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Abstract
Developments in experimental and computational biology are advancing our understanding

of how protein sequence variation impacts molecular protein function. However, the leap

from the micro level of molecular function to the macro level of the whole organism, e.g. dis-
ease, remains barred. Here, we present new results emphasizing earlier work that sug-

gested some links from molecular function to disease. We focused on non-synonymous

single nucleotide variants, also referred to as single amino acid variants (SAVs). Building

upon OMIA (Online Mendelian Inheritance in Animals), we introduced a curated set of 117

disease-causing SAVs in animals. Methods optimized to capture effects upon molecular

function often correctly predict human (OMIM) and animal (OMIA) Mendelian disease-caus-

ing variants. We also predicted effects of human disease-causing variants in the mouse

model, i.e. we put OMIM SAVs into mouse orthologs. Overall, fewer variants were predicted

with effect in the model organism than in the original organism. Our results, along with other

recent studies, demonstrate that predictions of molecular effects capture some important

aspects of disease. Thus, in silicomethods focusing on the micro level of molecular function

can help to understand the macro system level of disease.

Author Summary

The variations in the genetic sequence between individuals affect the gene-product, i.e. the
protein differently. Some variants have no measurable effect (are neutral), while others
affect protein function. Some of those effects are so severe they cause so called monogenic
Mendelian diseases, i.e. diseases triggered by a single letter change. Some in silicomethods
predict the molecular impact of sequence variation. However, both experimental and
computational analyses struggle to generalize from the effect upon molecular protein func-
tion to the effect upon the organism such as a disease. Here, we confirmed that methods
predicting molecular effects correctly capture the type of effects causing Mendelian
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diseases in human and introduced a data set for animal diseases that was also captured by
predictions methods. Predicted effects were less when in silico testing human variants in
an animal model (here mouse). This is important to know because “mouse models” are
common to study human diseases. Overall, we provided some evidence for a link between
the molecular level and some type of disease.

Introduction
Protein sequences span three orders of magnitude in their lengths (30-30k residues). Aspects
of molecular function are often captured by ‘sub-units’, e.g. by domains or domain-like frag-
ments [1,2] that are, on average, about 100 residues long [3,4]. The variation of a single amino
acid (SAV) can change the function of a multi-domain protein and many changes in molecular
function lead to disease. In fact, OMIM, the database of Online Mendelian Inheritance in Man
[5], archives thousands of SAVs that cause Mendelian diseases. On the other hand, databases
such as the Protein Mutant Database (PMD) catalogue tens of thousands SAVs altering molec-
ular function; many of those have not been observed to cause a phenotype on the level of the
organism. Sequencing everyone on this globe, will we observe almost all possible SAVs? The
answer remains subject for speculation. Obvious exceptions include embryonically lethal vari-
ants and not all variants will occur in germ lines.

Deep mutational scanning studies that change every residue in a protein to all non-native
amino acids suggest a conundrum: for almost every position (each residue) both neutral and
effect SAVs exist [6–8], i.e. most residue positions are at the same time sensitive and robust to
variants. A variety of computational methods predict the effect of SAVs. Although most meth-
ods have many goals, we can simplify by distinguishing methods that focus more on predicting
the effect of SAVs upon (Mendelian) disease [9–15] and upon molecular function or structure
[16–20]. In silicomethods focusing on molecular function [21,22] correlate more with experi-
mental deep mutational scans than those focusing on disease [8,23].

The “micro” perspective of molecular function is often probed through in vitro assays of pro-
teins or cells, while in vivo screens often focus on observing the “macro” level through the impact
upon the entire organism or system, e.g. in form of a disease phenotype. Molecular impact does
not directly correspond to system impact, i.e. functional effects of variants usually do not directly
explain diseases. Relating the two levels of variant effects is of utmost importance, for example to
understand diseases and to develop treatments. Successful drugs often mechanistically bridge this
gap: the molecular agent (drug) affects the organism/system (disease).

Here, we show a few links that suggest howmolecular effect predictions can capture some
aspects of diseases. Our findings are largely based on a manually curated set of variants (SAVs)
fromOMIA (Online Mendelian Inheritance in Animals), a database cataloging expert curated
monogenic diseases in animals and their relevant variants [24]. Methods focusing on the molecu-
lar impact of variants predict disease-causing variants in animals and human (taken from OMIM
[5]). We also addressed the question how prediction methods behave for model systems, e.g. by
predicting variants in mice to study human diseases. The latter analysis might be particularly rel-
evant in light of a recent discussion about the validity of using mouse models [25,26].

Results and Discussion

OMIM variants predicted to have strong effect
SIFT [27] predicts the impact of variants upon molecular protein function by assessing
the disruption of conserved residues. SNAP [17] predicts this impact by considering
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evolutionary, functional and structural features. Our newer method SNAP2 [16] also
trained on disease-causing variants. To avoid the overlap of variant sets used for SNAP2
training and those used in this work, we trained a SNAP2 version, using only variants with
impact upon molecular function, i.e. leaving out all human disease variants from OMIM or
HumVar [28] but keeping the variants from PMD. PolyPhen-2 also uses evolutionary and
structural features to predict the effect of disease-causing mutations in human [12]. We pre-
dicted the effect of disease-causing SAVs from OMIM through PolyPhen-2, SIFT and the
re-trained version of SNAP2 (not using disease variants). All three methods predicted very
strong functional effects (Fig 1A). PolyPhen-2 predicted the highest fraction (85%) of the
OMIM SAVs to have effects, followed by SNAP2 (78%) and SIFT (76%). Monitoring effect
predictions for a set of neutral SAVs (TrNeutral), showed that both PolyPhen-2 and SIFT
reached higher effect fractions at the expense of more false positives (TrNeutral bars
higher): the differences OMIM-TrNeutral were the same between SNAP2 and PolyPhen-2
(60%). Another crucial difference was that the numbers for SNAP2 were derived without
using the data used for training, while the results for PolyPhen-2 overlapped substantially
with the training data used for that method. Machine learning methods usually perform
better on the training than on the testing data. For instance, the SNAP2 version trained
with OMIM reached 80% effect predictions for OMIM as opposed to 78% for the version
not trained on OMIM.

Another crucial aspect was that SNAP2 predicted its training set of effect SAVs less well
than the OMIM SAVs (Fig 1A: TrEffect 75% vs. OMIM 78%). For us, this was the most out-
standing example for a new data set outperforming the training set in 23 years of machine
learning in biology [29]. The label “disease” seemingly generates more consistent data than
experimental measurements of functional disruption.

Previous analyses showed the strength of the molecular effect to correlate with the SNAP
score: higher SNAP scores indicate more reliable predictions and stronger effects [17,30]. This
implies that in silico predictions can accurately sort thousands of variants relevant for some
investigation by their likely molecular impact without the need to provide any additional anno-
tations. Thus, the high amount of SNAP2 effect predictions for OMIM variants (Fig 1A:
OMIM higher than for TrEffect) suggested very strong effects upon molecular function. For
variants associated with Mendelian disease, this result was expected.

Manually curated OMIA data set
OMIA [24], the database for Online Mendelian Inheritance in Animals, collects expert annota-
tions for monogenic diseases in animals. Mouse and rat data are excluded, as those variants
and annotations are available through the specialized databases RGD [31] and MGD [32].
Unfortunately, none of those resources readily provided the data needed for our analysis. Very
few of the, e.g. 600 variants with known disease associations in OMIA, which range from large
structural variants to single nucleotide variants and SAVs, were in a machine-readable stan-
dard format such as “sequence variant XpositionY causes effect”. Moreover, the protein
sequences referenced by the variants remained obfuscated. Several person-months got us from
OMIA to a set of just 117 single disease associated variants with matching sequences (Methods,
S2 and S3 Tables). Incidentally, we note that OMIA’s value to the genomics, proteomics and
health-related research communities might significantly increase if their high-quality manually
curated data were readily available to automated analyses across the spectrum of gene- and
protein-science. For similar database-related reasons and time constraints, mouse and rat vari-
ants could not be included in this analysis. As an additional complication, studies in mouse
and rat typically focus on whole gene knockouts rather than on effects of SAVs.
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Fig 1. Predictions of SAV effects upon function and disease across species. The numbers above bars give the number of SAVs in the set.A: Three
methods (SNAP2 [16], SIFT [27], PolyPhen-2 [12]) predicted SAV effects upon molecular function (TrEffect/TrNeutral) and upon disease (OMIM).
Exclusively for this panel SNAP2 was trained without using disease SAVs from OMIM [5] or HumVar [28]. The SNAP2 version trained exclusively on
molecular function clearly captured aspects of OMIM-disease SAVs (leftmost bar OMIM higher than 2nd to the left TrEffect). TrNeutral was the SNAP2
training set of variants without effect. Comparing the bars for TrNeutral and OMIM for each method pointed to differential thresholds: Polyphen-2 correctly
predicted more effect in OMIM than SNAP2 but also incorrectly predicted more effect in the neutral data, i.e. simply predicted more effect variants.B:OMIM
is repeated from A. SNAP2 captured disease signals in humans and animals at similar levels. OMIA contained disease SAVs from animals other than mouse
and rat (mostly dog and cattle).C: SNAP2 predicted OMIM SAVs with less effect in mouse orthologs than in human. Left bar (OMIMwith mouse ortholog):
SNAP2 predictions for the subset of all 4,229 OMIM SAVs for which we found a mouse ortholog. Right bar (OMIM in mouse): SNAP2 predictions when
putting the human SAV into the mouse sequence.D:Disease variants happen in non-random positions. Left bar (NotOMIM conserved): in each protein with
an OMIM SAV, we predicted the effect of all SAVs with a level of sequence conservation� that of the OMIM variant. Right bar (NotOMIM not conserved):
predictions for SAVs in non-OMIM positions with conservation < that of the OMIM SAV. Obviously, OMIM SAVs were very well conserved.

doi:10.1371/journal.pcbi.1005047.g001

Predicted Sequence Variants Link to Disease

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005047 August 18, 2016 4 / 14



Slightly more effect for OMIA than for OMIM variants
All methods optimized to predict disease causes, for obvious reasons of data availability and
clinical relevance, focus on human variants. In contrast, methods such as SIFT and SNAP2 per-
form at similar levels for other organisms. Here, we applied SNAP2 to our curated set of OMIA
variants (SAVs). Although this data set was small, it was particularly interesting for testing,
because those variants had not been available for the training of methods before.

SNAP2 predicted more OMIA variants with effects than in the SNAP2-effect training set
(Fig 1A TrEffect 75% vs. Fig 1B OMIA 80%). Additionally, OMIA variants were predicted with
slightly higher effect than those from OMIM (Fig 1B: OMIM 78% vs. OMIA 80%). This result
suggested Mendelian disease-SAVs to have stronger effect in animals than in human. The sim-
ple asymmetry in what is considered a disease in animals and human might explain this obser-
vation. For example, non-lethal abnormalities such as variation in hair-growth might be
perceived as a human disease, while the equivalent may not be an animal disease worth noting.
In fact, the “disease-ness” of hair/fur length differences actually depends on the animal in ques-
tion; e.g. the furs of dogs differ between breeds (an intended result of breeding). OMIA is there-
fore likely to focus on more lethal variants than OMIM and SNAP2 predictions simply mirror
this expectation.

Disease-variants affect the carrier more than other species
When experimental biology builds an animal model for a human disease, disease-causing
human variants are introduced into the animal. Can in silicomethods achieve the same? We
took the mutations (SAVs) from OMIM and predicted the effect of the same variant in the
mouse homolog (Fig 1C). The disease-causing SAVs from human were predicted with slightly
less effect in the mouse model (Fig 1C: left bar higher than right). We might rationalize this
observation by arguing that the OMIM SAV has been observed because it had such a strong
effect, slight alterations to the sequence might reduce the signal. Although we have some addi-
tional evidence supporting this view (S1 Fig), it remains very speculative. OMIM SAVs are by
no means random mutations and in 95% of the cases with OMIM SAVs, the amino acid was
the same in human and mouse (not unexpected, given the results presented in the next para-
graph). Whatever the cause, this effect should be taken into account when creating animal
models for human diseases.

Position of variant more important than its type
We know that the positions of OMIM variants are not random. In silico, we can easily intro-
duce OMIM-like variants elsewhere in the protein. For each OMIM variant (XnY, i.e. amino
acid X at residue n mutated to amino acid Y), we have to find another position (m 6¼n) and in
silico vary XmY. Then we compare the predicted effect XnY to those predicted for XmY. As we
suspect that OMIM SAVs tend to be more conserved within the evolution of protein families
than randomly chosen positions in the same protein, we can additionally constrain our analysis
by postulating that we find positionsm such that the conservation ofm� that for n (Fig 1D:
NotOMIM conserved). We can contrast this to a sampling in which we predict the effect for less
well-conserved positions (m conserved< n, Fig 1D: NotOMIM not conserved). This seemingly
simple scheme opens another complication: we could additionally choose variants of the native
amino acid against all other 19 non-native ones (19-non native), or we could restrict our vari-
ants to the subset of those variants that are reachable by a single nucleotide variation (SNV-
possible). For simplicity, we only reported results for the SNV-possible version of randomly
chosen variants. We observed that a randomly chosen SNV-possible amino acid variant at
each OMIM position was predicted with slightly lower effect than the original OMIM SAV (S1

Predicted Sequence Variants Link to Disease

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005047 August 18, 2016 5 / 14



Fig: OMIM_rand vs. OMIM). More importantly, our results confirmed the expected impor-
tance of residue conservation: SNAP2 predicted almost the same effect for the OMIM variant
as for NotOMIM SAVs of similar conservation (Fig 1B OMIM vs. Fig 1D NotOMIM con-
served). Conversely, replacing the disease variant XnY at all positions m with less conservation
(XmY) was predicted with substantially lower effect (Fig 1D: NotOMIM conserved vs. NotO-
MIM not conserved). Interestingly, random SNV-possible variants at OMIM or NotOMIM
conserved positions were predicted with an equal number of effect variants (S1 Fig).

We further applied a version of SNAP2 that did not use conservation (i.e. alignments) as
input but was otherwise trained as the default version. This alignment-free version predicted
the same trend, but with significantly reduced difference between predicted effect at OMIM
and NotOMIM positions (S2 and S3 Figs). Repeating the above analyses for the OMIA set pro-
duced similar results (S4–S7 Figs).

The strong dependence of results on conservation suggested that predicting disease-causing
variants would only require the definition of a single threshold, i.e. predict variant as disease if
the conservation at its position is above an empirically chosen value. However, we sampled a
different conservation threshold for each protein by picking the level of conservation equal to
or higher than that observed for each OMIM/OMIA variant. Accordingly, a simple method
that predicts every SNV-possible SAV at positions above a single conservation threshold as
having an effect, would over-predict effect substantially (S1 Fig, S4 and S6 Figs, S8 Fig).

Variants with known experimental observations might be biased
SIFT and SNAP2 were optimized on molecular effect variants, PolyPhen-2 [12] on disease vari-
ants. Nevertheless, the three agreed on 68% of the variants with known experimental molecular
effects [16]. In predicting the effect on molecular function, SNAP2 performed best for difficult
variants [16], i.e. those that were predicted differently by two methods (as effect by one, as neu-
tral by the other). Most relevant and available experimental results have been used for method
development. Do computational methods inherit a bias from the experimental data?

We can address the question about bias in the experimental data through comprehensive in
silicomutagenesis [33], i.e. by predicting the effect of all possible SAVs; such studies are also
referred to as the completemutability landscape [21]. There are two approaches for such a
complete mutagenesis: 19 non-native SAVs (large-scale in silicomutagenesis), or SNV-possible
SAVs. The second approach produces a subset of the first with different statistical features
[30]. The first solution furthers our understanding of protein function in the context of its
mutability landscape; the second simulates the types of changes that can happen in evolution.

Methods differ in their predictions for experimentally annotated SAVs, as well as for in sil-
ico assays of complete mutagenesis (19-non native SAVs). For instance, SIFT and SNAP2 pre-
dictions differ more for all possible SAVs in human than for variants with effect on molecular
function from PMD (S1 Table). A similar difference is implied between SIFT and PolyPhen-2
[34]. Although the differences amount to “just” 3–8 percentage points, they imply prediction
differences for millions of variants. Why do the predictions of the two methods agree more for
experimental annotations than for all possible variants?

Assume that the existing methods converged toward the same solution for known data due
to the lack of diversity in the training data, i.e. the same data enforces the same lesson. Put dif-
ferently, the experimental data focuses on some particular type of effect (that might be easier to
predict than the types that remain unknown). This assumption would explain our findings but
it seems incorrect. Firstly, methods have not used the exact same type of data: some focus on
molecular function, others on disease-causing variants. Secondly, prediction agreement
between methods is not higher for strong-impact, disease-causing variants from OMIM than
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for the neutral and molecular function effect variants from PMD, although stronger variants
are predicted better [17,30]. Thirdly, additional recent tests confirm the important differences
in predictions for larger data sets, where methods tend to agree more for some observed
human variants and less so for others. Thus, the agreement between methods for experimen-
tally annotated data sets is not explained by the assumption that they learned the same from
the restricted data.

Could it be that we already have an experimental record for most effect variants? If true, the
observed method correlation would be explained. For OMIM, this completeness assumption
might not be too far from the truth: It has been argued that through recent advances in deep
sequencing the majority of disease-causing variants, in particular in coding regions which are
tractable through whole exome sequencing, have already been observed and many are to follow
in the near future [35]. However, large-scale in silicomutagenesis strongly suggests that many
effect variants remain experimentally uncharacterized. If true, the method agreement for
experimental annotations would not be explained.

Alternatively, differences between in silicomutagenesis predictions and experimental
annotations might originate from the bias in the experimental data. Many reasons would
explain such a bias. Firstly, the in vitro assays may not capture all interactions and constraints
under which proteins exist in vivo. Secondly, the experimental thresholds for the degree of
functional impact (e.g. change in ΔΔG of binding) required to report a variant as “effect” or
“neutral” are subjective. Computational methods will likely zoom into the most consistent
data, i.e. the strongest or simplest effects. Bias might also be introduced by the difficulty in
relating the molecular to the system level, e.g. not every variant that has a high effect on
molecular function challenges the organism. Conversely, not every disease is caused by a sin-
gle SAV. On the contrary, most diseases are likely caused by much more complex mecha-
nisms than single variants. For example, in cancer many variants may affect molecular
function; some of these “drive” the cancerous growth, others simply piggyback (passenger
mutations). The two have very different biological traits and can be distinguished in silico
[36]. Nevertheless, the gain from molecular functional effect predictions for describing odds
in prognosis is still limited [37].

Finally, the methods’ high agreement might originate from the codon usage. While there is
no comprehensive explanation that convincingly maps the codon usage to the biophysical fea-
tures of the encoded amino acids, there are some preferences built into one of the three bases
[38]. SNV-possible variants might therefore tend to alter the biophysical features of an amino
acid less than other substitutions. Methods such as SNAP2 are trained to consider variants that
maintain the biophysical environment of a residue to be more neutral than others. Hence,
SNV-possible might be predicted as more neutral than amino acid substitutions that required
more than one nucleotide change. However, since most experimental annotations report effect
SAVs, the codon usage correlations are unlikely to help explain the agreement.

Capturing phenotype effects through molecular function predictions?
In order to bridge the gap from effect upon single protein to effect upon organism, we clearly
also have to consider the interaction context of a protein. For instance, predicted effects upon
molecular function are much more likely to imply effects upon the organism if the protein is a
key player in a crucial pathway than if the protein is “just” a structural protein. Indeed, OMIM
SAVs may be so damaging because they preferentially hit crucial proteins. OMIM SAVs consti-
tute one link between molecular effect and disease, albeit possibly an exceptional one. Poly-
Phen-2 and SNAP2 trained on such disease-effects. The fact that they predict those very well,
therefore, is not very meaningful. However, when we retrained a version of SNAP2 without
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any disease- or system-level related SAVs, we could still predict OMIM SAVs very well (Fig 1).
Thus, we established one link between molecular and organism effect.

How could we bridge the gap from the molecular level to that of the organism more effi-
ciently for a larger set of SAVs? As already mentioned: we might succeed by including more
relevant knowledge related to interactions. However, success toward this end remains incom-
plete for the time being. Alternatively, we might consider the integration of gene prioritization
tools. These integrate additional orthogonal data such as expression patterns, subcellular locali-
zation, information from literature or otherwise manually curated annotations [39,40]. For
example, recent work has seen the development of a model to distinguish loss-of-function
genes in human, based on conservation and protein interaction data [41]. This however is
based on variants that lead to a complete loss of the transcript and therefore not comparable to
the SAV effect prediction by SNAP2.

Another idea is to move from the level of SAVs to that of correlated variants [8,23]. This
remains challenging: no method can yet predict the effect for all possible pairs of SAVs in all
human proteins. However, even for the proteins for which some methods can achieve this:
such a refinement might contribute much toward increasing the agreement between computa-
tional and experimental deep mutagenesis studies. However, it might contribute little for better
bridging the micro and macro level.

Conclusion
We have presented evidence that methods optimized for predicting the effects of SAVs upon
molecular function, such as SNAP2, capture the type of strong effect that leads to monogenic
diseases. This was sustained even when excluding disease-causing SAVs from training. Possi-
bly, OMIM-like means “effect upon molecular function strong enough to not have to consider
anything else”. We also showed that Mendelian disease-causing SAVs in animals from OMIA
(mostly dog and cattle) were predicted even more successfully than those from OMIM. Both
these results (OMIM higher than training data although not used, OMIA even higher) imply
that methods not focused on phenotype level effects, can capture the strong underlying func-
tional effect signal. OMIM-like SAVs often hit the most conserved position, but a trivial predic-
tion solely based on this conservation fell much behind the level of performance reached by
methods such as SNAP2 or PolyPhen-2. Generally, computational and experimental analyses
of molecular effects of SAVs cannot explain the effects upon the organism. The integration of
gene prioritization and the incorporation of additional data from interactions might contribute
to bridging this gap.

Materials and Methods

Collecting OMIA variants
We annotated sequence variants in animals using the SQL dump of OMIA (release 08/2015)
[24]. Gene symbols and the text from the sectionMolecular basis were extracted for all diseases
(i) considered as defect by OMIA and (ii) with the causal variant known. We then read the text
and publications to extract variant annotations in the standard format of, e.g. A11W: native
alanine (A) at residue position 11 mutated to tryptophan (W). OMIA already contained 82 var-
iants in this format possibly enabling automated extraction through a regular expression. How-
ever, at least one of the 82 was outdated; this fact was mentioned in the description, but would
have been missed by automation. Our effort yielded another 96 variants. Thus, we could use
178 OMIA variants in total. Next, we retrieved the protein sequences of the OMIA variants by
querying UniProtKB (release 2015_08) with the gene symbol and NCBI taxonomy identifier
extracted from OMIA. When we had multiple matches, we chose the top match. Among the
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178 variants, three synonymous variants were excluded. Of the remaining 175, 12 had to be
excluded because the above protocol did not yield a sequence. In 46 cases a sequence could be
retrieved but the amino acid found at the position denoted by OMIA was not the one found in
the sequence at that position, e.g. for OMIA variant A11W, the amino acid at position 11 in the
sequence was not alanine (A). In 110 cases the amino acid was found as expected and in seven
additional cases shifting the position by +1 yielded the expected sequence. The “+1” accounts
for sequences stored without the initiator methionine. Our final data set of 117 variants from
99 sequences (S2 Table) is available at https://rostlab.org/resources/omia. The attrition rate
leading to the 117 mutations is summarized again in S3 Table. Most of the variants in the final
dataset were from dogs (39%) and cattle (21%). These ratios were comparable to those for orig-
inal 178 variants (44% and 21%). We annotated another 12 positions with single amino acid
deletions and 48 variants leading to premature stop codons. However, since SNAP2 only pre-
dicts effect for changes of amino acids not their removal or premature stop of the amino acid
sequence, these were not used in the further analysis.

OMIM, SNPdbe, and PMD
We extracted 5,661 OMIM [5] variants with sequences from SNPdbe [42]. SNAP2 [16] was
trained on SAVs from PMD, the Protein Mutation Database [43] as well as human disease vari-
ants from OMIM and HumVar [5,28]. For the sets shown in Fig 1A, we trained a version of
SNAP2 on only molecular effect variants, i.e. without variants from OMIM or HumVar, and
show cross-validation results for that (TrEffect and TrNeutral). In all other cases, the training
set of SNAP2 also included disease variants [16].

Ortholog mapping for OMIM variants to mouse
Human homologs of the animal genes from OMIM were retrieved using the Biomart interface
[44] of Ensembl Genes 82 (release 09/2015) [45]. 271 sequences from the OMIMmutation set
were removed because they were not found in the Ensembl set. The remaining 1,293 sequence
pairs were aligned using the global alignment implemented in BioPython’s globalds with BLO-
SUM62 as substitution matrix, gap open -10 and gap extend -0.5 [46]. Variants at positions
with insertions (aligned against a gap) were removed. After transferring the variants from the
human to the mouse sequence, some variants implied no change because for the human X2Y
variant, the mouse had Y as its native amino acid, i.e. the “variant” in mouse would have been a
synonymous Y2Y. Removing all such cases and their respective variant in human, the final set
comprised 4,229 variants (of the original 5,661 OMIM variants) in both human and the mouse
homologs, i.e. the “in silico humanized mouse model” (denoted as “OMIM in mouse” in Fig 1).

Prediction methods
For all variants, effects were predicted by SIFT [27,47], PolyPhen-2 [12] and SNAP2 [16]. We
used SNAP2 with the parameter tolerate, that performs predictions even if underlying methods
fail, to obtain results for all variants. For some analyses (S2 and S3 Figs, S5 and S7 Figs), we
used SNAP2 without alignments as input, by using the skip parameter. SIFT predictions were
obtained locally with version 4.0.3b [47]. PolyPhen-2 predictions were obtained locally using
version 2.2.2 [12]. All three methods used a BLAST database created by merging PDB and Uni-
ProtKB (release 2015_08), followed by a redundancy reduction at 80% sequence identity with
CD-HIT [48,49]. We used the default cutoffs of each method to obtain binary predictions into
either effect or neutral for every variant.
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Statistics
The background effects for the OMIM data (Figs 1D and S1 and S8) were estimated as follows:
At every disease variant position, we mutated to either (i) the amino acid denoted in the disease
SAV (OMIM, Figs 1D and S8) or (ii) considered one randomly out of the SNV-possible vari-
ants, i.e. mutations to amino acids that could occur by a single nucleotide change (OMIM_-
rand, S1 Fig). This simplification was imposed by the incompleteness in the knowledge of the
underlying DNA sequences. We assume that our hack approximation to “all SNV-possible”
provides a sufficiently accurate approximation.

For the non-disease positions, we sampled a random set of positions without known disease
variants from the same proteins (NotOMIM). Non-disease positions were never sampled from
the first and last 10 residues of a sequence, since SNAP2 uses an input window size of 21. The
predicted effect at the NotOMIM positions was evaluated as before. (i) Either given an OMIM
mutation such as I10L, we randomly picked a non-disease position with isoleucine and
mutated it to leucine (NotOMIM, Figs 1D and S8). (ii) Alternatively, we chose a random SNV-
possible variant from non-disease positions (NotOMIM_rand, S1 Fig).

For the conserved non-disease positions (NotOMIM conserved) we considered only non-
disease positions that were at least as conserved as the known disease position. For instance,
assume a protein P contains two disease variants X25Y and A100B. Randomly choose one out
of all positions other than 25 and 100 in P that is at least as conserved as position 25. Then do
the same for position 100 and all other variants in other proteins. Skip, if the disease position is
the one most conserved in that protein and there is no other position with an equally high con-
servation. For the not conserved positions, we accordingly used all positions with conservation
lower than that of the OMIM SAV. Conservation was measured through the information per
position value from PSI-BLAST PSSMs created by querying the OMIM sequences against the
80% redundancy reduced database of UniProtKB and PDB mentioned in the previous section.
At each NotOMIM conserved or not conserved position, effects were predicted as outlined
above for cases i (NotOMIM (not) conserved, Figs 1D and S8) and ii (NotOMIM_rand (not)
conserved, S1 Fig).

The same was repeated using SNAP2 without alignments as input (S2 and S3 Figs). We also
show results for the full set of variants, e.g. “all @ NotOMIM_rand not conserved” are all SNV-
possible mutations at all non-disease positions that are less conserved than the position of the
original OMIM SAV. “all @ NOT-OMIM conserved” are all OMIM SAVs at all eligible non-
disease positions (S1 and S8 Figs). All analyses were also performed on the OMIA set (S4–S7
Figs).

Supporting Information
S1 Fig. SNAP2 predictions towards random SNV-possible variants at different positions in
the OMIM set. Analogous to Fig 1D of the main paper but mutating positions to random
SNV-possible variants instead of using the OMIM SAV. “OMIM” is repeated from Fig 1A as
reference. The numbers above bars give the number of SAVs in the set. Sets prefixed with “all
@” contain all possible mutations in the respective set, instead of a random sample.
(TIF)

S2 Fig. SNAP2 predictions without alignment input at different positions in the OMIM
set. Analogous to Fig 1D of the main paper but using SNAP2 without alignments input.
“OMIM using alignments” is repeated from Fig 1A as a reference. The numbers above bars
give the number of SAVs in the set. Sets prefixed with “all @” contain all possible mutations in
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the respective set, instead of a random sample.
(TIF)

S3 Fig. SNAP2 predictions without alignment input and towards random SNV-possible
variants at different positions in the OMIM set. Analogous to Fig 1D of the main paper but
mutating positions to random SNV-possible amino acids instead of using the OMIM SAV.
Additionally, SNAP2 is used without alignment input. “OMIM using alignments” is repeated
from Fig 1A as a reference. The numbers above bars give the number of SAVs in the set. Sets
prefixed with “all @” contain all possible mutations in the respective set, instead of a random
sample.
(TIF)

S4 Fig. SNAP2 predictions at different positions in the OMIA set. Analogous to Fig 1D of
the main paper but on the OMIA set. “OMIA” is repeated from Fig 1B as a reference. The num-
bers above bars give the number of SAVs in the set. Sets prefixed with “all @” contain all possi-
ble mutations in the respective set, instead of a random sample.
(TIF)

S5 Fig. SNAP2 predictions without alignment input at different positions in the OMIA set.
Analogous to Fig 1D of the main paper but using SNAP2 without alignments input and on the
OMIA set. “OMIA using alignments” is repeated from Fig 1B as a reference. The numbers
above bars give the number of SAVs in the set. Sets prefixed with “all @” contain all possible
mutations in the respective set, instead of a random sample.
(TIF)

S6 Fig. SNAP2 predictions towards random SNV-possible variants at different positions in
the OMIA set. Analogous to Fig 1D of the main paper but using OMIA and mutating positions
to random SNV-possible variants instead of using the OMIA SAV. “OMIA” is repeated from
Fig 1B as reference. The numbers above bars give the number of SAVs in the set. Sets prefixed
with “all @” contain all possible mutations in the respective set, instead of a random sample.
(TIF)

S7 Fig. SNAP2 predictions without alignment input and towards random SNV-possible
variants at different positions in the OMIA set. Analogous to Fig 1D of the main paper but
using OMIA and mutating positions to random SNV-possible amino acids instead of using the
OMIA SAV. Additionally, SNAP2 is used without alignment input. “OMIA using alignments”
is repeated from Fig 1B as a reference. The numbers above bars give the number of SAVs in the
set. Sets prefixed with “all @” contain all possible mutations in the respective set, instead of a
random sample.
(TIF)

S8 Fig. SNAP2 predictions at different positions in the OMIM set. Analogous to Fig 1D of
the main paper. “OMIM” is repeated from Fig 1A as a reference. The numbers above bars give
the number of SAVs in the set. Sets prefixed with “all @” contain all possible mutations in the
respective set, instead of a random sample.
(TIF)

S1 Table. Pairwise agreement of effect prediction. Shown is the percentage of entries in the
respective dataset for which the two given methods agree in binary prediction, i.e. both predict
a neutral or effect variation.
(DOC)
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S2 Table. The set of 117 OMIA mutations. The 117 mutation extracted by manual review
from the OMIA database. Shown are only entries for which a sequence could be found and the
mutation mapped onto the sequence (cf. S3 Table). All diseases are considered a defect by
OMIA annotation. Organism shows the NCBI taxonomy id. Variants marked with �, are those
where the position was shifted one forward (Methods, S3 Table). The full set including the
sequences is also available at rostlab.org/resources/omia.
(DOC)

S3 Table. Attrition rate of OMIA annotations. AA deletion describes cases where a single
amino acid is deleted without affecting the reading frame. Nonsense are mutations to a prema-
ture stop codon. These two cases were extracted from OMIA but not used in the analysis. For
the amino acid substitution set No seq. describes that no sequence was found for the given com-
bination of taxonomy id and gene id (Methods). No match describes that a sequence was found
but the amino acid at the position given by OMIA was not the one expected from the annotated
mutation.Match are all cases where this was the case, andMatch+1 were the amino acid fit
after shifting one position to the right. Highlighted in green are the cases forming the final set
of 117 mutations used for the analysis.
(DOC)
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