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Abstract

Background: Genomes of E. coli, including that of the human pathogen Escherichia coli O157:H7 (EHEC) EDL933,
still harbor undetected protein-coding genes which, apparently, have escaped annotation due to their small size
and non-essential function. To find such genes, global gene expression of EHEC EDL933 was examined, using
strand-specific RNAseq (transcriptome), ribosomal footprinting (translatome) and mass spectrometry (proteome).

Results: Using the above methods, 72 short, non-annotated protein-coding genes were detected. All of these
showed signals in the ribosomal footprinting assay indicating mRNA translation. Seven were verified by mass
spectrometry. Fifty-seven genes are annotated in other enterobacteriaceae, mainly as hypothetical genes; the
remaining 15 genes constitute novel discoveries. In addition, protein structure and function were predicted
computationally and compared between EHEC-encoded proteins and 100-times randomly shuffled proteins. Based
on this comparison, 61 of the 72 novel proteins exhibit predicted structural and functional features similar to those
of annotated proteins. Many of the novel genes show differential transcription when grown under eleven diverse
growth conditions suggesting environmental regulation. Three genes were found to confer a phenotype in
previous studies, e.g., decreased cattle colonization.

Conclusions: These findings demonstrate that ribosomal footprinting can be used to detect novel protein coding
genes, contributing to the growing body of evidence that hypothetical genes are not annotation artifacts and
opening an additional way to study their functionality. All 72 genes are taxonomically restricted and, therefore,
appear to have evolved relatively recently de novo.

Keywords: Translatome, Riboseq, Proteome, Novel genes, Orphans, EHEC

Background
EHEC is an important human pathogen, which causes
bloody diarrhea, hemolytic uremic syndrome and other
sequelae [1]. Strain EDL933 has been isolated from
ground beef in Michigan (USA) and has been linked to
the first severe EHEC outbreak in 1982 in which this
bacterium was shown to be the causative agent [2].

Next generation sequencing (NGS), especially if con-
ducted strand-specifically on mRNA (RNAseq), has
grown into a valuable tool to study bacterial transcrip-
tomes [3]. However, transcripts represent mRNAs as
well as non-coding RNAs (ncRNAs), which sometimes
are hard to tell apart. Especially, transcripts of small pro-
teins might be mistaken for short ncRNAs [4–6]. A
much better tell-tale for protein-coding RNA is the
translatome consisting of ribosomal footprints, which in-
dicate mRNAs being in the process of translation [7–
10]. To determine the translatome, ribosomes are stalled
on the mRNA and RNA parts accessible to RNase are
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degraded. The parts of mRNA covered by ribosomes are
protected and form “ribosomal footprints” which are
sequenced [10]. In addition, a high-throughput method
to interrogate the bacterial proteome is the mass-
spectrometry-based analysis of proteolytically digested
proteins, usually referred to as “bottom up” or “shotgun
proteomics” [11]. This method is able to directly confirm
the existence of proteins, albeit displaying a limited sen-
sitivity for low abundance proteins [12].
It is surprising that a sizable fraction of genes in any

bacterium is still of hypothetical status, which means
that their function is unknown and it is even unclear
whether these genes are expressed [13]. Some hypothet-
ical proteins have no homology to any other predicted
protein in any species [14], i.e., they are taxonomically
restricted [15] and, therefore, belong to the orphan
genes. Other hypothetical genes are found in genomes of
many species and are termed “conserved hypotheticals”
[13]. Some hypothetical genes are believed to be annota-
tion artifacts, suggesting that genomes are “over-anno-
tated” and several hypothetical genes may not be
protein-coding genes at all. For instance, after genome
sequencing, genes are often predicted by computational
annotation tools like GLIMMER [16]. These automatic
tools might proliferate annotation errors. Yu et al. [17]
state: “Previous works show that a significant fraction of
annotated short ORFs may be not true genes, which is
one of the major causes that account for the over-
annotation of microbial genomes.” This reality has influ-
enced the annotation of genomes from the release of the
first eukaryotic yeast genome that began with over 9000
ORFs and shrunk to about 6000 when the authors real-
ized a high error rate removing many ORFs shorter than
100 residues [18]. However, the above statements are
based on publications from an era in which short pro-
teins were largely dismissed as not functional, hence, not
existing [19, 20]. Today, we control the technology to
dig deeper: we add 72 short protein coding genes to the
E. coli EHEC gene repertoire by using a multi-omics ap-
proach, including translatomic data and transcription
patterns specific for different growth conditions.

Methods
No ethics approval was required for any aspect of this
study.

Strain and culture conditions
The derivative WS4202 (Weihenstephan Microbial Strain
Collection, Lehrstuhl für Mikrobielle Ökologie, Tech-
nische Universität München, Germany = CIP106327, Col-
lection de l’Institut Pasteur, Paris, France) of Escherichia
coli O157:H7 EDL933 (EHEC) was used in this study. Bac-
teria were incubated in 10-fold diluted lysogeny-broth
[21] at 37 °C with shaking (180 rpm). The optical density

of the samples was monitored at 600 nm to determine the
growth phase. Before harvesting, an aliquot was plated on
CHROMagar O157 (CHROMagar, France) to confirm
identity. Cells were harvested by centrifugation (10,000×g,
1 °C, 3 min) in the transition from late exponential to
early stationary phase. The pellet was frozen in liquid ni-
trogen and stored at -80 °C for RNA extraction. For ribo-
somal footprints, corresponding transcriptomes, and mass
spectrometry, the strain was also grown in 10-times di-
luted LB. For the condition LB-Nitrite, 200 mg/L sodium
nitrite was added and the pH adjusted to 6 using HCl.
Briefly, bacteria were grown in LB medium at pH4, pH9,
or at 15 °C; in LB with nitrite or trimethoprim-
sulfamethoxazole; in LB-agar surface, M9 minimal
medium, spinach leaf juice, surface of living radish
sprouts, or in cattle feces. Further details about the growth
conditions are described in [9].

RNA-footprints and transcriptomes
RNA-footprints and transcriptomes (two biological repli-
cates in each case) were analyzed as described by Land-
storfer et al. [22] using 170 μg/mL chloramphenicol to
stall the ribosomes, which is about 6-times above the
concentration at which trans-translation occurs [23].
Isolated ribosomes were incubated with RNase I. Intact
ribosomes were enriched twice by gradient centrifuga-
tion. Isolated footprints and isolated total RNA for tran-
scriptome sequencing (rRNAs removed) were processed
strand-specifically with the TruSeq Small RNA Sample
Preparation Kit (Illumina) according to the manual and
sequenced on an Illumina MiSeq.
Illumina FASTQ files were mapped to the genome

using Bowtie [24] either in Galaxy [25, 26] or as standa-
lone with default settings. Output SAM files were fil-
tered for mappable reads using Samtools and further
converted and indexed to BAM and BAM.BAI files [27].
Visualization of the data was carried out using our own
NGS-Viewer [28] or BamView [29] implemented in Ar-
temis 12.0 [30]. Transcription and translation levels were
evaluated using RPKM values [31]. The RPKM value is
defined as “reads per kilobase-gene length per million
mapped reads”. In our calculations, we excluded rRNA
reads since this value is compromised by the rRNA re-
moval. All new open reading frames (ORFs) suspected of
being translated (at least 10 RPKM translatome) were
inspected manually [28] to exclude false positives, and
the ribosomal coverage value (RCV) was calculated. The
RCV is defined as the RPKM ratio of the translatome
per transcriptome for each gene [31], both derived from
the same biological experiment [22].

Protein isolation
Cells were harvested by centrifugation at 4 °C for 4 min
at 10.000 × g and washed five times with cooled Ringer
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solution. The pellet was resuspended in cold lysis buffer
(50 mM Tris/HCl pH 7.5, 5 % glycerol, 1.5 mM MgCl2,
150 mM NaCl, 1 mM Na3VO4, 25 mM NaF, 0,8 %
NP40/Igepal, 1 mM DTT and 1 tablet / 25 mL buffer of
EDTA-free tablets of the protease inhibitor cocktail;
Roche Diagnostics). Cells were disrupted using a Fast-
Prep (MP Biomedicals) with six runs for 20 s each at a
shaking speed of 5 m/s and cooling on ice between each
run. The suspension was then incubated on ice for
30 min and subsequently centrifuged for 10 min at
20.000 × g at 4 °C. The supernatant was transferred to an
ultracentrifuge tube and centrifuged 1.5 h at 4 °C at
141,000 × g in a Beckmann L7 ultracentrifuge. The
supernatant was transferred into fresh tubes and stored
at −80 °C. Protein concentration was determined by
Bradford assays (RotiQuant, Roth), measuring extinction
on a Victor3 1420 multilabel counter (Perkin Elmer).
The standard curve was generated using BSA (bovine
serum albumin). The lysate was fractionated by SDS gel
electrophoresis into 12 fractions. Each gel-fraction was
washed and digested with trypsin for mass spectrometry
(MS) analysis.
For the protein fraction “LB-small”, small proteins

were fractionated by separating 300 μl of the above pro-
tein solution on two SDS gels. The proteins below
12 kDa were excised from the gel and transferred to a
0.5 ml microcentrifuge tube, which was pierced with a
20-gauge needle at the bottom. This tube was placed in
a 1.5 ml microcentrifuge tube and centrifuged for 2 min
at 13,000 × g at room temperature. The resultant gel
debris was transferred to 500 μl elution buffer, rotated
over night at room temperature in a microcentrifuge
tube and then filtered with a 0.22 μm Spin-X spin filter
(Corning, USA) for 2 min at 10,000 × g. Next, the pro-
teins were precipitated using four-volumes of cold acet-
one (−20 °C), incubated at −20 °C for 60 min and then
centrifuged at 15,000 × g for 10 min at −20 °C. The
supernatant was decanted and remaining liquid evapo-
rated at room temperature. Finally, the small protein
fraction was treated with trypsin for MS analysis.

Mass spectrometry
The digested protein fractions were subjected to an Eksi-
gent nanoLC-Ultra 1D+ (Eksigent, Dublin, CA) coupled
to an Orbitrap Velos (Thermo Scientific, Bremen,
Germany). Peptides were delivered to a trap column
(100 μm inner diameter × 2 cm, packed with 5 μm C18
resin, ReproSil-Pur AQ (Dr. Maisch, Ammerbuch,
Germany) at a flow rate of 5 μl per min in 100 % buffer
A (0.1 % formic acid in HPLC-grade water). After
10 min of loading and washing, peptides were trans-
ferred to an analytical column (75 μm× 40 cm C18 col-
umn, ReproSil-Pur AQ, 3 μm, Dr. Maisch) and
separated using a 110-min gradient from 2 % to 35 % of

buffer B (0.1 % formic acid in acetonitrile) at a 300 nl
per min flow rate. Full-scan mass spectrometric spectra
were acquired in the Orbitrap at mass resolution of
30,000. The five most intense precursors were selected
for HCD fragmentation (isolation width, 2.0 Th) with a
normalized collision energy of 40 % at an AGC target
setting of 50,000. HCD spectra were acquired in the
Orbitrap at a mass resolution of 7,500. Dynamic exclu-
sion was enabled for a 10-s repeat duration and a 10-s
exclusion duration with a repeat count of one. The MS
results were based on three biological experiments in-
cluding LB-standard, LB-nitrite and LB-small.
Raw mass spectrometric data files were converted into

Mascot generic format files (MGF) using Mascot Distil-
ler (2.4.2.0, Matrix Science). The MGF files were
searched against the Escherichia coli O157:H7 EDL933
non-redundant NCBI database (version 03.05.2011) and
the six-frame translated genome (NC_002655) using the
Mascot search engine (2.3.1, Matrix Science). Mascot
parameters were: an enabled decoy search using a ran-
domized database; monoisotopic peptide mass (consider-
ing up to two 13C isotopes); trypsin/P as protease; a
maximum of two missed cleavages; peptide charges +2
and +3; peptide tolerance ± 5 ppm.; MS/MS tolerance
± 0.005 Da; instrument type ESI-Trap; fixed modification:
carbamidomethyl (cysteine) and variable modification:
oxidation (methionine).
The results from Mascot were further processed with

the software Scaffold [32] for statistical validation and
better visualization (parameters used were: peptide prob-
ability ≥ 80.0 %, protein probability ≥ 99.0 %, minimum
two peptides resulting in zero hits for decoys in peptide
spectra or protein. The identified proteins and peptides
were visualized and investigated using Artemis [30].

Computational biology
The search engine PlatProm [33] was used to find poten-
tial promoters nearby the candidate genes. PlatProm
scores were calculated for each nucleotide in the genome
to estimate the probability for being the starting point of
transcription. Scores exceeding the background level by
four standard deviations (SD; score ≥ 7.44) were consid-
ered as statistically significant (p < 0.00004). While most
bacterial promoters are located within the 250 bp region
upstream of the initiation codon, about 10 % of the tran-
scription start sites are within a more upstream region of
250–650 bp from the start codon [34]. Therefore, we
searched promoters within 650 bp upstream of the start
codons of the ORFs. The position with the highest poten-
tiality to initiate transcription within this range was taken.
Homologues protein and gene sequences were

searched using blastp and tblastn, respectively [35]. Pre-
dictProtein [36, 37] was used to generate predictions of
protein functional and structural features. In particular,
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the following tools were applied: PROFphd (secondary
structure and solvent accessibility, [38]), PROFtmb
(transmembrane strands, [39]), TMSEG (transmembrane
helices) and COILS (coiled-coil regions, [40]), ScanPro-
site (functional motifs, [41]), HMMER (PFAM domains,
[42]), SomeNA (protein, DNA and RNA binding sites,
[37]), PSI-BLAST [43] and HHblits (homology to known
proteins, [44]), SEG (low- and high-complexity regions,
[45]), ConSurf (evolutionary conservation of amino
acids, [46]), DISULFIND (disulfide bonds, [47]). For disor-
dered region predictions, PROFbval [48], UCON [49] and
METADISORDER [50] were used. Further, PROFtmb
(bacterial transmembrane β-barrels, [51]), Metastudent
(Gene Ontology terms, [52]), and LocTree3 (subcellular
localization, [53]) were applied. SignalP4.1 was used for
the prediction of signal peptides [54]. In all cases, default
settings were used.
In order to check whether the functional and struc-

tural features of the 72 novel proteins resemble those of
known annotated proteins, we assembled a positive set
of “real proteins” by randomly choosing four length-
matched annotated EHEC-proteins for each of the 72
novel proteins. Of 288 proteins, one was dropped later
since it was duplicated in the genome. The negative
comparison set was generated by shuffling each of the
287 annotated comparison proteins 100-times, i.e. gener-
ating 100 new random sequences with the same amino
acid distribution as in the original sequence, but destroy-
ing any positional signal. PredictProtein was applied to
protein sequences of both sets (i.e. “real” and “shuffled”)
and the result was then provided to the Support Vector
Machine (SVM, [55]) implementation of WEKA [56]
and the Radial Basis Function [57] to discriminate auto-
matically between proteins of both sets. The SVM was
trained on features predicted by PredictProtein for 287
annotated (positive data) and 2870 shuffled (negative
data) protein sequences. A similar negative set of shuf-
fled proteins for the 72 novel proteins was generated in
the same way as for the 287 annotated proteins. The
trained SVM (“real” versus “shuffled”) was applied to
classify each of the 72 novel and corresponding 7200
shuffled novel proteins. The total sets of 100 shuffled
proteins for the 72 novel and the 287 annotated proteins
were used to calculate error bars for the predicted pro-
tein features.
Repeat sequences of X002 were detected using

REPFIND [58] and its RNA was folded with mfold [59],
both used with default parameters.

Results
Ribosomal footprinting reveals 72 novel short protein-
coding genes
We performed ribosomal footprinting which detects only
RNA covered by ribosomes, i.e., mRNA. All intergenic,

non-annotated ORFs of at least 153 bp (≥50 aa) were ex-
tracted from the translated-mRNA data set if a minimal
threshold of 10 RPKM for the translatome was reached.
This value is about 10-fold above background [9]. Each
ORF of this subset was visually screened for its transla-
tional signal in the translatome to exclude false positives
(e.g., translation of preceding or subsequent genes). This
procedure yielded 72 previously un-annotated ORFs with
an RPKM translatome between 13 and 2974. The mean
for this value was 327 comparing to 404 of all annotated
genes [not shown; 22]. Similarly, the ribosomal coverage
value (RCV) was between 0.02 and 3.6 (Table 1) for the
novel genes with an average of 0.9. The average RCV of
annotated genes in this experiment was about 1.1 [not
shown; 22]. Thus, the novel proteins are produced in
lower abundance compared to annotated genes. In Fig. 1,
the ribosomal footprinting pattern of four examples is
shown in detail. The mRNA of the 72 genes was under
translation to various degrees (Table 1) and, therefore, the
genes received tentative gene names starting from X001.
This labeling indicates that they are of unknown function,
although their differential expression under diverse condi-
tions was determined and for some a phenotype was
found (see below). Most of the 72 new genes were short
(≤315 bp, mean 210 bp), but three were longer (384, 465,
and 804 bp).

Bioinformatics analysis of the proteins encoded in the
novel genes
Suitable σ70-dependent promoters were predicted by
PlatProm within the potential regulatory region of 50
candidate genes, while additional 14 genes are possibly
transcribed as polycistronic units together with upstream
genes (Table 1). Most novel genes, therefore, appeared
to be driven by the housekeeping form of the RNA poly-
merase [34].
Protein sequences of the 72 new genes were submitted

to PredictProtein [36], a powerful protein-analysis tool,
which provides predictions of various aspects of protein
structure and function (see Material & Methods and
Additional file 1). The goal of this study was to compare
the newly discovered proteins (“novel”) at a broader
scale with gene products of annotated genes. Towards
this end, a random choice of length-matching annotated
proteins from EHEC was used as a control (“annotated”).
To exclude excessive bias using randomly chosen anno-
tated proteins, each novel protein of the 72 was length-
matched with four annotated gene products.
The secondary structure prediction (helix, H; beta-sheet,

E; loop, L; Fig. 2a) did not show any conspicuous differ-
ence between novel and annotated proteins. This was also
true for the percentage of buried (b) versus exposed (e)
residues (Fig. 2a). About 40 % of the proteins in both
groups were predicted to contain transmembrane helices
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Table 1 Novel genes detected in EHEC

Gene description Ribosomal footprintse MSh PlatProm predictioni

Namea Classificationb Startc Stopc Length [bp] Origind RPKM Gene coveragef Ribosomal coverage valueg (RCV) LB LB-Nit LB-small Upstream of start codon [bp] Score

X001 real 217270 217488 219 1690 0.99 2.35 −460 9.00

X002 yahH real 391261 391725 465 56 0.61 0.64 −211(yahF) 8.93

X003 real 570516 570710 195 102 0.72 0.69 – –

X004 real 667557 667805 249 18 0.59 0.51 2 2 −287 7.90

X005 real 713269 713421 150 190 0.92 0.89 −54(cstA) 7.61

X006 real 713433 713630 198 166 0.86 0.77 −54(cstA) 7.61

X007* 790488 790682 195 79 0.65 0.80 −563 9.15

X008 real 902889 903083 195 phage 678 0.71 0.82 −14 7.63

X009* real 978607 978747 141 17 0.52 0.50 −129 7.63

X010a real 1112292 1112471 180 35 0.75 0.71 −297 8.28

X010b 1508079 1507899 duplicate of X010a

X011* real 1146872 1147027 156 13 0.53 0.38 – –

X012 real 1152583 1152795 213 57 0.51 0.42 −2 7.66

X013 real 1256680 1256967 288 phage 230 0.89 0.92 2 −590 7.73

X014a real 1267635 1267820 186 phage 552 0.66 0.26 −67 8.07

X014b 2314896 2314711 duplicate of X014a

X015 real 1334776 1334931 156 phage 35 0.84 0.32 −70(trxB) 7.84

X016a real 1346825 1347184 360 phage 58 0.65 0.69 −20 9.29

X016b 3000443 3000802 duplicate of X016a

X017 real 1353605 1353772 168 phage 23 0.52 0.21 −91 9.27

X018 real 1411438 1411557 120 49 0.8 0.37 −30 10.92

X019 real 1680779 1680967 189 phage 242 0.77 3.51 −269 9.01

X020 real 1772962 1773144 183 53 0.6 1.04 −24(dadA) 10.52

X021 real 1843458 1843622 165 1029 0.65 2.56 −625 7.74

X022* real 1866296 1866505 210 phage 2169 0.82 0.73 −6 7.63

X023* 1866493 1866648 156 phage 280 0.88 1.30 −203 7.63

X024 real 1881598 1881819 222 phage 21 0.37 0.60 2 2 2 −76 8.93

X025a 1389500 1389288 duplicate of X015b

X025b real 1888594 1888806 213 phage 524 0,95 0,08 −112 8,27

X026 real 1905731 1905850 120 phage 622 0.7 1.01 −77(Z2121) 12.18

X027 real 2038161 2038382 222 75 0.51 1.46 −313 7.47

X028* 2101101 2101247 147 131 0.61 1.70 0 8.00
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Table 1 Novel genes detected in EHEC (Continued)

X029 real 2109655 2109921 267 629 0.97 0.85 – –

X030 real 2138823 2139137 315 phage 1520 0.98 1.35 −53 16.96

X031 real 2168349 2168567 219 77 0.66 0.60 −110 8.48

X032a 1269797 1269913 duplicate of X032c

X032b 1868589 1868705 duplicate of X032c

X032c real 2312618 2312734 117 650 0.81 0.74 −447 7.83

X033* 2379507 2379659 153 348 0.87 1.50 −77 12.26

X034 real 2430386 2430598 213 47 0.53 0.22 −9 11.59

X035* 2480019 2480177 159 25 0.52 0.20 −63 10.51

X036 real 2584677 2584847 171 52 0.66 0.17 −162 12.18

X037 real 2663871 2664122 252 14 0.53 0.58 −243 12.65

X038 real 2670869 2671075 207 phage 1209 0.8 0.69 −28 11.39

X039 real 2742703 2742918 216 90 0.58 0.61 −103 7.60

X040 real 2777135 2777347 213 phage 37 0,57 0,02 – –

X041 real 2779284 2779508 225 phage 57 0.73 1.32 – –

X042 real 2844454 2844606 153 768 0.84 0.83 −295(X043) 8.26

X043 real 2844640 2844804 165 212 0.92 0.44 −295 8.26

X044 real 2844865 2845074 210 36 0.53 0.17 −210 11.00

X045 real 2845149 2845358 210 163 0.9 0.16 −23 9.54

X046* 2845408 2845602 195 145 0.69 0.35 −33 9.54

X047 real 2966787 2966987 201 phage 34 0.71 0.17 −21 8.08

X048 real 3003688 3003945 258 phage 40 0.65 1.96 −353 8.18

X049 real 3004951 3005067 117 phage 241 0.75 1.39 3 2 −93 9.71

X050 real 3013440 3013694 255 phage 28 0.64 0.47 −71(Z3371) 8.46

X051 real 3261588 3261758 171 89 0.86 0.35 – –

X052* 3271689 3271820 132 34 0.79 0.32 −95 9.93

X053suhB real 3453780 3454583 804 41 0.53 0.20 9 13 2 −36 9.48

X054* 3894853 3894993 141 98 0.86 0.56 −220 8.25

X055 real 3918141 3918344 204 47 0.56 0.31 – –

X056 real 4207372 4207641 270 725 0.92 0.66 −52 10.58

X057 real 4240665 4240883 219 2974 0.88 2.01 −24 13.80

X058* 4441485 4441643 159 359 0.98 0.64 −569 9.75

X059 real 4449723 4449821 99 19 0.6 0.08 −96 7.97
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Table 1 Novel genes detected in EHEC (Continued)

X060 real 4468299 4468592 294 639 0.84 2.99 −253 9.57

X061 real 4585965 4586174 210 202 0.92 1.98 2 2 −67 9.03

X062 real 4654347 4654490 144 phage 29 0.73 0.89 −393 8.17

X063* 4730352 4730537 186 15 0.51 0.95 −533 11.48

X064 real 4793504 4793737 234 20 0.53 0.28 – –

X065 real 4870817 4870978 162 38 0.74 1.28 −90(pldA) 8.1

X066* 4873916 4874122 207 117 0.84 2.58 −104 7.92

X067 real 4916583 4916756 174 162 0.84 0.64 −22(yihI) 11.84

X068* 5077694 5077831 138 2040 0.97 0.55 −368(nfi) 7.61

X069 real 5369765 5369998 234 141 0.94 0.33 −159(pepA) 11.47

X070 real 5456776 5457042 267 53 0.52 3.58 −163(yjiM) 8.02

X071 real 5494158 5494394 237 45 0.57 2.82 −27 8.35

X072 real 5515374 5515541 168 38 0.69 0.80 −39(serB) 7.9
a The asterisk indicates genes not annotated in any other organism (blastp against GenBank, threshold E-value ≤10−10)
b Machine learning classification based on the set of annotated proteins (“real”) and their shuffled counterparts as training set
c The positions are given in relation to GenBank accession no. NC_002655, the original genome sequence of strain EDL933. Only very recently, the genome has been updated (GenBank accession no. CP008957)
d Genes originating from prophages are indicated
e The RPKM footprint and coverage of the actual ORF with footprints is given as average of two replicate experiments for bacteria grown in LB medium
f Fraction of the ORF covered with one or more footprint reads
g Ratio of RPKM footprints to RPKM transcriptome
h Indicated is the number of individual peptide spectra gained by mass spectrometry
i Putative promoters have been predicted using PlatProm. The position of the assumed transcription start site upstream of the start codon and the quality of the prediction (score) are given
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(mostly single-span membrane proteins, Fig. 2b). Further-
more, only one protein (≈1.4 %) from the set of 72 novel
proteins had a predicted coiled-coil (of 14 residues), com-
pared to 8 % of the annotated proteins (Fig. 2c, Additional
file 1).
Low complexity segments circumscribe protein areas

of “low information content” [45, 60]. Of the novel pro-
teins, 19 % contained low complexity regions versus
16 % of the annotated. In the novel protein group, these
regions tended to be marginally shorter (on average
about 21 % of the protein length) compared to the anno-
tated proteins (on average about 25 % of their length),
but their distributions overlapped largely, thus, the dif-
ference was insignificant (Fig. 2d). Disordered regions
were counted if MetaDisorder predicted intrinsically

disordered stretches of 30 or more consecutive residues.
About 45 % of the novel proteins contained such a dis-
ordered region, encompassing on average 88 % of the
protein length. In the control set, 51 % of the proteins
contained a disordered region, encompassing on average
about 80 % of the protein length. Thus, slightly fewer of
the novel proteins possessed a disordered region, but
these fewer regions tended to be slightly longer than
those in the annotated proteins (Fig. 2e). β-barrels are
generally rare in proteins and none was detected in both
groups (not shown).
Interestingly, about 11 % of the novel proteins were

predicted to contain disulfide bond-forming cysteine res-
idues compared to 3 % in the control set of annotated
proteins (Fig. 2f ). The higher number was not explained

A B

C D

X018

X018

X001

X001

X002

X002

X005

X006

X006X005

Fig 1 Four examples of new EHEC protein-coding ORFs (red arrows) discovered by ribosomal footprinting and visualized using Artemis [30].
Protein-coding ORFs are indicated by cyan arrows in the lower part of each panel. Blue lines in the upper part of each panel represent ribosomal
footprint reads. a X018 is an example for a single (monocistronic) gene. b X001 is located in the upstream part of yaeO. These two genes might
form a translationally coupled operon. c Two short genes, X005 and X006 are located downstream of cstA, maybe also translationally coupled.
d X002 might be part of the operon yahDEFGIJ spanning from yahD to yahJ (only partly shown). The missing gene yahH had been annotated at
first but was rejected later due to its structure (see Discussion and Fig 4)
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by an over-representation of cysteine (which was ob-
served but only an over-representation by a factor of 1.5,
i.e. maximally explaining 2.25 times more disulfide brid-
ges, not 3.6 times more). Instead, the high number of di-
sulfide bridges might suggest an abundance of secreted
proteins. To test if the single-span membrane helices
found above might be signal peptides, we examined

those proteins which have one predicted transmembrane
region using SignalP [54] to discriminate between true
transmembrane domains and signal peptides. We found
a lower percentage of the novel proteins to possess a sig-
nal peptide (22 %) compared to the annotated proteins
(33 %; Additional file 2). However, using LocTree3 that
combines homology-based inferences with de novo

A B

C D

E F

Fig 2 Graphical overview of PredictProtein values for the novel and length-matched annotated proteins. Error bars (if given) show the SD.
a Shown is the predicted percentage of the protein length comprised of helices H, sheets E, and loops L. Furthermore, the percentage of buried
and exposed amino acids is given (b and e). b On the left side, the fraction of proteins possessing at least one predicted transmembrane domain
(TMD) is shown. On the right side, the mean number of TMDs per possessing proteins is shown. c The fraction of proteins having a coiled-coil
prediction using a window of 14 amino acids is given. d The left bars show the fraction of proteins with a low-complexity region, the right bars
give the mean length of this region compared to the overall length of the proteins for those possessing such a region. e The left bars show the
fraction of proteins with a disordered region, the right bars give the mean length of this region compared to the overall length of the proteins
for those possessing such a region. f The fraction of proteins having at least one Cys = Cys bond predicted
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predictions of sub-cellular localization [53], we found
that the novel proteins contain a larger fraction of pro-
teins predicted to be secreted than the annotated set:
over 75 % proteins in the novel set and only about 50 %
in the annotated group were predicted as secreted
(Fig. 3a). This fits to the above observation of an over-
representation of disulfide bridges, typical for secreted
proteins.
All proteins were predicted to contain protein-protein

binding sites under consideration of proximal residues,
varying between 1 to 54 residues per protein. The per-
centage of residues predicted to be involved in protein-
protein binding was slightly larger for the novel proteins
than for the annotated (28 % vs. 22 %; Fig. 3b). ScanPro-
site predicted functional domains and motifs [41]. Since
they are of various length, we determined how many
PROSITE patterns [61] exist per 100 residues. Interest-
ingly, both the novel and annotated proteins have almost
five of such patterns (Fig. 3c).
ConSurf estimates the evolutionary conservation of

residues based on the phylogenetic relations between
homologous sequences [62]. We counted all residues
with a ConSurf value of 5 or higher. Interestingly, there
was virtually no difference between both protein groups
(not shown). For some of the novel proteins detected,
Gene Ontology (GO) terms were predictable using
Metastudent [52]. Predicted functions included stress re-
sponse, protein binding, transcription regulation and
metabolic processes for X001, X006, X030, X042, X043,
X044, X047, X053, and X061 (Additional file 3).

Comparison of “real” versus “shuffled” protein sequences
To evaluate if real versus shuffled can be distinguished
using computational predictions, we randomly shuffled

each novel protein sequence as well as each annotated
protein sequence from the comparison set 100-times.
Structure and function features of the shuffled sequences
were predicted with PredictProtein as before. For all fea-
tures the mean ± 1 SD for all 100 shuffled sequences
was compared to the value for the native protein se-
quences (if applicable; raw data in Additional file 4). Sur-
prisingly, real proteins and their shuffled counterparts
superficially showed similar distributions for most pre-
dictions (Additional file 5) and several of the real pro-
teins had values within the mean ± 1 SD of their
shuffled counterparts (Additional file 6). To gain further
insight, we used machine learning to distinguish between
72 real and 7200 shuffled sequences. The machine was
trained using the set of “real” proteins and their shuffled
counterparts. Of 72 novel proteins, 61 (true positives;
85 %) were recognized as real, while of 7200 shuffled,
only 8 (false positives; 1 %) were classified as such. Inter-
estingly, all seven novel proteins with MS data (see
below) were classified as “real” (Additional File 7).

Environmental regulation of transcription under eleven
different growth conditions
To check for specific transcription of the newly discovered
genes in comparison to the standard LB medium, we ana-
lyzed transcriptome data of the strain grown under a var-
iety of different conditions [9]. Briefly, the bacteria were
grown in LB medium at pH4, pH9, or at 15 °C; in LB with
nitrite or trimethoprim-sulfamethoxazole; on the surface
of LB-agar, in M9 minimal medium, in spinach leaf juice,
on the surface of living radish sprouts, or in cattle feces.
We found specific transcription profiles for each gene in
comparison to standard LB, e.g., X071 was only induced
in minimal medium, X059 only on radish sprouts, and
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Fig 3 Graphical overview of the PredictProtein values for the novel and length-matched annotated proteins comparing localization, protein-
protein binding sites, and PROSITE pattern. a Subcellular localization has been predicted using LocTree3 and is shown in per cent for the different
compartments (membr., membrane). b The left bars show that all proteins have predicted protein-protein binding sites. The right bars show the
percentage of the predicted number of amino acids involved in this type of interaction. c Given is the predicted number of PROSITE
patterns per 100 aa
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X031 only in spinach leaf juice. X062 was up-regulated in
minimal medium, LB with nitrite, and LB pH9; while
X060 was induced in spinach leaf juice or at 15 °C. Cow
dung, LB agar surface, and LB at pH4 did not show up
regulation of any of the new genes, but rather a down
regulation of several of them (Table 2, Additional file 8).
We further performed a transcriptome analysis of

EHEC grown in the presence of amoeba (Acanthamoeba
castellanii; data not shown). This experiment yielded
not enough sequencing reads for a proper global com-
parison to the other conditions, but still allowed to de-
duce specific up regulation of transcription: > 10-fold
compared to LB for X009, X011, X037, X052, X062, and
X070. These results show that gene expression of the
novel genes changes in a diverse array of conditions
which might indicate functionality.

MS data confirm expression of seven novel genes
When evaluating MS data of cells grown under the same
conditions used for transcriptome and translatome ana-
lyses, as well as evaluating a six-frame translation of the
EHEC-genome, we observed peptide signals belonging
to seven of the new ORFs (Table 1).

An REP-element containing ORF, X002, is translated
While screening the genome for the novel genes, X002
piqued our specific interest (Fig. 1d), since it falls within a
gap located between yahG and yahI. Presumably, this gene
had been annotated as yahH but was removed later. X002
contains a sequence, which is a REP element, belonging to
the group of bacterial interspersed mosaic elements
(BIME). The amino acid sequence of X002 matched
REP23 from E. coli K-12 in a blastp search [35] with an E-
value of 3 × 10−174 [52, 63, 64]. The gene locus of X002
contains a long ORF (465 nt) and its transcript was well
covered by ribosomal footprints (Fig. 1d). Using REPFIND
[58], we discovered a block-like structure of five sequence

repeats within the ORF. One of these repeated elements
was predicted to fold in a relatively stable stem-loop struc-
ture according to mfold [59; Fig. 4]. The highly repetitive
nature of this ORF was also visible in the footprint signal,
which appeared to be very regular (Fig. 1d). The transla-
tion of such REP-elements is somewhat unexpected.

Phenotypes of novel genes in cattle
Transposon (Tn) or signature-tagged mutagenesis (STM)
studies of EHEC [65–74] were evaluated to find possible
insertion mutants of the novel genes conferring a pheno-
type. Only few studies contained phenotypic data of inter-
genic insertions. We used a stringent threshold of 5-fold
difference between the wild type and the transposon-
mutated strain. Nevertheless, three novel genes could be
linked to a phenotype in cattle: an existing EHEC-
transposon mutant library [74] had been re-screened for
mutants changed at least 5-fold in their ability to colonize
the ruminant intestine [72]. These novel ORFs (i.e., X033,
X036, and X045) were found to either have a direct trans-
poson hit or a hit shortly upstream of its frame, hence,
supposedly in their promoter region (Table 3). Trans-
poson hits of genes X036 and X045 had already been de-
tected in the original STM study looking only for a
decrease in cattle colonization [74]. The finding that some
of the novel genes display a phenotype in cattle is interest-
ing, as it indicates our fragmentary knowledge about
EHEC-host relationships and highlights the importance of
short genes in general. However, future research must
show if the changed colonization of the transposon-
mutants is indeed caused by the novel genes hit or are
only a byproduct of the transposon inserted in these
positions.

Taxonomic distribution of the novel genes
For all 72 genes, homologous genome regions could be
detected in E. coli O157:H7 Sakai using tblastn [35].

Table 2 Transcriptome data of selected novel genes regulated under specific conditions given as fold-change compared to standard
LBa. Data are taken from [9]

Name b Minimal medium LB-Nit pH9 Radish sprouts Spinach leaf juice 15 °C Amoeba Antibiotics Cow dung Agar surface pH4

X009* u/c n.r. 9 u/c u/c n.r. 70 u/c u/c n.r. n.r.

X011* 12 u/c 6 8 26 13 151 n.r. n.r. 19 21

X031 u/c u/c u/c u/c 26 u/c u/c u/c u/c u/c −18

X037 n.r. n.r. n.r. n.r. n.r. n.r. 213 n.r. n.r. n.r. n.r.

X048 n.r. - u/c u/c u/c n.r. u/c n.r. 48 n.r. n.r. u/c

X052* n.r. −6 −5 n.r. u/c u/c 12 n.r. n.r. n.r. −5

X060 u/c 7 u/c 5 10 18 u/c −17 u/c u/c u/c

X062 25 14 12 n.r. u/c 7 23 n.r. n.r. n.r. n.r.

X070 n.r. n.r. u/c n.r. n.r. u/c 25 n.r. n.r. n.r. n.r.

X071 122 14 9 5 u/c u/c n.r. n.r. 5 n.r. n.r.
apositive values, up regulated; negative values, down regulated; n.r., no reads under this condition; u/c, unchanged (threshold ≥5-fold regulation)
bThe asterisk indicates genes not annotated in any other organism (see Table 1)
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Twenty-eight of the 72 genes had been annotated in
Sakai as protein-coding ORFs. Fifty-seven of the 72
genes were found to be annotated within the enterobacte-
riaceae using blastp (E-value threshold ≤10−10, E-value me-
dian for all top hits of the novel proteins was 5.5 × 10−34).
Fifteen out of the 72 genes were unique which
means that these had not been annotated as protein-
coding genes before (marked by an asterisk in Table 1).
Significantly, all 72 genes had no blastp (E-value ≤10-10)
hit beyond the enterobacteriaceae in GenBank [75].
Thus, these genes appear to be taxonomically restricted
to this single family of the order enterobacteriales, some-
times even to the species E. coli. Further, for 40 out of
72 proteins, the family members found using blastp in
GenBank (40 genes) were exclusively labeled as “hypo-
thetical” or “conserved hypothetical”. We substantiated
this trend using various thresholds for defining families
with PSI-BLAST [43] and HHblits [44]. For instance, at
PSI-BLAST E-values ≤10−3 and HHblits E-values ≤10-10,
about 40 % of the 72 novel genes were found to be novel
(i.e., orphans), while the corresponding fraction for the
control set was at least 20-times smaller (<2 %). Another
10–20 % had families smaller than the corresponding
control set. However, the remaining 40–50 % of the 72
had families of similar sizes as the proteins in the

control set (Additional file 9). Sixteen of 72 proteins
had, at least to some extent, a functional annotation and
21 were of prophage origin (see Additional file 8).

Discussion
The short hypothetical genes are no annotation artifacts
Although E. coli is probably the bacterial species
researched best, many environmental growth conditions
have never been evaluated and many cannot be evalu-
ated easily in the laboratory. This fact may partly explain
why a sizable fraction of genes in any bacterium is still
of hypothetical status. “Our lack of fundamental know-
ledge about the function of so many of the building
blocks of cells“, as stated by Roberts [76], hampers
downstream research and other –omics efforts [77],
since only what is known will be examined. Unfortu-
nately, the smaller the protein-coding ORFs, the more
likely it is that such genes are either ignored based on
the assumption that short ORFs are highly unlikely to be
functional [19, 78], not predicted due to the bias towards
longer ORFs [79] or evade detection due to technical
difficulties [20, 80]. In addition, many of the novel
proteins are supposedly secreted according to our
LocTree3 data and, thus, may be missed by the prote-
omics approach.

Fig 4 Repeat structure of the REP23 containing gene yahH (the same as X002) and its protein YahH [58]. The upper part shows one repeat block
folded as mRNA [59]. The DNA sequence (lower part) basically consists of five of such repeated blocks, with only minor differences (when
compared to each other – single nt differences are in green) and a short unique sequence at the 3’-end (green stretch). When comparing the
fourth block to the other, a base appears to be missing (red marked gap) causing a change in the reading frame visible in the protein structure.
Thus, the protein contains three large repeats and a fourth truncated one (grey blocks, few differences in aa indicated in blue). Downstream of
the “frame shift” mutation, a different structure of two blocks is found (yellow). The protein contains many charged amino acids, either positive
(RK, red print) or negative (DE, blue print)

Table 3 Phenotype in calves of transposon hits in or nearby the novel genes. Threshold is defined as a 5-fold or higher regulation.
Negative values indicate down-regulation. Data are taken from [72]

Namea Position of Tn insertion Direct hit [H] or bases upstream [b] Fold-change output versus input

X033* 2379421 86 −33

X036 2584780 H −13

X045 2845234 H −50
aThe asterisk indicates genes not annotated in any other organism (see Table 1)
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Ribosomal footprinting provides a high-throughput
method, which indicates that also short genes encode
proteins, as a footprint fragment (i.e., a nucleic acid)
can be detected much easier than a short protein [81]
and independent of its final destination within or out-
side the cell. The mRNA of the novel genes described
here was clearly covered by ribosomes, thus indicating
translation [82, 83]. This hypothesis was corroborated
by bioinformatics analysis: only few of the general pro-
tein structure and function traits were predicted to dif-
fer between the novel 72 proteins described here and a
set of annotated proteins with similar length distribu-
tions. The exceptions were disulfide bonds and coiled-
coils, but these two parameters mattered only for a
small subset of the proteins. The largest difference was
obtained in the predicted sub-cellular protein location
using LocTree3. Interestingly, when examining the
“dark proteome” – that is proteins never observed by
experimental structure determination and, therefore,
inaccessible to homology modeling, similar trends were
observed [84]. For instance, these proteins were short,
often secreted, and had a higher amount of disulfide
bonds [84]. However, in most parameters investigated,
differences appeared to be minor. This was corrobo-
rated by a machine learning approach, able to classify
61 of the 72 novel proteins to resemble known anno-
tated proteins but not random sequences. These results
suggest that the protein sequences encoded by the
novel genes described here show the same structural
features and, thus, functional traits as well-known an-
notated proteins [85], validating the idea that such se-
quences form the raw material for evolutionary
optimization of novel proteins [86].
We found that several of the new genes are specifically

induced only under one or a few growth conditions
hardly ever tested in the lab. According to Hemm et al.
[4] and Hobbs et al. [87], short proteins seem to be im-
portant for the stress response of E. coli. Indeed, the
novel genes discovered in this study were found to be in-
duced under specific and sometimes adverse culture
conditions such as minimal medium, pH9, radish
sprouts, spinach leaf juice, antibiotics, cow dung, and
the presence of amoeba (Table 2, Additional file 8). Fur-
thermore, transposon-mutants derived in a previous
study conferred a phenotype for three novel genes de-
tected. The mutants had a decreased ability to colonize
the cattle intestine [72]. The fact that genes detected in
our study were connected to a phenotype in a cattle
study shows that not only well-known genes of “stand-
ard properties” play an important role in the bacterial
life cycle, but also such short novel proteins, maybe as a
toxin [88]. Indeed, we predicted an unusual abundance
of secretion in the set of 72 novel proteins (ca. 75 % se-
creted proteins, Fig. 3a).

Seven out of 72 genes were validated by proteome
analysis. However, the probability to detect a protein via
MS decreases with the size of the protein. Peptide frag-
ments between 7 and 13 residues have the highest prob-
ability of detection, whereas fragments below 5 or above
40 residues are missed [89]. Short proteins are less likely
to be detected by MS due to possibly missing tryptic
cleavage sites. The tryptic cleavage sites typically occur
C-terminally of an arginine (R) or lysine (K). If none of
these amino acids is present, no fragmentation occurs
and the peptides are too long for successful detection
[90]. No R or K are found in five of the novel proteins,
but none of the annotated. Thus, not surprising, most
MS spectra originated from the largest of the 72 pro-
teins. In addition, the probability to detect a protein is
strongly dependent on its abundance [91], but the novel
proteins are less abundant proteins (lower RPKM and
RCV values compared to the annotated).
Based on the multi-omics approach by combining data

of transcriptomes, translatomes, mass spectrometry, bio-
informatics analyses and phenotype searches, we suggest
that these 72 short genes are an overlooked fraction of
genes in the EHEC genome, which should be added to
the genetic map of this bacterium. We showed that even
densely covered genomes like those of bacteria (in which
about 90 % of the genome is covered by annotated
protein-coding genes) still provide room for new
protein-coding genes. This finding also adds to the
growing evidence that even short hypothetical genes of
bacterial genomes are no artifacts [19]. However, there
might be coding sequences for even shorter polypeptides
[our unpublished data; 78]. Their detection is at the
resolution limits of most experimental techniques and
only targeted multi-omics approaches may resolve the
problem in the future.

yahH – a gene locus with a potential triple function?
The novel gene X002 turned out to be a REP-element
belonging to the bacterial interspaced mosaic elements.
These elements play several roles based on their repeti-
tive DNA sequence [64]. They are believed to be topo-
logical insulators for transcription-induced positive
supercoiling and may bind proteins such as IHF, PolI
and DNA gyrase to structure the DNA [63, 64]. Further,
such elements can initiate a Rho-dependent transcrip-
tion attenuation [92] and may stabilize RNA by inhibit-
ing its degradation in vivo [93, 94]. Therefore, Gonnet et
al. [95] suggested that it is highly unlikely that the REP-
element yahH is translated, and, consequently, this gene
was removed from the annotation [52] based on its un-
usual gene structure (Fig. 4). Interestingly, the Rho-
dependent transcription attenuation of REP-elements is
abolished, if the repeat element is translated [92]. Using
our assay, we could show that X002, which is equivalent
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to yahH, is not only transcribed, but quite probably also
translated. The resulting protein has a high number of
charged amino acids and is of unknown function. If true,
this gene locus would carry a triple function, i.e., as
regulatory DNA element, as a regulatory RNA element,
and in addition, as a protein.

The novel genes evolved recently
All novel genes described here are restricted to the en-
terobacteriaceae or even to taxa closer related, and,
therefore, are taxonomically restricted genes (TRGs
[96]). They appear only in higher phylostrata (i.e., closer
relatives; [97]), which is evidence for their relatively re-
cent origin [98]. This hypothesis is supported by several
findings: the novel genes described here apparently use
more often one of the rare start codons (e.g., GTG,
TTG), which are translationally less optimal [99] and,
therefore, may not yet be evolutionarily optimized. In
addition, the novel genes are clearly shorter than the aver-
age E. coli genes and some are not classified as “real” by
our bioinformatics approach. All of the above corroborates
the findings of Tautz & Domazet-Lošo [15], who also
observed that TRGs are generally shorter than con-
served genes and confer weak phenotypes. Most of the
newly discovered proteins are located directly up- or
downstream of annotated, “established” genes (compare to
Fig. 1b-d), perhaps contributing a (minor?) constituent to
already known operons [19]. This particular arrangement
may indicate a potential evolutionary mechanism to sam-
ple genetic regions, which may form a coding reserve, i.e.,
short ORFs are tested for their usefulness for the cell. A
minor upstream promoter activity (or a weak terminator
site) would permit the formation of polycistronic RNA
carrying additional ORFs upstream (or downstream, re-
spectively). Thus, ribosomes may bind “too early” or ribo-
somes which are already bound to the mRNA while
translating an established upstream gene will initiate and
translate a downstream short ORF with a higher prob-
ability, respectively. If the resulting protein provides a
significant fitness gain, it may promote strain survival
and subsequent improvements by classical Darwinian
evolution.

Conclusion
It has been suggested by Carvunis et al. [86] that genes
form de novo from non-coding DNA in yeast. Although
prokaryotes possess much less non-coding intergenic
DNA due to their dense gene content, such a mechanism
as detailed above might be active in bacteria as well. How-
ever, the DNA sequence features which would allow for
the formation of a protein sequence functional ab initio
upon accidental expression of an intergenic, non-protein
coding DNA sequence (i.e., being of supposedly random
amino acid content) remain unknown [100].
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