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ABSTRACT
Software protection aims to prevent unauthorized use, anal-
ysis, modification and distribution of software. This goal is
hard to achieve, especially for a program running on a plat-
form (e.g. physical device) controlled by an adversary also
known as man-at-the-end (MATE) attacker. Self-checking is
one technique for protecting the integrity of software by hav-
ing the code check itself.

In this paper, we present the design and implementation
of a self-checking tool called StIns4CS. Our tool implements
self-checking via state inspection by source code transforma-
tions of programs written in the C# language. More specif-
ically, StIns4CS augments code by adding runtime checkers
to it. We discuss the effectiveness of StIns4CS by implement-
ing attacks targeting our approach, and measuring different
aspects of the effectiveness, stealth and cost of the protec-
tion. Based on the evaluation we show the trade-off between
the efficiency and effectiveness of StIns4CS in protecting soft-
ware against unauthorized modification. We propose an ap-
proach to improve stealth of the code added by StIns4CS and
we show further improvements of stealth by combining self-
checking with virtualization obfuscation.

CCS Concepts
•Security and privacy→ Software security engineering;

Keywords
Software protection, Tamper proofing, MATE attacks

1. INTRODUCTION
According to Falcarin et al. [6], software protection can

be divided into four categories: (1) obfuscation which ham-
pers reverse engineering, (2) tamper-proofing which hampers
unauthorized modification of code, (3) watermarking which
allows tracking programs and (4) birthmarking which enables
plagiarism detection. This paper is chiefly concerned with
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the second category, i.e. tamper-proofing which aims to en-
sure that a program maintains the input-output behavior in-
tended by its developer during runtime. This goal is moti-
vated by its commercial impact. Statistics from the Business
Software Alliance and the International Data Corporation show
that the retail value of pirated software globally is $63.4 bil-
lion in 2013 [8].

The goal of maintaining behavior integrity of an applica-
tion is hard to achieve when this application must run on
untrusted platforms, i.e. platforms controlled by malicious
users. Malicious users are also known as man-at-the-end (MATE)
attackers and they have many more attack vectors than the
man-in-the-middle (MITM) attacker proposed by Dolev and
Yao [5]. For instance, MATE attackers can analyze the mem-
ory contents of an application during execution via interac-
tive debuggers. Moreover, they can even tamper with the
memory contents and even the code of the application. This
can be achieved using freely available tools like OllyDbg 1,
or reverse engineering tools like ILSpy 2.

The approach developed in this paper, focuses on protect-
ing the integrity of pure functions (without side-effects) via
a technique called state inspection described in [4]. Such func-
tions are found in security-sensitive components, but also
components that process important assets (e.g. virtual cur-
rency). For example, Figure 1 shows an implementation of
a function implementing a form of role based access con-
trol, which checks if the current user has a certain permis-
sion passed as an input argument. The permission check
can be disabled by a MATE attacker, who modifies the code
such that line 9 always returns true. Another domain where
checking pure functions can be effective is the financial do-
main. For instance, Figure 2 shows an example where a MATE
attacker tampers with the upper part of the code that calcu-
lates the sum of a set of financial transactions. The attacker
can add a rounding function, as seen in Figure 2 bottom part
(line 5), that “leaks” small amounts of money to his account.
Our approach will detect such a tampering attack. How-
ever, our approach will not detect tampering attacks which
do not affect the return value of the function being attacked,
e.g. disabling or adding a print statement. Also applying our
approach to functions with side-effects may cause unwanted
application behavior.

The implementation presented in this paper, identifies unau-
thorized modifications to programs, such as the one from
Figure 1, and reacts via a certain response mechanism (e.g. stop-
ping program execution). State inspection is performed by:

1http://www.ollydbg.de/
2http://ilspy.net/
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1 public bool HasPermission(string reqPermission){
2 bool bFound = false;
3 foreach (UserRole role in this.Roles){
4 bFound = (role.Permissions.Where(
5 p => p.PermissionDes == reqPermission) > 0);
6 if (bFound)
7 break;
8 }
9 return bFound; // replace by return true

10 }

Figure 1: Permission check example.4

1 public float sum(float [] arr){
2 float sum = 0;
3 for (int i = 0; i < arr.Length; i++){
4 sum += arr[i];
5 }
6 return sum;
7 }

1 public float sum(float [] arr){
2 float sum = 0;
3 for (int i = 0; i < arr.Length; i++){
4 // subtracts 0.00005
5 arr[i] = round(arr[i]);
6 sum += arr[i];
7 }
8 return sum;
9 }

Figure 2: Calculation tampering example.

(1) generating a set of input-output pairs denoted T , for a set
of deterministic functions in the program, then (2) making
calls to these functions during runtime using inputs from T
and (3) checking if the outputs of the function match the out-
puts in T corresponding to the given input. If the output of a
function f does not match the expected output from T , then
we assume that f has been modified by a MATE attacker.

This paper makes the following contributions:

• Presents the design and implementation of StIns4CS, a
tool that adds tamper-detection via state inspection to
programs written in the C# language 3.

• Proposes using symbolic execution to generate the set
of input-output pairs for a certain set of functions.

• Presents an evaluation of the performance and stealth
of StIns4CS with various response mechanisms.

• Proposes a way to increase the stealth of the response
mechanism by degrading results.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the design and implementation of StIns4CS.
Section 3 presents the evaluation of StIns4CS, w.r.t. both per-
formance and effectiveness against attacks. Section 4 presents
related work. Finally, we will conclude the paper in Section
5 and discuss possible directions of future work.

3https://github.com/tum-i22/stins4cs
4http://www.codeproject.com/Articles/875547/Custom-Roles-Based-
Access-Control-RBAC-in-ASP-NET

1 // Create an instance of the target class
2 A instance = new A();
3 // Invoke the checked function "F1"
4 var output = instance.F1();
5 // Compare against known value
6 if (output != expectedValue){
7 callResponse();
8 }

Figure 3: Guard example.

2. DESIGN AND IMPLEMENTATION
This section presents the design and implementation of

StIns4CS, including a new response mechanism to raise the
bar against pattern matching attacks.

2.1 Code Guard Networks
StIns4CS protects source code by adding guards, each con-

sisting of a few lines of code, illustrated in Figure 3. Each
guard is added to one function which is called a checking
function. Guards are invoked during run-time execution of
the function in which they reside. They are responsible for
detecting if the code of another function (called checked func-
tion) has been tampered with. The guard code in Figure 3
starts by creating an instance of the class (A) in which the
checked function resides (line 2). Then, it calls the checked
function F1 (line 4). Guards compare the return value of the
checked function against a precomputed expected value (line
6). If the values are different then a response mechanism is
invoked (line 7).

Let each function that contains a guard, be a node in a
directed graph. Arcs in this graph are added starting from
each checking function to its corresponding checked func-
tion. Since the same function could be both checker and
checked, there may be cycles in the graph. We call this graph
a guard network. The idea of creating a network of code guards
was presented by Chang & Atallah [2]. Their concept, called
code introspection, is based on checking the static representa-
tion of the program, i.e the code. The downside of code in-
trospection is its stealthiness, since it is not common to have
program read their own code. Therefore, it is relatively easy
to identify guards that use code introspection even if the pro-
gram is heavily obfuscated [17], compared to the approach of
state inspection, which we use in this paper.

An example of a guard network is illustrated in Figure 4,
where the functions are A.F1, which checks B.F2, which checks
C.F3, which checks D.F4, which checks A.F1. The advan-
tage of a guard network which consists of strongly connected
components (i.e. each node is reachable from every other node),
is that all functions are being checked by all other functions
in that component. Therefore, if an attacker tampers with
any of the functions in a strongly connected component, this
modification is detected when one of the functions in that
component is executed.

The number of nodes in a strongly connected component
(called component size) is configured by the user of StIns4CS.
For instance the component size in Figure 4 is equal to 4. In
section 3 we will see how this configuration affects both the
level of protection and performance of applications.

2.2 Stack Inspection
One problem with the idea of creating networks of guards



Figure 4: Guard network consisting of 4 functions.

1 String stack = Environment.StackTrace;
2 if (!stack.contains("A.F1")){
3 A instance = new A();
4 Out = instance.F1();
5 if (out != expectedValue){
6 callResponse()
7 }
8 }

Figure 5: Stack inspection solution

that contain cycles as the example from Figure 4, is that it
may lead to an infinite sequence of checks, that will eventu-
ally cause an application crash due to a stack-overflow error.
This problem could be solved in multiple ways, e.g. a global
variable could be added as a flag indicating when a function
call is performed by a checker. In this case other checks can
be stopped by verifying this flag. However, an attacker who
is aware of the implementation of StIns4CS, could identify
this global flag and always set it such that no checks would
ever be performed. Another problem with this solution is
thread safety. Any parallel threads will not be tested since
the flag will be set as busy.

We propose an alternative solution by inspecting the call
stack before executing a guard. If the same function appears
twice on the call stack, then we avoid performing the check,
because a cycle was detected. Figure 5 shows a snippet of
the checker with this solution. A stack inspection statement
is added to each check (line 2), this statement ensures that the
checked function is not already on the stack. The rest of the
check line 3-8 is the regular check code. This solution helps
in breaking guards cycles, but the downside is that for some
cases (e.g. pairs of mutually invoking functions), checks will
not be carried out.

Since all code guards perform stack inspection, it may seen
as a single point of failure. However, our implementation
replicates the (compact) code for stack inspection for all in-
dividual guards. As shown in Figure 5, each guard first calls
Environment.StackTrace or System.Diagnostics.-
StackTrace or any other methods, to obtain a string rep-
resentation of the stack. Afterwards it searches if the func-
tion to be checked is within this string. One way of attack-
ing the stack inspection is to hook all the library calls which
can be used to obtain a string representation of the stack and
make sure that the function always returns a string contain-
ing the name of the function to be checked. Our current im-
plementation cannot defend against function hooking. How-
ever, multiple types of hooking can be detected in numerous
ways [13], which is complementary to this work. Moreover,
the MATE attacker cannot hook any function calls in stack in-
spection statements, because s/he would break the function-

Figure 6: Steps of transformation

ality of other parts of the application which also use those
functions. This is what would happen if the MATE attacker
hooked the (contains()) function on line 2 of Figure 5 such
that it always returns true. Such an attack will affect the be-
havior of all the code statements that are using contains()
on string variables, which we assume is commonly used in
any program. Another way of attacking stack inspection is
to add a statement that appends the name of the function in
the if-statement on line 2 of Figure 5, to the string assigned
in line 1. However, this is not a genuine “single point of fail-
ure”, because the MATE would have to find all of the guards
and add such a statement to each of them.

2.3 Code Transformation Workflow
In this section we describe the workflow of how StIns4CS

transforms C# source code. The 5 steps of the workflow are
shown in Figure 6. The first step analyzes the static code
(subsubsection 2.3.1) to gather information about the code,
e.g. the functions names. Next, a network of check relations
is generated (subsubsection 2.3.2). In the third step the asser-
tions are generated (subsubsection 2.3.3). Next, the checkers
are finalized and added to the code (subsubsection 2.3.4). Fi-
nally, the response mechanism is inserted into the code (sub-
subsection 2.3.5). We use the Roslyn open-source C# compiler
framework, to process the source code in all of the 5 steps of
the workflow 5,6.

2.3.1 Static code analysis
The aim of this step is to determine all the namespaces,

types, functions, properties (members that provide a flexible
mechanism to read write data in C#), fields in the source code
given as input to StIns4CS. All classes in the source code are
traversed to collect information about each function. A data
structure of all the public functions is maintained. Informa-
tion about return types, parameters, method visibility (pub-
lic, private), comments and annotations is stored for use in
the following steps.

2.3.2 Checker network generation
After analyzing the code, random subsets of functions are

chosen. These subsets will form strongly connected compo-
nents in the guard network, as displayed in Figure 4.

In this step we must account for functions that depend on
the state of the application during run-time and side effects
of functions. We do this through annotations [16] added by
the developer of the C# program and/or the user of StIns4CS,

5https://github.com/dotnet/roslyn
6https://roslyn.codeplex.com/



Figure 7: Steps of creating checking networks

which exclude such methods from being used in the runtime
assertions.

Figure 7 shows the steps of creating checking networks.
In the top-left part of the figure we have the list of original
functions from the source code. Firstly, we create a randomly
shuffled copy of the list of original functions (upper-right of
Figure 7). Secondly, we partition into lists of size less or equal
to component size (n), this number is chosen by the user. Fi-
nally, each function from the resulting lists checks the follow-
ing function in the list and the last function checks the first
function in the list. This leads to two four-nodes networks in
our example from Figure 7 (bottom).

2.3.3 Method assertion generation
This step generates the challenge and expected result using

an automated unit tests generator, based on symbolic execu-
tion, developed by Microsoft, called Pex [9, 12, 20, 21]. Uti-
lizing Pex for this step is effective, because Pex tries to cover
all the branches of the code. Pex usually generates multiple
test cases for the same method, we use the last one, which is
generally non-trivial. However, we could easily extend the
current implementation, to use all of the generated test cases
across multiple checks.

Although Pex tries to provide help in creating instances of
the classes that are checked, there are cases where Pex cannot
achieve this goal due to complexity of the code. For example,
if the target class has an interface as a constructor parameter,
then Pex will not be able to pick an implementation of that
interface to use for the instantiation. To overcome such cases,
StIns4CS will create a factory class that can help in creating
those instances.

2.3.4 Checker creation and insertion
Using the list of methods and code information from the

first step of the workflow in Figure 6, the checker network
from step two, and the test cases (input-output pairs) from
step three, the checking code is created in this phase. The
part of the code that is generated, as seen in Figure 3, is as
follows:

• Code to create an instance of the target class (line 2).

• Invoking the target method and comparing the result
to the expected value (line 4-6).

• Calling the response mechanism (line 7).

After generating this code snippet, it is inserted at the beg-
ging of the checking method body.

2.3.5 Responder insertion
Intuitively, response mechanisms punish misbehaving users.

Punishment can be performed by, for instance, crashing the
system or halting the execution of the application. In general,
manual and application-specific techniques have been used
to add responders and the focus of the research was to detect
the tampering. Tan et al. [19] propose a tamper-response sys-
tem that raises the bar of detecting the checkers, by introduc-
ing delayed, probabilistic failures in a program. The main
technique is to corrupt certain parts of the program’s inter-
nal state at well chosen locations. Forcing the program either
to fail or exhibit degraded performance (deliberate injection
of programming bugs like “array out of bounds” errors).

Sometime, the punishment mechanism itself leads attack-
ers to discover the protection. However, we argue that re-
sponse mechanisms can be used to monitor tampering acts.
To achieve this, response mechanisms can be logging agents
that gather information about the tampering like, cracked
features, time and location. Such information can help soft-
ware producers in their efforts to harden their protection schemes.
Also, this advances the efforts of creating accountable sys-
tems where misbehaving users can be detected.

The response in StIns4CS is configurable, i.e. the user se-
lects the action that should be triggered when tamper is de-
tected. The mechanisms that are supported by StIns4CS are:

• Immediate crash, which terminates the process and gives
the underlying operating system the specified exit code.

• Random delayed crash, which sets a timer to exit the
application. The interval is set to a random number of
seconds. However, the user can configure the upper
bound of the interval.

• Remote logging, using log4net7. Log statements are
sent to a remote server. The format of the log state-
ments can be set by the user.

• Do nothing.

Response mechanisms can be mixed in any way using a
weighting factor, for example 20% do nothing, 80% imme-
diate crash. This ability to mix response mechanisms raises
the bar against attackers who want to discover the checking
statements by backtracking analysis, starting from the point
where the response was observed.

2.4 Primitive combination
We introduce another kind of response mechanism called

primitive combination, along the 4 mechanisms described pre-
viously. However, the current implementation only works
for functions that return primitive data types. Primitive com-
bination operates by sabotaging the returned values of func-
tions, rather than invoking a direct action. This is done by
7https://logging.apache.org/log4net/



1 public bool isEmpty(string s) {
2 bool testbool = s.Any();
3 return testbool;
4 }

1 public int getLength(string s) {
2 int length = s.Length;
3 return length;
4 }

Figure 8: Functions to be used for primitive combination.

1 public bool isEmpty(string s) {
2 A instance = new A();
3 int i = instance.getLength("test");
4 bool testbool = s.Any();
5 return testbool && (i == 4);
6 }

Figure 9: Primitive combination of functions in
Figure 8.

“incorporating” the result of the checked method with the
return value of the checking method. Primitive combination
removes: (1) the comparison of the result of the method call
with the expected value (line 6 in Figure 3) and (2) the direct
call to the response mechanism (line 7 in Figure 3), which
improves the stealth of the check. This association also pro-
duces different forms of combinations based on the differ-
ent data types. So, primitive combination improves the protec-
tion level by adding diversity to the protection code. Which
thwarts generalizing an automatic pattern matching attack
that depends on patterns targeting the direct calls to the re-
sponse.

The concept is to combine results of two functions: the check-
ing and the checked functions, given that they both return
primitive type data. The combination is implemented in a
way that affects the checker’s result, only if the result of the
checked function is not as expected. Thus, after combination,
the checker function will return wrong values or perhaps
throw exceptions in the case of tampering with the checked
function. The primitive types of C# are: byte, sbyte, int, uint,
short, ushort, long, ulong, float, double, decimal, char, bool,
string 8. The first column of Table 1 lists the possible combi-
nations between C# primitive types and the proposed com-
bination of them. The second column of Table 1 indicates the
return value of the checker function, the third column indi-
cates the return value of the checked function and the fourth
column indicates how the return value of the checker (de-
noted rvChecker) is combined with the actual return value
of the checked function rvCheckedact, depending on the ex-
pected return value of the checked function rvCheckedexp.

Example: The checking function returns boolean and the
checked function returns integer as seen in Figure 8. The re-
sult of combining these functions is seen in Figure 9. In Fig-
ure 9, lines 2-3 are similar to the normal check. Line 5 shows
the actual combination, where we create a new return state-
ment that combines the results based on Table 1.

8https://msdn.microsoft.com/en-us/library/ms228360(v=vs.90).aspx

2.5 Limitations of StIns4CS
The current implementation of StIns4CS has some limita-

tions, which we describe in this section. Most of the limita-
tions are technical, and can be eliminated as part of a future
work.

Firstly, StIns4CS does not transform classes with function
overloading. Methods with the same name in the same class
will not be transformed as expected. The main reason behind
this limitation, is the fact that Pex generates a unique name
for the method, and this makes it hard to directly map to the
source code as the case with other functions. The workaround
is to annotate methods with the same name to be ignored.
The solution is to rename methods having the same name in
the same class by doing a preprocessing of the input source
code.

Secondly, inner classes are not supported by StIns4CS, any
inner class will not be transformed. Inner classes are copied
to the resulting code, but they will not be tamper-proofed.
Currently, the first public class in a source file will only be
transformed. This limitation can be eliminated by adapting
the tool to account for inner classes. For simplicity, we built
the tool under the assumption that each source file will con-
tain one class.

Lastly, the self-checking approach that StIns4CS follows is
based on verifying the return value of the function. The cur-
rent implementation only verifies pure functions. StIns4CS
does not verify output parameters of functions. These param-
eters should also be verified similarly to the return value.

3. EVALUATION
For the purpose of evaluating the effectiveness of StIns4CS,

we analyzed three aspects of our technique. Firstly, the effec-
tiveness against attacks, i.e. we measure how well the protec-
tion holds against manual static and dynamic code-tampering
attacks. Secondly, the stealth of guards inside the code, which
is a measure of how well the checkers blend with the origi-
nal code against pattern matching attacks. Lastly, the cost of
checking, which measures the overhead added to the appli-
cation by the checkers.

Experiments, were performed on three test sets of C# code:

1. Primitive Apps: we developed this test set to showcase
the primitive combination feature of StIns4CS. It contains
different functions that return different types of data
values, like integer, double or string. The complete
code base contains 12 methods written in 161 lines of
code.

2. Pex samples: a collection of simple code snippets of-
fered by the Pex project documentation 9. This code
base contains some known implementation of different
algorithms such as: BinarySearch, QuickSort and other
10 algorithms. Each algorithm is implemented in its
own class. The advantage of these samples is that they
contain different useful functions from different areas.
A simple graphical user interface was added to the sam-
ples, to make it easier to run the samples and invoke
them. The complete code base contains 14 methods
written in 603 lines of code.

3. SGML Reader 10 : a C# .NET library for parsing HTM-
L/SGML files using the XmlReader API. This is a real-

9http://research.microsoft.com/en-us/projects/pex/documentation.aspx
10https://github.com/MindTouch/SGMLReader



Table 1: The possible combinations between C# primitive types
Combination
type

Checker
function
return type

Checked
function
return type

Combination of return values

Numeric-Numeric Numeric Numeric rvChecker + (rvCheckedexp − rvCheckedact)
Numeric-Bool Numeric Bool rvChecker + (int)(rvCheckedexp ⊕ rvCheckedact)
Numeric-Char Numeric Char rvChecker + (rvCheckedexp − rvCheckedact)
Numeric-String Numeric String rvChecker + (int)(rvCheckedexp 6= rvCheckedact)
Bool-Numeric Bool Numeric rvChecker ⊕ (rvCheckedexp 6= rvCheckedact)
Bool-Bool Bool Bool rvChecker ⊕ (rvCheckedexp 6= rvCheckedact)
Bool-Char Bool Char rvChecker ⊕ (rvCheckedexp 6= rvCheckedact)
Bool-String Bool String rvChecker ⊕ (rvCheckedexp 6= rvCheckedact)
Char-Numeric Char Numeric (char)(rvChecker + (rvCheckedexp − rvCheckedact))
Char-Bool Char Bool (char)(rvChecker + (int)(rvCheckedexp ⊕ rvCheckedact))
Char-Char Char Char (char)(rvChecker + (rvCheckedexp − rvCheckedact))
Char-String Char String (char)(rvChecker + (int)(rvCheckedexp 6= rvCheckedact))
String-Numeric String Numeric rvChecker.Substring((rvCheckedexp − rvCheckedact))
String-Bool String Bool rvChecker.Substring((int)(rvCheckedexp ⊕ rvCheckedact))
String-Char String Char rvChecker.Substring((rvCheckedexp − rvCheckedact))
String-String String String rvChecker.Substring((int)(rvCheckedexp 6= rvCheckedact)

world application contains 22 public methods and a to-
tal of 4953 lines of code.

3.1 Effectiveness against code tampering
Here we aim to verify how the three test sets of C# code ap-

plications protected using StIns4CS respond to either static
code tampering or dynamic memory tampering. Moreover,
we show how guards can be disabled manually, and the ef-
fect of disabling guards.

3.1.1 Input parameters of StIns4CS
For this experiment, we varied the input parameter compo-

nent size (denoted n) of StIns4CS by giving it values: 2, 4, 8
and 16. The component size determines the number of checks
that will be triggered by each execution of a checker function.
This affects when tampering is detected, i.e. a larger value
of component size results in a larger number of functions that
could detect code tampering of another function. For exam-
ple, if the component size is 2, then we have pairs of functions
that check each other.

The response mechanism was set to immediate crash be-
cause it is deterministic (unlike randomly delayed crash), and
can be easily noticed during testing (unlike primitive combi-
nation). Although we acknowledge that some responses are
harder to detect by an attacker (e.g random delayed crash,
primitive combination), we consider the worst case for the
defender, in this experiment.

3.1.2 Static tampering attack
The steps to implement the static tampering attack are as fol-

lows:

1. Decompile the executable of the C# application using
ILSpy 11.

2. Edit the decompiled code by using Reflexil a .NET as-
sembly editor 12. A tampering attack was performed by
modifying an arithmetic operators used by a checked

11http://ilspy.net/
12http://reflexil.net/

function, e.g. replaced an integer addition by a multi-
plication.

3. Run the C# application again with the patched code
and check how and when the program reacts to the
tampering.

3.1.3 Dynamic tampering attack
The steps to implement the dynamic tampering attack are as

follows:

1. Attach a debugger to the running application. We have
used the Visual Studio 2015 debugger 13.

2. Find a point in the code loaded in process memory which
could be the target of a tampering attack.

3. Pause the debugger and manipulate the memory where
the targeted code is located. For instance, we located
the x86 assembly instruction inc and replace it with a
(nop) instruction.

4. Continue debugging and check behavior of the patched
program.

3.1.4 Attack results
By repeating the previous static and dynamic tampering

attacks several times, we found that modifying checked func-
tions is discovered by at least n-1 other functions. In other
words, the guards will detect tampering when any of the
functions in a checking network is invoked. In addition, we
may have cases where different connected components are
linked by function calls in the original (un-protected) code.
This leads to having even more that n-1 functions which can
detect code tampering attacks.

3.1.5 Disabling guards
An interesting case for both the static and dynamic tam-

pering attacks is to target the code of guards such that they
are disabled, i.e. can no longer detect tampering of the checked

13https://msdn.microsoft.com/en-us/library/sc65sadd.aspx



Table 2: The regular expressions used for checking stealth
of code guards.

ID Regular expression syntax
Regex1 if\s*\(((?!\s*\{).+)\)\s*\{?(

.|\s)*?\}?
Regex2 if\s*\(!Environment.StackTrace

((?!\s*\{).+?)\)\s*\{?(.|\s)*?\}?
Regex3 (\s*Environment.Exit)

function. We disabled one guard in a strongly connected com-
ponent and verified if other guards are still working. We
found out that disabling one guard is possible for a MATE
attacker performing a static or dynamic attack as described
in subsubsection 3.1.2, respectively subsubsection 3.1.3.

MATE attacks which disable a guard by modifying its code
(see Figure 3) to disable the comparison on line 6 or the call
to the response mechanism on line 7, are not detected by
our implementation. If one guard is disabled, the rest of the
checking function in the same checking network still detect
tampering of other code. Depending on the topology of the
network and the location of the disabled guard, the effec-
tiveness is reduced, because some cycles are broken, which
leads to unconnected components. However, this attack is
only possible if the attacker locates the checks, which is why
stealth of the checking mechanism is important. Note that
if the primitive combination response mechanism is employed,
then lines 6 and 7 from Figure 3 are not needed, as we saw
in the example from Figure 9. In subsection 3.2 we will see
different ways of how we can improve the stealth of guards.

3.2 Stealth of the checking code
For the purpose of evaluating the stealth of the guards,

we implemented a pattern matching attack against code pro-
tected with StIns4CS. For the purpose of the stealth evalua-
tion we use the Pex samples described in the beginning of
section 3. This attack consists of the following steps:

1. Decompile the executable of the C# application using
ILSpy.

2. Locate guards by traversing the decompiled files and
parses the content to verify the existence of the pre-
defined regular expressions (regex) from Table 2.

3. Output the number of occurrences, the line where the
occurrence started and the size (in characters) of the
match.

Figure 10 shows an example, where the script found 4 oc-
currences in the C# source code file called BinarySearch.cs, of
the regular expression Regex1 from Table 2. For example,
line 4 specifies the line number of the first occurrence (Line:
12) and the length of the match (Length: 15).

3.2.1 Test parameters
We verified the existence of three different patterns, shown

in Table 2, in the protected code. The first pattern targets
any general if-statement (Regex1). The second regular ex-
pression (Regex2) targets any if-statement which contains a
call to Environment.StackTrace, i.e. the stack inspection
operation we use in guards to prevent stack overflow errors
(see subsection 2.2). The third regular expression (Regex3)
targets a specific response mechanism, namely immediate

1 Result For: pexsamples-regex1 matched with regex
2 if\s*\(((?!\s*\{).+)\)\s*\{?(.|\s)*?\}?
3 4 matches found in: BinarySearch.cs
4 Line: 12 Length: 15
5 Line: 20 Length: 16
6 Line: 33 Length: 18
7 Line: 40 Length: 19

Figure 10: A sample of the report generated by the
matching script.

crash. However, Regex3 could be easily extended to also
target random delayed crash and remote logging. By testing
these three patterns we cover the parts that can be targeted
with a pattern matching attacks. Other parts of the checker
are dynamic parts and they blend in with the code, like class
instantiation, or method invocation.

We tested different versions of the protected code, by vary-
ing two aspects that affect the code of the guards. The first
aspect is, whether or not to use the primitive combination as a
response mechanism. The second is, whether or not to ob-
fuscate the code using a virtualization obfuscation tool for C#
source code called VOT4CS14. We used this second aspect to
measure the extra protection that obfuscation can bring to
our implementation.

3.2.2 Test procedure
For each test case in Table 3, the following procedure was

followed:

1. Generate protected and possibly obfuscated code us-
ing the settings indicated in the first 3 columns from
Table 3.

2. Build the source code, generate the binary, for example
a class library (DLL).

3. Decompile the binary code into source code using IL-
Spy.

4. Run the pattern matching script against the decompiled
code for Regex1, Regex2, and Regex3.

3.2.3 Tests results
For each version of the protected code we calculated accu-

racy of matching as a metric to show the level of matching a
regular expression can achieve over the protected code. It is a
ratio between the number of correctly matched checks (true
positives and true negatives) to the total number of checks
added to a project:

Accuracy =
TP + TN

TP + TN + FP + FN
,

where TP is the number of true positives, which represents
the correctly matched checks. TN is the number of true nega-
tives, which represents the number of not-matched non-checks
portions of code. FP is the number of false positives, which
represents the incorrectly matched checks. FN is the number
of false negatives, which represents the incorrectly missed
checks.

The results we obtained are plotted in Figure 11. In Test
case 1, the attack identified two parts of the guard, that are

14https://github.com/tum-i22/vot4cs

https://github.com/tum-i22/vot4cs


Table 3: Test cases settings and their accuracy percentage
Name Primitive_Combination Virtualization Regex1 Any

if-statement
Regex2 Stack
inspection if

Regex3
Response call

Test case 1 No No 15 100 100
Test case 2 YES No 15 100 50
Test case 3 No YES 0 0 100
Test case 4 YES YES 0 0 50
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Figure 11: Comparison of accuracy of matching attacks.

vulnerable to pattern matching attacks. The first part is the
stack inspection statement, while the second part is the re-
sponse statement. For the response statement, we have al-
ready presented ideas that improve the stealth of this part.
Namely, using primitive combination, which removes the part
of comparing expected and actual return values along with
the response statement. This can be seen in the results of
Regex3 in Test case 2, where 50% of the guards were trans-
formed using primitive combination. On the other hand, the
vulnerability of stack inspection motivates the idea of obfus-
cating the guards. Therefore, we have carried out an exper-
iment to evaluate the protection that virtualization obfusca-
tion can bring. The results in Test cases 3 and Test case 4 show
that pattern matching of Regex1 and Regex2 drop to 0. The
50% of guards that can still be identified by Regex3 in Test
case 4 could not be transformed using primitive combination
because their return values are not of primitive types. This
motives the need for future work in extending the idea of
primitive combination to non-primitive data types, i.e. objects.

3.3 Cost of checking
Since augmenting the code with guards adds function in-

vocations to the program during run-time, the performance
of the C# application is affected. The exact performance degra-
dation depends on the performance of the input code itself.
The component size input parameter of StIns4CS, also affects
the overhead, because it controls the number of added calls
for each function invocation.
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Figure 12: Memory allocation impact for SGML Reader

3.3.1 Memory and execution time overhead
For measuring the impact on memory allocation and exe-

cution time, we randomly selected one function called Move-
ToNextAttribute from the SGML Reader application and ex-
ecuted it 10 times. Each value recorded is the plots given
in this section are obtained by averaging 10 readings. Plot
Figure 12, shows the memory allocation values, for the com-
ponent size input parameter varying from 0 to 16 (x-axis of
Figure 12). As seen in Figure 12, memory allocation is di-
rectly proportional to the number of nodes in the strongly
connected components. The component size represents the
number of checks that are invoked when a function is exe-
cuted, and hence more calls will lead to more memory con-
sumption.

Similarly, plot Figure 13 shows the execution time for the
same function with different values for the component size in-
put parameter on the x-axis. As opposed to memory alloca-
tion, execution time is logarithmic with respect to the compo-
nent size. The number of nodes in the checking network rep-
resents the number of checks that are invoked when a func-
tion is executed, and hence more calls will lead to a higher
execution overhead.

As expected, execution time and memory allocation in-
crease with the component size, for a given input. Unless
StIns4CS is configured to ignore functions that can be con-
sidered “hot code”, there is no guarantee on how much more
memory or execution time, a guard will consume.

3.3.2 Code size
The transformation workflow adds lines of code to the orig-

inal code base. Unlike previous performance measures, the
size of code is not affected by the component size, because each
function in the selected list of methods to be protected will
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contain exactly one code guard, regardless of the component
size. The size of the resulting code depends on the number
of functions that are selected for protection by StIns4CS. Fig-
ure 14 shows the increase in file size for each of the test sets
of C# code.

4. RELATED WORK
Since in this paper we implemented both a defense mech-

anism for self-checking and an attack on it, the related work
is divided accordingly, into defenses and attacks.

4.1 Defenses
Chang and Atallah [2] propose building a network of code

regions, where a region can be a block of user code, a checker,
or a responder. In this method checkers check each other
in addition to user code by comparing a known checksum
of piece of code to runtime checksum of the same code. If
the checker has discovered that a region has been tampered
with, a responder will replace the tampered region with a

copy stored elsewhere. An important aspect of this algo-
rithm is that it is not enough for checkers to check just the
code, they must check each other as well. If checkers are not
checked, they are easy to remove. Horne et al. [10] build on
top of [2], by hiding the expected (precomputed checksum)
value which is easy to identify, because of its randomness.
The idea is to construct the checksum function such that un-
less the code has been tampered with, the function always
checksums to a known number (usually zero). Having this
function allows to insert an empty slot within the region un-
der protection, and later give this slot a value that makes the
region checksum to zero. The technique of Horne et al. [10]
randomly places large numbers of checkers all over the pro-
gram, but makes sure that every region of code is covered
by multiple checkers. To minimize pattern-matching attacks,
this method describes how to generate a large number of
variants of lightweight checksum functions. The disadvan-
tage of the code introspection approach used by both [2] and
[10] is its stealthiness, because code that reads itself is sel-
dom used for other purposes. StIns4CS uses state-inspection
which is not subject to this disadvantage.

Chen et al. [3] propose an idea called oblivious hashing, where
the checksum value is computed over the execution trace rather
than the static code. The checksum can be computed by in-
serting instructions that monitor changes to variables and
the execution of instructions. A problem with automating
this technique, is that it is hard to predict what side effects a
function might have. It might destroy valuable global data
or allocate extraneous dynamic memory that will never be
properly freed. Furthermore, there is a problem with non-
deterministic functions that depend on the time of day, net-
work traffic, thread scheduling, and so on, because they do
not have a fixed output that can be checked. This technique
also faces the issue of automatically generating challenge data
(test inputs) that most of the code of a function. StIns4CS
implements a variant of oblivious hashing therefore it also
suffers from the same disadvantages. However, we address
the last issue by proposing the use of symbolic execution in
order to generate the challenge data.

Jacob et al. [11] propose an approach which depends on a
unique property of the x86 instruction set architecture (ISA).
The x86 ISA has a variable instruction length (1-15 bytes) with
no alignment, this means instructions can start at any offset
in the code. This results in the possibility of having overlap-
ping or even nested instructions. So the basic idea will be
that when a block is executed it computes a checksum of an-
other block. For the purpose of protecting the code, we need
two blocks to share instruction bytes. Having two blocks
to share instruction bytes, can be achieved by interleaving
the instructions and inserting jumps to maintain semantics.
The advantage in this technique is that the code checksum-
ming computations will not require reading the code explic-
itly. The disadvantage is mainly the performance overhead
of the added instructions. Jacob et al. [11] report that the pro-
tected binary can be up to three times slower than the origi-
nal. Even though this overhead may be acceptable in many
circumstances, this technique cannot be applied to programs
that execute on the Common Language Runtime such as pro-
grams written in C#.

Cappaert et al. [1] propose a technique that hinders both
code analysis and tampering attacks simultaneously through
code encryption. During run-time, code decryption can be
done at a chosen granularity (e.g. one function at a time),



when that part of code is needed at run-time. This technique
performs integrity-checking of the code by using it to com-
pute the keys for decryption and encryption. The basic idea
is using the checksum value of a function, as the decryption
key of another function. The advantage of this technique
is that the encryption key is computed at run time, which
means the key is not hard-coded in the binary and therefore
hard to find through static analysis. The disadvantage of this
technique is the run-time overhead as well as the its stealth.

Martignoni et al. [14] and Seshandri et al. [18] propose es-
tablishing a trusted computing base to achieve verifiable code
execution on a remote un-trusted system. The trusted com-
puting base in the two methods is established using a ver-
ification function. The verification function is composed of
three components: (i) a checksum function, (ii) a send func-
tion, and (iii) a checksum function. However, the main dif-
ference between the two methods is the checksum function.
In the work of Martignoni et al. [14] generates a new check-
sum function each time and sends it encrypted to the un-
trusted system. In the work of Seshandri et al. [18], the check-
sum function is known a priori and the challenge issued by
the dispatcher consists in a seed that initializes this func-
tion. Since the remote component in both methods knows
precisely in which execution environment the function must
be executed and knows the hardware characteristics of the
un-trusted system, it can compute the expected checksum
value and can estimate the amount of time that will be re-
quired by the un-trusted system to decrypt and execute the
function, and to send back the result. Since Intel x86 archi-
tecture, the architecture for which the approach of Seshandri
et al. [18], was developed, is full of subtle details, researchers
have found ways to circumvent the remote component. Also,
a limitation of the approach of Martignoni et al. [14], is the
impossibility to bootstrap a tamper-proof environment on
simultaneous multi threading (SMT) or simultaneous multi
processing (SMP) systems. On such systems, the attacker can
use the secondary computational resources (parallel threads
for example) to forge checksums or to regain control of the
execution after attestation.

4.2 Attacks
Pattern matching attacks as we have described in Section 3

are not the only possible attacks against self-checking de-
fenses. Wurster et. al. [22] defeated all approaches based
on code introspection by using a modified operating system.
The patched operating system replicated memory pages con-
taining program code, so that data reads and instruction fetches
at the same virtual address access different physical addresses.
The attack created a virtual Harvard memory architecture
with distinct instruction and data memories. Self-modification
of the code was used in [7,15] to protect self-checking against
the memory split attack.

Qiu et al. [17] proposed another attack on code introspec-
tion approaches using dynamic taint analysis. The attack
relies on the fact that introspection based approaches read
their own code, process it, compare it to some value and
then perform a conditional jump based on the result. There-
fore, they propose tainting the code segment in memory and
tracing the program during execution. Afterwards, they de-
tect which branches depend on tainted data, because those
branches are the checkers which must be bypassed by an at-
tacker. Since our approach is not based on code introspection
it is not vulnerable to any of the attacks presented here.

5. CONCLUSIONS
This paper presents the design and implementation of a

self-checking tool called StIns4CS, which protects applica-
tions against unauthorized modification using state inspec-
tion. We propose using symbolic execution to generate the
set of input-output pairs needed for state inspection. We also
present a way of improving the stealth of state inspection by
a technique we call primitive combination. We performed an
case-study based evaluation using several software samples,
to validate the effectiveness and efficiency of StIns4CS.

For the purpose of the effectiveness evaluation, we used
static and dynamic analysis attacks, that aim to either tam-
per with the protected application, or discover the locations
of the checking mechanism. The effectiveness evaluation in-
dicated that code protected by StIns4CS is effective against
tampering attacks on the original code. Moreover, increasing
the size of the strongly connected components of functions
which check each other, increased the number of functions
that detect tampering and hence increase the protection level.

Stealth of the checking code is a critical aspect in the suc-
cess of any self-checking technique. During the effective-
ness evaluation we noted that stealth is important for rais-
ing the bar against pattern matching attacks, which aim to
disable checks. The concept of primitive combination we pro-
posed in this direction, is a promising start. However, there
is need for future work in order to extend this idea to objects.
Moreover, we also employed virtualization obfuscation and
showed that the stealth of the checks improves further.

Finally, our study also included a performance evaluation
of the protected applications, where we show a relation be-
tween how StIns4CS is configured and the performance of
the protected application. Although the impact of self-checking
using StIns4CS depends mainly on the nature of the code and
the performance of its own functions, the value of the compo-
nent size has an important impact on both memory and exe-
cution time.

Future work
One of the major findings during the stealth analysis of

the tamper-proofed code was the influence of stack inspec-
tion. This part of each checker is added as a way to prevent
stack overflow due to the cyclic relationship between check-
ers. This needs to be further studied to inspect other ways
of breaking cycles of execution in the checking network. One
possible idea is to extend the code analysis step to include in-
formation from the code call graph. The added information
can be used to find networks with the longest paths without
creating a cycle.

Primitive combination is an interesting to enhance the stealth
of the check. However, its application is conditioned by the
existence of two functions that return primitive type values.
An interesting path would be to study generalizing this con-
cept to apply it to other non-primitive types.
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