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Charged jet production cross sections in p–Pb collisions at √sNN = 5.02 TeV measured with the ALICE 
detector at the LHC are presented. Using the anti-kT algorithm, jets have been reconstructed in the central 
rapidity region from charged particles with resolution parameters R = 0.2 and R = 0.4. The reconstructed 
jets have been corrected for detector effects and the underlying event background. To calculate the 
nuclear modification factor, RpPb, of charged jets in p–Pb collisions, a pp reference was constructed 
by scaling previously measured charged jet spectra at 

√
s = 7 TeV. In the transverse momentum range 

20 ≤ pT, ch jet ≤ 120 GeV/c, RpPb is found to be consistent with unity, indicating the absence of strong 
nuclear matter effects on jet production. Major modifications to the radial jet structure are probed via 
the ratio of jet production cross sections reconstructed with the two different resolution parameters. This 
ratio is found to be similar to the measurement in pp collisions at 

√
s = 7 TeV and to the expectations 

from PYTHIA pp simulations and NLO pQCD calculations at √sNN = 5.02 TeV.
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access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Jets are the observable final state of a fragmenting parton pro-
duced e.g. in scattering of partons in nuclei with a large mo-
mentum transfer, Q 2. At sufficiently large Q 2, the jet production 
cross section is computable since it can be factorized into the 
non-perturbative parton distribution and fragmentation functions 
and the cross section of partonic scatterings, which is calculable 
in perturbative QCD (pQCD) [1]. Jet measurements in p–Pb and 
their comparison to pp provide a tool to better constrain effects 
of (cold) nuclear matter on these factors. In particular, they can be 
used to examine the role of a modification of the initial distribu-
tion of quarks and gluons, e.g. shadowing effects and gluon satu-
ration [2,3], and the impact of multiple scatterings and hadronic 
re-interactions in the initial and final state [4,5].

In central heavy-ion collisions, the production of jets and 
high-pT particles is strongly modified: in Pb–Pb collisions at the 
LHC, the observed hadron yields are suppressed by up to a factor of 
seven compared to pp collisions, approaching a factor of two sup-
pression at high pT [6–8]. A similar suppression is also observed 
for reconstructed jets in central Pb–Pb [9–13]. This phenomenon, 
referred to as jet quenching, has also been observed previously in 
high-pT particle production in central Au–Au collisions at RHIC 
[14–19]. It is attributed to the creation of a quark–gluon plasma 
(QGP) in the final state, where hard scattered partons radiate 
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gluons in strong interactions with the medium as first predicted 
in [20,21]. This results in a radiative energy loss of the leading 
parton and a modified fragmentation pattern.

Initially, p–Pb collisions have been seen as the testing ground 
for isolated cold nuclear matter effects, without the formation 
of a hot and dense medium. However, recent results on low-pT

particle production and long range correlations in p–Pb collisions 
at 

√
sNN = 5.02 TeV [22–25] exhibit features of collective behav-

ior, similar to those found in Pb–Pb collisions, where they are 
attributed to the creation of a QGP. At high pT, results on the pro-
duction of unidentified charged particles [26–29] and jets [30,31]
in p–Pb collisions at 

√
sNN = 5.02 TeV are consistent with the ab-

sence of a strong final state suppression. The question to what 
extent other nuclear effects lead to an enhancement of particle 
production at high pT is still open, a possible enhancement in p–Pb
collisions has been reported for single charged hadrons [28]. The 
measurement of jets in p–Pb collisions compared to single hadrons 
tests the parton fragmentation beyond the leading particle with 
the inclusion of low-pT and large-angle fragments.

A jet is defined experimentally by the algorithm that combines 
the measured detector information such as tracks and/or calorime-
ter cells into jet objects and by the parameters of the algorithm. 
The desired properties of such algorithms in pp(p̄) collisions and in 
the corresponding theoretical framework have been discussed e.g. 
in [32]. In general, jet algorithms aim to reconstruct the kinematic 
properties of the initial parton with as little dependence on the 
details of its fragmentation process as possible, i.e. the algorithms 
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should yield consistent results when applied in a theoretical calcu-
lation at any stage of a parton shower and at final state particle 
level. A particularly well suited class of algorithms in this con-
text are those using sequential recombination schemes, which are 
infrared and collinear safe, in contrast to many conceptually sim-
pler cone algorithms. The computationally optimized implementa-
tion of sequential recombination algorithms in the FastJet package 
[33] facilitates their applicability also in collision systems with 
high multiplicity and thereby the comparison of results obtained 
with the same jet algorithms in pp, p–Pb, and Pb–Pb collisions. 
An additional complication in the context of jet reconstruction in 
high-multiplicity events arises from the large background particle 
density, i.e. particles in the same aperture as the jet that are not 
related to the initial hard scattering. This background can be sub-
tracted on an event-by-event basis and the impact on the recon-
structed jet observable needs to be evaluated carefully [12,34,35].

In this paper, jets reconstructed from charged particles (charged 
jets) with the anti-kT algorithm measured with the ALICE detector 
in p–Pb collisions at 

√
sNN = 5.02 TeV are reported for different 

resolution parameters, R . Section 2 describes in detail the correc-
tion steps needed in the analysis, including the effect of the event 
background and its fluctuations on the jet observables and the un-
folding procedure to account for background as well as detector 
effects. The results are presented and discussed in Section 3.

2. Data analysis

2.1. Event and track selection

The data used for this analysis were taken with the ALICE de-
tector [36] during the p–Pb run of the LHC at 

√
sNN = 5.02 TeV at 

the beginning of 2013. Minimum bias events have been selected 
requiring at least one hit in both of the scintillator trigger detec-
tors (V0A and V0C) covering the pseudorapidity 2.8 < ηlab < 5.1
and −3.7 < ηlab < −1.7, respectively [37]. Here and in the follow-
ing, ηlab denotes the pseudorapidity in the ALICE laboratory frame. 
Compared to this frame (with positive η in the direction of the 
V0A), the nucleon–nucleon center-of-mass system moves in rapid-
ity by yNN = −0.465 in the direction of the proton beam [38].

The event sample used in the analyses presented in this 
manuscript was collected exclusively for the beam configura-
tion where the proton travels from V0A to V0C (clockwise). 
A van der Meer scan was used to measure the visible cross section 
σV 0 = 2.09 ± 0.07 b for this case [39]. Monte Carlo studies show 
that the sample consists mainly of non-single diffractive (NSD) 
interactions and a negligible contribution from single diffractive 
and electromagnetic interactions (for more details see [38,40]). The 
trigger is not fully efficient for NSD events. This inefficiency affects 
only events without a reconstructed vertex, i.e. with no particles 
reconstructed within the acceptance of the SPD. The loss of effi-
ciency is estimated to be 2.3% with a large systematic uncertainty 
of 3.1% [38]. In this paper, the normalization to NSD events is only 
used for the construction of the nuclear modification factor.

In addition to the trigger selection, timing and vertex-quality 
cuts are used to suppress pile-up and bad quality events. The anal-
ysis requires a reconstructed vertex, which is the case for 98.2% of 
the events selected by the trigger. In addition, events with a re-
constructed vertex |z| > 10 cm along the beam axis are rejected. 
In total, about 96M events are used for the analysis.

Charged particles are reconstructed as tracks in the Inner Track-
ing System (ITS) [41] and the Time Projection Chamber (TPC) 
which cover the full azimuth and |ηlab| < 0.9 [42]. For tracks with 
reconstructed track points close to the vertex (from the two inner 
Silicon Pixel Detector (SPD) layers of the ITS), a momentum reso-
lution of 0.8% (3.8%) for pT = 1 GeV/c (50 GeV/c) is reached [36]. 

The azimuthal distribution of these high quality tracks is not com-
pletely uniform due to inefficient regions in the SPD. This can 
be compensated by considering in addition tracks without recon-
structed track points in the SPD. For those tracks, the primary 
vertex is used as an additional constraint in the track fitting to 
improve the momentum resolution. This approach yields a very 
uniform tracking efficiency within the acceptance, which is needed 
to avoid geometrical biases of the jet reconstruction algorithm 
caused by a non-uniform density of reconstructed tracks. The pro-
cedure is described in detail in the context of jet reconstruction 
with ALICE in Pb–Pb events [12]. For the analyzed data, the addi-
tional tracks (without SPD track points) constitute approximately 
4.3% of the used track sample. Tracks with pT > 0.15 GeV/c and 
within a pseudorapidity interval |ηlab| < 0.9 are used as input to 
the jet reconstruction. The overall efficiency for charged particle 
detection, including the effect of tracking efficiency as well as the 
geometrical acceptance, is 70% at pT = 0.15 GeV/c and increases 
to 85% at pT = 1 GeV/c and above.

2.2. Jet reconstruction and background corrections

For the present analysis, the anti-kT algorithm from the Fast-
Jet package [43] has been used to reconstruct jets from measured 
tracks with resolution parameters of R = 0.2 and R = 0.4. In gen-
eral, jets are only considered for further analysis if the jet-axis is 
separated from the edge of the track acceptance in ηlab by at least 
the resolution parameter R used in the jet finding, e.g. jets recon-
structed with R = 0.4 are accepted within |ηjet, lab| < 0.9 − 0.4 =
0.5. The jet transverse momentum is calculated by FastJet using 
the pT recombination scheme. To enable background corrections, 
the area A for each jet is determined internally by distributing 
ghost particles into the area that is clustered [44]. Ghost particles 
have vanishing momentum and therefore do not influence the jet 
finding procedure. By construction, the number of ghost particles 
in a jet is a direct measure for the jet area. A ghost particle den-
sity of 200 per unit area (0.005 area per ghost particle) was used 
to obtain a good area resolution with a reasonable computing time.

In Pb–Pb collisions, the background from particles not from the 
same hard scattering as the jet has a significant impact on the 
reconstructed jet momentum [12,35]. The transverse momentum 
density of this background is estimated with a statistically robust 
method by using the median of all jet pT, ch jet per area within one 
event for jets reconstructed with the kT algorithm. In p–Pb colli-
sions, the multiplicity density is two orders of magnitude smaller 
than in central Pb–Pb collisions [40], so a corresponding reduction 
of the jet background is expected. To obtain a reliable estimate for 
the more sparse environment of p–Pb events a modified version 
of the approach described in [45] for pp collisions is employed. It 
uses the same method as in Pb–Pb, but contains an additional cor-
rection factor, C , to account for regions without particles, which 
otherwise would not contribute to the overall area estimate. The 
background density for each event is then given by

ρch = median

{
pT, i

Ai

}
· C, (1)

where i runs over all reconstructed kT jets in the event with mo-
mentum pT, i and area Ai . C is defined by

C =
∑

j A j, kT

Aacc
. (2)

Here, the numerator is the area of all kT jets containing tracks and 
the denominator, Aacc, is the acceptance in which charged parti-
cles are considered as input to the jet finding (2 × 0.9 × 2π ). The 
probability distribution for the background density in this method, 
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Fig. 1. (Color online.) Left: Probability distribution of the event-by-event transverse momentum background density (see Eq. (1)). The mean and variance for two event classes 
are indicated in the figure. praw

T, ch jet represents uncorrected jet pT. Right: Probability distribution of background fluctuations calculated with the random cone approach and 
defined via Eq. (4) (resolution parameter R = 0.4).
with the same track selection criteria as the signal jet reconstruc-
tion and a radius of 0.4, is shown in Fig. 1 (left). The background 
density obtained with R = 0.4 is used both for the correction of 
signal jets with R = 0.4 and R = 0.2 to avoid event-by-event fluc-
tuations in the difference of the momenta for the two radii.

The probability distribution of ρch decreases approximately ex-
ponentially. It is smaller than 4 GeV/c for 98.6% of all events. 
The mean background density and its variance for all events is 
〈ρch〉 = 1.02 GeV/c (with negligible statistical uncertainty) and 
σ(ρch) = 0.91 ± 0.01 GeV/c. For events containing a jet with un-
corrected transverse momentum pT, ch jet > 20 GeV/c, it is 〈ρch〉 =
2.2 ±0.01 GeV/c and σ(ρch) = 1.47 ±0.09 GeV/c, respectively. The 
observed increase of the underlying event activity for events that 
contain a high-pT jet is expected. This increase is already present 
in pp collisions and has been quantified in detail and with more 
differential observables than the background density, e.g. in [46].

The background density estimate provides an event-by-event 
correction for each jet with reconstructed transverse momentum 
pT, ch jet and jet area Ach jet:

pT, ch jet = praw
T, ch jet − Ach jet · ρch. (3)

However, this approach neglects that the background for a given 
event is not uniformly distributed in the (ηlab, ϕ)-plane but fluc-
tuates from region to region. These fluctuations are mainly Pois-
sonian, but also encode correlated region-to-region variations of 
the particle multiplicity and the mean pT [35]. The effect of these 
fluctuations can be accounted for on a statistical basis in the 
unfolding of the measured jet pT, ch jet-distributions. The distribu-
tion of region-to-region density fluctuations around the event-wise 
background density estimate can be evaluated for the full event 
sample by a Random Cone (RC) approach as described in [35]. 
Cones with a radius R corresponding to the resolution parameter 
of the jet finding algorithm are placed randomly in the (ηlab, ϕ) 
jet-acceptance and the transverse momenta for all tracks (charged 
particles) falling into this cone are summed and compared to the 
background estimate:

δpT, ch =
∑

i

pT, i − ρch A, A = π R2. (4)

The distribution of the residuals, δpT, ch, as shown in Fig. 1 (right) 
for R = 0.4, is a direct measure for all intra-event fluctuations of 
the background and can be used directly in the unfolding pro-
cedure. In Fig. 1 (right), a clear asymmetry of the distribution is 
visible. It is caused by the fact that the δpT, ch distribution of sin-
gle particles sampled in the cone is asymmetric. Since the number 
of particles within a cone increases with its size, statistical fluc-
tuations of the background estimate also increase (see also [35]). 

Furthermore, the randomly placed cones can also overlap with jets. 
In p–Pb collisions, there is the possibility for multiple hard colli-
sions within one p–Pb event, so a jet can also be the background 
to a jet from another hard collision and contribute as an upward 
fluctuation. Therefore, an overlap of random cones with possible 
signal jets should not be a priori excluded in the fluctuation esti-
mate, but is part of its systematic uncertainty.

2.3. Detector effects and unfolding

The main detector-related effects on the reconstructed jet are 
the reconstruction efficiency and the momentum resolution for 
single charged particles. To determine the correction for these, 
a full detector simulation of pp jet events generated with PYTHIA6 
(Perugia 2011, version 6.425) [47] and GEANT3 particle trans-
port [48] is performed. In the simulation, two jet collections are 
matched geometrically (closeness in (ηlab, ϕ)-plane) with a one-to-
one correspondence [12]: jets reconstructed at the charged particle 
level (part) without detector effects and jets reconstructed from 
tracks after particle transport through the ALICE detector (det). In 
the simulation, the particle level reconstruction includes charged 
primary particles produced in the collision with pT > 0.15 GeV/c. 
Charged decay products from primary particle decays, excluding 
those from weak decays of strange particles, are included with 
the same pT threshold. The response matrix is populated with 
matched particle- and detector-level jets. It relates the particle-
level to the detector-level charged jet momentum and encodes 
the effects of single-particle momentum resolution and reconstruc-
tion efficiency on the reconstructed jet momentum. A correction 
for the missing energy of neutral jet-constituents is not applied. 
The response is shown on a logarithmic scale in Fig. 2 (left) for 
charged jets with R = 0.4 and particle-level momentum between 
45 < ppart

T, ch jet < 50 GeV/c. It can be seen that the most probable 
value for the reconstructed momentum is the particle-level mo-
mentum, but the distribution has large tails to the left and right. It 
is more probable that jets are reconstructed with a lower momen-
tum than the truth, which is due to the dominating effect of the 
single-particle reconstruction efficiency that reduces the number 
of reconstructed particles in a jet. The tail to the right-hand side 
is mainly due to the single-particle momentum resolution, where 
a fraction of tracks is reconstructed with higher momentum than 
the truth, causing an upward shift of the jet momentum.

In addition, Fig. 2 (left) shows the effect of the background 
fluctuations on the reconstructed jet momentum and the combina-
tion of detector effects and background fluctuations. Even though 
the background fluctuations show a strong tail to the right-hand 
side, it is seen that in the combined unfolding matrix the effects 
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Fig. 2. (Color online.) Left: Projection of the combined unfolding matrix for jets with particle-level momentum 45 < ppart
T, ch jet < 50 GeV/c. The matrix is obtained from the 

combination of the detector response and background fluctuation matrices, which are also shown as projections (see text for details). Right: Probability distribution of the 
relative difference between particle-level (generated true) and detector-level charged jet transverse momentum for jets with different momenta. The effect of background 
fluctuations is included for the jets reconstructed at detector level. Characteristic values of the distributions are summarized in Table 1.
Table 1
Characteristic values for the distribution of residuals of the total charged jet re-
sponse shown in Fig. 2 (right), including the effect of background fluctuations and 
without: most probable value (MPV) determined via a Gaussian fit to the central 
peak region, first and second moment (mean and width σ ), and quartiles. The pre-
cision of the quartiles is limited by the finite bin width of 0.01.

ppart
T, ch jet 20–25 GeV/c 45–50 GeV/c 80–90 GeV/c

MPV (Gaussian fit) 0.006 ± 0.002 −0.001 ± 0.002 −0.010 ± 0.004
id. w/o bkg. fluct. 0.007 ± 0.001 −0.003 ± 0.002 −0.013 ± 0.004
Mean 0.149 ± 0.030 −0.181 ± 0.030 −0.222 ± 0.030
id. w/o bkg. fluct. −0.163 ± 0.030 −0.188 ± 0.030 −0.226 ± 0.030
Width σ 0.238 ± 0.030 0.246 ± 0.030 0.259 ± 0.030
id. w/o bkg. fluct. 0.233 ± 0.009 0.245 ± 0.005 0.258 ± 0.003
Quartile, 25% above 0.01 ± 0.01 −0.01 ± 0.02 −0.01 ± 0.02
id. w/o bkg. fluct. 0.01 ± 0.01 −0.01 ± 0.02 −0.03 ± 0.02
Quartile, 50% above −0.05 ± 0.04 −0.09 ± 0.01 −0.13 ± 0.04
id. w/o bkg. fluct. −0.07 ± 0.04 −0.09 ± 0.04 −0.13 ± 0.04
Quartile, 75% above −0.25 ± 0.06 −0.29 ± 0.05 −0.37 ± 0.04
id. w/o bkg. fluct. −0.27 ± 0.04 −0.29 ± 0.06 −0.37 ± 0.04

of single-particle momentum resolution play the dominant role in 
reconstructing a jet with momentum higher than the truth. The 
default algorithm for the unfolding of the measured jet spectrum 
is based on the Singular Value Decomposition (SVD) approach [49] as 
implemented in the RooUnfold package [50]. The default prior in 
the unfolding procedure is a smoothed version of the uncorrected 
jet spectrum itself. In addition to the SVD unfolding approach, 
Bayesian [51,52] and χ2 [53] unfolding have been used for sys-
tematic comparisons and validity checks. The unfolded spectrum 
is also corrected for unmatched jets using a jet reconstruction ef-
ficiency obtained from generated–reconstructed comparison. This 
jet reconstruction efficiency is larger than 96% in the considered 
momentum range.

The influence of these detector effects and background fluctua-
tions on the jet momentum is shown for three transverse momen-
tum intervals in Fig. 2 (right) via the probability distribution of the 
relative difference of the detector-level and particle-level charged 
jet transverse momentum. For all momentum bins the distribution 
is asymmetric. The most probable response was determined using 
Gaussian fits to the peak region. It can be seen in Table 1 that it is 
close to zero (≤ 1%) with a mild pT dependence. To further quan-
tify the distributions, numerical values for their mean and width 
are also given in Table 1. Since the width is not a well-defined 
measure of the jet momentum resolution for these asymmetric 
distributions, the quartiles of the distribution are provided in ad-
dition. Approximately, 25% of the jets have a larger momentum 
than the generated. The 50% (median) correction is only 5% for 
ppart

T, ch jet = 20–25 GeV/c and increases towards larger jet momenta. 

In Table 1 the values for the respective distributions without back-
ground fluctuations are also given (not shown in Fig. 2). Clearly, 
the instrumental response dominates the jet response as already 
seen in Fig. 2 (left). The main effect of the background fluctuations 
is a broadening of the jet response and an upward shift of the aver-
age reconstructed energy due to the asymmetric shape of the fluc-
tuations as seen in Fig. 1 (right). The most probable value remains 
unaffected within the uncertainties when background fluctuations 
are included.

2.4. Nuclear modification factor

The nuclear modification factor compares a pT-differential yield 
in p–Pb collisions to the differential production cross section in pp 
collisions at the same 

√
sNN to quantify nuclear effects:

RpPb = d2NpPb/dηdpT〈
TpPb

〉 · d2σpp/dηdpT
. (5)

Here, 
〈
TpPb

〉
is the nuclear overlap function which accounts for 

the increased parton flux in p–Pb compared to pp collisions. It 
is related to the number of binary nucleon–nucleon collisions via 〈
TpPb

〉 = 〈Ncoll〉/σ
pp
INEL and has been calculated in a Glauber Monte 

Carlo, as described in [38]. Here, σ pp
INEL represents the total inelas-

tic cross section in pp collisions. For minimum bias p–Pb collisions, 
the nuclear overlap function is 

〈
TpPb

〉 = (0.0983 ± 0.0034) mb−1

and 〈Ncoll〉 = 6.87 ± 0.56. In this paper, the reference differen-
tial production cross section in pp is constructed from the ALICE 
charged jet measurement at 7 TeV [54] by a pQCD based scaling. In 
the nuclear modification factor, the invariant yield for NSD events 
in p–Pb is compared to inelastic pp collisions. Hence, the addi-
tional correction of (2.3 ± 3.1)% is applied as discussed above.

2.5. NLO calculations and pp reference

Perturbative QCD calculations are used for two purposes in 
this paper: for comparison to the measurement of jet produc-
tion in p–Pb, and as additional input to the construction of the 
pp reference. The calculations have been performed within the 
POWHEG box framework [55,56], which facilitates next-to-leading 
order (NLO) precision in calculating parton scattering cross sec-
tions in an event-by-event Monte Carlo. Event-by-event the out-
going partons from POWHEG are passed to PYTHIA8 [57] where 
the subsequent parton shower is handled. For this, a POWHEG 
version matched to the PYTHIA8 fragmentation is used to avoid 
double counting of NLO effects already considered in the PYTHIA8 
code. The Monte Carlo approach has the advantage that the same 
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Table 2
Summary of systematic uncertainties on the fully corrected jet spectrum, the corresponding nuclear modification factor, and the jet production cross section ratio for the 
resolution parameters R = 0.2 and R = 0.4. The percentages are given for the whole shown transverse momentum range 20–120 GeV/c.

Observable Jet cross section RpPb R

Resolution parameter R = 0.2 R = 0.4 R = 0.2 R = 0.4 0.2/0.4

Uncertainty source
Single-particle efficiency (%) 7.9–12.8 10.2–14.2 4.1–5.9 4.9–6.3 2.1–2.1
Unfolding (%) 2.2 1.7 2.8 2.2 1.5
Unfolding prior steepness (%) 1.4–4.8 0.5–4.0 2.9–8.0 0.9–4.4 1.1–1.5
Regularization strength (%) 3.1–3.9 2.3–4.4 3.6–5.8 2.3–5.6 1.1–4.7
Minimum pT cut-off (%) 1.1–0.3 2.3–0.1 1.3–1.4 2.8–4.1 1.2–0.4
Background estimate (%) 1.8–0.6 3.7–1.5 1.8–0.6 3.7–1.5 2.0–0.9
δpT, ch estimate (%) 0.0–0.0 0.1–0.0 0.0–0.0 0.1–0.0 0.1–0.0

Combined uncertainty (%) 9.2–14.4 11.5–15.5 7.1–11.9 7.5–10.7 3.8–5.7

〈
TpPb

〉
(%) – – 3.4 3.4 –

pp cross section (%) – – 3.5 3.5 –
Reference scaling pp 7 TeV (%) – – 10.0 10.0 –
NSD selection efficiency p–Pb (%) – – 3.1 3.1 –

Combined scaling uncertainty (%) – – 11.6 11.6 –
selection criteria and jet finding algorithm can be used on final 
state particle level, as in the analysis of the real data, in particu-
lar, the limitation to charged constituents of a jet. The dominant 
uncertainty in the parton level calculation is given by the choice 
of renormalization scale, μR, and factorization scale, μF. The de-
fault value has been chosen to be μR = μF = pT and independent 
variations by a factor of two around the central value are consid-
ered as the systematic uncertainty. In addition, the uncertainty on 
the parton distribution functions has been taken into account by 
the variation of the final results for the respective error sets of the 
parton density functions (PDFs).

For the comparison with the measured p–Pb data, proton PDFs 
corrected for nuclear effects (CTEQ6.6 [58] with EPS09 [59]) have 
been used. Prior to passing the scattered partons to PYTHIA8 for 
showering, they can be boosted into the same reference frame as 
the p–Pb reaction by yNN = 0.465.

The construction of the pp reference at 
√

sNN = 5.02 TeV is 
based on the ALICE measurement of charged jets in pp collisions at 
7 TeV, described in detail in [54]. For the purpose of the reference 
scaling, the same analysis chain has been used as for p–Pb. The 
same binning in pseudorapidity and transverse momentum allows 
for a partial cancellation of common systematic uncertainties in 
the pp and p–Pb data sets. In addition, the same background sub-
traction approach as in the p–Pb analysis is used for the pp data. 
In the present analysis, the scaling is done with a factor which 
is determined for each pT,ch jet bin by the NLO pQCD calculations 
(POWHEG + PYTHIA8) at the two energies. For the pp reference 
scaling the parton distribution functions in the POWHEG calcula-
tion have been replaced by the free proton PDF from CTEQ6.6. The 
scaling factor is given by

F (pT) =
yield(pT, ch jet)

∣∣5.02 TeV, boosted
pp, NLO

yield(pT, ch jet)
∣∣7 TeV
pp, NLO

. (6)

The factor decreases monotonically from F ≈ 0.65 to 0.45 in the 
reported pT range. As already described above, the laboratory 
frame is not the center-of-mass frame of the collision as is the 
case for pp collisions. Therefore, the numerator of the scaling fac-
tor F in Eq. (6) is determined in the NLO calculation where the 
additional Lorentz-boost is applied to the hard scattered partons 
prior to fragmentation. The resulting reduction of the observed 
jets for |ηlab| < 0.5 is smaller than 5% in the relevant momentum 
range.

2.6. Jet production cross section ratio

The broadening or narrowing of the parton shower with respect 
to the original parton direction can have a direct impact on the 
jet production cross section reconstructed with different resolu-
tion parameters. This can be tested via the ratio of yields or cross 
sections in common rapidity interval, here |ηlab| < 0.5 for R = 0.2
and 0.4:

R(0.2, 0.4) = dσpPb, R=0.2/dpT

dσpPb, R=0.4/dpT
. (7)

Considering the extreme scenario that all fragments are already 
contained within R = 0.2 this ratio is unity. In this case, also the 
statistical uncertainties between R = 0.2 and R = 0.4 are fully 
correlated and cancel completely in the ratio, when the jets are 
reconstructed from the same data set. In the case the jets are less 
collimated, the ratio decreases and the statistical uncertainties only 
cancel partially. For the analysis presented in this paper, the con-
ditional probability for reconstructing an R = 0.2 jet in the same 
pT-bin as a geometrically close R = 0.4 jet is 25–50%, which leads 
to a reduction of the statistical uncertainty of the ratio of 5–10%
compared to the case of no correlation.

2.7. Systematic uncertainties

The various sources of systematic uncertainties are listed in Ta-
ble 2 for the full pT-range of the three observables presented in 
this paper: jet production cross section, nuclear modification fac-
tor, and cross section ratio. The most important sources will be 
discussed in the following.

The dominant source of uncertainty for the pT-differential jet 
production cross section is the imperfect knowledge of the single-
particle tracking efficiency that has a direct impact on the correc-
tion of the jet momentum in the unfolding, as discussed above. 
In p–Pb collisions, the single-particle efficiency is known with a 
relative accuracy of 4%, which is equivalent to a 4% uncertainty 
on the jet momentum scale. To estimate the effect of the tracking 
efficiency uncertainty on the jet yield, the tracking efficiency is ar-
tificially lowered by randomly discarding a certain fraction (4% in 
p–Pb) of tracks used as input for the jet finding. Depending on the 
shape of the spectrum, the uncertainty on the single particle effi-
ciency (jet momentum scale) translates into an uncertainty of 8 to 
15% on the yield.

To estimate the uncertainty on the p–Pb nuclear modification 
factor, the uncertainty on the single-particle tracking efficiency 
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in the two collision systems (pp and p–Pb) has to be evaluated. 
This uncertainty on the efficiency is correlated between the data 
sets, since the correction is determined with the same underly-
ing Monte Carlo description of the ALICE detector and for similar 
track quality cuts. Only variations of detector conditions between 
run periods may reduce the degree of correlation. The uncorrelated 
uncertainty has been estimated to be 2%, and the uncertainty for 
the nuclear modification factor has been determined by artificially 
introducing such a difference in the tracking efficiency between 
the two collision systems.

The uncertainty on the spectra induced by the underlying 
event subtraction has been estimated by comparing the results 
with various methods for background subtraction; ranging from 
purely track-based to jet-based density estimates, including an 
ηlab-dependent correction. As seen in Fig. 1, a typical correction 
π R2ρch for a jet with R = 0.4 is about 1 GeV/c. The uncertainty 
on this correction can be treated similar to an uncertainty on 
the jet momentum scale. For the final spectrum, the uncertainty 
on the yields from the background correction method is approxi-
mately 2%.

In the determination of the fluctuations of the underlying event, 
the main uncertainty is given by the exclusion of reconstructed 
jets in the random cone sampling of the event. The probability for 
a random cone to overlap with reconstructed jets is higher than 
for the jets itself. On average, a jet can overlap with Ncoll − 1 jets 
in one event. The random cone can overlap with Ncoll jets. To ac-
count for this, the δpT, ch calculation can be modified to discard on 
a statistical basis random cones that overlap with signal jets. This 
lowers the average overlap probability. However, since this modi-
fied δpT, ch calculation strongly depends on the signal jet definition 
and also on how an overlap is defined, it is not used by default 
but considered for systematic uncertainties. The effect of this par-
tial signal exclusion approach on the fully corrected jet yields is of 
the order of 0.1%.

The uncertainty of the scaling procedure to obtain the ref-
erence spectrum is estimated by determining the scaling factors 
F(pT) after varying the scales μR and μF in the POWHEG NLO 
generation, and by using different tunes in the outgoing fragmen-
tation handled by PYTHIA8. Furthermore, standalone calculations 
with PYTHIA6 and PYTHIA8 using different generator tunes and 
with HERWIG at the two energies have been performed to ob-
tain scaling factors according to Eq. (6). A general uncertainty for 
how well LO generators and NLO calculations can describe the √

s-dependence of particle production is also considered: in ALICE
measurements of the π0 production in pp collisions, it has been 
observed that pQCD calculations predict a stronger increase of the 
production cross section when going from 0.9 to 7 TeV than sup-
ported by the data [60]. A similar effect is also seen in unidenti-
fied charged hadrons measured with ALICE at 0.9, 2.76, and 7 TeV 
[61]. Furthermore, the 

√
s-dependence of the jet production cross 

section has been cross checked internally with an interpolation be-
tween 7 and 2.76 TeV, using preliminary ALICE results on charged 
jets at 

√
s = 2.76 TeV. In total, these studies yield an additional un-

certainty on the pp reference of 10% for the extrapolation from 7 
to 5.02 TeV. It is reported as an independent normalization uncer-
tainty, similar to the uncertainty on the nuclear overlap function.

3. Results

The pT-differential production cross sections for jets recon-
structed from charged particles in minimum bias p–Pb collisions 
at 

√
sNN = 5.02 TeV are shown in Figs. 3 and 4 for the resolution 

parameters R = 0.4 and R = 0.2. The spectra are found to agree 
well with scaled NLO pQCD calculations (POWHEG + PYTHIA8) us-
ing nuclear PDFs (CTEQ6.6 + EPS09) as seen best in the ratio data 

Fig. 3. (Color online.) Top panel: pT-differential production cross section of charged 
jet production in p–Pb collisions at 5.02 TeV for R = 0.4. Bottom panel: Ratio of 
data and NLO pQCD calculations. The global uncertainty from the measurement of 
the visible cross section of 3.5% is not shown. The uncertainties on the pQCD cal-
culation are only shown in the ratio plot as dashed lines. The pQCD calculations 
take into account the rapidity shift of the nucleon–nucleon center-of-mass system 
in p–Pb with a boosted parton system.

Fig. 4. (Color online.) Top panel: pT-differential production cross section of charged 
jet production in p–Pb collisions at 5.02 TeV for R = 0.2. Bottom panel: Ratio of 
data and NLO pQCD calculations. The global uncertainty from the measurement of 
the visible cross section of 3.5% is not shown. The uncertainties on the pQCD cal-
culation are only shown in the ratio plot as dashed lines. The pQCD calculations 
take into account the rapidity shift of the nucleon–nucleon center-of-mass system 
in p–Pb with a boosted parton system.

over calculation in the lower panels. However, the effect of the nu-
clear PDFs on the jet production in the reported kinematic regime 
is almost negligible, as seen in the comparison to calculations with 
only proton PDFs (CTEQ6.6).

Fig. 4 also shows the jet spectra for −0.65 < ηlab < −0.25 and 
0.25 < ηlab < 0.65 compared to the results from the symmetric se-
lection |ηlab| < 0.5. Here, ηlab denotes the pseudorapidity of the 
jet axis. The first selection roughly corresponds to a small win-
dow around mid-rapidity for the nucleon–nucleon center-of-mass 
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Fig. 5. (Color online.) Nuclear modification factors RpPb of charged jets for R = 0.2 (left) and R = 0.4 (right). The combined global normalization uncertainty from 〈TpPb
〉
, the 

correction to NSD events, the measured pp cross section, and the reference scaling is depicted by the box around unity.
system, while the second is separated from it by about one unit 
in rapidity. No significant change of the jet spectra is observed for 
these two ηlab regions centered at −0.45 and 0.45. Thus, the jet 
measurement has no strong sensitivity to the rapidity shift and 
the pseudorapidity dependent variation of the multiplicity (under-
lying event) within the statistical and systematic uncertainties of 
the measurement.

The nuclear modification factor RpPb is constructed based on 
the pT-differential yields and the extrapolated pp production cross 
section at 5.02 TeV for R = 0.2 and 0.4. It is shown in the left 
and right panel of Fig. 5, respectively. In the reported pT-range, 
it is consistent with unity, indicating the absence of a large mod-
ification of the initial parton distributions or a strong final state 
effect on jet production. Before comparing these results to the 
measured single-particle results for RpPb, one has to consider that 
the same reconstructed pT corresponds to a different underlying 
parton transverse momentum. Assuming that all spectra should 
obey the same power law behavior at high pT, an effective con-
version between the spectra can be derived at a given energy via 
the POWHEG+PYTHIA8 simulations described above. To match the 
single charged particle spectra in the simulation to charged jets 
with R = 0.4, a transformation ph±

T → 2.28ph±
T is needed. Thus, 

the reported nuclear modification factor for charged jets probes 
roughly the same parton pT-region as the ALICE measurement of 
single charged particles that shows a nuclear modification factor 
in agreement with unity in the measured high-pT range up to 
50 GeV/c [27].

Since the jet measurements integrate the final state particles, 
they have a smaller sensitivity to the fragmentation pattern of par-
tons than single particles. Differences between the nuclear modifi-
cation factor for jets and single high-pT particles, as suggested by 
measurements in [28,29], could point to a modified fragmentation 
pattern or differently biased jet selection in p–Pb collisions.

A modified fragmentation pattern may be also reflected in the 
collimation or transverse structure of jets. The first step in test-
ing possible cold nuclear matter effects on the jet structure is 
the ratio of jet production cross sections for two different reso-
lution parameters. It is shown for R = 0.2 and R = 0.4 in p–Pb
in Fig. 6 and compared to PYTHIA6 (Tune Perugia 2011) and 
POWHEG + PYTHIA8 at 

√
sNN = 5.02 TeV and to ALICE results in 

pp collisions at 
√

s = 7 TeV [54]. All data show the expected in-
crease of the ratio from the increasing collimation of jets for higher 
transverse momentum and agree well within the uncertainties. No 
significant energy dependence or change with collision species is 
observed. The data for p–Pb collisions is well described by the 
NLO calculation as well as by the simulation of pp collisions with 
PYTHIA6 at the same energy. It should be noted that the ratio for 

Fig. 6. (Color online.) Charged jet production cross section ratio for different res-
olution parameters as defined in Eq. (7). The data in p–Pb collisions at √sNN =
5.02 TeV are compared to PYTHIA6 (tune: Perugia 2011, no uncertainties shown) 
and POWHEG+PYTHIA8 (combined stat. and syst. uncertainties shown) at the same 
energy, and to pp collisions at 7 TeV (only stat. uncertainties shown).

charged jets is, in general, above the ratio obtained for fully recon-
structed jets, containing charged and neutral constituents. This can 
be understood from the contribution from neutral pions that decay 
already at the collision vertex and lead to an effective broadening 
of the jet profile when including the neutral component in the jet 
reconstruction, mainly in the form of decay photons. For the same 
reason, the inclusion of the hadronization in the NLO pQCD cal-
culation is essential to describe the ratio of jet production cross 
section as also discussed in [62].

4. Summary

In this paper, pT-differential charged jet production cross sec-
tions in p–Pb collisions at 

√
sNN = 5.02 TeV have been shown up 

to pT, ch jet of 120 GeV/c for resolution parameters R = 0.2 and 
R = 0.4. The charged jet production is found to be compatible with 
scaled pQCD calculations at the same energy using nuclear PDFs. 
At the same time, the nuclear modification factor RpPb (using a 
scaled measurement of jets in pp collisions at 

√
s = 7 TeV as a ref-

erence) does not show strong nuclear effects on jet production and 
is consistent with unity for R = 0.4 and R = 0.2 in the measured 
pT-range between 20 and 120 GeV/c. The jet cross section ratio of 
R = 0.2/0.4 is compatible with 7 TeV pp data and also with the 
predictions from PYTHIA6 Perugia 2011 and POWHEG + PYTHIA8 
calculations at 5.02 TeV. No indication of a strong nuclear modi-
fication of the jet radial profile is observed, comparing jets with 
different resolution parameters R = 0.2 and R = 0.4.



ALICE Collaboration / Physics Letters B 749 (2015) 68–81 75

Acknowledgements

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the out-
standing performance of the LHC complex. The ALICE Collaboration 
gratefully acknowledges the resources and support provided by 
all Grid centres and the Worldwide LHC Computing Grid (WLCG) 
Collaboration. The ALICE Collaboration acknowledges the follow-
ing funding agencies for their support in building and running 
the ALICE detector: State Committee of Science, World Federation 
of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho 
Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fi-
nanciadora de Estudos e Projetos (FINEP), Fundação de Amparo à 
Pesquisa do Estado de São Paulo (FAPESP); National Natural Science 
Foundation of China (NSFC), the Chinese Ministry of Education 
(CMOE) and the Ministry of Science and Technology of the Peo-
ple’s Republic of China (MSTC); Ministry of Education and Youth of 
the Czech Republic; Danish Natural Science Research Council, the 
Carlsberg Foundation and the Danish National Research Founda-
tion; The European Research Council under the European Commu-
nity’s Seventh Framework Programme; Helsinki Institute of Physics 
and the Academy of Finland; French CNRS–IN2P3, the ‘Region Pays 
de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France; Ger-
man Bundesministerium fur Bildung, Wissenschaft, Forschung und 
Technologie (BMBF) and the Helmholtz Association; General Sec-
retariat for Research and Technology, Ministry of Development, 
Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok 
(OTKA) and National Office for Research and Technology (NKTH); 
Department of Atomic Energy and Department of Science and 
Technology of the Government of India; Istituto Nazionale di Fisica 
Nucleare (INFN) and Centro Fermi – Museo Storico della Fisica 
e Centro Studi e Ricerche “Enrico Fermi”, Italy; MEXT Grant-in-
Aid for Specially Promoted Research, Japan; Joint Institute for 
Nuclear Research, Dubna; National Research Foundation of Ko-
rea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), 
Direccion General de Asuntos del Personal Academico (DGAPA), 
México; Amerique Latine Formation academique–European Com-
mission (ALFA–EC) and the EPLANET Program (European Particle 
Physics Latin American Network); Stichting voor Fundamenteel On-
derzoek der Materie (FOM) and the Nederlandse Organisatie voor 
Wetenschappelijk Onderzoek (NWO), Netherlands; Research Coun-
cil of Norway (NFR); National Science Centre of Poland; Ministry 
of National Education/Institute for Atomic Physics and Consiliul 
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Y. Pestov 5, V. Petráček 39, V. Petrov 111, M. Petrovici 77, C. Petta 29, S. Piano 109, M. Pikna 38, P. Pillot 112, 
O. Pinazza 104,36, L. Pinsky 120, D.B. Piyarathna 120, M. Płoskoń 73, M. Planinic 127, J. Pluta 132, 
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