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Abstract

This paper is concerned with the existence, shape and dynamical stability of infinite-
energy equilibria for a class of spatially homogeneous kinetic equations in space
dimensions d ≥ 2. Our results cover in particular Bobylev’s model for inelastic Maxwell
molecules. First, we show under certain conditions on the collision kernel, that there
exists an index α ∈ (0, 2) such that the equation possesses a nontrivial stationary
solution, which is a scale mixture of radially symmetric α-stable laws. We also
characterize the mixing distribution as the fixed point of a smoothing transformation.
Second, we prove that any transient solution that emerges from the NDA of some (not
necessarily radial symmetric) α-stable distribution converges to an equilibrium. The
key element of the convergence proof is an application of the central limit theorem to
a representation of the transient solution as a weighted sum of projections of randomly
rotated i.i.d. random vectors.
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1 Introduction

1.1 The equation

In this paper, we analyze the long-time asymptotics of the velocity distribution in
kinetic models for spatially homogeneous inelastic Maxwellian molecules [13]. The
dynamics is governed by a simplified version of the Boltzmann equation, see (1.1) below.
It is known since the works of McKean [39, 40] that in the homogeneous Maxwell
case, the central limit theorem provides a powerful tool to describe the convergence
to equilibrium, at least qualitatively. Here we deal with an extension of McKean’s idea
to a situation that has not been analyzed in general before (a brief review of related
works in special cases is provided below): we study the regime in which infinite kinetic
energy and inelastic collisions balance in such a way that the Boltzmann equation admits
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Inelastic homogeneous Boltzmann equations

non degenerate stationary states. To prove equilibration of solutions under presumably
minimal hypotheses on the initial conditions, we develop a non-trivial extension of our
techniques [4, 5] from one to multiple space dimensions. Like in the one-dimensional
situation, our main tool is a description of particle collisions by weighted sums of
random variables. However, the related machinery is much more complex in space
dimensions d ≥ 2, due to the highly non-trivial properties of the rotation group in Rd.
The probabilistic representation that we develop here has been inspired by the one used
in a related work [28] for the particular case of fully elastic Maxwell molecules in d = 3.

We assume that the space dimension d is at least two, with the physical situation
d = 3 being the most interesting choice. Under the cut off assumption and after proper
normalization of the collision frequency, the evolution equation for the time-dependent
velocity distribution µ : R+ → P(Rd) is given by{

∂tµ(t) + µ(t) = Q+(µ(t), µ(t)) (t > 0)

µ(0) = µ0
(1.1)

where the collisional gain operator Q+ can be described by means of the weak formula-
tion [13] as follows: for every ϕ ∈ C0

b (Rd),∫
Rd
ϕ(v)Q+(µ, µ) dv

=

∫
Rd×Rd×Sd−1

[ϕ(v′) + ϕ(v′∗)

2

]
b
(
σ · (v − v∗)
|v − v∗|

)
uS(dσ)µ( dv)µ( dv∗),

(1.2)

where the post-collisional velocities v′, v′∗ are functions of the pre-collisional velocities
v, v∗ and of the unit vector σ,

v′ = v′(v, v∗, σ) =
1

2
(v + v∗) +

(δ
2

(v − v∗) +
1− δ

2
|v − v∗|σ

)
,

v′∗ = v′∗(v, v∗, σ) =
1

2
(v + v∗)−

(δ
2

(v − v∗) +
1− δ

2
|v − v∗|σ

)
;

(1.3)

δ ∈ (0, 1/2) is the modulus of inelasticity; uS is the uniform probability (normalized
surface measure) on the (d − 1)–dimensional sphere Sd−1 ⊂ Rd; and the cross section
b ∈ L1(−1, 1) is a properly normalized (see (1.7) below) symmetric density function.

The characteristic property of Maxwellian molecules – in contrast to more general
ideal gases – is that the cross section does not explicitly depend on the norm |v − v∗| of
the relative velocity. This property allows to restate (1.1) as an evolution equation for
the characteristic function µ̂(t; ξ) =

∫
exp(iξ · v)µ(t; dv) of µ(t),

∂tµ̂(t) + µ̂(t) = Q̂+[µ̂(t), µ̂(t)]. (1.4)

The Fourier transformed collision operator Q̂+ possesses an explicit integral repre-
sentation [13], recalled in (3.1)-(3.2). Starting from there, we prove that there are
non-negative random variables r± and random rotations R± in SO(d), such that

Q̂+[µ̂, µ̂](ρOed) = E
[
µ̂(ρr+OR+ed)µ̂(ρr−OR−ed)

]
(1.5)

holds for all ρ ∈ R+ and all O ∈ SO(d). This new representation of Q̂+ is of crucial
importance for our analysis of (1.4) by probabilistic methods. The existence of such a
representation (1.5) is by no means obvious. A similar expression has been given in
the situation of fully elastic Maxwell molecules in [28], which is (1.3) with δ = 0. For
inelastic molecules, it is proven in Proposition 3.2 below.
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Inelastic homogeneous Boltzmann equations

Notice:

In the following, we assume that the reader is familiar with basic notions of the
central limit theorem, in particular with the Lévy representation of multi-dimensional
α-stable distributions and their normal domain of attraction (NDA). A brief introduction
to this topic is included in Appendix A.

1.2 Related results

In the rich literature on long-time asymptotics for (1.1), both solutions with finite
(kinetic) energy, that is, ∫

Rd
|v|2µ(t; dv) <∞ for all t > 0,

and with infinite energy have been studied. In order to relate our own results to
the existing literature, we briefly recall a small selection of results on convergence
to equilibrium for elastic and inelastic Maxwell molecules; the following summary is
focussed on weak convergence results under minimal hypotheses on the initial conditions.

• Finite energy solutions for fully elastic collisions. The only stationary solutions
of finite energy to the fully elastic Maxwell model [12] are Gaussians, and these
attract all solutions of finite energy. This is known as Tanaka’s theorem [45].
Various simple proofs are available, see e.g. [46].

• Infinite energy solutions for fully elastic collisions. The elastic Maxwell model
does not admit stationary solutions of infinite energy [21]. However, Bobylev and
Cercignani [14] have identified for every α ∈ (0, 2) a family of self-similar solutions
for which the αth moment is marginally divergent. These self-similar solutions
converge vaguely to zero as time goes to infinity, i.e., the velocities concentrate
at infinity. It has been shown recently [20] that the self-similar solutions for a
given α attract all transient solutions (of infinite energy) whose initial condition’s
characteristic function µ̂0 satisfies

lim
|ξ|→0

µ̂0(ξ)− 1

|ξ|α
= K for some K < 0. (1.6)

• Finite energy solutions for inelastic collisions. Inelastic Maxwellian molecules
lose kinetic energy in every collision. If the energy is finite initially, then it con-
verges to zero exponentially fast in time [13]. As was conjectured by Ernst and
Brito [30], this collapse happens in a self-similar way. More precisely, there is a
time-dependent rescaling of the velocity variable such that the rescaled Boltzmann
equation possesses a family of non-trivial stationary solutions, the so-called ho-
mogeneous cooling states. It has further been proven [11, 15, 17, 19] that any
solution of finite energy to the rescaled equation eventually converges towards one
of these cooling states.

• Infinite energy solutions for inelastic collisions. This case has received less at-
tention than the aforementioned situations. Some results are available for the
inelastic Kac model [44], which is a one-dimensional caricature of inelastic Maxwell
molecules: for each inelastic Kac model, there is precisely one α ∈ (0, 2), such
that the symmetric α-stable laws are stationary solutions and attract all transient
solutions that start in their respective NDA [6]. A generalization of this result
has been obtained by the authors [5] for Kac-type models with more complicated
collisions and a richer class of stationary states. A related generalization [16, 18]
also covers the case of radially symmetric solutions to the inelastic Kac model in
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Inelastic homogeneous Boltzmann equations

multiple space dimensions. The existence of a family of self-similar solutions is
proven; the αth moment of these solutions is marginally divergent, for a model
specific α ∈ (0, 2). It has further been shown that the self-similar solutions attract
all radially symmetric solutions whose initial condition satisfies a condition that is
slightly more restrictive1 than (1.6) as above.

Various of these fundamental weak convergence results have been made quantitative
(e.g. in terms of estimates on convergence rates) and improved qualitatively (by proving
e.g. convergence in strong topologies). Naturally, such improvements require additional
hypotheses on the initial data (like higher moments or finite entropy) and are not of
interest here. We refer the reader to the reviews [23, 47], and to the more recent results
on self-similar asymptotics for inelastic Maxwell molecules [22] and for inelastic hard
spheres [42].

1.3 Results and Method

In the present paper, we study the long time asymptotics of infinite energy solutions
to inelastic Boltzmann equations. In particular, we show the existence of a family
of stationary solutions of (1.1) and we represent them as scale mixtures of radially
symmetric α-stable laws. Our main result is the dynamic stability of stationary solutions
under assumptions on the initial conditions that we expect to be minimal, as stated in
the next theorem.

Theorem 1.1. Consider equation (1.1) with collision operator (1.2)-(1.3), where δ ∈
(0, 1/2) and the cross section b is a symmetric function such that∫ 1

−1

b(z)
√

(1− z2)d−3 dz =

∫ 1

0

√
z−1(1− z)d−3 dz. (1.7)

Then there are a unique exponent α ∈ (0, 2) and a probability measure m on R+ – both
computable from δ and b in principle – such that the following is true.

A one-parameter family (µc∞)c>0 of stationary solutions to (1.1) is given in terms of
their characteristic functions µ̂c∞ by

µ̂c∞(ξ) =

∫
R+

exp
(
− cu|ξ|α

)
m(du) for all ξ ∈ Rd.

If µ0 belongs to the NDA of a full α-stable distribution (centered, if α > 1, and an
additional condition is needed if α = 1 — see (2.9) in Section 2.2), then the corresponding
solution µ to (1.1) converges weakly to a stationary solution µc∞. In particular, the µc∞
are the only stationary solutions that belong to the NDA of some α-stable distribution on
Rd.

Apparently, these are the first results on the stability of stationary solutions in the
inelastic Maxwell model without the assumption of radial symmetry. Indeed, it seems
that the approach to derive long-time asymptotics directly from contraction estimates
on the Fourier transform of the transient solutions — like in [18] or [20] — needs an
hypothesis on the initial datum of the form (1.6). This hypothesis is significantly stronger
than ours, as can be seen from the characterization of NDAs by means of characteristic
functions, see e.g. [1]. For instances, (1.6) implies that µ0 belongs to the NDA of a
radially symmetric α-stable law, which further implies that µ0 is radially symmetric
“asymptotically” on the complement of large balls. We only require that µ0 belongs to the
NDA of some full α-stable law. In fact, we expect that the NDA is a sharp characterization
of the basin of attraction for the kinetic equation in the sense that all other transient

1Using the results from [4], it is easy to verify that condition (1.6) is actually sufficient.
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solutions either concentrate at the origin or vaguely converge to zero as time tends to
infinity.

The key element in our proof is a probabilistic representation of the solution to
(1.4), which is derived by combining the Wild series expansion of the solution with the
particular reformulation (1.5) of the Fourier transformed collision operator. We then
use a combination of contraction estimates and techniques related to the central limit
theorem on that probabilistic representation to prove its convergence to the Fourier
transform of a mixture of radially symmetric stable laws in the long time limit. This core
part of the proof of our main result is carried out in a more general abstract framework:
we study solutions to integro-differential equations of the form (1.4)-(1.5) in which the
characteristic function µ̂ is replaced by an general continuous and bounded function
U : R+ ×Rd → C. Our abstract result on long-time asymptotics stated in Theorem 2.3
— which contains Theorem 1.1 as a special case — could be of interest by itself, and is
independent of whether U(t, ·) is a characteristic function or not at finite times t > 0.
The latter property depends on the law of r± and R± in (1.5). It holds for the inelastic
Maxwell model, and also for more general collisional kernels; an example is given in
Section 3.4.

The general idea of a probabilistic representation of Boltzmann like equations goes
back essentially to McKean [39, 40], who applied it to the Kac equation. The idea
has since then been extended and refined, for instance in [25, 26, 33, 34] (for the Kac
equation) and [4, 5, 6, 7, 8, 43] (for various one-dimensional Kac-type kinetic equations).

The extension to dimension d > 1 is by no means straightforward. Only in the
recent paper [28], Dolera and Regazzini derived a suitable probabilistic representation
of the solution of the homogeneous Boltzmann equation in dimension d = 3, using
particular coordinates on R3 and its rotation group. Here, we extend the Dolera-
Regazzini probabilistic representation to equation (1.4) with kernels of the form (1.5),
in arbitrary dimensions d ≥ 2. Our probabilistic representation is summarized in
Proposition 2.5, which should be an interesting result in itself.

1.4 Plan of the paper

In Section 2 below we introduce the abstract framework for studying long-time
asymptotics of homogeneous kinetic models, formulate our hypotheses, and state the
general Theorem 2.3, which eventually implies our main result in Theorem 1.1. The
central element here is the derivation of the probabilistic representation of solutions in
Subsection 2.3. In Section 3, we verify that the model (1.1)–(1.3) for inelastic Maxwell
molecules indeed fits into the provided framework. Sections 4 and 5 contain the proof
of the abstract Theorem 2.3, which is naturally divided into two parts: Section 4 is
concerned with contraction estimates on a random walk in the rotation group, which
is induced by our probabilistic representation. In Section 5, we apply the machinery
of the central limit theorem to our probabilistic representation to obtain the long-time
asymptotics of transient solutions to the generalized kinetic models. The Appendix
contains a summary of various results on α-stable distributions that are relevant to our
proofs.

2 An abstract Boltzmann-like equation

Below, we introduce our abstract generalization of (1.4)-(1.5) and derive the proba-
bilistic representation of its solutions. It will be shown in Section 3 that inelastic Maxwell
molecules fall into the considered model class. Thus, our abstract result in Theorem 2.3
below implies the main Theorem 1.1.
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2.1 Notations

Rotation group. Denote by SO(d) the usual orientation-preserving rotation group in
Rd and by SO∗(d) its subgroup that acts on Rd−1 ⊂ Rd only, i.e. that leaves the “last” unit
vector ed := (0, . . . , 0, 1) ∈ Rd invariant. More explicitly, a matrix U belongs to SO∗(d) if

U =

(
U∗ 0d−1

0Td−1 1

)
(2.1)

where U∗ is a matrix in SO(d− 1), and 0d−1 denotes the (d− 1)-dimensional null column
vector. Clearly SO∗(d) is isomorphic to SO(d− 1). Further, let H be the Haar measure on
SO(d).

Convolution. For two probability measures B and B′ on SO(d), define their convolu-
tion B ?B′ as the probability measure

B ?B′(A) :=

∫
SO(d)

B(RTA) dB′(R) for every measurable set A in SO(d).

Accordingly, we define powers B?2 = B ?B etc.

Complex valued functions. C0
b (Rd;C) is the Banach space of complex valued bounded

and continuous functions U : Rd → C, equipped with the supremum norm ‖ · ‖∞. We
designate the closed convex subset E = {f ∈ C0

b (Rd;C) : ‖f‖∞ ≤ 1}.

2.2 Main assumptions and results

Let (r−, r+, R−, R+) be a random element defined on a suitable probability space
(Ω,F ,P) taking values in R+×R+×SO(d)×SO(d) and denote by E the expectation with
respect to P. Our assumptions on the law of (r−, r+, R−, R+) are the following

(H1) For any rotations O1,O2 ∈ SO(d) such that O1ed = O2ed, we have

(O1r
−R−ed,O1r

+R+ed)
L
= (O2r

−R−ed,O2r
+R+ed).

(H2) There are an α ∈ (0, 2) and a γ ∈ (1, 2] such that

E[(r−)α + (r+)α] = 1, and E[(r−)αγ + (r+)αγ ] < 1,

and, in addition, P{r− > 0}+ P{r+ > 0} > 1.

For later reference, we introduce the (convex) function S : [0,∞)→ [−1;∞] by

S(s) := E
[
(r+)s + (r−)s

]
− 1. (2.2)

Then (H2) can be rephrased in the form that

S(α) = 0 and S(αγ) < 0 for some α ∈ (0, 2) and γ ∈ (1, 2].

Under hypothesis (H2), the following defines probability measures B+ and B− on SO(d):∫
SO(d)

f(R)B±(dR) =
E
[
(r±)αf

(
R±
)]

E[(r±)α]
for all f ∈ C0

b (SO(d)). (2.3)

In addition to (H1)-(H2), we shall assume further:

(H3) The probability measures B± are non-singular with respect to the Haar measure,
i.e. they have a non-trivial absolutely continuous component with respect to H.
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Before stating the general form of our main result, we briefly comment on the role of
assumptions (H2) and (H3). Assumption (H2) is a classical hypothesis which guarantees
the existence of a (unique up to scaling) fixed point of the smoothing transformation
associated with (r−, r+). The respective result is the following.

Proposition 2.1 (see [2, 29]). Under assumption (H2) there is a unique probability
measure m on [0,+∞) with

∫
um(du) = 1 whose characteristic function m̂ satisfies

m̂(y) = E[m̂((r−)αy)m̂((r+)αy)] for all y ∈ R. (2.4)

Moreover, for every p > 1,
∫
upm(du) < +∞ if and only if S(pα) < 0.

Assumption (H3) entails the convergence of the n-fold convolution (B±)?n to the Haar
measure H. See e.g. [9] for a proof of exponentially fast convergence in total variation.
We only need a corollary of that result, which is formulated in Proposition 4.8.

With the notations and preliminary results at hand, we can formulate our abstract
problem and the general result. Given a random element (r−, r+, R−, R+) satisfying
hypotheses (H1), consider the bilinear operator Q+ : E × E → E defined by

Q+[φ1, φ2](ξ) := E
[
φ1(ρr+OR+ed)φ2(ρr−OR−ed)

]
(2.5)

for ξ = ρOed. Note that this operator is well-defined: Thanks to (H1), the right-hand
side of (2.5) does not depend on the particular choice of O in ξ = ρOed. Boundedness in
modulus by one is a consequence of Jensen’s inequality: ‖Q+[φ1, φ2]‖∞ ≤ ‖φ1‖∞‖φ2‖∞.
Continuity of ξ 7→ Q+[φ1, φ2](ξ) at ξ = 0 is a consequence of the dominated convergence
theorem, performing the limit ρ ↓ 0 for each (r−, r+, R−, R+) inside the expectation.
At an arbitrary ξ = ρe∗ with ρ > 0 and e∗ ∈ Sd−1, one uses that there is an open
neighborhood A of e∗ and a continuous function B : A → SO(d) such that B(e)ed = e for
every e ∈ A; continuity at ξ again follows from the dominated convergence theorem.

Our abstract initial value problem is the following:

d

dt
U(t) = Q+[U(t),U(t)]− U(t)

U(0) = U0.
(2.6)

Proposition 2.2. Let (H1) be in force. For every initial condition U0 ∈ E, there exists a
unique solution U ∈ C0

(
[0,+∞);E

)
∩ C1

(
(0,+∞);C0

b (Rd,C)
)

of (2.6). It possesses the
following series — or Wild sum — representation

U(t, ξ) =

∞∑
n=0

e−t(1− e−t)nUn(ξ), (2.7)

where Un ∈ E are defined inductively from the initial condition U0 as follows:

Un+1 =
1

n+ 1

n∑
k=0

Q+[Uk,Un−k] for all n = 0, 1, 2, . . . (2.8)

Proof. Existence and uniqueness of a solution are guaranteed by the Picard-Lindelöf
theorem. Indeed, the right-hand side of the differential equation in (2.6) is a Lipschitz
continuous mapping from E to C0

b (Rd,C):∥∥Q+[φ1, φ1]−Q+[φ2, φ2]
∥∥
∞ ≤ ‖φ1 − φ2‖∞‖φ2‖∞ + ‖φ1‖∞‖φ1 − φ2‖∞
≤ 2‖φ1 − φ2‖∞,

for arbitrary φ1, φ2 ∈ E, thanks to Jensen’s inequality. For proving (2.7), we start
by observing that ‖Un‖∞ ≤ 1 for all n, and that consequently, the power series with
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Inelastic homogeneous Boltzmann equations

respect to (1− e−t) is absolutely convergent in C0
b (Rd;C). Interchanging summation and

differentiation with respect to t > 0, and using the bilinear structure of Q+, one obtains
that

d

dt
U(t) = −U(t) +

∞∑
n=0

e−2t(1− e−t)n(n+ 1)Un+1

= −U(t) +

∞∑
n=0

n∑
k=0

Q+

[
e−t(1− e−t)kUk, e−t(1− e−t)n−kUn−k

]
.

Rearranging the double sum, and using bilinearity again, one concludes that the differ-
ential equation in (2.6) is satisfied. Clearly, the initial condition is satisfied as well.

We are primarily interested in the application of (2.6) in the setting of (1.4)-(1.5),
where the solution U is the characteristic function µ̂ of a time-dependent probability
measure µ. However, even if U0 is a characteristic function, it does apparently not follow
without further assumptions on the law of (r−, r+, R−, R+) in (2.5) that the same is true
for U(t) at some t > 0. It would be clearly sufficient to ask in addition for

(H4) for every couple of characteristic functions µ̂1 and µ̂2 the function Q+(µ̂1, µ̂2) is a
characteristic function.

However, the following result, which implies our main Theorem 1.1, does not need
hypothesis (H4).

Theorem 2.3. For a given random element (r−, r+, R−, R+), let Q+ be the bilinear
operator defined by (2.5). Assume that there is an α ∈ (0, 2) such that hypotheses (H1)-
(H3) hold. Consider the initial value problem (2.6) with an initial condition U0(ξ) = µ̂0(ξ),
where µ0 is a probability measure that belongs to the NDA of a full α-stable distribution
with Lévy measure φ. If α > 1, assume further that µ0 is centered, while if α = 1, assume
that there is some γ0 ∈ Rd with

lim
R→+∞

sup
σ∈Sd−1

∣∣∣ ∫
−R<σ·v≤R

σ · v µ0(dv)− σ · γ0

∣∣∣ = 0. (2.9)

Then the unique solution U(t) to (2.6) converges for every ξ ∈ Rd to

µ̂c∞(ξ) =

∫
[0,∞)

exp
(
− cu|ξ|α

)
m(du).

µ̂c∞ is the characteristic function of a mixture of radially symmetric α-stable laws, with
the mixing distribution m that is determined by Proposition 2.1, and

c =
1

Γ(α) sin(πα/2)

∫
Sd−1

∫
{y:y·σ>1}

φ(dy)uS(dσ).

In particular, the µ̂c∞ are the only stationary solutions of (2.6) in the class of the charac-
teristic functions of probability measures in the NDA of some full α-stable distribution
on Rd.

The proof of Theorem 2.3 is given in Section 5.

2.3 A probabilistic representation

As already mentioned in the introduction, the key element in our proof of Theorem
2.3 is a suitable stochastic representation of U(t). This probabilistic representation
enables us to study the long-time asymptotics of U(t) by methods related to the central
limit theorem. In the rest of this section, U is a solution to the initial value problem (2.6),
for a given initial value U0 ∈ E.

The setup is the following. On a sufficiently large probability space (Ω,F ,P) consider:
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• a sequence of independent random variables (`n)n≥1 such that each `n is uniformly
distributed on {1, . . . , n};

• a sequence of i.i.d. random elements (r−n , r
+
n , R

−
n , R

+
n )n≥1 with the same law of

(r−, r+, R−, R+) defined in Section 2.2.

Assume also that (`n)n≥1 and (r−n , r
+
n , R

−
n , R

+
n )n≥1 are stochastically independent. Define

recursively the random array (βj,n, Oj,n){ n≥0
1≤j≤n+1} by setting

O1,0 := 1d, β1,0 := 1, and for all n ≥ 1 :

(O1,n, . . . , On+1,n) =
(
O1,n−1, . . . , O`n−1,n−1, O`n,n−1R

−
n , O`n,n−1R

+
n ,

O`n+1,n−1, . . . , On,n−1

)
(β1,n, . . . , βn+1,n) =

(
β1,n−1, . . . , β`n−1,n−1, β`n,n−1r

−
n , β`n,n−1r

+
n ,

β`n+1,n−1, . . . , βn,n−1

)
.

This construction extends the one given in [5], where a class of one-dimensional general-
ized Kac equations is considered. For given n ≥ 1, one should think of the quantities βn,j
and On,j as attached to the n+ 1 leaves of a binary tree (whose shape is determined by
`1 to `n) with n internal nodes. In the context of the Kac model, these binary trees are
commonly referred to as McKean trees.

Proposition 2.4. For every n ≥ 0, every ρ ∈ R+ and every O ∈ SO(d) one has

Un(ρOed) = E
[ n+1∏
j=1

U0

(
ρβj,nOOj,ned

)]
. (2.10)

Proof. For n = 0 there is nothing to prove. For n = 1 the statement reduces to the
definition of Q+ in (2.5). We proceed by induction on n.

Fix n ≥ 1 and assume that (2.10) is true for all k = 0, . . . , n − 1 in place of n. By
construction, β1,1 = r−1 , β1,2 = r+

1 , and O1,1 = R−1 , O1,2 = R+
1 . Consequently, we can

write

βj,n = r−1 β
′
j,n, Oj,n = R−1 O

′
j,n for j = 1, . . . , J,

βj,n = r+
1 β
′′
j,n, Oj,n = R+

1 O
′′
j,n for j = J + 1, . . . , n+ 1,

(2.11)

with a random index J ∈ {1, . . . , n} depending on `1 to `n. The factorization (2.11)
corresponds to splitting the nth binary tree at the root into a left tree (with J leaves) and
a right tree (with n+ 1− J leaves). It is easy to see that J is uniformly distributed on
{1, . . . , n}, see e.g. [5]. It is further easy to see that, given (J, r−1 , r

+
1 , R

−
1 , R

+
1 ), the random

elements (β′j,n, O
′
j,n)j=1,...,J and (β′′j,n, O

′′
j,n)j=J+1,...,n+1 are conditionally independent.

Their conditional distribution, given the event {J = k}, satisfies

(
β′j,n, O

′
j,n

)
j=1,...,k

L
=
(
βj,k−1, Oj,k−1

)
j=1,...,k

,(
β′′j,n, O

′′
j,n

)
j=k+1,...,n+1

L
=
(
βj,n−k, Oj,n−k

)
j=1,...,n+1−k.

Thus, if (r−, r+, R−, R+) is defined as above and it is assumed independent of all the rest,
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using the induction hypothesis, one can write

E
[ n+1∏
j=1

U0

(
ρβj,nOOj,ned

)]

=
1

n

n∑
k=1

E
[
E
[ k∏
j=1

U0

(
ρr−OR−βj,k−1Oj,k−1ed

)∣∣∣r−, r+, R−, R+
]

· E
[ n+1−k∏

j=1

U0

(
ρr+OR+βj,n−kOj,n−ked

)∣∣∣r−, r+, R−, R+
]]

=
1

n

n∑
k=1

E
[
Uk−1

(
ρr−OR−ed

)
Un−k

(
ρr+OR+ed

)]
,

which, by (2.5) and (2.8), equals to Un.

Formula (2.10) is almost the desired probabilistic representation. In order to establish
the connection to the central limit theorem, we now assume in addition that U0(ξ) = µ̂0(ξ)

is the characteristic function of a given probability measure µ0 on Rd. And we consider
a sequence of i.i.d. random vectors (Xj)j≥1 with distribution µ0 that is independent of
(`n)n≥1 and (R−n , R

+
n , r

−
n , r

+
n )n≥1. This allows to re-interprete the right-hand side of (2.10)

as a randomly weighted sum of projections of the randomly rotated vectors Xj .

Proposition 2.5. Assume that U0(ξ) = µ̂0(ξ) is the characteristic function of a given
probability measure µ0 on Rd. Then, for every n ≥ 0, every ρ ∈ R+ and every O ∈ SO(d)

one has

Un(ρOed) = E

[
exp

(
iρ

n+1∑
k=1

(
βk,nOOk,ned

)
·Xk

)]
.

If in addition (H4) is true, then the previous equality holds for every ρ in R.

Remark 2.6. The first representation of this type has been derived in [28] for the fully
elastic Boltzmann equation in R3.

Proof. Observe that

E

[
exp

(
iρ

n+1∑
k=1

(
βk,nOOk,ned

)
·Xk

)]

= E

[
E

[ n+1∏
k=1

exp
(
i
(
ρβk,nOOk,ned

)
·Xk

)∣∣∣∣(βj,n, Oj,n)1≤j≤n+1

]]

= E

[ n+1∏
k=1

µ̂0

(
ρβk,nOOk,ned

)]
= Un(ρOed) = Un(ρe),

where we have used (2.10). If (H4) holds Un is a characteristic function. Hence the last
statement follows recalling that two characteristic functions that coincide on the positive
real axis are equal.

3 The inelastic Maxwell models as a special case

The aim of this section is to show that the homogeneous Boltzmann equation with
collision rules (1.3) is indeed a special case of the abstract equation considered in the
previous section. Theorem 1.1 then follows as a corollary of Theorem 2.3.
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Our starting point is the equation in its Fourier representation (1.4), which has been
derived in [13], with the collision kernel

Q̂+[µ̂, µ̂](ξ) = E[µ̂(Y +
ξ )µ̂(Y −ξ )], (3.1)

where, for any ξ ∈ Rd, the two random vectors Y −ξ and Y +
ξ in Rd are given by

Y −ξ :=
1− δ

2
(ξ − |ξ|n), Y +

ξ :=
1 + δ

2
ξ +

1− δ
2
|ξ|n,

with a random unit vector n which has law b
(
σ · ξ/|ξ|

)
uS( dσ).

(3.2)

Below, we rewrite (3.1) in the form (1.5), with suitable random quantities r± and R±

satisfying (H1)-(H4).

3.1 Preliminaries on rotation groups

We start by recalling some well-known facts about the Haar probability measure. By
definition, a random matrix O has Haar distribution on SO(k) if

GO
L
= OT

L
= O

for every orthogonal matrix G ∈ SO(k). By elementary considerations, it follows that

Oe is uniformly distributed on Sk−1, (3.3)

for any e ∈ Sk−1. We say that a random matrix U in SO(d) is uniformly distributed on
SO∗(d) if it can be written in the form (2.1), where U∗ is a random matrix in SO(d− 1)

with respective Haar distribution.
We call a measure λ on Sd−1 invariant under SO∗(d), if λ(OB) = λ(B) for every O

in SO∗(d) and for all measurable sets B ⊆ Sd−1. Since SO∗(d) acts transitively on each
of the (d − 2)-dimensional spheres {y ∈ Sd−1|ed · y = z} with z ∈ (−1, 1), the invariant
measure λ is uniquely determined by its projected measure Πλ on [−1, 1], given by
Πλ(J) = λ

(
{y ∈ Sd−1|ed · y ∈ J}

)
for all measurable J ⊆ [−1, 1]. In the particular case

that λ(dσ) = f(σ · ed)uS(dσ) with f : [−1, 1]→ R, the projected measure Πλ has a density
(w.r.t. Lebesuge measure) Πf : [−1, 1]→ R with

Πf(z) :=
d(Πλ)

dz
=

1

Bd
f(z)(1− z2)

d−3
2 (3.4)

where

Bd =

∫ 1

0

z−
1
2 (1− z)

d−3
2 dz,

which is easily verified by the change of variables formula.
Finally, we denote by Zi,j(ψ) ∈ SO(d) the matrix of the rotation about the angle ψ in

the ei − ej-plane: the only nonzero elements of Zi,j(ψ) are

Zi,jkk (ψ) = 1, k = 1, . . . , d, k 6= i, j

Zi,jii (ψ) = cos(ψ), Zi,jij = sin(ψ),

Zi,jji (ψ) = − sin(ψ), Zi,jjj = cos(ψ).

Since rotations in the e1 − ed-plane play a distinguished role in the following, we write

Zψ := Z1,d(ψ)

for brevity.
The following probabilistic interpretation of Hurwitz’s [36] representation of the

Haar measure will be of importance.
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Theorem 3.1. There are random rotations U1, U2 in SO(d) and a random angle ψ∗ in
[0, π] such that

• U1, U2 and ψ∗ are independent,

• U1 is uniformly distributed on SO∗(d), and U2 ∈ SO∗(d) a.s.,

• ψ∗ has a continuous probability density function that is positive on (0, π),

• the law of U1Zψ∗U2 is the Haar measure on SO(d).

Sketch of the proof. In [36] it is shown that an arbitrary rotation matrix O ∈ SO(d) may
be written as a product of d(d−1)/2 rotations in two-dimensional subspaces. Specifically:

O = F1F2 . . . Fd−1

where Fi is a concatenation of d− i rotations,

Fi = Zd−i,d−i+1(ψi−1,i)Z
d−i+1,d−i+2(ψi−2,i) . . . Z

d−1,d(ψ0,i).

The Haar distribution on SO(d) is obtained by choosing the ψr,s independent of each
other, and such that ψr,s is absolutely continuous with density sin(ψ)r1[0,π)(ψ) for r =

1, . . . , s − 1 and s = 1, . . . , d, whereas the ψ0,s are uniformly distributed on [0, 2π). As
a consequence of the above representation, by simple geometric considerations one
obtains the result.

3.2 Definition of the probabilistic representation

Given the cross section b on (−1, 1), define the projected density Πb according to
(3.4). Since b is normalized as stated in (1.7), Πb is a probability density. Let ψ be a
random angle in (0, π) such that cosψ has Πb as density, which is equivalent to saying
that ψ itself is distributed with law

b(cos η) sind−2 η dη. (3.5)

Further, let U1, U2 be random rotations taking values in SO∗(d) — independent of each
other and independent of ψ — with the properties from Theorem 3.1. In particular, U1

is uniformly distributed on SO∗(d). From that, define two further random angles ψ± in
(0, π) implicitly by

cosψ− = 2−1/2
√

1− cosψ, cosψ+ = 2−1/2 (1 + δ) + (1− δ) cosψ√
(1 + δ2) + (1− δ2) cosψ

. (3.6)

Now set

r− := 2−1/2(1− δ)
√

1− cosψ, R− := U1Zψ−U2, (3.7)

r+ := 2−1/2
√

(1 + δ2) + (1− δ2) cosψ, R+ := U1Zψ+U2. (3.8)

Finally, recall the definition of Y ±ξ from (3.2).

Proposition 3.2. For every vector ξ and every O ∈ SO(d) such that ξ = |ξ|Oed one has(
Y −ξ , Y

+
ξ

) L
=
(
|ξ|r−OR−ed, |ξ|r+OR+ed). (3.9)

The essential ingredient of the proof is the following.

Lemma 3.3. For ξ = ed, the random unit vector n in (3.2) admits the representation

n
L
= U1ZψU2ed.
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Proof. We need to show that the law λ of U1ZψU2ed is the same as the law λ′ of n. Both
λ and λ′ are invariant under SO∗(d): for λ′, this is clear by definition in (3.2). For λ, this

follows since U1, ψ and U2 are independent, and GU1
L
= U1 for every G ∈ SO∗(d). By our

considerations on SO∗(d)-invariant measures above, it therefore suffices to show that
the projected measures are equal, Πλ = Πλ′.

For λ′, we obtain from the definition of n and formula (3.4) that n · ed has law Πb.
Concerning λ, recall that U1 and U2 take values in SO∗(d) a.s., which implies that

ed · U1ZψU2ed = (UT1 ed) · (ZψU2ed) = ed · (Zψed) = cosψ,

using the definition of Zψ. The claim now follows since cosψ has law Πb by definition.

Proof of Proposition 3.2. Let ξ = |ξ|Oed be given. For any bounded continuos function f

E[f(Y −ξ )] =

∫
Sd−1

f
(1− δ

2
|ξ|O(ed −OTσ)

)
b(OTσ · ed)uS(dσ)

=

∫
Sd−1

f
(
|ξ|O1− δ

2
(ed − σ)

)
b(σ · ed)uS(dσ) = E[f(|ξ|OY −ed)],

where we have used (3.2) and a change of variables in the integral. Hence Y −ξ
L
= |ξ|OY −ed .

Since Y −ξ + Y +
ξ = ξ and Y +

ed
+ Y −ed = ed, it follows further that

(Y −ξ , Y
+
ξ )

L
= (|ξ|OY −ed , |ξ|OY

+
ed

).

It is thus sufficient to prove the claim for ξ = ed and O = 1d. By Lemma 3.3, we have

(Y −ed , Y
+
ed

)
L
=

(
1− δ

2
(ed − U1ZψU2ed),

1 + δ

2
ed +

1− δ
2

U1ZψU2ed

)
=

(
U1

[
1− δ

2
(1d − Zψ)

]
U2ed, U1

[
1 + δ

2
1d +

1− δ
2

Zψ

]
U2ed

)
.

To finish the proof, observe that we have

U1

[
1− δ

2
(1d − Zψ)

]
U2ed = r−R−ed,

U1

[
1 + δ

2
1d +

1− δ
2

Zψ

]
U2ed = r+R+ed,

which easily follows from our definitions of r± and R± by elementary geometric consid-
erations.

3.3 Verification of (H1)–(H4)

It remains to verify that the random quantities defined in (3.7)-(3.8) satisfy the
hypotheses (H1)–(H4). Condition (H1) is a direct consequence of Proposition 3.2, since
with ξ := O1ed = O2ed, one has that(

O1r
−R−ed,O1r

+R+ed)
L
= (Y −ξ , Y

+
ξ )

L
=
(
O2r

−R−ed,O2r
+R+ed).

The validity of condition (H4) is a classical fact, see e.g. [13]: Q̂+ in (3.1) is the Fourier
transform of the inelastic Maxwell operator Q+ that maps probability measures to
probability measures, hence Q̂+ maps characteristic functions to characteristic functions.
A detailed proof in the case of elastic Maxwell molecules can be found in [27, Propositions
2.2 and 2.3].

The validity of (H2) is a consequence of the following.
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Lemma 3.4. There is a unique α ∈ (0, 2) such that E[(r+)α + (r−)α] = 1, and E[(r+)αγ +

(r−)αγ ] < 1 for every γ > 1.

Proof. The convex function S(s) = E[(r+)s + (r−)s]− 1 defined in (2.2) becomes

S(s) = E
[(

(1− δ)2 1− cosψ

2

)s/2]
+ E

[(1 + δ2

2
+

1− δ2

2
cosψ

)s/2]
− 1.

On one hand, S(0) = 1, because ψ is an absolutely continuous random variable. On the
other hand, since 0 < r± < 1 almost surely, it follows that lims→+∞ S(s) = −1. Finally, at
s = 2, we have

S(2) = E
[
(r+)2 + (r−)2

]
− 1 = δ(δ − 1)E[1− cosψ] < 0.

By convexity of S, this proves the claim.

Having verified hypothesis (H2), we define probability measures B± according to
(2.3). The next lemma shows that (a strong version of) conditions (H3) is satisfied as
well.

Lemma 3.5. B± are absolutely continuous with respect to the Haar measure.

Proof. Recall Theorem 3.1, and let U1, U2 and ψ∗, ψ be chosen as indicated above. Fur-
ther, observe that, since U1, U2, ψ are independent, and since the law of ψ is given in
(3.5), one can write, for every f ∈ Cb0(SO(d)),∫

SO(d)

f(R)B±(dR) =
E
[
(r±)αf

(
U1Zψ±U2

)]
E[(r±)α]

=
E
[ ∫

(0,π)
(r±(η))αf

(
U1Zψ±(η)U2

)
b(cos η) sind−2 η dη

]∫
(0,π)

(r±(η))αb(cos η) sind−2 η dη

where ψ±(η) and r±(η) are defined as functions of η via (3.6)–(3.8) using η in place ψ.
Hence ∫

SO(d)

f(R)B±(dR) = E
[
f
(
U1Zψ̃±U2

)]
,

where ψ̃± are defined via (3.6) from a random angle ψ̃ — being independent of U1 and
U2 — in (0, π) with law (

r±(η)
)α

b(cos η) sind−2 η dη∫
(0,π)

(r±(u))αb(cosu) sind−2 udu
.

It thus suffices to show that the laws of the random rotations U1Zψ̃±U2 are absolutely

continuous with respect to the law of U1Zψ∗U2. Since ψ̃ has a density on (0, π), also
cos ψ̃± given via (3.6) have densities on (−1, 1), and thus ψ̃± themselves have densities
on (0, π), all with respect to the Lebesgue measure on the respective intervals. Since
further the density of ψ∗ is positive on (0, π), it follows that the laws of ψ̃± are absolutely
continuous with respect to that of ψ∗. Then also the law of the triple (U1, ψ̃±, U2) is
absolutely continuous with respect to the law of (U1, ψ∗, U2) on SO∗(d)× (0, π)× SO∗(d).
And the respective images in SO(d) under the continuous map (G1, θ, G2) 7→ G1ZθG2

inherit the absolute continuity.
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3.4 Extension of the model

In the first place, our ansatz (2.5) for the collisional kernel and hypotheses (H1)-
(H4) have been chosen to accomodate the example of inelastic Maxwell molecules.
However, there are other reasonable models which fit into that framework. To indicate
the applicability of our results to such models, we briefly discuss one particular example.

In the collision rules (1.3) for Maxwellian molecules, the modulus of inelasticity
δ ∈ (0, 1/2) is a constant. Thus, in each individual collision of two particles, a certain fixed
fraction of kinetic energy (in the direction of impact) is transferred to the background
heat bath. It seems reasonable to refine this model, replacing the constant δ by a random
quantity — independent of σ — with an a priori given distribution on (0, 1/2).

Clearly, the resulting model is again of the type (1.5). Choosing the random quantities
r± and R± in analogy to (3.7)-(3.8), the verification of hypotheses (H1)-(H4) can be
performed along the same lines as above, working “conditionally on δ”. Consequently,
the abstract Theorem 2.3 holds for that model. This implies in particular that also
Theorem 1.1 carries over verbatim, with the interpretation that the dependence on δ

means dependence on its distribution.

4 Study of an instrumental process on C0(SO(d))

We continue to assume that a random quadruple (r+, r−, R+, R−) satisfying the
hypotheses (H1)–(H3) is given. In particular, α ∈ (0, 2) and γ ∈ (1, 2] are such that (H2)
holds. Recall the definition of the associated random array (βj,n, Oj,n){ n≥0

1≤j≤n+1} from the

probabilistic representation developed in Section 2.3.

This section is devoted to the proof of convergence of the following auxiliary ran-
dom processes (Ψn)n≥0 taking values in C0(SO(d)). Given a continuous function Ψ0 ∈
C0(SO(d)), define for all n ≥ 1:

Ψn(O) :=

n+1∑
j=1

βαj,nΨ0(OOj,n). (4.1)

The ultimate goal is to show convergence of Ψn to a (random) constant function in the
sense made precise in Proposition 4.2 below. In order to characterize the limit, we start
with an auxiliary result.

Lemma 4.1. The random quantities

M (α)
n :=

n+1∑
j=1

βαj,n and β(n) := max
j=1,...,n+1

βj,n, (4.2)

have the following properties:

(i) E[M
(α)
n ] = 1 for every n.

(ii) M (α)
n converges almost surely to a random variable M (α)

∞ as n → +∞. The char-
acteristic function of M (α)

∞ satisfies equation (2.4) and E[(M
(α)
∞ )] = 1. Moreover,

E[(M
(α)
∞ )p] < +∞ if and only if E[(r+)αp + (r−)αp] < 1.

(iii) β(n) converges to zero in probability.

Proof. Claims (i) and (ii) are contained in Proposition 2 of [5], while claim (iii) is Lemma
3 in [5].

The main result of this section is:
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Proposition 4.2. For n→ +∞, Ψn converges weakly to m0M
(α)
∞ in C0(SO(d)), where

m0 :=

∫
SO(d)

Ψ0(O)H(dO). (4.3)

Hence, for every fixed O ∈ SO(d), the sums
∑n+1
j=1 β

α
j,nΨ0(OOj,n) converge weakly to

m0M
(α)
∞ .

For the sake of simplicity the proof of Proposition 4.2 is split into several steps. Some
of them use techniques developed in [8].

4.1 Basic properties of Ψn

Introduce the Lp-norms with respect to the Haar measure H on measurable functions
f : SO(d)→ R as usual:

‖f‖Lp :=

(∫
SO(d)

|f(O)|pH(dO)

)1/p

for all p ≥ 1,

‖f‖L∞ := ess supO∈SO(d) |f(O)|.

Lemma 4.3. For every n ≥ 0,

E

[ ∫
SO(d)

Ψn(O)H(dO)

]
= m0, (4.4)

where m0 is given in (4.3), and

E
[
‖Ψn‖Lp

]
≤ ‖Ψ0‖L∞ . (4.5)

Proof. Since H is right invariant,∫
SO(d)

Ψn(O)H(dO) =

∫
SO(d)

n+1∑
j=1

βαj,nΨ0(OOj,n)H(dO)

=

n+1∑
j=1

βαj,n

∫
SO(d)

Ψ0(O)H(dO).

Now (4.4) follows by means of (i) in Lemma 4.1. Another application of that property
yields (4.5):

E
[
‖Ψn‖Lp

]
= E

[( ∫
SO(d)

( n+1∑
j=1

βαj,nΨ0(OOj,n)
)p

H(dO)
)1/p]

≤ ‖Ψ0‖L∞E
[ n+1∑
j=1

βαj,n

]
= ‖Ψ0‖L∞ .

Lemma 4.4. The laws of Ψn form a tight sequence of probability measures on C0(SO(d))

and hence they are relatively sequentially compact.

Proof. By the classical tightness criterion for sequences of random continuous functions,
see e.g. Theorem 16.5 in [38], it suffices to show that

w(Ψn, δ) := sup
{
|Ψn(O1)−Ψn(O2)|

∣∣ ‖O1 −O2‖∗ ≤ δ
}
,
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where ‖ · ‖∗ is the matrix (operator) norm induced by the euclidean norm on Rd, satisfies

lim
δ→0

lim sup
n→∞

E[w(Ψn, δ)] = 0. (4.6)

Observe that for arbitrary O1,O2 ∈ SO(d),

|Ψn(O1)−Ψn(O2)| =
∣∣∣∣ n+1∑
j=1

βαj,n[Ψ0(O1Oj,n)−Ψ0(O2Oj,n)]

∣∣∣∣
≤
n+1∑
j=1

βαj,n|Ψ0(O′1)−Ψ0(O′2)|,

with O′i = OiOj,n for i = 1, 2. Since Oj,n is a rotation matrix,

‖O′1 −O′2‖∗ = ‖(O1 −O2)Oj,n‖∗ = ‖O1 −O2‖∗.

It follows that

E[w(Ψn, δ)] ≤ E
[ n+1∑
j=1

βαj,n

]
sup

{
|Ψ0(O1)−Ψ0(O2)|

∣∣ ‖O1 −O2‖∗ ≤ δ
}
.

The expectation value on the right-hand side equals to one, independently of n, by Lemma
4.1 (i). The supremum, which is also independent of n, tends to zero for δ ↓ 0, since
the continuous function Ψ0 on the compact manifold SO(d) is automatically uniformly
continuous. Since C0(SO(d)) is a Polish space, the last part of the statement follows from
Prohorov’s Theorem, see e.g. Thm. 17, Chapter 18 in [32].

4.2 Definition of the recursion operator

Given A ∈ SO(d) and a function f on SO(d), we denote by A#f and A#f the functions
given by

A#f(O) = f(OA) and A#f(O) = f(OAT ) for all O ∈ SO(d). (4.7)

Observe that A#(B#f) = (AB)#f for arbitrary A,B ∈ O, since

A#(B#f)(O) = B#f(OA) = f(OAB).

With these notations,

Ψn(O) =

n+1∑
j=1

βαj,nΨ0(OOj,n) =

n+1∑
j=1

βαj,nO
#
j,nΨ0(O).

Introduce a sequence (νn) of probability measures on C0(SO(d)) by

ν0 := δΨ0 , and for every n ≥ 1, νn := Law
( n+1∑
j=1

βαj,nO
#
j,nΨ0

)
. (4.8)

Next, define a recursion operator T on the set P(C0(SO(d))) of all probability measures
on C0(SO(d)) as follows. Given ν′, ν′′ ∈ P(C0(SO(d))), let Ψ′ and Ψ′′ be two independent
random functions with distributions ν′ and ν′′, respectively, which are also independent
of (r−, r+, R−, R+). Then define

T [ν′, ν′′] := Law
(
(r−)α(R−)#Ψ′ + (r+)α(R+)#Ψ′′

)
. (4.9)

T has a fixed point: set Ψ∞ := m0M
(α)
∞ and ν∞ := Law(Ψ∞). Using Lemma 4.1, it is easy

to see that
ν∞ = T [ν∞, ν∞]. (4.10)

In the following, we shall show that this fixed point is attractive in a suitable metric.
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Lemma 4.5. For each n ≥ 1, the following recursion relation holds:

νn =
1

n

n∑
k=1

T [νk−1, νn−k]. (4.11)

Proof. The proof is similar to the one of Proposition 2.4. With the notations (2.11), we
can write

Ψn =

J∑
j=1

(
r−1 β

′
j,n

)α
(R−1 O

′
j,n)#Ψ0 +

n+1∑
j=J+1

(
r+
1 β
′′
j,n

)α
(R+

1 O
′′
j,n)#Ψ0

= (r−1 )α(R−1 )#
( J∑
j=1

(β′j,n)α(O′j,n)#Ψ0

)
+ (r+

1 )α(R+
1 )#

( n+1∑
j=J+1

(β′′j,n)α(O′′j,n)#Ψ0

)
,

using the rule A#(B#f) = (AB)#f discussed above. To conclude, observe that —
conditionally on {J = k} —

J∑
j=1

(β′j,n)α(O′j,n)#Ψ0
L
= Ψk−1,

n+1∑
j=J+1

(β′′j,n)α(O′′j,n)#Ψ0
L
= Ψn−k.

The goal for the rest of this section is to show that the map T is a contractive in an
appropriate metric. Once this is shown, the proof of Proposition 4.2 follows easily.

4.3 Contraction in Fourier distance

Recall that L2(SO(d),H) is a real Hilbert space with respect to the scalar product

〈g, f〉L2 =

∫
SO(d)

g(O)f(O) dH(O).

For a probability measure ν on C0(SO(d)), define its L2-characteristic functional (or
Fourier transform) ν̂ : L2(SO(d),H)→ C by

ν̂(g) :=

∫
C0(SO(d))

exp
(
i〈g, f〉L2

)
ν(df) = E

[
exp

(
i〈g,Ψ〉L2

)]
,

where Ψ is a random function with law ν. Further, let PL2;γ(C0(SO(d))) be the set of the
measures ν on C0(SO(d)) such that∫

C0(SO(d))

‖f‖γL2ν(df) < +∞;

recall that γ ∈ (1, 2] was chosen such that (H2) is satisfied. Now introduce the Fourier
distance between any ν′, ν′′ ∈ PL2;γ(C0(SO(d))) by

dγ(ν′, ν′′) := sup
06=g∈L2

|E
[

exp(i〈g,Ψ′〉L2)− exp(i〈g,Ψ′′〉L2)− i〈g,Ψ′ −Ψ′′〉L2

]
|

‖g‖γL2

= sup
06=g∈L2

∣∣ν̂′(g)− ν̂′′(g)− i〈g,∆〉L2

∣∣
‖g‖γL2

with ∆ := E[Ψ′ −Ψ′′],

where Ψ′ and Ψ′′ are two random functions distributed according to ν′ and ν′′. This
definition is inspired by the Fourier metric, which was first introduced in the context of
kinetic equations in [35], and has since then been generalized in manifold ways, see e.g.
[8] for another application to measures on matrices. Note that dγ is well-defined and

EJP 20 (2015), paper 89.
Page 18/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3531
http://ejp.ejpecp.org/


Inelastic homogeneous Boltzmann equations

finite on PL2;γ(C0(SO(d))). Indeed, if Ψ has law ν ∈ PL2;γ(C0(SO(d))), then E[Ψ] is a well-
defined function in C0(SO(d)), and moreover, using the inequality |eix − 1− ix| ≤ Cγ |x|γ
(see e.g. Lemma 1, section 8.4 in [24]), one can write

dγ(ν′, ν′′) ≤ Cγ
{

sup
g:‖g‖L2 6=0

1

‖g‖γL2

E
[
|〈g,Ψ′〉L2 |γ + |〈g,Ψ′′〉L2 |γ

]}
≤ Cγ

{∫
C0(SO(d))

‖f‖γL2ν
′(df) +

∫
C0(SO(d))

‖f‖γL2ν
′′(df)

}
.

(4.12)

The last quantity is finite since Ψ’s distribution belongs to PL2;γ(C0(SO(d))). Notice
further that ν′ and ν′′ might be “close” with respect to dγ even if their expectation values
differ significantly.

Lemma 4.6. Given γ ∈ [1, 2] satisfying (H2), let ν′1, ν
′
2 and ν′′1 , ν

′′
2 be probability measures

in PL2;γ(C0(SO(d))) and let Ψ′1, Ψ′′1 , Ψ′2, Ψ′′2 be random functions with respective laws,
that are independent of (r+, r−, R+, R−). Then

dγ
(
T [ν′1, ν

′′
1 ], T [ν′2, ν

′′
2 ]
)
≤ E[(r−)αγ ]dγ(ν′1, ν

′
2) + E[(r+)αγ ]dγ(ν′′1 , ν

′′
2 )

+ max
(
2,E[‖Ψ′′1‖L2 ],E[‖Ψ′2‖L2 ])E[(r−)αγ + (r+)αγ ]

·
(
‖E[Ψ′1 −Ψ′2]‖L2 + ‖E[Ψ′′1 −Ψ′′2 ]‖L2

)
.

Proof. We proceed in analogy to the proof of Lemma 6 in [8]. Set νj := T [ν′j , ν
′′
j ] and let

Ψj be distributed with laws νj , respectively. Recalling the definition of R# and R# from
(4.7), we obtain

ν̂j(g) = E
[

exp
(
i〈g, (r−)α(R−)#Ψ′j + (r+)α(R+)#Ψ′′j 〉L2

)]
= E

[
ν̂′j
(
(r−)α(R−)#g

)
ν̂′′j
(
(r+)α(R+)#g

)]
= E

[
ν̂′j(g

′)ν̂′′j (g′′)
]
,

with g′ := (r−)α(R−)#g and g′′ := (r+)α(R+)#g. Next, define ∆′ := E[Ψ′1 − Ψ′2], ∆′′ :=

E[Ψ′′1 −Ψ′′2 ], and observe that

∆ := E[Ψ1 −Ψ2] = E[(r−)α(R−)#∆′ + (r+)α(R+)#∆′′],

so that 〈g,∆〉L2 = E
[
〈g′,∆′〉L2 + 〈g′′,∆′′〉L2

]
. We thus have

δ(g) := ν̂1(g)− ν̂2(g)− i〈g,∆〉L2

= E
[
ν̂′1(g′)ν̂′′1 (g′′)− ν̂′2(g′)ν̂′′2 (g′′)− i〈g′,∆′〉L2 − i〈g′′,∆′′〉L2

]
= E

[(
ν̂′1(g′)− ν̂′2(g′)− i〈g′,∆′〉L2

)
ν̂′′1 (g′′)− i

(
1− ν̂′′1 (g′′)

)
〈g′,∆′〉L2

]
+ E

[
ν̂′2(g′)

(
ν̂′′1 (g′′)− ν̂′′2 (g′′)− i〈g′′,∆′′〉L2

)
− i
(
1− ν̂′2(g′)

)
〈g′′,∆′′〉L2

]
.

Hence, we find

|δ(g)| ≤ E
[
‖g′‖γL2

]
dγ(ν′1, ν

′
2) + E

[
‖g′′‖γL2

]
dγ(ν′′1 , ν

′′
2 )

+ E
[∣∣1− ν̂′′1 (g′′)

∣∣‖g′‖L2

]
‖∆′‖L2 + E

[∣∣1− ν̂′2(g′)
∣∣‖g′′‖L2

]
‖∆′′‖L2 .

Since R− and R+ are orthogonal matrices, we have

‖g′‖L2 = (r−)α‖g‖L2 , ‖g′′‖L2 = (r+)α‖g‖L2 ,
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and so

‖g‖−γL2 |δ(g)| ≤ E
[
(r−)αγ

]
dγ(ν′1, ν

′
2) + E

[
(r+)αγ

]
dγ(ν′′1 , ν

′′
2 )

+ E
[ |1− ν̂′′1 (g′′)|
‖g‖γ−1

L2

(r−)α
]
‖∆′‖L2 + E

[ |1− ν̂′2(g′)|
‖g‖γ−1

L2

(r+)α
]
‖∆′′‖L2

≤ E
[
(r−)αγ

]
dγ(ν′1, ν

′
2) + E

[
(r+)αγ

]
dγ(ν′′1 , ν

′′
2 )

+ E
[
(r−)α(r+)α(γ−1)

]
sup
h6=0

( |1− ν̂′′1 (h)|
‖h‖γ−1

L2

)
‖∆′‖L2

+ E
[
(r−)α(γ−1)(r+)α

]
sup
h6=0

( |1− ν̂′2(h)|
‖h‖γ−1

L2

)
‖∆′′‖L2 .

By definition of the Fourier transform, and since |1− eix| ≤ |x|, it follows that∣∣1− ν̂′′1 (h)
∣∣ ≤ ‖h‖L2E

[
‖Ψ′′1‖L2

]
.

Since also |1− ν̂′′1 (h)| ≤ 2 for all h, we have that

sup
h6=0

( |1− ν′′1 (h)|
‖h‖γ−1

L2

)
≤ max{2,E

[
‖Ψ′′1‖L2

]
},

and similarly for the other supremum. To finish the proof, observe that by Young’s
inequality

E
[
(r−)α(r+)α(γ−1) + (r−)α(γ−1)(r+)α

]
≤ E[(r−)αγ + (r+)αγ ].

4.4 Contraction of means

Lemma 4.6 almost yields contractivity of T in the Fourier distance dγ for some
appropriate γ > 1. Below, we provide a control on the remainder term, given by the
L2-distance of the expectation values of the argument measures.

Proposition 4.7. There are constants κ− < E[(r−)α] and κ+ < E[(r+)α] such that

‖E[(r±)α(R±)#f‖L2 ≤ κ±‖f‖L2

for every f ∈ C0(SO(d)) with
∫

SO(d)
f(O)H(dO) = 0.

To prove Proposition 4.7 we need some preliminary results. Recalling the definition
of B± from (2.3), introduce continuous linear operators L± on L2(SO(d),H) by

(L±f)(O) :=

∫
SO(d)

f(OR)B±(dR).

Since for every f, g ∈ L2(SO(d),H), we have that

〈L±f, g〉L2 =

∫
SO(d)2

f(OR)g(O)B±(dR)H(dO)

=

∫
SO(d)2

f(O′)g(O′RT )B±(dR)H(dO′),

it follows that the adjoint operator (L±)∗ of L± is given by

((L±)∗f)(O) =

∫
SO(d)

f(ORT )B±(dR).
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Consider the symmetric operator (L±)∗L± on L2(SO(d),H), which can be written as

((L±)∗L±f)(O) =

∫
SO(d)2

f(ORT2 R1)B±(dR1)B±(dR2)

=

∫
SO(d)

f(OB)B̃±(dB),

where we define B̃± as the law of the random rotation RT2 R1 for independent R1, R2

with distribution B± each. It is easy to see that the powers of (L±)∗L± admit the
representations

[(L±)∗L±]nf(O) =

∫
SO(d)

f
(
OB

)
(B̃±)?n(dB),

where ?n denotes the n-fold convolution of a measure. The following result is essential
for the proof of Proposition 4.7.

Proposition 4.8 (Bhattacharya). Let G be a compact, connected, Hausdorff group and
let β be a probability measure on G such that β has a nonzero absolutely continuous
component with respect to the normalized Haar measure H on G. Then there is n ≥ 1

and 0 < c ≤ 1 such that

β?2
n

(B) ≥ cH(B) (4.13)

for every measurable B ⊂ G.

Actually, in the proof of Theorem 3 in [9] it is shown that there are a set A ⊆ G of
positive Haar measure, a positive number c̄ > 0 and an index N0 ∈ N such that, for every
g in G,

(h1A)?2N0(g) ≥ c̄
where h denotes the density of the absolutely continuous component of β, and ? is the
convolution of functions. Here clearly N0 can be replaced by any power of two that
is larger or equal, at the possible expense of diminishing c̄ to another (still positive)
constant c. This obviously implies our assertion (4.13).

Lemma 4.9. There are κ̃± < 1 and n ≥ 1 such that

‖[(L±)∗L±]2
n

f‖L2 ≤ κ̃±‖f‖L2

for every f ∈ L2(SO(d)) with
∫

SO(d)
f(O)H(dO) = 0.

Proof. We follow the lines of the proof of Theorem 2 in [9]. Assumption (H3) implies
that the probability measures B̃±s have nonzero absolutely continuous component with
respect to the Haar measure. Hence we can apply Proposition 4.8. If (B̃±)?2

n

= H then
‖[(L±)∗L±)]2

n

f‖L2 = 0, and there is nothing to be proved. If instead (B̃±)?2
n 6= H, then

c < 1 in (4.13), and hence one can write

(B̃±)?2
n

= [(1− c)Γ + cH],

where Γ = (1 − c)−1((B̃±)?2
n − cH) is a probability measure on SO(d). Since f is such

that
∫
f(O)H(dO) = 0, then, using also Jensen inequality,

‖[(L±)∗L±)]2
n

f‖2L2 =

∫ (∫
f(OB)(B̃±)?2

n

(dB)
)2

H(dO)

= (1− c)2

∫ (∫
f(OB)Γ(dB)

)2

H(dO)

≤ (1− c)2

∫ ∫
f(OB)2H(dO)Γ(dB) = (1− c)2‖f‖2L2 .

This shows the desired inequality, with κ̃± = (1− c) < 1.

EJP 20 (2015), paper 89.
Page 21/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3531
http://ejp.ejpecp.org/


Inelastic homogeneous Boltzmann equations

Proof of Propostion 4.7. Observe that

‖(L±)∗L±f‖2L2 = 〈[(L±)∗L±]2f, f〉L2 ≤ ‖[(L±)∗L±]2f‖L2‖f‖L2

by the symmetry of (L±)∗L±. Similarly, for every m ≥ 0, we have∥∥[(L±)∗L±]2
m

f
∥∥2

L2 ≤
∥∥[(L±)∗L±]2

m+1

f
∥∥2

L2‖f‖L2 ,

and iteration of these estimates leads to∥∥(L±)∗L±f
∥∥2n

L2 ≤
∥∥[(L±)∗L±]2

n

f
∥∥
L2‖f‖2

n−1
L2

for arbitrary n ≥ 0. We combine this estimate with

‖L±f‖2L2 = 〈(L±)∗L±f, f〉L2 ≤ ‖(L±)∗L±f‖L2‖f‖L2

to obtain

‖L±f‖2
n+1

L2 ≤ ‖(L±)∗L±f‖2
n

L2‖f‖2
n

L2 ≤ ‖[(L±)∗L±]2
n

f‖L2‖f‖2
n−1
L2 ‖f‖2

n

L2 .

Thus, by Lemma 4.9, we arrive at

‖L±f‖2
n+1

L2 ≤ κ̃±‖f‖2
n+1

L2 .

Taking the 2n+1th root, the hypothesis follows with κ± := (κ̃±)1/2n+1

< 1.

4.5 Convergence of Fourier transforms

On basis of the Fourier distance dγ , we define yet another distance on PL2;γ(C0(SO(d)))

by
Dγ,a(ν′, ν′′) := dγ(ν′, ν′′) + a‖E[Ψ′ −Ψ′′]‖L2

where Ψ′, Ψ′′ have law ν′, ν′′, respectively. Here a is a positive constant to be determined
later. Clearly, this distance satisfies the convexity inequality

Dγ,a

( 1

n

n∑
i=1

µ′i,
1

n

n∑
i=1

µ′′i

)
≤ 1

n

n∑
i=1

Dγ,a(µ′i, µ
′′
i ). (4.14)

Proposition 4.10. Dγ,a(νn, ν∞) → 0 as n → ∞ for γ ∈ (0, 2] satisfying (H2) and an
appropriate choice of a > 0.

Proof. We are going to show that

Dγ,a(νn, ν∞) ≤ λ

n

n∑
k=1

Dγ,a(νk−1, ν∞) (4.15)

with some λ ∈ (0, 1), uniformly in n ≥ 1. This implies that Dγ,a(νn, ν∞) ≤ λnDγ,a(ν0, ν∞),
and thus converges to zero provided that

Dγ,a(ν0, ν∞) < +∞. (4.16)

To verify (4.16), first observe that

‖E[Ψ0 −Ψ∞]‖L2 ≤ ‖Ψ0‖∞ +m0,

thanks to (i) in Lemma 4.1. Moreover, recalling (4.12),

dγ(ν0, ν∞) ≤ Cγ
[
‖Ψ0‖γL2 + E[‖Ψ∞‖γL2

]
= Cγ‖Ψ0‖γL2 + Cγm

γ
0E[(M (α)

∞ )γ ].
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The last term is finite by (ii) of Lemma 4.1.
For the proof of (4.15), substitute (4.11) and (4.10) into (4.14) to obtain

Dγ,a(νn, ν∞) ≤ 1

n

n∑
k=1

Dγ,a(T [νk−1, νn−k], T [ν∞, ν∞]).

Using the definitions of T and of Dγ,a, the terms on the right-hand side can be estimated
as follows:

Dγ,a(T [νk−1, νn−k], T [ν∞, ν∞]) ≤ dγ(T [νk−1, νn−k], T [ν∞, ν∞])

+ a
(
‖E[(r−)α(R−)?∆k−1‖L2 + ‖E[(r+)α(R+)?∆n−k‖L2

) (4.17)

where ∆k := E[Ψk −Ψ∞] ∈ L2(SO(d);H) satisfies∫
SO(d)

∆k(O)H(dO) = 0 for every k,

thanks to (4.4). Hence Proposition 4.7 is applicable to estimate the last term on the
right-hand side in (4.17). In combination with an estimate of the first term by means of
Lemma 4.6 – which applies because of (4.5) – we arrive at

Dγ,a(νn, ν∞) ≤ 1

n

n∑
k=1

[
λγdγ(νk−1, ν∞) + [a(κ− + κ+) + 2C ′]‖E[Ψk−1 −Ψ∞]‖L2

]
with λγ := E[(r−)αγ ]+E[(r+)αγ ] < 1 and C ′ := max{2, ‖Ψ0‖∞}E[(r−)αγ+(r+)αγ ]. Further,
recalling that κ− + κ+ < E[(r−)α] + E[(r+)α] = 1, we can choose a > 0 such that
a(κ− + κ+) + 2C ′ < a. Thus we have shown (4.15), with

λ := max{λγ , κ− + κ+ + 2C ′/a} < 1.

4.6 Proof of Proposition 4.2

By Proposition 4.10 one gets
ν̂n(g)→ ν̂∞(g) (4.18)

for every g in L2(SO(d);H). According to Lemma 4.4, (Ψn)n is a tight sequence in
C0(SO(d)). Assume that a subsequence Ψn′ converges weakly in C0(SO(d)) to a limit Y .
Since f 7→ exp{i〈g, f〉L2} is a continuous function on C0(SO(d)) for any g in L2, one gets
that ν̂n′(g)→ E[ei〈g,Y 〉L2 ], and hence

E[ei〈g,Ψ∞〉L2 ] = E[ei〈g,Y 〉L2 ]

for every g in L2. Using the previous identity it is easy to see that the finite dimensional
law of Y and Ψ∞ are the same and hence they have the same distribution as processes
(see, e.g., Proposition 3.2 [38]). The last part of the proof follows by the continuous
mapping theorem, since point evaluation is a continuous functional on C0[SO(d)].

5 Proof of the main theorem

5.1 Preliminary weak convergence results

Recall that we deal with initial conditions µ0 belonging to the NDA of a (full) α-stable
law with Lévy measure φ. Let X0 be a random variable with probability distribution µ0.
For every x, u ∈ Rd, set F0(x, u) = P{u ·X0 ≤ x}, F0(x−, u) = limy↑x F0(y, u) and

Bx = {y ∈ Rd : x · y > 1}.
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Let Bn denote the σ−field generate by the βj,n’s and Oj,n, i.e.

Bn = σ(Oj,n, βj,n : j = 1, . . . , n+ 1).

Moreover, given any O ∈ SO(d), write

$j,n := OOj,ned j = 1, . . . , n+ 1

and, for every y > 0, define

Q1,n(y) :=
1

yα

n+1∑
j=1

P
{
βj,n$j,n ·X0 ≥ 1/y

∣∣∣Bn} =
1

yα

n+1∑
j=1

[
1−F0

(( 1

yβj,n

)−
,$j,n

)]

Q2,n(y) :=
1

yα

n+1∑
j=1

P
{
βj,n$j,n ·X0 ≤ −1/y

∣∣∣Bn} =
1

yα

n+1∑
j=1

F0

(
− 1

yβj,n
, $j,n

)
.

Observe that by Lemma A.3 in Appendix it follows that

lim
y↓0

Q1,n(y) =

n+1∑
j=1

βαj,nφ(B$j,n) and lim
y↓0

Q2,n(y) =

n+1∑
j=1

βαj,nφ(B−$j,n).

Hence setting

(Q1,n(0), Q2,n(0)) := (

n+1∑
j=1

βαj,nφ(B$j,n),

n+1∑
j=1

βαj,nφ(B−$j,n)),

the random function y 7→ (Q1,n(y), Q2,n(y)) is a càdlàg (i.e. right continuos with left-hand
limits) function from [0,+∞) to R2. Since, clearly, all the finite dimensional components
are measurable, (Q1,n, Q2,n) can be seen as process taking values in the space D(R+,R

2)

of càdlàg functions with the Skorohod topology (see, e.g., [37] and Thm. 4.5 in [10]).
Furthermore, given any γ0 ∈ Rd and O ∈ SO(d), define

Q3,n :=

n+1∑
j=1

βαj,nOOj,ned · γ0.

Then (M
(α)
n , Q1,n, Q2,n, Q3,n) is a process taking values in D(R+,R

4), since Q3,n and

M
(α)
n can be seen as constant random functions (w.r.t. y).

Proposition 5.1. Assume (H1)-(H3). The sequence of processes (M
(α)
n , Q1,n, Q2,n,

Q3,n)n≥1 converges in law in D(R+,R
4) to the constant process (M

(α)
∞ , cM

(α)
∞ , cM (α)

∞ , 0)

where

c :=

∫
Sd−1

∫
{y:y·s>1}

φ(dy)uS(ds). (5.1)

Proof. First of all note that the functions O 7→
∫
{y:y·Oed>1} φ(dy) and

O 7→
∫
{y:y·Oed<−1} φ(dy) are uniformly continuous on SO(d). Indeed, we know from

Lemma A.2 in Appendix that x 7→
∫
{y:y·x>1} φ(dy) is continuous in Rd \ {0}. Hence it is

uniformly continuous on Sd−1 and the continuity of O 7→ Oed and O 7→ −Oed entails the
claim.

Now write for i = 1, 2

Qi,n(y) = Qi,n(0) +Ri,n(y),
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and observe that, for 0 < y ≤ δ, one has

|R1,n(y)| ≤
n+1∑
j=1

βαj,n sup
u
|(1/yβj,n)α(1− F0((1/yβj,n)−, u))− φ(Bu)|

≤M (α)
n sup

z≤δβ(n)

sup
u
|z−α(1− F0((1/z)−, u))− φ(Bu)|.

Hence

sup
0≤y≤δ

|R1,n(y)| ≤M (α)
n sup

0<y<δβ(n)

sup
u
|y−α(1− F0((1/y)−, u))− φ(Bu)|.

Analogously

sup
0≤y≤δ

|R2,n(y)| ≤M (α)
n sup

0<y<δβ(n)

sup
u
|y−αF0(−1/y, u))− φ(B−u)|.

Since β(n) → 0 in probability by (iii) of Lemma 4.1, using Lemma A.3 one obtains that for
every δ > 0 and every ε > 0

lim
n→+∞

P{ sup
0≤y≤δ

[|R1,n(y)|+ |R2,n(y)|] > ε} = 0. (5.2)

Now let (t0, t1, t2, t3) ∈ R4 and consider

Ψ0(O) := t0 + t1

∫
{y:y·Oed>1}

φ(dy) + t2

∫
{y:y·Oed<−1}

φ(dy) + t3Oed · γ0

which is a continuous function on SO(d) by the considerations above. Then the corre-
sponding Ψn, defined in (4.1), satisfies

Ψn(O) = t0M
(α)
n + t1

n+1∑
j=1

βαj,nφ(B$j,n) + t2

n+1∑
j=1

βαj,nφ(B−$j,n) + t3Q3,n

since $j,n = OOj,ned. At this stage observe that∫
SO(d)

Oed · γ0H(dO) = 0

and Proposition 4.2 yields that Ψn(O) converges in law to (t0 + t1c1 + t2c2)M
(α)
∞ where

c1 :=

∫
SO(d)

∫
{y:y·Oed>1}

φ(dy)H(dO), c2 :=

∫
SO(d)

∫
{y:y·Oed<−1}

φ(dy)H(dO).

Since Oed is uniformly distributed on Sd−1 whenever O has Haar distribution on SO(d)

(see (3.3)), then

c1 =

∫
Sd−1

∫
{y:y·s>1}

φ(dy)uS(ds) = c =

∫
Sd−1

∫
{y:y·s<−1}

φ(dy)uS(ds) = c2.

This yields that the vector

Zn := (M (α)
n ,

n+1∑
j=1

βαj,nφ(B$j,n),

n+1∑
j=1

βαj,nφ(B−$j,n), Q3,n)

converges in law to (M
(α)
∞ , cM

(α)
∞ , cM

(α)
∞ , 0). Since

(M (α)
n , Q1,n(y), Q2,n(y), Q3,n) = Zn + (0, R1,n(y), R2,n(y), 0)

using (5.2) and Lemma 3.31 Chapter VI of [37] one obtains the thesis.
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5.2 Proof of Theorem 2.3.

The proof is split into three steps. In the first step we introduce a Skorohod-type
representation which is inspired to the one used in [31] as an essential ingredient to
prove a central limit theorem for arrays of partially exchangeable random variables. This
technique has been already employed in a fruitful way in the context of the asymptotic
study of kinetic equations, see e.g. [6, 43, 28, 33]. In the second step we prove that the
classical conditions for the convergence to a (one-dimensional) stable law hold almost
surely in the Skorohod representation. In the third step we conclude the proof.

Step 1: Skorohod representation. For every n ≥ 1 and for j > n+ 1, let us define
βj,n = 0 and $j,n = ed, while for j ≤ n+ 1 they are defined as in the previous sections.

Let Bn denote the σ−field generated by the βj,n’s and $j,n’s, i.e. Bn = σ(βj,n,

$j,n; j ≥ 1). Let λj,n denote the conditional law of βj,n$j,n · Xj given Bn and λn the

conditional law of
n+1∑
j=1

βj,n$j,n ·Xj , given Bn. Hence, λj,n(−∞, x] = F0(x/βj,n, $j,n) and

λn = λ1,n ∗ · · · ∗ λn+1,n. Let Q3,n =
∑n+1
j=1 βj,n$j,n · γ0 with γ0 as in Theorem 2.3 if α = 1

and with γ0 = 0 otherwise. Let us consider

Wn =
(
λn, (λj,n)j≥1, β(n), (βj,n)j≥1, ($j,n)j≥1,M

(α)
n , Q1,n(·), Q2,n(·), Q3,n

)
as a random element from (Ω,F ,P) in (S,B(S)), where S := P(R̄)∞ × R̄∞ × (Sd−1)∞ ×
D(R+,R

4). Here R̄ denotes the extended real line, P(R̄) the set of all probability mea-
sures on borel σ-field B(R̄) with the topology of the complete convergence and B(S)

denotes the borel σ−field on S.

The sequence (Wn)n≥1 is tight since P(R̄)∞ and (Sd−1)∞ are compact, β(n) → 0 in

probability by Lemma 4.1 and the sequence (M
(α)
n , Q1,n(·),Q2,n(·), Q3,n)n≥1 of random

elements in D(R+,R
4) converges in law to (M

(α)
∞ , cM

(α)
∞ , cM (α)

∞ , 0) in view of Proposition
5.1. Hence, every subsequence of (n) includes a subsequence (n′) such that

Wn′
L→W ′∞.

Since S is Polish, from the Skorohod representation theorem (see, e.g., Theorem 4.30
[38]) one can determine a probability space (Ω̂, F̂ , P̂) and random elements on it taking
value in S,

Ŵ∞ =
(
λ̂, (λ̂j)j≥1, β̂, (β̂j)j≥0, ($̂j)j≥1, M̂ , Q̂1(·), Q̂2(·), Q̂3

)

Ŵn′ =
(
λ̂n′ , (λ̂j,n′)j≥1, β̂(n′), (β̂j,n′)j≥1, ($̂j,n′)j≥1, M̂n′ , Q̂1,n′(·), Q̂2,n′(·), Q̂3,n′

)
which have the same probability distribution of W ′∞ and Wn′ , respectively and

lim
n′→+∞

Ŵn′(ω̂) = Ŵ∞(ω̂)

for every ω̂ ∈ Ω̂ in the metric of S. In view of the definition of Wn and since Wn and Ŵn′
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have the same probability distribution, the following statements hold, for each n′, P̂−a.s.

λ̂n′ = λ̂1,n′ ∗ · · · ∗ λ̂n′+1,n′ , λ̂j,n′(−∞, x] = F0(x/β̂j,n′ , $̂j,n′),

β̂(n′) = max
j=1,...,n′+1

β̂j,n′ , M̂n′ =

n′+1∑
j=1

β̂αj,n′ ,

Q̂1,n′(y) =
1

yα

n′+1∑
j=1

[1− F0((1/yβ̂j,n′)
−, $̂j,n′)] for every y > 0,

Q̂2,n′(y) =
1

yα

n′+1∑
j=1

F0(−1/yβ̂j,n′ , β̂j,n′) for every y > 0,

Q̂3,n′ =

n′+1∑
j=1

β̂αj,n′$̂j,n′ · γ0.

(5.3)

Furthermore, since

(β(n),M
(α)
n , Q1,n(·), Q2,n(·), Q3,n)

L→ (0,M (α)
∞ , cM (α)

∞ , cM (α)
∞ , 0)

then
(β̂, M̂ , Q̂1(·), Q̂2(·), Q̂3) = (0, M̂ , cM̂,cM̂, 0)

P̂−a.s.. and the law of M̂ is equal to the law of M (α)
∞ and hence does not depend on the

sequence (n′).
Step 2: sufficient conditions for the convergence to a stable law. The next

step is to prove that the following conditions hold P̂−a.s.:

i) sup
1≤j≤n′

λ̂j,n′([−ε, ε]c)→ 0, for every ε > 0, as n′ → +∞ (u.a.n. condition);

ii) lim
n′→+∞

xα
n′+1∑
j=1

λ̂j,n′((−∞,−x]) = cM̂ and lim
n′→+∞

xα
n′+1∑
j=1

λ̂j,n′((x,+∞]) = cM̂ for ev-

ery x > 0, with c as in (5.1);

iii) lim
ε↓0

lim sup
n′→+∞

n′+1∑
j=1

∫
(−ε,ε)

x2λ̂j,n′(dx) = 0;

iv) lim
n′→+∞

En′ = 0 where

En′ :=
{
−
n′+1∑
j=1

λ̂j,n′((−∞,−1]) +

n′+1∑
j=1

(1− λ̂j,n′(−∞, 1]) +

n′+1∑
j=1

∫
(−1,1]

xλ̂j,n′(dx)
}
.

In view of the well-known criteria for the convergence to a (one-dimensional) stable law -
see, e.g., Theorem 30 in Section 16.9 and in Proposition 11 in Section 17.2 of [32] - the
previous conditions yield that P̂−a.s.∫

eiρxλ̂n′(dx)→
∫
eiρxλ̂(dx) = e−cM̂ |ρ|

α

(5.4)

and this will lead easily to the conclusion.

Let us first prove i). Recall that from Lemma A.3 we know that

lim
x→+∞

{ sup
u∈Sd−1

|xα(1− F0(x, u))− φ(Bu)|+ sup
u∈Sd−1

|xαF0(−x, u)− φ(B−u)|} = 0 (5.5)
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and hence, in particular,

sup
x>0
{ sup
u∈Sd−1

|xα(1− F0(x, u))− φ(Bu)|+ sup
u∈Sd−1

|xαF0(−x, u)− φ(B−u)|} < K. (5.6)

Since for every u ∈ Sd−1, one has φ(Bu) ≤ φ{y : |y| ≥ 1} < +∞, then (5.6) yields

sup
x>0
{ sup
u∈Sd−1

|xα(1− F0(x, u))|+ sup
u∈Sd−1

|xαF0(−x, u)|} < K ′. (5.7)

In view of (5.3) we have

λ̂j,n′([−ε, ε]c) ≤ 1− F0(ε/β̂j,n′ , $̂j,n′) + F0(−ε/β̂j,n′ , $̂j,n′)

≤
β̂αj,n′

εα
sup

u∈Sd−1

{[
1− F0(ε/β̂j,n′ , u) + F0(−ε/β̂j,n′ , u)

] εα

β̂αj,n′

}
≤ K ′

β̂αj,n′

εα
≤ K ′

β̂α(n′)

εα

and the last term converges to zero for n′ → +∞.
As for ii), if x > 0

xα
n′+1∑
j=1

λ̂j,n′((x,+∞)) = Q̂1,n′

(( 1

x

)−)
and

xα
n′+1∑
j=1

λ̂j,n′((−∞,−x]) = Q̂2,n′

( 1

x

)
.

Since (Q̂1,n′(·), Q̂2,n′(·)) converges for every ω̂ ∈ Ω in the topology of D(R+,R
2) to the

constant function (cM̂, cM̂) then, by using Proposition 2.4 Chapter VI of [37], one gets
for every y > 0

Q̂1,n′(y
−)→ cM̂ and Q̂2,n′(y)→ cM̂.

Hence ii) is proved.
In order to prove iii) note that integration by parts, gives∫

(−ε,ε)
x2dG(x) ≤ 2

∫ 0

−ε
|x|G(x)dx+ 2

∫ ε

0

x(1−G(x))dx.

Hence the last inequality and (5.7) yield

n′+1∑
j=1

∫
(−ε,ε)

x2λ̂j,n′(dx) =

n′+1∑
j=1

β̂2
j,n′

∫
(− ε

β̂
j,n′

, ε
β̂
j,n′

)

x2F0(dx, $̂j,n′)

≤ 2

n′+1∑
j=1

{∫ 0

−ε
|x|F0

( x

β̂j,n′
, $̂j,n′

)
dx+

∫ ε

0

x
[
1− F0

( x

β̂j,n′
, $̂j,n′

)]
dx
}

≤ 2

n′+1∑
j=1

β̂αj,n′K
′
∫ ε

0

x1−αdx = M̂n′
2K ′ε2−α

2− α

which gives the result since M̂n′ converges P̂-a.s. to M̂ .
Concerning iv), assume first that α < 1. Then, integration by parts gives

En′ =−
n′+1∑
j=1

∫
(−1,0]

λ̂j,n′((−∞, x])dx+

n′+1∑
j=1

∫
(0,1]

(1− λ̂j,n′((−∞, x]))dx

≤−
n′+1∑
j=1

∫
(−1,0]

F0

( x

β̂j,n′
, $̂j,n′

)
dx+

n′+1∑
j=1

∫
(0,1]

(1− F0

( x

β̂j,n′
, $̂j,n′

)
dx.
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We know that, if x < 0, −|x|α
∑n′+1
j=1 F0

(
x

β̂j,n′
, $̂j,n′

)
= Q̂1,n′(1/|x|) → −cM̂ on Ω̂. Fur-

thermore for every x ∈ (0, 1)

∣∣∣ n′+1∑
j=1

F0

( x

β̂j,n′
, $̂j,n′

)∣∣∣ ≤ 1

|x|α
sup
y<0

sup
u∈Sd−1

F0(y, u)|y|αM̂n′ ≤
1

|x|α
K ′ sup

n′
M̂n′ .

Analogously, for x > 0, |x|α
∑n′+1
j=1

(
1 − F0

(
x

β̂j,n′
, $̂j,n′

))
= Q̂2,n′(1/|x|) → cM̂ on Ω̂.

Finally, for every x ∈ (−1, 0)

∣∣∣ n′+1∑
j=1

(
1− F0

( x

β̂j,n′
, $̂j,n′

))∣∣∣ ≤ 1

|x|α
sup
y<0

sup
u∈Sd−1

(1− F0(y, u))|y|αM̂n′

≤ 1

|x|α
K ′ sup

n′
M̂n′ .

Hence, dominated convergence (for any ω̂) yields that

En′ = −
n′+1∑
j=1

∫
(−1,0]

λ̂j,n′((−∞, x])dx+
n′+1∑
j=1

∫
(0,1]

(1− λ̂j,n′((−∞, x]))dx

converges (as n→ +∞) to

−
∫

(−1,0]

cM̂

|x|α
dx+

∫
(0,1]

cM̂

|x|α
dx = 0.

When 1 < α < 2, since
∫
R
yF0(dy, u) = 0 for every u in Sd−1, we can write

En′ = −
∫

(−∞,−1]

(1 + x)

n′+1∑
j=1

λ̂j,n′(dx)−
∫

(1,+∞)

(x− 1)

n′+1∑
j=1

λ̂j,n′(dx).

Integration by parts gives∫
(−∞,−1]

(1 + x)

n′+1∑
j=1

λ̂j,n′(dx) = lim
T→+∞

∫
(−T,−1]

(1 + x)

n′+1∑
j=1

λ̂j,n′(dx)

= lim
T→+∞

[
−
n′+1∑
j=1

λ̂j,n′((−∞, 1− T ])(1− T )−
∫

(−T,−1]

n′+1∑
j=1

λ̂j,n′((−∞, x])dx.
]

Now

lim sup
T→+∞

n′+1∑
j=1

λ̂j,n′((−∞, 1− T ])(1− T ) ≤ lim sup
T→+∞

KM (α)
n (1− T )1−α = 0,

and hence ∫
(−∞,−1]

(1 + x)

n′+1∑
j=1

λ̂j,n′(dx) = −
∫

(−∞,−1]

n′+1∑
j=1

λ̂j,n′((−∞, x])dx.

In an analogous way one shows that∫
(1,+∞)

(x− 1)

n′+1∑
j=1

λ̂j,n′(dx) =

∫
(1,+∞)

n′+1∑
j=1

(1− λ̂j,n′((−∞, x])dx,
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so that

En′ =

∫
(−∞,−1]

n′+1∑
j=1

λ̂j,n′((−∞, x])dx−
∫

(−∞,−1]

n′+1∑
j=1

(1− λ̂j,n′((−∞, x]))dx.

Arguing as in the case α < 1 one proves that

En′ → +

∫
(−∞,−1]

cM̂

|x|α
dx−

∫
(1,+∞)

cM̂

|x|α
dx = 0.

It remains to consider the case α = 1. Note that by point ii) with x = 1

lim
n′→+∞

En′ = lim
n′→+∞

n′+1∑
j=1

∫
(−1,1]

xλ̂j,n′(dx)

if the limit exists and

n′+1∑
j=1

∫
(−1,1]

xλ̂j,n′(dx) =

n′+1∑
j=1

β̂j,n′
[ ∫

(−1/β̂j,n′ ,1/β̂j,n′ ]

xdF0(x, $̂j,n′)− γ0 · $̂j,n′

]

+

n′+1∑
j=1

β̂j,n′γ0 · $̂j,n′

=: E∗n′ +

n′+1∑
j=1

β̂j,n′γ0 · $̂j,n′ = E∗n′ + Q̂3,n

and Q̂3,n → 0 P̂-a.s.. Furthermore

|E∗n′ | ≤ M̂n′ sup
R≥1/β̂(n′)

sup
u∈Sd−1

|
∫

(−R,R]

xdF0(x, u)− γ0 · u|.

Since β(n′) → 0 and M̂n′ → M̂ it follows from assumption (2.9) that limn′→+∞En′ = 0 in
the case α = 1 too. At this stage the proof of iv) is completed.

Step 3: conclusion of the proof. By (5.4) and dominated convergence theorem
one has

E[eiρ
∑n′+1
k=1 βk,n′$k,n′ ·Xk ] = Ê[

∫
eiρxλ̂n′(dx)]

→ Ê[

∫
eiρxλ̂(dx)] = Ê[e−cM̂ |ρ|

α

] = E[e−cM
(α)
∞ |ρ|

α

]

where Ê denotes the expectation with respect to P̂ and the last equality is due to the fact
that we proved that M (α)

∞ and M̂ have the same probability distribution. In particular
we have stated that the limit does not depend on the subsequence (n′) and hence the
convergence is true for the entire sequence (n). Hence, using also Proposition 2.5, one
has that for every e ∈ Sd−1 and any ρ > 0

lim
n→∞

Un(ρe) = E[e−cM
(α)
∞ |ρ|

α

].

At this stage, the convergence of U(t) to µ̂c∞ follows from (2.7).
In order to prove the last part of the theorem it is enough to check that since µc∞ is a

scale mixture of a spherically symmetric stable law, it belongs to NDA of the same stable
law.
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A Multivariate stable laws and their domain of attractions

A random vector Z taking values in Rd has a centered α-stable distribution, for α in
(0, 2), if and only if its characteristic function is

E[eiξ·Z ] = exp
{
−
∫
Sd−1

|ξ · s|αη(ξ, s)Λ(ds)
}

(ξ ∈ Rd) (A.1)

where Λ is a finite measure on Sd−1 and

η(ξ, s) :=

{
1− isign(ξ · s) tan(πα2 ) if α 6= 1

1 + i 2
π sign(ξ · s) log |ξ · s| if α = 1.

See, e.g., Theorem 7.3.16 in [41].
A random vector Z has a centered α-stable spherically symmetric distribution if

E[eiξ·Z ] = exp{−c|ξ|α} (ξ ∈ Rd) (A.2)

for some c > 0. Clearly, in this case, Λ(A) ∝ |A|.
As in the one-dimensional case, one says that:

A random vectorX0 (or equivalently its law µ0) belongs to the normal domain of attraction
(NDA, for short) of an α-stable law if for any sequence (Xi)i≥1 of i.i.d. random vectors
with the same law of X0, there is a sequence of vectors (bn)n≥1 such that n−1/α

∑n
i=1Xi−

bn converges in law to an α-stable random vector.
Given any a finite measure Λ on Sd−1 the so-called Lévy measure φ = φΛ on Rd \ {0}

is given in polar coordinates by

φ(dθdr) = Λ(dθ)
αkα
rα+1

dr. (A.3)

A stable law is said to be full if it is not supported on any d− 1 dimensional subspace
of Rd. In this case, it is possible to characterize the NDA in terms of the tails of µ0 in
the following way:
X0 belongs to the NDA of a stable law with Lévy measure φ = φΛ if and only if for every
r > 0 and every Borel set B ⊂ Sd−1 such that Λ(∂B) = 0

lim
t→+∞

tαP
{
|X0| > rt,

X0

|X0|
∈ B

}
=
kα
rα

Λ(B), (A.4)

with

kα =
2Γ(α) sin(απ/2)

π
.

See Theorems 6.20 and 7.11 in [3].
We collect some results on the NDA of an α-stable law, which are used in Section 5.

Lemma A.1. If a stable law is full, then the corresponding Lévy measure φ is full, that
is φ is not supported on any d− 1 dimensional subspace of Rd.

Proof. The thesis can be deduced combining Proposition 3.1.20 and Theorem 7.3.3 in
[41].

Recall that, for every x ∈ Rd,

Bx = {y ∈ Rk : x · y > 1}.

Lemma A.2. Let φ be a full Lévy measure, then

x 7→ φ(Bx)

is a continuous function on Rd \ {0}.

EJP 20 (2015), paper 89.
Page 31/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3531
http://ejp.ejpecp.org/


Inelastic homogeneous Boltzmann equations

Proof. The proof is essentially the same as the proof of Lemma 6.1.25 in [41] and it is
left to the reader.

Lemma A.3. Let S be a compact subset of Rd \ {0}. If X0 belongs to the normal domain
of attraction of a full α-stable law with Lévy measure φ, then

lim
t→+∞

sup
u∈S
|tαP{X0 · u > t} − φ(Bu)| = 0 (A.5)

and
lim

t→−∞
sup
u∈S
||t|αP{X0 · u ≤ t} − φ(B−u)| = 0. (A.6)

Moreover (A.5) remains true if one replace > with ≥.

Proof. The proof of this result can be obtained with minor modifications from the proof of
a similar result contained in Lemma 6.1.26 of [41]. The details are left to the reader.
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