
FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 1

Review of Model-Based Testing Approaches in
Production Automation and Adjacent Domains –

Current Challenges and Research Gaps

Abstract—As systems have been and are becoming more and
more complex, the task of quality assurance is increasingly
challenging. Model-based testing is a research field addressing
this challenge and many approaches have been suggested for
different applications. The goal of this paper is to review these
approaches regarding their suitability for the domain of produc-
tion automation in order to identify current trends and research
gaps. Adjacent domains where approaches are introduced in
order to identify promising techniques which may be interesting
for the field of production automation. The different approaches
are classified and clustered according to their main focus which
is either testing and test case generation of/from formal models,
test case generation from semi-formal models, test case generation
from fault models or test case selection and regression testing.

Index Terms—Model-based testing, automated production sys-
tems, conformance testing, regression testing, fault injection,
survey

I. INTRODUCTION

TESTING is the “activity in which a system or component
is executed under specified conditions, the results are

observed or recorded, and an evaluation is made of some
aspect of the system or component” [1]. As systems in indus-
trial automation are becoming more complex [2], also due to
trends such as increasing reconfigurability [3], flexibility [4] or
autonomous and intelligent behavior [5], the challenge of val-
idation has gained significance. The high standards regarding
non-functional requirements such as quality, timing and safety
aspects [6] of automated production systems or conformance
test of critical controllers as advocated by certification bodies
and standards [7], [8] further increase the challenge. In [2], it
is shown that in currently established tools for the development
of industrial control software, testing activities are rarely
automated and have to be conducted manually. Furthermore,
“the process of deriving tests tends to be unstructured, not
reproducible, not documented, lacking detailed rationales for
the test design, and dependent on the ingenuity of single
engineers” [9]. Consequently, many works have been con-
ducted in research on the key challenges of improving and
automating the testing process in the domain of production
automation. Methods aiming towards this goal can be part of
model-based and model-driven development processes, which
are increasingly established [10]. The key research questions
include 1) the definition of user-friendly models enabling the
abstraction of automation systems’ structure and behavior in
order to handle their complexity, 2) the automatic generation of
test cases from these models, decreasing the error-prone tasks
of manually deriving test cases from informal requirements,
3) the inclusion of hardware effects and especially hardware

validation

v
e

ri
fi
c
a

ti
o

n

require-

ments,

acceptance

test def.

outline

design,

system

test def.

acceptance

 test

system

test

code, unit test def.

integration

test

detailed

design,

Integration

 test def.

Fig. 1. Test-driven development process within the V-Model

failures in the models and fault models, 4) the minimization
of the effort of regression testing through analyzing suitable
specification or code models, and finally, 5) the automatic
execution of test cases on the system under test. In test-driven
development processes, it is aimed at specifying the test cases
along with the system specification which is further refined
in each step (see Fig. 1). Test-driven processes are commonly
applied in software engineering and have also been proposed
for automated production systems [11]. However, they are
mostly still not systematically applied in the field of production
automation.

The complementary techniques to testing, which are based
on the validation that the implementation behaves equivalently
to its specification, are formal verification, model-checking
and theorem-proving, which prove “that the internal semantics
of a model is consistent, independently from the modeled
system” [12] (see Fig. 1). These techniques prove that the se-
mantics and the behavior of a model are consistent. However,
they mainly aim at verifying non-functional properties such as
reachability, liveness and absence of deadlock, independently
from the expected functional behavior. A comprehensive
overview on formalization of models for verification purposes
may be found in [13] and [14].

The goal of this paper is to review current model-based
testing approaches in production automation and close adja-
cent domains, such as embedded systems where model-based
testing is already applied more often, in order to identify
promising approaches which might be adopted, put current
trends into context and define current challenges and research
gaps. This paper focuses on validation of functional and non-
functional requirements concerning the Programmable Logic

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 2

Controller (PLC) application software rather than structural
analysis, stress testing or performance analysis [15]. Also,
the systems’ software behavior is regarded as deterministic,
excluding stochastic testing.

The remainder of this paper is structured as follows. In the
following section, classification criteria are established in order
to distinguish and structure current research approaches. In the
subsequent sections, the different research fields are discussed,
structured based on the classification criteria concerning the
testing goal and the formality of the models used as a basis
for test case generation. In section III, testing of formal models
and test generation from formal models, targeting the research
questions 2 and 5, are described. Then, test case generation
from semi-formal models, including approaches which target
research questions 1, 2 and 5, is explained in section IV.
Test generation based on fault models (research questions 1-3
and 5) is explained in section V. Change impact analysis of
specification or code models for regression testing (section
VI) (research question 4) completes the discussion of the
different research fields. Subsequently, research gaps in model-
based testing in production automation are identified and a
conclusion is given.

II. METHODOLOGY, CLASSIFICATION AND DEFINITIONS

Recently model-based testing and related terms and defi-
nitions such as test case, test selection criteria and test case
specification have been updated and defined in [9]. The classi-
fication criteria for model-based testing approaches proposed
in this paper use these and other definitions from [16] and [1]
related to testing , and put them into context regarding the key
research questions in the field of production automation. An
overview of the classification criteria (C1-C5) may be found
in Fig. 2.

1) Model/specification – Classification criterion C1: To
validate automation systems, different measures are taken
regarding the testing goal which differs according to the
manner and information included in the specification also
called model paradigm (C1a).

If only the expected behavior (C1a-i) is specified, the func-
tional compliance may serve as the testing goal. If fault models
do exist, the reliability of the system, which is determined by
the reaction to faults, can be tested and research question 3 is
targeted. This can be done for example by using fault injection
[17] (see section V). Another research field is concerned with
defining and analyzing change models and therefore focuses
on regression testing tackling research question 4 (see section
VI).

Furthermore, the works of different research groups can
be distinguished by the level of formality (C1b) which is
presumed of the models. Many approaches require formal
specifications to generate test cases (see section III) while
others focus on providing more user friendly modeling lan-
guages for system engineers in order to specify the system
(research question 1, see section IV). The latter often include
a process to formalize the modeling languages further to be
able to generate test cases.

2) Test Selection Criteria – C2: The test cases are generated
based on the specification, i.e. models, and on test selection
criteria which “define[...] the facilities that are used to control
the generation of tests” [9] (research question 2). As an
example, when a state machine is used as model/specification
(C1a-i, C1b-i), several test cases may be created using a
coverage criterion (C2a) such as transition coverage. For
black-box testing, a typical criterion would be data coverage.
Further test selection criteria may be found in [9].

3) Test Cases – C3: Besides test case generation based on
a predefined model and static test selection criteria, sometimes
test cases are generated “on-the-fly” by comparing the outputs
emitted by the system under test (SUT) during a test run to
the expected ones according to the specification and adapting
the test cases depending on the local test verdict (pass of fail).
This type of test generation and execution is called online
testing (C3a-ii). On the opposite side, offline testing (C3a-i)
refers to the separation of the offline test generation and later
execution. If the test case also manipulates the input from other
test components, such as the injection of faults, this is called
feedback manipulation (C3b).

4) Test Bed – C4: The execution of test cases against the
SUT is made possible by the test bed which is the “envi-
ronment containing the hardware, instrumentation, simulators,
software tools, and other support elements needed to conduct a
test” [1] (research questions 3 and 5). One determining factor
of the test bed is the kind of environment feedback it includes.
Common test cases usually simply consist of predefined inputs
and the SUT’s outputs which are compared to the expected
ones. The input and expected output signals are static, i.e. they
are not influenced by the SUT’s behavior, and are specified
using implicit knowledge or assumptions about the SUT’s
environment’s behavior. In contrast to this, the SUT’s output
signals can be dynamically fed back into its inputs through
a function representing the SUT’s environment’s behavior,
e.g. a plant’s behavior represented by a model (C4-i), i.e.
simulation. On the one hand, test sequences for including
complex environment behavior are simplified, shortened and
can be based on physical correlations, rather than implicit
knowledge. On the other hand, extensive effort has to be
invested into the simulation’s definition and verification.

Other test beds include a setup with a connection to the
real (C4-ii) plant (hardware), or some parts of it, in order to
include the actual feedback in the test execution.

5) System Under Test (SUT) – C5: The setup of the
SUT with the test bed determines which type (C5a) of test
is conducted. Some approaches do only test models of the
implementation (Model in the Loop - MiL (C5a-i)) while other
tests are done using the implemented software (Software in the
Loop - SiL (C5a-ii)) using static sequences or a simulation.

In [18], two major forms of simulation in industrial automa-
tion are identified: System simulation and Hardware in the
Loop - HiL (C5a-iii) simulation. In system simulation, both
control software, i.e. the SUT, and simulation are running
on the same system - usually a standard computer. In this
case, the control software is running on a soft PLC, which
can either implement the simulation or can be connected to
an external simulation (SiL). In [19], this type of simulation

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 3

Verdicts SUT

Implementation

Model

Software

Hardware

System

(compiler, etc.)

Application

(control SW)

unit

integration

system

Requirements

Testing goal

 i) functional compliance

 ii) non-functional compliance

 iii) compliance after changes C1a) Model paradigm

 i) structure

 ii) behavior

Test Selection

Citeria

i) requirements

ii) code

iii) change
Model

(SUT spec.)

C1b) Formality

 i) formal

 ii) semi-formal

 iii) informal

C5d) ImplementationC5c) Observability

 i) white-box

 ii) black-box

 iii) hybrid

C5b) Level

 i) unit/ component

 ii) integration

 iii) system

i) Model in the Loop

ii) Software in the Loop

iii) Hardware in the Loop

vi) test against the real system

i) model

ii) real

iii) hybrid

C3a) Generation

 i) offline

 i) online

Test bed
C3b) Feedback Manipulation

C4) Feedback

integration (plant)

C2) Coverage

C5a)Type

SUT

Test Cases

validation

v
er

if
ic

at
io

n

require-

ments,

acceptance

test def.

outline

design,

system

test def.

acceptance test

system

test

code, unit test def.

integration

test

detailed

design,

Integration

 test def.

Fig. 2. Overview model-based testing and classification based on [9].

and its verification are investigated. The second major form
is HiL simulation/testing. A “typical HiL setup would include
a controller with loaded control code connected to a testing
environment” [20]. For automated production systems this
means that the control software is executed on the target
hardware, i.e. a real PLC, and connected to the simulation
system via a field bus. The field of HiL has become broader as
in “past years [...] HiL has expanded to encompass component
testing as well” [20].

While MiL approaches do help to root out faults in the
early design phases and SiL approaches root out faults during
the implementation phase [17], only HiL approaches enable
the validation of the integrated system and the inclusion of
hardware related effects (research question 3), as every model
is some form of abstraction and only the system itself is
completely accurate [21].

The SUT also determines the testing level (C5b), which
ranges between unit/module/component test (C5b-i), integra-
tion testing (C5b-ii) and system testing (C5b-iii). Testing ap-
proaches are needed for all stages of the development process.

Furthermore, the observability of the implementation must
be considered (C5c): White-Box testing is “a type of testing
in which you examine the internal structure of a program”
[22] and therefore the implemented code is used as a basis for
test case generation. Black-Box testing, which is an approach
where the “internal structure is ignored. Test data are derived
solely from the application’s specification” [22].

In this paper, approaches are furthermore distinguished by
their applicability in the field of production automation. Some

approaches are developed for testing implementations (C5d) of
languages which are designed for use in production automation
systems such as the IEC 61131-3, which is established within
industry right now [23], or the IEC 61499 which has been
advocated by many researchers [24]. Other approaches have
been developed in different domains and therefore for different
languages but may be applicable in the field of production
automation.

The different validation techniques aim at detecting faults
in an SUT before the system is commissioned for operation.
Fault, error, and failure are defined in [25]. A failure refers to
“an event that occurs when the delivered service deviates from
correct service”, which was originally specified or expected.
The failure is caused by a deviation from the expected system
state. This “deviation is called an error” and “the adjudged or
hypothesized cause of an error is called a fault”.

6) Test Verdict: After the execution of a test sequence (once
a final state has been reached), the test verdict is reported and
documented which can either be:

‚ pass: the equivalence relation between the specification
and the implementation model is fulfilled: the implemen-
tation conforms to its specification

‚ fail: the equivalence relation is not fulfilled and counter-
examples (or traces) can be given: the implementation
does not conform to its specification

‚ inconclusive: the execution on the test has not permitted
to assess the equivalence of the two models neither to give
counter-examples. This case corresponds to test execution
where the observed behavior of the implementation does

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 4

not lead to a fail state (no counter example can be found),
but where a part of the behavior to be tested could not
be observed. For more details about this verdict in the
context of on-the-fly test cases generation see [26].

In order to avoid false positive and false negative verdicts, a
conformance test must be:

‚ valid (or exhaustive): “the test suite comprises all combi-
nations of input values and preconditions” [16], therefore
every implementation which does not conform to its
specification must be detected and rejected;

‚ non-biased (or sound): no implementation which con-
forms to its specification should be rejected.

III. TESTING OF FORMAL MODELS AND TEST SEQUENCE
GENERATION FROM FORMAL MODELS

A. Testing of formal models

A promising solution to develop testing techniques is to
benefit from the results of the researches of the Computer
Science and Discrete Event Systems communities in the do-
main of conformance test of formal models. In these works,
the specification is given in the form of a formal model such
as a finite state machine [27], a transition system [28]–[30], a
timed automaton [31] or a Petri net [32]. The implementation
is supposed to behave according to the same formalism,
e.g. if the specification is defined by a Moore machine, the
implementation should also behave like a Moore machine
and not like, for instance, a Mealy machine. The interested
readers are referred to the above-mentioned paper to get more
details about these formal languages. The goal of these testing
techniques is then to validate the inclusion or equivalence
relations between the two models. The equivalence between
a specification model and an implementation model are usu-
ally tested according to their observable behavior and their
trace equivalence. Below are some examples of conformance
relations between an implementation i and its specification
s, for formal definitions and details about these relations the
interested readers are referred to [28], [29]:

‚ i ďtr s: i conforms to s wrt. the relation ďtr if and
only if for all test sequences composed of the input
alphabet of the models, the traces of observable actions
of i are included in the traces of observable actions of
s. This relation does not consider inputs and outputs but
observable actions.

‚ i ioconf s: i conforms to s wrt. the relation ioconf if and
only if for all test sequences generated from the traces of
s, the set of observable outputs of i is included in the set
of observable outputs of s. This relation allows partial
specifications because the test sequences are generated
only from the traces of the (partial) specifications.

‚ i ioco s: i conforms to s wrt. the relation ioco if and only
if for all test sequences generated from the suspension
traces of s (traces that also represent the absence of
emitted output: specified quiescence, or missing output
actions), the sequence of emitted outputs of i is included
in the sequence of emitted outputs of s.

In the context of model-based testing of automated production
systems, the use of conformance relations defined over the

observable input/output relations is more appropriate because
the internal behavior of the controller cannot always be
observed (black-box testing). Recently, [33] proposed a new
conformance relation for model-based testing of PLCs.

As mentioned earlier a test sequence can either be generated
offline or online. In the first case, the test sequence is a
straight sequence of input/output couples. In the second case,
the continuation of the test execution depends on the observed
outputs from the previous test step. Both cases can be modeled
as state-machine or labeled transition systems where each final
state defines the test verdict.

Since the verdict of a test is based on the observation of the
behaviors of two models (specification and implementation),
an important issue is to be able to ensure the state synchroniza-
tion and the state identification of those models. A review of
the usual state identification and synchronization techniques
is presented in [27], [34]–[36]. Even though the basic tech-
niques are well established, several research activities are still
conducted on the improvement of those techniques [37], [38]
and their application to others formal models [39]

Conformance of an implementation to its specification re-
quires that a test objective or test selection criteria be first
defined. A classical test objective, when critical systems are
considered, is to cross at least once each edge of the directed
graph that represents the structure of the formal model; this
permits to check every state change from each state of the
formal model. Then, the test sequence can be constructed
from this model. However, depending on the scale of the
system, the security level and the assumptions made on the
implementation, different test objectives can be defined. The
table I lists different techniques that can be applied depending
on the assumptions made on the implementation. A more
complete overview of the main testing challenges and the
different testing techniques developed to improve the test
coverage and the reliability of the test results is given in [40].
It is also of importance to note that most of these works have
been developed using event-based formalism (vs. signal-based
formalism).

As testing is based on the validation of the equivalence (or
inclusion relation) of two behaviors (an implementation and
its specification), testing can be seen as an exploration process,
which permits to explore the behavior of an implementation
and compare it to its specification, and requires the execution
of the implementation. In contrast to testing, model-checking
is based on the verification of properties that should hold for
a behavior. Model checking can be seen as a confirmation
process, it is used to confirm that a property holds or not
for the whole behavior. Symbolic approaches are used to
handle the scalability of verification techniques. Even though
symbolic approaches cannot be applied during the execution
phase of testing (during the execution, for each test step, the
implementation is solicited with a set of fixed values, not with
a set of value ranges), model-checking techniques can be used
during the first phase to generate test sequences [49]–[53]

B. Model transformation
In order to apply the fruitful theoretical results on specifi-

cation and implementation used in the automation industry

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 5

TABLE I
ASSUMPTIONS ON FORMAL MODELS

Assumptions Proposed solutions References
The implementation can have extra states Bounded number of extra states [41]
Time Test boundaries (maximum duration of a timer) [42]
Variables within a range Domain testing and/or boundary testing [43]
Variables within a range Symbolic approaches [44]–[46]
Partial specifications Verifying partial inclusion: Impl. Ď Specl ^ Impl. Ď Spec2 ^ . . . [47]
Partial specifications Inferring partial models [48]

there is a need to transform industrial models into more
formal models. Several works have considered the issue of
model transformation from industrial (or standardized) models
into (semi-) formal models in order to apply existing formal
techniques and tools. The table II gives an overview of existing
works on such model transformations.

Many of the transformations presented in the table II have
been developed in the context of verification. Some of the
existing methods only consider the source code of the input
language while some others also consider a model of the
PLC operation. When only the source code is considered (i.e.
without a model of the controller execution), the input model
can be considered as an infinitely reactive model (i.e. the
response time delay equals zero). Thus, the transformation to
another formal model can be facilitated by the use of their
meta-model. For instance, model-to-model transformations can
be obtained using the model transformation tool ATL [77].

The transformation into formal models also permits the
combination of the model of the software, with a model of the
execution of the controller – if not already done – and also
with a model of the plant that is to be controlled. The more
information the composed model contains, the more reliable
the simulation and the results of the verification and validation
methods is [78].

IV. TEST SEQUENCE GENERATION FROM SEMI-FORMAL
MODELS

Formal models are up to now rarely used in industry. Mostly
partial models or specifications, and informal requirements
specifications are used. To bridge this gap and to support
system and test engineers in creating models for testing, semi-
formal modeling languages and notations are further developed
and formalized to receive a basis for test case generation (see
table III). Furthermore, model-based approaches are increas-
ingly applied and developed in production automation. Using
similar models for test case generation is the logical next step
to further support and improve the development process.

As the Unified Modeling Language (UML) is one of the
most widely used notations for modeling the structure and
behavior of the software up to now, it is no surprise that
many approaches do focus on deriving test cases from this
language. In [79] and [80], useful diagrams for modeling
and deriving test cases from the UML are identified for
the field of automation software development and especially
for IEC 61499 implementations. Structure diagrams such as
component diagrams are used to model the context and the
interfaces of the SUT. Interaction diagrams are recommended
for the extraction of test sequences. In [80], the extraction of

test sequences from state charts using round-trip path coverage
is shown. A first application of the recommended test case
generation process using state chart diagrams especially for
IEC 61499 applications is shown in [81].

In [82], an approach to automatically generate test cases
from the UML state charts by first transforming them into
a formal model (extended safe place/transition nets) is intro-
duced. In order to make the transformation possible, some
restrictions on the model elements used are done. Given the
formal model, the test case generation is easily made possible
using methods such as unfolding the nets.

Making UML models, and in this work especially sequence
diagrams, executable is another focus of using UML diagrams
in the testing process. In [83], the semantics of sequence
diagrams are adapted in order to make direct IEC 61131-
3 code generation possible. In this way the modeled test
scenarios can be executed directly.

As UML models are already a wide-spread notation also for
testing, organizations have started to standardize the language
in the context of testing using the profiling mechanism of
the UML. The UML Testing Profile (U2TP) has standardized
the way to specify the SUT, its context and the specific test
cases. The test case scenarios are modeled using the UML
sequence diagrams. To make these test cases executable, a
transformation from the U2TP to the Testing and Test Control
Notation (TTCN-3) has been proposed by [84], which has
been established especially in the field of communication.
However, up to now, no approaches could be found that
have evaluated the applicability of the U2TP in the field of
production automation. In [85], UML test case generation
approaches from state charts are combined with the aim of
making them executable by mapping them to the TTCN-
3. The evaluation of the approach is done using a simple
communication protocol but the extension of the approach in
order to test PLC control software applications is planned as
well.

In recent years the Systems Modeling Language (SysML)
is increasingly established for supporting the development
process of real-time systems [86]. However, investigations on
the possibilities to derive test cases from these models or
adapting these models are still missing. Another interesting
development that the testing community could benefit from is
the improvement of the communication between tools. In [87],
an approach to automatically consolidate different domain
models from the field of production automation to receive a
correct model using AutomationML and MathML is presented.
The generation of test cases from such models is still an open
topic though.

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 6

TABLE II
MODEL TRANSFORMATION FROM INDUSTRIAL OR STANDARDIZED LANGUAGES INTO FORMAL MODEL

Input language Output formal model References Remarks
IL (IEC 61131-
3), ST (IEC
61131-3)

Timed Net Condition/Event Sys-
tem, Petri Net, Timed automaton,
SIGNAL equations, Model-checker
language (SMV)

[54]–[59] Most of the transformations are performed for verification purposes. The selected
references consider the cyclic behavior of industrial controllers such as PLC for
the execution of IL programs.

LD (IEC
61131-3)

Time Petri Net, Model-checker lan-
guage (UPPAAL automata)

[60]–[62] Most of the transformations are performed for verification purposes. The selected
references consider the cyclic behavior of industrial controllers such as PLC. [62]
even considers multitask systems.

FBD (IEC
61131-3), CFC,
IEC 61499

SIGNAL equations, Esterel, Inter-
face automata, Model-checker lan-
guage (UPPAAL automata, SMV)

[51], [58],
[63]–[67]

Most of the transformations are performed for verification purposes. The selected
references consider the cyclic behavior of industrial controllers such as PLC. [67]
presents a modeling of each block by an interface automaton, the focus is placed
on the IO relations: this approach could be adapted to testing of sub-components
where only the IOs can be observed (black-bock testing).

SFC (IEC
61131-3)

Timed automata, Model-checker
language (SMV),

[68]–[71] SFC (61131-3) is a graphical language with hierarchical relations used to represent
mainly sequential behaviors. The semantics defined in the standard contains
ambiguity. An improved semantics is proposed in [71].

GRAFCET
(IEC 60848)

Monolithic automaton, Mealy ma-
chine, Petri Net

[72]–[76] Grafcet (60848) and SFC (61131-3) share similarities: SFC has been defined from
Grafcet. The main difficulty with Grafcet is the stability research. The method
presented in [72]–[74] is dedicated to black-box testing and stresses on logic
input/output relations.

TABLE III
TEST GENERATION FROM SEMI-FORMAL MODELS

Source Domain C1) Specification and
Formality

C2) Test Selection
Criteria

C3) Execution and
Feedback Manipula-
tion

C4) Test type C5) Test type,
Implementation,
Observability and
Level

[79]–[81] production
automation

UML (structure: sys-
tem and context; in-
teraction, mainly state
charts: generation of
specific test cases)

depending on
diagram, extraction
of sequences from
interaction diagrams
(transition parameter
variation, path
coverage)

offline as spec. IEC 61499

[82] production
automation

UML state charts model transformation,
path unfolding, path
coverage

offline as spec. n.a.

[83] production
automation

UML sequence dia-
gram

as spec. offline both SiL and HiL
possible

IEC 61131-3, unit

V. TEST GENERATION FROM FAULT MODELS - TESTING OF
UNINTENDED BEHAVIOR

An important topic that must be addressed when testing and
validating automated production systems besides the intended
behavior is the reaction to faults that may occur within or
without the system as this determines the reliability. The faults
that must be regarded are not only software faults, but also
other possible causes of failures of automation systems such
as the failure of hardware or influences of the environment.
These faults must be handled by the software of automation
systems by error handling routines. To prove the validity and
correctness of systems, fault injection (FI) is a method that
has been established in order to measure the dependability.
Fault injection is used as a means to evaluate error handling
mechanisms concerning fault detection and error handling.
FI approaches can be divided into hardware-implemented FI
(HWIFI), where faults are for example injected by forcing
pins, software-implemented FI (SWIFI), where faults of the
system are emulated by the software, and model-implemented
FI (MIFI) also called simulation-based FI [88]. While HWIFI
and SWIFI are mostly used on prototypes or for system testing,
MIFI is rather used in earlier conceptual and design phases to

give early feedback to engineers [17]. It is possible that the
approach implements one kind of fault injection (e.g. MIFI)
but still is another kind of test (e.g. SiL), because the fault
might be injected by the test case through the test bed (e.g.
fault is injected in the simulation model but the SUT is the
implemented software not running on the final system). FI
is determined by the faults (F) that are injected, a set of
activations (A), the readouts (R), i.e. the logging of the system
reaction or the outputs, and the actions or measures (M) that
are derived from the analysis of F, A and R, as defined in [89].

Testing approaches may also be divided into approaches
which aim at finding some classes of faults and approaches
which aim at testing the reaction of a system to these classes.
The latter explicitly define a fault model, i.e. the possible
faults, which are described as mutants or saboteurs.

A fault model defines the types of possible faults of a system
in respect to several different criteria such as the phase of cre-
ation (design, implementation, etc.), the dimension (hardware
faults, software faults), the system boundary (introduced from
within or without the system, etc.) or the persistence (transient
or permanent faults) [25].

The type of faults F commonly injected by FI, in some

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 7

papers called mutants, are mostly hardware faults in contrast
to software faults, human made faults, etc. (for classification
of faults see [25]). Another aspect considered by many ap-
proaches is the timing behavior of the fault which is either
permanent, which means that it occurs and is permanent from
this point on, or if it occurs only at certain time intervals or
at random. The activation A is differentiated whether the fault
is injected before runtime or during operation. By injecting
faults during operation the opportunity to activate the fault by
time-triggered or event-triggered conditions is created, making
it possible to realize more complex fault scenarios.

The three different approaches - HWIFI, MIFI and SWIFI
are further explained in the following subsections. An
overview is shown in Table IV.

1) HardWare-Implemented Fault Injection (HWIFI): Many
tools and methods for testing the reaction to faults from
integrated circuits and especially microprocessors have been
established. The methods vary between FI with contact such
as the injection of faults on pin level and FI without contact
such as heavy-ion-radiation or electromagnetic interference
[91]. A third means of introducing faults is the use of built-in
logic especially designed for the SUT [90]. The specification
is based on faults F which typically occur within (micro-)
processors such as bridging faults, stuck-at faults, bit flips or
power surges [17]. In the field of electrical engineering the
fault models are still being updated and further developed [99].
For methods that are controllable and reproducible such as
pin-level fault injection the activation A is possible to be time-
triggered or event-triggered. An overview and more detailed
descriptions of the different tools and methods may be found
in [17] and [91].

Hardware-in-the-loop test benches have been developed for
more complex systems such as PLCs, where the PLC is
for example connected with a simulation environment [100].
However, no special attention has been given on FI techniques
in this field and studies illustrating which faults and fault
models would be useful to inject in such systems and the
benefits that might be gained from such testing techniques are
not available.

2) Model-Implemented Fault Injection (MIFI): In respect to
MIFI a distinction can be made whether faults are injected into
hardware models or into software models. Hardware models in
the domain of electrical engineering are usually modeled using
the Very High Speed Integrated Circuit Hardware Description
Language (VHDL) and therefore targeted at integrated circuits.
The faults that are to be injected are also based on faults
which may occur within microprocessors as mentioned in
the previous section. These faults are specified as mutants or
saboteurs and integrated into the model or at the interfaces of
the model to simulate faults [92]. In the automotive domain
several MIFI approaches have been suggested [88]. These
approaches make use of the fact, that MATLAB/Simulink
models are commonly used modeling automotive systems. In
[88] it is not only aimed at testing only on simulation level.
The result of the test runs against simulation are used for test
case generation for the real systems. In the field of production
automation an executable UML state chart simulation model
is used for FI in [96]. As the approach focuses on testing

the application, the program is sliced to extract all possible
execution paths leading to a defective component in order to
reach full path coverage. The MIFI approaches mostly only
have an offline activation A, as the faults F are predefined
within the model.

3) software-implemented fault injection (SWIFI): As for
MIFI and HWIFI, tools for injecting faults in integrated
circuits have been evaluated and are available for use [101].
As interfaces and additional functions are standardized for
testing and have been introduced in this field, it is additionally
made easier to access different locations to inject faults [102].
In [95], a FI approach for embedded system’s is introduced
in order to validate specified safety functions. The approach
targets specific functions which must hold during all circum-
stances. Specific fault scenarios or the definition of user-
friendly notations are not the main focus of the approach. Next
to FI during co-simulation, [93] also proposes to use model-
based approaches in the automotive domain to introduce faults
into the code during code-generation out of Matlab/Simulink
models. The components that will be tested as failing are
selected in the model, then code is generated where this fault
will occur during execution. In [94], a similar approach is
suggested using SCADE models. In [98], a method to inject
faults during runtime is presented suggesting kernel-based FI
on different architectural levels of embedded systems. It is
analyzed how and where different faults may be injected in
order to test the integration between application, operating sys-
tem and hardware. The integration of application and operating
system is tested by manipulating the communication protocols
in between them. The integration testing between operating
system and hardware is done using three further mutation
operands. If possible the global variables are manipulated
such as communications device errors. If the addresses of
the hardware are read-only variables different mutants are
proposed such as disconnecting the hardware or changing the
voltage supply for I/O device errors and power-supply. The
method seems a viable way to test the integration of the com-
ponents within embedded systems such as a PLC as proposed
in this paper. The test of the control software in respect to
hardware faults is not focused on in the paper. [97] suggests a
SWIFI approach, where test cases are generated from timing
sequence diagrams for the field of production automation. In
a preceding survey [97] evaluates timing sequence diagrams
as a notation which is commonly used in the domain of
production automation. It is assumed that the diagram depicts
the expected behavior and any kind of deviation should be
handled by the software. Accordingly, when generating the
test cases, test cases with a deviation from the timing sequence
diagram (fault operator) are generated. The test execution is
done using a setup with the real automation system while
injecting the fault directly in the software. The approach is
shown to work for processes with discrete behavior. The
approach focuses on deviations from the process behavior (F:
process faults) as sensor values are used for analyzing the
behavior. The activation A is done during the execution of the
system. Communication faults or human made faults are not
especially in the focus of this work.

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 8

TABLE IV
FAULT INJECTION IN AUTOMATED PRODUCTION SYSTEMS AND EMBEDDED SYSTEMS

Source Domain C1) Specification and
Formality

C2) Test Selection Criteria C3) Execution
and Feedback
Manipulation

C4) Feedback
Integration

C5) Type,
Implementation,
Observability and
Level

[17],
[90],
[91]

integrated
circuits

stuck-at, open, complex logi-
cal faults, ...

as spec. contact or contact-
less, time-triggered

offline HWIFI (pin-level
or insertion,
heavy-ion
radiation,
electromagnetic)

real system,
microprocessors/
integrated circuits,
system

[92] integrated
circuits

fault model (saboteurs, mu-
tants), some mutants generated
automatically

as spec. offline MIFI VHDHL model,
integration/
system

[88] automotive fault models, failure mode
function (mutants and sabo-
teurs), requirements (Simulink
assertion blocks), time window

as spec. minimal cut sets offline MIFI Matlab/Simulink,
unit

[93],
[94]

automotive selection of component/ fault
nodes in simulation model

as spec. offline MIFI/ SWIFI (in-
jection in gener-
ated code)

C (generated out
of SCADE), unit

[95] embedded
systems

mathematical description of
functions and safety properties

mutation operators (inser-
tion of an additional re-
quest, re-ordering of a pair
of requests)

offline SWIFI MiL

[96] production
automation

fault operators path coverage, possible in-
puts, code splicing, possible
paths leading to component

offline,
simulation: UML
SC for PLC

MIFI SiL, IEC 61131-3,
unit

[97] production
automation

timing sequence diagram fault operators (missing sig-
nal)

offline SWIFI real system, IEC
61131-3, system

[98] production
automation

target variable chosen manu-
ally, mutant created accord-
ingly, every path checked with
every mutant

5 mutation operators ac-
cording to target

offline SWIFI C, FBD, integra-
tion

4) short summary of testing embedded system’s reaction
to faults: The use of FI to test hardware faults is widely
spread to validate the dependability of integrated circuits. In
this field all HWIFI, MIFI and SWIFI approaches have been
tested and evaluated. The automotive and aerospace domains
make use of the models available during the development
process and introduce faults on model level. The execution is
done using simulation or code-generation adopting the MIFI
or SWIFI approach. In domains where models are scarcely
available such as machine and plant automation, FI techniques
on application level have not been exploited very much so far
even though it is a field where reliability and dependability
are of huge interest.

VI. TEST SELECTION FROM CHANGE MODELS -
REGRESSION TESTING

During development and operation of automated produc-
tion systems, the system’s software has to be changed and
adapted regularly. The changes are categorized in [103] as
adaptive, corrective and perfective. Adaptive changes are due
to changing environments or requirements, such as changes
in hardware or new needed functions. Corrective changes are
introduced whenever faults within the software are discovered
and fixed. Perfective changes are made during optimization
processes, e.g. to shorten production cycle times. Whenever
the software is changed, an investigation whether faults are
introduced into the software and its compliance to the spec-
ification has to be conducted. This process is known as
regression testing.

The main challenge in regression testing in production
automation is to test a changed software system thoroughly,
while minimizing the effort to do so. However, if done manu-
ally, regression testing is tedious and prone to be incomplete,
as dependencies within programs can be intricate. Scenarios
leading to errors might be missed and testing efforts are high
and have to be repeated with every change. Nevertheless, this
type of testing is still dominant in this engineering domain.
Model-based testing methods, as described in the previous
sections, can help in this regard, by offering ways to automate
the test execution and generation. Based on a set of available
test cases, regression testing can be conducted by selecting
suitable test cases for retesting [104] depending on identified
changes, which is done within a Software Change Impact
Analysis (CIA). The goal of this analysis is to select the test
cases that are most likely to find new errors introduced by
the changes, but keeping the time of retesting lower than a
simple ”retest-all” approach, where all tests are re-executed
[105]. Therefore, the time needed for the analysis plus the
execution of the selected test cases is supposed to be lower
than executing all test cases. This selection is done under
the assumption that program execution is deterministic and
nothing but the code or the specification changes.

CIA can be based on dependencies between software enti-
ties, such as functions, classes or statements or on traceable
dependencies between the software and other software related
artifacts, such as function specifications or interlocking defini-
tions. The former is known dependency based change impact
analysis, while the latter is called traceability based change

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 9

impact analysis [106].
1) Traceability based CIA: This type of CIA is based on

the program’s specification rather than the changed code itself.
The term traceability refers to the ability to trace changes from
the specification to its corresponding code through appropriate
definitions within the specification. There are different ap-
proaches for identifying changes in available specifications and
deriving possible influences on test cases for regression testing.
As structural models are common in computer science as an
artifact for program design, many works take these models to
gather information for regression testing regarding integration
tests. For selection of integration tests, information about
object interdependencies and changes are gathered, which is
then used to identify the parts of the program affected by the
changes. These entities are then scheduled for regression tests.

A suitable model for this process is the UML Class Di-
agram, which includes information about the program struc-
ture, interfaces and interdependencies between objects. Several
works use this model for selecting regression integration tests
[107]–[109]. Other works do not rely on this notation, but
create their own formalized model from it, such as the Com-
ponent Dependency Model [110], or directly specify needed
dependencies within a formal description language, such as
the Specification Description Language (SDL) [111]. These
models focus on relevant dependencies and allow automatic
analysis, e.g. graph and dependency analyses, to find relevant
changes and assess their impact on testing. In most of the
mentioned approaches, certain change classes are defined,
which are linked to an influence on test cases. This information
is then used to select the test cases.

For regression testing of single units, other specification
models are needed, as no information about behavior is stored
within class diagrams or other structural models. Several
works identifyy suitable models for defining behavior, such
as the UML Sequence Diagram [110], [107], Extended Finite
State Machines (EFSM) [112] or the SDL [111]. Again,
identification of influences of changes is conducted using
change classes, which define whether a test case is influenced
or not. Changed entities are identified by comparing the sets
of sub-elements of the respective models.

2) Dependency based CIA: This type of CIA can be used
for regression testing without relying on models describing
structure or behavior of the software. The models needed
for analyzing affected entities are directly generated from the
code. This can be either done statically, meaning before test
execution or dynamically, based on information about previous
test execution.1 Common static dependency analysis methods
include building call graphs [113], analyzing which entities
call other entities, or program dependence graphs [114],
adding information about data dependencies. The resulting
graphs include all possible object interconnections, which can
be problematic as changes can lead to assumptions about their
influence including a lot of false positives, i.e. parts of the code
which seem to be influenced, but are not.

For dynamic methods, execution traces are recorded during

1The expressions static and dynamic model generation are not to be
confused with static and dynamic feedback inclusion in test cases.

test case execution, giving a clearer image on what is actually
affected by the test case. Dynamic call graphs [115], dynamic
program slices [116] or control flow graphs [117] and data
flow graphs [118] can be extracted from this information.
While false positives are reduced, the found information is
only valid for the executed scenarios. Also, in many cases code
instrumentation is needed for recording the test execution to
gather all needed information, which can alter the system’s
behavior as additional code is executed.

Traceability based CIA is especially interesting, if certain
parts of the program code are not accessible (”black box”),
e.g. in compiled libraries, as all approaches in the dependency
based CIA create a model directly from the code. In contrast,
the latter is interesting because no additional manual modeling
is needed.

3) Short summary on the applicability of the investigated
approaches: As summarized in Table V, most of the analyzed
methods were developed within the domain of computer
science.

Regarding traceability based CIA, the uncommon use of
formalized models for software design in production automa-
tion hinders an application in this domain. While advantages
in later phases can be seen, this domain is still hesitant
introducing modeling on a level that can be used for the
presented approaches (close enough to the code).

In dependency based CIA there are many similarities be-
tween programming in the domains of computer science and
production automation, but most of the presented concepts
are not directly applicable to automated production systems’
program code. Only recently, first advances towards applying
similar approaches in this domain were made [119]. Problems
regarding applicability are mostly rooted in the dominant
programming standard IEC 61131-3 used in the domain of
production automation, which consist of different graphical
as well as textual programming languages. Even though most
production automation integrated development environments
convert all of the possible languages to one textual language
that uses a similar syntax as those used in computer science,
there are differences regarding structure and behavior that
make adaptation complicated.

Even though advances towards object-orientation are being
made, the structure of IEC 61131-3 programs is neither
completely object-oriented (e.g. many global accesses), nor
procedural (e.g. class like function blocks). All of the analyzed
approaches are directly aimed at one of these paradigms.

Regarding behavior, cyclic execution of the code signifi-
cantly influences the programming paradigm, and thus hinders
a direct application of the approaches which usually assume
a single execution of the program per test case. The test
cases used in the publications are designed accordingly: single
input vector test cases that do not allow adequate testing of
state machines, which are common in automated production
systems.

VII. DISCUSSION AND RESEARCH GAPS

Reflecting the presented work in this paper, many promising
approaches in the field of model-based testing in production
automation have emerged.

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 10

TABLE V
METHODS FOR SOFTWARE CHANGE IMPACT ANALYSIS

Source Domain C1) Model Paradigm and
Formality

C2) Test Selection Criteria C3) Generation C5) Test type, Implementa-
tion, Observability

[108],
[109]

computer
science

structure, semi-formal
(UML class diagram)

change of specification none integration tests, object-
oriented, allows black
box

[110] automotive,
embedded
systems

structure and behavior,
semi-formal (component
dependency model, UML
sequence diagram) and
formal (directed graph)

change of specification none integration tests, allows
black box

[111] computer
science

structure and behavior, for-
mal (specification descrip-
tion language)

change of specification none integration tests, object-
oriented, allows black
box

[107] computer
science

structure and behavior, for-
mal (UML sequence dia-
gram, class diagram)

change of specification none integration tests, allows
black box

[112] computer
science

behavior, formal (extended
finite state machine)

change of specification none integration tests

[113] computer
science

behavior, formal (call graph) change of code none integration test, system test,
object-oriented, white box

[114] computer
science

behavior, formal (program
dependency graph)

change of code none integration test, procedural,
white box

[115] computer
science

behavior, formal (dynamic
call graph)

change of code previous execution integration test, system test,
object-oriented, white box

[116] computer
science

behavior, formal (dynamic
program slice)

change of code previous execution integration test, system test,
object-oriented, white box

[117] computer
science

behavior, formal (dynamic
control flow graph)

change of code previous execution unit test, system test, proce-
dural, white box

[118] computer
science

behavior, formal (dynamic
data flow graph)

change of code previous execution unit test, integration test,
system test, procedural or
object-oriented, white box

Research question 1: The definition of user-friendly mod-
eling languages – especially based on the UML – as a basis
for test case generation and methods to derive test cases from
these models have been investigated. However, comprehensive
surveys and case studies on the acceptance and usability of
these models or test case generation from SysML models in
production automation still remain an open challenge.

Research question 2: There are a number of approaches for
transformation of semi-formal modeling languages into formal
models, as well as algorithms and test selection criteria. To find
industrial relevance of the approaches, a thorough industrial
evaluation could help assessing the relevance for the domain
of production automation. A special focus should be given to
approaches that include not only the source code but also at
least the execution model of the implementation of the plant
model.

Research question 3: Defining appropriate fault models and
generating test cases to test the reaction to faults is still an
emerging field in the field of production automation, where
mainly other domains have been conducting research until
now.

Research question 4: The same is true for change impact
analysis and regression testing approaches which have mainly
been researched in the field of computer science so far.
Therefore, the investigation on how to apply these methods
in the field of production automation remains an open issue.

Research question 5: Last but not least, the automatic
execution of test cases is also a field where a lot of work
remains to be done. As mentioned in [2], full support of
current tools for PLC platforms is still missing. Approaches

that integrate the automatic execution in available tools or new
tools targeted at PLC platforms have scarcely been found.

VIII. CONCLUSION

In this paper, model-based testing approaches have been
reviewed in context of the current challenges within the field of
production automation. These challenges have been identified
as the definition of user-friendly models as a basis for test
case generation, the automatic test case generation from these
models, the inclusion of hardware effects, the minimization
of testing efforts during regression testing and the automatic
execution of the generated test cases. Furthermore, the clas-
sification criteria in order to classify the different analyzed
approaches are introduced, ordered by requirements and mod-
els as a basis for testing, test selection criteria, executable test
cases, test bed, system under test and test verdict. In conclu-
sion, it has been found that especially regarding the definition
of user-friendly notations as a basis for test case generation,
testing of system’s reaction to faults and regression testing
more work remains to be done. For the latter two, promising
approaches have been introduced in electrical engineering and
computer science which may be interesting for the field of
production automation when adapted to the domain-specific
requirements.

REFERENCES

[1] Systems and software engineering – Vocabulary, ISO/IEC/IEEE
24765:2010 Std., 2010.

[2] A. Dubey, “Evaluating Software Engineering Methods in the Context of
Automation Applications,” in 2011 9th IEEE International Conference
on Industrial Informatics (INDIN), 2011, pp. 585 – 590.

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 11

[3] D. Schütz, A. Wannagat, C. Legat, and B. Vogel-heuser, “Development
of PLC-Based Software for Increasing the Dependability of Production
Automation Systems,” IEEE Trans. Ind. Informat., vol. 9, no. 4, pp.
2397–2406, 2013.

[4] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca,
R. Checcozzo, and F. Rusinà, “A Real-Time Service-Oriented Archi-
tecture for Industrial Automation,” IEEE Trans. Ind. Informat., vol. 5,
no. 3, pp. 267–277, 2009.

[5] P. Leitão, V. Mařı́k, and P. Vrba, “Past, Present, and Future of Industrial
Agent Applications,” IEEE Trans. Ind. Informat., vol. 9, no. 4, pp.
2360–2372, 2013.

[6] M. A. Wehrmeister, C. E. Pereira, and F. J. Rammig, “Aspect-
Oriented Model-Driven Engineering for Embedded Systems Applied
to Automation Systems,” IEEE Trans. Ind. Informat., vol. 9, no. 4, pp.
2373–2386, 2013.

[7] IEC 60880, Nucl. power plants - Instrumentation and control systems
important to safety - Software aspects for computer-based systems per-
forming category A functions, 2nd ed. International Electrotechnical
Commission, 2006.

[8] IEC 61850-10, Communications Networks and Systems in Substations
- Part 10: Conformance testing, 2nd ed. International Electrotechnical
Commission, 2005.

[9] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software Testing, Verification and Reliability,
vol. 22, no. 5, pp. 297–312, 2012.

[10] V. Vyatkin, “Software Engineering in Industrial Automation: State-of-
the-Art Review,” IEEE Trans. Ind. Informat., vol. 9, no. 3, pp. 1234–
1249, 2013.

[11] R. Hametner, I. Hegny, and A. Zoitl, “A Unit-Test Framework for
Event-Driven Control Components Modeled in IEC 61499,” in Emerg-
ing Technology and Factory Automation (ETFA), 2014, pp. 1–8.

[12] J.-M. Roussel and J.-J. Lesage, “Validation and Verification of grafcets
using finite state machine,” in Proceedings of IMACS-IEEE’CESA’96’,
1996, pp. 1–6.

[13] G. Frey and L. Litz, “Formal methods in PLC programming,” in
Systems, Man, and Cybernetics, 2000 IEEE International Conference
on, vol. 4. IEEE, 2000, pp. 2431–2436.

[14] M. B. Younis and G. Frey, “Formalization of existing plc programs: A
survey,” in Proceedings of CESA, 2003, pp. 0234–0239.

[15] A. Girbea, C. Suciu, S. Nechifor, and F. Sisak, “Design and Imple-
mentation of a Service-Oriented Architecture for the Optimization of
Industrial Applications,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp.
185–196, Feb. 2014.

[16] E. Van Veenendaal, “Standard glossary of terms used in software
testing,” International Software Testing Qualifications Board, no. 2.3,
pp. 1–53, 2014.

[17] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault Injection Techniques
and Tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[18] M. Barth and A. Fay, “Automated generation of simulation models for
control code tests,” Control Engineering Practice, vol. 21, no. 2, pp.
218–230, Feb. 2013.

[19] H. Carlsson, B. Svensson, F. Danielsson, and B. Lennartson, “Methods
for Reliable Simulation-Based PLC Code Verification,” IEEE Transac-
tions on Industrial Informatics, vol. 8, no. 2, pp. 267–278, May 2012.

[20] F. Gu, W. S. Harrison, D. M. Tilbury, and C. Yuan, “Hardware-
in-the-loop for manufacturing automation control: Current status and
identified needs,” in Automation Science and Engineering, 2007. CASE
2007. IEEE International Conference on. IEEE, 2007, pp. 1105–1110.

[21] ——, “Hardware-In-The-Loop for Manufacturing Automation Control:
Current Status and Identified Needs,” in 2007 IEEE International
Conference on Automation Science and Engineering. IEEE, Sep. 2007,
pp. 1105–1110.

[22] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, The art of
software testing, Second Edition. John Wiley & Sons, 2004.

[23] K. Thramboulidis, “IEC 61499: Back to the well proven practice of IEC
61131?” in IEEE 17th Conference on Emerging Technologies Factory
Automation (ETFA), Sept 2012, pp. 1–8.

[24] A. Zoitl and H. Prähofer, “Guidelines and Patterns for Building Hier-
archical Automation Solutions in the IEC 61499 Modeling Language,”
IEEE Trans. Ind. Informat., vol. 9, no. 4, pp. 2387–2396, 2013.

[25] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, 2004.

[26] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho, “Using on-the-fly
verification techniques for the generation of test suites,” in Computer
Aided Verification. Springer Berlin Heidelberg, 1996, pp. 348–359.

[27] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines - a survey,” in Proc. IEEE, vol. 84, no. 8, 1996, pp.
1090–1123.

[28] J. Tretmans, “Test generation with inputs, outputs and repetitive quies-
cence,” Software — Concepts and Tools, vol. 17, no. 3, pp. 103–120,
1996.

[29] ——, “Model based testing with labelled transition systems,” in Formal
Methods and Testing, ser. Lecture Notes in Computer Science, R. M.
Hierons, J. P. Bowen, and M. Harman, Eds. Springer, 2008, vol. 4949,
pp. 1–38.

[30] S. Pickin, C. Jard, T. Jéron, J.-M. Jézéquel, and Y. Le Traon, “Test
synthesis from UML models of distributed software,” IEEE Trans.
Softw. Eng., vol. 33, no. 4, pp. 252–269, 2007.

[31] M. Krichen and S. Tripakis, “Conformance testing for real-time sys-
tems,” Formal Methods in System Design, vol. 34, no. 3, pp. 238–304,
2009.

[32] M. Pocci, I. Demongodin, N. Giambiasi, and A. Giua, “Testing
Experiments on Synchronized Petri Nets,” IEEE Trans. Autom. Sci.
Eng., vol. 11, no. 1, pp. 125–138, Jan 2014.

[33] A. Guignard and J.-M. Faure, “A conformance relation for model-based
testing of PLC,” in Proc. of the 12th Int. Workshop on Discrete Event
Syst., 2014, pp. 412–419.

[34] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi, “Test selection based on finite state models,” in IEEE
Trans. Softw. Eng., vol. 17, no. 6, 1991, pp. 591–603.

[35] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko,
“FSM-based conformance testing methods: A survey annotated with
experimental evaluation,” Inform. and Softw. Technol., vol. 52, no. 12,
pp. 1286 – 1297, 2010.

[36] A. T. Endo and A. Simao, “Evaluating test suite characteristics, cost,
and effectiveness of FSM-based testing methods,” Inform. and Softw.
Technol., vol. 55, no. 6, pp. 1045–1062, 2013.

[37] A. Petrenko, A. Simao, and N. Yevtushenko, “Generating checking
sequences for nondeterministic finite state machines,” in IEEE 5th
Int. Conference on Softw. Testing, Verification and Validation (ICST).
IEEE, 2012, pp. 310–319.

[38] R. M. Hierons and U. C. Türker, “Distinguishing sequences for partially
specified FSMs,” in NASA Formal Methods. Springer, 2014, pp. 62–
76.

[39] M. Pocci, I. Demongodin, N. Giambiasi, and A. Giua, “A new
algorithm to compute synchronizing sequences for synchronized petri
nets,” in TENCON 2013-2013 IEEE Region 10 Conference (31194).
IEEE, 2013, pp. 1–6.

[40] C. Kaner, J. Bach, and B. Pettichord, Lessons learned in software
testing. John Wiley & Sons, 2008.

[41] A. Simão, A. Petrenko, and N. Yevtushenko, “Generating reduced tests
for FSMs with extra states,” in Testing of Software and Communication
Systems. Springer, 2009, pp. 129–145.

[42] K. El-Fakih, N. Yevtushenko, and H. Fouchal, “Testing timed finite
state machines with guaranteed fault coverage,” in Testing of Software
and Communication Systems. Springer, 2009, pp. 66–80.

[43] L. J. White and E. I. Cohen, “A domain strategy for computer program
testing,” IEEE Trans. Softw. Eng., no. 3, pp. 247–257, 1980.

[44] W. d. L. Andrade, P. D. Machado, T. Jéron, and H. Marchand, “Ab-
stracting time and data for conformance testing of real-time systems,”
in IEEE 4th Int. Conf. on Softw. Testing, Verification and Validation
Workshops (ICSTW). IEEE, 2011, pp. 9–17.

[45] W. d. L. Andrade and P. D. Machado, “Generating test cases for real-
time systems based on symbolic models,” IEEE Trans. Softw. Eng.,
vol. 39, no. 9, pp. 1216–1229, 2013.

[46] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
2013.

[47] A. Petrenko and N. Yevtushenko, “Testing from partial deterministic
FSM specifications,” IEEE Trans. Comput., vol. 54, no. 9, pp. 1154–
1165, 2005.

[48] M. Shahbaz and R. Groz, “Analysis and testing of black-box
component-based systems by inferring partial models,” Software Test-
ing, Verification and Reliability, vol. 24, no. 4, pp. 253–288, 2014.

[49] C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Integrating formal
verification and conformance testing for reactive systems,” IEEE Trans.
Softw. Eng., vol. 33, no. 8, pp. 558–574, 2007.

[50] A. Armando, G. Pellegrino, R. Carbone, A. Merlo, and D. Balzarotti,
“From model-checking to automated testing of security protocols:
Bridging the gap,” in Tests and Proofs. Springer, 2012, pp. 3–18.

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 12

[51] E. P. Enoiu, D. Sundmark, and P. Pettersson, “Model-based test suite
generation for function block diagrams using the UPPAAL model
checker,” in IEEE 6th Int. Conf. on Softw. Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2013, pp. 158–167.

[52] M.-C. Gaudel, “Checking models, proving programs, and testing sys-
tems,” in Tests and Proofs. Springer, 2011, pp. 1–13.

[53] M.-C. Gaudel, R. Lassaigne, F. Magniez, and M. de Rougemont,
“Some approximations in model checking and testing,” arXiv preprint
arXiv:1304.5199, 2013.

[54] H.-M. Hanisch, J. Thieme, A. Luder, and O. Wienhold, “Modeling
of PLC behavior by means of timed net condition/event systems,”
in 6th Int. Conf. on Emerging Technologies and Factory Automation
Proceedings, 1997. ETFA’97. IEEE, 1997, pp. 391–396.

[55] M. Heiner and T. Menzel, “A petri net semantics for the PLC language
instruction list,” in Workshop on Discrete Event Systems (WODES ‘98),
1998, pp. 161–166.

[56] A. Mader and H. Wupper, “Timed automaton models for simple
programmable logic controllers,” in Proc. of the 11th Euromicro Conf.
on Real-Time Systems. IEEE, 1999, pp. 106–113.

[57] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen, “To-
wards the automatic verification of PLC programs written in Instruction
List,” in IEEE Int. Conf. on Syst., Man, and Cybernetics, vol. 4. IEEE,
2000, pp. 2449–2454.

[58] F. Jiménez-Fraustro and É. Rutten, “A synchronous model of IEC
61131 PLC languages in SIGNAL,” in 13th Euromicro Conf. on Real-
Time Syst. IEEE, 2001, pp. 135–142.

[59] V. Gourcuff, O. De Smet, and J. Faure, “Efficient representation for
formal verification of PLC programs,” in 8th Int. Workshop on Discrete
Event Syst. IEEE, 2006, pp. 182–187.

[60] B. Zoubek, J.-M. Roussel, and M. Kwiatkowska, “Towards automatic
verification of ladder logic programs,” in Proceedings of IMACS-IEEE
CESA’03: Computational Engineering in Systems Applications, 2003.

[61] D. F. Bender, B. Combemale, X. Crégut, J. M. Farines, B. Berthomieu,
and F. Vernadat, “Ladder metamodeling and PLC program validation
through time petri nets,” in Model Driven Architecture–Foundations
and Applications. Springer, 2008, pp. 121–136.

[62] H. Bel Mokadem, B. Berard, V. Gourcuff, O. De Smet, and J.-M.
Roussel, “Verification of a timed multitask system with UPPAAL,”
IEEE Trans. Autom. Sci. and Eng., vol. 7, no. 4, pp. 921–932, 2010.

[63] O. Pavlovic and H.-D. Ehrich, “Model checking PLC software written
in function block diagram,” in 3rd Int. Conf. on Softw. Testing,
Verification and Validation (ICST). IEEE, 2010, pp. 439–448.

[64] D. Soliman, K. Thramboulidis, and G. Frey, “Transformation of func-
tion block diagrams to UPPAAL timed automata for the verification of
safety applications,” Annual Reviews in Control, 2012.

[65] A. Wardana, J. Folmer, and B. Vogel-Heuser, “Automatic program
verification of continuous function chart based on model checking,”
in 35th Annual Conference of Industrial Electronics. IEEE, 2009, pp.
2422–2427.

[66] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, “A synchronous
approach for IEC 61499 function block implementation,” IEEE Trans.
Comput., vol. 58, no. 12, pp. 1599–1614, 2009.

[67] H. Prähofer and A. Zoitl, “Verification of hierarchical IEC 61499
component systems with behavioral event contracts,” in 11th IEEE Int.l
Conf. on Ind. Informatics (INDIN). IEEE, 2013, pp. 578–585.

[68] D. L’Her, P. Le Parc, and L. Marcé, “Proving sequential function chart
programs using automata,” in Automata Implementation. Springer,
1999, pp. 149–163.

[69] M. Remelhe, S. Lohmann, O. Stursberg, S. Engell, and N. Bauer,
“Algorithmic verification of logic controllers given as sequential func-
tion charts,” in IEEE Int. Symposium on Comput. Aided Control Syst.
Design. IEEE, 2004, pp. 53–58.

[70] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus,
M. Remelhe, and O. Stursberg, “Verification of PLC programs given
as sequential function charts,” in Integration of Software Specification
Techniques for Applications in Engineering, ser. Lecture Notes in
Computer Science, H. Ehrig, W. Damm, J. Desel, M. Große-Rhode,
W. Reif, E. Schnieder, and E. Westkämper, Eds. Springer, 2004, vol.
3147, ch. Part V: Verification, pp. 517–540.

[71] N. Bauer, R. Huuck, B. Lukoschus, and S. Engell, “A unifying
semantics for sequential function charts,” in Integration of Software
Specification Techniques for Applications in Engineering. Springer,
2004, pp. 400–418.

[72] J. Provost, J.-M. Roussel, and J.-M. Faure, “Translating Grafcet speci-
fications into Mealy machines for conformance test purposes,” Control
Engineering Practice, vol. 19, no. 9, pp. 947–957, 2011.

[73] ——, “A formal semantics for Grafcet specifications,” in Proceedings
of the IEEE 7th International Conference on Automation Science and
Engineering (CASE 2011), 2011.

[74] ——, “Generation of single input change test sequences for con-
formance test of programmable logic controllers,” IEEE Trans. Ind.
Informat., vol. 10, no. 3, pp. 1696–1704, Aug. 2014.

[75] F. Schumacher, S. Schröck, and A. Fay, “Transforming hierarchical
concepts of GRAFCET into a suitable petri net formalism,” in Man-
ufacturing Modelling, Management, and Control, vol. 7, no. 1, 2013,
pp. 295–300.

[76] F. Schumacher and A. Fay, “Transforming time constraints of a
GRAFCET graph into a suitable petri net formalism,” in IEEE Int.
Conf. on Ind. Technology (ICIT). IEEE, 2013, pp. 210–218.

[77] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of computer programming, vol. 72, no. 1,
pp. 31–39, 2008.

[78] N. Schetinin, N. Moriz, B. Kumar, A. Maier, S. Faltinski, and O. Nigge-
mann, “Why do verification approaches in automation rarely use HIL-
test?” in IEEE Int. Conf. on Ind. Technology (ICIT). IEEE, 2013, pp.
1428–1433.

[79] R. Hametner, D. Winkler, T. Östreicher, S. Biffl, and A. Zoitl, “The
Adaptation of Test-Driven Software Processes to Industrial Automation
Engineering,” in IEEE International Conference on Industrial Informat-
ics (INDIN), 2010, pp. 921–927.

[80] T. Hussain and G. Frey, “UML-based Development Process for IEC
61499 with Automatic Test-case Generation,” in IEEE Conf. on Emerg-
ing Technologies and Factory Automation (ETFA’06), 2006, pp. 1277–
1284.

[81] R. Hametner, B. Kormann, B. Vogel-Heuser, D. Winkler, and A. Zoitl,
“Test case generation approach for industrial automation systems,”
in The 5th International Conference on Automation, Robotics and
Applications. IEEE, Dec. 2011, pp. 57–62.

[82] J. Krause, A. Herrmann, and C. Diedrich, “Test case generation
from formal system specifications based on UML State Machine,” in
atp–International, 2008, pp. 47–54.

[83] B. Kormann, D. Tikhonov, and B. Vogel-Heuser, “Automated PLC
Software Testing using adapted UML Sequence Diagrams,” in 14th
IFAC Symposium of Information Control Problems in Manufacturing,
Bucharest, Romania, 2012, pp. 1615–1621.

[84] J. Zander, Z. R. Dai, I. Schieferdecker, and G. Din, “From U2TP
Models to Executable Tests with TTCN-3 - An Approach to Model
Driven Testing,” in Testing of Communicating Systems, R. Khendek,
Ferhat and Dssouli, Ed. Springer Berlin Heidelberg, 2005, pp. 289–
303.

[85] B. Kumar, B. Czybik, and J. Jasperneite, “Model based TTCN-3 testing
of industrial automation systems — First results,” in IEEE Conference
on Emerging Technologies and Factory Automation. IEEE, 2011, pp.
1–4.

[86] G. DeTommasi, R. Vitelli, L. Boncagni, and A. C. Neto, “Modeling
of MARTe-Based Real-Time Applications With SysML,” IEEE Trans.
Ind. Informat., vol. 9, no. 4, pp. 2407–2415, 2013.

[87] E. Estévez and M. Marcos, “Model-Based Validation of Industrial
Control Systems,” IEEE Trans. Ind. Informat., vol. 8, no. 2, pp. 302–
310, 2012.

[88] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, “MODIFI:
A MODel-Implemented Fault Injection Tool,” in Computer Safety,
Reliability, and Security, Lecture Notes in Computer Science Volume
6351, 2010, pp. 210–222.

[89] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault injection for dependability validation:
a methodology and some applications,” IEEE Trans. Softw. Eng.,
vol. 16, no. 2, pp. 166–182, 1990.

[90] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “GOOFI: generic
object-oriented fault injection tool,” Proc. Int. Conf. on Dependable
Syst. and Networks, pp. 83–88, 2001.

[91] H. Ziade, R. Ayoubi, and R. Velazco, “A Survey on Fault Injection
Techniques,” The Int. Arab J. of Inform. Technology, vol. 1, no. 2, pp.
171–186, 2004.

[92] J. Baraza, J. Gracia, D. Gil, and P. Gil, “Improvement of fault injection
techniques based on VHDL code modification,” in 10th IEEE Int. High-
Level Design Validation and Test Workshop. IEEE, 2005, pp. 19–26.

[93] H. Schlingloff and S. Vulinovic, “Model based dependability evaluation
for automotive control functions,” in Modeling and simulation for
public safety, 2005.

[94] J. Vinterl, L. Bromander, P. Raistrick, and H. Edlerl, “FISCADE - A
Fault Injection Tool for SCADE Models,” in 3rd Inst. of Eng. and
Technology Conf. on IET, 2007, pp. 1–9.

FIRST SUBMISSION: 2014-11-27, GENERATED AUGUST 7, 2015 13

[95] D. Powell, J. Arlat, H. N. Chu, F. Ingrand, and M. Killijian, “Testing
the Input Timing Robustness of Real-Time Control Software for
Autonomous Systems,” in 2012 9th European Dependable Computing
Conf. IEEE, May 2012, pp. 73–83.

[96] B. Kormann and B. Vogel-Heuser, “Automated Test Case Generation
Approach for PLC Control Software Exception Handling using Fault
Injection,” in IECON 2011 - 37th Annual Conf. of the IEEE Ind.
Electronics Soc., 2011, pp. 365 – 372.

[97] S. Rösch, D. Tikhonov, D. Schütz, and B. Vogel-Heuser, “Model-
based testing of PLC software: test of plants’ reliability by using fault
injection on component level,” in IFAC World Conference, accepted
paper, 2014.

[98] A. Sung, B. Choi, W. E. Wong, and V. Debroy, “Mutant generation
for embedded systems using kernel-based software and hardware fault
simulation,” Inform. and Software Technology, vol. 53, no. 10, pp.
1153–1164, Oct. 2011.

[99] J. Arlat and Y. Crouzet, “Physical Fault Models and Fault Tolerance,”
in Models in Hardware Testing, ser. Frontiers in Electronic Testing, H.-
J. Wunderlich, Ed. Dordrecht: Springer Netherlands, 2010, vol. 43,
pp. 217–255.

[100] H. Schludermann, T. Kirchmair, and M. Vorderwinkler, “Soft-
commissioning: Hardware-in-the-loop-based verification of controller
software,” in Proc. of the 2000 Winter Simulation Conf., no. Microsoft
1995, 2000, pp. 893–899.

[101] J. Carreira, H. Madeira, and J. G. Silva, “Xception: Software Fault In-
jection and Monitoring in Processor Functional Units,” in Dependable
Computing and Fault Tolerant Systems 10, 1998, pp. 245–266.

[102] P. Yuste, J. C. Ruiz, L. Lemus, and P. Gil, “Non-intrusive Software-
Implemented Fault Injection,” in Dependable Computing. Springer
Berlin Heidelberg, 2003, pp. 23–38.

[103] IEEE Std 1219-1998, IEEE Standard for Software Maintenance. The
Institute of Electrical and Electronics Engineers, Inc., 1998.

[104] G. Rothermel and M. Harrold, “Analyzing regression test selection
techniques,” IEEE Trans. Softw. Eng., vol. 22, no. 8, pp. 529–551,
1996.

[105] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, Mar. 2010.

[106] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis.
Los Alamos, CA: The Institute of Electrical and Electronic Engineers,
Inc., 1996.

[107] Q. Farooq, M. Z. Z. Iqbal, Z. I. Malik, and A. Nadeem, “An approach
for selective state machine based regression testing,” in Proc. of the
3rd Int. workshop on Advances in model-based testing (A-MOST ’07).
New York, New York, USA: ACM Press, 2007, pp. 44–52.

[108] L. Briand, Y. Labiche, and G. Soccar, “Automating impact analysis and
regression test selection based on UML designs,” in Proc. Int. Conf.
on Softw. Maintenance. IEEE Comput. Soc, 2002, pp. 252–261.

[109] Y. Le Traon, T. Jeron, J.-M. Jezequel, and P. Morel, “Efficient object-
oriented integration and regression testing,” IEEE Trans. Reliab.,
vol. 49, no. 1, pp. 12–25, Mar. 2000.

[110] P. Caliebe, T. Herpel, and R. German, “Dependency-Based Test Case
Selection and Prioritization in Embedded Systems,” in 2012 IEEE 5th
Int. Conf. on Softw. Testing, Verification and Validation. IEEE, Apr.
2012, pp. 731–735.

[111] Y. Chen, R. L. Probert, and H. Ural, “Regression test suite reduction
based on SDL models of system requirements,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 21, no. 6, pp.
379–405, Nov. 2009.

[112] B. Korel, L. Tahat, and B. Vaysburg, “Model based regression test
reduction using dependence analysis,” in Proc. Int. Conf. on Softw.
Maintenance. IEEE Comput. Soc, 2002, pp. 214–223.

[113] B. Ryder and F. Tip, “Change impact analysis for object-oriented pro-
grams,” Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, pp. 46–53,
2001.

[114] H. Leung and L. White, “A study of integration testing and software
regression at the integration level,” in Proc. Conf. on Softw. Mainte-
nance. IEEE Comput. Soc. Press, 1990, pp. 290–301.

[115] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A Tool
for Change Impact Analysis of Java Programs Categories and Subject
Descriptors,” ACM Sigplan Notices, vol. 39, no. 10, 2004.

[116] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging field data
for impact analysis and regression testing,” ACM SIGSOFT Softw. Eng.
Notes, vol. 28, no. 5, p. 128, Sep. 2003.

[117] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Trans. Softw. Eng. and Methodology, vol. 6,
no. 2, pp. 173–210, Apr. 1997.

[118] Y. Chen, D. Rosenblum, and K. Vo, “TestTube: A system for selective
regression testing,” in Proc. of the 16th Int. Conf. on Softw. Eng. (ICSE
’94), 1994, pp. 211–220.

[119] S. Ulewicz, D. Schütz, and B. Vogel-Heuser, “Software changes
in factory automation - towards automatic change based regression
testing,” in 40th Annual Conf. of the IEEE Ind. Electron. Soc., 2014.

