
Metadata Recovery From Obfuscated Programs Using
Machine Learning

Aleieldin Salem
Technische Universität

München
Boltzmannstr. 3

85748 Garching bei München,
Germany

salem@cs.tum.edu

Sebastian Banescu
Technische Universität

München
Boltzmannstr. 3

85748 Garching bei München,
Germany

banescu@cs.tum.edu

ABSTRACT
Obfuscation is a mechanism used to hinder reverse engineer-
ing of programs. To cope with the large number of obfus-
cated programs, especially malware, reverse engineers au-
tomate the process of deobfuscation i.e. extracting informa-
tion from obfuscated programs. Deobfuscation techniques
target specific obfuscation transformations, which requires
reverse engineers to manually identify the transformations
used by a program, in what is known as metadata recovery at-
tack. In this paper, we present Oedipus, a Python framework
that uses machine learning classifiers viz., decision trees and
naive Bayes, to automate metadata recovery attacks against
obfuscated programs. We evaluated Oedipus’ performance
using two datasets totaling 1960 unobfuscated C programs,
which were used to generate 11.075 programs obfuscated us-
ing 30 configurations of 6 different obfuscation transforma-
tions. Our results empirically show the feasibility of using
machine learning to implement the metadata recovery at-
tacks with classification accuracies of 100% in some cases.

CCS Concepts
•Security and privacy→ Software security engineering; Soft-
ware reverse engineering;

Keywords
Obfuscation, Machine Learning, Reverse Engineering

1. INTRODUCTION
Obfuscation is the process of transforming a program P

into another program P ′, which has the same functionality as
P (e.g. input-output behavior) and which conceals the code
and/or data of program P from reverse engineers. Courtesy
of its simplicity and cost-effectiveness, obfuscation is the de
facto mechanism to hinder reverse engineering of legitimate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSPREW ’16, December 05 - 06, 2016, Los Angeles, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4841-6/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/3015135.3015136

software to the end of limiting software piracy. Neverthe-
less, malware authors are also leveraging obfuscation in writ-
ing their malware instances [22]. Unlike software vendors,
malware authors do not use obfuscation to protect the in-
tellectual property of their instances; they rather attempt to
evade detection by conventional mechanisms that continue
to hinge on signatures.

Many non-cryptographically secure obfuscation transfor-
mations, can protect an application against a reverse engi-
neer for a limited amount of time. In other words, given
enough time, an experienced reverse engineer can unravel
the concealed functionality of a program, and retrieve the se-
crets it may withhold. Reverse engineering a program usu-
ally includes retrieving the original program code amidst the
obfuscated code. This process is referred to as deobfusca-
tion, and can be performed manually, automatically, or semi-
automatically. Despite being the most reliable option, man-
ual deobfuscation is a time-consuming process, especially if
the obfuscated program is complex in terms of structure or
functionality. Furthermore, malware analysts who reverse
engineer malware are faced with millions of variants of ob-
fuscated malware instances per day. Thus, manual deobfus-
cation cannot cope with such a release rate.

Automatic deobfuscation techniques are meant to automat-
ically extract some information from an obfuscated program
(e.g. a hidden key, an algorithm, etc.) [11, 25, 28]. Effectively,
they enable reverse engineers to cope with a large number of
programs. However, deobfuscation attacks are often specific
to some type of obfuscation technique (e.g. [25] is specific to
control-flow flattening, [23] is specific to variable splitting,
etc.). Therefore, reverse engineers first have to determine
which obfuscation transformation has been applied to a pro-
gram and only afterward they can apply the automated de-
obfuscation attack corresponding to that transformation. Re-
trieving information about the obfuscation transformations
utilized by a program, also known as metadata recovery attack,
is typically a manual task, and is, therefore, a potential bot-
tleneck of the reverse engineering process.

In order to recognize the obfuscation transformations used
by a program, a reverse engineer needs knowledge of differ-
ent transformations and how to distinguish between them.
In fact, different obfuscation transformations are expected
to exhibit distinguishable complexity and side effects on the
program [6]. So, by studying these side effects, one can asso-
ciate patterns with different transformations. Searching for
those patterns within the obfuscated program’s code or be-
havior allows recognizing the transformations employed by

http://dx.doi.org/10.1145/3015135.3015136

an obfuscated program. This makes machine learning algo-
rithms a suitable candidate for automating the metadata re-
covery attack, assuming that the obfuscated programs under
test share common patterns. This is usually made possible if
similar tools have been used to obfuscate programs.

Fortunately, the utilization of the same or similar obfus-
cation tools is common practice. Malware authors and soft-
ware vendors alike tend to reuse similar tools and techniques
in obfuscating their code [10]. Needless to say, programs ob-
fuscated using the same tool are expected to share common
characteristics and patterns e.g. similar system calls, data struc-
tures, and code patterns. Consequently, given a set of differ-
ent programs obfuscated using the same tool, we can train
a machine learning algorithm to learn the common patterns
imposed by the tool on those programs, and successfully rec-
ognize them upon examining obfuscated programs in the
validation set, effectively implementing the metadata recov-
ery attack. Technically, we can model this attack as a su-
pervised learning problem viz., classification, in which the
classes correspond to obfuscation transformations, and the
data points are programs using the same tool which offers
several obfuscation transformations.

In this paper, we present and evaluate a machine learning-
based approach to implement the metadata recovery attack.
We implemented a framework called Oedipus, that uses Deci-
sion trees and Naive Bayes to classify obfuscated C programs
generated by the Tigress obfuscator [4] according to the trans-
formations they employ. Our evaluation results show that
machine learning algorithms can be successfully used to in-
fer the obfuscation transformations used by a program, which
can aid reverse engineers by significantly reducing the amount
of time needed to reverse engineer a program.

This paper makes the following contributions:

1. Presents a machine learning approach to implement the
metadata recovery attack against obfuscated programs.

2. An open source Python framework called Oedipus1, which
generates obfuscated programs using Tigress2, extracts
various types of features from them, and uses machine
learning algorithms to classify obfuscated programs ac-
cording to the obfuscation transformations they employ.

3. An evaluation using two sets of obfuscated programs
containing thousands of instances, in order to verify
the accuracy of Oedipus.

The rest of the paper is organized as follows. Section 2,
provides background information about the obfuscation trans-
formations considered in this work. Section 3 presents Oedi-
pus, its architecture, design and implementation. We eval-
uate Oedipus in section 4 and discuss the results. Section 5
presents works related to Oedipus. Lastly, section 6 draws
conclusions from the conducted experiments and presents
ideas for future works.

2. BACKGROUND
An obfuscation transformation can be thought of as a func-

tion Fτ that applies some operations on a program P and re-

1https://github.com/tum-i22/Oedipus
2http://tigress.cs.arizona.edu/

turns a functionally-equivalent program3 P ′ obfuscated us-
ing the technique τ . Formally, this relationship can be repre-
sented as P ′ = Fτ (P). The functional-equivalence property
ensures that P ′ carries out the same functionality as P i.e.
the transformation τ does not affect the functionality of the
original program P .

The effect of an obfuscation transformation is usually mea-
sured in terms of four dimensions viz., potency, resilience,
stealth, and cost [1] [6]. Potency is concerned with the ob-
scurity a transformation adds to a program. Usually, this
measure is associated with human cognition i.e. how diffi-
cult to understand does a human find a given obfuscated
program. The second dimension, resilience, measures the re-
silience of an obfuscation transformation against automated
deobfuscation mechanisms. Stealth measures how well does
an obfuscated segment of code blend in with the rest of the
program [1]. In other words, how easy is it to spot an ob-
fuscated segment of code. Finally, cost quantifies the perfor-
mance penalty and resource consumption overhead that an
obfuscation transformation adds to the program.

There are many obfuscation transformations that target dif-
ferent aspects of a program. Those transformations can be
categorized into layout transformations, code transformations,
and data transformations [6]. In this paper, we consider six
obfuscation transformations that span both control and data
obfuscation categories. They are: Virtualization, Just-in-time
Compilation (Jitting), Opaque Predicates, Control-flow Flattening,
Encoding Literals and Encoding Arithmetic.

2.1 Layout Transformations
Layout transformations aim at scrambling the appearance

and layout of the source code, rendering it unintelligible.
Layout transformations include: renaming variables to ran-
dom names, removing white spaces between lines of code,
etc. [6]. Consequently, this category has high potency. Nonethe-
less, automated deobfuscation programs are less affected by
such transformations. Layout transformations are cheap in
terms of performance cost and therefore very popular for
languages such as JavaScript. We do not use layout trans-
formations, because these kinds of transformations are not
applicable to x86 binary programs, which we focus on in this
work.

2.2 Code Transformations
Code transformations affect the aggregation, ordering or con-

trol flow of programs. Hence, they are usually categorized
into three categories corresponding to their effect on the code.
Aggregation transformations break down computations that
belong together and aggregate irrelevant ones. Ordering trans-
formations randomize the order in which instructions are ex-
ecuted. Transformations that belong to this category are rela-
tively rare, especially since shuffling program computations
risks altering the original program semantics [2]. Hence, re-
ordering is usually limited to independent code blocks. Lastly,
control-flow transformations manipulate the computational
structure of the program by either inserting new branch in-
structions or introducing algorithmic changes to it [6].

2.2.1 Virtualization Obfuscation
3We define functional equivalence as follows. Two programs
P and Q are said to be functionally-equivalent if and only if
for every input i in the set of all possible inputs {0, 1}∗, both
P and Q yield the same output o ∈ {0, 1}∗

https://github.com/tum-i22/Oedipus

Virtualization obfuscation is an example of control flow
transformations. It creates a virtual environment within the
program by implementing an interpreter that executes a set
of custom instructions generated from the original code [20].
The interpreter is usually implemented as a switch statement
whose cases handle various types of instructions. The in-
structions themselves tend to be modelled after RISC instruc-
tions e.g. add, mov, jmp, etc.. In order to thwart reverse en-
gineering attempts, the custom language is chosen at ran-
dom during obfuscation time, and the original code is per-
manently destroyed [20].

2.2.2 Just-in-Time Compilation (Jitting)
Just-in-Time Compilation (Jitting) is another example control-

flow transformation. Jitting translates the original program
into a set of statements each of which issues a call to a specific
function. Upon executing a statement, the function hooked
to it will compile the statement on-the-fly and load it into
memory for execution. Effectively, the original function is
dynamically compiled into machine code during runtime [5].

2.2.3 Flattening
Flattening is a control flow transformation that introduces

algorithmic changes to the program by converting branch-
ing statements to procedural ones. Effectively, the control
flow appears to be flattened. Nevertheless, the original con-
trol flow of the program needs to be maintained. In flatten-
ing, blocks of code are wrapped into an infinite loop. The
infinite loop is controlled by a controlling block that deter-
mines the next block to be executed, in a process known as
dispatch. There are different ways to implement the dispatch;
they primarily differ in the mechanism used to transfer con-
trol to different call blocks. The common dispatch methods
are switch, goto, indirect, and call dispatches.

2.2.4 Opaque Predicates
Opaque predicates are examples of control-flow transfor-

mation often coupled with inserting bogus code which is an
aggregation transformation. A predicate P is opaque if its
boolean outcome is known to the obfuscator during obfus-
cation, but difficult to statically deduce by the deobfusca-
tor [1] [6]. For an obfuscator, the challenge is to design such
a resilient predicate. Predicates can be designed to always
evaluate to True, always evaluate to False, or evaluate to both
values. The branches that never execute are usually called bo-
gus branches that are meant to confuse static analysis based
deobfuscation techniques [5]. This is the primary objective
of adding opaque predicates i.e. to confuse static analysis
e.g. disassembly.

2.2.5 Encoding Arithmetic
Encoding arithmetic expressions is another example of an

aggregation transformation. It substitutes simple arithmetic
expressions by more complex ones. For instance, the expres-
sion z = x + y + w can be substituted by z = (((x ∧ y) +
((x&y) << 1))|w)+ (((x∧ y)+ ((x&y) << 1))&w). A list of
possible substitutions is presented in [27].

2.3 Data Transformations
Data transformations affect the storage, encoding, aggrega-

tion, or the ordering of the program’s data structures [6]. The
first category, storage, changes the container within which

the data is stored in an attempt to conceal the data’s origi-
nal form. Encoding attempts to alter the representation of the
data. This often requires changing the data type of the data
or using functions to store and produce its value. Aggregation
combines different variables into larger structures. This tech-
nique prevents a reverse engineer from drawing a clear cut
between different data objects and identifying their function-
ality/usage within the program. Finally, ordering data trans-
formations randomize the order of methods and instance vari-
ables within classes and formal parameters within methods.

2.3.1 Encoding Literals
Encoding Literals is an example of the encoding data trans-

formation technique. In this work, we only consider string
and integer literals. For string literals, the value of a string
is usually encoded by computing its value via a function. To
encode integer literals, opaque expressions are used [4].

3. OEDIPUS
This section presents the design and implementation of

Oedipus4, our Python framework for metadata recovery at-
tacks.

3.1 Design
Figure 1 shows the four phases of the classification process

in Oedipus. In the first phase, we use Tigress to generate ob-
fuscated versions of a given dataset of C programs, which is
an input for Oedipus. Phase two extracts different types of
static and dynamic features from the obfuscated programs’
executables. In phase three, a classifier is trained using one
type of the generated feature vectors i.e. a training set. The
fourth and final phase is concerned with classifying the re-
maining feature vectors, or the test dataset, using the trained
classifier. The output of the final phase is the classification ac-
curacy rate scored by the trained classifier. The accuracy de-
notes the percentage of obfuscated programs for which Oedi-
pus recognized the transformations they employ correctly.

Prior to discussing the implementation of Oedipus, we go
over the design decisions we made during each of the afore-
mentioned phases. We categorize such decisions as genera-
tion of raw data, feature extraction from raw data, and choice
of classification approaches.

3.1.1 Generation of Raw Data
In the machine learning terminology, raw data usually refers

to a representation of data samples that contain noisy fea-
tures and, hence, need to be processed in order to extract
informative features from the data samples prior to train-
ing a model. Within our context, the raw data comprises
different representations of the obfuscated programs. Al-
though we possess the source code of the obfuscated pro-
grams, we assume that, as adversaries, we only have access
to the programs’ executables. Those executables depict our
raw data, and they have two formats. The first format of the
executables is compiled using GCC and instructed to strip

4Oedipus was a mythical Greek king of Thebes. During one
of his journeys, he defeated the Sphinx, who would devour
all travellers that fail to solve its riddles, by solving what
came to be known as the riddle of the Sphinx. We consider
the question of whether machine learning can implement the
metadata recovery attack a riddle that our framework at-
tempts to solve.

Generation

Obfuscated
Extraction
Feature

Training
Classifier

Obfuscation

ClassifierC Programs

Obfuscated Program
Feature
Vectors

Test
Dataset

EndStart
Accuracy
Rates

Phase I Phase II Phase III Phase IV

Program

C ProgramsEngine

Figure 1: An overview of classification process.

the symbols table and relocation information from the exe-
cutable, whereas the second format compiles the obfuscated
programs using GCC with default settings, i.e. with symbols
and relocation information. Therefore, we have two formats
of raw data: stripped and non-stripped. Using these two for-
mats, we wish to examine the effect of stripping executables
(of names of functions and other symbols), on classification
accuracy.

We further split these two formats of raw data i.e. stripped
and non-stripped, into two categories that examine the two
states that every program has i.e. static and dynamic. Given
an executable of an obfuscated program, we retrieve two types
of disassemblies from it. Firstly, we disassemble the exe-
cutable before running it, which gives us the static disassem-
bly. Then we run the executable, and record the instructions
it executes during runtime and call that dynamic disassembly.
Consequently, we wind up with four breeds of raw data i.e.
ones that embody the combinations of stripping symbol ta-
ble information and disassembling the executable at different
states.

3.1.2 Feature Extraction
As mentioned in section 1, different obfuscation transfor-

mations leave distinguishable side effects on the obfuscated
programs. For instance, the encode arithmetic transforma-
tion is expected to have a long series of complex arithmetic
operations, whilst virtualization adds a large number of repet-
itive memory load and store operations to the program. These
side effects can be identified by examining the instructions
of the obfuscated program before or during runtime. In our
case, those instructions are x86 assembly instructions that we
extract from the obfuscated program executable. Following
the same example, the version of a program obfuscated using
the encode arithmetic transformation should contain a num-
ber of arithmetic instructions e.g. add, mul, sub, etc., greater
than the version of the same program obfuscated using virtu-
alization, which should contain a larger number of memory
instructions e.g. mov, push and pop. We can generalize this
notion and argue that every obfuscation transformation may
add a particular instruction pattern, as a side effect, to the
programs it obfuscates.

If we consider the set of disassembly files of our obfus-
cated programs as a set of text documents D each of which
comprising a set of keywords or terms separated by spaces
t1, ..., tn, then we can seamlessly match the previously dis-
cussed idea of x86 instruction patterns in disassemblies to
the Term Frequency Inverse Document Frequency (TF-IDF) fea-
tures as follows. The TF-IDF features are renownedly used
within the context of clustering text documents according to
the topics they address e.g. politics, sports, arts, etc. The TF-

IDF method determines the relative frequency of terms in a
certain document, and compares it to the inverse proportion
of that term across all other documents in the corpus [18]. Ef-
fectively, it calculates the relevance of a term t∗ to a certain
document. Mathematically, the higher the TF-IDF value of a
term, the more relevant it is to a document, which makes that
particular term a more informative feature of the document.
For example, the term president is more relevant and, hence,
more recurring in politics documents; consequently, it is ex-
pected to be higher in politics documents than in their sports
counterparts.

The disassembly files of our obfuscated programs can be
considered as text documents whose topics are the obfusca-
tion transformation employed by the programs. Note that
our disassemblies are a list of x86 instructions, each compris-
ing of one opcode (e.g. add, mul, sub) and 0 or more operands
separated by spaces (e.g. a register value eax, a constant 0x5,
a memory reference [0x12345678]. Therefore, every opcode
and every operand is a different term for the TF-IDF algo-
rithm. Similar to the previous example, the term push is ex-
pected to have higher TF-IDF values in disassembly files of
programs obfuscated using virtualization. Effectively, TF-
IDF features can help emboss the side effects imposed by
different obfuscation transformations on the obfuscated pro-
grams, which facilitates classifying them.

Calculating the TF-IDF value t∗d of a term t∗ in a given doc-
ument d ∈ D is carried out as follows:

t∗d = ft∗,d × log

(
|D|
ft∗,D

)
,

where ft∗,d is the number of times the term t∗ appears in
document d, |D| is the number of documents in the dataset,
and ft∗,D is the number of documents in which the term t∗

has occurred.
If a term t∗ never appears in the corpus, the expression

ft∗,D yields a zero leading to a division-by-zero problem.
Therefore, the formula is altered to have a denominator of
ft∗,D + 1. Some implementations add a hypothetical doc-
ument in which all terms occur. This adds one to both |D|
and ft∗,D . Another amendment adds one to the last multi-
plication term, so as not to ignore terms that have zero IDF
values i.e. terms that occur in all documents in the corpus.
The TF-IDF equation is altered to:

t∗d = ft∗,d ×
(
log

(
|D|+ 1

ft∗,D + 1

)
+ 1

)
We use TF-IDF to extract features from disassembly files

of obfuscated programs. The process yields a feature vector
per program that comprises the TF-IDF values of the top 128
terms encountered in all the disassembly files.

3.1.3 Choice of Classifiers
The objective of the classifiers in Oedipus is to use the TF-

IDF feature vectors representing the obfuscated programs to
train a model capable of classifying the programs according
to the obfuscation transformations they employ. Neverthe-
less, there is a plethora of classification algorithms to choose
from. In fact, deciding upon classification algorithms that
suit the metadata recovery problem is also an objective of our
research effort. In this paper, we chose to test classification
algorithms that, we believe, emulate the processes adopted
by reverse engineers while examining obfuscated programs
viz., we use Decision Trees and Naive Bayes classifiers to carry
out metadata recovery attacks against obfuscated programs.
We also experimented with the prominent Support Vector Ma-
chine classifier. However, it required an infeasible amount of
resources upon being trained with a large number of obfus-
cated programs.

Decision trees emulate a decision-making process in which
data samples are split into two, or more, segments based on
querying the values of quantitative or qualitative data fea-
tures. The querying and splitting process continues until a
confident decision about the class of a data sample is made.
This process can be matched to that of a reverse engineer ex-
amining an obfuscated program. That is, a reverse engineer
continuously examines different segments of obfuscated pro-
grams looking for clues to consider or exclude some transfor-
mations until s/he is confident that the program under test
has been obfuscated using a specific transformation.

We have argued that different transformations exhibit dis-
tinguishable patterns. Hence, decision trees should be able
to segregate different transformations by examining the fea-
ture vectors representing the obfuscated programs. In this
case, the features used to train the decision tree are TF-IDF
features, which still segregate different transformations–as
discussed earlier–in terms of parts of assembly instructions
they use more frequently. Therefore, the splitting decisions
in the tree would be made according to the TF-IDF values of
different terms in assembly instructions.

Reverse engineers can sometimes adopt a probabilistic ap-
proach to reverse engineering. In other words, a reverse en-
gineer can combine various evidence they gathered during
program inspection to reach a conclusion that the program
has probably been obfuscated using a particular transforma-
tion. For example, assume that a reverse engineer gathered
information about an obfuscated program that (a) it contains
what seems to be an infinite loop, (b) it computes a value that
is used as a predicate in a conditional jump statement, and (c)
it uses a noticeable amount of unconditional jumps. The re-
verse engineer can make a decision about the transformation
used by the program by combining those three conditions
i.e. since (a) and (b) and (c) do hold, therefore the program
is probably obfuscated using control flow flattening. Option-
ally, the engineer can assign a value to the decision’s proba-
bility.

Needless to say, reverse engineers usually do not follow
such a formal process. Nonetheless, they implicitly carry out
this logical, probabilistic process during program inspection.
Naive Bayes is a probabilistic classifier that–assuming their
occurrence is independent–combines different events to cal-
culate the probability of a data sample belonging to a spe-
cific class. Within our context, the events are TF-IDF fea-
tures depicting the assembly instructions within the obfus-
cated programs. So, the probabilistic decision of a program

classificationdata_visualization

feature_extractionprogram_generation

gadgets

graphics

misc

data

utils

Oedipus Tool

Tigress Triton scikit-learntime numpy glob

Operating System

Oedipus

Figure 2: The structure of the Oedipus framework, and
the tools that interact with it. The layered architecture
is meant to depict functional dependency. That is to say,
oedipus_tool depends on the functionalities exposed by the
framework, whereas the framework hinges on a group of
tools and libraries, etc..

being obfuscated using a particular transformation is made
based on combining the probabilities of encountering assem-
bly instructions within the disassemblies of the obfuscated
program.

3.2 Implementation
For extensibility purposes, Oedipus is implemented in the

form of modules. The framework comprises two main mod-
ules viz., utils and gadgets as shown in the middle of figure 2.
The two modules comprise sub-modules exposing function-
alities that can be used separately. In other words, the pro-
cess depicted in figure 1 need not be implemented with ev-
ery run. In contrast, any Python tool can be implemented to
leverage the functionalities of a sub-module separately.

The framework, Oedipus, is designed to support the four
phases mentioned in the overview from figure 1. We com-
bine the phases of model training and classification into one
viz., classification. Thus, the phases of program generation,
feature extraction, and classification are implemented by the
program_generation, feature_extraction, and classification sub-
modules, respectively as seen in figure 2. The layered layout
in the figure implies dependency in a top-to-bottom man-
ner. That is to say, oedipus_tool depends on the functional-
ities exposed by Oedipus; in turn, Oedipus utilizes various
tools and libraries to deliver its functionalities such as the Ti-
gress obfuscation tool [5], the Triton dynamic binary analysis
framework [21] and various Python libraries.

3.2.1 Utilities
The utils module of Oedipus contains all the utility func-

tions that are regularly needed by other modules and tools
built on top of the framework. We grouped functions that
deliver similar functionalities together. Consequently, the
utils module comprises of three sub-modules, namely data,
graphics, and misc. The data submodule contains three types
of functions. The first type of functions is responsible for
loading feature vectors from text files into Python data struc-
ture i.e. lists and dictionaries. The functions were written to

10 5 0 5 10
10

5

0

5

10
addOpaque

encodeArithmetic

encodeLiterals

flatten

virt

Figure 3: A 2-dimensional visualization of obfuscated pro-
grams using the TF-IDF features and the t-SNE visualiza-
tion algorithm.

handle different types of features, which comprise numeri-
cal/nominal values. The graphics submodule contains mes-
sage display functions.The misc submodule contains func-
tions that perform miscellaneous tasks including generating
random numbers and strings, calculating the average of val-
ues in lists and tuples, removing temporary files, and so forth.

3.2.2 Gadgets
The gadgets module contains four sub-modules viz., pro-

gram_generation, feature_extraction, data_visualization, and clas-
sification.

The program_generation module is responsible for imple-
menting phase one of the classification process, which in-
cludes generating obfuscated programs. Currently, the mod-
ule is tailored to use Tigress. However, we plan on extend-
ing it to support different obfuscation tools. As mentioned
in section 2, we obfuscate the input C programs using six ob-
fuscation transformations i.e. virtualization, jitting, flatten-
ing, opaque predicates, encoding arithmetic, and encoding
literals. The module supports obfuscating programs multi-
ple times.

The feature_extraction sub-module supports extracting var-
ious types of static and dynamic features from the source
code, disassembly, and executable files of the obfuscated pro-
grams. In this paper, we focus on the extraction of TF-IDF
features from static and dynamic disassembly files.

The data_visualization sub-module is can accomplish two
tasks. Firstly, given numerical representations of the obfus-
cated programs, it uses either Principal Component Analysis
(PCA) or t-distributed stochastic neighbor embedding (t-SNE) to
plot the programs as data points in a 2- or 3-dimensons. Fig-
ure 3, for instance, depicts a 2-dimensional visualization of
TF-IDF representations obfuscated programs using t-SNE. The
sub-module also generates plots of classification accuracies
achieved by the trained classifiers.

Lastly, as the name suggests, the classification sub-module
is responsible for training a classification algorithm, and test-
ing it against our input dataset of obfuscated programs. The
sub-module uses the Scikit-learn implementations of the de-
cision tree and naive Bayes classifiers that support K-Fold

cross-validation,and exposes their functionalities to tools like
oedipus_tool.

3.2.3 Utilized Tools
Oedipus was implemented exclusively in Python 2.7 for

interoperability. The framework depends on various tools
and libraries, including:

• Tigress: An obfuscation tool for C programs developed
and maintained by the University of Arizona [4].

• Scikit-learn: A machine learning library for the Python
programming language [7]. We use Scikit-learn’s im-
plementations of decision trees, naive Bayes, K-Fold
cross-validation, and classification accuracy calculation.

• Gensim: Gensim is a Python vector space modeling
tool [19], that we use to implement a memory-friendly
version of extracting the TF-IDF features from our ob-
fuscated programs. The Scikit-learn implementation of
such functionality attempts to load all documents in
memory prior to extracting the TF-IDF features from
them, which requires large amounts of memory in the
case of large document corpora. Gensim implements
this functionality in an incremental manner by loading
one document at a time in memory and updating the
TF-IDF values of different terms accordingly.

• GCC: Oedipus uses GCC [16] to compile the obfus-
cated programs in order to extract static and dynamic
raw data from the obfuscated programs’ executables.

• objdump: We use GNU Binutils’ objdump tool [15] to
extract the static disassembly from the obfuscated pro-
grams’ executables. We simply disassemble the exe-
cutables of obfuscated programs and store the results
in text files.

• GDB: Lastly, we use GDB [17] to generate dynamic dis-
assembly from the obfuscated programs’ executables.
We wrote a GDB script that steps into every instruction
executed by a program during runtime, and logs it to a
file in the form of an assembly instruction.

4. EXPERIMENTS
This section first presents two datasets of C programs and

how we have used them in our experiments. Afterward, it
presents experiments we have performed to verify our pri-
mary hypothesis of whether machine learning algorithms can
implement metadata recovery attacks against obfuscated pro-
grams. To run these experiments we developed the Oedipus
tool on top of the Oedipus framework. This tool implements
two classification approaches using Decision Trees and Naive
Bayes, which we also describe in this section. To this end, we
are interested in answering the following research questions:

1. With what accuracy can Decision Trees and Naive Bayes
classify the obfuscation transformations which were em-
ployed to protect a binary program?

2. Does accuracy differ if we use the static disassembly or
dynamic disassembly of an obfuscated program as raw
data for the machine learning classifiers?

3. Does accuracy improve if we filter the raw data such
that we replace constant values (including addresses)
with generic values?

4. Does accuracy improve if we use binaries which are not
stripped off debugging symbols?

5. What is the accuracy of classifiers for completely new
programs, i.e. programs whose original and obfuscated
versions have never been seen by the classifier in the
training phase?

6. Does the heterogeneity of the programs in the dataset
used for training and testing the machine learning clas-
sifiers have an influence on accuracy?

4.1 Datasets of C Programs
Tigress only supports obfuscating programs written in the

C language. Therefore, we constructed two sets of C pro-
grams, one heterogeneous (containing 40 programs) and one
homogeneous (containing 1920 programs). Each of these pro-
grams in these datasets is obfuscated as described in sec-
tion 4.2.1, which results in a total of 11,075 obfuscated pro-
grams used in our experiments.

The former dataset comprises of 40 programs that imple-
ment basic functionalities, such as factorial, sorting, search-
ing, string operations, file I/O operations, etc. [8]. In order
to guarantee some degree of diversity in the programs’ struc-
tures, we collected programs that utilize most, if not all, fea-
tures of the C language i.e. pointers, structs, recursion, and
so forth.

In reality, more sophisticated programs are expected to share
language constructs and features. For example, a web browser
and a word processor written in the same language are ex-
pected to use similar language features in order to implement
the module responsible for receiving user input from the key-
board. Given that the 40 programs implement primitive, yet
different, functionalities, we do not expect them to share the
same features. For instance, the factorial and Fibonacci pro-
grams are focused on arithmetic operations, whereas sorting
algorithms depend more on array-based operations. This
phenomenon may result into noisy segments of the obfus-
cated programs that confuse the classification algorithms, be-
cause the different functionalities of the 40 programs add
different patterns to programs that are obfuscated using the
same transformation.

The second dataset is homogeneous and contains 1920 C
programs generated by the Tigress RandomFuns transforma-
tion. These programs share a common template, i.e. they
have a main function which calls a randomly generated func-
tion on the input arguments. This randomly generated func-
tion contains various control flow instructions (e.g. if -state-
ments, for-loops, etc.), arithmetic, logic and bitwise opera-
tions (e.g. +, <, &, etc.), involving the input arguments and
constants. Finally, it returns a value dependent on the input
arguments. The main function prints this return value and
also compares it with a constant. If they are equal it prints
a distinctive message on the standard output. Note that the
control flow structure, the data types and the operations are
different for each of the 1920 C programs in this dataset.

4.2 Oedipus Tool
As discussed in section 3, the Oedipus framework exposes

different APIs in an independent manner to allow users to
start the classification process from whichever phase they
prefer. The tool, conveniently called oedipus_tool.py, supports
different modes of operation that interface with the gadgets
of the Oedipus Framework. The modes are:

• generate: Generate obfuscated versions of C programs.

• extract: Compile obfuscated programs, then generate
static and dynamic disassemblies.

• filter-traces: Generates filtered versions of disassem-
blies, as discussed later in section 4.2.3.

• extract-from-traces: A shorter version of extract, in which
the first phase is ignored and TF-IDF features are ex-
tracted directly from the disassembly files.

• classify-exp1: Uses either decision trees or naive Bayes
to classify obfuscated programs according to the trans-
formations they employ using K-Fold cross validation.

• classify-exp2: Uses either decision trees or naive Bayes
to classify obfuscated programs according to the trans-
formations they employ using a custom type of cross-
validation, as discussed later in section 4.2.5.

• visualize: Visualizes the feature vectors of obfuscated
programs using either the PCA or the t-SNE algorithms.

The mode of operation and other necessary parameters e.g.
source directory of the input files, the number of folds for
cross-validation, the verbosity of debugging messages, etc.,
are specified using command-line arguments.

4.2.1 Generate Mode
In generate mode, Oedipus requires the command line op-

tions for the Tigress obfuscation engine in order to obfuscate
a dataset of programs. For the first dataset of 40 programs
we have used the five obfuscation transformations presented
in Section 2, and provided various other options for trans-
formations, which led to 39 different parameter configura-
tions of the Tigress obfuscation engine. This yields 40× 39 =
1560 obfuscated programs. Out of the resulting obfuscated
programs, 90 could not be compiled due to bugs in Tigress.
Therefore, we removed these programs and were left with
1470 obfuscated programs from the first dataset.

For the second dataset we used the default settings for the
same five obfuscation transformations presented in Section 2.
This yields 1921 × 5 = 9605 obfuscated programs, which all
were compiled successfully.

4.2.2 Extract Mode
The executables of obfuscated programs are further pro-

cessed by the Oedipus tool in extract mode to compile the
obfuscated programs–once with GCC’s stripping flag -s, and
once without it. Hence, for every single program in the two
datasets, we have two types of executables. From each type
of executable the Oedipus tool uses the framework to gener-
ate two types of disassemblies viz., static and dynamic. The
static disassembly files are saved to text files with the .obj-
dump extension. To generate the dynamic disassemblies the
Oedipus tool uses gdb to record the assembly instructions
they issue at runtime. For this purpose, the Oedipus tool
requires test cases for the executables as an input. In the fol-
lowing paragraphs we describe how we obtained the inputs
for each of the two datasets.

For programs in the first dataset we used a combination
of test cases generated by the KLEE symbolic execution en-
gine [3] and manually-elicited test cases. For the manually-
elicited inputs, we attempted to include test cases for all in-
put types, for each program. For example, some of the man-
ual inputs for the factorial program were 0, 1, a random-
negative number, a random character, a random string, etc..

This process resulted into generating 17,831 dynamic disas-
sembly files, that we gave the extension .dyndis.

On the other hand, programs in the second dataset did
not require specific user inputs, especially since they did not
implement any particular functionality. The only constraint
was to forward the programs a five-digit integer. Further-
more, the value of program input did not have a significant
effect on program behavior. Hence, for every single exe-
cutable, we generated exactly one random input. We removed
programs which did not terminate correctly in a time interval
of 5 minutes after being passed a random input. This yielded
8156 dynamic disassembly files.

The exact same process (Oedipus tool in extraction mode)
is carried out for the stripped version of the program exe-
cutables using the same inputs that were used to run their
non-stripped counterparts. To distinguish between the dis-
assemblies of both types, we add an "s" to the file extensions
e.g. .dyndiss and .objdumps.

4.2.3 Filter-traces Mode
The generated assembly files contain a detailed informa-

tion about the executed instructions; this includes variables
values, memory locations, and some initialization code from
libc. We believe that the majority of such information is in
some cases, noisy and confusing for classifiers, especially since
they are neither relevant to the program functionality nor to
the obfuscation transformation. Instead, they are very spe-
cific to the underlying operating system and architecture. So,
we believe that these irrelevant values can be safely removed.
We implemented a filtration mechanism–supported by the
filter-traces mode of the Oedipus tool to remove irrelevant in-
formation. The mechanism focuses on the instructions issued
by the function implementing the functionality of the pro-
gram, and replaces either memory locations with the string
mem, immediate values with the string imm, or both. We fil-
tered out both types of values, and generated a filtered ver-
sion of every single disassembly file. The filtered versions
had _both appended to the extension e.g. the filtered version
of .dyndis is .dyndis_both.

4.2.4 Extract-from-traces Mode
At this point, we have 8 types of disassembly files for each

file in the input dataset of C programs. We use the Oedi-
pus tool in extract-from-traces mode to extract TF-IDF features
from them according to the description from section 3.1.2.
This results in 8 files with the following extensions:

• tfidf: TF-IDF features generated from non-stripped, non-
filtered dynamic disassembly files.

• tfidf_both: TF-IDF features generated from non-stripped,
filtered dynamic disassembly files.

• tfidfobj: TF-IDF features generated from non-stripped,
non-filtered static disassembly files.

• tfidfobj_both: TF-IDF features generated from non-stripped,
filtered static disassembly files.

• tfidfs: TF-IDF features generated from stripped, non-
filtered dynamic disassembly files.

• tfidfs_both: TF-IDF features generated from stripped,
filtered dynamic disassembly files.

• tfidfobjs: TF-IDF features generated from stripped, non-
filtered static disassembly files.

• tfidfobjs_both: TF-IDF features generated from stripped,
filtered static disassembly files.

4.2.5 Classify-exp1 and Classify-exp2 Modes
We used the previously listed datatypes to train a deci-

sion tree classifier and a naive Bayes classifier. For the for-
mer classifier, we varied two attributes; we varied the split-
ting criterion used by the tree during training to be Gini in-
dex and entropy, and varied the maximum allowed depth of
the tree to the values {2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16}. As for
the latter classifier, we used two techniques to reduce the di-
mensionality of the feature vectors viz., SelectKBest features
and PCA. We varied the target dimensionality to the values
{8, 16, 32, 64, 128}. The two classifiers were used in two ex-
periments (corresponding to the classify-exp1 and classify-
exp2 modes of the Oedipus tool) we conducted for each of
the two datasets.

The primary difference between the two experiments is
how cross-validation is implemented. In experiment one, we
adopt the conventional K-Fold cross validation with a value
of K = 10. That is to say, the data comprising TF-IDF fea-
ture vectors is divided into 10 segments; 9 segments are used
to train a classifier i.e. decision tree or naive Bayes, and the
remaining segment is used to test the classifier’s accuracy.
This process is repeated 10 times varying the training and
test datasets incrementally. The overall accuracy of a classi-
fier is calculated by averaging the accuracy achieved at each
iteration. The objective of experiment one is to get an objec-
tive estimate of the accuracy of the classifier by varying the
training and test datasets.

Experiment two implements another cross-validation method.
In this case, the training and test datasets are based on pro-
gram functionality. That is to say, the test dataset is designed
to exclude any programs that have been used in the train-
ing based on the functionality they implement. For instance,
in order to use the factorial program in the test dataset, we
need to make sure that it, or any of its obfuscated versions,
has never been used in training. This process is repeated for
10 times and the overall classification accuracy is calculated
as the average of achieved accuracies. The objective of this
type of experiment is to study the effect of functionality on
the classification accuracy. In other words, could the classi-
fier recognize the obfuscation transformation employed by a
program even it has never seen this type of program before?

4.3 Results
In this subsection, we present the results of running the

Oedipus tool presented in section 4.2 on each of the datasets
presented in section 4.1. Afterward, we discuss the results
and threats to validity.

4.3.1 Dataset 1: 40 Programs
Table 1 includes the classification accuracies achieved us-

ing TF-IDF vectors from the first dataset. The results are tab-
ulated for both experiments using accuracies achieved at a
depth of 8 for the decision tree and reduced dimensional-
ity of 64 for the naive Bayes classifier. Each row in the ta-
ble depicts a combination of a certain: (1) type of raw data,
i.e. static or dynamic, (2) disassembly filtration, i.e. raw or
filtered and (3) symbols stripping during compilation. For
example, the first row depicts the classification accuracies
achieved using TF-IDF features extracted from non-filtered,
stripped, static disassemblies i.e. .objdumps files. Each col-

Table 1: Classification accuracies for experiments 1 and 2 (in red) using 40 self-gathered C programs.
Naive Bayes Decision Tree

SelectKBest PCA Gini Entropy

Static
raw stripped 0.37 / 0.40 0.38 / 0.39 0.99 / 0.38 0.98 / 0.40

non-stripped 0.38 / 0.40 0.96 / 0.40 0.96 / 0.25 0.96 / 0.38

filtered stripped 0.61 / 0.44 0.38 / 0.44 0.98 / 0.39 0.99 / 0.46
non-stripped 0.86 / 0.40 0.40 / 0.40 0.99 / 0.44 0.99 / 0.61

Dynamic
raw stripped 0.35 / 0.45 0.36 / 0.54 0.99 / 0.61 0.99 / 0.39

non-stripped 0.60 / 0.40 0.35 / 0.42 0.99 / 0.56 0.99 / 0.40

filtered stripped 0.86 / 0.48 0.65 / 0.34 0.96 / 0.48 0.96 / 0.52
non-stripped 0.92 / 0.55 0.62 / 0.35 0.99 / 0.57 0.99 / 0.41

umn in the table depicts a combination of a certain: (1) clas-
sification algorithm, i.e. naive Bayes or decision tree and (2)
the corresponding feature selection method or splitting crite-
rion Each cell of the table lists 2 values separated by a slash
(“/”). The first value is the accuracy of the Oedipus tool in
Classify-exp1 mode (experiment 1) and the second value is
the accuracy of Classify-exp2 mode (experiment 2).

Examining the accuracies, one can observe the following
vis-á-vis to the research questions at the beginning of sec-
tion 4. Firstly, with a few exceptions, decision tree classifiers
achieved higher classification accuracies than their naive Bayes
counterparts (RQ1). Secondly, TF-IDF features extracted from
dynamic disassemblies achieved higher classification accu-
racies than those extracted from static disassemblies (RQ2).
Thirdly, filtering the disassemblies appeared to have helped,
again with a few exceptions, achieve higher classification ac-
curacies across different experiments, data types, and classi-
fication algorithms (RQ3). Moreover, we could not observe a
specific pattern with regard to the effect of stripping symbols
off obfuscated programs during compilation (RQ4). Lastly,
the accuracies achieved in experiment 1 are, in general, much
higher than those achieved in experiment 2 (RQ5).

4.3.2 Dataset 2: Random Programs
The classification accuracies achieved using TF-IDF vec-

tors from the second dataset is tabulated in the same man-
ner as seen in table 2. Some of the observations we made
for the first dataset persist for its second counterpart. For in-
stance, decision tree classifiers continued to achieve higher
classification accuracies than naive Bayes classifiers, as well
(RQ1). Filtration also continued to contribute to achieving
higher classification accuracies for the majority of data types
(RQ3). The classification accuracies achieved in experiment
one continue to be higher than those achieved in experiment
two (RQ5).

Unlike the first dataset, features extracted from dynamic
disassemblies did not always outperform those extracted from
static disassemblies (RQ2); dynamic disassemblies could not
help naive Bayes classifiers to achieve high accuracies, whereas
decision trees achieve 10% higher accuracies upon the uti-
lization of features extracted from dynamic disassemblies.
Another difference is concerned with using features extracted
from stripped executables (RQ4). In contrast to the first dataset,
stripping maintained a steady pattern across different exper-
iments, data types, and classifications. Stripping did not sig-
nificantly affect the classification accuracy.

Lastly, we made two observations by comparing experi-
ments conducted using the two datasets (RQ6). The differ-
ence between the accuracies achieved in experiment two and

experiment one is significantly larger upon using the sec-
ond dataset in comparison to using the first dataset. Conse-
quently, the classification accuracies in experiment two, us-
ing the second dataset, is much lower than those achieved
using the first dataset. In other words, the second dataset
yielded significantly worse classification accuracies in exper-
iment two than its first counterpart.

4.3.3 Discussion
Reiterating over the results from the two datasets, we an-

swer each of the research questions posted in the beginning
of section 4. Research question 1: Decision tree classifiers achieved
accuracies ranging from 88% to 100% in experiment 1 and
ranging from 20% to 61% in experiment 2, which is better
than randomly guessing one out of six transformation classes
i.e. 1

6
≈ 17%. Naive Bayes classifiers were slightly worse

achieving classification accuracies ranging from 37% to 96%
in experiment 1 and from 19% to 55% in experiment 2.

Research question 2: Despite a couple of exceptions, we can
conclude that using dynamic disassemblies to extract fea-
tures resulted in better classification accuracies, especially if
a variety of inputs have been utilized to explore various run-
time behaviors in a program. That is why TF-IDF features
extracted from dynamic disassemblies always achieved bet-
ter accuracies upon using the first dataset, which included
programs each of which was run with several inputs.

Research question 3: The results we achieved imply that fil-
tering out the immediate values and memory locations in
disassembly files boosted classification accuracies. We be-
lieve that such filteration, combined with the TF-IDF fea-
tures helped the classifiers identify obfuscation transforma-
tions that heavily rely on memory and arithmetic operations,
especially since the memory locations and immediate values
were replaced with particular strings as discussed in earlier.

Research question 4: Our results did not indicate a signifi-
cant change in classification accuracies inflicted by stripping
the program off debugging symbols during compilation. We
believe, though, that stripping would have an effect on accu-
racy if the obfuscation transformation repeatedly uses a par-
ticular set of symbols that share a common naming scheme.
For instance, if the jittin transformation names some func-
tions as jit_add, jit_mul, jit_sub, etc., using the TF-IDF fea-
tures, a classifier could easily segregate programs obfuscated
using such transformations from programs obfuscated using
other transformations.

Research question 5: The classification accuracy of a classi-
fier used to retrieve the obfuscation transformation employed
by a program largely depends on whether that program–or
another program with similar functionalities–has been used

Table 2: Classification accuracies for experiments 1 and 2 (in red) using 1920 random C programs.
Naive Bayes Decision Tree

SelectKBest PCA Gini Entropy

Static
raw stripped 0.80 / 0.19 0.68 / 0.19 0.89 / 0.20 0.88 / 0.20

non-stripped 0.80 / 0.19 0.69 / 0.19 0.89 / 0.20 0.88 / 0.19

filtered stripped 0.84 / 0.26 0.70 / 0.22 0.89 / 0.40 0.89 / 0.42
non-stripped 0.87 / 0.23 0.78 / 0.20 0.89 / 0.35 0.88 / 0.34

Dynamic
raw stripped 0.57 / 0.02 0.64 / 0.44 0.96 / 0.45 0.97 / 0.45

non-stripped 0.57 / 0.02 0.63 / 0.44 0.96 / 0.45 0.96 / 0.45

filtered stripped 0.89 / 0.42 0.84 / 0.52 0.93 / 0.59 0.93 / 0.61
non-stripped 0.96 / 0.36 0.91 / 0.14 1.00 / 0.61 1.00 / 0.61

during the training phase of a classifier i.e. experiment one
versus experiment two.

Research question 6: Finally, as per the results achieved from
experiment two, we conclude that there is an inverse rela-
tionship between the heterogeneity of programs used in train-
ing and test datasets and the achieved classification accura-
cies. That is to say, the less the relationship, in terms of func-
tionality and structure, between the programs in the train-
ing dataset and test dataset, the lower the classification accu-
racy. In other words, if the classifier has never encountered a
particular type of programs during training e.g. sorting pro-
grams, it is less likely that it can recognize the obfuscation
transformations they employ during the test phase.

4.3.4 Threats to validity
In the experiments presented here, we only used one ob-

fuscation engine, namely Tigress. Increasing the number of
obfuscation transformation implementations by adding mul-
tiple tools may affect the accuracy. However, we are confi-
dent that if a certain obfuscation transformation has a certain
pattern then it will be possible to recognize it using machine
learning algorithms. As indicated in section 5, Sun et al. [24]
have performed a similar study to ours where they used mul-
tiple packing tools and they achieved similar accuracy levels.

Another threat to the validity of our results is that we only
used 2 datasets of relatively small C programs. We did not
use more complex applications consisting of thousands of
functions such as web browsers for the following reasons.
Firstly, we consider that metadata recovery attacks should
be applied at the level of granularity of single functions, be-
cause different functions could be obfuscated using different
transformations. Secondly, we consider our dataset to be rep-
resentative for a large number of programs, because they use
all common programming language constructs. Thirdly, de-
vising test cases that cover all functions of a complex appli-
cation, can be an extremely difficult and resource consuming
process and is not the focus of our work.

5. RELATED WORK
The authors are not aware of any works which aim to per-

form metadata recovery, i.e. recovery of information about which
obfuscation transformation was applied to an obfuscated bi-
nary. However, there are several works from the area of iden-
tification and classification of packed binaries, which we con-
sider related to our work.

Lyda and Hamrock [13] use binary entropy analysis to iden-
tify encrypted and packed code inside binaries. They pro-
pose a tool called Bintropy which is able to compute the en-
tropy of blocks of a binary executable. Using a rule-based

methodology it estimates whether or not a binary contains
encrypted or compressed bytes.

The Fast Library Identification and Recognition Technology5

(FLIRT) is a feature of a state of the art tool for reverse engi-
neering called IDA Pro, which uses signature-based pattern
matching to identify library functions in static binary code.
FLIRT stores signatures of common libraries in a database
and uses it while IDA Pro is disassembling a binary exe-
cutable. The information provided by FLIRT is aimed at facil-
itating the reverse engineering process by a human analyst.

Perdisci et al. [14] use pattern matching on static binaries
in order to detect whether a binary is packed or unpacked.
Similarly to our work, the authors use machine learning tech-
niques such as Naive Bayes and decision trees for the pur-
pose of classification. Differently to our work where the num-
ber of classes is equal to the number of obfuscation transfor-
mations implemented by a certain obfuscation engine, the
classification problem in the work of Perdisci et al., is lim-
ited to 2 classes, i.e. packed or unpacked. Ugarte-Pedrero et
al. [26] propose a semi-supervised learning approach called
Learning with Local and Global Consistency (LLGC) in order to
classify packed and unpacked binaries. Their empirical eval-
uation shows that using only 10% of the dataset of malware
instances from Perdisci et al. [14], LLGC achieves an accuracy
lower by only 9% of that reported by Perdisci et al.

Kanzaki et al. [12] propose code artificiality as a metric for
the stealth of obfuscated code, i.e. a measure of indistinguisha-
bility between obfuscated and unobfuscated code. Similarly
to our work the use transformations from the Tigress obfus-
cator in their case study. Their results show that static ob-
fuscation transformations such as control flow flattening are
more stealthy than dynamic obfuscation transformation such
as jitting. Unlike our work, they do not aim to recover the ob-
fuscation transformation applied to a binary, but to measure
its stealth instead.

The goal of the work by Sun et al. [24] is most similar to our
work since they not only try to distinguish between packed
and unpacked binaries, but also the name of the packer which
was used. Similarly to our work they also used Naive Bayes
and decision trees plus other classification algorithms. How-
ever, while we use TF-IDF for feature extraction, they use a
refined version of the sliding window randomness test with
trunk pruning method by Ebringer et al. [9]. Unlike Sun et
al. [24], we not only extract static features from the obfus-
cated programs; we also execute the obfuscated programs,
record their instruction traces, and extract TF-IDF features
from them. This is a significant difference, because we show
that classification accuracy using dynamic instruction traces
5https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml

https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml

as features, is in sum better than static code as features.

6. CONCLUSIONS
Our primary hypothesis is that machine learning is capa-

ble of implementing metadata recovery attacks by classify-
ing obfuscated programs according to the transformations
they employ. In this paper, we presented Oedipus, a Python
framework is capable of generating obfuscated versions of
C programs, extracting various types of features from them,
visualizing them, and using decision trees and naive Bayes
classifiers to classify them according to the obfuscation trans-
formations they employ.

Using two sets of programs, a variety of representations
of obfuscated program executables, the TF-IDF features, the
aforementioned classifiers, and two types of experiments, we
managed to empirically prove the feasibility of using ma-
chine learning to implement the metadata recovery attacks
with classification accuracies as high as 100%. We also stud-
ied the effects of varying the heterogeneity of obfuscated pro-
grams, the format of the raw data, and the classification al-
gorithms on the achieved accuracy.

We plan on extending Oedipus as follows. Firstly, we wish
to consider more layers of obfuscation, and examine whether
Oedipus is capable of implementing the metadata recovery
attacks against them. Secondly, we aspire to gather more
real-world applications, such as text editors, web browsers,
messengers, etc., and conduct our experiments on them. Lastly,
since this work is partly motivated by helping reverse engi-
neers study obfuscated malware samples, we plan on acquir-
ing malicious samples, whose source code is available, and
attempt to reproduce the same results we achieved with be-
nign programs.

7. REFERENCES
[1] A. Balakrishnan and C. Schulze. Code obfuscation

literature survey. CS701 Construction of Compilers, 19,
2005.

[2] S. Banescu, M. Ochoa, and A. Pretschner. A framework
for measuring software obfuscation resilience against
automated attacks. In 2015 IEEE/ACM 1st International
Workshop on Software Protection (SPRO), pages v–vi,
May 2015.

[3] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In OSDI, 2008.

[4] C. Collberg. Tigress: Transformations Index. University of
Arizona, 2015.

[5] C. Collberg, S. Martin, J. Myers, and J. Nagra.
Distributed application tamper detection via
continuous software updates. In Proceedings of the 28th
Annual Computer Security Applications Conference,
ACSAC ’12, pages 319–328, New York, NY, USA, 2012.
ACM.

[6] C. Collberg, C. Thomborson, and D. Low. A taxonomy
of obfuscating transformations. Technical report,
Department of Computer Science, The University of
Auckland, New Zealand, 1997.

[7] D. Cournapeau. Scikit-learn.
[8] Cquestions.com. C programming interview questions

and answers, 2015.
[9] T. Ebringer, L. Sun, and S. Boztas. A fast randomness

test that preserves local detail. In Virus Bulletin 2008,

pages 34–42. Virus Bulletin Ltd, 2008.
[10] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey

on automated dynamic malware-analysis techniques
and tools. ACM Computing Surveys (CSUR), 44(2):6,
2012.

[11] Y. Guillot and A. Gazet. Automatic binary
deobfuscation. Journal in computer virology,
6(3):261–276, 2010.

[12] Y. Kanzaki, A. Monden, and C. Collberg. Code
artificiality: a metric for the code stealth based on an
n-gram model. In Proceedings of the 1st International
Workshop on Software Protection, pages 31–37. IEEE
Press, 2015.

[13] R. Lyda and J. Hamrock. Using entropy analysis to find
encrypted and packed malware. IEEE Security &
Privacy, 5(2):40–45, 2007.

[14] R. Perdisci, A. Lanzi, and W. Lee. Classification of
packed executables for accurate computer virus
detection. Pattern Recognition Letters, 29(14):1941–1946,
2008.

[15] G. Project. Gnu binutils.
[16] G. Project. Gnu compiler collection.
[17] G. Project. Gnu debugger.
[18] J. Ramos. Using tf-idf to determine word relevance in

document queries. In Proceedings of the first instructional
conference on machine learning, 2003.

[19] R. Rehurek. Gensim.
[20] R. Rolles. Unpacking virtualization obfuscators. In 3rd

USENIX Workshop on Offensive Technologies.(WOOT),
2009.

[21] J. Salwan and F. Saudel. Triton: A concolic execution
framework for x86-64 binaries. In Symposium sur la
securite des technologies de l’information et des
communications, SSTIC, France, Rennes, June 3-5 2015,
pages 31–54. SSTIC, 2015.

[22] M. Sikorski and A. Honig. Practical Malware Analysis:
The Hands-On Guide to Dissecting Malicious Software. No
Starch Press, 1st edition, 2012.

[23] A. Slowinska, T. Stancescu, and H. Bos. Howard: A
dynamic excavator for reverse engineering data
structures. In NDSS. Citeseer, 2011.

[24] L. Sun, S. Versteeg, S. Boztaş, and T. Yann. Pattern
recognition techniques for the classification of malware
packers. In Australasian Conference on Information
Security and Privacy, pages 370–390. Springer, 2010.

[25] S. K. Udupa, S. K. Debray, and M. Madou.
Deobfuscation: Reverse engineering obfuscated code.
In Reverse Engineering, 12th Working Conference on,
pages 10–pp. IEEE, 2005.

[26] X. Ugarte-Pedrero, I. Santos, P. G. Bringas, M. Gastesi,
and J. M. Esparza. Semi-supervised learning for packed
executable detection. In Network and System Security
(NSS), 2011 5th International Conference on, pages
342–346. IEEE, 2011.

[27] H. S. Warren. Hacker’s delight. Pearson Education, 2013.
[28] B. Yadegari, B. Johannesmeyer, B. Whitely, and

S. Debray. A generic approach to automatic
deobfuscation of executable code. Technical report,
Technical report, Department of Computer Science, The
University of Arizona, 2014.

	Introduction
	Background
	Layout Transformations
	Code Transformations
	Virtualization Obfuscation
	Just-in-Time Compilation (Jitting)
	Flattening
	Opaque Predicates
	Encoding Arithmetic

	Data Transformations
	Encoding Literals

	Oedipus
	Design
	Generation of Raw Data
	Feature Extraction
	Choice of Classifiers

	Implementation
	Utilities
	Gadgets
	Utilized Tools

	Experiments
	Datasets of C Programs
	Oedipus Tool
	Generate Mode
	Extract Mode
	Filter-traces Mode
	Extract-from-traces Mode
	Classify-exp1 and Classify-exp2 Modes

	Results
	Dataset 1: 40 Programs
	Dataset 2: Random Programs
	Discussion
	Threats to validity

	Related Work
	Conclusions
	References

