
© 2016 IEEE.
Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting /republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted compone nt of this work in
other works.

DOI: 10.1109/PIMRC.2016.7794845

https://doi.org/10.1109/PIMRC.2016.7794845

Dynamic Service Switching for the Medical IoT
Philipp Kindt∗, Daniel Yunge∗, Andreas Tobola†, Georg Fischer‡, Samarjit Chakraborty∗

∗Technical University of Munich (TUM)
†Fraunhofer Institute for Integrated Circuits (IIS)

‡Institute for Electronics Engineering, University Erlangen-Nurnberg (FAU)

Abstract—With the Internet of Things (IoT) becoming a reality,
power-efficient techniques are crucial to achieve sufficient battery
lifetimes. Whereas current medical IoT devices typically acquire
data with a constant quality, we propose an architecture that
dynamically adjusts the data quality adaptively based on the
current medical condition of the subject being monitored. Since
transmission and processing make up a large fraction of the
energy consumption, the reduction of the link traffic and pro-
cessing effort caused by such an adjustment results in a decreased
energy consumption of the devices. For example, if anomalies in
the monitored data are detected, the monitoring is performed
with an increased granularity and more exhaustive processing.
Further, not all data generated by the medical sensors needs to be
transmitted during all times. Only if certain events are detected,
the transmission of the complete data needs to be activated. In
this paper, we present a novel approach for body-worn medical
IoT devices. In particular, a generic, distributed architecture for
the power-management of the whole system, which is based on
dynamically switching services, is presented. We show that such
an architecture can reduce the energy-consumption of medical
sensors by up to 80% in real-world measurements.

I. INTRODUCTION

The society is aging in most industrial countries. For
example, more than a fourth of the population of Japan is
older than 65 years [1]. With the further increasing share of
elderlies, the effort a national economy has to spend on care
is expected to grow significantly. Because of this, and also
because it is perceived as more convenient, many people will
spend most of their retirement at home rather than in an old-
age home. To support a self-determined and yet safe life of
elderly people, smart tele-monitoring systems similar to the
one depicted in Figure 1 are being actively studied today. In
such a network, multiple sensors are located on a patients
body. We assume that this system is flexible, in a way that
the actual setup of sensors can be changed as needed. For
example, a mobile electrocardiograph (ECG) can be added if
needed in combination with an activity sensor, or sensors for
oxygen-saturation can be used for other patients. These devices
are connected wirelessly to a smartphone which establishes
the connection to the Internet using its 3G/4G interface. An
application-specific server which is managed by a care service
provider evaluates the data from the sensors. If the parameters
indicate an accident such as a fall or a medical incident such as
an abnormal heart rate, a physician is contacted or the person
is given a call to ask for his wellbeing.

Battery life and hence reducing the power-consumption is
a major challenge in the usability of such devices, since it is
unreasonable to have patients take off their on-body sensors

Fig. 1. Typical setup for a medical Internet of Things

for recharging them or to replace their batteries frequently. In
addition to the known power management techniques, for med-
ical IoT systems, there is additional domain-specific potential
for substantial power reductions. Current architectures assume
that the quality and amount of data recorded and transmitted
is constant. However, from a medical point of view, large parts
of this data or its quality are not required in many cases. For
example, consider an ECG sensor. Rather than sending the
whole waveform to the smartphone during all times to detect
arrhythmia on the server, in some situations, it is sufficient
to classify the QRS complex on the sensor and sending the
processed data with a certain period. Thereby, the amount of
data transmitted decreases and hence the energy consumption
both for the smartphone and the sensor is reduced. However,
as soon as arrhythmias or other anomalies are detected, the
physician might be interested in the ECG waveform and
therefore the transmission of the ECG needs to be triggered
dynamically. Moreover, motion artifacts often derogate the
validity of the ECG signals. Therefore, as soon as significant
motion is detected, the ECG sensor can be switched off to
save power.

Dynamically activating and deactivating services imposes
the need for an automated evaluation system of the data,
which autonomously detects certain events, triggers the ap-
propriate actions and, if required, presents small chunks of
pre-processed data to the medical personal. The features to be
attentive on depend on the individual patient and his specific
medical condition. Therefore, medical knowledge needs to
be incorporated into the decision system for each scenario
individually. Such an incident detection system can also be
extended towards making power-management decisions on-
line. To illustrate the techniques presented, we consider the
following scenario as a running example throughout the paper.

An elderly person often feels dizzy and therefore fell unex-
pectedly multiple times during walking. As a cause, taking into
account the medical history of the patient, the doctor assumes

a heart disease as a cause of the dizziness. Therefore, to verify
this assumption, whenever a fall or an abnormal heart beat is
detected, the ECG waveform is recorded and sent to the cloud
for the purpose of a later manual observation by the medical
doctor. Since frequent premature ventricular contractions can
lead to dizziness [2], the system uses the output of a beat
classifier (BT) [3]. In addition, an acceleration sensor detects
whether the persons rests or is in motion. If there is significant
motion detected, the ECG waveform is potentially invalid and
the ECG sensor is switched off to save power until the person
rests again. Further, in phases with significant motion, the
acceleration sensor switches to a mode in which its sends the
raw acceleration data to the phone. On the phone, the data
can be analyzed more thoroughly, since more computational
power is available, e.g., for performing fall detection [4] or
gait analysis [5], or a later offline analysis.

It needs to be pointed out that the actual setup of sensors and
the incidents to be attentive on is individual for a patient and
his diseases. In this paper, we propose a system architecture
that allows for such a flexibility. It is capable of detecting
suitable situations for updating the monitoring granularity
autonomously and taking the appropriate actions. Dynamic
rules, which are individual to the setup of sensors and the
medical background of a patient, are implemented throughout
the system in a distributed fashion. The main purpose of
these rules is – besides warning relatives and caregivers in the
case of emergency situations – trading monitoring granularity
against energy consumption in an optimized manner. The rules
can trigger the following actions, which have a significant
impact on the energy consumption:
1) Switching on/off virtual channels: The data recorded by
the sensors can be evaluated at different physical locations
of the system, viz. the sensor, the smartphone or the cloud.
Often, it is meaningful to only transmit the data which is
really of interest at the remote side and to carry out as much
preprocessing as possible on the sensors, as we will show in
Section III. To realize this, we define multiple virtual data
channels for each sensor, which are associated to different
amounts of local processing and traffic on the wireless links.
For example, an ECG sensor offers a raw data channel and
multiple channels for processed data, e.g. heart rate (HR), heart
rate variability (HRV) and an abnormal beat classifier (BT). If
no raw data is needed in the cloud, only e.g. the HR-channel
might be transmitted and therefore the traffic on the link and
the energy consumption is reduced.
2) Adjusting the Measurement Quality: Each data channel
has a quality parameter Q ∈ [0, 100] assigned to it. Its
interpretation is channel-specific and maps to concrete values
of the following low-level parameters: Sampling rate of the
raw data, measurement interval Tm (e.g., a value of the HRV
is transmitted every 2.5 minutes), transfer latency, computation
effort, quantization and others.

Such an approach is expected to scale well for larger number
of sensors and subjects, since a) the amount of data and
hence computation is reduced, b) processing is done where
it is most efficient and c) the technique is generic for a large

Fig. 2. Overview of our proposed architecture

range of different setups. While such optimizations have been
considered for some specific cases (e.g., in [6] the impact of
end-to-end-delay of the link on the energy consumption has
been studied, or in [7], a MAC protocol for medical data has
been presented which only sends packets if the values are ab-
normal), to the best of our knowledge, no holistic and generic
approach to exploit different service quality requirements
dynamically has been studied. Existing solutions are restricted
to static and simplistic rules (e.g., simple thresholds) for the
decision, thereby risking to miss important medical incidents.
An approach which scales for multiple setups, almost all
conceivable monitoring scenarios and patient individualities
requires new architectures and techniques. In this paper, we
for the first time propose a solution towards this, and make
the following contributions:
1) We propose a system architecture for the medical Internet
of Things, which adapts the monitoring granularity dynami-
cally to the current medical requirements for all conceivable
scenarios during runtime.
2) Using models and real-wold measurements, we evaluate the
potential energy savings of such a system. The results show
that significant amounts of energy can be saved by dynamic
service switching, e.g. 80 % of a mobile ECG or 62 % of an
acceleration sensor.

Besides energy savings, our proposed concept offers more
flexibility than current solutions. In addition, dynamic service
switching increases the privacy of the users, since data is only
transmitted to the cloud when it is really necessary.

The rest of this paper is organized as follows. In Section II,
we describe our proposed architecture and all of its compo-
nents in detail. Next, in Section III, we evaluate the potential
savings by results that we obtained from real-world measure-
ments, literature data and energy models. Finally, in Section
IV, we conclude our work.

II. SYSTEM ARCHITECTURE

A. Overview

An overview of our proposed system is given in Figure 2.
At the top, there are multiple sensors which collect health
data and transmit them via Bluetooth Low Energy (BLE) to a
smartphone. On the phone, there are two pieces of software.
The one is denoted as the aggregator. Its main purpose is
forwarding the data from the sensors to the next building block
and vice-versa. The other piece is the replication system which
is composed of two parts: One is located at the smart phone
(A) and one on an Internet server (B). Whenever a UMTS/LTE

connection exists, the replication system transmits the data
from side A to side B and vice-versa, while buffering it in
the meantime. On the other side, there are one or mutiple
application servers (AppServers) connected for evaluating the
data.

To be energy-efficient, each node contains a local power-
manager. It only has access to the information available on
the device it is located on and attempts to reduce its energy
consumption, as described below. In addition, there is a global
power manager which chooses a policy based on the (medical)
monitoring requirements. This policy is then implemented in
a distributed fashion. To achieve the necessary communication
among the nodes, we define multiple common interfaces which
are denoted as specSheets. In the following, we describe our
proposed system in detail, using the use-case described in the
previous section as a running example.

B. Sensors and virtual Channels

One physical node can be the source for different types of
data. First, it might contain multiple dedicated sensing devices
(e.g., an accelerometer and a gyroscope). Second, instead of
sending all the raw data to the cloud, it is in many cases more
energy efficient to extract and send certain parameters from the
raw data. For example, an ECG sensor can generate a raw ECG
waveform, or multiple pre-processed parameters such as the as
HR or HRV. To allow for exploiting these potentials for saving
energy systematically, we define the abstraction of logical
channels. Each channel behaves as a virtual, independent
sensor that delivers only one particular type of data (e.g., HR).
Each channel can be activated and deactivated independently
from each other. Clearly, the set of active channels determines
the amount of on-node processing and bytes per second to
transmit. Each channel defines a unique identifier (UUID)
similar to ISO/IEEE 11073, the interpretation of the data sent
over the channel (viz., how to translate the bitstream into
physical values) and a specSheet as described in detail in
Section II-C.

C. SpecSheet Interfaces

To cope with the flexibility of allowing new, unknown
sensors to join the system during runtime, we define an
interface for querying and modifying parameter values. When
a new sensor is added, the only assumption we impose is
that the data-channels offered by the sensor are known. Each
channel provides a specSheet interface. A specSheet is a table
in which each row corresponds to one specific parameter. Each
parameter has an unique id, some flags (readable/writable),
the minimum/maximum value (if applicable) and the actual
parameter value. Every node in the network can either read
the whole specSheet or poll/write a single row of it. Its actual
parameters are as follows.
• A quality parameter Qk. Its interpretation is channel-

specific.
• The maximum allowed latency for communication and

processing, since the latency can be traded with energy
consumption in BLE links [8].

TABLE I
OPERATION MODES M OF THE ECG

M Tm HR HRV BT RAW P [µW] R[bps]
M1 ES X X X 130 1.4
M2 cont X 402 10.7
M3 cont X 585 10.7
M4 cont X X X 1218 10.8
M5 cont X 947 8000.0
M6 cont X X X X 1218 8010.8

• A read-only-parameter which contains the required
throughput for the current quality level. It is used by the
power manager of the personal area network (PAN) to
determine the link throughput, as described below.

• An on/off- switch for the whole channel.
Whenever a specSheet has been modified, all participants at
the right side of the software module the value has been
changed at (according to Figure 2) need to be notified. To
illustrate the proposed concept, we consider the following
sensors as a running example.

1) ECG sensor: In this paper, we consider an custom
adjustable ECG sensor with multiple modes, which define
different amounts of processing for different output data types
[9]. The sensor has been designed for maximum scalability
at low power consumption in the range of 100 to 1000 µW ,
depending on the configuration. In particular, its mode can be
switched during runtime to obtain a raw ECG waveform or
different sets of preprocessed parameters, viz. HR, HRV, and
a beat type classifier (BT) for abnormal beats, which detects
premature ventricular contractions (PVC).

The energy-consumptions and data-rates of this sensor in
its different modes are summarized in Table I. Mode M1
supports episodic sampling (ES) [10], which works as follows.
The sensor measures data continuously for 2 minutes at a
sampling rate of 1000 Hz. After that, it sends the values of
the HR, the HRV and the BT computed during this period and
sleeps for 13 minutes. Next, the procedure repeats. This mode
causes a high latency of up to 15 minutes, but further reduces
the energy-consumption. Mode M2 is a low-power alternative
using an analog comparator to detect R-peaks with a reduced
HR-accuracy instead of the more complex algorithm used in
the other modes. Mode M3 operates at a sampling rate of
200 Hz and a low bandwidth of 7 to 24 Hz, which is sufficient
to compute the HR, but too low for the other parameters. Mode
M4 delivers the same parameters at the same quality as mode
M1, but sampling is done continuously. Mode M5 is a raw
data mode in which no parameters are computed directly on
the sensor. In mode M6, the sensor computes and sends all
parameters in addition to the raw data. For our ECG sensor,
the HR influences the power consumption only in the modes
M1, M2 and M6 due to the beat classifier. The results for
80 bpm are also contained in Table I.

The sensor can be integrated into our proposed architecture
as follows. A local power-manager activates the appropriate
mode of the ECG sensor, based on the set of channels
activated.

D. Acceleration Sensor

As already mentioned, our proposed architecture is generic
and works for almost all possible setups of sensors. To
demonstrate this flexibility, we have implemented a custom
3-axis acceleration sensor. It is based on an ARM-Cortex M0
SOC with a BLE radio and a 3-axis accelerometer. The sensor
has a sleep current of a few µA, only. Like the ECG sensor,
the acceleration sensor provides options to trade data quality
against power consumption. In particular, these capabilities are
as follows.
• Adjustable sampling-rate: The quality-parameter Q is

interpreted as the percentage of the maximum sampling
rate fs,max = 100Hz, such that fs = Q.

• Detection algorithm: In addition to the raw acceleration,
another data channel contains the result of a light-weight
on-sensor activity detection. The detected activity (viz.
resting, minor movements or intense activities) is sent
whenever the state of motion changes.

The activity detection is realized as follows. Let ~ai =
(ax,i, ay,i, az,i) be the measured acceleration at a given in-
stance i of the sampling period and ~ai−1 the acceleration at
the previous period i − 1. We define ∆ai = ai − ai−1 for
all dimensions x,y,z and σi as a measure for the amount of
activity, with σ0 = 0. σi is computed recursively with

σi = (1− α)σi−1 + α · (|∆ax,i|+ |∆ay,i|+ |∆az,i|). (1)

Equation 1 implements an exponential smoothing method [11]
with a parameter α to combine previously taken acceleration
samples with the currently sampled instance i. For a sampling
frequency of fs = Q = 100Hz, we empirically selected α
= 0.01. Like for the raw acceleration channel, the activity
detection can be performed using different sampling rates to
trade energy consumption against signal quality. If fewer sam-
ples are taken in the same period, the exponential smoothing
introduces higher latencies and previously taken measurements
dominate the value of σi. Therefore, whenever the sampling
rate is modified using the specsheet interface, α needs to
be adjusted by α(fs) = α(100Hz)

100Hz
fs . If σi is below a

threshold σrest, the algorithm classifies the subject’s motion as
resting. If it exceeds σrest, but is below σminor, minor activity
is detected. If it exceeds σminor, the motion is classified as
significant activity (e.g., running).

The sensor can be represented as two data channels, one
for the raw acceleration and one for the detected activity. The
physical sampling rate the accelerometer is read with is the
maximum one selected for the two channels.

The acceleration sensor is connected via BLE with a con-
nection interval of 8.75ms and a slave-latency of 114.

E. Aggregator & Replication

The data from the sensors is transmitted wirelessly to the
smartphone. The aggregator manages the connection between
the smartphone and the sensors and forwards the data to the
replication via a generic interface. Typically, IoT connectivity
solutions such as 6LoBTLE [12] assume that there is a
permanent connection between the gateway and the cloud. In

our case where the smartphone acts as a gateway, the inter-
net connection might be unavailable during certain periods.
Therefore we propose using a replication system rather than
directly relaying the data. The replication system serializes
the data received to generate a bitstream. This bitstream
is stored in a local database, first. If a WAN connection
(LTE/UMTS/GPRS) exists, the smartphone then synchronizes
the local database with the remote one. SpecSheet data and
rules can be exchanged between both sides.

F. Application Server

The application server (AppServer) is the sink for the sensor
data. Its main purpose is displaying and analyzing medical
parameters. For example, the software can be used for the
acquisition and analysis of the data in clinical studies. Also,
doctors can use long term monitoring to detect hidden diseases
easier and caregivers can use it for detecting emergency situa-
tions. Since medical knowledge is available on the AppServer,
it also serves as the global power-manager. This functionality
is described next.

G. Power-Management

1) Global Power-Management: As already mentioned,
knowledge concerning the medical background which is in-
dividual to the patient is available at the AppServer. For that
purpose, it contains a rule generator to generate scripts which
switch between multiple operating modes- and qualities of the
sensors autonomously during runtime.

These rules are created using an intuitive graphical user
interface which can be operated e.g. by a medical doctor. Its
purpose is to generate executable script files which implement
these rules. To generate the code, multiple approaches are fea-
sible. For example, predefined templates for different diseases
can be combined and customized using a graphical wizard.
Technical details of the system (e.g., available data channels,
etc.) do not need to be known by the person generating the
rule. For example, a valid rule could be “record a raw ECG
whenever the heart-rate is higher than 210 bpm and no motion
is present”, which triggers the activation and deactivation
of the necessary virtual channels without the need of being
aware of them. The script-files generated are then sent to the
nodes they shall be executed on, as described below. These
scripts can trigger multiple actions. For example, if a certain
threshold of vital parameters is exceeded for longer than a
predefined time period, notification messages can be sent by
e-mail and short message service to a mobile phone. Similarly,
the monitoring granularity can be modified by switching on
and off data channels and modifying their quality parameters
adaptively.

A rule which realizes be the scenario described in Section
I can be defined as follows: First, only the beat type (BT)
channel is active and no raw data is transmitted to the
application server. As soon as the BT becomes unusual, the
raw ECG channel is switched on with a quality of Q = 100.
The code for such a rule is exemplified in Algorithm 1.

In another example, we consider a setup containing an ECG
sensor and an accelerometer. The AppServer is interested in
the validity of the ECG waveforms by activating both the
ECG waveform channel with a high quality level, and the
activity channel with a low quality parameter simultaneously.
The activity is monitored in addition to the ECG because any
movement of the patient might disturb the ECG signal. The
resulting rule scripts need to be executed to implement the
power-management policy, as described next.

2) Distributed rule implementation: It would be possible
to run the rule scripts locally on the AppServer, only. The
AppServer would then monitor all relevant data channels and
adaptively set the values of all specSheets. However, there
might be undesirable cases where raw data needs to be sent
to the AppServer in order to check the rules, even though
this data is not of any medical interest at the current point
in time. Therefore, energy would be wasted. Furthermore, the
connection between the smartphone and the AppServer might
be unavailable and the service switching might fail. Therefore,
we propose using light-weight code interpreters both on the
smartphone and the sensors. A rule script from the AppServer
can be replicated to and executed on the remote side to im-
plement it. The interpreted code is executed locally, monitors
the parameters and triggers appropriate actions as needed. If
channels from multiple sensors need to be examined, the code
is executed on the smartphone instead of the sensors. We
consider the PicoC interpreter [13] since it is small, easy to
use and integrates seamlessly into our proposed framework.
The code-interpreter redresses the need of sending raw data in
the cases described above, and ensures the execution of rules
even when the WAN connection is unavailable.

To allow for a meaningful control, the local power-managers
on the sensors and the smartphone provide an API to the
interpreted code. It provides functions for reading and writing
the values of all specSheets on all devices, with the exception
that interpreters on the sensors cannot access any values on
the other sensors. In addition, the API supports reading the
payload-values from all data-channels which are currently
available on the device the interpreter is located on. Using
this simple interface, the power-management policy can be
implemented at the nodes where it is most energy-efficient. A
pseudo-code which could be run on the ECG-Sensor to exem-
plify the scenario described in Section I is given in Algorithm
1. Here, an abnormal heartbeat triggers the activation of the
raw ECG transmission. In the first 3 lines, constants for UUIDs
for the data channels are defined. The code reads the data
channel for the beat type (ID BT) by calling the API-function
readDataChannel(), checks the resulting data for abnormal
beats and modifies the specSheet of the raw ECG channel
to activate it, next. Whereas this rule is a simplistic example,
arbitrary complex scenarios can be implemented using this
technique.

3) Local Power-Management: Multiple local power man-
agers fulfill two purposes: 1) They execute the rule scripts
which the application server has deposited in them and 2) they
optimize the energy consumption locally given the values in

Algorithm 1 Sample code for heart rate surveillance
ID BT ← 1
ID RAWECG← 2
ID RAWECG ON ← 3
while true do

bt← readDatChannel(ID BT)
if bt == 1 then

writeSpecSheet(ID RAWECG, ID RAWECG ON, 1)
end if

end while

the specSheets by incorporating hardware-specific knowledge.
In addition to a local power-manager in each physical sensor,
the following ones are needed.
PAN: The power-manager for the PAN is located in the
aggregator and manages and energy-optimizes the wireless
link. In BLE, the main parameter that determines the available
link throughput is referred to as the connection interval Tc.
The device wakes up every Tc instances of time. At each
wakeup, a connection event takes place, in which Nseq pairs of
packets are exchanged. It has been shown in the literature, e.g.
[14], that the connection interval greatly influences the energy
consumption of the link. In addition, there is a parameter
Nsl, referred to as the slave latency. It defines a certain
number of events the slave might skip before waking up. To
transmit with a given data rate, a certain connection interval
is needed. Therefore, the power-manager for the personal area
network (PAN) reads the traffic demand of each channel from
the specSheets of all active channels and chooses the right
connection interval. The optimum connection interval for a
given data rate R is computed using Tc =

20 bytes·Nseq

R·(1+Nsl)
· η,

with η being the fraction of successfully transmitted packets
in relation to the total amount of packets sent.
WAN: The power-manager for the WAN controls the buffering
and the replication between the cloud and the smartphone.
Thereby it optimizes the energy consumption of the WAN.
For example, UMTS/3G remains in an active state for 15
seconds after each transmission before switching the radio off
[15]. Hence, continuously transmitting small chunks of data is
wasteful and should be mitigated by adaptive buffering. The
task of the power-manager is reading a maximum allowed
communication latency parameter in its specSheet and con-
trolling the buffering duration considering the amount of data
which is currently delivered by the sensors.

III. EVALUATION

We have implemented multiple parts of our proposed ar-
chitecture. Based on this, in the following, we quantify the
energy savings of dynamic service switching.

A. Service Switching for the ECG sensor

For evaluating the achievable energy savings of dynamic
service switching in the ECG sensor, we consider changing
from sending only the beat type BT and HR/HRV to send-
ing raw ECG waveforms dynamically, thereby realizing the
scenario described in Section I.

We have extended the energy-analysis from [9], mainly by
computing the bitrates required for the data transmission in all

modes, as summarized in Table I. The table shows 6 different
modes of operation and their measurement strategies, which
are either continuous sampling (M2-M6) or episodic sampling
(M1). Further, it shows the data channels offered in each
mode, the corresponding energy-consumption for processing
and the required link bitrate R. The bitstream with rate R
needs to be split up into multiple BLE GATT packets in a
power-optimized fashion. A feasible strategy would be using
the largest possible connection interval Tc for each situation
in order to maximize the duty-cycle. This packet partitioning
works as follows. First, we compute the ideal connection
interval, Tc,i, which is the connection-interval required for
a given bitrate R without taking into account additional
constraints of BLE. Since 20 bytes of payload fit into one
packet, Tc,i is defined as Tc,i = b 20 by/R

1.25ms c · 1.25 ms. If Tc,i
is smaller or equal than the maximum connection interval
supported by BLE (viz. 10.24 s), then we set the connection
interval to Tc,i and set Nsl = 0. If Tc,i exceeds 10.24 s,
the connection-interval chosen is 10.24s and the slave will
regularly skip some of the connection intervals by making use
of the slave latency feature with Nsl = bTc/10.24c − 1, such
that the maximum effective connection interval of 32 s defined
by the BLE standard [16] is never exceeded. The mean number
of bytes in each packet is defined as Nb = R · Tc,i · (Nsl + 1)
for all the three cases described. Since Nb can be a non-integer
number, we account for that by simulating 1000 packets with
the right fraction between bNbc and dNbe bytes and taking the
mean. Using known energy models from the literature (e.g.,
[17] or [14]), we can compute the energy consumption of the
BLE slave. We assume that the master always sends an empty
polling packet containing 10 bytes of protocol overhead. The
protocol overhead of a non-empty packet is 17 bytes.

The results of these computations are depicted in Figure 3.
It shows the energy-consumption of the ECG both for the
computation and transmission. As can be seen, in M5 and
M6, in which raw data is sent, significantly more energy is
needed than for modes in which the HR, HRV and BT are
computed and sent continuously without the raw waveform.
In the scenario considered, as described in Section I, the
ECG would operate in M4 until abnormal beats have been
classified. In the case of abnormalities, it would switch to
M5 autonomously. As a result, during most times, the device
would consume 80% less energy (1.24 mW in M4 vs 6.24 mW
in M5) due to dynamic service switching.

Fig. 3. Power consumption of the ECG sensor
B. Service-Switching of the Activity Sensor

In this section, we evaluate the potential energy-savings of
the acceleration sensor by real-world current measurements.

Fig. 4. Power consumption waveform of the acceleration sensor

Figure 4 shows the measured power-consumption in a situation
in which no raw data is sent, the activity detection is active
and the detected activity remains constant. The sampling-rate
in this example is 30 Hz. As can be seen, there are 30 small
peaks per second for acquiring the acceleration samples from
the MEMS sensor. In addition, there is one larger peak per
second, which is related to the exchange of empty BLE polling
and response packets. Further, there are certain short periods
of CPU activity for processing.

In general, if the sampling-rate of the accelerometer is
increased, more of the sampling-peaks will occur. If only the
detected activity is sent, data packets are transmitted whenever
the detected activity changes. Such changes typically occur
only rarely. Hence, for the activity channel, we assume that
the activity remains constant for all measurements, and one
empty packet per second is sent to maintain the connection.

The mean power consumption of the sensor for different
quality levels Q is shown in Figure 5. Recall that for the
acceleration sensor, the quality level Q is identical to the
sampling rate fs. As can be seen, the power consumption
increases nearly linear with the sampling rate. Sending the
raw data consumes significantly more energy than performing
the low-complexity activity detection on the sensor, since more
packets are sent.

In the scenario described in Section I, as long as no activity
is present, the sensor would perform activity detection with a
low sampling rate. We empirically found that fs = 10 Hz is
sufficient for detecting whether the subject is in motion or not.
If any activity is detected, the sensor would switch to sending
the raw acceleration with a high sampling rate, e.g. 100 Hz for
a thorough analysis on the smartphone. In this manner, 62% of
the energy-consumption of the sensor can be saved in phases
in which the subject rests. However, there is an additional
overhead for dynamic service switching caused by the code
interpreter, which is quantified next.

Fig. 5. Mean power consumption of the acceleration sensor

C. Overhead of Code Interpretation

For executing the rule scripts on the smartphone and on the
sensors, a light-weight but yet full-featured code interpreter
is used. From previous studies [18], it is known that code-
interpreters raise a large overhead to the execution times of
the code. The overhead results in longer active phases of the
CPU, thereby consuming additional amounts of energy.

To measure this overhead, we have installed the open-
source interpreter PicoC [13] on a processor with the same
micro-architecture and clock-rate as on the ECG sensor and
measured the execution times of the interpreted rule scripts.
These times have been multiplied by the current consumption
of the processor and its voltage. Our interpreted evaluation
code carries out the following task: It checks an integer value
once every period Ti to execute some action, similar to the
code presented in Algorithm 1. The if-clause it contains is
assumed to always evaluate to false. As an extreme example,
we further considered a script which contains a loop to execute
this if-clause 100 times in a row, which can be seen as a
very complex rule. In Table II, we present the energy Ei

consumed for one code execution and the computed mean
power overhead for different execution intervals Ti. As can be
seen, the overhead is low and shrinks with increasing intervals
Ti.

TABLE II
OVERHEAD OF THE RULE SCRIPT EXECUTION

Ei Ti = 0.2s Ti = 2.0s Ti = 20.0s
1 18.7µJ 93.6µW 9.36µW 0.94µW

100 2500µJ 12.5mW 1.25mW 125µW

IV. CONCLUDING REMARKS

In this paper, we have proposed an architecture for the
medical IoT, which systematically exploits dynamic service
switching. Our evaluation shows that this technique can save
up to 80 % of the energy of an ECG and 62 % of an
acceleration sensor in a realistic scenario. From these results,
we conclude that such a technique has a great potential for
extending the battery life of small sensors significantly. In
addition, dynamic service switching can, especially combined
with other approaches (e.g., cryptographic strategies [19]),
increase the privacy of the users.

The architecture proposes a distributed rule evaluation by
using code interpreters. Whereas the overhead of the code-
interpretation in terms of computation is low, interpreters
require significant amounts of RAM [18]. In our evaluations,
a cortex-M4 CPU with 96 kBytes of RAM has been used,
whereas the CPUs of our sensors have significantly smaller
RAM sizes. In further research, code-interpreters which are
currently designed for larger MCUs need to be tailored to run
on smaller controllers with 16 kBytes of RAM and less.

V. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. This work was partially supported
by HE2mT - High-Level Development Methods for Energy-
Saving, Mobile Telemonitoring Systems, a project funded by

the federal ministry of education and research of Germany
(BMBF). While the authors mentioned on the first page have
carried out the main work for this paper, the following persons
also contributed to this work: Christian Hofmann, Christian
Weigand, Bruno Ristok, Thomas Herbig, Helga Mühlbauer,
Thomas Huber, Robert Diemer, Nils Heitmann, Onur Desde.

REFERENCES

[1] Statistics Bureau in the Ministry of International Affairs and Com-
munications of Japan, “Population estimates in May 2015.” [Online].
Available: www.e-stat.go.jp/SG1/estat/ListE.do?lid=000001134232

[2] J. O. Coffey, J. F. Viles-Gonzalez, J. Willner, and D. Mehta, “Premature
ventricular contraction-induced symptomatic slow pathway conduction
successfully treated by catheter ablation,” Circulation: Arrhythmia and
Electrophysiology, vol. 6, no. 4, pp. e56–e57, 2013.

[3] P. Hamilton, “Open source ECG analysis,” in Computers in Cardiology
(CINC), Sept 2002.

[4] M. Kangas, A. Konttila, P. Lindgren, I. Winblad, and T. Jms, “Com-
parison of low-complexity fall detection algorithms for body attached
accelerometers,” Gait & Posture, vol. 28, no. 2, pp. 285 – 291, 2008.

[5] J. Klucken, J. Barth, P. Kugler, J. Schlachetzki, T. Henze, F. Marxreither,
Z. Kohl, S. R., J. Hornegger, B. Eskofier, and J. Winkler, “Unbiased and
mobile gait analysis detects motor impairment in parkinson’s disease,”
PLoS One, vol. e56956, no. 8, 2013.

[6] K. Wac, M. Bargh, B.-j. Van Beijnum, R. Bults, P. Pawar, and A. Ped-
demors, “Power- and delay-awareness of health telemonitoring services:
the mobihealth system case study,” IEEE Journal on Selected Areas in
Communications, vol. 27, no. 4, pp. 525–536, May 2009.

[7] A. Ahmad, N. Javaid, Z. Khan, M. Imran, and M. Alnuem, “iA-MAC:
Improved adaptive medium access control protocol for wireless body
area networks,” in International Symposium on Communications and
Information Technologies (ISCIT), Sept 2014, pp. 156–160.

[8] P. Kindt, D. Yunge, M. Gopp, and S. Chakraborty, “Adaptive online
power-management for bluetooth low energy,” in IEEE International
Conference on Computer Communications (INFOCOM), 2015.

[9] A. Tobola, C. Espig, F. J. Streit, O. Korpok, H. Leutheuser, B. Schmitz,
C. Hofmann, M. Struck, C. Weigand, B. Eskofier, and G. Fischer, “Scal-
able ECG hardware and algorithms for extended runtime of wearable
sensors,” in IEEE International Symposium on Medical Measurements
and Applications (MeMeA), 2015.

[10] L. K. Au, M. A. Batalin, T. Stathopoulos, A. A. Bui, and W. J. Kaiser,
“Episodic sampling: Towards energy-efficient patient monitoring with
wearable sensors,” in Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), 2009.

[11] A. Watts, “On exponential smoothing of discrete time series (corresp.),”
IEEE Transactions on Information Theory, vol. 16, no. 5, pp. 630–630,
1970.

[12] J. Decuir, “Bluetooth smart support for 6LoBTLE: Applications and
connection questions.” IEEE Consumer Electronics Magazine, vol. 4,
no. 2, pp. 67–70, April 2015.

[13] Z. Saleeba, “Picoc project homepage,” available via
code.google.com/p/picoc.

[14] P. Kindt, D. Yunge, R. Diemer, and S. Chakraborty, “Precise energy
modeling for the bluetooth low energy protocol,” arxiv.org, 2013.
[Online]. Available: http://arxiv.org/abs/1403.2919

[15] B. Zhao, Q. Zheng, G. Cao, and S. Addepalli, “Energy-aware web
browsing in 3G based smartphones,” in IEEE International Conference
on Distributed Computing Systems (ICDCS), July 2013, pp. 165–175.

[16] Bluetooth SIG, “Specification of the bluetooth system 4.0,” June 2010,
volume 0, available via bluetooth.org.

[17] M. Siekkinen, M. Hiienkari, J. Nurminen, and J. Nieminen, “How
low energy is bluetooth low energy? Comparative measurements with
ZigBee/802.15.4,” in IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), 2012.

[18] D. Yunge, P. Kindt, M. Balszun, and S. Chakraborty, “Hybrid apps: Apps
for the internet of things,” IEEE International Conference on Embedded
Software and Systems (ICESS), 2015.

[19] E. Klaoudatou, E. Konstantinou, G. Kambourakis, and S. Gritzalis, “A
survey on cluster-based group key agreement protocols for wsns,” IEEE
Communications Surveys Tutorials, vol. 13, no. 3, pp. 429–442, 2011.

