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Widespread seasonal gene expression reveals
annual differences in human immunity and
physiology
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Seasonal variations are rarely considered a contributing component to human tissue function

or health, although many diseases and physiological process display annual periodicities.

Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue

to have seasonal expression profiles, with inverted patterns observed between Europe and

Oceania. We also find the cellular composition of blood to vary by season, and these changes,

which differ between the United Kingdom and The Gambia, could explain the gene expression

periodicity. With regards to tissue function, the immune system has a profound pro-

inflammatory transcriptomic profile during European winter, with increased levels of soluble

IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and

autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require

further exploration as contributors to various aspects of human physiology and disease.
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P
eriodic seasonal changes have influenced all life forms, as
exemplified by seasonal physiology and behaviours across
plant and animal species1–3. For example, reptile graft

rejection4 and level of gonadal hormones in squirrel monkeys5

display seasonal variation. In humans, many complex polygenic
diseases, including cardiovascular6,7, autoimmune8,9 and
psychiatric illnesses10–12, have established seasonal patterns of
incidence and disease activity. Infectious disease seasonality is
well established in humans13, and it has been proposed that
an inborn physiological rhythm underlies the seasonality of
diagnoses of infectious diseases and their pathologies14, but direct
evidence of such a system is lacking.

Various biological processes show seasonal variation in
humans, including ones with important immunological roles,
such as vitamin D metabolism15. The loss of skin pigmentation as
humans migrated out of Africa to more temperate and colder
zones to increase sunlight-driven vitamin D production is a major
example of the evolutionary adaption of humans to different
environments. Yet, how seasons might more broadly impact the
underlying molecular details of human physiology is unknown.
Along these lines, we hypothesized that the anti-inflammatory
circadian transcription factor, ARNTL (BMAL1)16,17, would
display seasonal gene expression differences as daylight entrains
circadian rhythms in mammals18–21. Tissue-specific molecular
clocks control a diverse range of cellular processes22,23,
influencing the immune response24–28.

From ethnically and geographically diverse populations we
analysed mRNA expression levels in peripheral blood mono-
nuclear cells and adipose tissue biopsies, full blood count data,
and the circulating levels of inflammatory protein biomarkers.

Results
Seasonal ARNTL expression in the immune system. We first
analysed ARNTL expression in peripheral blood mononuclear cells
(PBMCs) from children (454 samples from 109 individuals) enroled
into the BABYDIET cohort from Germany29 (Supplementary
Table 1). ARNTL mRNA showed seasonal variation in expression
(ANOVA, w2

2, P¼ 1.04� 10� 23), peaking in the summer months
of June, July and August (Fig. 1a). The difference between the
winter low and summer high in ARNTL expression was 1.5097-fold.
Vitamin D receptor (VDR) expression was also higher in the
summer months (Fig. 1a). The housekeeping genes, B2M and
GAPDH, often used as standards in gene expression analyses, did
not show seasonal variation (Fig. 1a). ARNTL showed the same
seasonal expression profile independently of whether blood was
drawn during morning or afternoon clinic visits (Fig. 1b),
suggesting that diurnal oscillations are not responsible for the
seasonal differences in ARNTL expression.

We then sought evidence for seasonality in known components
of the circadian clock. Seasonal variation was found in 9 of the 16
clock genes tested: ARNTL, CLOCK, CRY1, CSNK1D, CSNK1E,
NR1D2, RORA, TIMELESS30 and NFIL3 (which controls diurnal
Th17 cell development in mice31) (Fig. 1c). Seven genes (CRY2,
PER3, RORB, NPAS2, PER1, PER2 and NR1D1) did not show
evidence for seasonal effects (Supplementary Table 3). Novel
components of the human circadian clock, as well as clock-
targeted genes and pathways, are likely to be present among the
genes whose expression correlated with ARNTL (Supplementary
Table 2). Interestingly, the glucocorticoid receptor (NR3C1) had a
strong positive correlation with ARNTL (Spearman r¼ 0.819),
with lowest expression in the winter (ANOVA, w2

2,
P¼ 5.05� 10� 19) (Fig. 1d). Glucocorticoids have anti-
inflammatory properties32 and SCN-controlled hormones are
thought to be essential molecules for maintaining the
synchronicity of peripheral biological clocks33. In contrast to
NR3C1, receptors for the prostaglandins (PTGDR, PTGIR and

PTGER4), leukotrienes (CYSLTR1) and oxoeicosanoids (OXER1)
were more highly expressed in the winter in Germany. Receptors
for adiponectin (ADIPOR1), estradiol (ESR2) and antidiuretic
hormone (CUL5) were more highly expressed in the summer
(Fig. 1d). Other hormone receptors did not show any seasonal
variation in this data set.

Widespread seasonal gene expression in the immune system.
Strikingly, we found B23% of the genome (5,136 unique genes out
of 22,822 genes tested) to show significant seasonal differences in
expression in the BABYDIET data set (Fig. 2a and Supplementary
Table 3). Among the seasonal genes, two distinct anti-phasic pat-
terns of gene expression were evident: 2,311 genes (2,922 unique
probes) had increased expression in the summer (defined as June,
July and August, mean fold change¼ 1.2572) while 2,826 genes
(3,436 unique probes) were upregulated in the winter (defined as
December, January, February, mean fold change ¼ 1.3150)
(Fig. 2c, Supplementary Fig. 1), demonstrating that different
transcriptional landscapes are present in the peripheral immune
system during different seasons.

The daily variables of mean ambient temperature and mean
sunlight hours both served as linear predictors of seasonality
(Supplementary Fig. 2), suggestive of human environmental
adaptation.

We replicated the observation in two independent data sets.
First, in a collection of PBMCs isolated from autoimmune type 1
diabetes (T1D) patients (236 samples) from the United Kingdom,
1,697 genes were found to exhibit seasonal expression (Fig. 3a and
Supplementary Table 4). The majority of seasonally associated
transcripts could again be identified as having summer or winter
expression profiles, with seasonal patterns matching those
identified in the BABYDIET data set (Fig. 3b). This data set
demonstrated seasonal gene expression in adults, adding to the
observations made in samples from children (Supplementary
Fig. 3 and Fig. 2).

Secondly, we analysed gene expression data from a collection of
PBMCs from adult (18–83 years old, mean age 45) asthmatic
individuals from diverse ethnic groups across Australia, United
Kingdom/Ireland, United States and Iceland34. We separated the
entire cohort into distinct geographical locations and observed
seasonal gene expression in each (Fig. 3c and Supplementary
Tables 5–8). Seasonal genes identified in the BABYDIET cohort
maintained their seasonal tropisms in the asthmatic patients
(Fig. 3d). Most interestingly, in the Australian data set, the
previously defined summer genes (increased in expression during
the Northern hemisphere summer) were more highly expressed
during the Southern hemisphere summer, spanning December,
January and February (Fig. 3d); clearly illustrated, for example, by
ARNTL expression (Supplementary Fig. 6B). The pattern of
seasonal gene expression in samples from Iceland was unique
(Supplementary Fig. 4).

Seasonal gene expression was not altered in samples from
children with self-reported infections35 (Supplementary Fig. 5),
and the type-I interferon response gene, SIGLEC135, was not
seasonal. Finally, recruitment into the asthma cohort was
dependent on participants being free from infectious diseases34.
Nevertheless, the relationship between seasonal infections and
diseases, and these seasonal gene expression patterns, remains to
be fully described.

Common seasonal genes in the immune system. One hundred
and forty-seven genes showed common seasonality in the
BABYDIET, T1D, Australia, USA and UK/Ireland datasets
(Supplementary Table 9). These 147 genes had similar seasonal
expression patterns in each cohort (Supplementary Fig. 6).
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Seasonality of circadian clock genes
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Figure 1 | Seasonal mRNA expression in the peripheral human immune system. Relative expression profiles of seasonal genes (fitted values of the

cosinor model). (a) ARNTL expression was increased in the summer months of June, July and August (ANOVA, w2
2, P¼ 1.04� 10� 23), compared with the

winter months of November through February (1.5097-fold difference between February and August (n¼ 109 individuals). Similarly, the nuclear vitamin D

receptor (VDR) shows peak expression in June through August (ANOVA, w2
2, P ¼ 1.62� 10�06). The housekeeping genes, B2M and GAPDH, did not have

seasonal expression profiles. (b) Seasonal ARNTL expression in PBMCs independent of the circadian phase. Similar seasonal ARNTL expression profiles

were observed regardless of whether blood samples were collected during morning (BABYDIET, n¼ 109 individuals) or afternoon clinic visits (T1D cohort,

n¼ 236 individuals). (c) In the BABYDIET data set, nine known components of the circadian clock had seasonal expression profiles in the peripheral

immune system, as did certain hormone, leukotriene and prostaglandin receptors. (d) The receptors for the anti-inflammatory glucocorticoids (NR3C1) and

the pro-inflammatory prostaglandins (PTGDR, PTGIR and PTGER4) and leukotrienes (CYSLTR1) had opposing seasonal expression profiles.
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Notably, in the Icelandic cohort, the common seasonal genes did
not share the same expression pattern (Supplementary Fig. 4).
This could be due to near-24-h daylight during summer if sea-
sonal human physiology is regulated by changes in the annual
photoperiod36. ARNTL was found to be a common seasonal gene
(Fisher’s method, w2

10, P¼ 6.73� 10� 57), with increased summer
expression in each PBMC data set, except Iceland. The gene with
the strongest seasonal profile common to all data sets (excluding
Iceland) was C14orf159 (winter expressed, Fisher’s method,
w2

10, P¼ 3.93� 10� 66). The mitochondrial protein, UPF0317,
encoded by C14orf159 (whose expression is regulated by
oestrogen receptor alpha37) is highly conserved in chordates,
although its function in humans is largely unknown.

Seasonal cellular remodelling of the human immune system. As
PBMCs represent several specialized haematopoietic lineages, we

sought to determine whether seasonal gene expression resulted
from annual changes in the cellular composition of blood.

In support of this, we found the expression of seasonal genes to
correlate strongly with the expression of 13 genes known to mark
different immune cell types present in PBMCs38 (Fig. 4a).
Furthermore, by analysing full blood count (FBC) data from
7,343 healthy adult donors enroled in the Cambridge BioResource
(United Kingdom), we found the total number of white blood
cells (ANOVA, F-test, P¼ 1.75� 10� 10), lymphocytes (ANOVA,
F-test, P¼ 2.11� 10� 11), monocytes (ANOVA, F-test, P¼ 9.14
� 10� 30), basophils (ANOVA, F-test, P¼ 2.74� 10� 6),
eosinophils (ANOVA, F-test, P¼ 0.00235), neutrophils
(ANOVA, F-test, P¼ 6.13� 10� 27) and platelets (ANOVA,
F-test, P¼ 2.02� 10� 12) to exhibit seasonality in the peripheral
circulation, as did the mean corpuscular volume (MCV)
(ANOVA, F-test, P¼ 1.32� 10� 21) and mean corpuscular

Seasonal genes in the BABYDIET data set

Genes defined as summer, winter or neither
amongst BABYDIET seasonal genes

5,000 genes not defined as
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Figure 2 | Widespread seasonal mRNA expression in the human immune system. Relative expression profiles of seasonal genes (fitted values of the

cosinor model). (a) A total of 5,136 genes (B23% of the protein-coding genome) were identified as having seasonal variation in expression (genome-wide

significance, Pr1.52� 10�06) in the BABYDIET PBMC data set. (b) Five thousand randomly selected genes not identified as seasonal are shown

as a comparison. (c) Two anti-phasic patterns of gene expression were observed among seasonal genes. We defined the majority of seasonal genes as

being either winter- (green) or summer-expressed (blue). In BABYDIET, 2,311 genes were increased in expression in the summer and 2,826 were increased

in the winter. One of the seasonal probes did not fall into our definition of summer and winter, shown as a red line.
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haemoglobin (MCH) (ANOVA, F-test, P¼ 1.73� 10� 15) of
erythrocytes (Fig. 4b). Our results are in agreement with a study
that reported seasonal red blood cell and platelet gene
expression39.

In a more equatorial cohort, comprising 4,200 healthy
individuals from The Gambia (West Africa), we observed
seasonal variation in the number of total white blood cells
(F-test, P¼ 0.011), lymphocytes (F-test, P¼ 1.40� 10� 05),

monocytes (F-test, P¼ 8.71� 10� 16) and platelets (F-test,
P¼ 2.07� 10� 18) (Fig. 4c), but not granulocytes. We also
observed striking seasonal variation in red blood cell numbers
(F-test, P¼ 8.43� 10� 30) and their mean corpuscular haemo-
globin (F-test, P¼ 4.07� 10� 30) (Supplementary Fig. 7). The
seasonal patterns in The Gambia were completely distinct to
those observed in the UK cohort. In The Gambian cohort, the
numbers of all seasonal cell types peaked during the rainy season
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Figure 3 | Seasonal gene expression in geographically distinct cohorts. (a) Seasonality was also observed in PBMCs collected from T1D patients in the

United Kingdom (n¼ 236 individuals). A total of 1,697 genes were seasonal in this data set. (b) The previously defined summer and winter genes from the

BABYDIET data set maintained their seasonal expression patterns in the T1D samples. (c) PBMCs from asthmatic patients collected from different countries also

showed seasonal gene expression. In the United Kingdom/Ireland (n¼ 26 asthmatic individuals; 85 PBMC samples), 791 genes were seasonal, while 1,257 and

409 genes were seasonal in Australia (n¼ 26 individuals; 85 samples) and United States (n¼ 37 individuals; 123 samples), respectively. (d) Summer and winter

BABYDIET genes maintained their seasonal expression patterns in the asthmatic PBMC samples, with their patterns inverted in Australia.
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Figure 4 | Seasonal changes in the cellular composition of human peripheral blood. (a) Expression levels of 13 genes that have been used to identify

different blood cell types among total PBMCs were strongly correlated (positively and negatively) with seasonal genes identified in the BABYDIET data set.

In comparison, non-seasonal genes were less correlated with these marker genes, although exceptions exist: CTLA-4 expression also correlations with

non-seasonal genes. (b) Indeed, by analysing full blood count data obtained from 7,343 healthy adult donors enroled in the Cambridge BioResource, we

found the cellular composition, and other haematological parameters of blood to vary by season. HCT was the only response that did not show seasonal

variation. (c) Distinct seasonal variation in cell counts was observed in a cohort of 4,200 healthy adults and children from The Gambia. EOS, eosinophils;

LYM, lymphocytes, NEU, neutrophils, PLT, platelets; RBC, red blood cells; WBC, total white blood cells; BAS, basophils; HGB, haemoglobin; MCH, mean

corpuscular haemoglobin; MCV, mean corpuscular volume; MON, monocytes; HCT, haematocrit.
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(as previously reported for leukocytes40), June through October,
during which time the immune system faces different pathogenic
challenges, such as an increased infectious disease burden,
including malaria41.

Seasonal differences in human immunity. To address whether
immunological function varies seasonally, as suggested by the
transcriptomic and cell count data, we generated modules of
co-regulated seasonal mRNAs identified in the BABYDIET data
set (Fig. 5a and Supplementary Fig. 8 and Supplementary
Table 12). Among the seven winter-expressed modules we
identified, we found pro-inflammatory processes to be more
frequent, compared with the identified summer-expressed mod-
ules. B-cell receptor (BCR) signalling (Hypergeometric test,
P¼ 3.39� 10� 10), FcR-gamma-associated processes (Hypergeo-
metric test, P¼ 4.45� 10� 6), lysosomes (Hypergeometric
test, P¼ 2.96� 10� 5), chemokine signalling (Hypergeometric
test, P¼ 3.56� 10� 5) and phagosomes (Hypergeometric test,
P¼ 5.97� 10� 5) were all strongly associated with winter-
expressed modules. In contrast, RNA transport (Hypergeometric
test, P¼ 1.70� 10� 7), RNA degradation (Hypergeometric test,
P¼ 1.02x10� 5), ubiquitin-mediated proteolysis (Hypergeometric
test, P¼ 0.0002), circadian rhythms in mammals (Hypergeo-
metric test, P¼ 0.0011) and splicosome (Hypergeometric test,
P¼ 0.0014) were the most-associated pathways with summer-
expressed modules, suggesting that a more inflammatory status of
the immune system predominates in winter (Fig. 5b and
Supplementary Fig. 8).

In further support of this, we found the concentration of
sIL-6R protein to be increased in winter in samples from
BABYDIET and BABYDIAB (a related collection42; ANOVA, w2

2,
P¼ 2.74� 10� 11), in complete agreement with the increased
winter expression of IL6R mRNA in BABYDIET samples
(ANOVA, w2

2, P¼ 9.33x10� 12) (Fig. 5c). sIL-6R is an important
orchestrator of leukocyte recruitment43 and trans-presents IL-6 to
cells expressing gp130 in the absence of the cell-surface IL-6R44,
endowing IL-6 with a broader spectrum of influence. Indeed, a
coding variant in IL6R that alters circulating sIL-6R
concentration is associated with impaired IL-6 signalling and
the protection from cardiovascular disease, rheumatoid arthritis
and T1D45. Interestingly, early-stage inflammation in rheumatoid
arthritis (a disease treated with anti-IL-6 receptor reagents46) has
been shown to either resolve or progress to erosive disease, and a
predictor of this outcome is the season when disease symptoms
first present47. T1D also has seasonal trends in diagnoses9 and
autoantibody positivity48, suggesting that seasonal environments
impact on autoimmune disease pathologies. Furthermore, we
found the circulating level of the acute-phase complement
activator, C-reactive protein49, to be increased during winter
months (Fig. 5d).

These gene expression data also suggest that the quality of a
vaccine response may be influenced by season. We found
the expression of TLR7 (ANOVA, w2

2, P¼ 4.22� 10� 16),
TLR8 (ANOVA, w2

2, P¼ 3.70� 10� 09) and DDX58 (encoding
the viral RNA receptor RIG-I, ANOVA, w2

2, P¼ 9.65� 10� 20)
to have increased in expression in winter months in the
BABYDIET data set: the increased expression of these genes
correlated with protective immunity in response to the Yellow
Fever vaccine (YF-17D)50. TNFRSF17 also showed seasonal
variation in the BABYDIET data set (ANOVA, w2

2,
P¼ 1.30� 10� 12), and its induction is shown to be predictive
of an antibody response after trivalent influenza vaccine51,52.
Furthermore, OAS1 (ANOVA, w2

2, P¼ 1.43� 10� 20), OAS2
(ANOVA, w2

2, P¼ 2.85� 10� 16), STAT2 (ANOVA, w2
2, P¼ 1.76

� 10� 18), POU2AF1 (ANOVA, w2
2, P¼ 3.27� 10� 15) and

CD27 (ANOVA, w2
2, P¼ 3.29� 10� 16) were also seasonal

and their expression in PBMCs was correlated with increased
anti-DT IgG responses after the meningococcal vaccine
(MCV4)51. The antibody responses to rabies, typhoid and
pneumococcal vaccines are influenced by the month of vaccine
administration40.

Seasonal gene expression in subcutaneous adipose tissue. Given
the remarkable seasonality of the peripheral immune system and
the correlations we found with multiple health-associated phe-
notypes, we anticipated that tissues throughout the body would
display extensive seasonality of gene expression. We were able to
analyse gene expression data from a collection of subcutaneous
adipose tissue samples obtained from 825 healthy female donors
enroled in the TwinsUK cohort53.

We found 4,027 genes to be seasonally expressed (Fig. 6,
Supplementary Table 13), including IL6ST (gp130) (ANOVA,
w2

2, P¼ 2.55� 10� 8) and IL6R (ANOVA, w2
2, P¼ 1.49� 10� 8):

adipose tissue can produce IL-654. One thousand, two hundred
and thirteen genes were common to both adipose tissue and
BABYDIET data sets (Supplementary Table 14), suggesting that
common genetic mechanisms regulate seasonality.

In adipose tissue, as in PBMCs, metabolic pathways were
among the most associated seasonal pathways (Supplementary
Fig. 9). Such seasonal metabolic programmes may have been
selected for due to annual differences in temperature and
diet. Adipose tissue seasonality has important implications for
immunology, obesity and metabolic disease research; for example,
PPARG, targeted by thiazolidinediones as a current treatment of
type 2 diabetes, was found to be seasonal in adipose tissue
(ANOVA, w2

2, P¼ 3.75� 10� 9).

Discussion
Ecological changes alter the types and dynamics of inter- and
intra-organism biological processes, and it follows that such
changes will be manifested as seasonal transcriptional signatures
within the immune systems of different organisms, which adapt
to their environment. Studies of the function, dynamics and
variability of the immune system are undergoing a long-awaited
renaissance partly owing to the development and application of
new phenotyping technologies55,56. Nevertheless, to date, no
study to our knowledge has taken into account the variability we
have observed in the immune system according to season, which
could, for example, increase the differences in some immune
phenotypes between twins or other family members if blood
samples were collected at different times of year. We observed
seasonal differences in expression across a large number of genes
in mixed populations of human peripheral white blood cells from
geographically and ethnically diverse locations, and, remarkably,
seasonal genes displayed opposing patterns in the Southern and
Northern hemispheres. Fewer seasonal genes were identified in
Icelandic donors, and common seasonal genes had a less similar
seasonal pattern in this data set. If a seasonal photoperiodic clock
exists in humans, the impact of living at higher latitudes requires
further exploration.

These periodically changing transcriptional landscapes in
PBMCs, which appear to be predominantly driven by annual
changes in the cellular composition of blood, are likely to
influence various aspects of the human immune response. Indeed,
the increased winter expression of co-regulated pro-inflammatory
gene modules, the functionally important increased concentration
of sIL-6R and CRP in the blood, and the observation that a loss of
BMAL1 (ARNLT was reduced in winter) promotes inflammation
in mice28, strongly suggests that the immune system is more
pro-inflammatory in Europeans during the northern hemisphere
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Figure 5 | Inflammatory responses predominate the immune system in Europe. (a) Co-regulated seasonal gene modules were generated

to analyse differences in immune function by season: eight winter modules and three summer modules were generated. (b) Two modules of seasonally

co-regulated genes from the BABYDIET data set are shown as examples. A module consisting of genes involved in B-cell receptor signalling, (including CR2,

BLNK, BTK, FCGR2B, CD72, CD79B) was more highly expressed in the winter, as was a module associated with metabolic processes. In contrast,

a RNA-processing module (containing RANBP2, EIF3J, RAE1, NUP54, DDX20, STRAP, NUPL1, PAIP1) was more highly expressed in the summer. (c) IL6R

mRNA expression was increased in the winter, in BABYDIET samples (ANOVA, w2
2, P¼ 9.33� 10� 12), as was observed for the circulating level of sIL-6R

protein in the serum of BABYDIET/DIAB children (ANOVA, w2
2, P¼ 2.74� 10� 11). (d) The circulating levels of C-reactive protein displayed seasonal

variation in a cohort of 3,412 donors diagnosed as hypertensive but not conventionally dyslipidemic. ASCOT enrolled participants in Ireland, Denmark,

Finland, Iceland, Norway, Sweden and the UK (two measurements per donor), with increased levels present during winter HSCRP - high sensitivity

C-reactive protein.
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winter. In mice, Arntl-BMAL1 controls the diurnal variation
of circulating and tissue-resident inflammatory monocyte
numbers28, although how ARNTL controls human immune
function is not known. We note that, in Europeans, total
monocyte numbers in blood are increased during winter, when
ARNTL expression is the lowest. Notably, acute-phase proteins
including CRP are induced by IL-6, which can be produced by
macrophages and adipocytes54. This entire network could be a
major factor in the higher frequency of cardiovascular disease-
associated deaths in winter6, when increased risk is associated
with excessive inflammation, IL-6 and monocytes. Furthermore,
increased IL-6 signalling is associated with increased risk of
rheumatoid arthritis and type 1 diabetes45, which peaks in
incidence during the European winter. Increased IL-6 signalling
and elevated CRP levels have also been associated with
neuropsychiatric symptoms in children and adults57,58. Thus,
modulation of IL-6 signalling according to season could be
considered as a therapeutic strategy in various disease contexts.
Whether a seasonal human immune system contributes to host-
mediated pathology and morbidity after infection59 remains to be
determined, but the correlations we report suggest this might be
the case.

The breadth and functional characteristics of the seasonal gene
expression we observed suggest that it has been evolutionarily
selected for. During European winters, the thresholds required to
trigger an immune response may be lower as a direct consequence
of our co-evolution with infectious organisms and increased
inter-species competition during winter, especially as humans
migrated out of Africa to colder, more seasonally pronounced
latitudes. In our European cohorts, winter was associated with
increased monocytes and inflammation, while FBC data from the
more-equatorial Gambian cohort exhibited distinct seasonal
variation in cell numbers. In this data set, seasonal peaks in cell
numbers correlated with the rainy season (June to October),

during which time the infectious disease burden is at its highest
levels.

Regardless of any particular causal factor driving these
differences, which are likely many, our results demonstrate that
different human populations independently vary the cellular
composition of their immune system by season, suggestive of
distinct environmental adaptations. Furthermore, although our
data suggest that cell-type numbers contribute the majority of
seasonal gene expression in PBMCs, future studies of seasonal
phenotypic differences within purified immune cell subsets are
likely to reveal an additional layer of complexity in the human
immune system.

The origin and likely diverse mechanisms maintaining seasonal
variation remain to be established: daylight and ambient
temperature are candidate environmental cues that could co-
ordinate seasonal hormonal phenotypes and cell-fate decisions in
haematopoietic and stem cells. Indeed, diurnal entrainment of the
human circadian clock requires daylight changes, demonstrating
that humans sense and process photoperiodic cues to co-ordinate
physiology.

The environmental perturbation of our molecular clocks is
thought to be deleterious to health60, which may help explaining
the increasing complex disease burden in industrialized
countries61 and populations at extreme latitudes9, where clock
dysregulation or chronodisruption may be more frequent62. In
seasonally-breeding mammals, circadian melatonin production
cues reproduction in response to changes in the annual
photoperiod63. In the arctic mammal, Rangifer tarandus, daily
melatonin rhythms are acutely responsive to the night-day phase
but not the circadian phase64, demonstrating species-specific
adaptation to the unique night-day cycles present at extreme
latitudes: the ability of humans to properly function in such
environments is not well understood. Furthermore, a circannual
molecular clock was recently shown to control seasonal
reproduction in hamsters, independently of melatonin and sex
steroids, yet using the same neuroendocrine reproductive
pathway65. Human genetic variation in the ARNTL gene region
has been associated with age of menarche66,67, which is also
seasonal.

The widespread seasonal gene expression observed in sub-
cutaneous adipose demonstrates seasonality across different
human tissues.

Regardless of the mechanisms causing and maintaining these
and other seasonal variations, our results provide a plausible
mechanism to explain part of the seasonality of human disease.
These data provide a fundamental shift in how we conceptualize
immunity in humans, and we propose that seasonal changes be
more broadly considered as major determinants of human
physiology.

Methods
Study subjects and human samples. All samples and information were collected
with written and signed informed consent. One hundred and nine children
genetically predisposed to T1D were enrolled in the BABYDIET study. The
BABYDIET study is an intensively monitored dietary intervention study testing the
potential effect of delayed gluten exposure on the development of islet auto-
immunity in children at increased risk for diabetes in Germany. Children younger
than 3 months with at least one first-degree relative with T1D and one of three
specific T1D-associated HLA genotypes (DRB1*03-DQA1*05:01-DQB1*0201/
DRB1*04-DQA1*03:01-DQB1*03:02; DRB1*04-DQA1*03:01-DQB1*03:02/
DRB1*04-DQA1*03:01-DQB1*03:02 or DRB1*03-QA1*05:01DQB1*02:01/
DRB1*03-DQA1*05:01DQB1*02:01) were recruited between 2,000 and 2,006
(participation rate: 88.8 %) and randomized to exposure to dietary gluten from
age 6 months or from age 12 months. After inclusion, children were followed in
three monthly intervals until the age of 3 years and yearly thereafter for efficacy
(persistent islet autoantibodies) and safety assessment, including intensive mon-
itoring with three monthly sample collection of venous blood, urine and stool.
PBMCs were isolated from venous blood samples taken at each visit and stored
at � 80 �C in TRIZOL.

Seasonal gene expression
in adult subcutaneous adipose tissue
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Figure 6 | Seasonal gene expression in subcutaneous adipose tissue. In a

collection of 856 female adult donors from the United Kingdom, 4,027

genes were found to be seasonal in adipose tissue. As observed in PBMCs,

two distinct anti-phasic profiles were present.
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The T1D PBMCs were collected as part of the Genetic Resource Investigating
Diabetes (GRID)cohort collection (http://www.childhood-diabetes.org.uk/grid.
shtml) by our laboratory and others. Blood samples were collected in morning or
afternoon hospital clinics, across more than 150 centres in the United Kingdom.
Blood was collected into ACD vacutainers and PBMCs isolated separated
using either Sigma Accuspin or Histopaque according to the manufacturer’s
recommendations. PBMCs were cryopreserved in the presence of DMSO and
stored at � 80 �C until use. For RNA isolation, PBMC samples were thawed,
washed with X-Vivo 15 (Lonza) and added to Trizol reagent. RNA was isolated and
gene expression data were generated in the same way as the BABYDIET cohort,
described in the following section.

All BABYDIET and T1D PBMC gene expression data are deposited with
ArrayExpress (accession number: E-MTAB-1724).

Gene expression data for the multi-centre asthma cohort is publically available.
The cohort was collected and processed as described by Bjornsdottir et al.34,
and the raw and normalized data are deposited with ArrayExpress (http://www.
ebi.ac.uk/arrayexpress/, E-GEOD-19301). This gene expression data set was
generated on Affymetrix HG-U133A GeneChip Array, which we found to have
22,283 probesets (which map to 10,457 unique ENSEMBL gene identifiers).
The inclusion of patients in the initial collection of the study was dependent on
participants being free from active infection, major intercurrent illness, allergen
immunotherapy, pregnancy and lactation34.

The available processed data as well as the R ExpressionSet file were
downloaded from ArrayExpress. Information regarding the disease phase of the
samples, their country of origin and the date of bleeding was used in our analyses.
Only asthma patients defined as being in a quiet disease phase were included in our
analyses. Precise age at bleed for each donor was also not available in this data set,
although individuals between 18 and 83 years of age were present in the cohort.
The mean age of the asthma patients was 45.08 years34.

As information regarding sample gender in this data set was not available, we
defined gender based on Y-expressed genes in PBMCs (DDX3Y, KDM5D, USP9Y,
and RPS4Y1). The first principal component of the expression of the listed genes
was calculated for each individual in the study. Patients with component values
smaller than zero were classified as female and patients with component values
greater than zero were classified as male.

The asthma PBMC data set was divided into four groups according to country
of sample collection; United States, Australia, United Kingdom/Ireland and
Iceland.

The subcutaneous adipose tissue gene expression data were collected by the
MuTHER consortium53 and is publically available (Array Express E-TABM-1140).
The adipose tissue data set includes 825 female twins, among them 80 singletons,
448 dizygotic and 297 monozygotic individuals. Gene expression data for 48,638
probesets (mapping to 24,332 unique Entrez genes) were downloaded.

Sample numbers included in our analyses of each cohort, and their monthly
distributions, are shown in Supplementary Table 1.

Gene expression analysis in BABYDIET and T1D PBMCs. Only gene expression
data for the BABYDIET and T1D PBMC cohorts were generated in our laboratory.
In brief, single-stranded cDNA was synthesized from 200 ng total RNA using the
Ambion whole-transcript expression kit (Ambion) according to the manufacturer’s
recommendations. A total of 3.44 mg cDNA was fragmented and labelled using the
GeneChip terminal labelling and hybridization kit and hybridized to 96-sample
Titan Affymetrix Human Gene 1.1 ST arrays, which provide comprehensive whole-
transcriptome coverage. After quality control, we measured the expression of
33,297 probesets, which map to 22,822 unique ENSEMBL gene identifiers.

BABYDIET, T1D and adipose gene expression data were summarized by
exon-level probesets and normalized using variance stabilizing normalization:
post quality control 454 BABYDIET35, 236 T1D and 825 adipose samples were
used for analysing gene expression.

The gene expression data of the asthmatic patients were log2 transformed
before any analysis.

Climatic data for modelling seasonal gene expression. Historical raw data for
the mean daily temperature, as well as the total daily hours of sunlight in Munich
(Germany), were obtained from the Integrated Climate Data Centre at the
University of Hamburg (http://icdc.zmaw.de/dwd_station.html?&L=1).

For the analysis of the T1D PBMC data that came from all around United
Kingdom we downloaded the maximum and minimum temperature data from
seven stations across United Kingdom (Armagh, Camborne, Eskdalemuir, Lerwick,
Stornoway airport and Valley) from the National Climatic Data Centre, USA
(http://www.ncdc.noaa.gov/cdo-web/search) and averaged readings across all
stations.

For the analysis of the asthma cohort (ArrayExpress: E-GEOD-19301), the daily
maximum and minimum temperature for relevant cities/regions in the United
Kingdom (Central England UK station at Birmingham), United States (New Jersey,
Seattle, Atlanta, New Haven), Iceland (Reykjavik), Ireland (Dublin) and Australia
(Melbourne, Perth, Adelaide) were obtained from the National Climatic Data
Centre, USA and The Digital Technology Group. The average temperature values
were computed and used in subsequent analyses.

Self-reported infections in BABYDIET cohort. At each visit, parents of
BABYDIET children completed a detailed questionnaire on their children’s history
of infections, fever and medication. Specifically, they were asked about fever,
infectious symptoms (such as diarrhoea, vomiting, constipation and allergies) and
the name of administered pharmaceutical agents or their active ingredient with
starting date and duration of infections and medication. Infectious disease was
defined as an acute event according to the ICD710 Code or by a symptom
indicating an infectious genesis. Infectious events were assigned to a specific time
interval by their date of onset, and infectious events that could be matched to
microarray samples were included for analysis, as described35. Other disease events
such as allergies or accidents were not considered as infectious diseases.

Soluble IL-6 receptor ELISA. Circulating sIL-6R concentrations were measured in
BABYDIET and BABYDIAB serum samples using a highly sensitive non-isotopic
time-resolved fluorescence ELISA assay based on the dissociation-enhanced
lanthanide fluorescent immunoassay technology (DELFIA; PerkinElmer), as
described45. Test samples were diluted 1:20 in PBSþ 10% FBS and measured in
duplicate on 384-well MaxiSorp microtiter plates (Nunc), coated with 1 mg ml� 1

monoclonal anti-human IL-6R antibody (clone 17506; RD Systems). Detection was
performed using a biotinylated mouse anti-CD126 monoclonal antibody (clone
M182, BD Biosciences) diluted to a final concentration of 100 ng ml� 1 in
PBSþ 10% FBS and a Europium-Streptavidin detection solution (PerkinElmer),
diluted in PBSþ 0.05% tween, 1% BSA, 7 mg ml� 1 DTPA to a final concentration
of 0.05 mg ml� 1. Quantification of test samples was obtained by fitting the readings
to a human recombinant IL-6Ra (RD systems) serial dilution standard curve plated
in quadruplicate on each plate. Data for 782 unique individuals existed from
722 families.

Cambridge BioResource full blood count data (UK cohort). Full blood count
data were obtained from the Cambridge BioResource. BioResource volunteers are
subjected to a full blood count on the day of blood sample collection using
Beckman Coulter LH700, Beckman Coulter DXH800 5 part diff analyser or a
Sysmex 5 part diff analyser. The available months of bleed were from February to
November (no FBC data was available for December) and took the numeric values
2 to 11, respectively. Responses measured included counts for basophils, eosino-
phils, lymphocytes, monocytes, neutrophils, platelets, erythrocytes and total white
blood cells. HCT (haematocrit), HGB (haemoglobin concentration), MCH (mean
corpuscular haemoglobin) and MCV (mean corpuscular volume) were also
analysed.

Full blood count data from The Gambia. The Gambian cohort was collected as
part of the Keneba Biobank (http://www.ing.mrc.ac.uk/research_areas/the_kene-
ba_biobank.aspx). All participants were recruited between 2012 and 2014 in the
West Kiang district and within the catchment area of the MRC International
Nutrition Group’s field station at MRC Keneba. Supplementary Figure 7 gives
summary statistics for the cohort. Written informed consent was obtained from all
participants and all procedures were approved by the joint Gambian Government/
MRC Ethics Committee. FBCs were available from 4,200 healthy individuals (at the
time of sample collection; 44.07% male) using a Medonic M-series analyser, which
measures the numbers of white blood cells, lymphocytes, granulocytes, monocytes,
platelets and RBCs. Furthermore, it also analyses the mean platelet volume, RBC
haemoglobin concentration, the haematocrit, MCV and MCH.

C-reactive protein. The level of CRP in the peripheral circulation was measured in
3,412 donors (two samples per donor) collected as part of the ASCOT study68.
Treatment with Atorvastatin did not remove the seasonal variation in this
parameter. Age and sex were included as covariates, while a random intercept was
added for the individual identifiers.

Statistical analysis of the data sets. Cosinor models with a period of 1 year were
fitted to test the effect of season on gene expression. The general formula of the
fitted model is given by:

Yjik ¼aþ b cos 2ptikð Þþ c sin 2ptikð Þ
þ d ðfixed covariatesÞþ gðrandom interceptsÞþ ejik

ð1Þ

where Yjik represents the log2 expression of gene j for individual i recorded at time
tik, with tik computed as the calendar day of the date of bleed divided by the total
number of days within the equivalent year.

The fixed covariates and random intercepts terms were data-set-specific. For the
analysis of the BABYDIET and T1D data sets we added age at bleed and gender as
fixed effects covariates, whereas only gender was added as a covariate in the
analysis of the asthma PBMC microarray dataset (age was not available). The
identity of each subject of the BABYDIET and of the asthma data sets were
modelled as a random intercept in the corresponding models. For the adipose
tissue data set we modelled age at bleed as a fixed covariate and added family
identity and an indicator whether the twin was monozygotic or dyzogitic as
random intercepts. Gender and age at bleed were treated as fixed effects covariates
in the analysis of the soluble IL-6 receptor data, and family identity was included as
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a random intercept. As only the month of bleed was available in the Cambridge
BioResource FBC data, we adjusted the cosinor model to depend on month instead
of day; no other covariates were available and random intercepts were not required,
as no individual was observed more than once. For the last two data sets, the
response variable (Y) corresponds to IL-6R and to the tested FBC responses listed
in the description of the data set. For analysis of CRP, age, sex and an age*sex
interaction were included as fixed covariates, CRP was log transformed to remove
right skew, and a random intercept was used to adjust for within individual
repeated measures.

To examine whether the effect of season was significant we compared the fitted
model in equation (1) with a model that did not include the effect of season. This
alternative model is expressed by

Yjik ¼ aþ d ðfixed covariatesÞþ g ðrandom interceptsÞþ ejik ð2Þ

The P-value for season was determined by comparing the two models for each
gene using an analysis of variance test. Seasonal genes were classified as those
with P values less than the data-set-specific Bonferroni correction threshold
alpha¼ 0.05. For the BABYDIET and T1D data sets, we defined as seasonal the
genes with P values less than the corresponding Bonferroni correction P value and
with mean log2 expression greater than or equal to, 6.

The relative estimated log2 expression of each seasonal gene for each data set
was computed as

Ŷik ¼ b̂ cos 2ptikð Þþ ĉ sin 2ptikð Þ ð3Þ

where b̂ and ĉ are the least squares estimates of b and c of the model in
equation (1), respectively.

Furthermore, we tested whether temperature or sunlight hours could predict
gene expression of the PBMC data sets. Temperature and sunlight were defined,
respectively, as the average temperature and number of sunlight hours over the
week preceding the date of bleed for each individual. For example the temperature
model is given by

yjik ¼ aþ b temperatureik þ d ðfixed covariatesÞþ g ðrandom interceptsÞþ ejik

ð4Þ

The three alternative models for the seasonal cosinor function, sunlight and
temperature, each including only one of these predictors were fitted to log2
expression level for seasonal genes, as identified in each data set.

Definition of winter and summer seasonal genes in BABYDIET. Seasonal genes
were classified as winter genes if the relative estimated log2 expression values of the
genes were positive for all days of January, February and December and negative
for all days of June, July and August. In contrast, summer seasonal genes were
defined as those with positive relative estimated log2 expression for all days of June,
July and August and negative for all days of January, February and December.
The fold change for each summer and winter gene was computed as two raised to
the power of the absolute difference of the estimated log2 expression between
15 January and 15 July (days 15 and 196 of a 365-day calendar year).

Network and functional analysis of the seasonal genes identified in BABYDIET.
A weighted co-expression gene network of the seasonal genes identified in
BABYDIET was constructed using the R package WGCNA69. For the construction
of the network, individuals who sero-converted to T1D autoantibodies at any stage
during the BABYDIET study were not included. A scale-free topology network was
created based on the seasonal genes, where the correlation of their log2 gene
expression was used as a measure of co-expression. Modules of highly correlated
genes were detected through hierarchical clustering. Some genes were not
correlated with other seasonal genes. The biological function of each module was
examined through an over-representation pathway analysis carried out using the
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt, http://
bioinfo.vanderbilt.edu/webgestalt/)70. The gene members of each module were
uploaded to WebGestalt and tested for over-representation within KEGG
pathways. Pathways with less than three genes within our gene lists were excluded.
The Hypergeometric test was applied, and the
P values of the test were corrected for multiple testing using the Benjamini–
Hochberg method.

Analysis of the self-reported infections data of BABYDIET cohort. The
BABYDIET samples were divided into two categories, one that included all samples
with no self-reported infections (57 samples) and one with all the samples with at
least one reported infection (152 samples). A principal component analysis (PCA)
was performed, and the first principal component from the analysis was used to
summarize the gene expression of BABYDIET seasonal genes. Similarly, the gene
expression of the genes within the black module (detected using network analysis
of the seasonal genes identified in BABYDIET) was also summarized as the first
component of a second PCA. The effect of infection on either of the two com-
ponents was tested using analysis of variance. The black module was chosen as it
contained genes associated with the response to Staphylococcus infection.

Identification of common seasonal genes. We wanted to explore whether any of
the seasonal genes identified in the PBMC cohorts were shared between the five
data sets (excluding Iceland). We compared the Bayesian information criterion
(BIC) of the cosinor model (1) with the BIC of the model excluding the seasonality
effect (2) for each of the genes from the two in-house data sets (BABYDIET and
T1D) that had a P value o0.05/33297 in at least one of the two data sets. The
common seasonal genes of the two in-house datasets were defined as genes whose
BIC was smaller for (1) than (2) within each data set. We repeated the afore-
mentioned steps to identify common seasonal genes in the asthma cohort. The
intersection of the two lists from the five data sets were defined as common
seasonal genes.

We further computed a combined P value for the association of each common
seasonal gene by combining the P values of the five data sets using Fisher’s product
P value method.

Common seasonal genes between the adipose tissue data set and the
BABYDIET data set were defined as the genes that were found seasonal for both
data sets.

Seasonal analysis of The Gambian full blood count data. Given the different
seasonal climates present in West Africa compared to Europe, FBC parameters
from The Gambia cohort were assessed through linear models that included sex,
age (modelled through splines) and with seasonality modelled using three Fourier
terms using STATA12.1. The significance of season was assessed using an F-test.

Note added in proof. Adaptive oscillations at balanced polymorphisms in
Drosophila in response to acute and persistent changes in climate were reported
while this work was under consideration (Bergland, A.O., Behrman, E.L.,
O’Brien, K.R., Schmidt P.S. & Petrov D.A. Plos Genet. 10(11):e1004775 (2014)).
Furthermore, seasonally-variable associations of three genes involved in glucose
metabolism and circadian clock regulation, CRY1 (cryoptochrome 1), CRY2
(cryoptochrome 1) and MTNR1B (melatonin receptor 1B) have recently been
reported in humans. (Renström, F., Koivula, R.W., Varga, T.V., Hallmans, G.,
Mulder, H., Florez, J.C., Hu, F.B. & Franks, P.W. Diabetologia 10.1007/s00125-015-
3533-8 (2015)).
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