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Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel 
diseases (IBD) share common features in their pathology. Metabolic disorders exhibit 
strong inflammatory underpinnings and vice versa, inflammation is associated with met-
abolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded 
protein response (UPR), alterations in the enteroendocrine system are intersections of 
various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their 
ability to regulate gastrointestinal motility, secretion, and insulin release by release of pep-
tide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 
1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance 
in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role 
for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune 
responses beyond blood glucose control. EEC sense the lamina propria and luminal 
environment, including the microbiota via receptors and transporters. Subsequently, 
mediating signals by secreting hormones and cytokines, EEC can be considered as 
integrators of metabolic and inflammatory signaling. This review focuses on L cell and 
GLP-1 functions in the context of metabolic and inflammatory diseases. The effects 
of incretin-based therapies on metabolism and immune system are discussed and the 
interrelation and common features of metabolic and immune-mediated disorders are 
highlighted. Moreover, it presents data on the impact of inflammation, in particular of 
IBD on EEC and discusses the potential role of the microbiota as link between nutrients, 
metabolism, immunity, and disease.

Keywords: incretins, eR stress, diabetes mellitus, microbiota, inflammation, enteroendocrine cells, glucagon-like 
peptide 1, inflammatory bowel disease

iNTRODUCTiON

Metabolically driven pathologies, such as obesity, insulin resistance, and type 2 diabetes, but also 
immunologically mediated disorders, such as inflammatory bowel diseases (IBD), are considered 
chronic diseases. Concomitant with the spread of the western lifestyle, the prevalence of these 
diseases has rapidly increased (1–3) now constituting a global health problem (4). Even though 
 phenotypically different, these diseases share common features in their pathology. Metabolic dis-
orders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with 
metabolic alterations. For example, obesity evokes a broad array of inflammatory and metabolic 
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responses leading to low-grade local inflammation and in turn to 
defective insulin receptor signaling and disruption of metabolic 
homeostasis (5). Conversely, patients suffering from sepsis and 
animal models of endotoxin-induced inflammation show a loss 
of glycemic control (6, 7). On a molecular level, metabolically 
driven and immunologically mediated disorders converge on 
cellular stress responses, such as endoplasmic reticulum unfolded 
protein response (ER UPR) (8). Furthermore, many chronic dis-
eases are associated with increased levels of the pro-inflammatory 
cytokines tumor necrosis factor (TNF) and interleukin 6 (IL-6) 
(9, 10) as well as alterations in the intestinal microbiome (11, 12).

During the past years, the intestine and in particular, intestinal 
epithelial cells (IEC) are more and more recognized as key players 
in maintaining metabolic and immune homeostasis. Constituting 
a surface area up to 40 m2 (13) and being the bodies’ most important 
interface with the external environment, the intestinal epithelium 
needs to allow efficient nutrient absorption while maintaining bar-
rier function and modulating immunity (12). Different epithelial 
cell subtypes fulfill distinct functions, with absorptive enterocytes 
and secretory (mucin-producing) goblet and (antimicrobial 
peptides-producing) Paneth cells accounting for the largest 
proportion of epithelial cells. Enteroendocrine cells (EEC) found 
scattered throughout the intestine comprise approximately only 
1% of the epithelium but secrete more than 20 different peptide 
hormones, making them collectively one of the largest endocrine 
systems (14). Among the gut hormones, glucagon-like peptide 1 
(GLP-1) and glucose-dependent insulinotropic polypetide (GIP), 
referred to as incretins, have gained enormous attention due to 
their insulinotropic action and relevance in the treatment of 
type 2 diabetes (T2D) (15). Especially GLP-1 and GLP-1-based 
antidiabetic therapies are in the spotlight of biomedical research. 
GLP-1 secreted by L cells not only potentiates the glucose-induced 
insulin response, promotes β-cell survival, slows gastric emptying 
(GE), and regulates energy expenditure and body weight, but also 
exerts neuroprotective, cardioprotective, and anti-inflammatory 
effects. Experimental approaches and treatment of patients with 
GLP-1 analogs as well as dipeptidyl peptidase-IV (DPP-4) inhibi-
tors, which inhibit the endopeptidase that rapidly degrades GIP 
and GLP-1, underline the multiple beneficial effects mediated by 
GLP-1, beyond blood glucose control. While the mechanisms 
underlying hormone secretion from EEC and their functions 
in the context of digestion and metabolism are well studied, 
their role in intestinal inflammation and their interrelation with 
immune cells is virtually unknown. Recent data indicate that 
EEC, next to nutrients, also actively sense the microbiota and 
bacterial products, enlightening a new aspect of the cross-talk 
between immune and endocrine system.

This review illustrates L cell and GLP-1 functions and discusses 
the effects of incretin-based therapies on metabolic and inflam-
matory signaling. It focuses on the interrelation and common fea-
tures of metabolic and immune-mediated disorders converging 
on GLP-1. Moreover, it presents data on the impact of intestinal 
inflammation, in particular of IBD, on EEC and the potential 
contribution of EEC to these pathologies. In addition, the  possible 
roles of cytokines, UPR, and the microbiota as link between 
 nutrients, metabolism, immunity, and disease are discussed.

eNTeROeNDOCRiNe CeLLS: LUMiNAL 
SeNSiNG AND L CeLL FUNCTiON

Typically, EEC have been classified based on the primary hor-
mone they contain. EEC secreting GLP-1, GLP-2, and peptide 
YY (PYY) are referred to as L cells, whereas GIP-producing cells 
are considered K cells. However, it was demonstrated that expres-
sion patterns of L cells differ considerably depending on their 
location in the intestine (16–18). In the proximal small intestine, 
L cells also express considerable amounts of GIP, cholecystokinin 
(CCK), and secretin.

EEC have been studied extensively for their ability to adjust 
gastrointestinal motility, secretion, and insulin release thereby 
enabling efficient postprandial assimilation of nutrients (19). To 
achieve this prime function of creating the optimal absorptive and 
digestive conditions following nutrient intake, EEC are equipped 
with specific apical sensor proteins for the detection of distinct 
luminal nutrients. Depending on the location along the gut axis, 
luminal stimuli of EEC comprise monosaccharides, free fatty 
acids (FA), monoacylglycerols, amino acids, di/tripeptides bile 
acids, short-chain fatty acids (SCFAs), and indole. The following 
sections briefly summarize receptors and transporters involved 
in environmental sensing by L cells (Figure 1). For more detailed 
information, see Ref. (15, 19).

Nutrient Sensing
Carbohydrates, lipids, and proteins are detected via their diges-
tion end products. Luminal glucose represents the most potent 
secretagogue for incretin hormone release in vivo, an effect mainly 
mediated by the sodium-dependent glucose transporter, SGLT1 
(SLC5A1) (15). As indicated by experiments demonstrating con-
comitant ingestion of proteins and glucose to enhanced GLP-1 
responses (20), peptides and amino acids are sensed by EEC via 
the proton-coupled peptide-transporter PEPT1 (SLC15A1) and 
the calcium-sensing receptor (CaSR) (15). In the case of SGLT1 
and PEPT1, nutrient-sensing is linked to hormone secretion by 
the electrogenic character of the transporters. Substrate transport 
is coupled to cation influx causing membrane depolarization, 
subsequent opening of voltage-gated calcium channels and 
an increase in intracellular calcium levels, finally resulting in 
exocytosis and hormone release from vesicles (15). This sensing 
property of nutrient transporters in EEC has coined the term 
“transceptors” and has extended the group of sensor proteins. 
Before SGLT1 was identified as the first transceptor, only 
G-protein-coupled receptors (GPCR) were known to fulfill such 
sensory functions in the intestine. GPCR comprise the amino 
acid- and oligopeptide-sensing receptors CaSR (15), metabotropic 
glutamate receptors (20), LPAR5/GPR92/93 (21), GPRC6A (22), 
and taste receptors (TRs) (23). Furthermore, GPCR are respon-
sible for detection of lipid-derived long-chain/medium-chain FA 
and dietary-fiber derived SCFAs. Predominantly, lipid ingestion 
causes GIP release. Yet, FA also elicit GLP-1 responses via the 
free fatty acid receptors (FFAR) FFAR1/GPR40, FFAR4/GPR120, 
and GPR119. Dietary fibers, after fermentation to SCFAs by the 
microbiota, are sensed by FFAR2/GPR43 and FFAR3/GPR41 and 
also trigger GLP-1 secretion (24).
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FiGURe 1 | L cells as interface between luminal-derived signals and host metabolism and immune system. L cells sense the luminal and lamina propria 
environment via receptors and transporters and mediate signals through hormone and cytokine secretion. Fatty acids (FA), free fatty acid receptor (FFAR), 
short-chain fatty acid (SCFA), sodium-dependent glucose transporter (SGLT1), proton-coupled peptide-transporter (PEPT1), glucagon-like peptide 1 (GLP-1), 
G-protein-coupled bile acid receptor 1 (TGR5).
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Along the lines of GLP-1 analogs and DPP-4 inhibitors, 
various agonists of GPR40 and GPR120 have been developed 
and proven effective in ameliorating glycemic control in animal 
trials (21, 22), now being in phase I or II clinical trials for the 
treatment of T2D (23). Interestingly, high fat consumption is 
associated with enhanced L cell density in obese subjects and mice 
(25). This increase in the number GLP-1-positive cells observed 
in mice was attributed to improved L cell differentiation and, 
furthermore, SCFAs were sufficient to increase L cell numbers in 
intestinal organoids of human and murine origin (25, 26). It has 
been suggested that this effect, favoring insulin secretion, might 
constitute an adaptive response of the intestine to counterbalance 
diet-induced insulin resistance.

Several other transporters and receptors, such as the facilita-
tive glucose transporter (GLUT2), are thought to play a role in 
incretin secretion, however, their contribution to luminal com-
pound sensing remains unclear.

Taste Receptors
Taste receptors detecting complex tastes, such as sweet, umami, 
and bitter taste, are present in the intestinal epithelium including 
EEC. While taste 1 receptors function as dimers to sense sweet or 
umami, taste 2 receptors detect a large variety of bitter tastants 

(26). Consequently, tastants might induce or contribute to the 
release of peptide hormones from EEC (24, 27). Studies indicate 
a physiological role for umami (TAS1R1/R3) and bitter TRs, yet, 
the relevance of the sweet TR T1R2/T1R3 is highly controversial 
(15, 19, 27). T1R2/T1R3 is activated not only by sugar but also by 
non-metabolizable sweeteners, such as saccharin (28). Although 
studies using EEC lines and tissue explants have demonstrated 
GLP-1 release in response to T1R2/T1R3 ligands, the in  vivo 
relevance of sweet TR activation on incretin secretion still 
remains unclear, since others have been unable to demonstrate 
functional activity of T1R2/T1R3 in primary cultured L cells or 
in perfused intestinal preparations (15, 19). In line, in vivo stud-
ies in animals and humans consistently failed to show effects of 
artificial sweeteners on plasma incretins (28–30). However, sweet 
TR activation results in increased apical SGLT1 levels and, via this 
effect, might contribute to incretin secretion (15). Interestingly, 
a selective upregulation of the bitter TR TR2R138 was shown in 
the colon of mice fed a high fat diet (31), and T2R38, a human 
receptor activated by the same ligand, phenylthiocarbaminde, has 
been demonstrated not only to be expressed in EEC of the colonic 
mucosa but also to be induced in overweight/obese subjects (32). 
T2R38 is known to respond to Gram-negative bacterial quorum-
sensing molecules in human upper airway cilia thereby regulating 
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innate immune responses (33). It is attractive to speculate that 
these receptors function as sensors for subpopulation of the 
intestinal microbiota and might respond to the alterations of gut 
microbial communities associated with long-term high-fat diet 
and obesity.

Pattern Recognition and Sensing 
of Bacterial Products
While a role for T2Rs in microbial sensing of EEC still needs 
to be addressed, there is clear evidence that EEC respond to 
bacteria and bacterial products. In particular, EEC possess 
functional toll-like receptors (TLR) and upon lipopolysaccha-
ride (LPS) stimulation, GLP-1 release is triggered in mice (34). 
Also, bacterial metabolites, such as SCFA and indole, a product 
of bacterial tryptophan metabolism involved in interbacterial 
communication, exert direct signaling actions on colonic L cells 
(19). Further evidence for the importance of the microbiota for 
incretin regulation comes from germ-free (GF) and antibiotic-
treated mice, which have severely reduced SCFA levels, and 
concomitantly increased basal GLP-1 plasma levels as well as 
increased proglucagon expression, specifically in the colon (35). 
Increasing energy supply suppressed proglucagon expression in 
GF mice, suggesting that colonic L cells sense energy availability 
and regulate basal GLP-1 secretion accordingly.

Next to indole, which acts on voltage-gated K+ channels to 
enhance Ca2+ entry thereby stimulating GLP-1 secretion (36) and 
microbiota-derived SCFA that are sensed by FFAR2/GPR43 and 
FFAR3/GPR41 (see above), the importance of bile acid-induced 
incretin secretion via the bile acid receptor GPBAR/TGR5 has 
been proven in vitro and in vivo. TGR5 ligands improve insulin 
sensitivity and glucose homeostasis through the secretion of 
incretins (27) and the rapid improvement of hyperglycemia after 
bariatric surgery has been attributed partly to alterations in bile 
acid metabolism and sensing (29, 30). A central role of bile acid 
signaling as a novel pharmacological target in the metabolic syn-
drome and related diseases, such as obesity, T2D, atherosclerosis, 
liver disease, and cancer, is underscored by the presence of TGR5 
in various tissues and cell types. Activation of TGR5 in brown 
adipose tissue and skeletal muscle increases energy expenditure, 
while activation in macrophages inhibits production of pro-
inflammatory cytokines (37).

Through affecting bile acid metabolism and providing SCFA, 
the intestinal microbiota might indirectly impact TGR5-signaling 
and nutrient sensing leading to incretin hormone secrection, 
yet, directly triggering activation of EEC via TLR also evokes an 
inflammatory response (38). Upon exposure to flagellin or LPS 
(39, 40) EEC express pro-inflammatory cytokines. TLR activation 
evokes a specific gene response indicating EEC to participate in 
innate immune responses to commensals and pathogens (39). 
Together with observations that immune cells are in close physi-
cal contact with EEC (41), this led to the suggestion of an immu-
noendocrine axis and a critical role for EEC in  orchestrating 
intestinal immune responses (42).

In the context of bacterial pattern recognition, it is noteworthy 
that PEPT1, known to mediate di/tripeptide-induced GLP-1 
secretion, was also shown to transport small bacterial-derived 

peptides, such as muramyl dipeptide (MDP). Intracellularly, these 
peptides can be sensed by nucleotide-binding oligomerization 
domain (NOD)-like receptors (NLR) that belong to the innate 
immune system and recognize pathogen-associated molecular 
patterns (43). Yet, there is neither data on the transport and pos-
sible consequences of bacterial-derived proteins in EEC nor on 
the expression of NLR in EEC. However, Pept1−/− mice do not 
show any abnormalities in weight or any other anthropometric or 
clinical chemistry measurement when animals are fed a standard 
high-carbohydrate diet (44). Furthermore, the role of PEPT1 in 
intestinal inflammation remains controversial, since there is con-
flicting data on expression levels under inflammatory conditions 
in mice and humans (43, 45, 46).

GLP-1 ACTiONS

GLP-1 effect on Blood Glucose Control
Upon stimulation, L cells secrete different peptide hormones, 
including the incretin GLP-1. GLP-1 is derived from a transcrip-
tion product of the proglucagon gene gcg, which also encodes 
GLP-2 and further factors. Mainly expressed in the ileum and 
colon, GLP-1 is known as the most powerful incretin in humans 
and lowers postprandial blood glucose via augmentation of 
glucose-dependent insulin release from pancreatic β-cells, inhibi-
tion of glucagon secretion from pancreatic α-cells, and delay of 
GE. Furthermore, GLP-1 increases pancreatic β-cell growth by 
promoting proliferation and reducing apoptosis, an effect that 
might be predominantly mediated locally via α-cell-derived 
GLP-1 (47). Conversely, L cells are responsive to insulin and 
insulin resistance is associated with impaired GLP-1 secretion 
in vitro and in vivo (48). These properties constitute the basis for 
GLP-1-based antidiabetic therapies, yet GLP-1 also exerts ano-
rexigenic effects by promoting satiety and reducing food intake.

Glucagon-like peptide 1 and GIP act via G-protein-coupled 
receptors. The GLP-1R is expressed in many tissues, including 
pancreatic islets, the central nervous system, lung, kidney, 
heart, intestine, and also on immune cells (49, 50), underlining 
the numerous roles for GLP-1-signaling beyond blood glucose 
control.

When secreted by L cells, GLP-1 either functions in an 
endocrine manner, being released into the blood stream where 
it is rapidly inactivated by DPP-4 with a half-life of about 2 min, 
or exerts paracrine effects like stimulating neurons. Triggering 
vagal afferents, GLP-1 mediates signaling from gut to brain with 
anorexigenic effects and via nerve terminals in the hepatoportal 
region, it can affect metabolic functions in the liver (15). In 
line, peptide hormones secreted by EEC can modulate immune 
responses via the nervous system. For instance, is has been 
shown that nutritional stimulation of CCK receptors attenuated 
inflammation through inhibition of pro-inflammatory cytokine 
secretion from macrophages via the vagus nerve (51).

GLP-1 and immune System
There is a strong cross-talk between immune and endocrine 
system (Figure 1). Data indicate that immune cells and cytokine 
mediated-signaling impacts EEC numbers during infection and 
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chronic inflammation of the gut (52, 53). On the other hand, 
there is a widespread expression of GLP-1R on multiple immune 
cell populations, particularly on intestinal intraepithelial lym-
phocytes (IEL) (50, 54). Moreover, in addition to its enzymatic 
functions, DPP-4 is known as the lymphocyte cell surface protein 
CD26, which plays a key role in T-cell development, activation, 
and immune regulation (55, 56). Last but not least, insulin 
itself was shown to inhibit IL-10-mediated regulatory T-cell 
functions (57) and also GLP-1 exerts direct anti-inflammatory 
effects. Supporting a function of GLP-1 in modulating immune 
responses, circulating GLP-1 was reported to be increased in 
states of chronic inflammatory disease, including the metabolic 
syndrome, coronary artery disease, or heart failure (58–60) 
but also in critically ill patients and patients with sepsis (61). 
Furthermore, treatment with GLP-1 as well as GLP-1 analogs 
and DPP-4-inhibitors exhibit beneficial effect in a vast array of 
diseases.

iNCReTiN-BASeD THeRAPieS

GLP-1-based therapies and DPP-4-inhibition, which also targets 
GIP by increasing its half-life, have been proven successful in the 
treatment of T2D.

Common adverse effects of incretin mimetics and DPP-4 
inhibitors include gastrointestinal symptoms, such as nausea and 
vomiting as well as hypersensitivity reactions. Safety issues have 
also been raised on a possible association between incretin-based 
drugs and pancreatitis or pancreatic cancer based on animal 
studies and data on patients (62). However, animal as well as 
patient data are inconsistent and suffer from several confound-
ers (63, 64). Since the relationship remains unclear, both the 
Endocrinologic and Metabolic Drugs Advisory Committee and 
the FDA’s Division of Metabolism and Endocrinology Products 
concluded that there is not sufficient evidence available to con-
clude that incretin-based therapies cause acute pancreatitis or 
pancreatic cancer (65). Nonetheless, pancreatitis is continued to 
be considered a risk associated with these drugs until more data 
are available (65).

In addition, several effects of incretin-based diabetes therapies 
beyond their glycemic-lowering properties via the endocrine 
pancreas have been described, including reduced immune cell 
infiltration and altered cytokine expression (66). Again empha-
sizing the interrelation of metabolic and inflammatory disorders, 
beneficial outcomes have also been observed in cardiovascular 
disease (67), stroke (68), hepatic diseases (69, 70), nephritis (71), 
neuro-inflammation (72, 73), rheumatoid arthritis (74), lung 
inflammation (75), and sepsis (7) (Figure 2).

GLP-1 and GLP-1 Analogs
In patients with T2D, GLP-1 and GLP-1 analogs were shown 
to improve cardiovascular-risk profiles, by reducing body fat 
content, blood pressure, circulating lipids, and inflammatory 
markers (76). Furthermore, low-grade inflammation of the 
endothelium is an early event in the pathogenesis of  atherosclerotic 
 cardiovascular disease and the GLP-1 analog liraglutide was 
shown to exhibited anti-oxidative and anti-inflammatory effects, 
including upregulation of anti-oxidative enzymes and inhibition 

of nuclear factor kappa B (NF-κB)-signaling on endothelial cells 
(67, 77). Through inactivation of NF-κB, a master regulator of 
inflammatory responses, GLP-1 treatment of mice also sig-
nificantly alleviated lung inflammation and pulmonary fibrosis 
(75). In mouse models of Alzheimer’s disease synthetic incretin 
hormones exerted neuroprotective effects, including reduced 
amyloid plaque load, reducing oxidative stress and the chronic 
inflammatory response in the brain, and enhancing neuro-
genesis (72, 73). In line, the GLP-1 receptor agonist Exendin-4 
was suggested to down-regulate pro-inflammatory responses 
and reduce oxidative stress by suppressing MAPK signaling 
pathways in peripheral lymphocytes of patients with T2D (78). 
In addition, Exendin-4 was demonstrated to selectively reduce 
the production of cytokines from activated IEL, indicating a local 
enteroendocrine–immune axis (50). In an obese mouse model 
of diabetes, GLP-1 was shown to reduce macrophage infiltration 
and directly inhibit inflammatory pathways in adipocytes and 
adipose tissue macrophages (79). Notably, studies have shown 
beneficial effects of GLP-1 treatment on glycemia in critically ill 
patients and patients suffering from septic shock, a phenomenon 
also seen in patients with T2D. Concomitantly, the incretin 
effect was reduced in critically ill patients resembling previous 
findings in patients with T2D (6). In line, experimental evidence 
indicates beneficial effects of DPP-4-inhibition and GLP-1 analog 
treatment during sepsis. The improved survival of animals with 
LPS-induced endotoxemia by treatment with GLP-1 analogs (7) 
or endotoxin-challenged DPP-4 knockout rats (61) is associated 
with reduced vascular inflammation/dysfunction. In this context, 
the diminished levels of oxidative stress and tissue protection 
were attributed to direct anti-inflammatory capacities of GLP-
1. In non-alcoholic fatty liver disease and hepatocyte steatosis, 
GLP-1 and incretin mimetics have been shown to ameliorate 
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pathology by promoting macroautophagy and SIRT1-mediated 
signals (69, 70, 80).

DPP-4 inhibitors
DPP-4 activity is markedly increased in obese subjects and in 
animal models of obesity (81, 82), suggesting the endopeptidase 
as target for therapeutic interventions. DPP-4 inhibitors increase 
the amount of circulating GLP-1 and GIP by delaying their 
inactivation. On immune cells, inhibition of DPP-4/CD26 results 
in anti-inflammatory effects via regulation of chemokines and 
anti-inflammatory cytokines like IL-10 and transforming growth 
factor (TGF)-β (83, 84) and DPP-4 might also impact mac-
rophage polarization. CD26 is furthermore involved in a variety 
of human autoimmune diseases, and as a cell surface protease, 
DPP-4/CD26 plays an important role in tumor progression (85). 
However, the majority of actions ascribed to DPP-4 in immune 
cells are attributable to non-enzymatic actions of the enzyme; 
hence, DPP-4 signaling in immune cells seems independent of 
its catalytic enzyme activity (86).

Nonetheless, DPP-4 inhibitors improve cardiovascular 
outcomes by modulating innate and adaptive immunity and 
suppression of the NLRP3 inflammasome, a multiprotein 
complex involved in caspase-1 activation and downstream 
maturation of pro-inflammatory cytokines, TLR4 and IL-1β in 
human macrophages (87, 88). For ischemic stroke and retinal 
damage, two major complications of diabetes mellitus, it was 
shown that DPP-4 inhibition prevented inflammation and 
mediated neuroprotective effects (68, 89). These properties were 
attributed to antioxidant, anti-inflammatory, and anti-apoptotic 
mechanisms, including suppression of NF-κB and downstream 
of the inflammatory cytokines TNF and IL-6. Concomitantly, 
the anti-inflammatory cytokine IL-10 was found to be elevated 
(68). In addition, data indicate that DPP-4 inhibitors also impact 
immune cell recruitment and reduced macrophage infiltration 
seemed to be mediated directly via GLP-1-dependent signaling 
in a rat nephritis model (71).

In summary, these observations underline the tight interrela-
tion of endocrine signaling and immune responses and, further-
more, indicate common disease mechanism for metabolic and 
immune-mediated disorders.

COMMON FeATUReS OF MeTABOLiC 
AND iMMUNe-MeDiATeD DiSORDeRS 
iMPACTiNG GLP-1

immune Mediators/Cytokines
Yet another strong link between metabolic and immune- 
mediated disorders are elevated levels of the cytokines TNF and 
IL-6, underlying several pathologies and both being reported to 
impact on GLP-1 signaling (Figure 3).

Tumor Necrosis Factor
Both TNF and IL-6 are correlated with the body mass index 
(BMI), and TNF is known to play a role in obesity and in particu-
lar in the insulin resistance and diabetes that often accompany 
obesity (10, 90). Typically, TNF is involved in systemic inflam-
mation and the acute phase reaction. It is able to induce fever, 

apoptotic cell death, cachexia, inflammation, and to inhibit 
tumorgenesis. Besides obesity, dysregulation of TNF production 
has been implicated in a variety of human diseases, including 
Alzheimer’s disease (91), cancer (92), rheumatoid arthritis (74), 
and IBD (93). Critically ill patients demonstrate elevated levels 
of TNF and IL-6 and as mentioned above, these patients and 
T2D share phenotypical similarities such as hyperglycemia, 
insulin resistance, and systemic inflammation (6). During 
obesity, pro-inflammatory macrophages accumulate in adipose 
tissue representing a chronic low-grade inflammation; these cells 
are the dominant sources of TNF promoting insulin resistance 
(9). Neutralization of TNF improves glucose uptake in murine 
obesity and mice lacking TNF are protected from high-fat-diet-
induced insulin resistance (10, 94). L cells express TNF receptor 
1 (TNFR1) and chronic exposure to TNF was shown to impair 
GLP-1 (95) as well as GLP-2 secretion (96). In mice with high-fat 
diet-induced hyperglycemia, hyperinsulinemia, and associated 
induction of TNF, a reduction of GLP-1-secretion was observed, 
which could be reversed by treatment with the TNF-neutralizing 
antibody etanercept (95). In a human study, infusion of TNF-
induced systemic inflammation and concomitantly reduced 
plasma levels of GLP-1 (97).

Tumor necrosis factor is a therapeutic target in several diseases 
and anti-TNF treatment is successfully applied in rheumatoid 
arthritis, psoriasis, ankylosing spondylitis, and IBD. Considering 
the effects of TNF on L cells and data from animal models, indi-
cating that impaired glucose tolerance following high-fat diet-
induced obesity can be ameliorated by anti-TNF therapy (95), 
one might expect a significant impact of anti-TNF treatment 
on glucose metabolism. However, inhibition of TNF  does not 
alter the state of insulin resistance in IBD patients (98, 99), and 
no differences in plasma insulin, glucose, and insulin resistance 
were noted in pediatric Crohn’s disease (CD) patients when com-
paring pre- and post infliximab (a chimeric anti-TNF antibody) 
treatment measurements (100). Furthermore, long-term therapy 
with etanercept did not alter fasting GIP-1 levels in patients with 
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active rheumatoid arthritis. No changes were observed in these 
patients before and after anti-TNF treatment in the plasma GLP-
1-response to an oral glucose challenge (101). In summary, these 
data underline that there is no simple correlation between TNF, 
GLP-1, and glycemic control under physiological conditions, but 
an interrelated disease network, including numerous factors.

Interleukin 6
Next to TNF, the cytokine IL-6 possesses the best-documented 
impact on incretin hormone secretion. IL-6 exerts pro- 
inflammatory as well as anti-inflammatory effects depending on 
its source and the context of secretion. T cells, macrophages, 
adipocytes, and myocytes are among the cells secreting IL-6. 
As a pro-inflammatory cytokine, IL-6 participates in the acute 
phase reaction and stimulates immune responses, especially 
during infection and tissue damage (102). In this context, 
inhibition of the IL-6 pathway was successfully applied in the 
treatment of rheumatoid arthritis (103). The anti-inflammatory 
properties comprise inhibition of TNF and IL-1 as well as activa-
tion of IL-10 (102). Within the intestine, IL-6 has been shown to 
prevent epithelial apoptosis and promote epithelial proliferation 
during injury and inflammation (104). IL-6 is also produced 
in muscle, with increased levels following muscle contraction. 
During exercise, it is thought to act in a hormone-like manner 
to stimulate energy mobilization, leading to increased body 
temperature and highlighting its metabolic functions (102). 
Obesity and T2D are associated with elevated plasma concentra-
tions of IL-6, with adipose tissue being the major source under 
these conditions (105, 106). Several studies demonstrated IL-6 
to regulate glucose tolerance and insulin action (107, 108) and 
furthermore, IL-6 was shown to enhance insulin secretion by 
increasing GLP-1 production in L cells and alpha cells, leading 
to improved glucose tolerance (47). Hence, IL-6 was suggested 
to mediate crosstalk between insulin-sensitive tissues, intestinal 
L cells, and pancreatic islets through GLP-1. In the CNS, IL-1 
and IL-6 were demonstrated to mediate GLP-1 receptor-induced 
suppression of food intake, and body weight (109). Additionally, 
significant associations of GLP-1 were found with markers of 
inflammation, including IL-6 and C-reactive protein (CRP) 
in critically ill patients, and endotoxin, IL-1, and IL-6 were 
sufficient to induce GLP-1 secretion in mice (61). Conversely, 
endotoxin-dependent hyperinsulinemia was markedly blunted 
by the use of GLP-1 receptor antagonists or in IL-6 knockout 
mice (61).

Several other cytokines and mechanisms have been implicated 
at the interface of metabolism and inflammation. For example, 
IL-10 has been shown to prevent diet-induced insulin resist-
ance (110), and IL-6 and TNF are known to decrease levels of 
the protective adipokine adiponectin (111). RANTES, a pro-
inflammatory chemokine, was demonstrated to reduce glucose-
dependent secretion of GLP-1 and GLP-2, thereby impairing 
glucose-induced insulin secretion in mice (112).

eR Unfolded Protein Response
A cellular condition on which metabolically mediated and 
inflammation-driven pathologies converge is ER stress and 
the associated UPR. Underlying various diseases, such as 

neurodegenerative disorders, diabetes, cancer, atherosclerosis, 
and IBD, the ER UPR has gained enormous attention during the 
past years (8). In mammalian cells, the ER is essential for cho-
lesterol production, for calcium homeostasis, and for the transit 
of correctly folded proteins to the extracellular space. Hence, 
a functional ER UPR is essential to all secretory cells. Among 
the conditions that challenge ER functions and elicit ER stress 
responses are changes in calcium homeostasis or redox status, 
elevated protein synthesis, accumulation of unfolded or misfolded 
proteins, energy deficiency, and microbial infections (113). The 
purpose of the ER UPR is to restore ER homeostasis by enhancing 
protein degradation, reducing protein synthesis and expanding 
the protein folding capacity by upregulation of chaperones that 
help proteins in the ER lumen to fold (114). However, if the ER 
stress is prolonged or excessive, ER UPR can ultimately lead to 
cell death via apoptotic pathways (115, 116).

Inflammation and ER stress are linked at many levels; inflam-
mation is characterized by the production of large amounts of 
proteins, such as cytokines or chemokines and, furthermore, 
studies using mice deficient in ER UPR-mediators link ER stress 
in the highly secretory subtypes of IEC, antimicrobial peptides-
producing Paneth cells and mucin-producing goblet cells, with 
antimicrobial defense and intestinal inflammation (117–119). In 
addition, ER UPR-signaling can directly intersect with inflam-
matory pathways, including NF-κB, TLR-mediated signaling, and 
production of reactive oxygen species (ROS) (120–123). Yet, ER 
UPR is involved not only in inflammatory responses but also in 
metabolic processes and adipocyte differentiation (124, 125).

It has been suggested that the ER is essential in the coordi-
nation of metabolic responses through its ability to control the 
synthetic and catabolic pathways of various nutrients (126). These 
features are reflected by the responsiveness of the ER UPR to the 
nutritional state of mammalian cells (127). ER UPR impacts glu-
cose as well as lipid metabolism (8). Consequently, there is strong 
evidence that ER UPR plays a critical role in pancreatic β cell 
survival and is relevant in the pathology of diabetes, obesity, and 
insulin resistance. Pancreatic β cells need to dramatically increase 
their insulin production to fit the demand under chronic insulin 
resistance and, hence, pancreatic islets from mice and humans 
with T2D show signs of ER UPR (128). Several factors associated 
with obesity and T2D, such as inflammatory cytokines and free FA, 
can induce ER UPR (129, 130). In particular, ER UPR-mediated 
activation of JNK has been linked to the development of insulin 
resistance and diabetes by inhibition of insulin receptor signal-
ing (131); and various animal models bearing modifications in 
ER UPR-associated functions demonstrate defects in pancreatic 
β cells and impaired glucose metabolism (131–134).

Notably, several chemicals used to treat T2D like PPAR ago-
nists or salicylates have been shown to affect ER UPR-associated 
pathways (135, 136). In murine models of obesity and diabetes, 
administration of the chemical chaperones phenyl butyric acid 
(PBA) and tauro-ursodeoxycholic acid (TUDCA), increased 
systemic insulin sensitivity, established normoglycemia, reduced 
fatty liver disease, and suppressed inflammatory signaling (137). 
PBA and TUDCA were furthermore shown to prevent ER stress-
induced inhibition of apoB100 secretion, a feature contributing to 
hepatic steatosis (138) and to ameliorate atherosclerosis in mouse 
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models (139). In the context of IBD, oral administration of either 
PBA or TUDCA reduced the severity of dextran sulfate sodium 
(DSS)-induced acute colitis as well as chronic colitis in IL-10-
deficient mice (140). During intestinal inflammation, the loss of 
secretory Paneth and goblet cell is a well-described phenomenon. 
This effect has been linked to ER UPR-signaling (118, 119, 141), 
and ER stress has also been demonstrated to counteract epithelial 
stemness (142). Interestingly, intestinal L cells have been reported 
to be prone to gluco- and lipotoxicity, with lipotoxicity being 
associated with activated ER stress response (143). Yet, there are 
virtually no reports on ER stress, ER UPR, and the functional 
consequences in L cells under disease conditions. However, it 
has been shown that GLP-1 analogs reduce hepatocyte steatosis 
and improve survival by enhancing UPR and promoting macro-
autophagy (69), and that postoperative increases in circulating 
cholic acid concentration contribute to improvements in glucose 
homeostasis after IT surgery by ameliorating ER stress (144). 
In conclusion, ER stress and the associated signaling might be 
a promising target for further research and future therapeutic 
interventions on the level of EEC.

iNTeSTiNAL iNFLAMMATiON AND 
eNTeROeNDOCRiNe CeLLS

Intestinal epithelial cells are crucial for maintaining intestinal 
homeostasis, constituting an interface between the two major 

factors influencing intestinal inflammation, the gut microbiota 
and the immune system (12). IEC directly sense enteric luminal 
bacteria and interact with immune cells of the lamina propria 
as well as IELs and are, therefore, considered to be a constitu-
tive component of the mucosal immune system (12, 145). As 
mentioned above, alterations in IEC subpopulations have been 
described previously in the context of intestinal inflammation, 
in particular for mucin-producing goblet cell and antimicrobial-
peptide-producing Paneth cells. Yet, alterations in EEC numbers 
and secretion of gut hormones have also been observed in 
intestinal inflammation and were implicated in the changes in 
feeding patterns often accompanying these conditions (146, 147) 
(Figure 4).

enteroendocrine Cells during infection
In intestinal infection, responses on the level of EEC seem to be 
a conserved mechanism throughout different species and infec-
tious agents. In this context, CCK-positive cells appear to be a 
main target of regulation, and increases in this cell type have been 
reported in fish, lamb, pigs, mice, and humans during infection 
(42, 53, 148). Interestingly, hyperplasia of selected EEC subtypes 
in response to intestinal infection is probably dependent on 
immune cells, since serotonin (5-HT)-producing cell hyperplasia 
associated with Citrobacter rodentium infection was absent in 
mice lacking adaptive immunity (53) and CD4+ T cells were nec-
essary to increase numbers of 5-HT producing enterochromaffin 
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cells during helminth infection (149). Of note, increased levels of 
CCK are correlated with the period of hypophagia seen during 
enteritis. In an elegant study, Worthington et  al. demonstrated 
that the reduction of fat mass and the resulting decrease in the 
adipokine leptin due to hyperphagia, was necessary for an effec-
tive Th2 immune response and, subsequently, efficient parasite 
expulsion (146). Intriguingly, in human lymphocytic colitis, a 
condition with unclear etiology and characterized by accumula-
tion of lymphocytes in the colonic epithelium and lamina propria, 
both chromogranin A (CgA) and PYY-positive cell densities were 
reported to be increased (150, 151). These results illustrate a dif-
ferent layer of the interaction of EEC/gut hormones, metabolism, 
and immunmodulation.

enteroendocrine Cells in iBD
Inflammatory bowel diseases and its two main idiopathic 
pathologies ulcerative colitis (UC) and CD are chronic, immu-
nologically mediated disorders of the gastrointestinal tract. They 
are characterized by relapsing inflammations of the colon (UC) 
and the whole gastrointestinal tract (CD), respectively. UC as 
well as CD are multifactorial diseases and are associated with 
alterations of the innate and adaptive immune system, luminal 
and mucosa-associated microbiota as well as epithelial function 
(3). A failure to control inflammatory processes at the IEC level 
may critically contribute to IBD pathogenesis. So far, EEC have 
not attracted much interest in the research on IBD pathology. 
Yet, a gene wide association study (GWAS) has identified a single 
nuclear polymorphism (SNIP) in the enteroendocrine-associated 
transcription factor Phox2b as risk factor for Crohn’s disease 
(152) and auto-antibodies to the enteroendocrine protein UbE4A 
are associated with disease behavior (153). Utilizing double 
immunofluorescence techniques, a co-localization of Phox2b 
with CgA and GLP-1 was demonstrated (154). In this context, it 
is noteworthy that EEC have been observed to be a specific target 
of immune responses resulting in EEC depletion during acute 
small intestinal allograft rejection (155). Moreover, EEC have 
recently been identified as producers of IL-17C in IBD, a novel 
member of the IL-17 cytokine family, and most likely involved in 
the pathogenesis of active IBD (156).

Patients suffering from IBD often display metabolic changes 
concomitantly to altered adipokine levels and increased inflam-
matory parameters (157–160). While leptin level was shown 
to be inversely related to disease activity, resistin level was 
increased in patients with active disease and was identified 
as independent predictor of disease activity in CD (157, 160, 
161). Insulin resistance and changes in lipid metabolism are 
a common phenomenon in IBD. Of note, the relative insulin 
resistance observed is in most cases due to increased insulin 
levels, whereas serum glucose remains normal (158–160, 162). 
Interestingly, Valentini et al. reported hyperinsulinemia in IBD 
patients to be associated with a decrease in adiponectin and 
proved hyperinsulinemia to be an independent protective factor 
for 6-month maintenance of remission (160). Intestinal inflam-
mation is associated with elevated levels of circulating free FA 
in IBD. It has been suggested that these alterations reflect an 
“energy appeal reaction” of the organism providing free energy 

in the circulation, which is needed by inflammatory cells (158). 
Besides, reduced appetite, anorexia and altered intestinal motil-
ity often accompany intestinal inflammation, and might be 
linked to EEC, since PYY, GLP-1, and CCK signal satiety and 
modify motility (14, 163, 164).

Increased serum levels of human pancreatic polypeptide 
(HPP), gastrin, motilin, CCK, PYY, ghrelin, and also GIP, 
GLP-1, and GLP-2 have been reported either at baseline or 
postprandially in UC and/or CD (154, 163, 165–168). Several 
of these studies show conflicting results, which might be partly 
due to technical advancements, since some of the results have 
been published more than 30 years ago. However, some altera-
tions in serum levels were reflected by changes in EEC-subtype 
numbers found by immunohistochemistry, substantiating 
these observations (154, 166, 169). Overall, the total number 
of studies and patients is limited, especially when regarding the 
heterogeneity of IBD pathologies. Yet, an increase in total EEC 
numbers defined as CgA-positive cells has been reported for 
ileal CD (154, 169). Furthermore underlining the link between 
EEC and chronic intestinal inflammation, T-cell receptor α 
knockout mice displaying reduced cytokine levels and decreased 
EEC numbers, develop an UC-like phenotype (52). For GLP-1, 
elevated levels were found in CD (165) and UC (167), whereas 
no differences were found in CD specifically affecting the 
small bowel (163). Noteworthy, Moran et al. showed increased 
numbers of GLP-1 and CgA-positive cells in terminal ileal CD, 
which was confined to the site of active inflammation. Neither 
in the presence of active colitis (without ileal involvement) nor 
in quiescent ileitis, EEC numbers were changed in the terminal 
ileum (154). This might indicate total changes in hormone secre-
tion to be too minor to be recovered in serum due to the limited 
tissue affected. Yet, the changes in EEC numbers and activity 
observed seemed to be cell-type specific, since PYY expression 
remained unaltered, suggesting a selective induction of GLP-1 
rather than a simple global upregulation of all EEC lineages and 
their products (154). On the other hand, DPP-4, the incretin 
degrading endopeptidase, has been found to be reduced in tissue 
and plasma in active CD (170) and further inhibition of DPP-4 
accelerated mucosal healing in a murine model of colitis (171). 
Locally increased GLP-1 levels might exert paracrine functions 
on IEL (50) and afferent neurons, impacting mucosal immune 
responses and feeding patterns, respectively. Appetite is reduced 
in active small bowel CD, and in a subset of patients with IBD, 
GE is delayed, and prolonged GE is associated with higher dis-
ease activity and increased secretion of GLP-1. Conversely, GE is 
accelerated and GLP-1 release decreases significantly, following 
effective therapy (164).

The upregulation of GLP-1 positive cells might be linked to an 
increase in GLP-2, an L-cell-derived peptide and a further splice 
product of the gcg gene. GLP-2 is an epithelial growth factor 
implicated in epithelial homeostasis, barrier function, and repair 
following injury. GLP-2 exerts anti-inflammatory functions, 
such as sustaining proper Paneth cell function (172), and has 
been shown to ameliorate experimental colitis in several animal 
models (173–176). More important, a GLP-2 analog was proven 
effective in the treatment of active moderate to severe CD (177) 
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and improved intestinal functions in patients with short bowel 
syndrome (178, 179).

In the context of epithelial homeostasis and wound healing, it 
is remarkable that incretin gene expression is regulated through 
the Wnt signaling pathway (180, 181). Wnt signals determine the 
intestinal stem cell niche and regulate intestinal stemness and 
proliferation (182). Chronic and acute intestinal inflammation is 
associated with alterations in cell proliferation most likely due to 
tissue insults and IEC loss. GLP-1 itself is capable of stimulating 
the Wnt pathway in an autocrine manner (183), suggesting a 
further potential mechanism linking incretins to intestinal tissue 
homeostasis.

On the other hand, clinical data enlighten further aspects 
of EEC function and metabolism. Surgical resection of affected 
parts of the intestine and colectomy are part of IBD treatment. 
Ileostomists show a significant reduction in circulating GLP-1 
associated with elevated glucagon concentrations, indicating the 
colonic endocrine tissue to have an important role in postpran-
dial metabolism (184). Enlightening a different aspect of the role 
of EEC under pathological conditions, long-standing intestinal 
inflammation is associated with an increased risk of developing 
adenocarcinomas. It has been suggested that an increased EEC 
mass in response to chronic inflammatory injury drives neoplasia 
by producing trophic hormones (185).

Enteroendocrine cells alterations rather seem to be a general 
feature of intestinal inflammation than a specific mechanism of 
IBD. To clarify if these alterations represent only a consequence 
or causatively contribute to intestinal inflammation, more 
research is needed. Yet, EEC and their products might modulate 
IBD pathology through orchestrating a metabolic-inflammatory 
response (Figures 1 and 5).

MiCROBiOTA AND 
eNTeROeNDOCRiNe CeLLS

In recent years, the intestinal microbiota and its correlation with 
numerous human pathologies has gained increasing attention. 
There is a complex interaction between host genetic and meta-
bolic makeup, diet, and microbiota (Figure 5). Changes in terms 
of diversity and richness have been associated with conditions, 
such as obesity, T2D, Parkinson’s disease, cardiovascular disease, 
and IBD. Manipulating the microbial composition is, therefore, 
an attractive therapeutic approach; probiotics as well as prebiotics 
have been demonstrated to exert multiple beneficial effects in IBD 
(186) and T2D (187), including increased GLP-1 release (188). 
Concurrently, evidence from studies with GF mice indicates a 
huge impact of the microbiota on EEC numbers (189). More 
specifically, Glp1r knockout mice display an altered composition 
of their intestinal microbiota (50). As described above, EEC can 
directly sense their microbial environment via TLR and through 
metabolites generated the microbiota. Regarding GLP-1 expres-
sion, SCFA and bile acids are the best-studied links between 
microbiota and gut hormone secretion.

Short-chain fatty acids are produced by bacteria in the distal 
gut by fermentation of fibers and exert various beneficial effects 
on human health (190). In particular, butyrate has been shown 
to ameliorate mucosal inflammation and oxidative status, 
 improving intestinal barrier, preventing colorectal cancer and 
beyond these intestinal effects, to reduce food intake, improve 
hypercholesterolemia, insulin resistance, and ischemic stroke 
(191). SCFA are able to modulate cytokine and chemokine 
expression of immune cells and adipocytes (190). They are sensed 
by L cells via FFAR2/GPR43 and FFAR3/GPR41, and activation 
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of these receptors triggers GLP-1 secretion (15). The importance 
of SCFA-mediated GLP-1 secretion is highlighted by the obser-
vation that FFAR2 knockout mice exhibit reduced insulin levels 
and impaired glucose tolerance due to reduced GLP-1 levels (24). 
Furthermore, butyrate-induced GLP-1 secretion is attenuated in 
FFAR3 knockout mice (51). Interestingly, it was demonstrated 
that different compositions of the intestinal microbiota via their 
distinct abilities to produce SCFA might in turn affect expression 
of FFAR by epigenetic gene regulation (192). Conversely, modulat-
ing the composition of the microbiota using the probiotic VLS#3, 
stimulated production of butyrate, promoting GLP-1 secretion, 
and improving the metabolic state in mice (193). Of note, VSL#3 
has also been shown to be effective in the treatment of IBD (186).

There is only limited data on the role of specific bacterial species 
on incretins; however, in an elegant study, Everard et al. showed 
that the abundance of Akkermansia muciniphila was associated 
with L cell number and secretory capacity (194). A. muciniphila is 
a mucin-degrading, acetate and propionate-producing bacterium 
residing in the mucus layer, thus being in relative close proximity 
to the intestinal epithelial layer (195), hence having the potential 
capacity to activate GPR43. Interestingly, A. muciniphila has been 
shown to be reduced in obese and T2D mice and that admin-
istration of A. muciniphila for 4 weeks was sufficient to reverse 
high-fat diet-induced obesity and T2D (196).

In contrast to SCFA, bile acids are produced by the host. 
Synthetized from cholesterol in the liver, bile acids facilitate forma-
tion of micelles in the intestine, promoting absorption of dietary 
fat (197), but additionally, they are increasingly recognized to act 
as signaling molecules and receptor ligands (198). The hepatic 
bile acid synthesis is tightly regulated by negative feedback 
mechanisms (199) and by transforming primary into secondary 
bile acid species, the intestinal microbiota strongly affects bile 
acid metabolism (200). Thus, modulating the bioavailability and 
resorption of bile acids, the microbiota impacts on enterohepatic 
bile acid-signaling and greatly impacts the whole-body metabolic 
homeostasis (199). Next to the bile acid receptor TGR5, which 
is directly linked to GLP-1 secretion from L cells, the farnesoid 
X receptor (FXR) was implicated in bile acid-induced metabolic 
alterations. Activation of FXR by the gut microbiota was shown to 
reduce the expression levels of most bile acid synthesis enzymes 
and inhibit the expression of gluconeogenic genes (201, 202), 

thereby linking the intestinal microbiota to the regulation of bile 
acids and metabolic homeostasis. Conversely, bile acids impact 
the bacterial composition of the microbiota by exhibiting strong 
antimicrobial functions (203).

Bile-acid sequestrants are used to sequester bile acids in the 
intestine, leading to increased bile acid synthesis and consequently 
to a reduction in low-density lipoprotein cholesterol. In patients 
with T2D, bile-acid sequestrants have furthermore been shown 
to improve glucose control. This effect was suggested to be due to 
multiple mechanisms, including alteration of the bile acid pool, 
changes in microbiota composition, improvement of hepatic 
glucose metabolism, and increased release of incretin hormones 
(204, 205). Also, some of the remarkable metabolic effects of 
bariatric surgery have been attributed to altered bile acid signal-
ing (199). In line, TGR5 and FXR agonists have shown promising 
results in the treatment of metabolic and inflammatory diseases, 
such as IBD and T2D (37). Modulating the microbiota/SCFA/bile 
acid-signaling to impact metabolism and inflammatory processes 
via GLP-1 and other mechanisms, therefore, represents a new 
strategy for the treatment of several chronic diseases.

CONCLUSiON AND PeRSPeCTive

Exploring the role of EEC and incretin hormones beyond blood 
glucose control is still in its infancy. In the context of inflamma-
tion, incretins might be a double-edged sword, since peptide 
hormones secreted by EEC not only exert direct immunomodula-
tory effects on diverse immune cell subsets (14) but GIP signaling 
has also been associated with pro-inflammatory processes and 
insulin resistance in mice (206). The complexity of the immune–
endocrine axis is further highlighted by the unexpected finding 
that mice overexpressing TNF are protected from high-fat diet-
induced insulin resistance (207). Along this line, IL-6 knockout 
mice only display an altered metabolic phenotype when fed a 
high-fat diet (208). To tackle the question on the role of EEC 
under inflammatory conditions, in particular if and how they are 
involved in the onset of diseases, more research is needed.

Multiple drugs targeting GLP-1 functions, ER UPR, bile acid 
signaling, and the microbiota have already proven to be effective 
in the treatment of T2D and IBD (Figure 6). Yet, there seem to 
be much more possibilities and fields of applications for these 
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