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We investigate the parity-violating analyzing power in neutron capture on the proton at thermal energies 
in the framework of chiral effective field theory. By combining this analysis with a previous analysis of 
parity violation in proton–proton scattering, we are able to extract the size of the weak pion–nucleon 
coupling constant. The uncertainty is significant and dominated by the experimental error which is 
expected to be reduced soon.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Although parity violation (PV) induced by the weak interaction 
is well understood at the level of elementary quarks, its manifesta-
tion at the hadronic and nuclear level is not that clear. This holds 
particularly true for the strangeness-conserving part of the weak 
interaction which induces PV in hadronic and nuclear systems. 
The Standard Model predicts PV forces between nucleons. How-
ever, their forms and strengths are masked by the nonperturbative 
nature of QCD at low energies. Combined with the difficulty of do-
ing experiments with sufficient accuracy to extract parity-violating 
signals, hadronic PV is one of the least tested parts of the Standard 
Model.

The understanding of low-energy strong interactions has in-
creased tremendously by the use of effective field theories (EFTs). 
It has been realized that by writing down the most general inter-
actions among the low-energy degrees of freedom that are con-
sistent with the symmetries of QCD, one obtains an EFT, chiral 
perturbation theory (χPT), that is a low-energy equivalent of QCD. 
Each interaction term in the chiral Lagrangian comes with a cou-
pling strength, or low-energy constant (LEC), which needs to be 
extracted from data or computed in lattice QCD. In contrast to low-
energy QCD itself, χPT allows one to calculate observables in a 
perturbative framework with expansion parameter p/�χ , where p
is the momentum scale of the process and �χ ∼ 1 GeV, the scale 
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where the EFT breaks down. Although nuclear physics is intrinsi-
cally nonperturbative, the nucleon–nucleon (NN) potential can be 
calculated perturbatively within χPT. The resulting chiral potential 
is then iterated to all orders to calculate NN-scattering and bound 
state properties. This framework is usually called chiral nuclear EFT 
(for recent reviews, see Refs. [1,2]).

The success of chiral EFT in parity-conserving (PC) nuclear 
physics has led to an analogous program in the PV sector [3–7]. 
One starts with the four-quark operators that are induced when 
the heavy weak gauge bosons are integrated out. The next step 
entails constructing a PV chiral Lagrangian which contains all in-
teraction terms that transform under chiral symmetry in the same 
way as the underlying four-quark operators. From the resulting 
chiral Lagrangian one then calculates the PV NN potential and elec-
tromagnetic current. In the final step the obtained PV potential and 
current are applied, in combination with the PC chiral potential 
and current, in calculations of nuclear processes. The PV LECs ap-
pearing in the PV chiral Lagrangian can be fitted to some data and 
other PV processes can then be predicted.

Although this sounds like a good strategy, in practice this pro-
cedure is complicated by the lack of data on PV processes. So 
far, hadronic PV has only been measured in a handful of exper-
iments (see Refs. [8,9] for recent reviews). The longitudinal ana-
lyzing power (LAP), which would be zero in the limit of no PV, 
has been measured for proton–proton scattering at three differ-
ent energies [10–12], for proton–alpha scattering only at a single 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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energy [13,14], and recently for the first time a preliminary re-
sult has been reported for radiative neutron capture on the proton 
�np → dγ at thermal energies [15]. Nonzero parity-violating signals 
have also been found in more complex systems, as exemplified by 
the radiative decay of the 19F nucleus [16,17] and the anapole mo-
ment of the Cesium atom [18].

The first full chiral EFT analysis of PV nuclear forces has been 
done in Ref. [3] where it has been concluded that at leading order 
(LO) only a single interaction term appears:

L/P = hπ√
2

N̄( �π × �τ )3N , (1)

written in terms of the pion isospin-triplet �π , the nucleon isospin-
doublet N = (p, n)T , and the weak pion–nucleon coupling constant 
hπ . The leading order PV potential arising from one-pion exchange 
takes the form

V OPE = − g Ahπ

2
√

2Fπ

i(�τ1 × �τ2)
3 (�σ1 + �σ2) · �k

m2
π + �k 2

, (2)

in terms of the momentum transfer �k = �p − �p ′ , where �p and �p ′
are the incoming and outgoing nucleon momenta in the center-
of-mass frame, and �σ1,2 and �τ1,2 the nucleon spin- and isospin-
operators, respectively. Fπ = 92.4 MeV denotes the pion decay 
constant, mπ = 139.57 MeV the charged pion mass, and g A = 1.29
the nucleon axial-vector coupling constant taking into account the 
Goldberger–Treiman discrepancy, in order to represent the strong 
πNN-coupling.

Considering that there are no other terms at leading order, 
the one-pion exchange (OPE) potential can be expected to give 
the dominant contribution to PV in nuclear processes. Neverthe-
less, despite decades of experimental effort the existence of a 
long-range PV NN force has not been confirmed. This indicates 
that hπ could be smaller than expected from naive dimensional 
analysis which predicts hπ ∼ G F Fπ�χ ∼ 10−6 (consistent with 
the often-used estimate hπ = 4.6 · 10−7 of Ref. [19]), with G F �
1.67 · 10−5 GeV−2 the Fermi coupling constant. In fact, the isovec-
tor nature of the weak pion–nucleon coupling already gives a nat-
ural suppression of sin2 θw ∼ 1/4 [3,20], while a large-Nc analysis 
indicates that hπ is even further suppressed [20–22]. A first lat-
tice QCD calculation gave hπ � 10−7 [23]. Finally, the absence of 
a PV signal in the γ -ray emission from 18F leads to the bound 
hπ ≤ 1.3 · 10−7 [24–26].

The evidence in favor of a small value of hπ is not conclusive. 
Large-Nc arguments can be misleading, especially for pionic inter-
actions, while the lattice calculation did not include disconnected 
diagrams. The bound from 18F depends on nuclear structure cal-
culations of a relatively complicated nucleus and, despite being 
a careful work, might suffer from uncontrolled uncertainties. Fi-
nally, the Cesium anapole moment prefers a much larger value 
hπ � 10−6 although the involved uncertainties are also larger [27,
28]. It seems that the only conclusive method of determining the 
size of hπ is through a fit to experiments using simple few-body 
processes which are theoretically much better under control. Un-
fortunately, only a few PV signals have been measured so far in 
such few-body processes. In recent work we investigated the data 
on �pp scattering in a chiral EFT framework [6,29]. The main goal of 
this paper is to combine this analysis with the recent data on PV 
in radiative neutron capture on the proton �np → dγ and extract 
a value of hπ . An analysis of PV in the inverse process �γ d → np
within pionless EFT has recently been performed in Ref. [30].

Our task gets complicated by two things. First of all, the OPE 
potential in Eq. (2) changes the total isospin and does not con-
tribute to �pp scattering. The three data points still carry informa-
tion on the size of hπ because the analyzing power does depend 
on hπ through the two-pion-exchange (TPE) diagrams [5,29,7]. The 
TPE diagrams appear at higher order in the chiral counting where 
additional contributions in the form of PV NN contact terms ap-
pear as well [5,31,32]. Secondly, although the PV OPE potential 
does contribute to �np → dγ capture, if the coupling constant hπ is 
really as small as suggested, formally higher-order corrections can 
become relevant and need to be taken into account. Again such 
corrections appear as NN contact terms. We discuss these sublead-
ing terms in the PV potential and the current at a later stage.

The other ingredients required for the calculation of PV observ-
ables are the PC NN potential and the PC and PV electromagnetic 
currents. As in Ref. [29], we apply here the next-to-next-to-next-
to-leading order (N3LO) chiral EFT potential obtained in Ref. [33]
and we refer the reader to this paper for all further details. The 
N3LO potential exists for several values of the cut-off needed to 
regularize the scattering equation. Here, we regularize the PV po-
tential in the same way as the PC potential via

V P V (�p, �p ′) → e−p6/�6
V P V (�p, �p ′)e−p′ 6/�6

, (3)

where three choices for � = {450, 550, 600} MeV are applied, see 
Refs. [29,33]. TPE diagrams are regularized with a spectral cut-off 
�S = {500, 600, 700} MeV [33]. In recent work [34] an alterna-
tive regularization scheme (formulated in coordinate space) has 
been proposed which better preserves the long-range nature of 
pion-exchange terms in the potential. Considering the large exper-
imental uncertainties in the field of nuclear parity violation, we do 
not expect drastic changes if the alternative regularization scheme 
is applied. Nevertheless, we will investigate this new scheme and 
its extension to N4LO [35] in future work.

Within the chiral EFT power-counting rules the dominant PC 
current arises from the nucleon magnetic moments. At next-to-
leading (NLO) order we encounter the one-body convection cur-
rent,1 which arises from gauging the nucleon kinetic energy term, 
and the leading OPE two-body currents. The total PC current up to 
NLO is then given by

�J P C =
2∑

j=1

e

4mN

{
−

[
μs + μvτ

3
j

]
i(�σ j × �q) + (1 + τ 3

j )(�P j + �P ′
j)

}

× δ(3)[�P j − �P ′
j − �q ]

+ eg2
A

4F 2
π

i
(�τ1 × �τ2

)3

{
2�k �σ1 · (�k + �q/2)

(�k + �q/2)2 + m2
π

�σ2 · (�k − �q/2)

(�k − �q/2)2 + m2
π

− �σ1
�σ2 · (�k − �q/2)

(�k − �q/2)2 + m2
π

− �σ2
�σ1 · (�k + �q/2)

(�k + �q/2)2 + m2
π

}
, (4)

where μs = 0.88 and μv = 4.72 are the isoscalar and isovector nu-
cleon magnetic moments. The momenta of the incoming and out-
going nucleon interacting with the photon (of outgoing momentum 
�q) are denoted by �P j and �P ′

j , respectively. The momenta carried by 
the intermediate pions are �k+�q/2 = �P1 − �P ′

1 and �k−�q/2 = �P ′
2 − �P2. 

In contrast, the leading PV current is solely due to OPE diagrams 
where one of the pion-nucleon vertices is from Eq. (1)

1 Here the power-counting rules of Ref. [33] are followed where recoil and rela-
tivistic corrections are relegated to higher order by counting 1/mN ∼ k/�2

χ , where 
k is the typical momentum scale of the process. The magnetic moment operator is 
not a recoil correction and only scales as 1/mN for conventional reasons. We thus 
treat μs,v/mN ∼ 1/�χ which is also justified by the large value of μv = 4.72.
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Table 1
Total cross section in mb for unpolarized np capture at 2.52 · 10−8 MeV lab energy. 
The first column is the calculated cross section using N3LO chiral potentials and the 
isovector nucleon magnetic moment μv . The second column also includes the lead-
ing PC OPE current. The experimental result is from Ref. [36]. Contributions from 
other currents at this order such as the isoscalar magnetic moment and convection 
current are negligible.

Isovector magnetic moment +PC OPE currents Experimental result

σtot 305 ± 4 319 ± 5 334.2 ± 0.5

Table 2
Contributions to the LAP aγ in np capture in units of hπ . Part 1 is the contribution 
from one-body currents only, Part 2 from the isovector magnetic moment in com-
bination with the PC OPE currents and the PV OPE potential, and Part 3 from the 
interference of the isovector magnetic moment and the PV OPE currents.

Part 1 Part 2 Part 3 Total

aγ /hπ −0.27 ± 0.03 −0.53 ± 0.02 0.72 ± 0.03 −0.11 ± 0.05

�J P V = eg Ahπ

2
√

2Fπ

(
�τ1 · �τ2 − τ 3

1 τ 3
2

)

×
{

2�k �σ1 · (�k + �q/2) + �σ2 · (�k − �q/2)

[(�k + �q/2)2 + m2
π ][(�k − �q/2)2 + m2

π ]
− �σ1

(�k − �q/2)2 + m2
π

− �σ2

(�k + �q/2)2 + m2
π

}
. (5)

These ingredients are sufficient to calculate the LO contribution 
to the longitudinal analyzing power in �np → dγ . The details of 
the actual calculation will be presented in a longer paper [37] and 
therefore we focus here just on the results.

The longitudinal analyzing power (LAP) in �np → dγ capture is 
defined as

Aγ (θ) = dσ+(θ) − dσ−(θ)

dσ+(θ) + dσ−(θ)
= aγ cos θ , (6)

with dσ±(θ) the differential cross section for incoming neutrons 
with positive/negative helicity and θ the angle between the out-
going photon momentum �q and the neutron spin. The experiment 
takes place at thermal energies where the total cross section for np
capture is dominated by the nucleon isovector magnetic moment 
μv , while the isoscalar magnetic moment μs and the convection 
current give negligible contributions. At NLO the PC OPE currents 
add to the cross section at the 5% level as can be seen in Table 1. 
For comparison, using the AV18 interaction we obtain 324 mbar 
in good agreement with Refs. [38,39]. The remaining discrepancy 
of roughly 4% with respect to the experimental result should be 
removed by higher-order corrections, for example in the form of 
PC contact and TPE currents. In phenomenological models indeed 
the remaining discrepancy is explained by heavy-meson-exchange 
currents [38]. The theoretical uncertainties (1%–2%) quoted in the 
table are obtained from varying the cut-off parameters in the N3LO 
potential.

Even in the presence of the PV potential, the numerator in 
Eq. (6) vanishes if we only include the leading magnetic moment 
currents. An interference with electric dipole currents, which ap-
pear at NLO in the form of the convection and OPE currents, is 
necessary to obtain a non-vanishing result. The dominant contri-
butions to aγ then consist of an interference between the isovector 
magnetic moment and:

1. the one-body convection current in combination with the PV 
OPE potential,

2. the two-body PC OPE currents in combination with the PV OPE 
potential,
3. the two-body PV OPE currents.

All these contributions appear at the same order in the chiral 
counting and we present the results in Table 2. The individual con-
tributions are all of the same order, as expected from the power 
counting, and suffer only from minor uncertainties due to cut-
off variations. However, the total result has a much larger relative 
uncertainty due to cancellations between the individual contribu-
tions. These cancellations were found also in Ref. [40] where the 
AV18 potential has been applied in combination with the same 
currents. Our central value is also in good agreement with re-
sults based on various phenomenological strong potentials and the 
Siegert theorem for the electric dipole currents [39,41,42]. These 
calculations do, however, not provide an uncertainty estimate. In 
Ref. [43] a smaller uncertainty was found when varying the cut-off 
(roughly ±0.015 hπ ), but the authors did not vary the strong po-
tential simultaneously. In addition the Siegert theorem was applied 
for the electric dipole currents. The significant dependence of the 
total result on the cut-off parameters indicates that the extraction 
of hπ from data on aγ is less clean than might be expected.

Having available the prediction for aγ as a function of hπ , we 
can now compare to data. For a long time only a bound on aγ

existed

aγ = (0.6 ± 2.1) · 10−7, aγ = (−1.2 ± 1.9 ± 0.2) · 10−7, (7)

from Refs. [44] and [45], respectively. Applying our most conserva-
tive estimate we obtain an upper bound |hπ | ≤ 4.5 · 10−6 on the 
weak pion–nucleon coupling. Recently a first preliminary result for 
aγ was reported [15]

aγ = (−7.14 ± 4.4) · 10−8 . (8)

This result is based on a subset of the full data taken and an im-
proved result with an uncertainty at the 10−8 level is expected in 
the near future.

To fit hπ we combine the aγ analysis with that of the LAP in 
pp scattering. As mentioned, the pp LAP does not depend on the 
OPE PV potential in Eq. (2) due to its isospin-changing nature. Nev-
ertheless, the pp LAP still depends on hπ due to the TPE potential 
which appears at NLO. At the same order the PV potential contains 
PV NN contact terms, but only one combination with low-energy 
constant C contributes to pp scattering (C = −C0 + C1 + C2 − C3
in the notation of Ref. [6]). The LECs hπ and C were fitted to the 
pp data in Refs. [29]. In Ref. [6] the fit was slightly improved by 
including the dominant piece of the N2LO PV potential which does 
not depend on additional unknown LECs.

We compare the obtained values of hπ and C from the data 
on the np and pp LAPs in Fig. 1 using the intermediate cut-off 
values to regularize the potential. In the left panel, the ellipse de-
notes the contours of a total χ2 = 2.71 corresponding to a fit to 
pp data, whereas the red vertical lines denote a fit to aγ at the 
one-sigma level. In the right panel, the ellipses denote contours of 
a total χ2 = 2, 3, 4 corresponding to a combined fit to the pp data 
and aγ . The dashed lines in both panels are obtained if we use the 
expected future experimental uncertainty, ±1 · 10−8, of the mea-
surement of aγ while using the same central value as in Eq. (8). 
The dashed contours are only there to illustrate what the accuracy 
could be with better data but should not be used to extract values 
of the LECs.

From the right panel of Fig. 1 at the level of a total χ2 = 4 the 
LECs hπ and C become

hπ = (0.80 ± 0.70) · 10−6 , C = (−6.0 ± 3.0) · 10−6 . (9)

Since a χ2 analysis with so few data points can be misleading 
we collect in Table 3 the observables for the pp and np systems 
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Fig. 1. The allowed ranges for the LECs hπ and C (both in units of 10−6). Left panel: the blue ellipse is a fit to the pp data with a total χ2 = 2.71 and the vertical solid lines 
the fit of hπ to aγ at the one-sigma level. The vertical dashed lines correspond to the same fit, but now using the expected experimental uncertainty (±1 · 10−8) keeping 
the central value as in Eq. (8). Right panel: the black (solid) ellipses are fits to the combined pp and np data with a total χ2 = 2, 3, 4. The red (dashed) ellipses are the same, 
but using the expected future experimental uncertainty. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.)
Table 3
Predictions for the pp LAP Az and aγ (both in units of 10−7) for three fits using 
the intermediate cut-off combination. The first fit corresponds to the best-fit value 
with hπ = 0.77 and C = −6.4. The second and third fits correspond to the values at 
the edge of the contours with hπ = 0.1 and C = −3.0, and hπ = 1.5 and C = −9.0
respectively (all in units of 10−6). The first three columns correspond to the pp LAP 
at three different energies and the fourth column to aγ . The experimental results 
are from Refs. [10–12,15].

Az (13.6 MeV) Az (45 MeV) Az (221 MeV) aγ

Fit 1 −0.90 −1.56 0.57 −0.74
Fit 2 −0.65 −1.36 0.50 −0.10
Fit 3 −0.89 −1.19 0.43 −1.44
Exp. −0.93 ± 0.21 −1.50 ± 0.22 0.84 ± 0.34 −0.71 ± 0.44

using three different fit values that all lie within the contours of 
Fig. 1. From Table 3 we see that small (large) values of hπ = 10−7

(hπ = 1.5 · 10−6) still give a reasonable fit to the pp data, but 
underpredict (overpredict) aγ . However, considering the large ex-
perimental uncertainty of aγ the fits cannot be excluded at a sig-
nificant level.

To study the dependence of the extraction of the LECs on the 
details of the strong NN potential, we repeat the analysis for other 
cut-off values. For � = {450, 550, 600} MeV, respectively, the fol-
lowing best fit parameters emerge

hπ = {0.48, 0.77, 1.1} · 10−6 ,

C = −{4.3, 6.4, 7.4} · 10−6 . (10)

We see that the uncertainty in hπ due to cut-off variations is 
roughly 40%. At present, the experimental uncertainty is still larger. 
However, once the precision of the aγ measurement is improved 
by roughly a factor 2 the cut-off dependence will dominate the un-
certainty. The observed cutoff dependence in the predicted value of 
aγ is likely to be considerably reduced by the inclusion of higher-
order corrections to the exchange currents. One frequently used 
approach along this line is to make use of the Siegert theorem. We 
emphasize, however, that such an approach yields only incomplete 
results for the exchange currents. We postpone a detailed investi-
gation of the role played by higher-order contributions to a future 
study.

In Fig. 2 we show contours for a total χ2 = 4 for three different 
cut-off values. To obtain an allowed range of the LECs, we extract 
Fig. 2. The allowed ranges for the LECs hπ and C (both in units of 10−6). The el-
lipses correspond to fits to the combined pp and np data with a total χ2 = 4 for the 
three different cut-offs applied (from the smallest to the largest ellipse the cut-off 
changes from 450 to 600 MeV).

the minimal and maximal values allowed by the three contours. 
With this conservative approach we obtain the following ranges

hπ = (1.1 ± 1.0) · 10−6 , C = (−6.5 ± 4.5) · 10−6 . (11)

The fits indicate that small values of hπ ∼ 10−7 are barely con-
sistent with the data, with values of hπ ∼ (5–10) · 10−7 being 
preferred. Such larger values disagree with the upper limit from 
18F gamma-ray emission hπ ≤ 1.3 · 10−7 and lattice and model 
calculations of hπ � 10−7. An increase in the accuracy of the aγ

measurement is needed to make a firmer statement about this dis-
crepancy.

So far, our analysis included only the LO contribution to aγ

proportional to hπ . If for whatever reason hπ is small, formally 
subleading contributions might actually be dominant. The first cor-
rections to aγ appear two orders down in the chiral expansion and 
in principle consist of two contributions. The first arises from TPE 
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diagrams in both the PV potential and currents. However, these 
contributions are proportional to hπ as well and are then addi-
tionally suppressed by the assumed smallness of hπ (in Ref. [43]
TPE contributions were found at the 10% level with respect to the 
OPE result based on the Siegert theorem and a phenomenological 
NN model). The other corrections appear in the form of PV NN in-
teractions which contribute both to the PV potential and current. 
It turns out that the relevant potential and current depend on the 
same LEC C4, in the notation of Ref. [6], which is independent of 
the LEC C appearing in pp scattering.

V PV,NLO = C4

Fπ�2
χ

i(�τ1 × �τ2)
3(�σ1 + �σ2) · �k, (12)

�JPV,NLO = − C4

Fπ�2
χ

(
�τ1 · �τ2 − τ 3

1 τ 3
2

)
(�σ1 + �σ2) . (13)

Other contact contributions to the PV potential and current ap-
pearing at this order give rise to negligible contributions to aγ .

We obtain the total result for the asymmetry

aγ = (−0.11 ± 0.05)hπ + (0.055 ± 0.025)C4 . (14)

To estimate the size of the C4 contributions to aγ we can use res-
onance saturation. By comparison with the meson-exchange model 
of Ref. [19], usually called the DDH model, the LEC C4 can be ex-
pressed as2

C4 = Fπ�2
χ

2mN

[
gωh1

ω

m2
ω

+ gρ(h1 ′
ρ − h1

ρ)

m2
ρ

]
, (15)

in terms of the masses mρ � mω � 780 MeV and PC couplings 
gω = 8.4 and gρ = 2.8. We have checked that both the potential 
and current in Eq. (12) [37] depend on this combination of DDH 
parameters by comparing to the currents derived in Ref. [27]. The 
sizes of the PV couplings h1

ω , h1
ρ , and h1 ′

ρ are unknown but can 
be estimated, albeit with significant uncertainty. Taking into ac-
count the whole reasonable range for these couplings as obtained 
in Ref. [19], we find C4 = (−0.8 ± 0.4) · 10−7. This range includes 
the more accurate prediction C4 = −1.2 · 10−7 of Refs. [21,22]. To 
be conservative, we insert the DDH range into Eq. (14) to obtain 
the estimated uncertainty due to the short-range PV NN interac-
tion

aγ = (−0.11 ± 0.05)hπ − (0.5 ± 0.5) · 10−8 . (16)

Considering the current experimental uncertainty of ±4.4 · 10−8, 
the contact terms provide only a minor error. This would imply 
that the above analysis and extraction of hπ is reliable. Small val-
ues of hπ are thus disfavored, although formally not (yet) incon-
sistent. An improvement in the measurement of aγ will provide a 
more definite answer regarding the size of hπ . In Refs. [39,42,45]
the dependence of the asymmetry on the short-range DDH param-
eters is found to be smaller than the central value of Eq. (14) by 
roughly a factor 4 to 5. A possible explanation might be the use of 
phenomenological strong potentials that typically have a stronger 
short-range repulsion than the chiral EFT potential, leading to a 
smaller dependence on short-range operators. A similar effect was 
found in the study of electric dipole moments [46].

The above reasoning is to some extent circular. We want to fit 
the LECs from few-body data only, but to estimate the effects of 
the formally subleading correction we require a model estimate of 

2 In Ref. [6] the resonance-saturation estimate of C4 was found to also depend on 
hπ due to TPE diagrams. However, in the calculation of aγ we do not include TPE 
contributions explicitly so these terms should not be subtracted from the estimate.
Fig. 3. The allowed ranges for the LECs C and C4 (both in units of 10−6). The blue 
(solid) ellipse is a fit to the pp and np data with a total χ2 = 2.71 using hπ = 0. The 
red (dashed) ellipse is similar but now using hπ = 7.7 · 10−7 which is the best-fit 
value for the intermediate cut-off. The dotted horizontal lines mark the predictions 
made by resonance saturation. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

C4. This unfortunate situation is due to a lack of data which im-
plies that we cannot fit all LECs at the same time in a consistent 
way. Some more insight can be obtained by using an alternative 
strategy. We force hπ to be small and fit the LECs C and C4 to 
the pp and np data. We then obtain the fits in Fig. 3. The blue 
(solid) contour corresponds to a fit in the C–C4 plane with a total 
χ2 = 2.71 where we set hπ = 0. In this case the fit prefers val-
ues for C4 which lie outside the range obtained from resonance 
saturation. The red (dashed) contour corresponds to a fit using 
hπ = 7.7 · 10−7 which corresponds to the best fit value for the 
intermediate cut-off combination. In this case the fit for C4 is cen-
tered around the zero and includes the resonance-saturation range 
marked by the dotted lines. Although strong conclusion cannot be 
drawn from this observation, it does indicate that small values 
of hπ requires short-range contributions that are larger than ex-
pected. As always, more and/or more precise data are required to 
draw firmer conclusions.

To summarize, in this paper we have extracted the values 
of two low-energy constants hπ and C appearing in the parity-
violating nucleon–nucleon potential and currents. To do so, we 
have used data on parity violation in proton–proton scattering and 
radiative neutron capture on a proton target. The extraction has 
been performed in the framework of chiral effective field the-
ory which has been systematically applied to both the parity-
conserving and parity-violating parts of the problem. We have esti-
mated the uncertainties of the fits due to experimental uncertain-
ties, variation of cut-off parameters, and higher-order corrections 
and find the first of these to be dominant. Our extraction of the 
weak pion–nucleon coupling constant, hπ = (1.1 ± 1.0) · 10−6, is 
marginally consistent with bounds obtained in experiments on 18F 
and a lattice QCD calculation. The expected increase in sensitivity 
of the aγ measurement will significantly improve the fit and tell 
whether small values of hπ are consistent with few-body experi-
ments.
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