1. The probability for sampling rn+1 is

P(rn+1) = |r�n [rn+1]|/2
2n,

where |r�n [rn+1]| is the number of random reflexive extensions
of rn that, when being corrected using the procedure C, yield
rn+1.

2. The size |r�n [rn+1]| can be computed based on the inductive
character of the correction. We have

|r�n [rn+1]| = 2B(rn+1),

where 0 ≤ B(rn+1) ≤ 2n − 1 is the number of the biasing
positions (Definition 3) among the 2n − 1 entries r2,n+1, . . .,
rn,n+1 and rn+1,n, . . ., rn+1,1 of rn+1 that have been filled.

Proof. 1. The problem can be framed in complete
mathematical form based on probability theory. Let

(�′
:= r�n ,A′

:= 2r
�
n , P′) be the Laplace probability space,

where �′ is the sample or outcome space of random
reflexive extensions (of rn), and A′ is the σ -algebra
(power-set) of measurable events or subsets of random
reflexive extensions. Since each elementary event or
random reflexive extension occurs with the same probability
2−2n = 1/|r�n |, this P′ :A′ → [0, 1] is the Laplace probability
measure that assigns to each subset of random reflexive
extensions, A ∈ A′, the probability P′(A) = |A|/|r�n |. Let

(� := Qn+1,A := 2Qn+1 ) be the measurable space representing
the quasi-orders on n+ 1. Under these prerequisites, the
correction operator C : r�n → Qn+1 is a random variable, that
is, a measurable function mapping the Laplace probability
space (�′,A′, P′) to the measurable space (�,A). Thus,
according to probability theory,

P(rn+ 1) = P(C = rn+ 1) := P′({ω′ ∈ �′
: C(ω′) = rn+ 1})

= P′(r�n [rn+ 1]).

2. A position among the filled admissible values r1,n+1,
. . ., rn,n+1, rn+1,n, . . ., rn+1,1 of the quasi-order rn+1 is
a biasing position if and only if the value corresponding
to this position cannot be replaced by its complementary
value, leaving the (preceding) other values of this vector
unchanged, without violating the transitivity conditions
according to the procedure C. Let B(rn+1) = 0. That is, all
positions are non-biasing. We must have r�n [rn+1] = {rn+1}.
Since any of the two admissible values for each non-biasing
position will not be altered under the correction procedure,
rn+1 ∈ r�n [rn+1], and r′n+1 ∈ r�n [rn+1] implies r′n+1 =

C(r′n+1) = rn+1. Thus, |r�n [rn+1]| = 1 = 2B(rn+1). Let
B(rn+1) ≥ 1 biasing positions be denoted by the ordered
sequence of their position indices 1 < b1 < b2 < . . . <

bB(rn+1) ≤ 2n among the entries r1,n+1, . . ., rn,n+1, rn+1,n, . . .,
rn+1,1 of the quasi-order rn+1. For ease of notation, for any
r′n+1 ∈ r�n [rn+1], we refer to its relevant entries r′1,n+1, r

′
2,n+1,

. . ., r′n,n+1, r
′
n+1,n, r

′
n+1,n−1, . . ., r

′
n+1,1 as v

′
1, v

′
2, . . ., v

′
n, v

′
n+1,

v′n+2, . . ., v
′
2n, respectively. We show that the projection

p : r�n [rn+ 1] → {0, 1}B(rn+ 1),

r′n+ 1 7→ p(r′n+1) := (v′b1 , v
′
b2
, . . . , v′bB(rn+ 1)

)

is bijective, thus proving the statement |r�n [rn+1]| = 2B(rn+1).
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Injectivity: Let r′n+1, r
′′
n+1 ∈ r�n [rn+1], r′n+1 6= r′′n+1. There

is a position with index i0 such that v′i0 6= v′′i0 . Suppose
i0 represents a non-biasing position. Then, v′i0 and v′′i0 are
admissible values for this position in matrices r′n+1 and
r′′n+1, respectively. Since the admissible values of a reflexive
extension are not altered when corrected, this implies
C(r′n+1) 6= C(r

′′
n+1), yielding the contradiction rn+1 6= rn+1.

Thus, i0 ∈ {b1, . . . , bB(rn+1)}, and p(r′n+1) 6= p(r′′n+1).

Surjectivity: Let v = (v′b1 , v
′
b2
, . . . , v′bB(rn+1)

) ∈ {0, 1}B(rn+1).

Replace the entries of the relational matrix rn+1 at the
positions given by the indices b1 < b2 < . . . < bB(rn+1)

with the values v′b1 , v
′
b2
, . . . , v′bB(rn+1)

, respectively. For this

resulting matrix r′n+1, we have r′n+1 ∈ r�n [rn+1], and
p(r′n+1) = v.

We continue with the previous example. Consider the two
quasi-orders

r(1)4 =









1 1 1 1
0 1 1 0
0 0 1 0

0 0 1 1









and

r(2)4 =









1 1 1 1
0 1 1 0
0 0 1 0

0 1 1 1









with the same trace quasi-order

r3 =





1 1 1
0 1 1
0 0 1



 .

It holds that B(r(1)4 ) = 2 and B(r(2)4 ) = 1; the biasing positions are
shown in bold. For their sets of all random reflexive extensions
of the underlying trace quasi-order r3, which yield these quasi-
orders when corrected according to the procedure C, we have
(inadmissible values highlighted in red)

r�3 [r(1)4 ] =























1 1 1 1
0 1 1 0
0 0 1 0
0 0 1 1









,









1 1 1 1
0 1 1 0
0 0 1 1
0 0 1 1









,









1 1 1 1
0 1 1 0
0 0 1 0
1 0 1 1









,









1 1 1 1
0 1 1 0
0 0 1 1
1 0 1 1























and

r�3 [r(2)4 ] =























1 1 1 1
0 1 1 0
0 0 1 0
0 1 1 1









,









1 1 1 1
0 1 1 0
0 0 1 1
0 1 1 1























.

These sets do differ in their cardinalities, which are equal to “2 to
the power their numbers of the biasing positions.” In particular,

the sampling probabilities are P(r(1)4 ) = 1/16 and P(r(2)4 ) = 1/32.

The cardinalities determined in Proposition 4 are essential.
They can be used as the penalizing weights to adjust for
representative, or close to representative, quasi-order sampling.
In short, let rn+1 and sn+1 be two quasi-orders generated
according to the sampling procedure from their trace quasi-
orders rn and sn. The bias correction factors wrn+1 = 2−B(rn+1)

and wsn+1 = 2−B(sn+1) can be used in post-construction
sampling to equalize the corresponding probabilities. That is,
P(rn+1) · 2−B(rn+1) = 2−2n and P(sn+1) · 2−B(sn+1) = 2−2n. Details
are discussed in the following section.

5. PROCEDURAL VARIANTS FOR BIAS
CORRECTION

Three algorithms are introduced to combine the randomized
doubly inductive construction with the precise bias correction.
The absolute rejection method is the exact approach.
However, it is computationally the most intensive. The
simple and stratified resampling methods are the recommended
procedures. They are computationally viable and efficient,
and they provide close to representative random quasi-
orders.

5.1. Absolute Rejection Method
The following steps define the absolute rejection method (ARM);
see Proposition 5. In each inductive step, from k to k + 1 items,
three random experiments are concatenated.

Random experiment RE1. The random quasi-orders rk ∈ Qk
are drawn such that they are equally probable.

Random experiment RE2. The randomized doubly inductive
procedure is applied to construct from the drawn quasi-orders
rk ∈ Qk (random experiment RE1) the random extensions rk+ 1

in Qk+ 1 with respective probabilities P(rk+ 1) = 2B(rk+ 1)/22k.

Random experiment RE3. After this construction (concate-
nated random experiment RE2 ◦ RE1), a bias-correcting random

processW ∼ Bernoulli
(

p = 2−B(rk+ 1)
)

is utilized for penalizing

the sampled quasi-orders rk+ 1. If W = 1 occurs with
probabilities P(W = 1) = 2−B(rk+ 1), the quasi-orders rk+ 1 are
retained. They are rejected if the outcomeW = 0 is obtained.

We denote the rejection outcome of the concatenated
random experiment RE3 ◦ (RE2 ◦ RE1), that is, of “an
inductively constructed quasi-order not being retained,” with
symbol r. Thus, the extended sample spaces for all stages
l < i ≤ n of the procedure are given by Qi :=
Qi

⋃

{r}. (Except for the anchoring or start stage l, in which
no penalization is required.) For the overall bias-corrected
sampling procedure, we obtain the representativeness result that
is analogous to the main result in Schrepp and Ünlü (2015, p. 4,
Proposition).

Proposition 5. Let the bias correction factors be applied to
equalize probabilities in repetitions of the randomized Level 1
computations over the Level 2 stages of the randomized doubly
inductive procedure from a start stage l (sufficiently small) up to
an end stage n > l. Then:
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The final sampling probabilities obtained for the last Level 2
stage n are defined for all of the possible quasi-orders on n items,
and all of these probabilities are equal. That is, traversing the
proposed hierarchical sampling procedure, we eventually end up
with simple random (or uniform) sampling from the quasi-order
population Qn.

Proof. As anchoring, the procedure starts with some Laplace

probability space (�l := Ql,Al := 2Ql , Pl ≡ 1/|Ql|) for a
sufficiently small item number l. Here, “Pl ≡ 1/|Ql|” means Pl is
defined by Pl(rl) := 1/|Ql| for all rl ∈ Ql, and additively extended
toAl.

In the inductive step, from l ≤ k < n to k + 1,
assume that we are uniformly sampling from the set of all
quasi-orders on k items, represented by the Laplace probability

space (�k := Qk,Ak := 2Qk , Pk ≡ 1/|Qk|). According to
the properties of the deterministic component of the doubly

inductive construction procedure (see Section 3.1 and Part 2 of
Proposition 2),

Qk+ 1 =
∑

rk∈Qk

r⋄k =
∑

rk∈Qk

T(rk),

where “
∑

over rk ∈ Qk” stands for the Level 2 construction, and

T(rk) =
{

rk+ 1 (x) : x = (c1, c2), c1 ∈ S1(rk), and c2 ∈ S2(c1, rk)
}

represents the Level 1 construction within a given Level
2 unit rk ∈ Qk. The concatenation RE3 ◦ (RE2 ◦ RE1)
can be represented by the probability space (�k+ 1 :=

Qk+ 1,Ak+ 1 := 2Qk+ 1 , Pk+ 1). We see from the above
deterministic properties that the sample space of all possible
outcomes of this concatenated random experiment is the set

FIGURE 2 | The relative frequencies of the quasi-order sizes (excluding the reflexive item pairs) computed in the populations of all quasi-orders (solid
dark line), which are compared with the means of the relative frequencies of the sizes computed over 100 trials in each of the samples of 100 (solid
red line) and 500 (filled green dot) quasi-orders. From left to right, the first, second, third, and fourth columns stand for n = 3, 4, 5, and 6 items, respectively.
From top to bottom, the first, second, and third rows represent the ARM, SIRM, and STRM, respectively. In each of these cases, we started the inductive construction
anchoring with l = 2 items.
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Qk+ 1. According to the formula of total probability, for any
rk+ 1 ∈ Qk+ 1,

Pk+ 1(rk+ 1) =
∑

r′k∈Qk

2−B(rk+ 1)P(rk+ 1|r
′
k)P(r

′
k)

= 2−B(rk+ 1)P(rk+ 1|rk)P(rk)

= 2−B(rk+ 1) ·
2B(rk+ 1)

22k
·

1

|Qk|
=

1

22k|Qk|
,

where rk+ 1 ∈ r⋄k and P(rk+ 1|r
′
k) = 0 for all r′k ∈ Qk with

r′k 6= rk, and

Pk+ 1(r) = 1−
∑

rk+ 1∈Qk+ 1

Pk+ 1(rk+ 1) = 1−
|Qk+ 1|

22k|Qk|
.

Therefore, for any rk+ 1 ∈ Qk+ 1, the marginal probability for
sampling rk+ 1 is the same value 2−2k · |Qk|

−1. We only focus
on and work with the retained inductively constructed quasi-
orders. So if we condition on the negation ¬r, the effective

FIGURE 3 | For item numbers n = 7, 8, 9, and 10, P-P plots are shown comparing the empirical cumulative distribution functions of the sample
quasi-order sizes for the ARM, SIRM, and STRM (y-axes) to the cumulative distribution functions for the UEM as the references (x-axes). All methods
were anchored with l = 2 items. The empirical cumulative distribution functions were evaluated at the potential knots or sizes 0, 1, . . ., n2 − n (without the reflexive
item pairs). They represent mean cumulative probabilities taken over the samples (ARM, UEM: 10 trials, N = 1000; SIRM, STRM: 50 trials, N = 10, 000). The plotting
symbols used for the ARM, SIRM, and STRM are unfilled black circles, unfilled green triangles, and gray plus-signs, respectively. All points fall on the comparison lines
y = x (in red), which indicates that the four methods yield virtually the “same” and representative size sampling distributions.
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probability for sampling any rk+ 1 ∈ Qk+ 1 is Pk+ 1(rk+ 1|¬r) =
Pk+ 1(rk+ 1)/(1 − Pk+ 1(r)) = 1/|Qk+ 1|. This yields the Laplace

probability space (�k+ 1 := Qk+ 1,Ak+ 1 := 2Qk+ 1 , Pk+ 1 ≡

1/|Qk+ 1|), which represents simple random sampling from the
quasi-order population Qk+ 1.

5.2. Simple and Stratified Resampling
Methods
The simple resampling method (SIRM) and the stratified
resampling method (STRM) are approximate, sufficiently precise
variants for bias correction. Their usefulness is demonstrated
based on simulation studies (Section 6). The theoretical study of
the probability theory foundation of the SIRM and STRM and of
their interrelationship require more work, which is an interesting
direction for future research (cf. Section 7).

5.2.1. SIRM Approach

The SIRM is anchored with simple random sampling for a small
item number l. That is, we start with a Laplace probability space

(�l := Ql,Al := 2Ql , Pl ≡ 1/|Ql|). In each inductive step of the
doubly inductive procedure, from l ≤ k < n to k + 1 items, the
SIRM is the concatenation of the following random experiments.

First, we run the construction component. A bias-corrected
sample (explained below) of a fixed size N, denoted by QN(k),
of approximately representative to representative random quasi-
orders on k items is presupposed and extended based on the
randomized doubly inductive construction procedure. For the
anchoring k = l, QN(l) is any simple random sample of
size N drawn with replacement (or without, if possible) from
the known quasi-order population Ql. That is, the randomized
doubly inductive construction procedure is applied to extend
each quasi-order rk of the sample and multiset (possibly with
repetitions) QN(k) to a random quasi-order rk+ 1 ∈ Qk+ 1

with probability P(rk+ 1) = 2B(rk+ 1)/22k. We collect all of these
extensions rk+ 1 in a constructed multiset of size N, denoted by
Q′

N(k + 1).
Second, with the correction component, the constructed

sample Q′
N(k + 1) is corrected for biases. This is achieved by

weighted resampling with replacement. The weight assigned to
an element rk+ 1 ofQ

′
N(k + 1) is

2−B(rk+ 1)

∑

r′k+ 1∈Q
′
N (k+ 1) 2

−B(r′k+ 1)
.

These are the probability weights for obtaining the quasi-orders
of Q′

N(k + 1). The resulting resample and multiset of the fixed
sizeN is the bias-corrected sample obtained for the induction step
k + 1 of the SIRM. It consists of close to representative random
quasi-orders on k + 1 items, denoted byQN(k + 1).

5.2.2. STRM Approach

The STRM is anchored with simple random sampling for
a feasibly small item number l, that is, with some Laplace

probability space (�l := Ql,Al := 2Ql , Pl ≡ 1/|Ql|). In each
inductive step of the doubly inductive procedure, from l ≤ k < n
to k + 1 items, the STRM is the concatenation of the following
random experiments.

The first step of the STRM equals the SIRM. As the
construction component, a bias-corrected sampleQN(k) of a fixed
size N of close to representative or representative random quasi-
orders on k items is extended based on the randomized doubly
inductive construction procedure. As the anchoring, QN(l) is
a simple random sample of size N drawn with (or without)
replacement from the quasi-order population Ql. All extensions
rk+ 1 ∈ Qk+ 1 of the quasi-orders rk ∈ QN(k) are collected in a
constructed sampleQ′

N(k + 1) of size N.
In their second steps, the STRM and SIRM do differ.

The correction component of the STRM is an approach
based on stratification, whereby the biased constructed multiset
Q′

N(k+ 1) = Q′ is partitioned into specific submultisets or strata.
Let

BQ′ : =
{

b = B(rk+ 1) : rk+ 1 ∈ Q
′
N(k + 1)

}

be the set of the unique numbers of the biasing positions implied
by the quasi-orders in the sample Q′

N(k + 1); see Definition 3
and Proposition 4. The family

S :=
{

Sb : b ∈ BQ′

}

is a partition of the sampleQ′
N(k + 1), where

Sb :=
{

rk+ 1 ∈ Q
′
N(k + 1) : B(rk+ 1) = b

}

is the submultiset of quasi-orders in Q′
N(k + 1) with the same

number b of their biasing positions. The partition elements
Sb ∈ S for b ∈ BQ′ are called strata. Thus, the strata are defined
ex post in the constructed sample, based on the numbers of
the biasing positions obtained for the sampled quasi-orders. We
denote with |Sb| the cardinality of a stratum Sb, that is, the total
number of elements including repeated membership. Note that
|Sb| is the absolute frequency of how often the number b ∈ BQ′

of biasing positions is observed in the sampleQ′
N(k + 1).

With the correction component of the STRM, the constructed
sample Q′N(k + 1) is corrected for biases. This is achieved
by weighted resampling after stratification, followed by simple
random sampling within the drawn strata. Both the resampling
and sampling occur with replacement. By definition, the strata
uniquely correspond to the numbers of biasing positions. Thus,
weighting and resampling of the strata Sb ∈ S can be imple-
mented by weighting and resampling the elements of the set BQ′ .
The weight assigned to an element b of BQ′ is

|Sb| · 2
−b

∑

b′∈B
Q

′ |Sb′ |·2
−b′

.

These are the probability weights for obtaining the elements of
BQ′ . Let this sample be denoted by BS (|BS| = N).

For any b in BS, including repeated membership, consider the
uniquely determined stratum Sb. All quasi-orders of this “drawn”
multiset Sb have the same sampling probability 1/|Sb|. From
Sb, one element is randomly selected. This can be equivalently
formulated as follows. Let B′S be the underlying set of the unique
elements of the multiset BS. That is, only one instance of an
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element is allowed. For every b∗ ∈ B′S, let the multiplicity or
number of occurrences of b∗ in the multiset BS be denoted with
m(b∗) ≥ 1 (

∑

b∗∈B′S
m(b∗) = N). From each stratum Sb∗ for

b∗ ∈ B′S, a simple random sample with replacement of size
m(b∗) is drawn. All resampled quasi-orders are put together.
The resulting multiset of size N, of close to representative
random quasi-orders on k + 1 items, is the bias-corrected sample
QN(k + 1) obtained for the induction step k + 1 of the STRM.

Section 6 reports the simulation results demonstrating the
usefulness of the SIRM and STRM approaches for representative
quasi-order sampling.

6. SIMULATION RESULTS

We present simulation results for the ARM, SIRM, and STRM
used to sample quasi-orders. The representativeness of the
quasi-order samples was assessed using as an evaluation criterion
the size or cardinality of a quasi-order. In addition, the
per–hundred–quasi-orders mean computing time in seconds (s)
required on average for randomly generating 100 quasi-orders
is reported. We also computed the Tukey (1977) five-number
summaries (here, box plot statistics), the lower-whisker extreme,
lower-hinge (first quartile), median, upper-hinge (third quartile),
and the upper-whisker extreme.Moreover, themean, scatter plot,
histogram, and kernel density estimate of the sample quasi-order
sizes are presented. These summarymeasures are used to describe
and visualize their distribution. The whiskers of the box plot
extend to the most extreme data points that are no more than 1.5
times the interquartile range, or the length of the box, away from
the box edges. Thus, the box plot represents both the summary
statistics about center and spread and the distribution of the
primary data (Tukey, 1977).

The computations were run in R (The R Core Team, 2016,
www.R-project.org) on an Intel Core i7 3.4 GHz processor.

Throughout the simulation studies, in all of the cases, the
inductive construction processes were anchored by using the
population of all four (labeled) quasi-orders on l = 2 items.

6.1. Assessing Representativeness in the
Complete Inventory Cases of n = 3, 4, 5,
and 6 Items
First, we evaluate the quality of the representativeness of the
sampling techniques for n = 3, 4, 5, and 6 items. For these
item numbers, the complete population of all quasi-orders can be
constructed reasonably quickly. Thus, the created samples can be
compared to the true population properties. On a set of n = 3, 4,
5, and 6 items, there exist 29, 355, 6942, and 209, 527 (labeled)
quasi-orders, respectively (e.g., Brinkmann and McKay, 2002).
These populations were known and were used in the following
analyses.

Figure 2 shows the sample (solid red line or filled green
dot) and population (solid dark line) distributions of the quasi-
order sizes (without the reflexive item pairs). The reported
sample values are the averages taken over 100 trials or quasi-
order samples drawn according to the respective methods.
The population values were computed in the given sets of all

possible quasi-orders. Two sample sizes of randomly generated
quasi-orders were considered. In Figure 2, the solid red line and
filled green dot are for quasi-order samples of sizes N = 100 and
500, respectively. The columns stand for n = 3, 4, 5, and 6 items,
and the rows represent the sampling methods ARM, SIRM, and
STRM, respectively.

From Figure 2, we see that under any method, the true
distributions were estimated very well for all item numbers and
with especially higher accuracy as the sample size increased.
In contrast to the practicable resampling methods SIRM and
STRM, the theoretical rejection method ARM yielded more
representative quasi-order samples with smaller sample sizes.
However, we will demonstrate in the following section that this
result is obtained with substantial extra computation cost when
more items are used.

6.2. Assessing Representativeness in
Comparison to Schrepp and Ünlü (2015) or
up to n = 20 Items
For comparison with the UEM by Schrepp and Ünlü (2015),
Figure 3 shows the percent-percent (P-P) plots (e.g., Tukey,
1977). These plots compare the empirical cumulative distribution
functions of the sample quasi-order sizes for ARM, SIRM,
and STRM, placed on the y-axes, with the sample cumulative
probabilities for the quasi-order sizes observed under the UEM,
as the reference distribution functions placed on the x-axes. The
straight lines in red, y = x, are used for comparison. Deviations

TABLE 1 | Per–hundred–quasi-orders mean computing time (in s)
calculated over 100 trials of quasi-order samples of size N = 100 for item
numbers n = 7, . . . , 20 (SIRM and STRM), n = 7, . . . , 12 (UEM), and
n = 7, . . . , 10 (ARM).

n Computing time (in s)

SIRM STRM UEM ARM

7 0.044 (0.001) 0.047 (0.001) 0.399 (0.032) 1.751 (0.130)

8 0.061 (0.006) 0.064 (0.005) 1.137 (0.092) 5.715 (0.473)

9 0.080 (0.004) 0.083 (0.003) 3.226 (0.289) 18.636 (1.462)

10 0.102 (0.006) 0.107 (0.005) 9.270 (0.795) 59.088 (5.121)

11 0.127 (0.005) 0.132 (0.004) 26.990 (1.971)

12 0.156 (0.006) 0.161 (0.005) 80.547 (6.104)

13 0.188 (0.009) 0.194 (0.009) 235.516 (4.190)

14 0.224 (0.009) 0.233 (0.009) 724.929 (14.922)

15 0.264 (0.011) 0.271 (0.008)

16 0.305 (0.013) 0.316 (0.011)

17 0.356 (0.015) 0.365 (0.011)

18 0.407 (0.014) 0.419 (0.012)

19 0.463 (0.014) 0.477 (0.013)

20 0.521 (0.016) 0.538 (0.015)

To illustrate the computational intensity of the UEM (and, thus, of the ARM), the average

times required to randomly generate a sample of 100 quasi-orders under the UEM were

also run for n=13 and 14 items. These values were calculated from five quasi-order

samples of size N=1000. Standard deviations are in parentheses. In any of the cases,

the inductive construction was anchored with the set of all four quasi-orders on l=2 items.

The average computing times recorded for the joint item numbers are plotted in Figure 4.
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of the points from the lines indicate differences between the two
distributions being plotted against each other. The comparisons
were made for the item numbers n = 7, 8, 9, and 10. For
the computationally intensive methods ARM and UEM, ten
trials each with N = 1000 quasi-orders were run, compared
to the much faster SIRM and STRM procedures, with 50 trials
each of N = 10, 000 simulated quasi-orders. The cumulative
probabilities graphed in Figure 3 are the mean values computed
over the trials, where the empirical cumulative distribution
functions were evaluated at the potential and unique quasi-order
sizes 0, 1, . . ., n2 − n (i.e., excluding the reflexive item pairs).

From Figure 3, we can see that the points in the P-P plots
all fall on the straight lines (in red). This indicates that the
sampling methods ARM, SIRM, STRM, and UEM give virtually
the “same” size distributions for quasi-orders being randomly
and representatively generated by any of these methods. In
particular, we conclude that the fast resampling-based SIRM and
STRM methods in the studied simulation conditions yielded
representative quasi-order samples by comparison with such
theoretically exact, but computationally intensive, procedures as
the ARM and UEM.

Under any method, the per–hundred–quasi-orders mean
computing time (in s) is shown in Table 1. The time required
on average was calculated over 100 trials of quasi-order samples
of the size N = 100. The UEM and ARM methods are
computationally intensive. This result is strikingly highlighted by
the per–hundred–quasi-orders mean computing time reported
for n = 13 and 14 items under the UEM in Table 1. These
times were computed over five trials each of N = 1000 simulated
quasi-orders.

The joint results shown in Table 1 are visualized using bar
plot representations in Figure 4. The juxtaposed bars depict the
average computing times, in respective order, obtained for the
item numbers n = 7, . . . , 10 under the different methods.

As can be seen from Table 1 or Figure 4, the SIRM and
STRM methods were very fast. The ARM and UEM required
considerably higher computing times. Worst in this regard was
the ARM, followed by the UEM. We observed that the ARM
first ran into a relatively longer computing time, requiring
one-and-a-half hours or more, with the item number n = 10.
Such a critical threshold for the UEM was attained with n = 12
items. In this sense, the UEM may be said to be “1n = 2

FIGURE 4 | Bar plot representations of the average computing times (in s) for randomly generating a sample of N = 100 quasi-orders under any of the
four methods (cf. Table 1). From left to right, the juxtaposed bars within a method represent the computing times obtained for item numbers n = 7, . . . , 10 in blue,
red, green, and gray colors, respectively. The second column plot zooms in on the fast computing times achieved with the SIRM and STRM. It omits plotting the most
intensive computing times required by the ARM.
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items ahead of” the ARM. Throughout the simulation studies, the
SIRM and STRMmethods generally gave comparable results. The
time savings with the SIRM and STRM are significant. In Section
6.3, we will use these methods to construct exemplary close to
representative quasi-order samples for item numbers as high as
n = 20, 30, 40, and 50. Even more is conceivable. This could not
be realized with any of the other approaches.

In Table 2, we catalog the five-number summaries and the
means of the sizes of randomly generated quasi-orders, shown
for item numbers n = 11, . . . , 20.

The box plot statistics and the means reported in Table 2 are
visualized in Figure 5.

From Table 2 or Figure 5, we can see that the fast methods
SIRM and STRM yielded quasi-order samples that were close
to the theoretically representative samples of the exact UEM

method. The SIRM and STRM could be well matched in
simulation yielding comparable results. This leads to concurrent
and agreeing evidence for the representativeness of the obtained
results. Compared to the whisker extremes, the locationmeasures
median and mean and the interquartile range as the spread
were similar and exhibited less variation across the different
methods.

In Section 6.3, the median and mean quasi-order sizes will
be extended to larger item numbers. The cataloged location
estimates represent useful information and may be referenced
as benchmarking figures for the quick and frugal evaluation
of the representativeness of candidate sets of quasi-orders. In
addition, we will present scatter plots, histograms, and kernel
density estimates for the nuanced visualization of the quasi-order
samples obtained from the SIRM and STRM procedures.

TABLE 2 | Averaged five-number summaries (with whiskers as defined) and arithmetic means of the sizes (excluding the reflexive item pairs) of randomly
generated quasi-orders for item numbers n = 11, . . . , 14 (UEM) and n = 11, . . . , 20 (SIRM and STRM).

n SIRM STRM UEM SIRM STRM UEM

Median (first line)/Mean (second line) Lower-whisker (first line)/Upper-whisker (second line)

11 27.330 (0.667) 27.490 (0.643) 27.300 (0.483) 13.810 (1.143) 13.770 (1.136) 14.100 (1.287)

27.580 (0.523) 27.723 (0.519) 27.609 (0.245) 41.600 (1.414) 41.940 (1.324) 41.500 (1.080)

12 31.980 (0.841) 32.220 (0.675) 32.000 (0.816) 17.380 (1.516) 17.360 (1.501) 17.700 (1.418)

32.288 (0.661) 32.470 (0.587) 32.146 (0.704) 47.250 (1.513) 47.700 (1.605) 46.900 (1.729)

13 37.095 (0.987) 37.550 (0.702) 37.200 (0.447) 21.020 (1.639) 21.290 (1.409) 21.000 (1.581)

37.383 (0.829) 37.830 (0.608) 37.238 (0.334) 53.970 (1.867) 54.460 (1.702) 54.600 (1.140)

14 42.430 (1.139) 42.980 (0.910) 43.000 (0.707) 25.550 (1.749) 25.320 (1.842) 26.000 (1.225)

42.812 (0.951) 43.242 (0.832) 43.097 (0.478) 60.410 (2.252) 61.190 (1.813) 60.000 (0.707)

15 48.500 (0.850) 48.600 (0.966) 29.400 (1.776) 28.600 (2.797)

48.762 (0.845) 48.861 (0.670) 68.500 (1.509) 68.500 (1.509)

16 55.000 (1.764) 55.000 (0.667) 34.300 (3.773) 34.500 (2.121)

55.187 (1.480) 55.204 (0.563) 76.000 (3.197) 75.900 (2.424)

17 61.100 (0.994) 60.900 (1.524) 40.600 (2.591) 39.400 (1.955)

61.216 (1.125) 61.446 (1.250) 81.900 (3.035) 83.400 (2.011)

18 67.740 (1.352) 68.420 (0.971) 44.740 (2.601) 44.480 (2.140)

68.090 (1.142) 68.587 (0.993) 91.260 (1.998) 92.580 (1.774)

19 74.760 (1.611) 75.380 (1.159) 51.140 (3.375) 50.560 (2.426)

75.135 (1.405) 75.677 (0.932) 99.080 (4.080) 100.640 (2.202)

20 82.300 (2.697) 82.700 (1.594) 56.820 (3.713) 56.260 (4.388)

82.495 (2.427) 82.907 (1.662) 108.380 (4.742) 109.620 (3.463)

Lower-hinge (version of first quartile) Upper-hinge (version of third quartile)

11 23.745 (0.796) 23.900 (0.732) 23.900 (0.316) 31.000 (0.569) 31.230 (0.584) 31.100 (0.316)

12 28.250 (0.845) 28.430 (0.795) 28.300 (0.823) 35.950 (0.702) 36.230 (0.679) 35.900 (0.738)

13 33.005 (1.116) 33.420 (0.755) 32.600 (0.548) 41.490 (0.969) 41.955 (0.779) 41.600 (0.548)

14 38.140 (1.206) 38.550 (1.058) 38.600 (0.894) 47.170 (1.104) 47.700 (0.969) 47.400 (0.548)

15 43.700 (1.160) 43.500 (1.269) 53.700 (0.483) 53.600 (0.516)

16 49.600 (2.066) 49.900 (0.738) 60.300 (1.418) 60.400 (0.843)

17 55.800 (1.549) 55.600 (1.578) 66.300 (1.567) 66.800 (1.476)

18 62.080 (1.536) 62.320 (1.285) 73.860 (1.229) 74.560 (1.033)

19 68.880 (1.837) 69.240 (1.255) 81.040 (1.829) 81.900 (1.093)

20 75.780 (2.750) 76.020 (2.575) 88.940 (2.831) 89.540 (1.446)

For the UEM, the average values were calculated using ten (n=11,12) or five (n = 13, 14) quasi-order samples of size N=1000. For the SIRM and STRM, we used 100 samples each

with N = 10,000 simulated quasi-orders (n=11, . . . , 14), ten quasi-order samples of size N = 20, 000 (n=15, . . . , 17), and 50 samples of N=50,000 quasi-orders (n=18, . . . , 20).

Standard deviations are in parentheses. The inductive construction was always anchored with l=2 items. The results are plotted in Figure 5.
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6.3. Resampling-Based Quasi-Order
Samples On up to n = 50 Items
In Table 3, we catalog the mean and median quasi-order sizes
for n = 3, . . . , 50 items estimated under the SIRM and STRM.
For each item number, one sample of N = 500, 000 quasi-orders
was randomly drawn according to the SIRM and STRM. The true
population values known for n = 3, . . . , 6 are highlighted.

With larger item numbers, we have seen substantial variability
in the location estimates. Greater sample sizes or many
repetitionsmay be necessary to control for such instability effects.
These effects may particularly arise when point-estimating the
population mean quasi-order sizes. However, the SIRM and
STRM sampling techniques could be well matched in the
simulation study, thus leading to culminating evidence. From
Figure 6, we see that the mean and median values reported in

Table 3 were very close or comparable. The resulting graph for
the mean quasi-order size, as a function of the item number,
seems to be following a quadratic polynomial function. Future
research into these issues is needed (cf. Section 7).

Exemplarily, the quasi-order samples of the size N = 500, 000
obtained for the item numbers n = 20, 30, 40, and 50 based
on the SIRM and STRM procedures were further examined. In
Figure 7, we present scatter plots, histograms, and kernel density
estimates for the nuanced visualization. Figure 7 is arranged
in pairs of plots. The plots of a pair refer to and are labeled
with the same item number n ∈ {20, 30, 40, 50}. There is a
left panel of scatter plots and a right panel containing kernel
and histogram density estimates. The plots have the observed
quasi-order sizes placed on the x-axes. Their relative frequencies
or kernel and histogram density function values are placed on

FIGURE 5 | Box plot representations for the averaged five-number summaries and arithmetic means of the sizes of randomly generated quasi-orders
(see Table 2) for item numbers n = 11, . . . , 14 under the UEM (dark gray boxes) and n = 11, . . . , 20 under the SIRM and STRM (light gray and white
boxes, respectively). The “within-method” average mean values are plotted as unfilled red circles in their respective boxes. The numerical values of the
“across-methods” overall means of the quasi-order sizes (including the reflexive item pairs) averaged over the SIRM and STRM are printed as light blue figures for the
different item numbers.
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TABLE 3 | The mean and median (in parentheses) quasi-order sizes (including the reflexive item pairs) estimated under the SIRM and STRM for item
numbers up to n = 50.

n SIRM STRM Average n SIRM STRM Average

Mean (median) quasi-order size Mean (median) quasi-order size

3 5.484 (5) 5.481 (5) 5.483 (5) 27 171.626 (171) 172.892 (173) 172.259 (172)

5.483 (5) 5.483 (5) 5.483 (5)

4 8.362 (8) 8.354 (8) 8.358 (8) 28 182.682 (182) 184.061 (184) 183.372 (183)

8.361 (8) 8.361 (8) 8.361 (8)

5 11.625 (11) 11.597 (11) 11.611 (11) 29 194.923 (195) 195.917 (196) 195.420 (195.500)

11.612 (11) 11.612 (11) 11.612 (11)

6 15.226 (15) 15.199 (15) 15.213 (15) 30 206.586 (205) 207.132 (207) 206.859 (206)

15.220 (15) 15.220 (15) 15.220 (15)

7 19.203 (19) 19.142 (19) 19.173 (19) 31 218.906 (218) 219.527 (220) 219.217 (219)

8 23.524 (23) 23.437 (23) 23.481 (23) 32 232.688 (232) 231.914 (231) 232.301 (231.500)

9 28.177 (28) 28.120 (28) 28.149 (28) 33 246.191 (246) 245.808 (246) 245.9995 (246)

10 33.209 (33) 33.136 (33) 33.173 (33) 34 258.706 (258) 258.860 (259) 258.783 (258.500)

11 38.522 (38) 38.553 (38) 38.538 (38) 35 272.967 (272) 272.386 (273) 272.677 (272.500)

12 44.259 (44) 44.193 (44) 44.226 (44) 36 286.309 (286) 286.839 (288) 286.574 (287)

13 50.289 (50) 50.287 (50) 50.288 (50) 37 302.229 (302) 302.259 (303) 302.244 (302.500)

14 56.734 (56) 56.454 (56) 56.594 (56) 38 317.764 (320) 317.773 (318) 317.769 (319)

15 63.555 (63) 63.222 (63) 63.389 (63) 39 334.588 (335) 334.834 (336) 334.711 (335.500)

16 70.734 (70) 70.217 (70) 70.476 (70) 40 352.186 (352) 352.304 (353) 352.245 (352.500)

17 77.878 (78) 77.453 (77) 77.666 (77.500) 41 369.235 (368) 369.636 (371) 369.436 (369.500)

18 85.718 (85) 85.415 (85) 85.567 (85) 42 387.988 (388) 387.459 (389) 387.724 (388.500)

19 93.794 (94) 93.395 (93) 93.595 (93.500) 43 405.442 (405) 405.446 (407) 405.444 (406)

20 102.028 (102) 101.954 (102) 101.991 (102) 44 424.055 (423) 423.938 (426) 423.997 (424.500)

21 111.359 (111) 111.011 (111) 111.185 (111) 45 442.233 (442) 441.528 (444) 441.881 (443)

22 119.345 (119) 119.923 (120) 119.634 (119.500) 46 461.318 (461) 461.070 (461) 461.194 (461)

23 128.722 (128) 129.952 (130) 129.337 (129) 47 479.437 (481) 479.874 (480) 479.656 (480.500)

24 138.617 (138) 140.088 (140) 139.353 (139) 48 497.398 (496) 497.605 (498) 497.502 (497)

25 149.458 (149) 150.209 (151) 149.834 (150) 49 515.797 (518) 515.774 (516) 515.786 (517)

26 160.060 (160) 161.311 (162) 160.686 (161) 50 534.039 (537) 534.276 (534) 534.158 (535.500)

For any n = 3, . . . , 50, one sample of N = 500,000 quasi-orders was constructed based on each method. The average values of the mean and median quasi-order sizes taken over

both methods can be found in the “Average” columns. The true population values known for n = 3, . . . ,6 are shown in bold. In each case, the inductive construction was anchored

with l = 2 items. The results are plotted in Figure 6.

the y-axes. The results for the SIRM and STRM methods are
seen in gray and green shades, respectively. The solid red lines
in the right panels are the (pointwise) average density functions
of the two kernel density estimates under the SIRM and STRM.
The mean quasi-order sizes are added as vertical dashed lines
in light blue. From Figure 7, we observe that for all of the item
numbers considered, the distributions of the quasi-order sizes
exhibit roughly Gaussian-like curves. Thus, it can be conjectured
that this may also hold true in the corresponding populations of
all possible quasi-orders.

7. CONCLUSION

7.1. Summary and Final Remarks
This paper has investigated how to randomly construct quasi-
orders on finite sets such that a notion of representativeness
for the process of sampling the discrete mathematical structures
can be substantiated theoretically. An envisaged random process

for quasi-order sampling must be feasible practically as well.
It must be applicable in realistic settings when larger sets
are used. For example, this is pertinent to the study of
psychological or educational tests. Tests can be structured and
efficiently employed based on quasi-orders. Quasi-orders on tests
can be derived using data mining algorithms. Algorithms for
mining quasi-orders have to be compared based on demanding
simulation studies. In particular, Schrepp and Ünlü (2015)
and Ünlü and Schrepp (2015) discussed the importance of
representative random quasi-order samples needed in extensive
simulation studies for the reliable comparison of data mining
algorithms used to reconstruct relational dependencies among
behavioral test items (cf. Section 1).

We have reviewed the state-of-the-art techniques currently
available for quasi-order sampling (Section 2). For item numbers
not greater than n = 15, the computations become prohibitively
intensive. This can be attributed to the fact that the subsets of
quasi-orders become quickly sparse with larger item numbers.
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FIGURE 6 | The first row scatter plot shows the mean quasi-order sizes
(unfilled black and green circles for the SIRM and STRM, respectively)
and median quasi-order sizes (unfilled light blue and blue triangles for
the SIRM and STRM, respectively) as a function of item numbers
n = 3, . . . , 50 (x-axis). The reflexive item pairs are included. The values were
computed in the SIRM and STRM samples, each having half-a-million
quasi-orders (cf. Table 3). The second row scatter plot zooms in to the
differences in mean and median quasi-order sizes, here of values obtained
under the SIRM minus the corresponding values for the STRM. The differences
in mean and median are depicted as unfilled dark gray circles and unfilled light
blue triangles, respectively. Their minima and maxima are represented by the
horizontal dashed lines of the same colors.

However, in absolute terms, the quasi-order subsets are rapidly
expanding in cardinalities. This situation is coupled with yet
another problem. We have observed a substantial increase in
variability of the constructed quasi-orders and of the summary
statistics or estimates computed from the quasi-order samples for
population parameters such as the mean size. Higher variability
means greater imprecision. This may cause unstable estimation
results. Two sources of variability seem to be effective in the
present context. There is the typical sampling variability, that is,

partial sample vs. complete population. From a combinatorial
perspective, a second source of variation, termed structural
variability, may entail effects on the computed aggregation
measures. Structural variability is viewed as arising out of the
deterministic order-theoretic constraints. Here, the transitivity
constraint is imposed on the quasi-order as the sampled unit and
an axiomatically defined mathematical object.

Thus, a general framework for a principled sampling theory
for such mathematical structures as the quasi-orders will
generally differ from the well-known statistical theory of survey
sampling (e.g., Cochran, 1977; Thompson, 2012). In contrast
to classical surveys (e.g., in the social or political sciences),
sampling mathematical structures typically includes preparatory
combinatorial work. For example, we have developed the
discrete doubly inductive quasi-order construction. In particular,
approaches similar to the simple random and stratified sampling
techniques used in surveys have not been feasible or have been
lacking in the context of sampling quasi-orders. In this paper,
we have introduced variants of these basic survey techniques
for the quasi-orders. Conceptually, the general idea comprises
two building blocks that can also be applied to other discrete
structures.

First, we have developed a combinatorial algorithm for
incrementally constructing potentially all quasi-orders on a
finite item set (Section 3). Proposition 2 shows that for any item
number, the set of quasi-orders can be partitioned into specific
constructive subsets.

Second, this deterministic procedure has been obtained
probabilistically by randomization in the individual
construction steps (Section 4). In the outer level inductive
component, we have considered uniform random extensions
of the trace quasi-orders to a higher dimension. We have
combined this with an inner level inductive component to
combinatorially correct the extensions that violate transitivity.
The inner level deterministic corrections entail sampling biases.
According to Proposition 4, the bias correction factors required
for representative sampling can be derived.

Based on the correction factors, we have introduced three
techniques for sampling quasi-orders (Section 5): the absolute
rejection method (ARM), the simple resampling method (SIRM),
and the stratified resampling method (STRM). These techniques
have been compared with the uniform extension method (UEM)
by Schrepp andÜnlü (2015). Analogous to the representativeness
result for the UEM, Proposition 5 shows that for any item
number, the bias-corrected hierarchical ARM procedure yields
simple random sampling from the population of all quasi-
orders. In extensive simulation studies (Section 6), we have
demonstrated the usefulness of the sampling techniques for
representative quasi-order generation. However, the ARM and
UEM methods represent theoretical results. They become
computationally intensive when larger item numbers are tried.
We have seen that the conservative critical threshold for the ARM
and UEM were n = 10 and n = 12 items, respectively. In
contrast, the SIRM and STRM are the recommended procedures.
They can be used with significantly higher item numbers. Within
acceptable computing time, the SIRM and STRM methods have
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provided close to representative random quasi-orders on up to
n = 50 items.

There are other characteristics than size that could be used
to compare how representative the samples are. In Schrepp
and Ünlü (2015), the quasi-order width (i.e., size of a longest
anti-chain) and height (i.e., size of a longest chain) were used
as the evaluation criteria to assess representativeness for the
UEM method. Representativeness according to Definition 1 is
assumed for arbitrary quasi-orders. Thus, we may infer that such
a representative quasi-order sample will be unbiased for the
population distributions of these and any other characteristic.
In particular, based on the comparisons made of the SIRM and
STRM with the UEM and ARM, we expect similar results for
the evaluation criteria. As an example, for a set of n = 6 items,
we compared representativeness for the UEM, ARM, SIRM, and
STRM based on the quasi-order characteristics width, height,
number ofmaximal elements (i.e., elements not in relation to any
other element), and number of minimal elements (i.e., elements
which no other element is in relation to). The average values
are reported for 100 samples each of N = 1000 simulated
quasi-orders.

The true mean values in the population of all quasi-orders
on n = 6 items are 2.624 (width), 3.625 (height), and 1.899
(number of maximal elements = number of minimal elements).
In respective order, for the UEM, the values (standard deviations
in parentheses) are 2.626 (0.033), 3.623 (0.044), 1.898 (0.038), and
1.902 (0.046). For the ARM, we have 2.624 (0.032), 3.628 (0.040),
1.894 (0.041), and 1.900 (0.043), respectively. The respective
values obtained under the SIRM are 2.623 (0.068), 3.619 (0.083),
1.899 (0.074), and 1.890 (0.087). The STRM yields 2.622 (0.069),
3.624 (0.076), 1.900 (0.076), and 1.896 (0.080), respectively.

7.2. Further Research
What are interesting directions for future research? The SIRM
and STRM sampling techniques were evaluated based on
simulation. Theoretical work may study the probability theory
foundation of these methods and of their interrelationship.
With a finite sample size, the SIRM and STRM methods are
approximate. Thus, further research may aim to investigate
the large-sample or asymptotic properties of these resampling-
based techniques. This could include quantifying the quality
of approximation to representativeness and the development of
related diagnostic error terms.

Variability reduction and the investigation of interval
estimation techniques in the context of sampling quasi-orders
are interesting directions for future research. Moreover, we have
seen that the resulting graph for the mean quasi-order size, as a
function of the item number, may be quadratic polynomial. We
have also observed that the distributions of the quasi-order sizes
are roughly bell-shaped. More in-depth analyses of these issues
are needed.

Eventually, the discussion could be generalized to other
combinatorial structures, which could include unlabeled
(equivalence classes of) isomorphic quasi-orders and such
special cases as weak, partial, or linear orderings.
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