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Abstract
A core task in computational structural biology is the search of conformational space for low

energy configurations of a biological macromolecule. Because conformational space has

a very high dimensionality, the most successful search methods integrate some form of

prior knowledge into a general sampling algorithm to reduce the effective dimensionality.

However, integrating multiple types of constraints can be challenging. To streamline the

incorporation of diverse constraints, we developed the Broker: an extension of the Rosetta

macromolecular modeling suite that can express a wide range of protocols using con-

straints by combining small, independent modules, each of which implements a different

set of constraints. We demonstrate expressiveness of the Broker through several code

vignettes. The framework enables rapid protocol development in both biomolecular design

and structural modeling tasks and thus is an important step towards exposing the rich func-

tionality of Rosetta’s core libraries to a growing community of users addressing a diverse

set of tasks in computational biology.

Introduction
The core task in modeling structures of biological macromolecules—including structure pre-
diction[1,2], structure determination from sparse experimental data[3,4], and biomolecular
design[5–7]—is searching conformational space for low-energy configurations. However, the
number of dimensions grows with the size of the atomic system, making the conformational
space of typical systems impossible to sample exhaustively. As a result, successful sampling
algorithms incorporate as much information as possible about the biomolecular system in
question to focus the search on the most productive regions of conformational space.

Prior knowledge is highly diverse, both in origin and in its implications for sampling, and
numerous successful methods in macromolecular modeling are based on incorporating one or
several different types of prior knowledge into the model. Some methods, for instance, rely
on atomic coordinates from experimental data (e.g. I-TASSER[8], RosettaCM[9], numerous
design strategies [7,10,11]). Even when no homologous structures are available, some unrelated
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experimental structures still contain small regions of structural similarity, which provide a set
of reasonable backbone torsional angles for that sequence (“fragment insertion” [12] [13]).
A different strategy, used by systems like the Integrated Modeling Platform (IMP)[14], is to
build scoring potentials to bias in favor of agreement with experimental data. Even Molecular
Dynamics (MD) [1,15] simulations of proteins, which emphasize reliance on physics-based
potentials, usually fix bond lengths and angles[16]. All of the above strategies combine some
general-purpose sampling algorithm (e.g. MD, Metropolis Monte Marlo) with prior knowledge
to prioritize the most promising regions of conformational space.

To be useful, prior knowledge must typically be integrated with a general sampling protocol,
and this process is not always straightforward. Several integration strategies exist. A naïve
approach might be to filter general algorithm output ex post facto, rejecting all output from the
general algorithm that conflicts with prior knowledge. As the number of independent filtering
conditions grows, however, the fraction of output that passes all filters quickly approaches
zero, rendering this approach impractical in most situations.

Correcting structures that deviate from the conditions proscribed by prior knowledge dur-
ing sampling is more scalable than the filtering of entire trajectories. One implementation of
this strategy is the restraint: unacceptable states are assigned a score penalty, biasing the con-
formation away from those states. This strategy, while an improvement on filtering, also scales
poorly. In cases where restraint targets are far from the starting configuration, the additional
score penalty may frustrate sampling. That said, this approach is viable in many cases, and has
been used to great effect in state-of-the-art prediction[4,17,18] and design[6,7,11,19] simula-
tions in Rosetta, as well as in other software suites like HADDOCK[17] and IMP[14].

A more scalable strategy is to simply avoid generating unacceptable states in the first place.
If sampling can be modified to produce only acceptable states, additional constraints require
no additional work. In Rosetta, this strategy frequently takes the form of a change of coordi-
nates. To maintain ideal bond lengths and angles, Rosetta represents the protein in internal
coordinates—the positions of the atoms are represented as bond lengths, angles, and torsions,
rather than in Cartesian coordinates. As a result, a sampling protocol can passively maintain
fixed bond lengths and angles by restricting changes to torsional angles. In contrast, systems
using a Cartesian space representation must do significant work to achieve the same result.
[20,21] The internal coordinates approach is highly scalable, as adherence to each additional
constraint comes at no additional cost.

While they scale well, these systems using implicit constraints place heavy demands on the
protocol designer. First, the protocol designer must conceive of an appropriate coordinate sys-
tem. Second, the protocol must convert from this coordinate system into Cartesian coordi-
nates, because long-range pairwise inter-atomic interactions are evaluated in Cartesian space.
For example, consider a perturbation to a backbone torsional angle in the second residue of a
protein. In internal coordinates, the change is unambiguous. In Cartesian coordinates, how-
ever, it is ambiguous whether this change affects the Cartesian position of all atoms N-terminal
to this torsional angle, or all atoms C-terminal. This requires a choice for the direction of prop-
agation for internal coordinate changes in Cartesian space. This choice of direction is referred
to as the “folding direction”.

Counterintuitively, the folding direction does not always need to follow the path of bonds.
To allow for the direct sampling of non-bonded spatial relationships, Bradley et al.[22] intro-
duced the jump. A jump separates two arbitrary segments of peptide and sets the spatial rela-
tionship between the two segments directly. Instead of always folding from N- to C-terminus
along the peptide chain, the propagation of Cartesian coordinates can arbitrarily “jump” to
distant regions of sequence space. One of the many applications of the jump in Rosetta is the
direct control of β-strand pairings. A jump is placed between two paired residues that directly
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relates their respective peptide bonds, effectively “short-circuiting” the intervening residues in
sequence space. The paired atoms are distant in sequence space, but adjacent in the path of
folding. The relative Cartesian positions of jump-paired atoms are unaffected by changes in
torsional degrees of freedom (DoF). Rosetta uses the fold tree to represent this choice of peptide
segments and jumps.

In Rosetta3[23], the core representation of molecules includes the fold tree, which is a
directed, rooted, acyclic graph. The direction of an edge tracks the folding direction, and the
root determines the position of the entire system relative to the origin. A key property of fold
trees is the absence of any cycles, which prevents the existence of two valid coordinate propaga-
tion paths that lead to the same atom. As a result, when a jump is introduced between two
atoms that are connected by any number of chemical bonds, that chain of bonds must be bro-
ken. This is known as a cut and, typically, the cuts must be repaired at the end of a trajectory
for the result to have physical significance. Thus, introducing jumps comes at a cost: the
jumped position is now ‘fixed,’ but the ideal geometry of the peptide chain around the cutpoint
is lost. This geometry must then be constrained by filtering, biasing potentials, or an ex post
facto correction.

Clever use of the fold tree’s flexibility and expressiveness has been the technical underpin-
ning for many of Rosetta’s diverse successes. One or more sampling strategies, each imple-
mented by a “Mover,” are applied to the appropriate DoFs modeled by the fold tree. Loop
modeling strategies[24,25], for example, use a jump to bypass a loop, maintaining the geometry
of the protein’s core while the Mover acts only to perturb surface loops. The loop is cut some-
where in the middle. RASREC[18], uses a similar fold tree layout but applies Movers that
implement torsional fragment insertion in lieu of a loop closure scheme. As sampling con-
verges on a core topology, RASREC holds fixed increasingly large portions of the protein core
to save sampling time. Jumps can also be used to model protein–protein[26] and protein–
ligand[27] interactions by controlling the rigid body degrees of freedom between two chemi-
cally unbound molecules. The dimensionality of symmetric assemblies has been greatly
reduced by the judicious application of fold trees that allow for changes to easily be copied
between symmetry partners [28], and inverse-rotamer fold tree construction has been of great
benefit to enzyme design[19].

A factor that, while not encoded in the fold tree, drastically alters sampling is the extent to
which degrees of freedom are moved. In a Rosetta simulation, degrees of freedom usually take
the form of peptide chain torsion angles or jumps. Consider a large segment of protein struc-
ture that is constituted by disparate regions of sequence-space and must be held fixed—a
search-space reducing strategy used by some successful design[19,29,30] and prediction
[18,24,25,31] protocols. Not only must the discontinuous segments be “pinned” to one another
using jumps, but the torsional degrees of freedom inside individual peptide segments must be
constrained, too. In Rosetta, no system for communicating choices between Movers has
emerged, and no mechanism exists to enforce such choices. Historically, these challenges have
been managed at the individual protocol level; protocol designers must either implement their
own custom-purpose enforcement schemes[28] or, much more commonly, carefully verify
that their choices for DoF flexibility are correctly communicated to and honored by the algo-
rithms that implement individual components of their sampling protocol.

Fold tree construction is challenging because it must integrate knowledge of the entire pro-
tocol. Both the fold tree layout and DoF flexibility depend on all constraints and, as a result,
cannot be defined in a pairwise-independent manner as score penalties or filters can. For this
reason, many protocol designers opt to simply sketch out the correct fold tree by hand and
hard-code it into the protocol. Of course, requiring the developer to hard-code an appropriate
fold tree does not scale well for large numbers of targets with different residue numbers, makes
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it difficult to make choices that vary between trajectories (e.g. a cut placed in a randomized
location). For example, it is not even possible to implement some successful protocols with
hard-coded fold trees, including the algorithms described in refs. [22] and [32], which use ran-
domized fold trees to sample the variety of folding directions that are consistent with a particu-
lar constraint set on a particular target.

The most common strategy for constructing a fold tree is to write a custom fold tree setup
routine. These routines examine the target of interest and, knowing the precise number and
nature of the active constraints, lay out a compatible fold tree. Although this strategy scales
well for multiple targets of the same type, it does not scale well when additional constraints are
added because an entirely new routine must be developed. For some particularly useful or com-
mon cases, a number of “remix protocols” have been developed. Notable examples include:
Fold and Dock[33], which combines symmetric docking with ab initio folding; SnugDock[31],
which combines loop modeling with multibody docking; and RosettaRemodel[30], which seeks
to unify a large number of design-relevant sampling algorithms under one interface. As the
number of available constraint types and basic sampling strategies available in Rosetta grows,
the combinatorial explosion of possibilities renders it unreasonable to develop and maintain
custom fold tree protocols using the remix strategy.

To avoid the development work involved with the remix strategy, developers resort to
chaining sampling modules together sequentially. Using this strategy, each sampling module
independently calculates and manages its own fold tree and DoF accessibility. Then, after its
sampling move is complete, it resets the fold tree to its original state. We refer to this as the
“set-sample-reset” pattern, and it is currently the most commonly used strategy in Rosetta-
Scripts[34]. This strategy has low developer time investment, but it can quickly become prob-
lematic as the number of sampling strategies in concurrent use grows. Each strategy owns its
own fold tree, which encodes its own constraints, but only one fold tree can be active at any
given time: the one that was just “set” for the sampling strategy that is going to be used next.
Consequently, it is impossible to enforce the constraints for an inactive fold tree. Unless the
two constraints are compatible by happenstance—raising the question as to why two con-
straints were required in the first place—the system finds itself in the Sisyphean situation of
correcting one constraint violation only to violate the other.

In this paper, we present the Broker: a tool that generates a “consensus fold tree,” a fold tree
that satisfies the needs of all constraints without the need for additional application code devel-
opment. We demonstrate the use of our tool through several examples, which are focused on
underscoring the flexibility and expressiveness of the system, rather than being the solution to
outstanding scientific problems. The Broker provides an API—accessible in Rosetta C++,
RosettaScripts XML[34], and PyRosetta[35]—that allows sampling algorithms to describe
requirements of the fold tree and the extent of control they require over the DoFs implied by
that fold tree. Once all specifications are made, the Broker produces a fold tree that satisfies all
constraints requested by its client Movers. The framework does not require that clients have
knowledge about one another—instead they express only their own requirements as a formal-
ized claim. As a result, clients are modular and can be added and removed without writing new
code. This reduces “remix protocol” development to a scripting task, and enables rapid proto-
typing of combined sampling strategies in a way heretofore impossible in Rosetta.

Results
In the following three sections we demonstrate the expressiveness of the Broker system through
the discussion of several short code vignettes. Then, in the final section, we describe the design
and implementation of the Broker system itself.

A Framework to Simplify Combined Sampling Strategies in Rosetta

PLOS ONE | DOI:10.1371/journal.pone.0138220 September 18, 2015 4 / 18



Ab initio with Multiscale Constraints
In this vignette, we demonstrate the combination of two types of constraints, that represent
information on multiple scales. On the atomic scale, we use chemical shift fragments, 3–9 resi-
due long segments of polypeptide chain harvested from existing crystallographic structures
and selected by matching their predicted chemical shifts with experimental NMR data[36]. We
also fix a small region using experimental crystallographic coordinates. On a more coarse-
grained scale, we constrain the β-strand topology of the protein. The later stages of RASREC
[18], for example, use β-strand pair constraints to intensify sampling of topologies deemed suc-
cessful in earlier stages. This strategy has proven essential for extending structure determina-
tion with CS-Rosetta to larger protein structures[32,37]. These multi-scale constraints act
together in a single, simultaneous ab initio-style folding of ubiquitin.

Using the Broker system, information is introduced modularly as constraints, each set of
which is represented by a different client Mover. Fig 1A shows this protocol as color-coded
regions on a crystal structure of ubiquitin. We chose ubiquitin here for its simplicity and peda-
gogical value. In fact, ubiquitin is small enough that the lowest energy structures generated
with the CS-Rosetta abrelax protocol published in ref [36] have sub-Ångström backbone
RMSDs.

β-strand constraints are introduced using a Broker-compatible ClientMover (Fragment-
JumpCM) that takes information about one or more possible β-strand pairings and, using the
Broker system, introduces a jump that “pins” the peptide bond planes of the paired residues to
one another in the rigid body geometry of known β-strand pairings. Because of the mathemati-
cal properties of the fold tree implementing the “pin,” only two residues can be pinned per
strand-pair (rather than all residues predicted to be involved). Making a different choice of
pairs in each trajectory, however, allows sampling of the entire space of possible pairs within
the ensemble of generated structures. Then, when the FragmentJumpCM is invoked to produce
a Monte Carlo trial move (typically 103−104 times per trajectory), it samples jump geometries
from a database of transforms observed in crystal structures. This approach, introduced in
[22], has proven useful in the past decade[4,18] and has seen wide adoption. In the protocol
capture for this paper (found at Rosetta/demos/protocol_capture/broker/, were “Rosetta” is the
Rosetta bundle found at https://www.rosettacommons.org/software/license-and-download),
we include a Python script that generates topology files using the format introduced in [18].

For purely demonstrative purposes, we add an additional set of constraints that fix the cen-
tral helix and adjacent loops (1ubq[38] residues 17–40) of ubiquitin to the native conformation
found in the crystal structure. In a real-world application, this structural information could
come from a homologous structure. We include the constraints associated with this informa-
tion using a rigid chunk (RigidChunkCM). This client Mover uses the Broker to claim exclusive
access to the torsion DoFs in this region, and then sets all such DoFs to match those in a tem-
plate (in this example, the crystal structure 1ubq). Because the Broker grants the Mover exclu-
sive access to the DoFs in question, the Mover can “set and forget” them, being guaranteed that
they will receive no further sampling. As a result, no further time is spent sampling this region.

The resultant fold tree scheme is shown in Fig 1B. The FragmentJumpCM places a jump
between two paired residues for each β-strand pair. The RigidChunkCM fixes the torsional
angles in the helix and adjacent loops to the template values and prevents cuts in this region. In
this example, the Broker itself is responsible for making all the cuts, which are randomized on
a per-model basis.

The relevance of this example is not the modeling trajectories themselves, but rather that it
demonstrates how degrees of freedom can be constrained in a plug-and-play fashion without
the need for additional development. This modularity is apparent in the structure of the XML
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that implements this protocol (Fig 1C). Removing any group of constraints is as simple as
removing the respective Mover from the XML script. Similarly, including additional con-
straints is as uncomplicated as declaring a new Mover and adding it to the BrokeredEnviron-
ment block in the XML script.

Domain-Insertion Modeling
Because domain insertion proteins occur frequently in nature[39], modeling them has been a
subject of considerable interest in both the Rosetta community[40,41] and the structural biol-
ogy community at large[42,43]. In this vignette, we demonstrate the use of rigid body and
jump fragment constraints to fold an inserted domain of unknown structure onto a host
domain with a known structure. The protein used in this example is an E. coli zinc-type alcohol
dehydrogenase-like protein (PDB code 1uuf) which consists of a Rossman-folded domain
inserted into a loop of a GroES-like domain (Fig 2A).

Underscoring the flexibility of our tools, this vignette uses the same client Movers to imple-
ment the constraints as the previous example to implement a protocol that would have
required custom development without the Broker (e.g. ref. [41]). Unlike the previous vignette,
where the rigid region of the protein was contiguous in sequence space, the host domain in this
example is not: it has two discontinuous segments of peptide (N- and C-terminal regions) that
must be kept fixed relative to each other. To hold this discontinuous chunk fixed, both seg-
ments are fixed internally as before, and then connected by a fixed jump. Thus, by rewiring the
folding direction to bypass the inserted domain, no changes in the inserted domain residues
can modify the rigid body relationship between the two segments. The flexible inserted domain
is then folded in situ using torsion and β-strand fragment insertion. Fig 2A provides a visual
overview of this protocol.

The fold tree for this vignette includes a jump between the N- and C-terminal segments of
the host domain and numerous jumps that enforce the native β-sheet topology of the Rossman
fold of the inserted domain. Furthermore, the cuts are placed only in the inserted domain by
request of the rigid chunk client Mover but, as before, the Broker manages cut placement auto-
matically. Fig 2B shows a schematic of one possible fold tree for this vignette; several fold trees
are possible depending upon which β-strand connections are chosen at runtime to be modeled
explicitly.

It is a mere scripting exercise to add additional fixed regions from this template or addi-
tional chunks from other templates. Such additions could produce behavior similar to the first
stage of RosettaCM[9] or to a single iteration of I-TASSER[8], both of which build up a struc-
ture prediction using many small, experimentally-solved protein chunks in a sort of “chunk
assembly” algorithm.

Flexible Backbone Multibody Docking
In this final vignette, we use the Broker to assemble a flexible-backbone docking protocol.
Inspired by SnugDock[31], an algorithm for high-resolution refinement of antibodies, we
implement a multi-body, flexible-backbone refinement protocol uses prior knowledge about

Fig 1. Multi-resolution constraints in a simple folding protocol. a) The crystal structure of ubiquitin is color- coded and annotated by the sampling
procedures applied to each region. Green strands indicate regions of β-strand pair sampling, the blue region has fixed internal coordinates drawn from the
native crystal structure, and grey and green are subject to fragment insertion using fragments from chemical shifts. b) One possible fold tree generated by the
Broker to satisfy the constraints given in (a). Black pointing arrows represent jumps between β strands, which are represented by green block arrows. Breaks
in the underlying black line indicate possible chain break locations. The fixed region is indicated by the blue rounded rectangle. c) The main part of a
RosettaScripts XML script that implements this protocol. The full script is available in the supplement and the script along with all required files is available in
the protocol capture.

doi:10.1371/journal.pone.0138220.g001
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antibody structural biology. Specifically, SnugDock treats all CDR loops differently and differ-
entiates between antibody-antigen docking and heavy chain-light chain docking. Most of these
behaviors are reproduced in our vignette’s SnugDock-inspired algorithm.

Our protocol contains the following elements: sampling of the rigid-body orientations
between all three interaction partners in the antibody-antigen complex (i.e. antibody heavy
chain, antibody light chain, and antigen), loop refinement on only the CDRH loops[25,44],
and minimization of all CDR loops. The antigen and antibody outside of the CDR loops are

Fig 2. The use of fixed chunk regions and fragment jumps for domain insertionmodeling. a) The structure of the domain insertion protein YahK (PDB
code 1uuf) color-coded to indicate the regions that various client Movers act on. Gray indicates traditional torsion fragment insertion and loop closure, and
green indicates torsion and β-strand fragment insertion. Blue and red are, respectively, the N- and C-terminal portions of the host domain. Those regions are
fixed. b) A possible consensus fold tree (note that many fold trees are valid consensus fold trees depending upon the choices made at run time for cut
placement, β-strand pairing choices, etc.). The two discontinuous chains of the host domain (color-coded as above) are fixed in their relative geometry by the
jump that connects the C- and N-terminal regions directly. The insert is broken into multiple stretches (grey and green) by the jumps created for β-strand
pairing (green).

doi:10.1371/journal.pone.0138220.g002

A Framework to Simplify Combined Sampling Strategies in Rosetta

PLOS ONE | DOI:10.1371/journal.pone.0138220 September 18, 2015 8 / 18



modeled with fixed backbones, because no client Mover is assigned to sample their DoFs. Addi-
tionally, we demonstrate the use of a novel center-of-mass (CoM) tracking system that, unlike
previous implementations[33], does not require reconstruction of the fold tree as backbone
atoms move. This protocol is represented schematically in Fig 3A.

In addition to the polypeptide chains of the three interaction partners, this example includes
several virtual residues, seen best in the fold tree schematic in Fig 3B. A root virtual residue
forms the center of a star pattern to which each of the three chains’ centers of mass is docked.
Each CoM, also represented by a virtual residue, is then connected by a jump to the chain it
tracks. During sampling, the CoM tracking Mover updates its virtual residue at the appropriate
chain’s CoM without altering the location of any real atoms in space by changing both the
incoming and outgoing jump(s) to the virtual residue. The Broker then associates docking cli-
ent Movers with the jump between the root virtual residue and the center of mass virtual resi-
due of the appropriate polypeptide chain.

This vignette also makes special use of a new, unpublished RosettaScript feature introduced
by Andrew Leaver-Fay, called ResidueSelectors (Fig 3C), to determine the identity of the vari-
ous chains and loops in the input structure and to give them human readable labels. (Residue-
Selectors are used for their conciseness and clarity in all three vignettes, but this is the only
vignette that actually requires them.) In this vignette, we chose chain identifiers ‘C’ for the anti-
gen and ‘H’ and ‘L’ for the heavy and light chains of the antibody, respectively. These identifiers
reflect the chain IDs in the input PDB file that is used to load the antibody structure. By using
references to the chain labels, input becomes insensitive to the order of chains in the PDB file.
Using the Aho residue numbering scheme[45], ResidueSelectors are also used to determine (at
run time) which residues constitute which CDR loops. Thus, the script used to implement this
vignette can be used on an arbitrary antibody PDB file using Aho numbering by adjusting only
1) file names and 2) chain identifiers, allowing for straightforward automation, which is indis-
pensible for applications like web servers or extended benchmarking. Furthermore, this proto-
col could be trivially adapted to work with any numbering scheme by adjusting the residue
selectors.

The algorithmic complexity of this vignette is typical of custom-built Rosetta applications.
Lacking Broker support, the Rosetta 3 implementation of the SnugDock protocol[46] requires
nearly 900 lines of C++ code at the protocol level (this includes only the definition of top-level
Movers, the processing of input, and the handling of options) and a week of one author’s
(BDW’s) time. In marked contrast, the protocol we describe is less than 100 lines of RosettaScript
XML and was written in an afternoon. Furthermore, none of the code outside the XML script is
specific to this vignette in any way—rather, all parts are general and interchangeable. It is thus a
scripting exercise to adapt this protocol to another system or to test elaborations or wholesale
replacements of any part of this protocol with another Broker-compatible sampling procedure.

Design of the Broker
In this section, we discuss the design of the Broker and the motivation for the choices made in
that design. We had three main design goals. The first was modularity. Components of a sam-
pling protocol should be plug-and-play. Removal of one module should have the most limited
possible effect on other modules. Similarly, adding additional behavior should be, to the great-
est extent possible, as simple as adding the appropriate module. Such modularity has contrib-
uted to the success of knowledge-incorporating modeling platforms like IMP[14], and we
sought to emulate it here.

The second goal was security. The result of broking represents a contract between all the
client Movers, detailing their rights (e.g. DoFs to which it has exclusive access) and their
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Fig 3. A SnugDock-inspired antibodymodeling protocol configuration. a) An antibody heavy (red) and light (blue) chain in complex with an antigen
(green), which interacts with the antibody’s CDR loops (cyan). Call-outs identify the sampling procedures that are active on this structure using this protocol,
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responsibilities (e.g. accepting Broker’s fold tree layout). Guaranteeing the sanctity of the con-
tract is indispensible. If one client were to change the fold tree, for example, all other clients
would no longer be guaranteed that their DoF is present in the system. Similarly, some Movers
require that a particular DoF remain fixed, which is meaningless if no system for enforcing that
choice exists. Because of its enforcement of DoF accessibility, the broking system can provide
functionality that is not possible under more permissive systems.

Our third goal was protocol transparency. It should be possible to get the “broad strokes” of
a protocol in one place, and it should be possible to specify protocol-level details in a reason-
ably human-readable manner. To the extent possible, protocol designers should be able to
express sets of residues in the terms they would use to describe those residues in natural lan-
guage (i.e. chain letters rather than residue numbers), or using labels. As a result, designers can
more easily specify their needs in a way that allows Rosetta to “just do the right thing.”

With these goals in mind, we chose to create a “broking layer” that sits between the Movers
that implement the protocol and the resources that represent the protein (or macromolecule in
question). Client Movers—the usual encapsulation of a sampling protocol in Rosetta—are reg-
istered with the Broker, which is responsible for producing the consensus fold tree and DoF
accessibility based upon the claims provided by each client Mover. After the consensus fold
tree and DoF accessibility are calculated by the Broker, each client Mover is given a passport,
which contains information about which DoFs it has access to. The standard conformation—
which stores the fold tree and internal coordinates for all atoms—is replaced with a protected
conformation, which requires Movers to present a valid passport before modifying DoFs.

The Broking Process. The result of the broking process is a contract among all client
Movers about how to represent the DoFs and which Mover may modify which DoFs. Conse-
quently, each client Mover must contribute information about its needs and accept communi-
cations regarding the brokered results. The Broker collects requirements from each client,
constructs the consensus fold tree, and communicates results back to the clients (Fig 4A).

The broking process occurs in four distinct steps. First, the protocol registers each client.
The Broker can accommodate any number of clients, in any order, at any time until protocol
calls on the Broker to construct the consensus fold tree. Next, at “broking time,” each registered
Mover is given the opportunity to assert any number of claims that describe its requirements
for the fold tree through its “yield_claims”method. A client typically produces only a few
claims, and they are usually straightforward to describe (a jump claim, for example, indicates
the need for a jump). The Broker then integrates claims from all clients, constructs the consen-
sus fold tree, and finally returns an individualized passport to the client. In the third step, the
client interprets the data in the passport and configures itself to sample appropriately based on
the final, consensus fold tree. For example, a docking Mover, which typically makes only one
jump claim, must determine which of the jumps in the final fold tree belongs to it. Finally, the
protocol invokes the client’s sampling procedure (the Mover’s “apply” function). Thus, he Broker
does not have any control over when, how often, in which order, or even if clients are invoked.

and colors indicate the regions that each prodcedure targets: the gradient-based minimizer (cyan), loop closure (magenta), and fixed backbone docking (red,
green, and blue) of antibody chains and antigen. Additionally, the explicitly-monitored centers of mass of each of the three polypeptide chains are indicated
(blue, green, and red circles) and each is docked to a central reference point (grey circle). b) The fold tree that underlies the situation in (a). Each chain is
docked via its center of mass virtual residue (red, blue, and green circles) to a central virtual residue (grey circle). The antigen and antibody regions outside of
CDR loops are fixed, whereas the CDR loops, each of which is interrupted by a cut, are flexibly modeled by minimization and subjected to loop closure. The
color of the line indicates where Mover active: red, green, and blue are docking Movers, magenta and cyan are loop closure and minimization, respectively,
and grey is unmoved. c) The definition of the ResidueSelectors used in the body of the script XML script. Note that many residue selectors are created using
Boolean logic operators depending on other ResidueSelectors, making alterations straightforward.

doi:10.1371/journal.pone.0138220.g003
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Fig 4. The design of the brokingmechanism. a) right: the central resources of a Rosetta protocol (blue) are acted upon by many independent Movers
(green) in an uncontrolled fashion. Movers differ in the actions they perform on these resources, including configuration (green arrows) and sampling (black
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Order of invocation is determined at the protocol level after brokering, most commonly using a
scripting interface like those available through PyRosetta[35] or RosettaScripts[34].

During the part of the broking process that is invisible to the clients (i.e. the construction of
the consensus fold tree), each claim is converted into machine-readable elements, which are
used to determine the placement of “virtual residues,” jumps, cuts, and the accessibility of each
DoF to each Mover. The conversion occurs in distinct phases (Fig 4B), because certain fold tree
properties rely on preceding properties (for example, for a jump that links two residues, those
residues must first exist). Conceptually, each phase consists of the collection of some class of
elements. In order, they are: sequence changes (addition/subtraction of residues), fold tree
topology elements, DoF accessibility. In each phase of the element-production process, the
Broker provides the claim with information about the status of broking, which the claim uses
to inform the details of the elements it produces (e.g. the exact atom number of the DoF to
claim). After collecting the elements created by each claim in each phase, the Broker integrates
them into the nascent fold tree and returns information about how those elements were bro-
kered to the claims, which begin the process anew for the next class of elements.

Clients and the Claiming API. A typical client Mover consists of two parts: a layer that
interacts with the broking machinery, and an effector layer that contains the implementation
of the client’s sampling behavior (Fig 4C). These parts can be integrated to a varying extent,
depending on the needs of the individual client—many client Movers are little more than wrap-
pers for existing Movers in Rosetta. As a consequence, it is a straightforward programming
exercise to make an existing Mover Broker-compatible by modifying it to be a ClientMover or
by producing an additional ClientMover that wraps it. A listing of available ClientMovers that
could be used as examples can be found on the RosettaCommons wiki (https://www.
rosettacommons.org/docs).

Once the client is configured by the protocol designer—via PyRosetta[35] or RosettaScripts
[34], or through a C++ protocol—the client channels the input either to the effector, in the case
of sampling configurations (e.g. a perturbation magnitude), or to claims, in the case of fold tree
information (e.g. where a jump should be placed).

The way in which the degree of control over DoFs is expressed is particularly important.
Every element that claims access to a DoF for a client Mover is associated with a control
strength. Valid control strengths are exclusive,must control, can control, and does not control.
When two clients claim the same DoF, the Broker’s behavior depends on the two claims’ con-
trol strengths (Fig 4D). This is of critical importance for the Broker system, because it allows
Movers to communicate about their needs relative to other Movers without needing to know
the identity of other Movers. Although control strength is a design choice to be made on a cli-
ent Mover-specific basis, there are a few general principles for its use. In particular, the distinc-
tion between exclusive andmust bears clarification. Both will fail if the client cannot be granted
access to the specified DoF. The difference is that exclusive control strength requires that the

arrows). Left: A Broker layer (purple) receives requests from numerous clients (green) using a standard interface, and configures the core resources
appropriately. Access is restricted to these resources using an access control framework, but requests invisibly “pass through” this layer to avoid interface
differences. b) The Broker communicates with client Movers by receiving claims and responding with a passport. c) Client Movers (light green) convert user-
specified configurations (brown) into convert developer-friendly claims (light purple, left) through the claiming interface. The Broker (dark purple) converts
claims into specific, machine-readable needs, which are processed and returned to the client Mover as a DoF passport (light purple, right). d) The DoF
access assignment behavior of the Broker when two clients request access to the same DoF. If one Mover claims exclusive and another claims must control
or exclusive, broking fails, because it is not possible to satisfy both. If one claims exclusive and the other claims can control, only the Mover claiming
exclusive receives access. If a Mover claims “does not control,” it never receives access. In all other cases, both Movers receive access. e) The procedure by
which the conformation validates a modification to a DoF. The client Mover creates an unlock, which is shared by the conformation and the Mover. Then,
whenever to the conformation change the DoF, the conformation checks latest active unlock to ensure the active Mover has access to the changing degrees
of freedom.

doi:10.1371/journal.pone.0138220.g004
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client not only must get access to the DoF, but that no other client can be granted access to the
DoF. For example, the rigid chunk client Mover requires that it be the only Mover to sample
the internal DoFs of a particular region to perform its function (complete constraint of a
region), and so it issues claims with exclusive rather than must control strength. In contrast, a
Mover like the FragmentJumpCMmust sample the beta strand pairings it creates, but it has no
reason to prevent other Movers from doing the same. If two Movers produce conflicting con-
trol strengths over a particular DoF, the Broker recognizes this fact and produces an error, ter-
minating the protocol and explaining which two Movers conflict at which DoF so that the user
can easily debug the protocol.

Claiming information is represented in two ways: client Movers produce claims, and claims
produce atomic claims called elements. This two-tiered structure enables the Broker to process
elements on very granular level (each of the six degrees of freedom in a jump, for example, is
brokered separately) while allowing clients to specify their needs in a broader, more human-
readable manner. For instance, the jump claim actually generates elements for six degrees of
freedom, one jump and one cut. Because this jump-claiming behavior is common to many cli-
ents, our design allows this code to be stored in the claim and shared among many client Mov-
ers. Furthermore, as researchers develop new types of behaviors that are not well represented
by the existing suite of claims, these behaviors can be implemented without changes to the Bro-
ker itself by simply extending the claim base class. Then, once developed, such a novel claim
can easily be shared with all existing Movers.

Enforcement of the Contract. The Broker enforces the results of broking. During broking,
the Broker replaces the usual conformation implementation with a protected conformation,
which requires each Mover to supply credentials (i.e., its passport) to execute the modification.
To supply its passport, the client creates an unlock, which is shared between the client and the
conformation. When the Mover invokes any of the methods that require authentication, the
conformation examines the active unlock to determine whether the change is allowed (Fig 4E).

Use of the unlock minimizes the overhead for an individual sampling move. An unlock is a
small object that is allocated on the stack; as part of its construction, it receives a passport and
protected conformation. As it is constructed, it pushes the passport onto a stack in the pro-
tected conformation. When a DoF change is made in the protected conformation, it checks
only this top passport on the stack to see if the change is allowed. When the unlock goes out of
scope (typically at the end of the client Mover’s “apply” function), the passport is popped from
the stack.

In principle, if every developer of every client Mover were to follow the contract always, in
every context, and without error, enforcement of the contract would be superfluous. It is unre-
alistic, however, to expect that developers will develop completely error-free Movers in a code-
base that, at the time of this writing, includes nearly 1.8 million lines of C++ code maintained
and developed by more than 100 active developers throughout North America, Europe, and
Asia. Enforcing the contract creates a system that, much like type-safety and const-correctness
in C++, creates a fail-fast feedback mechanism for catching mistakes in adherence to the con-
tract quickly and at their source.

Conclusions
In this paper, we introduce a new architecture that simplifies combining complex Movers with
nontrivial needs from the fold tree into a single, concerted sampling strategy. We demonstrate
our system’s flexibility and expressiveness by building several protocols that use a limited num-
ber of plug-and-play parts. Prior to this work, the design of such sophisticated protocols
required significant time from an expert developer. By introducing an improved model of
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Mover interactions, where each Mover communicates with one central broking mechanism,
we create an ecosystem where all Movers’ needs, independent of their combined complexity,
can be represented simultaneously, if such a representation exists. Where no such representa-
tion exists, the system fails gracefully with an explanation of the failure, rather than silently
producing meaningless results.

Simultaneous use of multiple constraint sets has historically proven useful[4,9,18,22,31,47],
but has only been available to experienced Rosetta developers who must spend significant time
developing a custom-made broking system for their application. We view the Broker as a two-
fold improvement: not only does it save experienced developers time, but it has the potential to
democratize the development of sophisticated protocols, allowing scientists who are not experi-
enced Rosetta C++ developers to experiment with simultaneous sampling procedures. We
hope that the future of the Broker includes a flourishing community that develops ClientMov-
ers and uses the Broker to solve interesting scientific problems while contributing to the con-
tinuing improvement of the platform as a whole.

As the Rosetta project grows in size and diversity, programmatic constraint compatibility—
and thus the ability to rapidly prototype new sampling algorithms—becomes increasingly
important. We view the Broker as an important step forward in the development of Rosetta as
a powerful tool for macromolecular structure prediction—not just for expert developers, but
for any researcher.

Supporting Information
S1 File. Scripts and flags that execute the protocols presented in this paper. This file con-
tains each of the RosettaScripts XML and flags files required to run the protocols described in
this paper. The protocol capture for this paper includes all input required for the protocol,
including fragments and input coordinates for rigid chunks.
(DOCX)
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