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Abstract— This paper presents a new formulation to the open
problem of 6D Image-Based Visual Servoing (IBVS). The main
goal is to control the pose of an object using visual information
from stereo cameras. In this article we introduce a novel image
feature representation based on virtual orthogonal cameras to
map 6D Cartesian poses to 6D visual poses defined in a Virtual
Visual space (Image space). This new model is used to compute a
full-rank Image Jacobian matrix (Jimg), which overcomes several
common problems exhibited by the classical image Jacobians,
e.g., Image space singularities and local minima. This Jacobian
is a fundamental key for a Image-Based control design, where a
stereo camera system can be used to drive a robot manipulator.
The properties of the proposed visual model are validated
analytically, in simulation and in a real robot.

I. INTRODUCTION

Visual Servoing Control (VSC) is an approach to control

the motion of a robot manipulator using visual feedback from

a vision system. This has been one of the most active topics

in robotics since the early 1990s [1]. The vision system can

be mounted directly on a robot end-effector (eye-in-hand

configuration) or fixed in the work space (fixed-camera con-

figuration). Additionally, visual servoing approaches differ

in the way in which error functions are defined. In Image-

Based Visual Servoing (IBVS) the error function is defined

directly in terms of image features. In Position-Based Visual

Servoing (PBVS) the error function, which is specified in

the Task space (e.g. Cartesian coordinates), is obtained from

the visual information [2]. The conclusion drawn in many of

the previous works, e.g., [1], is that IBVS is more favorable

than the PBVS method, since it has low sensitivity to camera

calibration errors.

This work is based on the concepts of image-based visual

servoing and attempt to address some of the most common

problems affecting conventional approaches by introducing a

new visual feature mapping based on the composite camera

model [3]. As pointed out in [1], convergence and stability

problems may sometimes occur in IBVS. Local minima in

the trajectories and singularities in the Image Jacobian (also

known as Interaction Matrix) can severely affect the visual

servoing task. In image-based control approach, the ideal

case is to find a particular visual feature where the interaction

matrix has neither local minima nor singularities, and where

the exponential decrease of the corresponding error function

implies a smooth 3D trajectory for the controlled object
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Fig. 1. A classical problem of visual servoing is to generate a full-rank
mapping between the visual feature space s ∈ R

2m×1 and the joint velocity
space q̇ ∈ R

n×1 to design dynamic controls for robots τ ∈ R
n×1[Nm].

(e.g. the robot end-effector). During the last decade, several

authors have worked on solving these problems. We will

describe some relevant approaches used in IBVS and discuss

their properties.

A. Related work

An IBVS usually employs the image Jacobian matrix

(Jimg) to relate velocities of an object or a camera in the

Task space (v) to the feature parameter velocities in the

feature (image) space ṡ. A full and comprehensive survey

on Visual Servoing and image Jacobian definitions can be

found in [1], [2], [4] and more recently in [5]. In general,

the classical image Jacobian is defined using a set of image

feature measurements, usually denoted by s, and it describes

how image features change when the object or camera pose

changes, i.e. ṡ = Jimgv. This is connected with Dynamic

Visual Servoing where the main goal is to control the

required robot’s dynamical behavior to achieve some desired

value of image feature parameters. This implies estimating

the image Jacobian to map the image feature velocities ṡ

into a meaningful state variable required for the control law,

usually the generalized joint velocities q̇, see Fig. 1.

In general, the image Jacobian can be computed using

direct depth information (depth-dependent Jacobian) [6],[7],

or by approximation via on-line estimation of depth of the

features (depth-estimation Jacobian) [2], [5], [8], or using

depth-independent image Jacobian matrix [9],[10]. Addition-

ally, many papers directly estimate on-line the complete

image Jacobian in different ways, [11],[12]. However, all

these methods use redundant image point coordinates to

define (as a general rule) a non-square image Jacobian, which

is a differentiable mapping from SE(3) to s ∈ R
2m (with m

as the number of feature points). Then, a generalized inverse



of the image Jacobian needs to be computed, which leads to

well-known problems such as the Image space singularities

and local minima. In order to obtain a full-rank Image

Jacobian, [13] proposed an approach where the definition

of the features is based on a combination of both IBVS and

PBVS approaches, attempting to incorporate the advantages

of each method. This method requires the knowledge of the

3D model of the object and its performance is guaranteed

in the absence of high calibration or model errors. In our

case, the structure of the proposed Jacobian do not require

information of the object’s model and it can be used to design

adaptive controllers capable to handle uncertainties in the

camera parameters, similar to [14]. The work presented in

[15] introduces in a similar fashion a stereo camera model

based on a virtual composite camera system. However, that

approach is limited to control only 3D positions, and the

image Jacobian is only suitable for 3 DOF robots.

In this paper, we extend the visual features to control 6D

visual poses in a Virtual Visual space (a 3D space defined in

pixels), see Fig. 1. This visual pose is composed of 3D visual

linear motions and 3D visual angular motions. Therefore, this

work proposes a general solution to control the position and

orientation of a robot end-effector using visual information

from stereo cameras. The key contributions of this paper

can be summarized into three aspects: i) We specify a new

Virtual Visual space (pixel), where a 6D visual pose vector

can be defined and used for IBVS. ii) We obtain a new full-

rank image Jacobian which maps velocities from the Task

space to the 3D Virtual Visual space. iii) In order to evaluate

the proposed visual Jacobian models, experiments have been

conducted in simulation using real camera parameters and in

a real robot, where our approach is compared with a standard

IBVS method.

B. Organization

This paper is organized as follows, in Section II we high-

light the problems in classical image-base visual servoing

approaches and state the core issues which we tackle with

this work. In Section III we introduce a new 3D Camera

Model and describe how it is used to construct a Virtual

Visual space. This model is used to define a full-rank 6D

Visual Jacobian, which will be used in the Section V to

design a robust dynamic control for robot manipulators. In

Section IV we present a comparative analysis in simulation

between our method and the standard IBVS. Finally, Section

VI draws the conclusions and future work.

II. PROBLEM FORMULATION

Visual servoing schemes rely on the relationship [2]:

ṡ = Lsvo, in which s is a set of geometrical features whose

time derivative ṡ is linearly related to the spatial velocity vo

of an object through the interaction matrix Ls. Using this

relationship, control schemes are designed to minimize the

error e between the current value of the visual feature s and

its desired value sd : e = s− sd .

A. Classical Image-Based Visual Servoing

Traditional image-based control schemes use the image-

plane coordinates of a set of points to define the set s

[2]. More precisely, if we have a set of points p0i
=

[x0i
,y0i

,z0i
]T , for i = 1,2, ...,m, rigidly attached to an object

whose pose is represented by the vector W0 = [X0,θ0]
T =

[x0,y0,z0,αx0
,βy0

,γz0
]T ∈ R

6×1, then the visual feature mea-

surements of all p0i
(m > 3) are represented as s =

[x1,y1, ...,xm,ym]
T ∈ R

2m×1. The relation between ṡ and Ẇ0

is given by ṡ = JxẆ0, where Jx = [Lx1
, ...,Lxm ]

T ∈ R
2m×6 is

known as the image Jacobian, and Lxi
is given by1:

Lxi
=

[
1

z0i

0 − xi
z0i

−xiyi (1+ x2
i ) −xi

0 1
z0i

− yi

z0i

(1+ y2
i ) xiyi yi

]
(1)

Where Xi = [xi,yi]
T = [

x0i
z0i

,
y0i
z0i

]T = [
ui−cxi

fxi
,

vi−cyi
fyi

]T , with Ci =

[cxi
,cyi

]T and Fi = [ fxi
, fyi

]T as the principal point and the

scaling factors, respectively.

B. The problem of Classical IBVS

If we consider ∆W0 as the control variable, then we need

to compute the inverse mapping of ṡ as

∆W0 = J+x ∆s, (2)

where ∆∗ is an error function defined in the space ∗, J+x ∈
R

6×2m is chosen as the Moore-Penrose pseudo-inverse of Jx,

which leads to the two characteristic problems of the IBVS

method: the feature (image) space singularities and local

minima. For most IBVS approaches we have 2m > 6. In this

case, the image Jacobian is singular when rank(Jx)< 6, while

the visual feature local minima is defined as the set of image

locations Ωs =
{

s|∆s 6= 0,∆W0 = 0,∀s ∈ R
2m×1

}
when using

redundant image features, i.e. ∆s ∈ N(J+x ). Examples of

the problems generated by the local minima conditions

are illustrated in [2] and [16]. Another drawback of these

approaches is the highly-coupled system presented by (2),

where the linear velocities and angular velocities can not be

controlled independently from each other, leading to complex

issues which need to be addressed during control design.

C. Contribution of this Work

In this work, we get a step further towards a general solu-

tion for the problem of the IBVS, by introducing a mapping

from the classical image features s to a new visual representa-

tion defined as Ws = [Xs,θs]
T = [xs,ys,zs,αs,βs,γs]

T ∈ R
6×1.

In this case, Ws is a 6D visual pose vector defined in a 3D

Image space (we call this space the Virtual Visual space).

This visual pose is measured in pixels and is composed of

3D visual positions and 3D visual orientations.

The visual representation Ws is related with the feature

points vector s as Ws = M(s), where M is, in general, a

nonlinear map2 M : R2p×1 −→ R
6×1. In our case, Ws is a

minimization of the space s without the need to compute an

on-line LSM of the system |JxẆ0 − ṡ| as discussed in [17].

1For the case when the object is moving and the camera is fixed.
2This depends on the definition of the visual feature and its relationship

with the task space.



The above definition yields a new mapping in the form

Ẇs =
∂M(s)

∂ s︸ ︷︷ ︸
Ji

ṡ = JiJx︸︷︷︸
Jimg

Ẇ0 (3)

The advantage of this intermediate mapping is that a full-

rank image Jacobian matrix (Jimg ∈ R
6×6) can be obtained,

i.e., if some specific conditions are met, then the Image space

singularities and local minima issues can be avoided. In the

following section, we will specify these conditions.

Moreover, the aim of all vision-based control schemes is to

minimize an error e(t), which is typically defined by e(t) =
s− sd . In our case, the error function (∆Ws) is defined in the

Virtual Visual space generated from two stereo images.

This is the core design of our approach, and all that

remains is to fill in the details. For example, how should

Ws be chosen to construct the Virtual Visual space? What is

the form of Jimg? How the properties of Jimg impact in the

performance of the control approach? These questions are

addressed in the remainder of the article.

III. VIRTUAL VISUAL SPACE

This section shows how we construct the Virtual Visual

space using a stereo vision system. It also explains in detail

how to obtain a full-rank image Jacobian matrix (Jimg ∈
R

6×6). In the remainder of this paper, we will use the

notation Ci
j to represent a mapping from frame i to frame

j and phk
to define a point k in the coordinate frame h.

The key idea of the 3D visual camera model is to combine

the stereo camera model with a virtual composite camera

model. Figure 2 a) depicts our new visual camera model and

the corresponding image projections.

A. Image Jacobian for 3D visual linear velocities

We first generate a full-rank matrix (Jimgv ∈R
3×3), which

maps 3D linear velocities Ẋ0 ∈ R
3×1 (m/s) to 3D visual

linear velocities Ẋs ∈ R
3×1 (pixel/s), see Figure 2.

This new 3D visual model can be computed in 2 main

steps. First, given a standard stereo system (Cl
0 −Cr

l ), com-

pute the Homography between the right camera Cr
0 and a

virtual right camera C
rv
0 . This virtual camera must be ori-

ented such as its image plane is orthogonal to the left camera,

see Figure 2. From these two cameras, visual information of

a rigid object can be obtained xli and xrvi
, for i = 1,2, ...,m.

Second, use this visual information as a projection to form

a Composite Camera Model. This projection is a crucial

step, since it modifies the dimension of the mapping from

two 2D-visual feature measurements of all m points, s =
[ul1 ,vl1 ,urv1

,vrv1
, ...,ulm ,vlm ,urvm

,vrvm
]T ∈ R

4m×1, to a single

3D visual vector Xs ∈ R
3×1 defined in a Virtual Visual

space. Since s represents the position t4
0 ∈ R

3×1 of the rigid

object in the image feature space (see Fig. 2), the maximum

number of independent elements of s is 3. Therefore, if

s ∈R
4m×1 (as is commonly defined in the classical methods

for the stereo arrangements) there will be (4m−3) linearly

dependent elements in s. In this work, we propose to use

the homography between the cameras (Cl
0 −Cr

l ) to define

a virtual projection that reduces the dimension of s and

generates 3 linearly independent elements to compute a full-

rank image Jacobian (Jimgv). The following sub-sections are

devoted to explain each of these steps in detail.

1) Stereo Vision Model: The stereo vision system is

composed of two cameras (left Cl
0 and right Cr

0) which

are rigidly attached to a common frame 0w (Fig. 2). This

reference frame is defined by the user in any fashion,

however, it is assumed that the position of 0w is in the

intersection of the optical-axes of left camera zl
0 and virtual

right camera z
rv
0 , and its orientation is exactly the same as

Cl
0 on the beads to simplify further steps. Using this position

and orientation, we define the Projection Matrices P0
l and

P0
rv
∈ R

3×4 for the left camera and the virtual right camera

as P0
l = Kl

[
I3×3 t0

l

]
and P0

rv
= Kr

[
R0

rv
t0
rv

]
. Kl and

Kr are the intrinsic camera matrices of the left camera and

virtual right camera3, respectively. Furthermore, by design

t0
l = [0,0,zl ]

T , t0
rv
= [0,0,zrv ]

T and R0
rv
=
(
R

rv

l

)T (
Rl

0

)T
= Rl

rv
.

These Projection Matrices can be used to define the virtual

composite camera model, but first we need to project the real

visual features of the right camera xri
to a visual features on

the virtual right camera xrvi
. This is achieved exploiting the

homography property, similar to stereo rectification, but in

this case we will generate an orthogonal arrangement.

a) Homography between Cr
0 and C

rv
0 : A homography

H is a projection of world points between two image planes.

This mapping is only valid when the world points are

constrained to a common plane or when the two cameras

share the same camera center, which is our case. Under these

conditions, Hr
rv

can be computed as Hr
rv
= KlR

r
rv

K−1
r . In this

case we need to rotate the right camera such as its image

plane is orthogonal to Cl
0. Therefore, the relative orienta-

tion of Cr
0 with respect Cl

0 must be considered. Therefore,

Rr
rv
= Ryl

(π/2)Rr
l , where, Ryl

(∗) represents a rotation matrix

around yl
0 −axis. Then, the visual points in C

rv
0 are obtained

as xhrvi
= Hr

rvi
xhri

, where xh∗i
represents the homogeneous

vector of the image point x∗i
= [u∗i

,v∗i
]T .

2) Virtual Composite Camera Model: In this work we

propose a Composite Camera Model as a geometrical min-

imization method for the feature space s. The advantage

of the Orthogonal Cameras configuration is that it presents

the image position as 3 orthogonal signals. These features

can be used in the visual servoing instead of the classical

features extracted from the stereo cameras to generate a full-

rank image Jacobian. However, this configuration is limited,

compared with the stereo camera configuration, because it

requires a complex and accurate arrangement between the

cameras. In this work we propose to combine the benefits

of the two configurations by mapping the projections of

the standard stereo configuration into a virtual composite

camera arrangement. The measurements obtained in this

virtual sensors will generate a 3D visual position vector.

a) Virtual Composite Camera Model Generation: The

matrix P0
l projects a point p0i

= [x0i
,y0i

,z0i
]T into the left

3We assumed that the virtual right camera has the same intrinsic param-
eters as the right camera. These parameters can be computed off-line.



Fig. 2. Image Projections: a) The figure depicts the coordinate frames used to obtain a general 3D Virtual Visual model. It shows two physical cameras
(Left and Right) and their coordinate frames (Cl

0 and Cr
0, respectively). These two cameras are rigidly linked to a reference frame 0w, which is defined with

respect to a world coordinate frame W . It is also illustrated a Virtual Camera denoted by C
rv
0 , which shares the same position as Cr

0 but it is orthogonal

to the left camera Cl
0. The pose of a rigid object is defined by the coordinate frame pw1

pw2
pw3

pw4
. Each object point pwi

is referenced to 0w as p0i
and

these new points are projected to the left and right cameras as xli = [uli ,vli ]
T and xri

= [uri
,vri

]T , without lost of generality, we assume that p04
represents

the position of the object in 0w and p01
p02

p03
represents its orientation. The projection of these object points in the virtual camera C

rv
0 is obtained with a

homography with Cr
0, i.e. xhrvi

= Hr
rvi

xhri
. In b) it is shown the same arrangement from a top view. Here it is possible to observe that the relation between

Cr
0 and C

rv
0 is given by the rotation matrix Rr

rv
. This rotation must be computed based on the relative orientation of Cr

0 with respect to Cl
0. The Virtual

Composite camera system is highlighted with the light-gray area and is composed of the left camera and the virtual right camera, Cl
0 and C

rv
0 respectively.

camera image plane as

xli =
[
uli ,vli

]T
=

[
fxl

x0i

(z0i
+ zl)

,
fyl

x0i

(z0i
+ zl)

]T

+
[
cxl

,cyl

]T
(4)

In the same form P0
rv

generates the image projection of p0i

in the virtual right camera

xrvi
=
[
urvi

,vrvi

]T

=

[
fxrv

z0i

(−x0i
+ zrv)

,
fyrv

y0i

(−x0i
+ zrv)

]T

+
[
cxrv

,cyrv

]T

(5)

These two models can be fused to generate a Composite

Camera Model which will represent the 3D visual space.

This is possible because by design the component urvi

measures a quasi-orthogonal signal to the ones captured by

xli . Then, grouping these terms, we can define the Virtual

Composite Camera Model as

Xsi
= [xsi

,ysi
,zsi

]T =
[
uli ,vli ,urvi

]T

= FXni
+C (6)

where F = diag( fxl
, fyl

, fxr), C =
[
cxl

,cyl
,cxr

]T
and

Xni
=

[
x0i

(z0i
+ zl)

,
y0i

(z0i
+ zl)

,
z0i

(−x0i
+ zr)

]T

(7)

A velocity relationship can be obtained with the time deriva-

tive of (6) as follows:

Ẋsi
=

J0
imgv︷︸︸︷

FJvi
Ẋ0i

= J0
imgv

Ẋ0i
(8)

where the Jacobian matrix Jvi
∈ R

3×3 is defined as

Jvi
=




1

(z0i
+zl)

0 −
x0i

(z0i
+zl)

2

0 1

(z0i
+z0

l )
−

y0i

(z0i
+zl)

2

z0i

(x0i
−zr)

2 0 − 1

(x0i
−zr)




(9)

This composite image Jacobian J0
imgv

represents the map-

ping from linear velocities defined in the reference frame 0w

to velocities (pixels/s) in the 3D visual space.

B. Image Jacobian for 3D visual angular velocities

This Jacobian provides a mapping between angular ve-

locities in the task space (e.g. 0w) and angular velocities in

the virtual visual space. Specifically, we need to analyze the

effects of a velocity ω0 in the visual space, i.e. ωs. To this

aim, we can describe each of these angular velocities as the

induced linear velocity on a point not centered at the axis

of rotation in each of the two spaces, e.g. p0i
, i = 1,2,3.

This can be done using the canonical basis of the Cartesian

space, namely ex0
= [1,0,0]T , ey0

= [0,1,0]T , ez0
= [0,0,1]T

and its origin eo0
= [0,0,0]T . If we project each of this

vectors to the virtual visual space we obtain (see (6)),

exs = [pxl
+ fxl

/zl , pyl
, pxr ]

T , eys = [pxl
, pyl

+ fyl
/zl , pxr ]

T ,

ezs = [pxl
, pyl

, pxr + fxr/zr]
T and eos = [pxl

, pyl
, pxr ]

T . We

are interested in angular velocities at the origin of each

coordinate frame, therefore, we must compute the radius

of rotation for each vector. The radius is obtained as ē∗ =
e∗−eo for each axis. Then, for the Cartesian space we have,

ēx0
= ex0

, ēy0
= ey0

, ēz0
= ez0

. For the visual space we have

ēxs = [ fxl
/zl ,0,0]

T , ēys = [0, fyl
/zl ,0]

T , ēzs = [0,0, fxr/zr]
T .

The linear velocity generated by a general angular velocity

is obtained with: v = w× r = S(w)r, where S(∗) represents

the skew-symmetric matrix of the vector (*). From (8) we can

generate a relation between each linear velocity represented

in 0w and its corresponding velocity in the visual space as4

V{x,y,z}s
= F Jv|ē{x,y,z}0

V{x,y,z}0
(10)

4The expression Jv|ē{x,y,z}0
means Jv evaluated at each vector ēx0

, ēy0
, ēz0

.



Substituting the linear velocity in each space in (10), we

obtain a correlation between angular velocities ω0 and ωs

S
(

ē{x,y,z}s

)T

ωs = F Jv|ē{x,y,z}0
S
(

ē{x,y,z}0

)T

ω0 (11)

The expression in (11) generates a set of three equations that

need to be solved to define the angular velocity mapping.

It is clear that the solution will not be unique, however, a

solution that fits the real system constraints can be defined.

In this case, a system constraint will be that real physical

cameras only produce positive values for the visual position

xi
l,r ∈ R

2×1. Therefore, we can define the following relation

ωs = F−1
s F0ω0 = J0

imgω
ω0 (12)

where, F0 = diag
(

fxr
zr
,

fxr
zr
,

fyl
zl

)
and Fs =

diag
(

fyl

(zl+1) ,
fxl

(zr+1) ,
fxl
zl

)
.

The geometrical meaning of (12) is that the angular

velocities exhibit the same direction in both spaces, but they

are scaled by a non-homogeneous factor. This result can be

used to design control approaches, because, despite the non-

homogeneous scaling, this mapping is continuous.

C. Visual Jacobian

In the previous sections, we have defined the mappings

for the 3D visual velocities (linear and angular) separately

as linear velocity image Jacobian Jimgv and angular velocity

image Jacobian Jimgω . Combining equation (8) and (12) we

have the full expression that can be used for control design.

Ẇs =

[
Ẋs

ωs

]
=

[
J0

imgv
0

0 J0
imgω

][
Ẋ0

ω0

]
= J0

imgẆ0 (13)

where the Jacobian J0
img ∈ R

6×6 is defined as the Visual

Jacobian. It is important to notice that the linear and angular

motions are decoupled, and this is precisely the behaviour of

the system that we want to model. If we observe Fig. 2 we

can notice that the position (Cartesian and visual) of point

p04
is not modified if we rotate the points p0i

, i = 1,2,3
around p04

. We can say that equation (13) represents the

pose of an object whose position is defined by p04
and

orientation defined by the unit vectors x0 = |p01
− p02

|,y0 =
|p03

− p02
|,z0 = x0 ×y0. This decoupling between linear and

angular velocities is an important feature of our model.

Remark 1: Singularity-free Jimg. From (13), we can see

that det(Jimg) = det(Jimgv)det(Jimgω ), therefore the set of

singular configurations of Jimg is given by the equations

det(Jimgv) = 0 and det(Jimgω ) = 0. From (8), we can observe

that singularities of Jimgv are defined by det(Jvi
) = 0. This

equation is satisfied when i) z0i
= −zl , ii) zrv = 0, iii)

x0i
= z0i

+ zl and vi) x0i
= zrv . The geometric meaning of

each equation can be used to demonstrate the singularity-

free visual Jacobian: i) the tracked object is located at the

center of the left camera, ii) the center of the virtual right

camera is located at the left camera’s optical-axis, iii) the

object is at the stereo system base line and finally, iv) the

object position lies at the virtual right camera plane. The last

constraint implies that the usable work space of the right

camera can be reduced, depending on the configuration of

the stereo arrangement. This singularity can be avoided if

the stereo system is located such as the workspace is mainly

covered by the left camera. On the other hand, from (12)

the singularities are i) zl = 0, ii) zrv = 0, iii) zl = −1 and

iv) zrv = −1. In the same form, any of these situations are

feasible in a real physical scenario, i) and ii) by design 0w

is located neither at Cl
0 nor at C

rv
0 , iii) and iv) mean that 0w

is either behind Cl
0 or Cr

0, which is not possible. In Figure

2b) is shown the singularity area of Jimg (light-blue area).

IV. VALIDATION ON SIMULATION

A. Convergence without local minima

In order to numerically validate the properties of the

Visual Jacobian we simulate a simple kinematic control

of an object using a) standard IBVS approach [2] and

b) the new approach presented in this work. The task

is to drive a square from a initial pose (positionw =
[0.2,0.5,1.0]T [m], euler Angles = [0,0,0]T [deg])5 to a de-

sired pose (positionw = [0.6,0.7,1.5]T [m], euler Angles =
[−140,−30,−20]T [deg]). The 4 corners were used as a

visual feature for both approaches, i.e. p01
, p02

, p03
, p04

.

Where p04
(center) was used as the object’s position. The

projection of these points produce two sets of data s =
[ul1 ,vl1 ,ur1

,vr1
, ...,vr4

]T ∈ R
16×1 used in the standard ap-

proach, and Ws = [Xs,ωs] ∈ R
6×1, used in our approach.

1) Standard IBVS: A kinematic P-control can be im-

plemented as u = −λ L̂+
e ∆s [2], where λ+ = λ T

+ ∈ R
6×6,

∆s = s− sd ∈ R
16×1 and L̂+

e =
Lx+Lxd

2
∈ R

6×16 (see (1)).

2) Virtual Composite Cameras IBVS: In this case we

implement also a simple kinematic P-control based on (13),

i.e. u = −λ (J0
img)

−1
∆Ws, with ∆Ws = B[∆Xs,∆αs]

T . B is

the ZYZ-Euler Angle Transformation and is defined as B =[
I 0

0 B(s)

]
, with

B(s) =




cos(ϕs)sin(θs) −sin(ϕs) 0

sin(ϕs)sin(θs) cos(ϕs) 0

cos(θs) 0 1


 (14)

a) Visual Position Errors: The position error is defined

as ∆Xs = Xs4
−Xsd4

, where Xs4
and Xsd4

are computed using

(6) for p04
and p0d4

.

b) Visual Orientation Errors: The visual orientation is

represented as visual Euler angles αs, which are computed

in the following form:

Compute Visual Rotation: Using the projection Xsk
of

points p0k
, with k = 1,2,3, we compute a rotation matrix Rs

in the Virtual Visual space.

Rs =
[
‖∆Xs1

‖ ,−
∥∥∆Xs3

∥∥ ,‖∆Xs1
‖×

(
−
∥∥∆Xs3

∥∥)] (15)

∆Xs j
= Xs j

−Xs2
(16)

Compute Visual Euler angles: The rotation matrix Rs is

represented as Euler angles to generate αs and αsd
.

5We use the Euler Angles (ZYZ) to represent the orientation of the box.
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Fig. 3. This figure shows the behavior of a box controlled using the standard IBVS method. In a) it is shown the visual errors ∆s between the current
visual position of the box and its desired visual position. It can be noticed that the visual errors converge to a local minima, in b) the control input

u =−λ L̂+
e ∆s is depicted and in c) the Cartesian pose errors are shown. It can be seen that in the time frame t = [0.58,0.62]s (green-vertical lines) the box

is attracted to a local minima, since u ≅ 06×1 (b), even when ∆s 6= 016×1 (c). This produces a steady state error in the Cartesian space, i.e. local-minima
(f).
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Fig. 4. The figure shows the behavior of the box using an IBVS based on our Virtual Composite Model. In: a) the visual errors ∆Ws b) the control input
u = −λ (J0

img)
−1

∆Ws and c) the Cartesian pose errors. In contrast with Figure 3, all the error and control signals converge to zero. In other words, the
system reaches the desired state without local-minima.

Figure 3 shows the results using the standard method (see

IV-A.1), and Figure 4 illustrates the results obtained with

our approach (see IV-A.2). From the results, it is clear that

the standard method suffers from local-minima, while our

approach allows the convergence of errors in both spaces,

virtual visual and Cartesian. This can be easily proved by

analyzing the Null space for both methods.

V. EXPERIMENTAL RESULTS

In order to validate the image Jacobian presented in this

work, we used our robot TOM (Tactile Omni-directional

Mobile Manipulator) depicted in Fig. 5. The robot is com-

posed of 2 industrial robot arms (UR-5) mounted on a

Omni-directional platform developed at our institute. An AR

marker has been mounted on the right arm of the robot.

The markers are tracked using the AruCo library which is

based on OpenCV. Every marker provides 2D image features

for 4 corner points. This visual points are used to compute

the Visual Jacobian presented in this work. Both the visual

stereo-tracking, the virtual composite model and the control

have been implemented in ROS. The task is to track the pose

of a target marker which is controlled by a user. We have

added to the desired position an offset of [118,20,−100]
(pixels), which represent an offset of [0,0.17,0]T (m) with

respect to the robot base, to avoid occlusions. The target

orientation is used without offsets. The control approach is

an extension of [14] for the 6D case and is defined in the

next section.

A. Adaptive Image-based 6D Visual Servoing

In this section, we describe the design of an adaptive

image-based dynamic control (second order sliding mode

control). The proposed second order sliding mode control

is chattering free. The control approach is defined as:

τ =−KdSq +YrΘ,Θ̇ =−ΓYr
T Sq (17)

where YrΘ is the on-line estimation of the robot regressor,

Kd = Kd
T ∈ R

n×n
+ and Γ ∈ R

m×m
+ are constant matrices and

Sq is the Joint Error Velocity surface defined as:

Sq = q̇− q̇r (18)

where the Joint Velocity Nominal Reference q̇r = Js
−1Ẇsr

has been defined using (13) with respect to the robot base.

This produces the new Jacobian Js = J0
imgRJ(q), with R =

diag([Rb
0;Rb

0]) ∈ R
6×6, where Rb

0 = Rl
0Rb

l ∈ SO(3) is the

orientation of the robot base with respect to the frame Ow

and J(q) is the robot Jacobian. It’s easy to prove that the

singularities of Js are the singularities of the visual Jacobian

and the standard singularities of the robot. The 6D visual

nominal reference Ẇsr is given by

Ẇsr =

(
Ẇsd

−Kp∆Ws +Ssd
−K1

∫ t

t0

Ssδ
(ζ )dζ −K2

∫ t

t0

sign
(
Ssδ

(ζ )
)

dζ

)

(19)

Ssδ
= Ss −Ssd

,Ss =
(
∆Ẇs +Kp∆Ws

)
,Ssd

= Ss (t0)e−κt (20)

where Ẇsd
is the desired visual velocity, ∆Ws =Ws −Wsd

is

the visual position error, ∆Ẇs is the visual velocity error,

Kp = Kp
T ∈ R

6×6
+ and K j = K j

T ∈ R
6×6
+ (with j = 1,2)



and Ssδ is the virtual visual error surface. The visual

position/velocity errors can be described as Euler angles in

the same form as explained in Section IV-A.2. This adaptive

on-line estimation together with the second order sliding

mode in Ssδ
handle the uncertainties on the robot parameters.

The passivity proof of this control can be found here [14].

The results obtained using the above control law with the

robot depicted in Fig. 5 are shown in Figure 6. A video with

more details about the experimental results can be found in:

http://web.ics.ei.tum.de/∼emmanuel/Dean/humanoids14.html

Fig. 5. This figure shows in a) the experimental setup used to validate
our approach. It is composed of a dual-arm mobile manipulator, where
2 UR-5 robots are used as arms. The right arm is equipped with a AR
marker mounted on its end-effector. The stereo-camera setup comprises two
standard webcams logitech pro9000 mounted on a tripod. The system has
been calibrated with respect to the body of the robot. In b) is depicted a
snapshot of the task, where the target marker is moved by the user. The
goal is to visually track the pose of the target marker with the robot arm.

VI. CONCLUSIONS

In this paper, we have proposed the composition of a new

Virtual Visual space (measured in pixels) to define visual

poses (positions and orientations). This composition converts

the visual feature space to a minimum set of generalized

variables Xs ∈ R
3×1. Using this visual space, we design

a novel full-rank image Jacobian, which avoids the well-

known problems in image-based Visual Servoing such as the

Image space singularities, local minima and motion coupling.

Analytic, simulation and experimental results show that this

visual Jacobian surpass the standard visual Jacobians based

on the classical interaction matrix. We also presented the

design of a control approach using the image Jacobian and

implemented it in a real robot. We are working on the

implementation of this approach to validate its feasibility in

dual-arm manipulation tasks.
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