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ABSTRACT

Within this thesis, the progression of the heat-shock protein Hsp90 through
distinct conformational states was recorded by single molecule Förster res-
onance energy transfer (FRET) and investigated under multiple controlled
conditions.

Eukaryotic Hsp90 is an essential, homo-dimeric chaperone protein with ATP-
ase activity that undergoes large conformational opening and closing tran-
sitions. In stark contrast to the dynamics of many motor proteins, Hsp90’s
global dynamics occur similarly in the presence and absence of ATP, i.e.
even in thermal equilibrium. Hence, it was a common hypothesis that helper
proteins (cochaperones) would link a conformational transition to energy
consumption and thus induce directional kinetics.

Single molecule time traces are predestined to solve such thermodynamic
questions because they reveal the time evolution of unsynchronized kinetic
systems at steady-state (explicitly including the non-equilibrium steady-state).
To exploit this unique feature, a single molecule analysis for complex kinetic
sequences (SMACKS) was developed, and specifically fine-tuned to get a
quantitative and testable description of Hsp90’s conformational dynamics.
Based on a set of time traces, SMACKS infers one kinetic state model
including all relevant transition rates and also their uncertainties. Thereby,
it eliminates previous artifacts, in particular the dwell-time related, system-
atic and non-linear overestimation of transition rates. Notably, this versatile
maximum-likelihood approach is applicable to all kinds of single molecule
time traces.

Applied to Hsp90, SMACKS resolved the expected kinetic heterogeneity.
Specifically, two distinct open and two distinct closed states could now be
distinguished explicitly. On top of that, it allowed Hsp90 to be tested for ATP
hydrolysis driven, directional kinetics. Yet, even under severalfold stimulation
of Hsp90’s ATPase activity by the cochaperone Aha1, no directional kinetics
were found.
In addition, this work presents many more examples of the dynamic structure-
function relationship in Hsp90, among them the effect of anti-cancer drug
candidates, a point mutation in Hsp90’s hinge region, the differential effects
of viscosity and macromolecular crowding, as well as the influence of mono-
valent salts.

Altogether, the results draw a picture of a very flexible Hsp90. Although this
conformational flexibility is largely independent of the ATPase activity, the
inverse is not true. In fact, both specific and non-specific manipulation of
Hsp90’s conformational energy landscape were found to modulate its ATP-
ase activity. Remarkably, non-specific conformational confinement induced
a nearly 5-fold increase in ATPase activity. This highlights a new aspect of
Hsp90’s controversially discussed ATPase function, namely its sensitivity to
conformational flexibility.
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ZUSAMMENFASSUNG

In dieser Doktorarbeit wurde mittels Einzel-Molekül-Förster-Resonanz-Ener-
gie-Transfer (FRET) das Fortschreiten des Hitzeschockproteins Hsp90 durch
einzelne Konformationszustände verfolgt und unter verschiedenen kontrollier-
ten Bedingungen untersucht.

Eukaryotisches Hsp90 is ein essentielles homo-dimerisches Chaperon-Protein.
Es besitzt ATPase-Aktivität und macht grosse Zustandsänderungen zwi-
schen N-terminal offenen und geschlossenen Konformationen. Im dezidierten
Gegensatz zu den Dynamiken vieler Motorproteine, passieren diese allerdings
in Anwesenheit wie auch Abwesenheit von ATP, d.h. sogar im thermischen
Gleichgewicht. Eine gängige Hypothese lautete, dass erst im Zusammenspiel
mit Helferproteinen (Cochaperonen) Konformationsänderungen an die ATP-
Hydrolyse koppeln und daher gerichtete Dynamik induziert würde.

Einzel-Molekül-Zeitreihen sind prädestiniert für solche thermodynamischen
Fragestellungen, da sie den (unsynchronisierten) Zeitverlauf kinetischer Sys-
teme im Fliessgleichgewicht detektieren können. Um dieses Alleinstellungs-
merkmal ausnützen zu können, wurde eine Analyse für komplexe kinetische
Abläufe entwickelt (SMACKS). Sie wurde so optimiert, dass eine quantita-
tive und überprüfbare Beschreibung der Konformationsdynamik von Hsp90
möglich wurde. SMACKS bestimmt auf Basis eines Zeitreihen-Sets ein ki-
netisches Zustandsmodell mit allen relevanten Übergangsraten und deren
Unsicherheiten. Damit konnten frühere Artefakte ausgeräumt werden, ins-
besondere die systematische, nicht-lineare Überschätzung von Verweildauer-
basierten Übergangsraten. Dieser Maximum-Likelihood-Ansatz ist im Übri-
gen auf vielerlei Einzelmolekül Zeitreihen anwendbar.

Bezüglich Hsp90 hat SMACKS die erwartete kinetische Heterogenität auf-
gelöst. Konkret konnten nun zwei unterschiedliche offene und zwei unter-
schiedliche geschlossene Zustände explizit unterschieden werden. Darüber
hinaus konnte mit SMACKS die Konformationsdynamik auf ATP-Hydrolyse
getriebene, gerichtete Prozesse geprüft werden, d.h. Prozesse im Nicht-
Gleichgewicht. Allerdings wurde sogar unter vielfacher ATPase-Stimulation
durch das Cochaperon Aha1 keine gerichtete Kinetik beobachtet.
Zusätzlich präsentiert diese Arbeit viele weitere Beispiele der dynamischen
Struktur-Funktions-Beziehung in Hsp90, darunter der Effekt von Anti-Krebs
Wirkstoff-Kandidaten, eine Punktmutation in der Gelenkregion von Hsp90,
die unterschiedlichen Effekte von Viskosität und makromolekularem Crow-
ding, sowie der Einfluss einwertiger Salze.

Zusammenfassend zeigen die Resultate ein sehr dynamisches und flexibles
Hsp90. Obwohl diese Flexibilität weitestgehend unabhängig von der ATPase-
Aktivität ist, gilt der Umkehrschluss nicht. Tatsächlich wurde die ATPase-
Aktivität sowohl durch spezifische, wie auch unspezifische Manipulation der
Konformations-abhängigen Energielandschaft von Hsp90 beeinflusst. Bemer-
kenswert ist hier, dass gänzlich unspezifisches Einschränken des Konforma-
tionsraums zu einer fast 5-fach erhöhten ATPase-Aktivität führte. Dieser
Aspekt könnte wesentlich zum Verständnis der kontrovers diskutierten ATP-
ase-Funktion beitragen.
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Part I

I NTRODUCT ION & THEORY





1
I NTRODUCT ION

Proteins are the most fascinating polymers on earth! Although they con-
sist of dead material, they keep us alive by maintaining a steady state away
from thermodynamic equilibrium. For that purpose, many proteins consume
external (i.e. non thermal) energy, which in the cell is frequently provided
by nucleosid tri-phosphates, e.g. ATP. This energy powers their functional
cycle, that is to say, the directed progression through states with distinct
characteristics, such as specific conformations and/or nucleotide, substrate
or ligand association. The connection between energy consumption and func-
tion is well understood in many cases, including diverse motor proteins [54,
165, 41, 152], the ribosome [162], polymerases [114], proteases [56], as well
as kinases, which use ATP to phosphorylate their substrates.

This is different for the eukaryotic heat-shock protein Hsp90 studied herein.
Similar to motor proteins, it undergoes large conformational changes and it
hydrolyses ATP. However, no connection between the two has been found
so far. In fact, the purpose of energy consumption (i.e. ATP hydrolysis)
by Hsp90 is entirely unknown, and so is the molecular mechanism of its
chaperone function. Nevertheless, it affects over 200 so-called client proteins
[82]. To this end, Hsp90 relies on over 20 co-chaperones [148].

So, a vast number of interactions and Hsp90-dependent metabolic pathways
have been described. But on the molecular and thermodynamic level, there
are many open questions including:

• Do cochaperones couple conformational changes to energy consump-
tion?

• Are the conformational dynamics affected by the inhibition of Hsp90’s
ATPase function?

• Are there specific switch-points in Hsp90’s structure where we can
interfere with these dynamics and/or function?

• Are the large conformational changes affected by increased viscosity
and macromolecular crowding, similar to the cell interior?

• Is there a global interrelation between ATPase function and conforma-
tional dynamics - in the one or the other direction?

These key questions are addressed herein in single molecule detail by Förster
resonance energy transfer (FRET). Single molecule time traces are partic-
ularly suited to investigate thermodynamic and kinetic questions. In fact, it
is their unique feature to reveal the time evolution of one protein through
individual kinetic states, notably in real time and at steady-state, whithout
the need for external synchronization. This allows to explore the energy land-
scape, providing unparalleled insights into molecular driving forces.

Next to these great potentials, there are experimental limits of single molecule
FRET, rendering quantitative, kinetic interpretations non-trivial. In view
of these shortcomings, a single molecule analysis for complex kinetic se-
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1 I NTRODUCT ION

quences (SMACKS) was developed and custom-tailored to investigate pro-
tein machines, like Hsp90.

This thesis is structured as follows: Chapter 2 provides a more detailed in-
troduction on Hsp90. Fluorescence and FRET are introduced in Chapter 3.
Detection strategies for single molecule fluorescence are covered in Chap-
ter 4. A technique for pattern recognition in single molecule trajectories is
introduced in Chapter 5.
Part II holds central experimental features that were implemented and in
many cases improved in the frame of this work. Namely the single molecule
TIRF experiment (Chapter 6) and the optimized Hsp90 construct (Chap-
ter 7). All further protocols are provided in the appendix, Appendix B The
results part includes a critical evaluation of potentials and limits of single
molecule FRET (Chapter 8), leading to the development of SMACKS pre-
sented in Chapter 9.
In Chapter 10 I discuss the complex kinetics of Hsp90’s large conforma-
tional changes. The effect of diverse biochemical and physical interference
with Hsp90 are presented in Chapter 11 and Chapter 12, respectively. I close
with an outlook on protein kinetics in Chapter 13 and a conclusion in Chap-
ter 14.

At last, the reader is informed that the term transition rate is used herein
as shorthand for transition rate constant, as opposed to particle flux.

4



2
HEAT - SHOCK PROTE IN HSP9 0

The chaperone protein Hsp90 is a metabolic hub. This is manifested by its
direct or indirect involvement in the function of roughly 20% of all yeast
proteins [148]. It further constitutes 1-2% of the cytosolic mass [17], even
more under stress conditions.

2.1 STRUCTURE & FUNCT IONAL ELEMENTS

The functional form of Hsp90 is a 10nm tall homo-dimer. Figure 2.1a shows
the crystal structure of Hsp90 in a closed conformation. The Hsp90 protomer
consists of three domains as indicated: the N(-terminal) domain, the middle
domain and the C(-terminal) domain. In addition, Hsp90 occurs also in open
conformations with dissociated N-domains (Figure 2.1b). But these have
never been crystallized, which is attributed to tremendous conformational
flexibility.

Figure 2.1: The structure of Hsp90. (a) Crystal structure (pdb:2cg9 [2]) in a
closed conformation: N-domain, yellow; middle domain, green; C-domain, blue.
The second protomer is displayed in gray, bound nucleotides as colored sticks. (b)
Average open conformation determined by smFRET and MD [61]. (c) Top view
of the N-domains with exchanged β1 (red), α1 (green), closed ATP lid (blue) and
β-sheet (cyan). (d,e) Side views of the N domains highlighting the closed (d) and
open (e) ATP lid conformations and distinct β1 association (pdb:1am1 [124]),
color code as in (c).
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2 HEAT - SHOCK PROTE IN HSP9 0

Hsp90’s N-terminal domain contains a nucleotide binding site with a very
slow ATPase function. Interestingly, the ATP binding pocket is formed by
a rare Bergerat fold, which is shared among GyrB, Hsp90, histidine kinase
and MutL, hence called the GHKL ATPases. ATP is bound in a bent con-
formation representing a drugable motive (see below). Opposing N-domains
form transient cross-protomer contacts including a strand swap of the very
N-terminal β-sheet, subsequently referred to as β1 (Figure 2.1c).
The N-domain is covalently linked to the middle domain by a charged linker,
which is mostly unresolved in the crystal structure. Nevertheless, it has
sequence-specific, functional relevance and interacts with the N domain [74].
Additionally, there are many more non-covalent interactions between both
domains. Among the most important ones is the interaction of the catalytic
loop (including the conserved arginine 380) with the nucleotide and neighbor-
ing residues, which is critical for ATP hydrolysis [106, 34]. Furthermore, the
middle domain interacts with diverse cochaperones and clients (see below).
The interface between the middle and C domain is involved in the global
opening and closing. The C domain holds the main dimerization interface.
The very C-terminalMEEVD motif further binds a specific class of cochap-
erones, the tetratricopeptide repeat (TPR)-domain proteins [117].

Many local conformational changes rely on each other. For instance, the β-
strand swap is further stabilized by the closed ATP lid, uncovering additional
attachment sites for the N-terminal β1-α1-segment (Figure 2.1d); whereas
the open lid configuration favors intra-attachment of β1 to the N-terminal
β-sheet (Figure 2.1e) [122]. Also, the active conformation of the catalytic
loop, which interacts with bound nucleotides, is only accessible if the ATP lid
is closed. These three functional elements are sometimes called the catalytic
unit. A cooperative behavior of the three was recently suggested [140].

2.2 CHAPERONE FUNCT ION & REGULAT ION

Over 200 distinct proteins rely on maturation by Hsp90. Among these so-
called client proteins, are many kinases involved in signal transduction, hor-
mone receptors, the guardian of the genome p53 [87], but also cytoskeletal
proteins, e.g. actin, tubulin, and many more [82, 117].
Nevertheless, eukaryotic Hsp90 is believed to treat its clients specifically, with
the help of diverse cochaperones, such as the ATPase stimulating Aha1 (in-
vestigated herein, see Section 11.1), decelerating Sba1/p23, TPR-domain
proteins like Sti1/Hop and Cpr6, kinase-specific Cdc37, prolyl-isomerases
just to name a few [90, 91, 16, 154].

Hsp90’s function is further regulated on various levels, from transcription
down to the post-translational level. For example the central transcription
factor Hsf1, which is part of the multifarious heat-shock response, is itself
a client of Hsp90. Further downstream, many post-translational modifica-
tions have been characterized, including specific phosphorylation, Acetyla-
tion, SUMO-ylation and S-nitrosylation [110, 97, 132, 123].

In addition, the eukaryotic cell holds individual Hsp90 versions in the cytosol,
the nucleus, the chloroplasts and the mitochondria. This work focuses on

6



2.2 Chaperone Function & Regulation

the heat-inducible, cytosolic paralog of Saccharomyces cerevisiae, Hsp82
(uniprot entry: P02829).

Despite the enormous number of about 725 experimentally determined inter-
actions with Hsp90 [123], only little is known about the molecular basis of
Hsp90’s function. In particular, the role of the ATPase activity in the chaper-
one function has remained elusive up to now [116]. Even the long-standing
concept that ATPase activity is essential in vivo was severely questioned,
just recently [168].

2.2.1 The role in cancer

Hsp90 is involved in all Six Hallmarks of Cancer [14]:
• Self-sufficient growth signals
• Insensitivity to antigrowth signals
• Evasion of apoptosis
• Limitless replicative potential
• Sustained angiogenesis
• Tissue invasion and metastasis

Due to this exceptional role, Hsp90 has become a major drug target in anti-
cancer therapy. Cancer cells are virtually addicted to Hsp90, because of their
uncontrolled and fast growth.

A classical therapeutic strategy exploits the unusual ATP conformation in
Hsp90. It allows to target Hsp90 with great specificity. First candidates were
natural products, such as geldanamycin produced by Streptomyces hygro-
scopicus [37] and radicicol originally isolated from Monosporium bonorden
[38, 82]. Later, purine derived drug candidates were developed based on the-
oretical predictions [26, 72].
Apart from competitively blocking the nucleotide binding site, there are fur-
ther strategies to inhibit Hsp90’s chaperone function. Mainly there is a Novo-
biocin derived class of C-terminal inhibitors [95, 99, 7, 52].

All 4 classes of current drug candidates were investigated herein (see Sec-
tion 11.2), to elucidate the effect of inhibition on the Hsp90 molecule.
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3
FLUORESCENCE & FRET

Fluorescence is observed in nature in marine animals - such as the jellyfish
depicted in Figure 3.1 - but also in insects, plants and dead material like
minerals.

121

Figure 5. The jellyfish Aequorea aequorea in nature.

I was convinced that the cause of our failure was the luciferin-luciferase hy-
pothesis that dominated our mind. I suggested to Dr. Johnson that we forget 
the idea of extracting luciferin and luciferase and, instead, try to extract a 
luminescent substance whatever it might be. However, I was unable to con-
vince him. Because of the disagreement on experimental method, I started 
to work alone at one side of a table, while, on the other side, Dr. Johnson and 
his assistant continued their efforts to extract a luciferin. It was an awkward, 
uncomfortable situation.

Figure 6. Top view of a specimen of Aequorea aequorea in daylight at sea (left), and when 
stimulated in a darkroom (right).

Figure 3.1: The jellyfish Aequorea victoria (left) and its fluorescent ring (right),
originating from the green fluorescent protein (GFP). The characterization of
GFP earned Osamu Shimomura the Nobel Prize in chemistry in 2008. Pho-
tographs are taken from the Nobel Lecture [142].

Physically, fluorescence is a byproduct of a molecule’s relaxation from an
electronically excited high energy state to a low energy ground state. This
is detailed in the Jablonski diagram.

3.1 JABLONSK I D I AGRAM

Molecules exist in energetically distinct states that differ regarding electronic,
vibrational and rotational properties [39] (see Figure 3.2). In a typical fluo-
rophore, the energy difference between electronic states matches the energy
of photons (hν) in the visible spectral range. In contrast, vibrational and
rotational states are much closer in energy. For the latter, the energy differ-
ence is even less than thermal energy at room temperature (kT). Therefore,
rotational transitions occur permanently without the need of further exter-
nal energy. Singlet states S have antiparallel spin orientation, whereas triplet
states T have parallel spin orientation.

The interaction of a photon with a molecule can lead to the absorption of
the photon energy by the molecule. That is to say, the energy is converted
into the excitation of an electron from the highest occupied molecular orbital
(HOMO) to the lowest unoccupied molecular orbital (LUMO) - or a higher
orbital, depending on the absorbed photon energy hν. The molecule is said
to be excited from its electronic ground state S0 to its electronically excited

9



3 FLUORESCENCE & FRET

Figure 3.2: Jablonski diagram including electronic (bold) and vibrational (light) en-
ergy levels. Radiation related transitions are colored: excitation, exc.; fluorescence,
fl.; phosphorescence, ph. Radiation-less transitions are depicted in black: vibra-
tional relaxation, vib.; inter-system crossing, isc.; internal conversion, ic.; Förster
resonance energy transfer, FRET, to an acceptor molecule, Acc. Thermal deac-
tivation processes are indicated as curved arrows. The distinct electronic configu-
ration of the triplet (T) and singlet (S) state is indicated by small boxes (HOMO,
LUMO) and small arrows (spin state). Dexter transfer and photo-chemical reac-
tions are not sketched.

state S1 or S>1. At room temperature, the transition occurs mainly from
the vibrational ground state to a higher vibrational level of S>0 (see below).
It is followed by rapid vibrational relaxation, and if so, solvent relaxation.

Further relaxation can occur through various, competing processes [86]:

• Collisional quenching and solvent interaction causes thermal, radiation-
less de-excitation (also termed internal conversion).

• Although spin-forbidden, due to spin-orbit coupling, there is a small
but finite probability for a spin flip, i.e. inter-system crossing to the
triplet state. The rate of such inter-system crossing depends on the
overlap of ro-vibrational energy levels of the singlet and triplet system.
Relaxation from T1 to S0 is very inefficient (i.e. unlikely), which leads
to the long lasting phenomenon of phosphorescence.

• Dexter electron transfer through overlapping orbitals or further photo-
chemical reactions.

• Energy transfer by FRET introduced in Section 3.3.
• Alternatively, the energy can be released by the emission of a fluores-
cence photon.

Photon absorption - i.e. the electronic excitation of a molecule - occurs
much faster (< 10−15s) than the motions of the molecule’s nuclei, which
is exploited by the Born-Oppenheimer approximation. Also vibrational (≈
10−12s) and solvent relaxation (≈ 10−10s) occur comparatively fast. In
contrast, the de-population of the excited state is the less efficient, which
leads to a considerable dwell (≈ 10−9 − 10−5s) in that state. But the relax-
ation process itself occurs on similar, fast timescales as absorption.
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3.2 Properties of Fluorescence

3.2 PROPERT I ES OF FLUORESCENCE

Due to the mentioned fast vibrational relaxation, fluorescence photons have
less energy (longer wavelength) than the originally absorbed light. Hence,
fluorescence spectra are said to be red-shifted with respect to the absorption
spectra. This feature is also called Stokes shift.

In solution, it is further overlaid by solvent relaxation. During the dwell time
in the excited state, the solvent molecules reorient to adapt to the altered
charge density in the excited state, thus further decreasing the emitted pho-
ton energy.

At room temperature, the vibrational ground states are predominantly pop-
ulated. As vibrational relaxation is comparatively fast, this holds also for the
excited state. Consequently, the fluorescence spectrum is largely independent
of the excitation wavelength (Kasha rule).

A further consequence of the diverse timescales involved, is the mirror sym-
metry between absorption and emission spectra (Figure 3.3). Specific elec-
tronic states often favor distinctive nuclear arrangements. As electronic tran-
sitions are much faster than the slow nuclear rearrangements, electronic tran-
sitions occur most efficiently between molecular arrangements with equal
nuclear positions and momenta (i.e. overlapping vibrational wave functions)
[39]. According to the Franck-Condon principle, the transitions are said to
occur vertically in Figure 3.3. Because the vibrational energy levels are very
similarly spaced in the electronic ground and excited state, this results in a
mirror symmetry between the probability of diverse excitation and relaxation
processes, and thus between the absorption and emission spectra.

Figure 3.3: The Franck-Condon principle exemplified using a diatomic molecule.
(a) Potential wells of the electronic ground state (S0) and first excited state (S1)
as a function of the nuclear separation. Vibrational wave functions are depicted
in gray. (b) Cartoon of corresponding absorption and emission spectra. The in-
dividual vibronic lines, colored as in (a), are smeared out in solution at room
temperature (gray envelope). Image created based on [51].
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3 FLUORESCENCE & FRET

The lifetime of the excited state - commonly referred to as fluorescence
lifetime - is determined by the sum of all off-rates (see above):

τ =
1

kfl + knr + kph
(3.1)

with kfl, knr, kph, the rates of fluorescent, all non-radiative and phospho-
rescent relaxation, respectively. Many bright fluorophores have relatively long
fluorescence lifetimes (e.g. 6 ns), owing to comparatively small non-radiative
rates.

The fluorescence quantum yield specifies the fraction of fluorescent de-
excitation among all excitation cycles. In the absence of significant phos-
phorescence, it is the fraction of emitted over absorbed photons.

Φ =
kfl

kfl + knr + kph
=
Nem

Nabs

3.3 FÖRSTER RESONANCE ENERGY TRANSFER

Named after Theodor Förster (1910-74), Förster resonance energy transfer
(FRET) describes a radiation-less Energiewanderung (i.e. energy transfer)
from a donor to an acceptor fluorophore [49]. Because the phenomenon is
distance dependent in the nanometer range, it has become an important tool
to reveal molecular processes in diverse research areas from biochemistry to
material science. Yet, FRET occurs also as a natural process. In fact, in
the mentioned jellyfish (Figure 3.1), GFP is excited through FRET by a
bioluminescent aequorin complex [111, 81].

FRET occurs as a radiation-less dipole-dipole interaction between fluorophores
[30]. As such the process depends strongly on the separation r of donor (D)
and acceptor (A) dye, as well as, their relative orientation and spectral over-
lap (see Figure 3.4).

Figure 3.4: The dependence of FRET on (a) the inter-dye distance, (b) the
dyes’ relative orientation and (c) the overlap integral J(λ) between the donor
fluorescence (D fluo.) and acceptor absorption (A abs.) spectra.

The transfer rate is given by:

kT =
1

τD

(
R0
r

)6
(3.2)
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3.3 Förster Resonance Energy Transfer

including the distance dependence expected for a dipole-dipole interaction
and the sum of all competing off-rates, cf. Equation (3.1). All other depen-
dencies are found in the Förster radius R0:

R0 = 6

√
9000 ln(10)
128 π5

(
ΦD κ2

NAv n4

)
J(λ) (3.3)

κ2 = (cos θDA − 3 cos θD cos θA)2 (3.4)

J(λ) =

∫∞
0
FD(λ)εA(λ)λ

4dλ (3.5)

Here NAv is the Avogadro constant and n the refractive index.

The orientational factor κ2 is defined by Equation (3.4) with the angles
θA, θD, θDA as shown in Figure 3.4b. If the dye’s transition dipoles lie or-
thogonal to each other no transfer occurs and κ2 = 0. In turn, a stacked,
parallel orientation is optimal for transfer. In this case κ2 = 4. Nevertheless,
most studies exploit the fact that the dyes orientational correlation time is
much smaller than the nanosecond dwell in the excited state. Accordingly,
all possible orientations are usually sampled prior to eventual energy trans-
fer. Thus the application of the average value 〈κ2〉 = 2/3 is valid in most
cases. Exceptions occur when the dyes are hindered in their rotational and
translational diffusion, e.g. by sticking to a neighboring surface or through
confinement at the attachment site. Even in the worst case, the distance
errors are below 35% [86], because of the power of 6 dependence.

The overlap integral J(λ) (in units ofm3/M ∝ m6/mol) is calculated from
the donor’s emission spectrum F(λ) (normalized to unity) and the acceptor’s
spectral absorption coefficient εA(λ), see Equation (3.5).

As the transfer rate is not directly accessible by intensity-based experiments,
the FRET efficiency E is usually considered. It is defined as the fraction of
FRET among all de-excitation processes:

E =
kT

kfl + knr + kph + kT
=

NA/ΦA
ND/ΦD +NA/ΦA

(3.6)

=
NA

Γ ·ND +NA
with Γ =

ΦA
ΦD

As shown by the second and third identity, this can be expressed in terms of
experimentally accessible (fluorescent) photon counts Ni together with the
quantum yields Φi.

Finally, the distance dependence of the FRET efficiency follows by inserting
Equation (3.2) into (3.6) and exploiting Equation (3.1):

E =
1/τD

(
R0
r

)6

1/τD

(
1+

(
R0
r

)6) =
1

1+
(
r
R0

)6 (3.7)
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4
DETECT ION OF S INGLE FLUOROPHORES

4.1 EXPER IMENTAL STRATEG I ES

Tracking conformational changes of individual proteins by smFRET comes
with two primary requirements.

First, it requires to detect the fluorescence of individual molecules, and more-
over, to resolve varying intensity levels thereof. This asks for very low back-
ground fluorescence. To this end, there are two fundamentally different op-
tical strategies:

• Minimizing the irradiated sample volume, e.g. using total internal re-
flection as discussed below.

• Minimizing the detection volume using a confocal geometry, which
only detects rays originating from a narrow focal volume.

In addition, both concepts can be combined to generate minimal overlap be-
tween the excitation and detection volumes, e.g. using light sheet excitation
in combination with confocal detection [104].

Figure 4.1: The 2 primary strategies to resolve single fluorophores: (left) minimal
irradiated volume (e.g. TIRF); (right) minimal detected volume (confocal detec-
tion). Individual fluorophores are depicted as gray spots. Their size corresponds
to the incident excitation intensity. The collected cone of light is highlighted in
orange for each fluorophore individually. Excitation light is shown in green, buffer
blue and the coverslip in gray.

Second, monitoring conformational changes requires to track the fluores-
cence of an individual molecule over time. This can be achieved by:

• surface immobilization [138, 22]
• geometric confinement: nano-dimples or ultra-thin flow chambers [10].
• tethering to immobile objects, such as magnetic [80] or optical [88]
tweezers, and under hydrodynamic flow, cf. DNA curtains [155], etc.

• electrokinetical trapping [31, 160] (tether-free)
• 3D fluorophore tracking in solution [118] (tether-free)

Among these approaches, surface immobilization is the most straight-forward
and therefore the most widely used technique, whereas the other techniques
represent special solutions to specific questions; e.g. to study biomolecular
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4 DETECT ION OF S INGLE FLUOROPHORES

interactions at low concentrations, to study proteins that can not be immobi-
lized, to combine fluorescence with further analytical tools. The later named
techniques are less frequently used for mere fluorescence spectroscopy due
to sophisticated instrumentation, low through-put and data yield, and/or
decreased compatibility with high-sensitivity fluorescence detection.

Within this work, a new conjugation technique was established that allows
to attach Hsp90 specifically to a functionalized surface (see Chapter 7).
Consequently, it is convenient to exploit this surface to confine the excitation
volume in TIRF geometry.

4.2 THE PHYS I CS OF TOTAL INTERNAL REFLECT ION

Appart from being useful in science, total internal reflection (TIR) creates
stunning phenomena at the sea air interface as shown in Figure 4.2.

Figure 4.2: TIR of a sea turtle at the sea/air interface [73].

Figure 4.3 depicts the situation at such an interface between media with
distinct refractive indices n1 > n2 from optical perspectives. A light beam
coming from an optically dense medium to a less dense medium is split at
the interface in a reflected and a transmitted beam [40]. For a plane wave
with the electric field E1(~r, t) encountering such a change in refractive index

Figure 4.3: Refraction at a glass/buffer interface. Beams with 3 different inci-
dent angles θ1 are shown: sub-critical (orange), critical (yellow) and super-critical
(green), as introduced in the text.
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4.2 The Physics of Total Internal Reflection

in the xy-plane, this results in a reflected wave E ′1(~r, t) in medium 1 and a
transmitted wave E2(~r, t) in medium 2:

E1(~r, t) = A · ei(~k1~r−ωt) = A · eik1(sinθ1·x+cosθ1·z) · e−iωt

E ′1(~r, t) = B · eik1(sinθ1·x−cosθ1·z) · e−iωt

E2(~r, t) = C · ei(~k2~r−ωt) = C · eik2(sinθ2·x+cosθ2·z) · e−iωt (4.1)

with the amplitudes, A,B,C, the position vector ~r = x ·~ex + z ·~ez, the
respective wave vector ~ki, its norm ki = |~ki| and the angular frequency
ω = 2πν. For small angles of incidence θ1 most of the incident intensity
is transmitted into the less dense medium, where - according to Snell’s law,
Equation (4.2) - it propagates at a larger angle θ2.

n1
n2
· sin(θ1) = sin(θ2) (4.2)

θcrit = arcsin
(
n2
n1

)
(4.3)

For increasing angles θ1 the portion of reflected intensity increases until
the critical angle defined by Equation (4.3), where no propagation through
medium 2 is observed anymore. Insertion into Equation (4.2) yields sin(θ2) =
1 and θ2 equals 90°. For a conventional glass-water-interface with refractive
indices n1 = 1.52 and n2 = 1.33, a critical angle of 61° is found.
All beams with super-critical angles θ1 > θcrit, show total internal reflec-
tion. For these beams, the left hand side of Equation (4.2) becomes >1.
This requires an imaginary cos(θ2):

cos2 θ2 = 1− sin2 θ2 < 0 (4.4)

Importantly, total internal reflection occurs only if n1 > n2, which again
follows directly from Equation (4.2).

4.2.1 Quantum-Mechanical Derivation of the Evanescent Wave

The evanescent wave in medium 2 is easily derived by comparing TIR to a
free particle encountering a potential energy step (Heaviside step potential)
[39]. As illustrated in Figure 4.4, we consider only the normal contributions
of the incident wave vector kz = k1 · cos(θ1). For z < 0 the potential energy

Figure 4.4: The Heaviside step potential.
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4 DETECT ION OF S INGLE FLUOROPHORES

is zero and the total energy is purely kinetic. At z > 0 the potential is higher
than the kinetic energy of the incident particle:

z < 0 : Epot,1 = 0 ⇒ Etot,1 = Ekin,1 =
( hkz)

2

2m

z > 0 : Epot,2 = E0 ⇒ Etot,2 = Ekin,1 − E0 = ∆E < 0

The corresponding stationary Schrödinger equations are:

z < 0 : −
 h2

2m

d2Ψ

dx2
= Ekin,1 Ψ =

( hkz)
2

2m
Ψ ⇔ d2Ψ

dx2
= −k2z Ψ

z > 0 : −
 h2

2m

d2Ψ

dx2
= ∆EΨ ⇔ d2Ψ

dx2
= α2 Ψ

with: α =
√
−2m∆E/ h ∈ R

where α is real because ∆E < 0.
Their general solutions are then:

z < 0 : Ψ1 = A · eikzz +B · e−ikzz

z > 0 : Ψ2 = C · eαz +D · e−αz = D · e−αz

Ψ1 consists of the incident plane wave (first summand) and the reflected
plane wave (second summand). Ψ2 can only be normalized for C = 0. All
other amplitudes A,B,D are determined by requiring continuous differentia-
bility at z = 0.
Importantly, with D 6= 0, the wave does enter the classically forbidden zone
z > 0, as an exponentially decaying evanescent wave. Nevertheless, energy
is conserved, because the wave does not propagate in z-direction. Conse-
quently, there is no energy transport into medium 2.

4.2.2 The Evanescent Penetration Depth

In TIRF experiments, the excitation intensity and, in particular, its extent
in z-direction are crucial for maximum sensitivity, as introduced earlier. The
intensity that is available for fluorophore excitation in medium 2 is given by:

I(z, z > 0) = |Ψ2|
2 = |D|2 · e−2αz ∝ e−z/d (4.5)

It decays exponentially with the decay constant d, which is also referred to
as the penetration depth. This is the distance where still 1/e = 37% of the
incident intensity is found [39].
To derive d, we exploit the correspondence to the classical wave, Equation
(4.1). The intensity (z-component) of a wave in medium 2 is given by:

I(z, z > 0) = |E2,z|
2 = |C|2 · e2(ik2 cosθ2·z) (4.6)

where in the case of total internal reflection cos θ2 is imaginary (cf. above).
Comparing the exponents of Equations (4.5) and (4.6) leads to:

−1/d = 2ik2 cos θ2 = 2ik0n2 cos θ2

where k0 = k2/n2 is the wave vector in vacuum. Using Equations (4.2) and
(4.4), we get:

1/d = 2k0n2 ·
√

sin2 θ2 − 1 = 2k0
√
n21 sin2 θ1 −n22
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4.3 The TIR Fluorescence Microscope

Finally, with k0 = 2π/λ0, the penetration depth is determined by well known
quantities [86]:

d =
λ0

4π
√
n21 sin2 θ1 −n22

To conclude, let us consider a light wave that hits a glass-water-interface
(n1 = 1.52; n2 = 1.33) at θ1 = 65°. The intensity of the resulting evanes-
cent wave has a penetration depth of d = 125nm for λ0 = 532nm or
d = 150nm for λ0 = 635nm, respectively.

4.3 THE T IR FLUORESCENCE M ICROSCOPE

There are 2 common ways to implement TIR excitation in a fluorescence
microscope: either using a prism as in Figure 4.5a or by means of an objective
with high numerical aperture (Figure 4.5b) [86, 138]. In both configurations,
the inverted microscope is the prevailing geometry.

In the first case, excitation and detection occur on opposite sides of the
sample. A trapezoidal prism enables efficient coupling of the excitation light
into the glass. At a super-critical angle, TIR forms at the coverslip-buffer
interface. Unfavorable reflections at the prism-coverslip interface are mini-
mized by choosing materials with comparable refractive indices and applying
a corresponding immersion liquid in between. The resulting fluorescence is
detected by the objective from the opposite side of the chamber. Thus very
thin chambers are required if objectives with high numerical aperture - and
therefore high detection efficiency - are to be used.

Figure 4.5: Two construction schemes for TIR microscopy (lateral cuts). Both
share the inverted microscope geometry: the specimen is above the objective with
an immersion liquid in between. Here the specimen consists of a thin coverslip-
buffer-coverslip chamber. Materials in grey share the same refractive index. Buffer
is transparent, the excitation light is green and the fluorescence yellow. (a) A
trapezoidal prism is used generate TIR at the coverslip-buffer interface. The re-
sulting fluorescence is collected by the objective from the opposite side of the
chamber. (b) In objective-type TIRF, the same objective is used for TIR excita-
tion and detection. The excitation beam enters the objective via an additional
dichroic mirror (black).
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In contrast, for objective-type TIRF, an objective with high numerical aper-
ture is mandatory. It is used for both, excitation and detection from the
same side of the chamber. TIR is obtained by shifting the beam away from
the optical axis until the light reaches the coverslip-buffer interface at a
super-critical angle.

As indicated in Figure 4.5b, objective-type TIRF requires an extra dichroic
mirror to separate the excitation and emission light. The light loss (<5%)
associated with this extra component represents a disadvantage compared
to the prism-type TIRF configuration. Moreover, powerful dichroic mirrors
with multiple highly transmissive spectral bands are rare, which restricts the
implementation of multi-color setups in this configuration.
On the other hand, the accessibility of the chamber from top allows for
convenient combination with an additional functionality, such as force spec-
troscopy, bright field illumination etc. Once implemented, objective-type se-
tups are usually easier to operate. In particular, they produce a spatially
uniform excitation profile, which is stable for months.

20



5
S INGLE MOLECULE PATTERN
RECOGN IT ION

Single molecule data is inherently noisy. After the development of techniques
to detect single molecule trajectories in liquid phase at room temperature
(first ion channels trajectories date from the 1970’s [113]), researchers were
challenged with the analysis of data with very low signal to noise ratio. Be-
cause of the broadband noise, conventional filters used in signal processing
are not applicable here. Instead the field employs mathematical models that
were previously used for pattern recognition in the context of speech and
handwriting [9, 8]. Namely hidden Markov models (HMMs) became very
popular in the pioneering ion channel field [29] and later on also among
fluorescence [5, 102] and force spectroscopists [143, 20, 83].

5.1 THE PARAMETR IZAT ION OF H IDDEN MARKOV
MODELS

The central idea behind HMMs is the explicit distinction between experimen-
tal observations (i.e. measured signals) and their subsequent interpretation,
e.g. as open and closed states. Thereby, the interpretations are limited to a
predefined number of states, which allows to define a mathematical relation
between the observations and their interpretation as symbolic states, which
is illustrated in Figure 5.1.

Figure 5.1: The relation between observed signals y and hidden states X is defined
by the HMM parameters π, a, b introduced in the text. Image adapted from [151].
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The actual observation level (yellow) and the abstract interpretation level
(red) are connected by a model λ(π,A,B) consisting of:

πi = start probability

aij = transition probabilities

bik = emission probabilities

where the indices i, j denote individual states and k is a specific observation
or signal [126, 47]. The probabilities to begin a given trajectory in a given
state comprise the start probability vector. The matrix A contains normal-
ized transition probabilities between all states. The B parameters describe
the probabilities bik of a given state i to emit a certain observed signal k.
Instead of discrete emission probabilities, continuous signals (e.g. fluores-
cence intensities) are better described by continuous emission probability
density functions (PDFs) bi. They assign each signal a specific emission
probability bik. Herein one Gaussian PDFs is used per state, parametrized
by the mean µi and variance Vi.

These definitions lead to 2 important consequences. First, HMMs are only
applicable to memory-less kinetic systems. This is because the transition
to a new state j depends only on the current state i and the correspond-
ing transition probabilities aij. This requirement is called Markov property.
Second, time-homogeneous behavior (or steady-state) is required, since the
transition probabilities are constant over time,

5.2 THE CANON ICAL ALGOR ITHMS

In order to describe the data with the model as accurately as possible, three
tasks must be completed [126]:

• The ultimate goal is to decipher the underlying states causing the
observed data.

• This requires to optimize model parameters that describe the data as
accurately as possible,

• which, in turn, asks for a way to rate the model parameters.

These tasks are numerically completed by the corresponding 3 algorithms,
introduced below. A frequent architecture is shown in Figure 5.2.

Maximum likelihood (ML) serves here as optimality criterion for parameter
estimation. The central relation within the ML formalism is Baum’s auxiliary
function Q:

Q(λ, λ̃) =
∑
Q

P(Q|O, λ) · log[P(O,Q|̃λ)]

It was shown that maximization of that function with respect to all 3 param-
eters generates models λ̃(π̃, Ã, B̃) of increased likelihood [12]. The update
equations (see Section 5.2.2) are obtained by setting the corresponding par-
tial derivatives to zero. The explicit formalism of each algorithm is found
below. The indices i, j denote states. t are discrete time steps and T is the
total time.O (capital) is the set of observables and xt is a specific observable
at time t in d dimensions.

22



5.2 The Canonical Algorithms

Figure 5.2: The algorithm architecture frequently used in HMM analysis. The
fit of the data and the input model are rated by the Forward-Backward algo-
rithm (FB), which is the basis for parameter optimization by the Baum-Welch
algorithm (BW). The optimized (opt.) model is iteratively improved until conver-
gence to maximum likelihood (ML). The Viterbi algorithm decodes the optimal
state sequence given the data and the model.

5.2.1 The Forward-Backward Algorithm

The Forward-Backward algorithm (FB) rates the fit of the data and the
model by recursively computing the probability of the observed data given the
model, P(O|λ). The forward and backward variables, α and β, are auxiliary
probabilities required for the Baum-Welch algorithm below.

initiation: αt=1(i) = πi bi(xt=1)

recursion: αt+1(i) =
∑
j

[
αt(j)aji

]
bi(xt+1)

termination: P(O|λ) =
∑
i

αT (i)

initiation: βT (i) = 1

recursion: βt(i) =
∑
j

aij bj(xt+1)βt+1(j)

termination: P(O|λ) =
∑
i

πi bi(x1)βt=1(i)

P(O|λ) is called the production probability of the data given the model. It is
equivalent to the likelihood of the model given the data L(λ|O):

L(λ|O) =
∑
S

[
πs1 ·

∏
T

(ast−1st · bst(xt))
]

where the sum goes over all possible state sequences S, and st denotes the
state at time t.
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5.2.2 The Baum-Welch algorithm.

Based on FB, the Baum-Welch algorithm (BW) optimizes the parameters
by maximizing Baum’s auxiliary function with respect to all three parameters.
The basis for calculating the updated parameters are γt(i) and γt(i, j), the
respective probabilities for a given state or transition at a given time point.

γt(i) = αt(i)βt(i)/P(O|λ)

γt(i, j) = αt(i)aij bj(xt+1)βt+1(j)/P(O|λ)

The parameter update equations are:

π̂i = γt=1(i)

âij =
∑T−1

t=1
[γt(i, j)] /

∑T−1

t=1
γt(i)

µ̂i =
∑T

t=1
[γt(i)xt] /

∑T

t=1
γt(i)

V̂i =
∑T

t=1

[
γt(i)xt xt

T
]
/
∑T

t=1
[γt(i)] −µi µi

T

5.2.3 The Viterbi Algorithm

The Viterbi algorithm decodes the most probable state sequence s∗ given
the data and the model. It is recursively deduced from the δ and ψ variables.

initiation: δt=1(i) = πi bi(xt=1)

recursion: δt+1(j) = max
i

[δt(i)aij]bj(xt+1)

termination: P∗(O|λ) = P(O, s∗|λ) = max
i
δT (i)

s∗T = argmax
j

[δT (j)]

initiation: ψt=1(i) = 0

recursion: ψt+1(j) = argmax
i

[δt(i)aij]

back-tracking: s∗t = ψt+1(s
∗
t+1)
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6
S INGLE MOLECULE FRET T IME TRACES

6.1 DES IGN OF THE T IRF M ICROSCOPE

An objective-type TIRF microscope was built to detect protein conforma-
tional changes by smFRET. At the core of the setup shown in Figure 6.1 is
the objective (Nikon, Apo TIRF) with high numerical aperture, NA = 1.49,
and 100x magnification. It is used for both, TIR illumination and fluorescence
signal collection.

Figure 6.1: Design of the TIRF microscope. 532 and 635 denote lasers with re-
spective wavelengths. F, filters including: ND, neutral density; Cl, clean up. Sh,
shutter. λ/2, half-wave plate. PBS, polarizing beam splitter. Bl, beam blocker.
λ/4, quarter-wave plate. M, mirror. L, lens. D, dichroic mirror. Ir, iris. St, transla-
tion stage. Obj, 100x 1.49 NA objective. AD, achromatic doublet lens. Sl, tunable
slit. EMCCD, electron multiplying charge-coupled device camera. The detection
pathway is framed in gray. A dashed black line indicates the on-axis path to the
objective, in contrast to the displayed off-axis path for TIR illumination. The inset
shows a side view of the objective with the out-of-plane mirror below. Specifica-
tions of all components are provided in Table B.1.

Two excitation lasers (for direct excitation of the FRET donor and acceptor
dye) are aligned and guided towards the objective. Their intensity is fine-
tuned using a half-wave plate (λ/2) in combination with a polarizing beam
splitter (PBS). Laser powers of about 10 µW were used for the measure-
ments (see calibration plot in Figure A.3).
To avoid large differences in excitation intensity over the field of view, a very
flat beam profile is key. Therefore, both excitation beams were expanded
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40-fold between L1/L1’ (focal length, f = 25mm) and L2 (f = 1000mm). An
iris constrains the collimated beam to a diameter of 2cm. The beam is then
focussed onto the back focal plane of the objective by lens L3, generating
collimated rays at the object plane. TIR illumination is obtained by shifting
the beam off-axis using the translation stage St.

Figure 6.2: For off-center rays (green arrow) the correct lens separation is critical
even in the collimated space. (a) Lenses positioned in compliance with the focal
lengths f1, f2 of lenses L1 and L2. (b) Increased deviation and titled foci (between
L2 and L2’) occur if the separation between L1 and L2 does not fit. Central beams
(blue arrow) are not affected. Images created using an optics applet 2.

The collected fluorescence exits the objective as infinity corrected rays. It is
a common misconception that these rays would run along the optical axis
until infinity, which is only true for rays originating from a point source on
the optical axis. However, to image a field of view with non-zero extension
in x and y (i.e. perpendicular to the optical axis), special care must be taken
for the rays originating from off-center positions as illustrated in Figure 6.2.
Therefore, the achromatic tube lens and all remaining lenses are positioned
in accordance with their focal lengths - even in the collimated space. This
ensures minimal diversion and straight foci also for off-center rays.

The fluorescence is separated from excitation light by long pass and notch
filters. Off-axis beams are further removed by an optical slit together with
achromatic slit lenses. Finally donor and acceptor fluorescence is split by the
dichroic mirror D4, spectrally filtered again and individually focused side by
side onto the EMCCD (Andor iXonUltra) by best form silica lenses. Trans-
lation stages were used to fine-tune the lens positions.
The final magnification of the setup was 100x. The specimen (see next
section) is brought into focus by a piezo focusing system (PIFOC, Physik
Instrumente).

2 http://webphysics.davidson.edu/alumni/MiLee/java/Final_Optics/optics.htm;
last accessed: 11/27/2016.
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6.2 Single Molecule TIRF Measurements

6.2 S I NGLE MOLECULE T IRF MEASUREMENTS

Measurements were performed in a homemade flow chamber depicted in
Figure 6.3a. Coupled to a syringe pump (Harvard apparatus), this enables
easy buffer exchange. It is built from two coverslips (cf. next section) and
a spacer mask (Nescofilm) by compression at 70°C. Horizontal and vertical
translation stages (both Thorlabs) allowed for micro-meter positioning of
the flow chamber in x-, y-, and z- direction.

a b

Figure 6.3: The flow chamber and a zoom view of an immobilized biomolecule.
(a) The flow chamber is positioned on top of the objective with immersion oil in
between. Glass is shown in light gray, buffer in blue. Buffer inlet and outlet tubings
are indicated by blue arrows. Metallic parts are drawn with dark gray contours.
Translational degrees of freedom are indicated by black arrows with specified step
size. (b) A fluorescently labeled biomolecule (blue) is immobilized on a PEG brush
(brown) within the evanescent field (green). Dyes are depicted in red and orange,
biotins as turquoise diamonds, Neutravidin in purple, coverslip in gray.

A polyethylene glycol (PEG)-passivated coverslip (for PEGylation protocol
see Section B.3) is used as a substrate for the immobilization of biotinylated
and fluorescently labeled biomolecules (Figure 6.3b). To this end, the flow
chamber is incubated with a Neutravidin solution (0.1µM; Thermo Fisher),
flushed with buffer and pre-bleached at maximal laser power. Only now the
sample solution is applied at low pico-molar concentrations resulting in a few
hundred fluorophores within the field of view.

Movies of this starry sky were captured with a water-cooled EMCCD (chip
cooled to -90°C). A maximum frame rate of 55Hz in full frame (512x512
pixels) was achieved using frame-transfer mode and continuous illumination.
Alternatively, for alternating laser excitation (ALEX), the camera was oper-
ated in external exposure mode. Image acquisition and optical shutters were
synchronized by a custom-built electronic circuit and a master trigger (TTL
signal) to achieve 100 ms exposure to each ALEX channel. The resulting 5Hz
ALEX sampling was used throughout this work, unless specified differently.
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6 S INGLE MOLECULE FRET T IME TRACES

6.3 LOW AUTO -FLUORESCENCE FLOW CHAMBERS

Conventional glass coverslips (Roth) show unfavorable red autofluorescence
upon green excitation (Figure 6.4a). Therefore, the borosilicate glass was
replaced by electronically fused silica (Spectrosil 2000, Hereaus). Figure 6.4b
shows the minimal auto-fluorescence background observed with silica cover-
slips (custom-built by UQG optics, 24mm x 50mm x 150µm) in contrast to
conventional glass coverslips.
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Figure 6.4: EMCCD images of orange and red fluorescence after green excita-
tion obtained using glass (a) or silica coverslips (b). Low/high intensity is shown
in white/black, respectively. A line profile through the middle is displayed below
each. Conventional glass creates a bright, red auto-fluorescence background sig-
nal, whereas silica generates little background signal in both channels.

However, silica comes with a slightly different refractive index of 1.46 as
compared to 1.52 for glass. This change in refractive index leads to a mod-
ified beam path (Figure 6.5), on the one hand, and partial reflections, on
the other hand. The required geometric adjustments where reached by a
small tilt away from the optical axis. The remaining background signal in
Figure 6.4b and associated noise level originates mainly from elastically scat-
tered light, which was further reduced by a long-pass filter.
Altogether, silica coverslips led to an overall increased signal to noise ratio.
A distortion of the image was not observed.

Figure 6.5: The shifted geometry introduced by silica coverslips (green, dashed)
compared to the standard beam path (green). The vertical line indicates the
optical axis of the objective.
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6.4 smFRET Data Preparation

6.4 SMFRET DATA PREPARAT ION

Figure 6.6 illustrates the data preparation steps from raw data to inter-
pretable results. The raw data obtained from the EMCCD consists of TIF-
stacks, as displayed in Figure 6.6a. Each frame holds an image of the donor
next to the acceptor channel. In ALEX experiments, odd frames are excited
by the green laser and even frames by the red laser.

Figure 6.6: From raw data to results. (a) Raw data consists of a stack of fluores-
cence images for each channel: DD green, DA orange, AA red. The position of
one particular molecule is indicated by circles. (b) Three fluorescence time traces
are extracted for each FRET pair; colors as in (a). Discrete intensity levels and
one sharp bleach step are characteristic for single fluorophores. (c) Corrections for
experimental shortcomings are required to obtain accurate FRET efficiency time
traces (see Section 6.4.1). (d) Multiple trajectories are accumulated in FRET
efficiency histograms. Gaussian fits to the low/high FRET population are shown
in red/blue, respectively. (e) Dwell times in distinct states are compiled in cumu-
lative histograms, which provide kinetic information (see Section 6.4.2); colors as
in (e), single-exponential fits in black.

Consequently, 3 time traces are obtained for every spot (Figure 6.6b): donor
fluorescence after green excitation (DD), acceptor fluorescence after green
excitation (DA) and acceptor fluorescence after red excitation (AA). An in-
house Igor script is used to extract these. Corresponding x- and y-positions in
all channels are resolved based on an image calibration obtained with bright
fluorescent beads (Invitrogen). Bead positions are determined by Gaussian
fits. The x- and y-offsets between both channels are fit with a third order
polynomial. Based on that, positions in all channels are interconvertible.

Among such time traces, single FRET pairs are characterized by flat plateaus
in all fluorescence channels and single step bleaching. Only conforming traces
before bleaching are considered below.
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6.4.1 Accurate FRET

The background intensity is removed from the raw fluorescence trajectories
by subtracting the mean trajectory of the darkest hundred spots of a given
movie.

To correct for varying ratios of green and red excitation intensities across
the field of view, intensity profiles (prof) of both lasers are determined. The
normalized average of a set of images of a dye-saturated surface serves as
an intensity map. Most conveniently, the position-dependent correction is
applied to the directly excited acceptor signal NAA:

N
prof
AA (x,y) = NAA(x,y) · ID(x ′,y ′)

IA(x,y)

where ID,A(x,y) represent the respective, normalized intensities of the green
or red laser at the position x,y, or the converted position x ′,y ′.

Next, the data is successively corrected for 4 experimental cross-talk terms:
• leakage of donor photons into the acceptor channel
• direct excitation of the acceptor dye by the green laser
• different spectral sensitivity and different quantum yields of the fluo-
rophores

• different laser intensities and different excitation efficiencies of the
fluorophores

An elegant way to correct for all of these was developed by the Weiss lab
[89]. It employs a 2D plot of the stoichiometry (S) vs. FRET efficiency (E)
as shown in Figure 6.7, with the apparent quantities:

Sapp =
NDD +NDA

NDD +NDA +NprofAA

Eapp =
NDA

NDD +NDA

given by Nij, the detected signals of the 3 time traces specified above. After
the corrections below, this 2D plot separates the FRET population centered
at S = 0.5 from the donor-only population (S = 1, E = 0) and the acceptor-
only population (S = 0).

Leakage and direct excitation are corrected by respective correction factors
l and d:

NcorrDA = NDA −NDD · l−NprofAA · d

l is determined from a donor-only sample, such that the donor-only popula-
tion is located at E ′ = 0. Analogously, d is determined from an acceptor-only
sample, such that the stretched acceptor-only population is centered around
S ′ = 0.

The last two points in the list are corrected by γ and β, respectively:

NcorrDD = NDD · γ
NcorrAA = NprofAA /β
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These factors are obtained from a linear fit (slope a, y-intercept b) to the
average values of 1/〈S〉 vs. 〈E〉 of different FRET populations:

1

〈S〉 = a · 〈E〉+ b

β = a+ b− 1

γ =
a− 1

a+ b− 1

This is only feasible if at least two FRET populations exist that are well
separated in E.

Finally, the corrected stoichiometry and FRET efficiency are:

S =
NcorrDD +NcorrDA

NcorrDD +NcorrDA +NcorrAA

E =
NcorrDA

NcorrDA +NcorrDD

1D FRET efficiency histograms are then obtained as the corresponding ad-
ditive projection of data with 0.3 < S < 0.7.

Figure 6.7: SE plots of stepwise smFRET correction. Example data obtained
using a dsDNA sample with an inter-dye distance of 23 bps. (a) Apparent stoi-
chiometry vs. FRET efficiency of 186 offset-corrected trajectories. (b) The effect
of excitation intensity profile correction. (c) Subtraction of leakage l = 0.066 and
direct excitation d = 0.065 shifts the donor-only population to E = 0 and the
acceptor-only population to S = 0, respectively. (d) Finally the corrected FRET
efficiency E = 0.14 is obtained by applying β = 0.85 and γ = 1.14.
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Instead of this global γ-correction, some labs prefer a trace-wise, local γ-
correction [139]. This approach is only applicable to time traces, which show
acceptor bleaching before donor bleaching. Each individual γ is then calcu-
lated from the acceptor and donor signals before (pre) and after (post)
acceptor bleaching:

γlocal =
N
pre
DA −NpostDA

N
post
DD −NpreDD

FRET efficiency histograms, as shown in Figure 6.6d, reveal the relative
population of distinct conformations within the data set. Such steady-state
distributions can not be obtained from ensemble experiments. In addition,
specific inter-dye distances can be calculated. Using Equation (3.7), the
peak positions in Figure 6.6d convert into 92Å and 53Å.

The correction procedure is evaluated in Section 8.2 together with the dis-
tance resolution.

6.4.2 The Classical Kinetic Analysis

Traditionally, kinetic information is gained from frequency analysis of dwell
times in distinct conformations. As introduced in Chapter 5, mathematical
models (such as HMMs together with the Viterbi algorithm) are usually
utilized to extract dwell times from smFRET trajectories.

Dwell times are then compiled into cumulative histograms as shown in Fig-
ure 6.6e. In contrast to conventional histograms, these represent integrated
transition probability densities, which are less susceptible to bias introduced
by discrete time binning. In the ideal case, where every kinetic state can be
resolved experimentally, a single-exponential fit provides the total off-rate
out of a given state:

P(t) = 1−A · e−kofft

Correct contributions are achieved by weighting each data point with the
square-root of its frequency count.

Figure 6.6e shows a clear deviation from a single-exponential function. Thus,
the above stated assumption is not generally applicable, which is further
discussed in Section 8.3.
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7
AN IDEAL PROTE IN CONSTRUCT FOR
SMT IRF

To track protein conformational changes using smFRET over seconds to
minutes, there are three main requirements: immobilization, site-specific flu-
orescent labeling, and - if a complex is to be studied - high affinity. At the
same time, the optimal protein construct is as close as possible to the native
protein. An Hsp90 construct that complies with all of these requirements is
shown in Figure 7.1.
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Figure 7.1: Hsp90 construct for smTIRF measurements. The N-terminal His-tag
and SUMO-domain (dashed) are cleaved away during purification. The final, tag-
free construct consists of the 3 Hsp90 domains, N-terminal (N), middle (M) and
C-terminal (C), together with a C-terminal zipper region (zip) for high dimeriza-
tion affinity and an AviTag (avi) enabling site-specific in vivo biotinylation. It is
site-specifically labeled with a fluorescent dye. The number of amino acids per
segment are stated below.

7.1 S ITE - SPEC I F I C FLUORESCENT LABEL ING

A widely used strategy for the attachment of FRET donor and acceptor
dyes is thiol-reactive maleimide coupling. This technique is only site-specific
if the protein under study is deficient of additional, solvent accessible, native
cysteins. For Hsp90 this is the case. Ergo, a non-native cystein is readily
introduced by site-specific mutagenesis (QuickChange Lightening Mutagen-
esis, Agilent). Otherwise, artificial amino acids can be used to achieve site-
specificity [153, 159].

In general, flexible loops are the preferred dye attachment sites, because
there is a good chance that the cystein point mutation and the coupled or-
ganic dye molecule do not interfere with protein function. These positions
are also preferred from photo-physical perspectives, because they allow the
fluorophore to rotate freely and sample all possible orientations, which leads
to cleanest signals due to sufficient orientational averaging, on the one hand,
and minimal collisional quenching, on the other hand. In contrast, dye stick-
ing to hydrophobic patches can introduce distinct intensity levels, which
complicates data interpretation.
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7 AN IDEAL PROTE IN CONSTRUCT FOR SMT IRF

Finally, conformational changes are best resolved by FRET if they change
the inter-dye distance from 2 to 8 nm, which matches the most distance-
sensitive FRET range. Atto550 and Atto647N are the preferred fluorophores
in this work because of their brightness and comparatively favorable photo-
stability even in the absence of additional photo-stabilizers. Thiol-reactive
coupling was performed according to Atto-tec’s protocol.

7.2 IMMOB I L I ZAT ION

The most common surface immobilization technique makes use of biotin
streptavidin binding, which is the natural complex with highest affinity known
today (KD= 10−15M [21]). Since, in this work, thiol-reactive coupling is
reserved for site-specific fluorescent labeling, a different attachment mech-
anism is needed for biotin conjugation. Three biotin-related immobilization
strategies were examined: unspecific N-Hydroxysuccinimide (NHS)-coupling,
vesicle encapsulation and site-specific in vivo biotinylation. In either case,
Neutravidin-coated surfaces were used (cf. Section 6.2).

Unspecific amine-reactive NHS-coupling led to very low yields. Thus com-
paratively high concentrations were needed in TIRF measurements causing
considerable unspecific binding. It is further unfavorable, because of the 86
lysins contained in yeast Hsp90 (see Figure 7.2). Also arginines (e.g. Arg380,
which is essential for ATP hydrolysis) are potentially attacked by NHS. Con-
sequently, amine-reactive coupling has a wide-ranging and unpredictable im-
pact on Hsp90.

Figure 7.2: Hsp90 crystal structure [2] with highlighted lysins (red). Each pro-
tomer contains 86 lysins. One protomer is shown in cartoon representation (yellow,
green, blue for N, middle, C domain), the other as gray Van der Waals surface.

In contrast, vesicle encapsulation works without modification of the protein.
Unfortunately, organic fluorophores are inherently hydrophobic and especially
the rhodamine derivatives Atto550 and Atto647N were found to interact sig-
nificantly with lipid bilayers [70]. In agreement with these findings, smTIRF
experiments using (15:0)-PC vesicles including 1% 16:0 Biotinyl Cap PE
(both Avanti Lipids) for surface attachment resulted in unusable, messy
FRET traces.
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7.3 High Affinity Complexes

The optimum between minimal interference and maximum specificity was
achieved by enzymatic in vivo biotinylation at the very C-terminus of the
construct. In this way, the zipper serves as a linker towards the PEG brush,
which provides Hsp90 with additional degrees of freedom and maximum
solvent exposure - even in the immobilized state.

7.2.1 Site-Specific in vivo Biotinylation

For this purpose, we exploited Escherichia coli’s biotin ligase BirA, which
efficiently biotinylates a specific lysin residue in a 15 amino acid sequence
known as AviTag [13]. This tag was genetically inserted at the C-terminus
of the construct using Agilent’s QuickChange Lightening Mutagenesis kit.
In vivo biotinylation is performed in one step during target protein expression:
BirA was co-expressed using Avidity’s low copy-number plasmid, pBirAcm.
To this end, pBirAcm (with chloramphenicol resistance) was purified from
the CVB101 strain (Avidity) and transformed into BL21 star (Invitrogen).
This was necessary because the CVB strain lacks a T7 polymerase, which is
required for Hsp90 expression using the pET-28b vector. See Section B.1.2
for the detailed protocol.

The efficiency of in vivo biotinylation and the resulting high affinity of the
Hsp90 conjugate for Neutravidin is visible in smTIRF experiments: the sam-
ple concentration required for sufficient surface coverage was significantly
lower than with any other procedure. In fact, it matched the one observed
for synthesized biotinylated DNA constructs.

7.3 H IGH AFF IN ITY COMPLEXES

Detection of sm fluorescence requires low, i.e. pico-molar sample concentra-
tions. At such low concentrations dissociation dominates and protein com-
plexes fall apart. To overcome this problem, we exploit the intrinsically high
affinity of a foreign coiled coil motif of the kinesin neck linker of Drosophila
melanogaster. Introduced at the C-terminus of Hsp90 [128], this zipper re-
gion keeps both Hsp90 protomers in close proximity [109]. In a previous
study, this zipper did not interfere with Hsp90’s in vivo function [161].
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8
EXPER IMENTAL POTENT IALS AND L IM ITS

8.1 THE FUNDAMENTAL TR IANGLE IN S INGLE MOLECULE
FLUORESCENCE

The experimental detection of single molecule fluorescence (smFluo) time
traces is complicated by the antagonistic relation between three key figures,
as illustrated in Figure 8.1. At the core of this "vicious circle" lies the finite
number of photons an individual fluorophore can emit - typically a few million
photons [130, 167] - before it undergoes irreversible photo-bleaching.

Figure 8.1: The triangle of fundamental limits of smFluo time traces. Signal-to-
noise ratio, time resolution and observation time are interrelated in an antagonistic
manner.

An excellent signal-to-noise ratio (SNR) - although itself desirable - requires a
comparatively high excitation power. This comes with faster photo-bleaching
and, thus, a reduced observation time for a given fluorophore. Likewise, high
time resolution - i.e. a fast sampling rate - needs even higher excitation
powers to reach an equivalent SNR at shorter exposure times.

The illustrative derivation in Section A.1 suggests how to best spend the
costly photons in TIRF experiments. Within the regime of realistic experi-
ments, a simple relation between observation time τbl and SNR is found:

τbl =
const.

SNR2

It holds regardless of the specific time resolution, i.e. sampling rate, of the
experiment. A useful SNR of ∼3 comes with τbl = 150 frames in an ALEX
experiment as detailed in Chapter 6. This yields const = 1350, which is
plotted in Figure 8.2.

In contrast to distance determination experiments (see Section 8.2), where a
high signal to noise ratio is the only goal, kinetic analysis also requires a large

41
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Figure 8.2: The fundamental relation of observation time (τbl) and signal-to-
noise ratio derived from the experiment. A reduction of 25% in SNR results in
70% longer observation time.

enough τbl for the detection of possibly complex dynamics (e.g. kinetically
heterogeneous behavior). Figure 8.2 shows that sacrificing SNR to a certain
extent yields a disproportionately high observation time, τbl, thus increasing
the gain in kinetic information.

In general, the maximum detection bandwidth achieved in smFluo time traces
is still remarkably low - even among single molecule techniques. Typically, for
all-protein systems, the detection bandwidth spans less than a factor of 200
at a reasonable signal to noise ratio.
While enzymatic anti-bleaching agents largely increase the observation time
of DNA-based samples [156, 1, 127, 33], their effect on the protein-coupled
rhodamine derivatives used herein (Atto550, Atto647N) is negligible. More-
over, it is a priori unclear how the investigated protein function is affected
by such additional protein components.

Therefore, alternative - theoretical - ways were developed to deal with these
experimental limits and to acquire maximal information from the experiment
(see Chapter 9).
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8.2 The Distance Resolution of smFRET

8.2 THE D I STANCE RESOLUT ION OF SMFRET

smFRET is frequently nicknamed molecular ruler. But how accurate is it
really in determining nanometer distances? This question was addressed in
a blind study using six test samples including two different FRET pairs and
three dye separations.

dsDNA oligos (38 bps, purchased from IBA GmbH) served as a stiff scaffold
for fluorophore attachment at tunable, yet well-defined separations: samples
1a,b,c contained Atto550 as FRET donor and Atto647N as acceptor at
opposite strands, separated by 23, 15 or 11 bases, respectively. Samples
2a,b,c contained Atto550 and Alexa647 at the identical positions. A biotin
was attached to the 5’-end of the acceptor strand. The inter-dye distances
were quantified by TIRF experiments using ALEX1 in TRIS buffer2.

Figure 8.3: Representative time traces of the dsDNA samples, 1a,b,c and 2a,b,c,
as indicated. FRET efficiency (E) is shown in black. The fluorescence intensity of
the directly excited acceptor is shown in gray, the directly excited donor in green
and the FRET sensitized acceptor in orange (in 104 EMCCD greyscale units).

Representative time traces for all samples are displayed in Figure 8.3. They
exhibit flat plateaus and instantaneous bleaching. Low, medium and higher
FRET efficiencies are observed for samples a,b,c, respectively. The >10-fold
increased bleach rate of Alexa647 compared to Atto647N led to severely
decreased observation times for samples 2a,b,c. In contrast, for samples
1a,b,c, Atto550 bleaching is generally limiting. Specifically, the mean fluo-
rophore lifetimes (for the lowest FRET efficiencies) were τ1a = 47 frames
(9.4s), as compared to τ2a = 15 frames (3s).

1 200ms exposure time in each channel.
2 5mM TRIS, 5mM NaCl, 20mM MgCl2 at pH7.5, degassed.
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The FRET efficiency distributions (obtained according to Section 6.4.1)
of around hundred molecules for each sample are shown in Figure 8.4a,b
together with calculated distances. The latter were obtained by 3D model
calculations accounting for the dye’s restricted rotational and translational
degrees of freedom (its reduced accessible volume) due to DNA coupling
[42, 76]. Naturally, this procedure requires prior knowledge about the dye’s
attachment site.
Respective Förster radii were previously determined to R0(1) = (64± 2)Å
and R0(2) = (71± 2)Å [62].

Figure 8.4c,d show the distance distributions of all samples. Importantly,
their widths reflect the distance resolution of the measurement, rather than
the much smaller distance fluctuations of the dsDNA. Theoretically both,
efficiency and distance, are not exactly normally distributed - even in the ab-
sence of distance fluctuations. In the presence of un-correlated noise, such as
shot-noise or auto-fluorescence noise, efficiencies are skewed towards the ex-
tremes (0 and 1). Whereas distances are always skewed towards the Förster
radius (see Section A.3).
Nevertheless, experimental FRET efficiency histograms are well fit by Gaus-
sian distributions. Therefore, concerning TIRF data, distances are most ac-

Figure 8.4: FRET efficiency (a, b) and distance distributions (c, d) measured for
samples 1a,b,c (orange, red, dark red) and 2a,b,c (cyan, blue, dark blue). The
result of global γ-correction is shown together with Gaussian fits thereof. Dashed
lines in (a) show the corresponding fits after local γ-correction. The calculated
values are displayed as vertical lines. Characteristic numbers are provided in Ta-
ble 8.1.
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curately calculated as the center of a Gaussian fit to the FRET efficiency
distributions. Deduced characteristic numbers are provided in Table 8.1.

The FRET efficiencies resolved for samples 1a,b,c fit well with the calcu-
lated values - independent of global or local γ-correction (introduced in Sec-
tion 6.4.1). The observed distance deviations, provided in Table 8.1, range
from 1 to 4Å. For samples 2a,b,c the deviations from the model distances
are larger: 2 to 9Å (see below).

Table 8.1: smFRET results for 6 samples measured by TIRF with ALEX us-
ing global or local γ-correction, as specified. N: number of molecules; E: FRET
efficiency; d: distance in Å. Calculated (calc) values were deduced from a 3D
DNA model [42] by FPS [76]. Measured (meas) efficiencies Emeas are reported
as Gauss positions. Corresponding distances were calculated using Equation (3.7)
with R0(1a,b,c)= 64Å and R0(2a,b,c)= 71Å, respectively [62].

Sample Mode N Ecalc Emeas dcalc dmeas ∆d

1a global 186 0.13 0.14 88 87
86420

local 84 0.11 91

1b global 127 0.60 0.53 60 63

local 77 0.55 62

1c global 236 0.79 0.72 51 55

local 163 0.74 54

2a global 125 0.22 0.19 88 90

local 91 0.24 86

2b global 100 0.74 0.56 60 68

local 98 0.63 65

2c global 75 0.88 0.74 51 60

8.2.1 Local vs. Global γ

In theory, local and global γ-corrections should have the same result as
perceived in Figure 8.4a. However, it is important to note that γ is only
a constant if leakage and direct excitation were removed beforehand (see
Section 6.4.1). Otherwise mixed local γ’s are obtained that change with
varying FRET efficiencies.

It was proposed previously [139, 108] that local γ-correction would be better
suited to correct for inter-fluorophore heterogeneities observed at surfaces,
and thus result in sharper FRET efficiency peaks. This general statement was
not confirmed. In fact, local γ’s are determined as the ratio of roughly defined
numbers, which leads to broad γ-distributions as shown in Figure 8.5. If this
distributions were caused by dye heterogeneity, they should be independent of
FRET efficiency. Instead increased broadening is observed at low efficiencies.
This indicates that the distributions are dominated by insufficient statistics
rather than true fluorophore heterogeneity.

In addition, local γ correction is only applicable to the fraction of time traces
showing acceptor bleaching before donor bleaching. Consequently, much
data is dismissed. Due to the FRET efficiency dependence of bleaching,
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Figure 8.5: Distributions of local γ-values measured for samples 1a,b,c (orange,
red, dark red). Especially at low FRET efficiency, very broad distributions result.
The skewness is a result of the underlying ratio (∆DA/∆DD).

this effect is worst for low-FRET samples favoring donor bleaching, cf. re-
spective trace counts in Table 8.1.
In contrast, a global γ does usually not suffer from poor statistics. However,
it relies on two sufficiently "similar" samples with well-separated FRET effi-
ciencies, whereas local gammas are inherently self-sufficient.

Finally, the FRET efficiencies after local and global γ correction were simi-
larly accurate for samples 1a,b,c. For samples showing low and high FRET
efficiencies, such as proteins in an open and closed conformation, the less
tedious global γ-correction is usually preferred. Whereas local γ’s are the
only option in the absence of a second reference population.

8.2.2 Fluorophore-Specific Artifacts

The growing discrepancy of the measured vs. calculated distances of sam-
ples 2a,b,c (Table 8.1) with decreasing distances was reproducibly observed
in a world-wide comparative study (see below). It has been attributed to an
unfavorable photo-physical property of the acceptor dye, Alexa647; namely a
significant, FRET efficiency dependent population of a dark state [62]. Con-
sequently, the extinction coefficient of the acceptor (or similar its excitation
efficiency) decreases at shorter distances, which in turn decreases the energy
transfer rate. As a result, the overlap integral - and thus the Förster radius
- is no longer a constant, but a function of the inter-dye distance.
This explains the growing differences between measured and calculated dis-
tances from 2a towards 2c. It further demonstrates that accurate distance
determination relies on fluorophores that are well described by Förster’s the-
ory.

8.2.3 Results of a World-Wide Comparison

The results of one lab alone are clearly not enough to judge the accuracy of
smFRET in general. Therefore, the above blind study was extended to more
than 20 labs world-wide [D]. The resulting data collection permits unprece-
dented statements on the accuracy and universal reproducibility smFRET.
It reveals not only the precision between labs, but also between different
techniques, e.g. TIRF (surface immobilized molecules) and confocal spec-
troscopy (freely diffusing molecules). FRET efficiencies were derived from
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fluorescence intensities in various ways, including ALEX and probability den-
sity analysis (PDA), and also from fluorescence lifetimes. In addition, 4 differ-
ent FRET pairs were investigated: Atto550/Atto647N, Atto550/Alexa647,
Alexa488/Atto647N, Alexa488/Alexa594, subsequently referred to as sam-
ple 1,2,3,4, respectively.

Figure 8.6 shows an overview of the results obtained for two inter-dye dis-
tances (23 and 15 base pairs (bps) at a double-stranded DNA (dsDNA) oligo,
termed a and b, respectively) measured and calculated in various ways. Clus-
ters of fluorescence intensity derived data (shown in color) are found for
samples 1a,b and 2a,b, where enough statistics was acquired. In particu-
lar, the previously discussed deviation from the model for Atto550/Alexa647
(sample 2b) was reproducibly observed.
The collection of alternative approaches - splitting into PDA, lifetime and
phasor data - spreads wider. But further statements are difficult based on
the present data set.
Therefore, in the following, we focus on the best documented techniques
(16 labs), which are conventional intensity-based smFRET using both, TIRF
and confocal setups.

Figure 8.6: Results of a world-wide blind study on smFRET derived distances.
Two distances (a, b) were measured using 4 FRET pairs (1-4). Conventional
intensity-based data is colored according to the FRET pairs. Results of alternative
techniques (PDA, fluorescence life-time, and phasor approach) are shown in black.
The model distances are displayed as vertical black lines.

The FRET efficiencies measured by these techniques agree well with each
other, as displayed in Figure 8.7. Efficiencies as low as 0.13 (sample 1a)
were reproducibly resolved. This is remarkable since different correction pro-
cedures were applied.
Based on the current statistics, measurements without ALEX corrected with
a global γ showed the largest deviations. Whereas local, mixed γ-correction
led to the narrowest distribution, and additional ALEX information is espe-
cially useful for low FRET efficiencies.
Furthermore, TIRF experiments of samples 2a,b suffered from the afore-
mentioned, unfavorably high bleach-rate of Alexa647. Nevertheless, nearly
identical standard deviations are found using TIRF and confocal measure-
ments. Average FRET efficiencies and standard deviations are reported in
Table 8.2.

47



8 EXPER IMENTAL POTENT IALS AND L IM ITS

Figure 8.7: FRET efficiencies of samples 1a,b and 2a,b measured by intensity-
based smFRET. Confocal data is shown in gray. TIRF data is colored according
to the correction procedure: ALEX and global γ, dark red; ALEX and local γ,
orange; no ALEX and local γ, light blue; no ALEX and global γ, dark blue. Box
plots - including TIRF plus confocal data - are displayed for each sample (box:
second and third quartiles; whiskers: minimum and maximum).Vertical black lines
indicate the model efficiencies. Their uncertainty limits - due to uncertain Förster
radii discussed below - are shown in gray.

For Atto550/Alexa647, a substantial deviation from the model efficiency is
observed at shorter distances, i.e. sample 2b, but not 2a. As explained earlier,
this was ascribed to a distance dependent dark state population. In contrast,
for Atto550/Atto647N, the mean efficiencies lie closer to the expected range.
Remaining deviations are discussed further in Section 8.2.5.

Table 8.2: FRET efficiency results of the world-wide comparison on intensity-
based smFRET. Standard deviations are rounded up.

µ ± σ 1a 1b 2a 2b

TIRF 0.16 ± 0.03 0.54 ± 0.05 0.22 ± 0.03 0.60 ± 0.06

Confocal 0.15 ± 0.03 0.55 ± 0.04 0.19 ± 0.05 0.57 ± 0.07

Total 0.15 ± 0.03 0.55 ± 0.05 0.20 ± 0.05 0.59 ± 0.07

8.2.4 The Current Distance Resolution Limit

Naturally, the overall accuracy of smFRET derived distances relies not only
on the uncertainty of the experimental FRET efficiencies, but also on the
uncertainty of the Förster radius itself. As shown in Equation (3.3), it is
determined from the fluorescence quantum yield of the donor, the overlap
integral, the orientational factor κ2 and the refractive index. Although the
former three quantities come with considerable experimental uncertainties,
they contribute to the Förster radius with the sixth root only. Therefore, the
uncertainty of the Förster radius can be estimated to 3% in the isotropic
regime, i.e. assuming sufficiently mobile dyes that cause orientational av-
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8.2 The Distance Resolution of smFRET

eraging (during the dwell in the excited state) such that 〈κ2〉 is close to
2/3.

Consequently, the combined first-order distance uncertainty of smFRET re-
sults from the propagation of uncertainties (described by the standard devi-
ations) of both, the Förster radius and the FRET efficiency:

∆r =
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Figure 8.8 shows the distance dependence of the first-order uncertainty for
the common FRET pair Atto550/Atto647N, obtained using σ(E) = 0.05
and σ(R0) = 2Å. The maximal sensitivity is found in the vicinity of the
Förster radius with below 5% distance uncertainty. Whereas away from R0,
the uncertainty grows substantially. The specific distances and uncertainties
are found in Table 8.3.
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Figure 8.8: Total distance uncertainty of smFRET for the FRET pair
Atto550/Atto647N. It incorporates the uncertainties of the Förster radius (Riso0 )
and the FRET efficiency as observed among 16 labs - either by TIRF or confocal
spectroscopy. The uncertainties are displayed for 1 and 2 standard deviations (σ).

Table 8.3: smFRET derived distances and standard deviations compared to the
model distances of the samples a and b.

distance [Å] model Atto550/Atto647N Atto550/Alexa647

a 88 85 ± 7 90 ± 8

b 60 62 ± 3 67 ± 5

Importantly, these values are FRET pair specific, as shown in Figure 8.9a
for a set of Förster radii. But in units of R0 the whole set collapses to
one universal benchmark. Although, individual precision may differ of course,
Figure 8.9b represents a convenient estimate for the generalized accuracy
of smFRET.
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a b

Figure 8.9: Universal distance uncertainty of smFRET. (a) Total distance uncer-
tainty curves (1σ) for a wide range of Förster radii, R0 =40 to 100Å in blue to
pink. (b) A generalized benchmark for smFRET accuracy in units of R0. (a, b)
As in Figure 8.8, σ(E) = 0.05 and σ(Riso0 ) = 3%.

8.2.5 Reproducible Model Deviations

The distances determined for samples 1a,b deviate from the model distances
in opposite directions. A similar photo-physical effect as the one observed
with Alexa647, can be excluded here, based on FCS data [62]. In contrast,
a systematic bias of the correction procedure is more likely.

The significance of this trend is difficult to judge, because the accuracy of
the model itself is of course unknown. But with respect to the mere distribu-
tion of determined distances, the deviation from the model values for 1a,b is
statistically significant1. Such a behavior - slight over-estimation of low effi-
ciencies and growing under-estimation at higher efficiencies (see also sample
1c in Figure 8.4) - could be explained by biased corrections. Namely, incom-
plete background removal (e.g. due to superimposed exponential background
bleaching), together with an over-estimated DD signal would provoke the
observed trend. The latter could be caused by over-estimated γ values (cf.
Figure A.6).

8.2.6 Further Discussion

To solve biological questions, one is usually not interested in inter-dye dis-
tances, but rather in the separation of bases, amino-acids or similar con-
stituents. This information is not directly accessible by smFRET. But it can
be inferred from knowledge about the local environment at the dye positions
and the calculated accessible volumes of the dyes. Thereby, the accuracy de-
pends on the previously available local structure information. Furthermore,
it is considerably increased by using (self-consistent) distance networks be-
tween multiple dye positions [61].

To evaluate the accuracy of smFRET, an accurate reference model is key.
Therefore, rigid dsDNA was chosen as a well characterized scaffold for fluo-
rophore attachment. The utilized 3D modeling tool was shown to generate

1 According to the Student t-test (two-sided, 95% confidence, neglecting non-normality)
and also the non-parametric Wilcoxon Signed Rank test, which does not require nor-
mality (two-sided, 95% confidence).
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accurate dsDNA structures that fit experimental x-ray diffraction results with
(all atom) RMSDs below 1Å [93, 42]. In addition, the model distances were
further refined by considering the accessible volumes of the dyes [76] and
not their attachment points. All of this provides confidence in the model
values. Yet, a finite inaccuracy remains in every model.

The distance resolution of smFRET was assessed in a world-wide blind study.
Among 16 labs and diverse intensity-based techniques, a distance uncertainty
of less than 5% was found near the Förster radius. But also very small FRET
efficiencies below 0.15 were reproducibly resolved.
In addition, Alexa647 was found to deviate from classic Förster behavior,
because of a superpositioned distance-dependent dark state population.
Furthermore, the study allowed to deduce a universal distance-dependent
uncertainty function. It represents a convenient accuracy estimate, which is
independent of specific dyes.

On the one hand, the reported uncertainty was achieved under optimal con-
ditions using a very rigid and easily handled dsDNA structure. Whereas, gen-
eral biological - protein - constructs may come with additional complication,
such as dye sticking or inherent flexibility. On the other hand, very different
methods were applied with potential bias in different directions. Therefore,
the precision (or reproducibility) within one lab, one setup and one correc-
tion procedure may be considerably higher. Consequently, an even better
(differential) distance resolution is expected within one lab.
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8.3 K INET IC ACCURACY

Apart from static structural information, smFRET time traces enable one
to study unsynchronized molecular dynamics experimentally. As one of very
few techniques, TIRF can monitor in real-time how a single molecule pro-
gresses through states with distinct structural properties. That is why the
technique has become very popular to investigate conformational changes in
biomolecules.
Its potential and limits are demonstrated in the following using the example
of a dynamic DNA construct, an all-protein system and simulations [B].

8.3.1 The Simple 2-State Model

Holliday-junctions [66] have become a widely used model system for confor-
mational dynamics studied by smFRET. These DNA four-way junctions al-
ternate constantly between two equilibrium conformations [101]. An example
trace is shown in Figure 8.10a. As expected for a two-state system, the cor-
responding FRET efficiency histogram shows two peaks (Figure 8.10b). And
the dwell-time histograms are well fit by single-exponentials (Figure 8.10c).
In this case, the standard procedure for kinetic analysis, i.e. dwell-time anal-
ysis introduced in Section 6.4.2 is applicable.

The accuracy of such dwell time derived rates was confirmed by simulations
of varied 2-state models with systematically growing rates (see Figure 8.11a).

Figure 8.10: Kinetic smFRET data of a single Holliday junction revealing 70
transitions in one time trace. (a) FRET efficiency (E, black) and fluorescence
trajectories (donor, green; acceptor, orange; directly excited acceptor, gray). The
state allocation by HMM is shown in the zoom below (high FRET, gray; low
FRET, white). (b) The FRET efficiency histogram shows two peaks. (c) The
cumulative dwell-time histograms are well fit by single-exponential functions.
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For a set of 200 simulated time traces, relative errors of 20% or less can be
expected, as long as the rate of interest is 5 times slower than the sampling
rate and at least 7 times faster than the bleach rate (see Figure 8.11b).
Notably, very similar numbers are found whether or not dwells without ob-
served start and end points are considered (see Figure 8.11b,c). In the former
case, even traces without an observed transition are considered as a dwell.

Even higher sampling rates - about 100 times the rate of interest - are needed
to completely remove the non-zero offset of the asymptote in Figure 8.11c,d.
Importantly, such high sampling rates are accessible in the experiment only
at the cost of a faster bleach rate, as previously discussed in Section 8.1.

It turns out that every dwell time derived rate is systematically over-estimated,
even for the simplest 2-state models.

Figure 8.11: Accuracy of dwell-time analysis tested by simulations. (a) Discrete
state sequences were simulated for 2-state models with different rates, k01 and
k10: 200 state sequences with 5Hz sampling rate and 0.03Hz bleach rate. (b) The
deviation of the determined k01 from the input k01 as a function of both input
rates (maximum relative deviation out of five simulations per data point). While
"DT analysis" considers dwells with observed start and end points only, "allDT
analysis" includes also dwells with one and zero observed limits (static traces).
(c) Relative errors of the rates along the indicated lines are shown as a function
of the mean number of dwell times per trace. Black lines serve as a guide to the
eye. (d) The residual over-estimation of about 15% vanishes at higher sampling
rates. These are accessible in the experiment only at the cost of not resolving the
slower dwells due to photobleaching.
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8.3.2 Kinetic Models for Realistic Proteins

In contrast to the simplistic 2-state system above, the situation is more
complicated with realistic proteins, which usually adopt significantly more
than two states [6]. As an example, Figure 8.12a shows experimental single
protein time traces revealing conformational changes of Hsp90. The fluctua-
tions between N-terminally open and closed conformations occur on a broad
range of time-scales resulting in very long and short dwells, and generally
fewer transitions per trace (here 3 on average). Also so-called static traces
are found (Figure 8.12b), where zero transitions occur within the observation
time.

Despite the two apparent populations in the FRET efficiency histogram (Fig-
ure 8.12c), both dwell-time distributions are multi-exponential (Figure 8.12d).
Still, no systematical change in FRET efficiency from fast to slow dwells is
observed (Figure 8.12e). Such behavior, hereafter referred to as degener-
ate FRET efficiencies, is indicative of truly hidden states that cannot be
separated by FRET efficiency, but differ kinetically.

In this situation, dwell-time analysis is not applicable. The interpretation of
the resulting multi-exponential dwell-time distributions may lead to erroneous
conclusions. This is demonstrated using simulated, synthetic data (see ex-
ample trace in Figure 8.13a) generated by the 4-state model in Figure 8.13b

Figure 8.12: Conformational dynamics of Hsp90 resolved by smFRET. (a) Four
example trajectories show dynamics on different timescales (FRET efficiency, E:
black; fluorescence of the donor: green; acceptor: orange; directly excited ac-
ceptor: gray; Viterbi paths as gray and white overlays indicating high- and low-
FRET states.). (b) No transition occurs within the observation time of this Hsp90
molecule, leading to "static" traces. (c) Two peaks are visible in the FRET ef-
ficiency histogram. (d) The resulting cumulative dwell-time histograms clearly
deviate from respective single-exponential fits. (e) There is no trend in FRET
efficiencies throughout the broad range of observed dwell times: 0.2s to >100s.
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comprising two indistinguishable high-FRET and two indistinguishable low-
FRET states, which are all 4 kinetically distinct. Figure 8.13c compares the
results obtained from bi-exponential fits of the dwell-time distributions to
the original 8 transition rates. Because the connectivity of the states is lost
in such distributions, only half of the rates can be identified. Three of them
differ by more than 100% (see Figure 8.13d). Moreover, the corresponding
uncertainties of the fit do not reveal the true uncertainties of the rates.

In contrast, based on the same synthetic data, all 8 rates were accurately
resolved by SMACKS, a new maximum likelihood approach introduced in
Chapter 9. Notably, all rates come with meaningful error estimates (Fig-
ure 8.13c) and relative errors smaller than 50% (Figure 8.13d).

Figure 8.13: Evaluation of dwell-time analysis in the context of more realistic
state models. (a) Synthetic example trace with FRET efficiency (E, in black) and
fluorescence traces (donor, green; acceptor, orange; directly excited acceptor,
gray). Synthetic data sets included 200 traces, generated by the 4-state model
depicted in (b): states 0/1 as well as 2/3 share the same FRET efficiencies. See
Section B.6.1 for details. The size of the circles in the state model is proportional
to the state population. The arrow widths are proportional to the transition rates.
(c,d) Comparison of dwell-time analysis (red) and SMACKS (blue, see text): (c)
contrasting the resolved transition rates with the absolute input rates, or (d)
contrasting the individual relative errors.

8.3.3 Further Discussion

The kinetic analysis of smFRET time traces is complicated by the excep-
tionally narrow detection bandwidth of the experiment. It is restricted by the
exposure time, on the one side, and the mean observation time - limited by
photo-bleaching - on the other side.

As a consequence, dwell-time analysis fails to resolve accurate rates - already
in a two state system. These limitations have been recognized in the patch
clamp field more than 20 years ago [67]. Nevertheless, it is still the standard
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analysis in the smFRET field today. Therefore, taking the next step in the
kinetic analysis of smFRET data is long overdue.

The solution to the challenge is presented in the next chapter. As demon-
strated in Figure 8.13, it provides increased accuracies and meaningful error
estimates - despite the above experimental challenges associated with sm-
FRET time traces.
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8.4 SUMMARY 1

The photons a fluorophore can emit are numbered and as such very valuable
to the smFRET experimenter. They can be spent either on signal-to-noise,
time resolution or observation time. Thereby, it is the experimenters task to
find the optimal balance between the three.

For instance, maximal distance resolution requires maximal signal-to-noise.
For the first time, the distance resolution of smFRET was assessed in a
world-wide blind study. An uncertainty of less than 5% was found among
16 labs for distances close to the Förster radius. A global benchmark was
found for the resolution of smFRET. It allows to estimate the resolution of
smFRET, independent of the specific FRET pair and over a wide range of
distances.

Moreover, the precious photons can be spent on kinetic information. Classical
dwell-time analysis is not only inaccurate in the simplest of cases (systematic
over-estimation of 15% to >100%), in fact, it can lead to conceptually wrong
conclusions. Instead, more efficient approaches are required to extract the
information included in smFRET data.
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9
QUANT ITAT IVE S INGLE MOLECULE
K INET ICS

In view of the experimental challenges detailed in the last chapter, a more
suitable kinetic approach was developed and custom-tailored for smFRET.
The goal was to quantify single molecule kinetics as effectively and precisely
as possible. This approach, termed single molecule analysis for complex ki-
netic sequences (SMACKS) [B], is demonstrated below using the example
of Hsp90.

9.1 I NFERR ING ONE GLOBAL K INET IC MODEL

The limited detection bandwidth is a major challenge for kinetic analysis of
smFRET time traces. Additional complication arises from experimental sig-
nal variations between individual molecules. The approach introduced below
solves these issues in two steps. In short, it combines trace-wise HMMs (sub-
sequently referred to as trace-by-trace HMM) with a second semi-ensemble
HMM optimization. While the first part is used to capture the heterogeneity
between individual molecules, the second part provides one global kinetic
state model for the entire data set.

9.1.1 Step I: Trace-by-Trace HMM

An apparent state model is determined, from visual inspection of the time
traces and the associated histogram. Using the example of Hsp90’s N-terminal
dynamics, an apparent 2-state model is expected from the time traces and
the histogram in Figure 8.12. This model is used in a first, conventional
trace-wise HMM optimization:

As introduced in Chapter 5, the model λ(π,A,B) is iteratively rated by the
forward-backward algorithm and optimized by the Baum-Welch algorithm
until convergence to maximum likelihood. The Viterbi algorithm is used to
compute the most probable state sequence for every trace given the pre-
viously trained model. These trained parameters are examined visually by
comparing the resulting Viterbi path to the input data (e.g. in Figure 9.1a).

Please note that by searching for flat plateaus, HMM echoes a characteristic
requirement for single-molecule fluorescence data. Therefore, traces that are
not well described by the Viterbi path, are often sub-quality traces and as
such sorted out. On the other hand, the apparent model must be revised if
the HMMs fail repeatedly at good quality traces (with respect to signal-to-
noise, signal regularity etc.).
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Figure 9.1: smFRET data as input for HMM. (a) Example trace with FRET
efficiency, E: black; fluorescence of the donor: green; acceptor: orange; directly
excited acceptor: gray; Viterbi paths as gray and white overlays indicating high-
and low-FRET states, respectively. (b) The FRET efficiency histogram of multi-
ple traces provides only 1D information, although 2D information was originally
recorded. (c) 2D fluorescence histogram of smFRET data (black to light gray:
minimal to maximal counts, white: no counts). The means of individual donor
(green) or acceptor (orange) traces are shown by markers. Global Gaussians as
derived for the entire data set are displayed as corresponding contours.

9.1.2 HMM Customization for smFRET

If applied to smFRET data, fluorescence time traces - not FRET efficiency
traces - are the preferred input of semi-ensemble HMM.
By exploiting the original two observables - donor and acceptor fluorescence
- instead of the FRET efficiency (only one observable), the robustness of
the HMM with respect to uncorrelated noise is significantly increased (cf.
Figure 9.1b,c). This is also exemplified in Figure 9.2.
In addition, FRET efficiencies come with unfavorable spikes - due to occa-
sional, noise induced division by zero - which are absent in the fluorescence
traces. Therefore, no previous smoothing is required if fluorescence traces
are used as HMM input.

Such fluorescence signals are appropriately described by 2D Gaussian PDFs,
bi(µi,Vi), per state i (see Figure 9.1c). These are parameterized by the
vector of means, µi, and the covariance matrix, Vi, of the donor and accep-
tor intensities. A representative emission PDF is displayed in Figure 9.3(top,
right).
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Figure 9.2: The superior robustness of 2D HMM demonstrated at two example
traces. (top) Blink events (highlighted in yellow) are misinterpreted by FRET
efficiency based 1D HMM. (bottom) 1D HMM diverges under high noise condi-
tions. Ergo, the Viterbi path is not defined. In contrast, 2D HMM still derives a
reasonable Viterbi path.

9.1.3 The FRET Constraint

After the standard corrections described in Section 6.4.1, the means of the
donor and acceptor intensities, Aµi and Dµi, must add up to the average
total intensity of the respective trace:

〈Itot〉 =
T∑
t=1

[
Axt +

Dxt
]
/T = Aµi +

Dµi = const. ∀ i

where Axt and Dxt are the acceptor and donor intensities at time t, and T
denotes the total time.
As a result, the available parameter space for the means, Aµi+Dµi, shrinks
to one line. To cope with experimental variations between individual molecules,
the line is determined individually for each trace. This FRET line is displayed
in Figure 9.3(top, right).

This physical constraint is introduced into Baum’s optimization formalism
using Lagrange multipliers. Because the resulting update equations for Gaus-
sian distributions are coupled in µi and Vi, I exploit the fact that the differ-
ence between Gaussian and Poissonian means is negligible for TIRF signals
(N � 10 photons, cf. Section A.2). Therefore, the update equation for
constrained Poissonian distributions [92] can be utilized to optimize µi:

µ̂i = 〈Itot〉 ·
∑T
t=1 [γt(i) xt]∑T

t=1

[
γt(i) · (Axt +Dxt)

]

where xt is a 2D vector comprising the donor and acceptor signal at time t.
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9.1.4 Step II: Semi-Ensemble HMM

To derive one kinetic model based on a set of traces, a semi-ensemble HMM
run is performed. It makes use of the emission PDFs, previously trained by
trace-by-trace HMM. To this end, the global start and transition probabilities
are optimized, while the individual emission PDFs are held fixed as illustrated
in Figure 9.3.

Figure 9.3: Semi-ensemble HMM optimizes a global kinetic model based on a
complete data set (normally >100 traces). While the kinetic parameters - start
probabilities and transition matrix - are optimized globally, the predetermined, in-
dividual emission PDFs are held fixed. This allows further to identify states not
only by a characteristic signal, but also based on their kinetic behavior. See Sec-
tion 9.2. For the example trace displayed, this results in a Viterbi path (overlays)
with 4 kinetic states despite only 2 distinguishable FRET efficiencies.

The ensemble parameters Πi, Aij (i.e. the global start and transition prob-
abilities) are updated based on all N time-traces. Similar to their trace-wise
counterparts, they are obtained using the γ-probabilities (cf. Section 5.2.2):

Π̂i =

∑N
n=1 [

nπi]

N

Âij =

∑N
n=1

[∑T−1
t=1 [nγt(i, j)]

]

∑N
n=1

[∑T−1
t=1 [nγt(i)]

]

Dealing with "Static" Traces:
It is important to note that also static traces contain kinetic information.
They occur in the experiment, as well as in theory, as a result of a limited
observation time and disparate transition rates. Because they would not
converge sensibly in a trace-by-trace run with more than one state, static
traces are included using the mean emission PDFs of the remaining data set.
Typical Hsp90 data sets contained about 30% static traces.

Convergence Criterion:
The likelihood function is not a convenient reporter for convergence, because
it reaches very flat plateaus in between of steep descents. By contrast, the
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normalized changes of the diagonal entries of the transition matrix have
proven useful for monitoring convergence of the HMM:

Normalized Changes =

n−1∑
i=0

|aii − a
′
ii|

aii

where a ′ii are the diagonal matrix elements of the previous iteration and the
sum goes over all states. In this work, no further changes were found, once
this quantity fell below 10−8.

Stationarity of the Input Data:
Any time-homogeneous Markovian analysis requires stationarity - but not
thermodynamic equilibrium. This is easily confirmed by comparing the in-
ferred start parameters to the (left) eigenvector of the transition matrix.
Both represent alternate expressions for the steady-state populations. Alter-
natively, the results obtained from data reversed in time must agree with the
original results to prove stationarity.

9.1.5 Further Discussion

One central problem of dwell-time based kinetic analysis was the over-estima-
tion of rates due to the limited temporal detection bandwidth of the smFRET
time traces (discussed in Section 8.1). Yet this is not inevitable. In fact, the
issue is solved by normalizing the occurrence of a given transition by the
total number of measured data points. Figure 9.4 shows the greatly improved
accuracy of ensemble HMM derived rates in contrast to dwell time derived
rates.

Figure 9.4: The accuracy of semi-ensemble HMM. (a) A 2-state model was
simulated with varied rates, k01 and k10 (200 discrete state sequences with 5Hz
sampling rate and 0.03Hz bleach rate). (b) Accuracy of the rates determined by
semi-ensemble HMM presented as maximum relative deviation out of 5 data sets
per specified rate input (k01 and k10). (c) Comparison to dwell-time analysis
(Figure 8.11) along the white line in (b) as a function of the mean number of
(fully resolved) dwell times per trace. Black lines serve as a guide to the eye.

Surprisingly, although HMMs are nowadays routinely used by the smFRET
community (for state allocation by the Viterbi algorithm), the kinetic infor-
mation contained in the HMM - namely the transition matrix - is commonly
ignored.
Indeed trace-wise HMMs would again suffer from short traces and the asso-
ciated variation across the data set. In addition, those would come with a
vast number of free parameters (i.e. degrees of freedom).
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In contrast, the approach introduced herein integrates the flexibility against
experimental variations between individual traces, on the one hand, with the
ability to describe the complete data set by only one global kinetic model,
on the other hand. As a consequence, the resolved rates are no longer sys-
tematically over-estimated.

In the current version (v1.3), SMACKS is entirely discrete in time. A straight-
forward adaption would be to consider continuous time for the derivation of
transition frequencies. Those would follow from the matrix logarithm of the
current transition matrix [145, 57].

SMACKS works without additional (hyper-) parameters or prior discretiza-
tion, which contrasts with earlier published ensemble approaches [105, 24,
78, 15]. Moreover, this strategy works equally well for simulated and exper-
imental data (see Section 9.3.1). The full procedure was tested on various
synthetic data sets generated by known input models, in or out of equilib-
rium, with or without degenerate FRET efficiencies (see below). Example
data can be found in Figure 8.13 and Section A.4.

Besides, apart from Section 9.1.2, the approach is applicable to all kinds of
single molecule time traces. The source code of the described semi-ensemble
HMM is available online as SMACKS tool1. The manual, included in Ap-
pendix D, provides an overview of the functionalities.

1 www.singlemolecule.uni-freiburg.de/smacks
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9.2 DEAL ING W ITH K INET IC HETEROGENE ITY

Distinct kinetic states that cause experimentally indistinguishable signals rep-
resent another challenge to smFRET kinetics. Such kinetic heterogeneity is
frequently observed with proteins [50, 164, 36, 63]. Using semi-ensemble
HMM, kinetic heterogeneity can be investigated by comparing different state
models including duplicates and triplicates of the apparent states. See Fig-
ure 9.5 for illustrations of such models with increasing number of states.

Figure 9.5: Model selection using BIC. Models including varied multiplets of the
apparent states - here low FRET and high FRET - are compared based on a
parsimony criterium. The model with the lowest BIC - here the 4-state model -
represents the optimum between accurate description of the data and moderate
complexity (i.e. degrees of freedom).

9.2.1 Model Selection

It is obvious that with an increasing number of degrees of freedom also
the likelihood of the model increases. In the extreme case, a model could
consist of one state per time step and thus describe the data perfectly - but
without sensible meaning. Therefore, parsimony criteria are commonly used
to identify the optimal model - that is to say, a model that describes the
data well, at the same time keeping the model complexity moderate. Here
the Bayesian information criterion (BIC) [141] is used for model selection,
similar to earlier studies [102, 57, 92, 79]. It balances the likelihood, L(λ|O),
against the number of free parameters, k, and n, the number of data points:

BIC = −2 · ln(L) + k · ln(n)

Figure 9.5 right compares models with 2 to 6 states with respect to ∆BIC,
i.e. the difference to the lowest BIC value. The latter indicates the optimal
model. For Hsp90’s conformational dynamics, the optimal model consists of
4 states with 2 high FRET (closed) and 2 low FRET (open) states. This is
consistent with the bi-exponential dwell time distributions discussed earlier
in Figure 8.12.
The applicability of BIC in this context could be confirmed using synthetic
data (including noise and signal variations) of known input models (see ex-
amples in Section A.4).

9.2.2 Feature Selection

Once the optimal number of states is deduced, the model is further refined
by inspecting the Viterbi paths.
The transition map (Figure 9.6a) relates the mean FRET values before and
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after each transition. It is a common misconception that the transition map
itself would report on the number of states in the model. This is clearly not
the case, because it is the consequence of a predetermined model. Instead,
it shows the quality of both, the original input data and the state allocation
based on the inferred model. Conversely, the lack of clustering in FRET
space indicates a poorly fitting model, causing inconsistent state allocation
across the data set.
Kinetic heterogeneity leads to transitions between different FRET efficien-
cies, but also within, e.g. from low FRET to low FRET. But most transitions
occur between the least populated (short-lived) states. For Hsp90 plus 2mM
ATP, the two short-lived states comprise one low and one high FRET state.

Figure 9.6: Model refinement. (a) The transition map relates the mean FRET
values before and after each transition found by the Viterbi algorithm (initial states
0, 1, 2, and 3 in red, green, blue, and orange, respectively). (b) The transition
histogram reveals the frequency of each transition in the data set. (c) Excluding
transitions that do not occur leads to a cyclic model for Hsp90 + ATP.

This is also observed in the 2D histogram of all transitions in Figure 9.6b.
Out of 12 possible transitions in a fully connected 4-state model, only 8
cyclic transitions are populated for Hsp90 with ATP. This equals the maximal
number of theoretically identifiable transitions (see Section B.6.4). Despite
the reduced number of free parameters, a cyclic 4-state model (Figure 9.6c)
fits the data with equal likelihood as the complete 4-state model (with 6
links). Theoretically, a cyclic -o-c-o-c- model would fit the data equally well,
yet the current picture of Hsp90 renders such a succession unlikely (discussed
in Section 10.4.1).

For a system functioning at thermodynamic equilibrium, detailed balance
requires that the transition histogram is symmetric about the main diagonal.

9.2.3 Further Discussion

In the conventional HMM framework, the model is optimized with respect
to both, the observed signals and kinetic behavior. Inherently, the analysis
of kinetic heterogeneity lacks the first criterion. Therefore lower accuracy is
expected in the presence of indistinguishable signals - especially in view of
the low temporal detection bandwidth of smFRET.
Nevertheless, SMACKS resolved accurate transition rates, in cases where
neither dwell time derived rates nor uncertainty estimates were meaningful
(cf. Table 9.1 as well as Figure 8.13).
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9.2 Dealing with Kinetic Heterogeneity

Another initial concern was the artificial introduction of fake transition states.
But this was not observed, either. The inferred states were meta-stable (i.e.
the probability to remain was above 0.5) in the vast majority of cases.

Finally, the ability to separate states based on their kinetic behavior repre-
sents a significant improvement in the frequent case, where the experimental
resolution or the studied reaction coordinate precludes the direct distinction
of such states. As demonstrated in the next section, the inferred models re-
produce experimental data remarkably well, which was impossible previously,
by dwell-time analysis.

Table 9.1: SMACKS accurately detects kinetic heterogeneity. Simulated input
rates are compared to output rates determined by SMACKS or dwell-time analysis
based on synthetic data.

Rate [Hz]: Input: HMM: DT:

0→1 0.0032 0.0029 –

1→0 0.029 0.0333 –

1→2 0.083 0.1002 0.1907

2→1 0.1385 0.1225 0.1244

2→3 0.012 0.0116 –

3→2 0.01 0.0118 –

3→0 0.0035 0.0036 0.0097

0→3 0.0007 0.001 0.0265
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9.3 EVALUAT ION

In most previous kinetic studies on smFRET, the only reported error esti-
mates were the uncertainties of fit coefficients from fitting dwell time dis-
tributions, disregarding systematic overestimation and variations throughout
the data set. In contrast, here, three tests are proposed to assess the relia-
bility of the results of the above procedure.

Figure 9.7: Three ways to critically evaluate the inferred model. (a) Dwell-time
distributions are reproduced by re-simulating the model (experimental data, green;
simulated data, gray). (b) Random start parameters uncover potential local likeli-
hood maxima, and random subsets reveal data-set heterogeneity (subsets, green;
complete set, black). (c) Confidence intervals measure the precision of the ob-
tained rates considering the finite data set, experimental noise, and data-set het-
erogeneity (rates, green; confidence intervals, black).

9.3.1 Re-Simulation

The most illustrative test for the consistency of the trained model with
the original data is “re-simulation” using the obtained transition matrix, the
experimental bleach rate and degenerate states (here 2 low FRET, 2 high
FRET). Figure 9.7a shows very good agreement between the re-simulated
and the experimental dwell time distribution. Alternatively, FRET histograms
could be re-simulated, too.

9.3.2 Randomization

Second, the convergence of the HMM to the global maximum is tested by us-
ing multiple random start parameters [112]. In all attempts, the parameters
converged to the same maximum likelihood estimators (MLE). Additionally,
random subsets of the data (here 66% of the traces) reveal the heterogene-
ity of the data set (Figure 9.7b). Here again all random subsets (n > 50)
converged to the same model with normally distributed parameters (RMSD
≈ 30% of the MLE).

9.3.3 Confidence Intervals

Third, the confidence interval of every trained parameter is calculated using
likelihood ratio tests1 (Figure 9.7c) [57, 55]. For each transition probability
aij, the parameter space around the maximum likelihood estimator (MLE)

1 Confidence intervals were implemented by Markus Götz.
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is scanned while keeping the remaining parameters fixed at the MLE. The
modified models λ ′ are compared to the MLE models λMLE by successive
likelihood ratio (LR) tests:

LR = 2
(

ln[L(λMLE|O)] − ln[L(λ ′|O)]
)

aCBij = a ′ij : LR = χ20.95,df=1 = 3.841

The 95% confidence bound (CB) is reached where LR crosses the respective
significance level for one degree of freedom (df). The confidence intervals
report on the data set heterogeneity and the precision of the HMM.

9.3.4 Further Discussion

In summary, the accuracy and precision of the kinetic state model deduced
by this semi-ensemble HMM approach was demonstrated by threefold eval-
uation: (i) direct comparison to the kinetic behavior in the experiment by
re-simulation, (ii) consistency across the data set by subset comparison, and
(iii) determination of confidence intervals revealing the precision of the model
regarding experimental variations.
A reliable state model is necessary to take the next step and resolve kinetic
and thermodynamic information from proteins in or out of equilibrium.
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9.4 THERMODYNAM ICS

Protein machines, such as Hsp90, use external energy (e.g. from ATP hydrol-
ysis) and therefore operate out of equilibrium. A central question is where - in
the conformational cycle - energy consumption couples into protein function.

9.4.1 Exploring energy coupling

Based on SMACKS, energy coupling can be investigated quantitatively. It
boils down to determining the free energy difference over closed cycles [68,
65] (in units of thermal energy, kT):

∆Gcyc = −
∑
∀i 6=j
(cycl.)

ln
(
aij

aji

)
(9.1)

with aij, the transition rates between individual states i and j.

Clearly, the accuracy of the resolved ∆Gcyc depends on the size of the data
set. Especially for systems away from equilibrium, very slow “reverse” rates
can occur. Due to the finite data set, only few respective transitions are
observed, resulting in large relative errors for these small rates. In this case,
an alternative formulation of ∆Gcyc using the number of transitions Nij
found by the Viterbi algorithm was found to be more accurate.

∆Gcyc ≈ −
∑
∀i 6=j
(cycl.)

ln
(
Nij

Nji

)
(9.2)

Equation (9.2) represents a lower bound for the Gibbs free energy, given
the finite data set (zero transitions are set to one, to avoid poles). If all
rates are well resolved, Equations (9.2) and (9.1) yield the same result, as
demonstrated using the example of a 3-state model:

∆Gcyc = −
∑
∀i 6=j
(cycl.)

ln
(
Nij

Nji

)
3 states
= − ln

(
π1 a12
π2 a21

· π2 a23
π3 a32

· π3 a31
π1 a13

)

= −
∑
∀i 6=j
(cycl.)

ln
(
aij

aji

)

9.4.2 Experimental limits

In the following, the ability to resolve free energy differences from single
molecule time traces is discussed. To this end, two limit cases for the cou-
pling of conformational changes to ATP hydrolysis are considered system-
atically. Assuming 1% ADP, 3mM Mg2+, 250mM KCl and 100% efficiency,
the energy released by ATP-to-ADP hydrolysis amounts to ∆Gcyc = 30kT
[119]. In the first case (Figure 9.8a), the full 30kT are introduced within
one step. Whereas in the second case (Figure 9.8b), the energy is succes-
sively released over 4 steps, as illustrated by the energy schemes. The latter
is comparable to contributions by ATP binding, hydrolysis and ADP or Pi
release, proposed e.g. for the human mitochondrial F1-ATPase [146].
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9.4 Thermodynamics

Figure 9.8: Quantifying energy coupling. (a, b) Two simulated limit cases of sys-
tems driven by the hydrolysis of 1 ATP. In (a), the external energy is absorbed
between states 0 and 3. All remaining rates are set to 0.05 Hz. In (b), the external
energy is introduced sequentially over 4 identical steps. The respective state mod-
els (top), energy scheme (center), and theoretical detection limit for free energies
as a function of the forward rate (bottom) are shown. Simulated values (green)
result from Equation (9.2) applied to 200 discrete state sequences with 5 Hz
sampling rate and 0.03 Hz bleach rate. They scatter about the expectation value
of ∆Gobs (black line). (c) A mixture model (top), transition map (center), and
transition histogram (bottom) obtained from synthetic data, simulating the flow
introduced by coupling to the hydrolysis of 1ATP. The slightly different look of
the transition map (compared to experimental data) is the result of uncorrelated
noise in the simulations.

Figure 9.8a,b bottom compare the observed free energy differences, ∆Gobs,
as a function of the dominating forward rate. The values were obtained by
Equation (9.2) in the absence of noise or kinetic heterogeneity, and thus, they
represent the upper limit of ∆Gobs. However, a typical data-set size and
detection bandwidth of smFRET experiments was assumed (see caption),
which defines the range of detectable forward rates. Only a fraction of the
original 30kT is recovered, because very unlikely transitions do not occur
throughout the data set.

The corresponding expectation value of ∆Gobs was calculated from the
expected number of observations of a given transition, 〈Nobsij 〉, in a data
set with Ntot data points. If 〈Nobsij 〉 < 1, the specific transition cannot be
resolved. In this case, flostij denotes the factor that is actually missed in the
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measurement. The expectation value of the observed free energy change
〈∆Gobs〉 in units of kT is then given by:

〈∆Gobs〉 = −
∑
∀i 6=j
(cycl.)

ln

[
aij/f

lost
ij

aji/f
lost
ji

]

with:

flostij =

〈Nobsij 〉 = Ntot · πi · aij ∀ 〈Nobsij 〉 < 1
1 ∀ 〈Nobsij 〉 > 1

(9.3)

As expected, the one-step regime is more sensitive to the low detection
bandwidth, due to the large ratio of forward to backward rate (1013). Ac-
cordingly, a lower fraction of the original 30kT is observed, as compared to
the distributed regime. This demonstrates that there is no universal limit for
resolving energy coupling. Instead, it depends on the investigated system,
which can exist in any combination of the two regimes.

Such a mixture model is depicted in Figure 9.8c. It was analyzed in the
absence and presence of noise. In the first case, 20.5 kT of the original
30 kT were resolved. The second case included noise, signal variations and
also degenerate FRET efficiencies (2 low, 2 high). Because 3 of the reverse
transitions do not occur in the entire data set (cf. transition histogram),
SMACKS resolved only ∆Gcyc=(12 ± 2)kT in this case. This is 58% of the
free energy, which was actually present in the state sequences.

9.4.3 Further Discussion

Despite universal energy conservation, the observation of energy differences
in the experiment depends on experimental limitations. As demonstrated
above, there is no general limit for resolving free energy differences from
kinetic state sequences. Instead, two limit cases were discussed in the rel-
evant range of experimentally detectable forward rates. In the worst case
(1-step energy release), below one third of the original energy difference
was resolved from discrete state sequences, as compared to 50-95% in the
optimal case, where energy release is distributed over all transitions. Includ-
ing the experimental short-comings observed with Hsp90, further decreased
∆Gcyc. In the context of Hsp90, this means that in the worst case only
about 3kT could be resolved, although the (forward) rates would appear to
be well resolved in the experiment.

Finally, the general resolution for free energy differences grows with the
size of the data set, cf. Equation (9.3). To some extent, this allows to
compensate for the low detection bandwidth of the experiment.
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9.5 SUMMARY 2

SMACKS is a novel HMM approach, which resolves all relevant rates that
characterize the observed conformational dynamics, from a set of (short)
smFRET time traces. The underlying states are identified by their FRET
efficiency or kinetic behavior or both. SMACKS is a tailor-made solution for
the wide family of protein machines that are clearly more challenging than
DNA prime examples.
Moreover, by giving meaningful uncertainty estimates, SMACKS provides
new power and confidence to the unique feature of single molecule time
traces - namely, the analysis of kinetics and thermodynamics at the steady
state (explicitly including the non-equilibrium steady-state).

This progress is achieved by the following six key features:
(i) SMACKS exploits the original fluorescence signals of the FRET donor
and acceptor as 2D input. The FRET-specific anti-correlation provides signif-
icantly increased robustness with respect to uncorrelated noise. This unique
information is lost in 1D FRET trajectories.
(ii) SMACKS tolerates experimental intensity variations between individual
molecules, while at the same time, the transition rates are extracted from
the entire data set.
(iii) SMACKS minimizes the bias of photo-bleaching, because it determines
transition rates based on their occurrence in the entire data set. Thus, the
range of detectable timescales grows as a function of the data set size.
(iv) SMACKS performs the entire analysis on the experimental (i.e. noisy)
fluorescence data. In fact, the knowledge about a given data point’s relia-
bility is used to weight its contribution accordingly. Therefore, SMACKS is
robust enough to handle realistic noise levels in protein systems.
(v) SMACKS identifies hidden states that share indistinguishable FRET ef-
ficiencies, but differ kinetically.
(vi) SMACKS quantifies the precision of extracted rates. The precision is
limited by the data set size and signal quality, but it is not compromised by
systematic overestimation, which contrasts with previous dwell-time analy-
ses.

The full procedure of SMACKS is also summarized as a flowchart in Fig-
ure 9.9.
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Figure 9.9: Flowchart summary of SMACKS, the Single Molecule Analysis of
Complex Kinetic Sequences. Based on single molecule time traces (and the his-
togram thereof) an apparent model is deduced. It is used in a trace-by-trace
HMM optimization. The optimized, individual emission PDFs are held fixed in a
second semi-ensemble HMM run. It optimizes one kinetic model based on the
entire data set. The BIC is used for model selection and the Viterbi paths are
considered for further model refinement. Finally, the model is critically evaluated
in several ways.
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HSP9 0 ’ S CONFORMAT IONAL K INET ICS

It was previously found that Hsp90’s conformational changes are only weakly
coupled to ATP hydrolysis [109]. Here varied nucleotide conditions were
investigated systematically by means of both, the population of individual
conformations and corresponding interconversion kinetics.
Unless stated differently, the well known smFRET construct was used (cf.
Chapter 7).

10.1 NUCLEOT IDE DEPENDENCE OF HSP9 0 ’ S CONFOR -
MAT IONS

Under most conditions, Hsp90 prevails in an open conformation. This is per-
ceived in the FRET efficiency histogram (Figure 10.1) as a large low-FRET
population (>80%). Interestingly, the population distribution is only weakly
affected by the presence or absence of ATP and ADP. In contrast, the
non-hydrolysable nucleotide analogue, AMP-PNP shifts the the equilibrium
predominantly to the closed conformation (>80%).
For all experiments the FRET efficiencies lie within Elow = 0.1 ± 0.05,
Ehigh = 0.75± 0.05, which amounts to inter-dye distances of 92Å in the
open and 53Å in the closed conformation.
The nucleotide dependence was further confirmed using a protein construct
with dye positions other than 61/385 (Section A.5).

Figure 10.1: Nucleotide dependent population of Hsp90’s open and closed con-
formations. 2mM nucleotides were used.
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10.2 NUCLEOT IDE -DEPENDENT CONFORMAT IONAL
K INET ICS

The kinetic results on Hsp90’s conformational dynamics are compared in the
presence of different nucleotides (2mM ADP, ATP, AMP-PNP) or without
nucleotides (apo).

Although 2 peaks are observed in the FRET efficiency histogram, a kinetic 2-
state model is not sufficient to describe Hsp90’s broad range dynamics. This
is already evident from visual comparison of simulated 2-state trajectories to
the experimental data on Hsp90. The bi-exponential dwell-time distributions
further support this thesis (cf. Figure 8.12d). Finally, according to SMACKS
(Chapter 9), Hsp90’s conformational kinetics are best described by 4 states
(2 low-FRET and 2 high-FRET, Figure 10.2).

Figure 10.2: Hsp90’s conformational kinetics are best described by 4 states.
Model selection among differently sized models based on BIC. Black lines serve
as a guide to the eye.

10.2.1 A Minimal Kinetic Model

The most plausible aggregate models were determined following the ap-
proach of Bruno et al., originally developed for ion channel data [19]. Ac-
cordingly, models with varied numbers of links were compared by means of
likelihood ratio tests, as detailed in Section B.6.4. These statistical tests
indicate that 4 links are required to describe Hsp90’s conformational dy-
namics in the presence of ATP, whereas, under apo, ADP and AMP-PNP
conditions, models with 3 links are sufficient. Corresponding models are dis-
played in Figure 10.3 for all 4 conditions: states 0/1 are long-/short-lived
low-FRET states representing open conformations, whereas states 2/3 are
short-/long-lived high-FRET states representing closed conformations.
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10.2 Nucleotide-Dependent Conformational Kinetics

Figure 10.3: Minimal kinetic state models describing Hsp90’s conformational
changes under different nucleotide conditions as indicated. Circle sizes represent
individual state populations. Arrow weights represent relative transition rates.

The transition map (Figure 10.4a) shows the quality of the input data and
the state allocation based on the inferred model. The dwells before and after
a transition cluster in agreement with the peaks of the FRET histogram, Fig-
ure 10.1. It is evident that Hsp90’s conformational changes are less defined
in the absence of nucleotides.
Furthermore, the resulting transition histograms (Figure 10.4b) are very sym-
metric about the main diagonal, indicating none of the four systems is far
from thermodynamic equilibrium. The latter is a thermodynamic requirement
for stationary, linear models. Nevertheless, the results were obtained without
corresponding constraints for detailed balance.

Figure 10.4: Kinetic results of Hsp90 under varied nucleotide conditions as in-
dicated. (a) Transition maps locate transitions in FRET space (initial states 0,
1, 2, and 3 in red, green, blue, and orange, respectively). (b) The occurrence of
transitions across the dataset.
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10.2.2 Nucleotide Effects on the Transition Rates

The rates under apo and ADP conditions are similar to those in the pres-
ence of ATP (Figure 10.5 bottom). Only with the non-hydrolysable ATP-
analogue, AMP-PNP, the rates between both short-lived states are inverted.
This is consistent with the pronounced shift towards closed conformations
observed in the FRET histogram, in the presence of AMP-PNP (Figure 10.1).

Figure 10.5: Transition rates deduced for Hps90’s nucleotide dependent confor-
mational kinetics, displayed in linear (left) and logarithmic scale (right). Error-bars
represent 95% confidence bounds.
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10.3 THERMODYNAM IC CONSEQUENCES

Thermodynamic aspects of all 4 nucleotide conditions are summarized in the
1D-projection of the energy landscape, displayed in Figure 10.6a. It holds the
free energy differences and barrier heights calculated from the transitions
rates above. The latter were estimated assuming Arrhenius behavior and a
typical attempt frequency for proteins of 108Hz [120, 121].

As expected and required, in the absence of an external energy source,
Hsp90’s conformational dynamics are in thermal equilibrium. This is rec-
ognized by the linear models and corresponding transitions in Figure 10.4b.
However, for Hsp90 in the presence of ATP, no driven dynamics were found
either, with ΔGcyc=(0.9±0.9)kT over the closed cycle in Figure 10.3, which
is far below the 30kT expected for ATP hydrolysis (specified in Section 9.4.2).
In Section 9.4.3, I discussed how the temporal detection bandwidth and fur-
ther short-comings of the experiment decrease the observed free energy
differences. But even in view of these effects, a larger free energy difference
would be expected if the conformational changes were really driven by ATP
hydrolysis, given the fact that the transitions themselves are indeed tempo-
rally resolved in the experiment.
This suggests that the energy of ATP hydrolysis is not directly coupled to
the observed conformational changes, which is consistent with the fact that
transitions are also observed in the absence of ATP. It further supports earlier
results [109].

A schematic 3D-representation of the energy landscape is shown in Fig-
ure 10.6b. It highlights the fact that two observable FRET states could be
split into 4 kinetic states, based on distinct kinetic behavior.

Figure 10.6: Energy landscape of Hsp90’s conformations. (a) Energies deduced
from the transition rates assuming an attempt frequency of 108Hz. (b) A 3D-
representation of the energy landscape highlights the detection of hidden states,
given their distinct kinetic behavior.

79



10 HSP9 0 ’ S CONFORMAT IONAL K INET ICS

10.4 D I SCUSS ION

10.4.1 Interpretation of the 4 Kinetic States

Using SMACKS, 4 states were resolved based on characteristic FRET effi-
ciencies and also distinct kinetic behavior: one long-lived and one short-lived
open state (states 0 and 1) along with one short-lived and one long-lived
closed state (states 2 and 3).

A possible interpretation of the latter two states involves the position of
the very N-terminal β-strand, β1, introduced in Chapter 2. Coming from
open conformations, β1 is first internally attached to the 7-strand β-sheet
of the N-domain [124]. Once closed, contacts with the opposite protomer
can be formed (cf. crystal structure in Figure 2.1). These confer additional
stabilization to the long-lasting closed state (state 3 in Figure 10.7right).
Contrariwise, in the non-exchanged case, the closed state (state 2) is less
stable and therefore short-lived. In agreement with the presented data, both
conformations cause the same high-FRET observations.
Interestingly, an Hsp90 mutant lacking β1 (known as Δ8) showed a larger
N-terminally closed population upon nucleotide binding, and also faster ATP
hydrolysis [133, 109]. This was explained by the abolished internal attach-
ment [133], which presumably prevents hetero-dimerization of the α1-helices
adjacent to β1. Actually, Hsp90-Δ8 is lethal in vivo despite the increased
ATPase activity [168]. Nevertheless, a direct comparison to the dynamics
of Δ8 would be an important hypothesis test; also because the cited earlier
results were obtained with a positively charged N-terminal His-tag, which
increases the ATPase rate of full-length Hsp90, too.

Regarding the open states, the emerging notion implies an entire ensemble
of conformations [61]. Within the short time window of the smFRET exper-
iment, such a kinetic ensemble is well described by 2 states.
A broader range of timescales is discussed in Chapter 13.

In addition to the kinetic models depicted in Figure 10.3, further mathemat-
ically equivalent models can not be excluded based on the presented kinetic
data alone (cf. Section B.6.4). But in view of the previous considerations
together with the long-distance transition path between the observed open
and closed conformations, the presented models (with the fewest open-to-
closed links) appear as the most likely ones. Also the fast exchange between
the two short-lived states (one open, one closed) on the one hand, and occa-
sional transitions into more kinetically distant, longer-lasting open or closed
states, on the other hand, fits well into the outlined overall picture.

10.4.2 The Role of ATP Hydrolysis in Hsp90’s Conformational Dynamics

The role of Hsp90’s slow ATPase rate is a long standing and controversial
question [116, 75, 53]. Considering the presented smFRET data, the inferred
cyclic state model appears only in the presence of ATP. Although this may
seem to be a very abstract finding, it represents a clear difference to all other
discussed conditions.

On that account, it is intriguing to speculate that hydrolysis may trigger a -
possibly small - rearrangement in the N-terminal domain, thereby unlocking
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10.4 Discussion

Figure 10.7: Proposed connection between ATPase function (left frame) and
conformational dynamics of Hsp90 (right frame). In addition to the ATP inde-
pendent conformational changes (right, black straight arrows), the ATP lid could
mediate the observed ATP-dependent effect (green dashed arrows). Lid-open and
lid-closed subpopulations (green discs) of the main conformational states (gray cir-
cles) are proposed to be congruent with the corresponding subpopulations (green
squares) of the ATP or ADP states (gray squares) in the ATPase frame. The
gray area denotes closed conformations causing high-FRET signals, in contrast
to open conformations (white area in the right frame). See main text for details.

a new kinetic path for the large opening and closing transitions, i.e. transi-
tions on a distinctive timescale.
There is evidence that the ATP-lid (introduced in Chapter 2) could be in-
volved in such a small rearrangement [122, 140]. Also the cross-protomer
interaction of the β1-strand is thought to be further stabilized by lid closure,
which was found upon ATP - but not ADP - binding [123, 2, 32]. Contrari-
wise, lid opening after ATP hydrolysis (or dissociation), provides again intra-
molecular attachment sites to β1. Thus the cross-protomer ties are loosened
again. Because hydrolysis dependent loosening could occur only from within
a particular closed state, it has the potential to introduce directionality to
the system.

The model shown in Figure 10.7 illustrates this rationale. N-terminal opening
and closing (right) is independent of ATP hydrolysis, and occurs also in the
absence of ATP. Yet, subpopulations of the conformational state 3 (lid open
or closed, green) may be congruent with subpopulations of the ATP or
ADP state (left). Thus it is plausible that ATP binding and/or hydrolysis
have an additive effect on Hsp90’s conformational kinetics, which could
explain the observed ATP-dependent feature; namely a lower energy barrier
between state 3 and state 0, unlocking "a new kinetic path". In summary,
combining literature and new results, a possible scenario for 3-to-0 transition
starts by β1 exchange and lid closure over the bound ATP, followed by ATP
hydrolysis (or dissociation) prompting lid opening and in turn β1 loosening,
which ultimately favors direct opening to state 0. This aspect was further
investigated under ATPase stimulation by the cochaperone Aha1, which is
covered in Section 11.1.
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Since lid closure is not detectable in the discussed smFRET experiment, its
timescale of occurrence is unclear. It could either be rate-limiting for hy-
drolysis [123] and as such coincide with the ATPase rate, or occur more
frequently.
In this connection, the occurrence (particle flux) of the 3-to-0 transition is
worth mentioning: π3 · a30 = 0.1/min. According to the proposed model,
this transition represents the hydrolysis-mediated transition from the closed
conformation with exchanged β1-strands to the ensemble of open conforma-
tions. Remarkably, it matches precisely the timescale of hydrolysis.

Finally, as stated before, the investigation of additional reaction coordinates
(i.e. dye positions) is necessary to validate the proposed concept.
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10.5 SUMMARY 3

Hsp90 undergoes large conformational changes, which span about 40Å at the
measured positions and considerably more at its extremes. Thereby, it occurs
mainly in open conformations, regardless of apo, ADP and ATP conditions.
Only the artificial AMP-PNP keeps Hsp90 mostly in its closed conforma-
tions.
Accordingly, no direct coupling was observed between conformational dynam-
ics and ATP hydrolysis. Yet, in the presence of ATP, a subtle difference was
found in the inferred kinetic state model. Generally, within the investigated
timescales, the conformational dynamics are best described by a kinetic 4-
state model including 2 open and 2 closed states, which were related to
specific structural features.
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11.1 ATPASE ST IMULAT ION BY COCHAPERONE AHA1

In view of the results obtained in the presence of ATP, Hsp90’s hydrolysis
rate was stimulated >10-fold by its cochaperone Aha11 [115]. If we had
missed out on the directionality due to the slow ATPase rate, this should
ultimately allow us to resolve putative energy coupling.

For optimal interaction affinity with Aha1, measurements were performed in
low salt buffer2. For comparison, data without Aha1 was measured accord-
ingly. A systematic discussion of Hsp90’s salt dependence can be found in
Section 12.2.
Notably, significant binding was previously found for Aha1 with labeled Hsp90-
385C at much lower concentration of 0.3µM [91], which is exactly the dis-
sociation constant reported for unlabeled Hsp90 [115]. This implies that,
although not directly detectable in the experiment, Hsp90 exists predomi-
nantly in complex with Aha1 under the used conditions.

Aha1 shifts the steady-state populations towards closed conformations (Fig-
ure 11.1a). Nevertheless, Figure 11.1b shows that the general kinetic behav-
ior is only weakly affected. In agreement with the ATP related results of the
last section, a 4-link model was inferred with ATP + Aha1, too.

Figure 11.1: Effects of Aha1 on the conformational dynamics of Hsp90. (a)
Aha1 slightly stabilizes closed conformations. (b) Hsp90’s conformational state
model under Aha1 stimulation summarizing the transition rates in Figure 11.2.
Arrow weights indicate the size of each rate constant. Circle sizes represent state
populations.

And even highly stimulated hydrolysis does not induce appreciable confor-
mational directionality in Hsp90. Specifically, ΔGcyc=(-0.4±1.2)kT was ob-
tained from the transition rates in Figure 11.2.
The shift in the FRET efficiency histogram is mainly caused by corresponding
changes of the fast rates between states 1 and 2.

1 Yeast Aha1 was a kind gift of Markus Jahn.
2 40mM Hepes, 20mM KCl, 5mM MgCl2, pH 7.5 with 3.5µM Aha1 and 2mM ATP
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Figure 11.2: Hsp90’s transition rates in the presence of Aha1 displayed in linear
(left) and logarithmic scale (right).

11.1.1 Discussion

Despite the relatively drastic stimulation of Hsp90’s ATPase rate by its
cochaperone Aha1 [115], its effect on the conformational dynamics of Hsp90
is rather weak. The interaction with Aha1 caused a 20%-shift towards
Hsp90’s closed conformations, which represents a stabilization of about
0.5kT. This is in line with previous qualitative results [91, 64]. The sta-
bilization is commonly explained by Aha1’s cross-protomer contacts [131].

But how can a 20% shift provoke a >10-fold ATPase stimulation? A probable
explanation thereof suggests that Aha1 increases the collective probability
of multiple, otherwise uncorrelated features. For example Aha1 is believed to
communicate with the ATP-lid supposedly through interactions with the N-
terminal β1-α1-segment [122, 140]. In addition, Aha1 is believed to stabilize
the association of Hsp90’s N-terminal and middle domain, thereby favoring
the hydrolysis competent state of the catalytic loop [107, 131].

And how can all of these coincide with the weak changes on Hsp90’s dy-
namics? In fact, already previous data [91] indicate that Aha1 binds also
to Hsp90’s open conformations, yet with lower affinity. Together with the
modest stabilization of the closed conformations, this shows that Aha1 does
not conserve Hsp90 in a single conformation. In fact, Hsp90’s large confor-
mational changes remain largely unaffected by Aha1 binding

Once more, these results strengthen the notion that Hsp90’s large confor-
mational changes are mainly independent of ATP hydrolysis. Nevertheless,
the presented data supports an indirect connection, e.g. involving the ATP
lid (detailed in Section 10.4).
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11.2 THE EFFECT OF DRUG CAND IDATES

Hsp90 is a central target in anti-cancer therapy. Four classes of inhibitors
are currently investigated: geldanamycin (GDA), radicicol (RDC) and purine
derivatives bind to the N-terminal ATP binding site, whereas the novobiocin
derived class targets Hsp90’s C-terminus. For all of these compounds, the
molecular consequences of inhibition on Hsp90’s function are not currently
known. Therefore, a representative of each class was investigated concerning
its effect on Hsp90’s conformational dynamics, namely GDA, RDC, PU-H711

[72, 135] and KU322 [7] in the above order.

As expected, Hsp90’s ATPase rate was inhibited by the competitive inhibitors
(GDA, RDC, PU-H71), but not by compounds binding to the C-terminus,
such as KU32 (see Section A.6).

All compounds were applied at concentrations 100-fold higher than the re-
ported dissociation constant - or the half maximal inhibitory concentration
(IC50) if the former was not available. The specific concentrations were
100µM GDA [136], 1µM RDC [136], 12µM PU-H71 [59], 10µM KU32[94].
None of the 4 inhibitors had a substantial effect on the equilibrium population
of Hsp90’s conformations (Figure 11.3).
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Figure 11.3: Hsp90’s conformational equilibrium is not significantly affected by
inhibitors.

Conformational kinetics were analyzed by smFRET using 1Hz to 55Hz sam-
pling rate. Representative dwell time distributions are displayed in Figure 11.4.
The differences to the data measured in the presence of ADP is very small.
Slightly faster opening is observed with radicicol and KU32. Timescale de-
pendent shifts were found for opening and closing in the presence of PU-H71,
as well as closing with KU32.

1 PU-H71 was a kind gift of Prof. Leonard M. Neckers.
2 KU32 was a kind gift of Prof. Brian S. J. Blagg.
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Figure 11.4: Dwell time distributions measured at 2 sampling rates: 55Hz blue,
5Hz ALEX, yellow. Corresponding data obtained in the presence of 2mM ADP is
shown in black for comparison.

Because such dwell time distributions are a very coarse way of analyzing
smFRET time traces, 5Hz ALEX data was further analyzed using SMACKS.
As shown in Figure 11.5 a 4-state model with 3 links was found in all cases,
which agrees with the absence of ATP hydrolysis (cf. Chapter 10). Inter-
estingly, N- and C-terminal inhibitors show very similar kinetics. In fact, the
largest difference is observed among the competitive, N-terminal inhibitors,
which differ only by non-convalent interactions with the nucleotide binding
pocket.

Figure 11.5: Conformational kinetics is weakly affected by inhibitors. Transitions
are specified in correspondence with the inset state model (left), where states 0,1
and 2,3 denote low- and high-FRET states, respectively. Small rates are better
perceived in logarithmic scale (right). Error bars represent confidence intervals
determined by SMACKS.
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11.2.1 Discussion

It is commonly believed that conformational changes are limiting for Hsp90’s
activity [137]. Nevertheless, these results indicate that its large conforma-
tional changes are not crucially affected by the inhibitors: neither regarding
the population of open and closed conformations, nor with respect to the
kinetics in the range of 20 milliseconds to minutes.

To date, a molecular explanation for the effects of Hsp90 inhibitors ob-
served in anti-cancer therapy is still largely unknown. Understanding the con-
sequences of competitive inhibition is tightly coupled to the understanding of
Hsp90’s ATPase function in general. This study did not resolve substantial
effects of ATPase inhibition on Hsp90’s large conformational changes, thus
excluding interference with such dynamics as a possible cause. Instead, it
further substantiates the earlier finding that those conformational dynamics
do not rely on ATPase function.

Novobiocin derived inhibitors bind to the C-domain, which represents the
global hinge of the Hsp90 dimer (see Section 11.3). Therefore, effects on the
large conformational dynamics and associated allosteric regulation were ini-
tially expected, but not observed herein. A negative effect of the C-terminal
zipper on the binding affinity of KU32 can not be fully excluded. Nevertheless,
preliminary ensemble results of unzipped Hsp90 did not reveal allostery ei-
ther (Figure A.11). Further discussed mechanisms of Novobiocin derivatives
include interference with client [96] and/or cochaperone (e.g. Sba1/p23,
Cdc37) interaction [99, 166] as well as dimerization [3], which asks for fur-
ther analysis.
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11.3 I NTERFER ING W ITH HSP9 0 ’ S H INGE

Post-translational modifications represent a very direct and reversible way
of regulation. An S-nitrosylation in Hsp90’s C-domain was found to have
an inhibitory effect on both, the ATPase function and the stimulation of
endothelial nitric oxide synthase by human Hsp90α [97].

The specific nitro-site, Cys597, is conserved in human Hsp90α, Hsp90β and
homologues in eukaryotes and bacteria, but not in Grp94, Trap1, yeast Hsp90
or HtpG of Escherichia coli. The corresponding residue in yeast Hsp90 is
577A, which is part of a 3-strand β-sheet (see Figure 11.6). In contrast
to the inhibitory effect of nitrosylation of this residue, the A577I mutation
caused a nearly 4-fold amplification of the ATPase rate [132].

Figure 11.6: The localization of residue 577A (green spheres) in yeast Hsp90
(pdb:2cg9): (a) in view of the full dimer with bound nucleotides (colored sticks);
(b) with respect to the dimerized C-domains; (c) regarding the interface of the
middle (green) and C-domain (gray) with the associated β-sheet in red. (b,c) Lines
in orange (cyan) label the very last (second last) α-helix of the right monomer,
respectively.

This is an interesting example of a wide-range communication from the C-
domain all the way to the N-terminal ATPase site. As such it can provide
valuable, mechanistic insights in Hsp90’s intra-molecular correlations and
dependencies. Earlier ensemble FRET experiments suggest a slow down of
the dimer dissociation rate by the A577I mutation and a larger fraction of
closed conformations compared to wild-type yeast Hsp90 [132].

Yet, post-translational modifications occur rarely symmetrically. They rather
convey asymmetry to homo-dimeric proteins [100]. Therefore, the dynamics
of Hsp90’s N-terminal opening and closing was investigated for 577I/wt
hetero- and 577I homo-dimers in comparison to wild-type (i.e. 577A), based
on the well established FRET construct (cf. Chapter 7).

Figure 11.7 shows indeed a relative stabilization of Hsp90’s closed confor-
mations upon A577I mutation. Interestingly, already the hetero-dimer shows
a considerably larger population of closed conformations, especially in the
presence of ATP. Under ADP conditions the effect is weaker, which is con-
sistent with the transition rates displayed in Figure 11.8.
Nevertheless, under both conditions, the second A577I leads to a further
shift towards closed conformations. This is mainly due to the fast rate from
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Figure 11.7: C-terminal point mutations modulate Hsp90’s conformational
steady-state distributions in the presence of ATP and ADP.

open to closed conformations (state 1 to state 2), which is nearly doubled
for the 577I homo-dimer under both, ATP as well as ADP conditions.
Please note that a smaller kinetic state model with only three links (similar
to the inset in Figure 11.8 bottom) is statistically sufficient to describe the
observed kinetics of the 577I homo-dimer in the presence of ATP, implying
kinetically less heterogeneous fluctuations. Furthermore, very fast transitions
at the temporal resolution limit occurred more frequently. Both findings could
indicate a stiffened structure of the 577I homo-dimer with a smoothened
(less rough) energy surface, leading to relatively streamlined conformational
transitions rather than extensive random walks.

Lastly, both FRET peaks of the 577I homo-dimer (Figure 11.7) seem to
shift slightly towards medium FRET efficiencies, indicating comparatively
less extended open and more extended closed conformations. But these small
shifts remain to be confirmed by confocal smFRET and additional reaction
coordinates.

Figure 11.8: The influence of C-terminal point mutations on Hsp90’s conforma-
tional kinetics in the presence of 2mM ATP (top) or 2mM ADP (bottom). Rep-
resentative cartoons are provided as insets. On the right, the data is presented in
logarithmic scale.
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11.3.1 Discussion

The ATPase rate of hetero-dimers is difficult to dissect in a mixture of both
variants, 577A and 577I, with varied dimer dissociation constants. Therefore,
a direct comparison of conformational with functional effects is not possible
at this time. Specifically, the question whether one A577I mutation is enough
for the observed ATPase amplification remains elusive.

In general, the ATPase amplification is not a priori expected, as it results
from a hydrophobic to hydrophobic point mutation. Also, the little bulkier
isoleucine side chain points outward - at least in the crystalized, closed con-
formation of yeast Hsp90. Thus interference with the mentioned β-sheet is
rather unlikely.
However, the situation might be different in one of the open conformations.
The slight but consistent shift of the corresponding low-FRET peaks in Fig-
ure 11.7 implies that the farthest opening might be sterically hindered by
symmetric A577I mutation. Thus, the observed ATPase amplification could
result from a destabilization of extremely open off-states.
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11.4 SUMMARY 4

The interaction of Hsp90 with the cochaperone Aha1 leads to a relative stabi-
lization (0.5kT) of closed conformations. But despite the strong stimulation
of Hsp90’s ATPase rate by Aha1, the observed conformational dynamics
occur in thermal equilibrium.

Drug candidates targeting either Hsp90’s nucleotide binding pocket (radici-
col, geldanamycin, PU-H71) or C-domain (KU32) had no significant effect
on the large conformational changes of Hsp90. This substantiates once more
the independence of the observed dynamics from ATPase function. However,
the insensitivity of the dynamics towards C-terminal modulation was not ex-
pected.

Contrariwise, an A577I point mutation in the C-domain has a large effect on
both, Hsp90’s conformational dynamics and its ATPase function. The popu-
lation of closed conformations increases additively from wt/wt to A577I/wt
to A577I/A577I dimers in the presence of ADP as well as ATP.
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12.1 MACROMOLECULAR CROWD ING & V I SCOS ITY

The inside of a cell is crowded with macromolecules, such as proteins, nucleic
acids and sugars as visualized in Figure 12.1. Depending on the cell and the
cell state, macromolecules populate 5-40% of the intra-cellular volume with
concentrations of up to 400mg/ml [45].

All cells contain lots of big molecules,
especially proteins, nucleic acids and
complex sugars. The very high total

concentration of these molecules, or
‘macromolecular crowding’, has energetic
consequences that could affect many
aspects of cellular function. Yet most bio-
chemical studies of macromolecular prop-
erties are carried out in dilute solutions in
which crowding effects do not occur,
despite the availability of polymeric com-
pounds whose addition to such solutions
mimics the phenomenon. The first inter-
national meeting* devoted to the biological
implications of macromolecular crowding
brought together 60 theoreticians and
experimentalists; their interaction revealed
both the diversity and the magnitude of
crowding effects on cellular processes.

The high total concentration of macro-
molecules inside cells (up to 400 grams per
litre) means that between 5% and 40% of the
total volume is physically occupied by these
molecules. An even larger fraction of the
total volume is unavailable to other mole-
cules of comparable size. For example, in a
solution containing 30% by volume of iden-
tical globular molecules, less than 1% of the
remaining volume is available to an addi-
tional molecule of equal size — that is, less
than 1% can accommodate such a molecule
without displacing one of the molecules
already present. The work required to place
the additional molecule in this solution is
correspondingly much higher than that
required to place it in a dilute solution.

However, the effect of volume occupancy
on available volume is sensitive to the relative
sizes and shapes of the occupying molecules.
Any reactions that increase the available vol-
ume are theoretically stimulated by crowded
conditions. These processes include the
binding of macromolecules to one another,
the folding of protein and nucleic-acid
chains into more compact shapes, and the
formation of aggregates, such as the amyloid
deposits seen in some neurodegenerative
diseases. Another effect of crowding should
be to reduce the rate of diffusion by factors
up to 10 — depending on the size of the dif-
fusing particle and the degree of occupancy
of the medium — compared with the rate 
in uncrowded buffers. Thus a biochemical
reaction might be influenced by crowding 

if its rate is limited by diffusion or by the 
stability of macromolecular complexes. The 
magnitude of these various effects can be
estimated by using equations developed  to
describe model fluids containing hard 
particles or randomly coiled polymers 
(A. Minton; J. Herzfeld, Brandeis Univ.,
Waltham, Massachusetts; R. de Vries,
Wageningen Univ.).

How does reality conform to these theo-
retical expectations? Direct evidence for the
crowded state of cell interiors is provided by
the technique of cryoelectron tomography,
in which thin intact cells are frozen rapidly
in liquid ethane.The frozen cells are studied
in an electron microscope that takes many
pictures over a range of tilt angles; a com-
puter program then reconstructs three-
dimensional images with a resolution of
5–6 nanometres. The high density of actin
filaments (part of the cellular ‘skeleton’)
and ribosomes (protein-making machines)
seen in reconstructed images of the slime
mould Dictyostelium supports the view that
the cytoplasm is filled with large ensembles
of macromolecules, which form functional
complexes, rather than with freely diffusing

news and views
and colliding macromolecules (S. Nickell,
Max Planck Institute, Martinsried; Fig.1).
In addition, direct observation of fluor-
escent proteins in animal cells — both 
within the cytoplasm and inside two cellu-
lar compartments, the mitochondrion and
endoplasmic reticulum — shows that their
diffusion rate is reduced by factors in the
range 3–8, broadly consistent with predic-

tions (A. Verkman, Univ. Cali-
fornia,San Francisco).

Higher levels of resolution
for intact cells can be achieved
with the use of nuclear magnetic
resonance techniques to study
the conformation of proteins
expressed at high levels. For
instance, a bacterial protein that
lacks ordered structure in
uncrowded buffers seems to
acquire a degree of persistent
structure when crowding agents
are added to dilute solutions of
the pure protein — and, more
significantly, when expressed in
the bacterium Escherichia coli
(J. Bryant, Univ. North Carolina,
Chapel Hill).

A type of crowding called
confinement refers to situations
in which macromolecules find
themselves inside small com-
partments. Such compartments
include those created by cyto-
skeletal structures or by the 
central cage of the chaperonin
proteins — inside which newly
synthesized proteins can fold,
protected from crowding-
enhanced, non-productive agg-

regation with other folding chains. Theory
predicts that such confinement will stabilize
compact shapes more than extended shapes
and will enhance the rates of reactions lead-
ing to compaction (H.-X. Zhou, Florida
State Univ., Tallahassee). These predictions
agree qualitatively with observations that
encapsulating proteins inside small pores 
in hydrated silica glasses enhances their
stability when heated (D. Eggers, San José
State Univ.; J.-M. Yuan, Drexel Univ.,
Philadelphia).

Another observation is that the efficiency
of the bacterial chaperonins GroEL and
GroES — which work together to help 
certain proteins fold — is enhanced by
crowding agents. This might be due to an
enhancement of the association between
GroEL and GroES;the latter caps the internal
cavity of GroEL and prevents the escape of
an encapsulated polypeptide (J. Martin,
Max Planck Institute, Tübingen). And it
might be because crowding reduces the
probability that an encapsulated polypep-
tide can diffuse away from an uncapped
GroEL before folding completely (A. Elcock,
Univ.Iowa,Iowa City).

Cell biology

Join the crowd
R. John Ellis and Allen P. Minton

Cells are packed with large molecules. The ramifications of this
‘crowding’ for a wide range of intracellular processes are only now
becoming more generally understood.

Figure 1 Crowded interior. This three-dimensional
reconstruction shows part of the cytoplasm of an intact
motile Dictyostelium discoideum cell. The orange linear
complexes are actin filaments;ribosomes and other
macromolecular complexes are in grey;membranes are 
in blue. Reprinted with permission from ref. 3.
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Figure 12.1: The crowded environment in a cell visualized by a rendered and
colorized cryo-EM tomography [103, 45]: actin filaments, orange; ribosomes and
other macromolecular complexes, gray; membranes, blue.

This has far reaching effects on the function of proteins, even if they do not
chemically interact with these species. Features affected by macro-molecular
crowding include, amongst others, protein folding and conformational stabil-
ity, enzymatic activity, protein-protein interactions, small molecule interac-
tion, aggregation and amyloid formation. In fact, as stated recently [85],
it is hard to find a single property of proteins that is not affected by high
concentrations of macro-molecules.

Many of these diverse symptoms can be explained by the excluded volume
effect. It arises because in the crowded milieu, space - and the number of
ways to populate it - are limited. This leads to an entropy driven increase
of the chemical potential of a given solute molecule. As such, the effect
is strongly size dependent because the larger the molecule, the larger is the
inaccessible, i.e. excluded, volume as illustrated in Figure 12.2. Consequently
compact structures and also protein association are favored by the excluded
volume effect. Besides, changes in solvent properties (e.g. viscosity, osmotic
pressure), perturbed diffusion and so-called soft interaction between target
protein and crowder play important roles, too.

Although the plain macro-molecular crowding aspect of the cellular environ-
ment is mimicked quite simply using well-known crowding agents, most in
vitro studies disregard this aspect completely.
Herein, I investigated the effect of macromolecular crowding on Hsp90’s
conformational dynamics. In addition, the experiments aimed to dissect the
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influence caused by the excluded-volume effect, on the one hand, and in-
creased viscosity, on the other hand.

Figure 12.2: Cartoon illustrating the excluded volume effect [44]. The same
crowded situation, provides much more accessible volume (yellow) for a small
particle (left) as compared to a larger one (right).

12.1.1 Experimental Setup

To this end, experiments were performed in the presence of increasing con-
centrations of monomeric sucrose or branched, polymeric sucrose, known
as Ficoll 400 (Sigma Aldrich) displayed in Figure 12.3a,b. The latter is a
common macromolecular crowding agent [23, 44, 84]. Although both sub-
stances are constitutionally very similar, a factor of 1000 separates the two
in molecular weight (342g/mol or 400±100kg/mol, respectively). Their hy-
drodynamic radii were specified with 5Å for sucrose [98] and 80Å for Ficoll
400 [23]. Correspondingly, their solutions cause very different viscosities, e.g.
at 20wt% µrel(sucrose)≈ 2 [147], µrel(Ficoll 400)≈ 20 1. On the other hand,
the densities of the same weight percent solutions are very similar.
The situation of Hsp90 in the presence of the small viscogen sucrose or

a b

c d

Figure 12.3: Setup of crowding experiments. Structural formula of sucrose (a)
and Ficoll 400 (b). Cartoon of open and closed Hsp90 in the presence of sucrose
(c) or Ficoll 400 (d).

1 Amersham Biosciences, Data File: Cell Separation, 18-1158-27 AA, 11/2001, p2
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the macromolecular crowder Ficoll 400 is illustrated in Figure 12.3c,d. The
impact of both substances on Hsp90 is compared below under the same
nanoscopic conditions, i.e. equally densely crowded environments, rather
than equal viscosities.

12.1.2 Size Dependent Stabilization of Closed Conformations

Figure 12.4 shows a substantial, concentration-dependent stabilization of
Hsp90’s closed conformations in the presence of the macromolecular crowder
Ficoll 400. In contrast, the small viscogen sucrose leads to further population
of open conformations. The change in the free energy difference between
open and closed conformations amounts to less than 1kT in both cases.
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Figure 12.4: The effect of viscosity and macromolecular crowding on Hsp90’s
conformational equilibrium. Concentrations are specified in weight percent.

12.1.3 Viscosity Slows Down Fast Fluctuations

Changes of the conformational dynamics are visible already from the station-
ary distributions: as shown in Figure 12.5, the low and high FRET populations
get more and more separated at increasing sucrose concentrations. This is
indicative of fast fluctuations, at or below the timescale of the sampling rate,
that are slowed down at higher viscosity. A similar effect could be the reason
for the slight right-shift of the high-FRET peak observed with Ficoll 400 in
Figure 12.4.

Figure 12.5: Viscosity suppresses fast dynamics (6100ms), which causes less
overlapping populations in the 2D histogram (zero counts, white; maximal counts,
dark blue).
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Still, transitions between open and closed conformations are regularly ob-
served in the experiment. In fact, the slower, fully resolved kinetics are only
weakly affected by viscosity or macromolecular crowding (see Figure 12.6).
The main difference is found for the rates between both long-lived closed
states, in agreement with the corresponding stabilization observed with Ficoll
400.

Figure 12.6: The resolved kinetics of Hsp90 are only weakly affected by viscosity
and crowding. (a) Kinetic state models: closed states, gray; open states, white;
population represented by circle size; transition rate represented by arrow width.
(b) Transition rates with confidence intervals in logarithmic scale.

12.1.4 The Crowding Effect on Hsp90’s Activity

Hsp90’s inherently slow ATPase rate was measured under increased viscos-
ity and macromolecular crowding (see Figure 12.7). Along with the larger
population of closed conformations, The ATPase rate increases more than
4-fold in the presence of 15% Ficoll 400. Whereas - consistently with the
unchanged conformational populations - at similar weight fractions of the
viscogen sucrose, the ATPase function remains unaffected.
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Figure 12.7: The effect of sucrose and Ficoll 400 on Hsp90’s ATPase activity.
The reference hydrolysis rate of Hsp90 was 0.37 ATP/min/monomer.
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12.1.5 Discussion

Sucrose and branched sucrose, alias Ficoll 400, share very similar proper-
ties, such as polarity and density. Their major difference is the hydrodynamic
radius. This makes them a perfect test system to investigate crowder-size
dependent effects. Naturally, in the cell, macromolecular crowding involves
a broad distribution of sizes from a few kilodaltons up to megadalton com-
plexes and large cytoskeletal filaments.

Figure 12.8 illustrates the crowder view on open and closed conformations
of Hsp90. In a sucrose solution, the excluded volumes of both conforma-
tions are almost equal to their Van der Waals volumes. Thus, according
to the excluded volume effect, the difference between their chemical poten-
tials is unchanged. In contrast, the volume, excluded to the large Ficoll 400
molecules, differs much more in the open and closed state. Accordingly, a
concentration dependent stabilization of closed conformations is expected
in a crowded environment.

Figure 12.8: A closed (top, pdb: 2cg9 [2]) and an open (bottom, [61]) confor-
mation of Hsp90 as viewed by differently sized crowder molecules (Rhyd, hydro-
dynamic radius). Excluded volumes (gray) were calculated for sucrose and Ficoll
400 using the 3V tool [157]. Van der Waals volumes are shown in colors.

Consistently, macromolecular crowding (by Ficoll 400) at typical intra-cellular
concentrations led to a stabilization of closed conformations, while equal den-
sities of sucrose did not. On the other hand, the additional stabilization of
open conformations by 30wt% sucrose is rather caused by Brownian bom-
bardment from the inside and interference with cross-protomer contacts.
Furthermore, the viscous environment dampened fast fluctuations on the
sub-100ms timescale, whereas slower transitions were only weakly affected.
In this regard, it would be interesting to know which density is required to
completely suppress those transitions.
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Cause or coincidence? This is the question concerning the observed ATPase
rate amplification by macromolecular crowding. It is well known that a closed
conformation represents the enzymatically active state of Hsp90. But is a
purely physical stabilization of any closed conformation enough to amplify
Hsp90’s notoriously slow ATPase rate?

In fact, causative chemical interactions with the crowder are very unlikely,
because the effect was not observed under equal densities of sucrose. More-
over, similar findings were recently reported using variably sized PEG, too
[58]. Therefore, it appears indeed that a very nonspecific destabilization of
the open state is enough to promote the hydrolysis competent state. This is
in line with the current notion that conformational changes - and not the hy-
drolysis itself, nor nucleotide release - are limiting for Hsp90’s slow ATPase
rate [134]. Nevertheless, such an nonspecific stimulation was not expected
for Hsp90.

Obviously, this has far reaching consequences for the interpretation of in vitro
results with respect to the situation in vivo. Specifically, it could explain some
of the discrepancies between the effectivity of Hsp90 inhibitors in vivo and
their affinity measured in vitro [25]. Finally, it demonstrates that Hsp90’s
function is very susceptible to nonspecific manipulation, which supports the
notion that merely the cochaperones convey specificity to Hsp90’s function
in vivo [149, 137, 77].
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12.2 DEPENDENCE ON MONOVALENT CAT IONS

Intramolecular interactions of proteins depend strongly on the ionic strength
of their environment. Consequently, a systematic salt screen can provide valu-
able information on critical interactions and their driving force. To this end,
Hsp90’s conformational dynamics were analyzed under varied monovalent
cation concentrations, including potassium1 and sodium2.

The fraction of Hsp90 in closed conformations was further decreased by
increasing salt concentrations (Figure 12.9a). The effect was abolished by
ADP binding (Figure 12.9b). Interestingly, the trend towards prevalence of
open conformations was less pronounced for equal sodium concentrations
(Figure 12.9c).

Figure 12.9: Cation dependence of Hsp90’s conformations: varied potassium chlo-
ride concentrations (a) including ADP (b) or varied sodium chloride concentra-
tions (c) as specified.

The associated transition rates between open and closed conformations were
deduced by SMACKS. Figure 12.10a shows that in addition to the observed
population shift, also the rates grow gradually with increasing potassium
concentrations. Conversely, no significant change is observed under equal
sodium concentrations (Figure 12.10b).
Although all shifts are small, they occurred consistently upon buffer change.
For example the data at 150mM KCl was measured after that at 750mM
KCl. Nevertheless, it agrees well with an earlier data set at corresponding
conditions ("prev. 150" in Figure 12.10a).
In summary, the energy barriers between Hsp90’s conformations shrink grad-
ually under increasing KCl concentrations. Consistently, the total number of
transitions grows for increasing potassium - but not sodium - concentrations
(cf. Figure 12.10d).

Interestingly, Hsp90’s ATPase activity grows ≈ 3-fold with increasing potas-
sium or sodium concentrations between 50mM and 1M (Figure 12.11). No-
tably, this salt-dependence was consistently found for 3 individual Hsp90
constructs. So, for the first time herein, the accelerated ATPase function
does not correlate with prevalence of closed conformations.

1 40mM HEPES potassium salt, 10mM MgCl2, KCl as specified, pH 7.5 by HCl
2 40mM HEPES (anhydrous), 10mM MgCl2, NaCl as specified, pH 7.5 by NaOH
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Figure 12.10: Dissimilar cation dependence of Hsp90’s kinetics under varied potas-
sium (a) or sodium (b) concentrations. The rates are labeled according to the
state model in (c). State 0,1: low FRET; state 2,3: high FRET. (d) The average
number of transitions observed per trace for all data sets.

Figure 12.11: Hsp90’s ATPase activity under varied cation conditions: (a) KCl,
(b) NaCl as specified. All buffers contained 10mM MgCl2. Measurements were
performed with 3 different Hsp90 variants: wild-type (wt), 61C with C-terminal
zipper (zip) and 385C with C-terminal zipper. Individual rates were normalized to
the value obtained using 150mM mono-valent cation. I.e. for KCl: 0.8 / 0.8 / 0.7
ATP/min/monomer; for NaCl: 1.2 / 0.7 / 0.4 ATP/min/monomer (in the above
order). The measurement protocol is found in Section B.2.

12.2.1 Discussion

The equilibrium shift towards open conformations under high salt conditions
could be caused by screening of polar cross-protomer interactions. In addi-
tion, stabilized, hydrophobic intra-protomer interactions could also explain
the destabilization of closed conformations.
Interestingly, the more pronounced effect observed for potassium as com-
pared to sodium ions matches the Hofmeister trend, i.e. stronger hydropho-
bic interaction under the larger - kosmotropic - cation [43].

102



12.2 Dependence on Monovalent Cations

In this context, it is not surprising that Hsp90’s ATPase activity is affected
by monovalent cations. The observed effect on the ATP hydrolysis rate is
in line with earlier results for potassium chloride [134]. But corresponding
information on sodium chloride was not previously available.
In particular, it was unclear whether sodium would cause a similar effect, as
differing results were reported concerning other GHKL ATPases: maximal
ATPase activity was previously found in the presence of sodium for MutL
[69], whereas for DNA gyrase, higher activity was found in the presence of
potassium [60].
Further differing effects were found regarding Hsp90-client interactions. A
concentration dependent increase of the Hsp90-glucocorticoid receptor as-
sociation was observed in the presence of potassium ions - but not sodium
ions [71].
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12.3 SUMMARY 5

Hsp90’s closed conformations are stabilized by macromolecular crowding,
but not by small-molecular viscogens. Interestingly, this nonspecific effect is
accompanied by an increase in ATPase activity. This is similar to previously
discussed results (cf. Section 11.1, Section 11.3), thus assigning an off-state
character to the open conformations.

These open conformations were further stabilized by increasing salt concen-
trations. In agreement with the Hofmeister series, a more pronounced effect
was observed for potassium as compared to sodium. Besides, potassium
caused generally faster dynamics in the range of 200ms to many seconds,
indicating overall lowered energy barriers. As the only recognized exception
to the off-state statement above, here, the ATPase activity does not corre-
late with prevalence of closed conformations. Actually, the hydrolysis rate is
accelerated by increasing concentrations of both cations.
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Interestingly, Hsp90’s N-terminal conformational dynamics occur on a broad
range of timescales. Dwells from 20ms to 100s were observed by TIRF. Fig-
ure 13.1 shows the dwell time distributions measured using varied sampling
rates.

To test for a comprehensive kinetic behavior, the distributions were fit glob-
ally. The low-FRET distributions (describing N-terminal closing) were only
badly fit by bi-exponential functions (with global time constants 0.2s and
5.2s), with no further improvement using tri-exponentials. A similar fit is
achieved using a power law (power = -0.24) with only half of the fit coeffi-
cients. For the high-FRET distributions (describing N-terminal opening), a
comparatively better fit is found using a tri-exponential function (time con-
stants: 1.4s, 0.4s and 27.0s), whereas the power law fits less well (power

Figure 13.1: Dwell time distributions of Hsp90’s large opening and closing tran-
sitions in the presence of 2mM ATP, measured at 4 sampling rates: 55Hz, 20Hz,
5Hz, 1Hz in blue, green, yellow, red. The slower 2 measurements were performed
in ALEX-mode. The faster 2 were only experimentally feasible under continuous
green excitation. Notably, distributions at individual sampling rates are intercon-
vertible by post-hoc data down-sampling (see Section A.7). The full range of
the data is better visible in logarithmic scale (right). Global fits are displayed as
indicated. The number of parameters are specified as: (linked/total).
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-0.17). Qualitatively, all distributions are well fit by individual bi-exponential,
but not single-exponential functions.

A central assumption in this work was that Hsp90’s kinetics can be described
by individual states and transitions between discrete, well defined energy min-
ima. Yet, this may be an over-simplified assumption regarding protein kinet-
ics [125, 36]. Instead, power laws have been previously applied to describe
diffusive processes on a rough energy landscape [164, 158].

On the other hand, it was extensively discussed herein that the inherently
narrow detection bandwidth of the smFRET experiment has a large, artifi-
cial impact on plain dwell-time distributions. In fact, an earlier probabilistic
weighting ansatz to merge dwell-time distributions obtained with different
sampling rates [129] was tested by simulations and found valid for particular
parameter sets (sampling, transition and bleach rates), only. Nevertheless,
experiments at varied sampling rates clearly provide additional information
on the studied system. Therefore, the ultimate goal is to combine the in-
formation of experiments covering a wide range of timescales ex post, in
one comprehensive time trace analysis. But the implementation of such a
comprehensive analysis is less clear. Parameter optimization in continuous
time seems to be necessary but not sufficient for that task.

In the future, alternative experimental approaches may provide a wider detec-
tion bandwidth than TIRF in the first place. Especially, techniques that are
independent of photo-bleaching, have the potential to overcome this barrier.
Electronic detection could become an alternative, e.g. using single molecule
field effect transistor (smFET) devices [144, 27, 28, 18]. Currently, however,
the plus in detection bandwidth comes still at the cost of reduced specificity.
Also the sensitivity due to the r−6-dependence of FRET is hard to beat.
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smFRET was used herein to reveal conformational changes in real time.
Thereby, different conformations are characterized by individual distances
between selected (dye) positions in the protein.

The precision and accuracy of FRET efficiency derived distances was as-
sessed in a world-wide blind-study. Specifically, a distance uncertainty of 3Å
- i.e. below 1 basepair - was found for a dsDNA sample and distances near
the Förster radius.

Further critical evaluation of the potentials and limits of smFRET and related
analysis procedures, led to the development of the single molecule analysis
for complex kinetic sequences (SMACKS). It exploits the unique capability
of single molecule time traces to track the time evolution of an individual
molecule through distinct, conformational states. This allows to quantify en-
ergetic aspects that are not accessible by ensemble studies.
SMACKS is a maximum-likelihood approach that infers one kinetic state
model - including all relevant transition rates - based on a large set of time
traces. Thereby, it eliminates previous dwell-time related artifacts, in par-
ticular the systematic and non-linear overestimation of transition rates. Ef-
fectively, this represents a post-hoc enlargement of the inherently narrow
detection bandwidth of smFRET, which is caused by photo-bleaching. In
addition, SMACKS reveals kinetic heterogeneity, and it includes multiple
ways of model evaluation. SMACKS was demonstrated using the example of
Hsp90 and its complex conformational dynamics.

Hsp90’s N-terminal opening and closing transitions were found to occur
throughout the accessible range of timescales from milliseconds to minutes.
Importantly, they are largely independent of a chemical energy source, such
as ATP. In fact, regardless of the presence or absence of ATP, the observed
kinetics are best described by a 4-state model with 2 distinct open and 2
distinct closed states. Even under ATPase stimulation by the cochaperone
Aha1, the kinetics remain in thermal equilibrium. Moreover, neither compet-
itive ATPase inhibitors (radicicol, geldanamycin, PU-H71), nor an allosteric,
C-terminal drug candidate (KU32) had a drastic effect on these conforma-
tional dynamics or their steady-state.

Apart from AMP-PNP, which inverts Hsp90’s steady-state from mainly open
to mainly closed conformations, two more conditions had notable impact on
Hsp90’s conformational kinetics. Interestingly, one is very site specific - the
point mutation of residue 577 - whereas the other one is entirely non-specific
- macromolecular crowding. The former suggests C-terminal stiffening with
far-reaching effects up to the N-domains. The latter indicates that caution
is advised when relating in vitro findings to in vivo function.
In many cases (e.g. Aha1 stimulation, 577I mutation, macromolecular crowd-
ing), increased ATPase activity correlates with an increased population of
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closed conformations. Yet, the differing salt dependence of both - ATPase
activity and closed population - proofs that this is not a general rule. Hsp90
showed increasing ATPase activity under increasing salt concentrations (NaCl,
KCl), accompanied by a trend towards more open conformations.

So concerning Hsp90, the emerging picture is that of a very flexible dimer
that relies critically on external assistance.
For example, Hsp90’s ATPase function requires the concerted action of the
N-terminal nucleotide binding pocket with distant elements, such as the cat-
alytic loop of the middle domain and even parts of the opposite N-domain.
These elements, however, are very flexible, such as the entire dimer. Conse-
quently, anything that constrains this flexibility and confines Hsp90 in a more
compact conformation, has the potential to increase the coupled probability
for such a concerted action - be it by specific or non-specific interaction.
This notion can be further extended to cochaperone binding and it also
implies mutual effects upon client interaction. Therefore, it seems that al-
though Hsp90’s flexibility may facilitate its diverse interactions, the flexibility
itself has a substantial off-state character regarding ATP hydrolysis.

In conclusion, this work presents multifarious examples of the dynamic struc-
ture - function relationship in Hsp90, providing valuable clues to the molec-
ular working principle of this chaperone in particular, and in a broader sense,
to proteins in general.
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SUPPORT ING INFORMAT ION

A.1 DER IVAT ION OF FUNDAMENTAL L IM ITS

In realistic TIRF experiments, the following assumptions apply:

• no fluorophore saturation (cf. Section A.2)
• stochastically independent sources of noise
• negligible laser-independent noise

A.1.1 Time Resolution

The hardware limit for maximal time resolution depends on the utilized detector.
For EMCCD cameras - currently the most frequent detector for smFluo time
traces - the maximal frame rate is less than 60 Hz. Higher sampling rates are
achieved by cropped chip exposure or using alternative detectors, such as s-CMOS
cameras or even APDs.
On the other - long - end of the time window, an extended observation time
is desirable for kinetic analysis. This limits the applicable laser powers in the
experiments to levels below fluorophore saturation. Consequently, the intensities
of excitation and fluorescence scale linearly, and so does the time constant of
photo-bleaching (see below).

Thus, within the experimentally relevant regime, the following statements in units
of time ∆t remain general - independent of the actual sampling rate.

A.1.2 Observation Time

A typical organic fluorophor emits a few million photons before irreversible photo-
bleaching [130, 167]. Because these dyes have a high fluorescence quantum yield,
also the mean of the exponentially distributed total number of excitation/de-
excitation cycles N̂totcycles ≈ 106.
In the absence of fluorophore saturation, the time constant of bleaching in units
of time ∆t is given by:

τbl =
N̂totcycles

ncycles
=
N̂totcycles

εex ·nexph
(A.1)

where ncycles is the number of excitation cycles per ∆t, which is determined by
the excitation quantum yield εex and the number of excitation photons per ∆t,
nexph. The latter is linked to PLaser, the incident laser power at the sample, and
the photon energy hν by:

nexph = PLaser ·
∆t

hν
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A.1.3 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is defined as the mean number of signal photons
n
sig
ph per standard deviation of the noise σnoiseph :

SNR =
n
sig
ph

σnoiseph

(A.2)

In TIRF experiments, the number of signal photons per ∆t is defined as the
difference between detected photons ndetph and background photons nbgph. It is
further determined by nexph, εex, the fluorescence quantum yield ηfl and the
detection sensitivity δsens. Below, the later constants are summarized in Csig.

n
sig
ph = ndetph −nbgph = nexph · εex · ηfl · δsens = nexph ·Csig

The dominating noise sources are classified into laser-dependent noise including
auto-fluorescence, Raman scattering and shot-noise, on the one hand, and on
the other hand, laser-independent noise, such as detection noise originating from
read-out, dark-current and the analog-to-digital converter (ADC), or additional
noise (e.g. from dust). The total noise level of these stochastically independent
noise sources is given by the root sum of the respective variances (in the above
order):

σnoiseph =
√
nexph · cautofl +nexph · cscat +nexph + ρdet +β

Furthermore, it is known from TIRF experiments that laser-dependent noise is by
far dominating leading to the approximation:

σnoiseph ≈
√
nexph · cautofl +nexph · cscat +nexph ≈

√
nexph ·Cnoise

And Equation (A.2) becomes:

SNR =
√
nexph ·

Csig

Cnoise
(A.3)

A.1.4 Consequences

Finally, combining Equations (A.1) & (A.3) results in:

τbl =
N̂totcycles

εex · SNR2
·
(
Csig

Cnoise

)2
=

const
SNR2

It is worth noting, that by eliminating nexph, we also got rid of ∆t and PLaser. Con-
sequently, the relation between τbl and SNR depends exclusively on fluorophor-
specific constants (N̂totcycles, εex, ηfl) and setup-specific constants (δsens, Cnoise).

Similar findings were published by Greenfield et al. [57], who performed systematic
simulations where the accuracy of the resolved rates depended primarily on the
number of transitions per trace, which is a function of τbl. In contrast to the
present derivation, that work considers the product of SNR · τbl to be constant,
which would convert to a questionable SNR ∝ nexph (instead of SNR ∝

√
nexph).
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A.2 T I RF SETUP CHARACTER I ZAT ION

Figure A.1: SNR of individual dsDNA-coupled dyes under 3 distinct excitation
powers. DD: Atto550 excited at 532nm (left); AA: Atto647N excited at 635nm
(right). Signal in mean photons per frame detected by the EMCCD.

Figure A.2: Distribution of the fluorescence of individual molecules under 3 dis-
tinct excitation powers. Coefficients of the Gaussian fits are stated below.

Figure A.3: Calibration curves of the laser power as a function of the angular
orientation of the half-wave plate.
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A.3 THE EFFECT OF NO I SE AND B IAS ON FRET EFF I C I EN -
C I E S

Figure A.4: The effect of fluorescence signals (donor green, acceptor orange)
with correlated (a) or uncorrelated (b) fluorescence noise on FRET efficiency and
distance distributions. Distributions for E= 0.1, 0.5, 0.9 are shown in correspond-
ing line styles. Similar to experiments, the average total fluorescence signal was
104 a.u. and R0 = 64Å. Gaussian noise was applied to fluorescence signals with
σnoise = 103.
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Figure A.5: Distance vs. FRET E averaging under correlated or uncorrelated
noise, as indicated. Values represent Gauss positions from fits to FRET E or
distance distributions. Distributions as in Figure A.4.
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A.3 The Effect of Noise and Bias on FRET Efficiencies

Figure A.6: The effect of biased fluorescence signals on three different FRET
efficiencies (unbiased E= 0.1, 0.52, 0.88). Simulated positive or negative bias of
the donor (or acceptor) signal after donor excitation, DD (or DA), is specified in
percent of the total intensity, DD+DA. DD over-estimation may be caused by
γ over-estimation. It generates the behavior observed in Section 8.2.5: growing
under-estimation with increasing FRET efficiencies.
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A.4 SUPPORT ING DATA ON SMACKS

Figure A.7: In the context of SMACKS, BIC detects the correct size of the input
model from synthetic smFRET time traces: (left) 2 states, 0: low FRET; 1: high
FRET. (right) 4 states with degenerate FRET efficiencies for states 0,1: low
FRET; 2,3: high FRET. Color code: 2,3,4,5,6 states in black, blue, green, pink,
cyan, respectively. Input and output values are specified in Table A.1.

Table A.1: Comparison of simulation input and SMACKS output of the transition
probabilities corresponding to Figure A.7. Left, 2 state model; right, 4 state
model.

transition input output

01 8.30E-03 8.18E-03

10 2.90E-02 2.88E-02

transition input output

10 2.90E-02 3.33E-02

30 3.50E-03 3.64E-03

01 3.20E-03 2.92E-03

21 1.39E-01 1.22E-01

12 8.30E-02 1.00E-01

32 1.00E-02 1.18E-02

03 7.00E-04 9.62E-04

23 1.20E-02 1.16E-02
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Figure A.8: Correct minimal state models inferred by SMACKS applied to syn-
thetic smFRET time traces. The input models termed cyc and cyc2 are depicted
as insets. The 4 states come with degenerate FRET efficiencies: states 0,1: low
FRET; states 2,3: high FRET. The corresponding minimal model generates equal
likelihood as the complete 4-state model with 12 links (full). Input and output
values are specified in Table A.2.

Table A.2: Comparison of simulation input and SMACKS output of the transition
probabilities corresponding to Figure A.8. Left, cyc model; right, cyc2 model.

transition input output

10 1.00E-01 8.33E-02

30 1.00E-06 3.15E-03

01 2.50E-05 1.70E-35

21 2.00E-01 1.83E-01

12 1.00E-01 1.04E-01

32 8.00E-02 7.58E-02

03 5.00E-02 4.67E-02

23 3.00E-06 4.11E-10

transition input output

20 1.00E-01 1.02E-01

30 1.00E-06 1.06E-25

21 1.00E-01 1.03E-01

31 8.00E-02 7.96E-02

02 2.50E-05 1.23E-12

12 2.00E-01 2.08E-01

03 5.00E-02 4.98E-02

13 3.00E-06 5.33E-12

117



A SUPPORT ING INFORMAT ION

A.5 CONTROL OF HSP9 0 ’ S DYNAM ICS US ING ALTERNATE
DYE POS IT IONS

The general nucleotide-specific effects were reproduced using varied dye positions.
Specifically, donor and acceptor dyes were both attached to cysteins at position
452 of opposing monomers1. The peak positions are of course shifted with re-
spect to those obtained with the dyes attached to positions 61 and 385. In par-
ticular, the peaks are less well separated along the new reaction coordinate. Also,
a slightly larger high-FRET population is observed in the presence of ATP com-
pared to ADP or apo. But consistent with the previous results, Hsp90 populates
predominantly the open conformation. Except in the presence of 5’-adenylyl-β-γ-
imidodiphosphate (AMP-PNP), where mainly the closed conformation is popu-
lated.

Figure A.9: Similar nucleotide dependence of the conformational population dis-
tribution is observed with varied dye positions: 452C, 452C.

1 The Hsp90-452C mutant was a kind gift of Philipp Wortmann.
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A.6 HSP9 0 I NH IB ITORS
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Figure A.10: Inhibition of Hsp90’s ATPase activity by 4 compounds representing
the main classes of current Hsp90 related anti-cancer drug candidates. See Sec-
tion B.2 for the ATPase assay protocol. 2µM Hsp90-61C (without zipper, reduced
by 1mM TCEP) was used for reference (apo). The small background activity ob-
served in the presence of 5µM radicicol (RDC) was subtracted from all values.
All inhibitors were applied without previous incubation. 80µM PU-H71 and 70µM
geldanamycin (GDA) were used. Measurement of the latter is impaired by the
individual absorbtion of this yellow compound at 340nm. The c-terminal inhibitor
KU32 did not show inhibition at 12.5µM.
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Figure A.11: Ensemble FRET experiment using Hsp90-61C-Atto550 and Hsp90-
385C-Atto647N (both without c-terminal zipper). (a) Hetero-dimers form upon
mixing, leading to an increase in acceptor intensity. (b) Inhibitor was added as
indicated. (c) 2mM AMP-PNP further stabilizes Hsp90’s closed conformation
in the presence of the C-terminal inhibitors (KU32 and KU412), whereas low
concentrations of competitive inhibitors (radicicol, geldanamycin) interfere with
AMP-PNP binding. Interestingly, PU-H71 was outcompeted by 300-fold excess
of AMP-PNP.
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A.7 SELF -CONS I STENCY OF DYNAM ICS AT VAR IOUS T IMESCALES

To test if the measured distributions are consistent with each other - especially
regarding ALEX and non-ALEX experiments in Chapter 13 - the raw data was
re-evaluated after post-hoc down-sampling from 20Hz to 5Hz. See Figure A.12.

Figure A.12: Post-hoc downsampling of smFRET time traces demonstrates the
self-consistency of the dwell-time distributions obtained at different sampling
rates: 20Hz, green; 5Hz ALEX, yellow; down sampled from 20 to 5Hz, black.
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B
MATER IALS & METHODS

If not stated differently, all chemicals were purchased from Sigma Aldrich.

B.1 B IOCHEM ICAL PREPARAT ION

B.1.1 Molecular Biology

The Hsp90 construct used herein was introduced in Chapter 7. The specific se-
quence is found in Figure B.1. Previously published cysteine positions [64] allowed
for specific labeling with donor (61C) or acceptor (385C) fluorophores (see below).
Both constructs were cloned into a pET28b vector (Novagen, Merck Biosciences).
They include an N-terminal His-tag followed by a SUMO-domain for later cleav-
age. The QuickChange Lightning kit (Agilent) was used to insert an Avitag for
specific in vivo biotinylation at the C-terminus of the acceptor construct. E.coli
BL21star cells (Invitrogen) were transformed with pET28b by electroporation (Pe-
qlab). For in vivo-biotinylation, the cells were further transformed with pBirAcm
(Avidity) in a second electroporation step.

B.1.2 Hsp90 Expression, in vivo Biotinylation & Purification

The donor construct was expressed in E.coli BL21(DE3)cod+ (Stratagene) for
3h at 37°C after induction with 1mM IPTG at OD600=0.7 in LBKana.
For in vivo biotinylation, 2l expression media (2l TB medium, 2ml 20mg/ml
kanamycin only, 40 ml of filter-sterilized 20% glucose solution, (0.5% final conc.))
were inoculated with 50ml overnight culture (50 ml LB medium, 50 µl kanamycin,
10 µl chloramphenicol, 37°C and shaking), grown at 37°C while shaking until
OD600=0.7.
In both cases, a cell disruptor (Constant Systems Ltd.) was used for lysis. Proteins
were purified as published [74]. The main chromatography steps were Ni-NTA
(hisTrap, GE Healthcare) followed by SUMO cleavage, anion exchange (hiTrap
Q, GE) and size exclusion (Superdex 200, GE). 95% purity was confirmed by
SDS-PAGE.

B.1.3 Fluorescent labelling & monomer exchange

Fluorescent labels (Atto550-, Atto647N-maleimide) were purchased from Atto-
tec and coupled to cysteins according to the supplied protocol. Hetero-dimers
(acceptor+donor) were obtained by 20min incubation of 1µM donor, 0.1µM bi-
otinylated acceptor homo-dimers and 2mM ADP in measurement buffer (40mM
Hepes, 150mM KCl, 10mM MgCl2) at 47°C. In this way, predominantly biotiny-
lated hetero-dimers bind to the neutravidin (Thermo Fisher) coated fluid chamber
(see below). (Residual homo-dimers will show a specific smFRET signal and are
excluded from analysis.)
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ATGGGTCATA TGGGTAGCAG CCATCATCAC CACCATCACG GTTCTGGTCT GGTTCCTCGT
GGATCAGCAA GCATGAGCGA TAGTGAAGTG AATCAAGAGG CCAAACCTGA GGTTAAACCG
GAAGTCAAAC CGGAAACCCA CATCAACCTG AAAGTGTCTG ACGGTAGCAG TGAAATCTTC
TTCAAAATCA AAAAAACCAC CCCGCTGCGT CGTCTGATGG AGGCATTTGC CAAACGTCAA
GGCAAAGAGA TGGATAGCCT GCGTTTTCTG TATGACGGGA TCCGTATTCA GGCAGATCAA
ACGCCTGAGG ATCTGGATAT GGAGGATAAC GACATCATCG AAGCCCATCG TGAGCAGATT
GGCGGTATGG CTAGTGAAAC TTTTGAATTT CAAGCTGAAA TTACTCAGTT GATGAGTTTG
ATCATCAACA CCGTCTATTC TAACAAGGAA ATTTTCTTGA GAGAACTGAT ATCTAATGCC
TCGGATGCGT TGGATAAAAT TAGATACAAA TCTTTGTCTG ATCCAAAGCA ATTGGAAACA
GAACCAGATC TCTTTATTAG AATCACTCCA AAGCCAGAGC AAAAAGTTTT GGAAATCAGA
GATTCTGGTA TTGGTATGAC CAAGGCTGAA TTGATTAATA ACTTGGGTAC CATTGCCAAG
TCTGGTACCA AAGCCTTCAT GGAAGCTCTA TCTGCTGGTG CCGATGTATC CATGATTGGT
CAATTCGGTG TTGGTTTTTA CTCTTTATTC TTAGTTGCCG ACAGAGTTCA GGTTATTTCA
AAGAGCAACG ACGACGAACA ATACATCTGG GAATCCAACG CTGGTGGTTC TTTCACTGTT
ACTCTAGACG AAGTTAATGA AAGAATTGGT AGGGGTACCA TCTTGAGGTT ATTCTTGAAA
GATGACCAAT TGGAGTACTT GGAAGAAAAG AGAATAAAGG AAGTTATCAA GAGACATTCT
GAGTTCGTGG CCTACCCAAT CCAATTAGTC GTCACCAAGG AAGTTGAAAA GGAAGTTCCA
ATTCCAGAAG AAGAAAAGAA AGACGAGGAA AAGAAGGATG AGGAAAAGAA GGATGAAGAC
GACAAGAAAC CAAAATTGGA AGAAGTCGAT GAAGAAGAGG AAAAGAAGCC AAAGACGAAA
AAAGTTAAAG AAGAAGTTCA AGAGATAGAA GAACTAAACA AGACTAAGCC TTTGTGGACT
AGAAACCCAT CTGATATCAC TCAAGAAGAA TACAATGCTT TCTATAAGTC TATTTCAAAC
GACTGGGAAG ACCCATTGTA CGTTAAGCAT TTCTCCGTTG AAGGTCAATT GGAATTTAGA
GCTATCTTAT TCATTCCAAA GAGAGCACCA TTCGACTTGT TTGAGAGTAA AAAGAAGAAG
AATAATATCA AGTTGTACGT TCGTCGTGTT TTCATCACTG ATGAAGCTGA AGACTTGATT
CCAGAGTGGT TATCTTTCGT CAAGGGTGTT GTTGACTCTG AGGATTTACC ATTGAATTTG
TCCAGAGAAA TGTTACAATG TAATAAGATC ATGAAGGTTA TTAGAAAGAA CATTGTCAAA
AAGTTGATTG AAGCCTTCAA CGAAATTGCT GAAGACTCTG AACAATTTGA AAAGTTCTAC
TCGGCTTTCT CCAAAAATAT CAAGTTGGGT GTACATGAAG ATACCCAAAA CAGGGCTGCT
TTGGCTAAGT TGTTACGTTA CAACTCTACC AAGTCCGTAG ATGAGTTGAC TTCCTTAACT
GATTACGTTA CCAGAATGCC AGAACACCAA AAGAACATCT ACTACATCAC TGGTGAATCT
CTAAAGGCTG TCGAAAAGTC TCCATTTTTG GATGCCTTGA AGGCTAAAAA CTTCGAGGTT
TTGTTCTTGA CCGACCCAAT TGATGAATAC GCCTTCACTC AATTGAAGGA ATTCGAAGGT
AAAACTTTGG TTGACATTAC TAAAGATTTC GAATTGGAAG AAACTGACGA AGAAAAAGCT
GAAAGAGAGA AGGAGATCAA AGAATATGAA CCATTGACCA AGGCCTTGAA AGAAATTTTG
GGTGACCAAG TGGAGAAAGT TGTTGTTTCT TACAAATTGT TGGATGCCCC AGCTGCTATC
AGAACTGGTC AATTTGGTTG GTCTGCTAAC ATGGAAAGAA TCATGAAGGC TCAAGCCTTG
AGAGACTCTT CCATGTCCTC CTACATGTCT TCCAAGAAGA CTTTCGAAAT TTCTCCAAAA
TCTCCAATTA TCAAGGAATT GAAAAAGAGA GTTGACGAAG GTGGTGCTCA AGACAAGACT
GTCAAGGACT TGACTAAGTT ATTATATGAA ACTGCTTTGT TGACTTCCGG CTTCAGTTTG
GACGAACCAA CTTCCTTTGC ATCAAGAATT AACAGATTGA TCTCTTTGGG TTTGAACATT
GATGAGGATG AAGAAACAGA GACTGCTCCA GAAGCATCCA CCGCAGCTCC GGTTGAAGAG
GTTCCAGCTG ACACCGAAAT GGAAGAGGTA GATCCCGGGG AACAAAAAGC CGAAGAATGG
AAACGTCGCT ATGAAAAAGA GAAAGAAAAA AACGCGCGCC TGAAAGGCAA AGTGGAAAAA
CTGGAAATTG AACTGGCGCG TTGGCGCCCC GGGAGCCTAG GCGGAGGCCT GAACGACATC
TTCGAAGCTC AGAAGATTGA ATGGCATGAA TAA

Figure B.1: The gene sequence of the Hsp90 construct used herein: 6HisTag,
purple; SUMO-domain, blue; start of Hsp90, green; Cys61 and Cys385, orange;
end of Hsp90, gray; coiled coil zipper, dark green; AviTag, lime green.
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B.2 ATPase Assay

B.2 ATPASE ASSAY

The ATPase activity of Hsp90 was measured in a regenerative assay (0.2mM
NADH Di-Na, Roche; 2mM phosphoenol pyruvate K-salt, Bachem; 2 U/ml pyru-
vate kinase, Roche; 10 U/ml lactate dehydrogenase, Roche) coupled to NADH oxi-
dation, which was followed as a decrease in absorption at 340nm, similar to [150].
Measurements were performed at 37°C in 40mM Hepes, 150mM KCl, 10mM
MgCl2, pH 7.5.

For the measurements under all-sodium or all-potassium conditions, correspond-
ing reagents were used (NADH Di-Na/Di-K, PEP Na/K, ATP Mg-salt) and the
above enzymes were dialyzed to the corresponding low salt buffer (40mM Hepes,
10mM MgCl2, 50mM NaCl/KCl, pH 7.5 by NaOH/KOH). Measurements took
place under the same conditions as described, except for varying NaCl/KCl con-
centrations. Each measurement was followed by radicicol inhibition and addition
of excess ADP as a positive control for regeneration.

B.3 F LOW CHAMBER SURFACE PASS I VAT ION

Coverslips for flow chambers were passivated as follows: 15min sonication in 2%
Hellmanex (hellma-analytics), rinse with ultrapure water. Repeat once. Repeat in
pure water. 2h incubation in Piranha solution (3 vol. H2SO4, 1 vol. H2O2) at
60°C, rinse with water. Sonication in 2% Hellmanex as above, rinse with water.
2h incubation in RCA (5 vol. H2O, 1 vol. H2O2, 1 vol. NH3). Sonication in water
as above, rinse with water. 10min incubation in acetone (HPLC grade). 5-10min
incubation in 200x Vectabond (Vectorlabs) dilution in acetone. Sway in water for
30s/slide. Application of ca. 40µl of PEG solution (80mg α-methoxy-ω-NHS-ester
MW=5000, 3mg Biotin-CONH-PEG-O-C3H6-CONHS, MW=3000, both Rapp
Polmere, in 600 µl 100mM NaHCO3), cover with second coverslip. Overnight
incubation at a humid & dark place at 8°C. Sway in water for 30s/slide. Blow dry
by nitrogen. Store dark & dry.

B.4 HOLL IDAY JUNCT ION MEASUREMENTS

DNA-oligos similar to [101] with fluorophores Atto488, Atto550 and Atto647N
(Atto-tec) attached were purchased from IBA GmbH. A mixture of 100nM of
each DNA-oligo in Tris-buffer (5mM Tris, 5mM NaCl, 20mM MgCl2, pH 7.5) was
heated to 90°C for 10 min and cooled down to 20°C (1°C/min) in a thermocycler
(Peqlab). Holliday junctions were measured in Tris-buffer (5mM Tris, 5mM NaCl,
500mM MgCl2) including 0.1% glucose, 10 U/ml glucose oxidase (Aspergillus
niger), 100 U/ml catalase (bovine liver, Calbiochem), 2mM Trolox.
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B.5 T I RF SETUP COMPONENTS

Table B.1: Components of the smTIRF setup and their manufacturers.

Identifier: Description: Specification: Manufacturer:

532 laser 532 nm Compass 215M Coherent

635 laser 635 nm Lasiris Stoker Yale

AD achromatic doublet, f=200 G322-304-000 Qioptic

Bl beam blocker LB1 Thorlabs

CI cleanup filter CL F39-622 ahf Analysentechnik

D1 dichroic mirror ahf Analysentechnik

D2 dichroic mirror F53-534 ahf Analysentechnik

D3 dichroic mirror F33-726 ahf Analysentechnik

D4 dichroic mirror F33-644 ahf Analysentechnik

EMCCD electron multiplying iXonUltra Andor

charge coupled device

F1 notch filter 635 F40-631 ahf Analysentechnik

F2 long pass filter 540 F47-452 ahf Analysentechnik

F3 band pass filter 570 BP F39-572 ahf Analysentechnik

F4 band pass filter 670 BP F37-677 ahf Analysentechnik

Ir Iris Thorlabs

L1 plano-convex lens, f=25 LA1951-A Thorlabs

L2 plano-convex lens, f=1000 LA1779-A Thorlabs

L3 plano-convex lens, f=500 LA1380-A Thorlabs

L4 best form silica lens, f=200 G063-005-000 Qioptiq

M broad band mirror BB1-E02/BB2-E02 Thorlabs

ND neutral density filter NE10A-A Thorlabs

Obj objective, NA 1.49, 100x CFI Apo TIRF 100x Nikon

PBS polarizing beam splitter Thorlabs

Sh mechanical shutter & controller SH05, SC10 Thorlabs

Sl optical slit SP40 Owis

St translation stage MT1/M Thorlabs

λ/2 half-wave plate WPMH05M-532, Thorlabs

WPMH05M-633

λ/4 quarter-wave plate WPMQ05M-532 Thorlabs
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B.6 DESCR I PT ION OF S IMULAT IONS & THEORET ICAL WORK

B.6.1 Kinetic Simulations

Discrete state sequences were obtained by a Monte Carlo simulation based on a
given transition matrix. Photo-bleaching was included by exponential trace length
distributions. For comparison with experimental data, corresponding minimal trace
lengths were used (typically 30 data points).
As in the experiment, synthetic data contained Gaussian noise (σ = 0.3·signal),
random offsets (±0.2·signal), degenerate FRET efficiencies (two low / two high),
a sampling rate of 5Hz and a bleach rate of 0.03Hz. See example data in Fig-
ure 8.13.

B.6.2 General Implementation of Semi-Ensemble HMM

In the following, we include all formulae required for the implementation of semi-
ensemble HMM as demonstrated herein. For more general introductions to HMM,
please refer to the respective literature14,15.
Forward-Backward, Baum-Welch and Viterbi algorithms were implemented for
continuous observables and multiple dimensions. Numerical underflow or overflow
is prevented by logarithmic renormalization. Recursive calculations are sped up
by multi-threading (processing several time-traces in parallel). All software was
written in IgorPro v6.3 (Wavemetrics) and calculations were run on an iMac
(Apple, 2014, 2.9 GHz Intel i5 processor, 16GB RAM) or a comparable Windows
PC. A typical optimization (4 states, >100 traces) took less than an hour.

B.6.3 Expected Value of Observed Energy Coupling

Let 〈Nobsij 〉 be the expected number of observations for a given transition, in a
dataset with Ntot data points. If it is smaller than one, the specific transition
cannot be resolved. In this case, flostij denotes the factor that is actually lost and
the expected value of the observed free energy change 〈∆Gobs〉 in units of kT is
given by:

〈∆Gobs〉 = −
∑
∀i 6=j
(cycl.)

ln

[
aij/f

lost
ij

aji/f
lost
ji

]

with:

flostij =

〈Nobsij 〉 = Ntot · πi · aij ∀ 〈Nobsij 〉 < 1
1 ∀ 〈Nobsij 〉 > 1

B.6.4 Hierarchical Search for Simplified Models

Bruno et al. [19] describe a procedure to deduce the simplest, plausible reaction
schemes, from data with multiple open and closed conformations, by compar-
ing models of the canonical “MIR”-form (manifest interconductance rank). We
consider a 4-state model with 2 open (o) and 2 closed (c) states (No=Nc=2),
as previously determined by BIC and the bi-exponential dwell time distributions.
First, the interconductance rank (i.e. the number of independent o-c links) is
determined. To this end, MIR-form models of rank 1 (linear o-o-c-c) and rank 2

125



B MATER IALS & METHODS

(cyclic -o-o-c-c-) are compared in a likelihood ratio (LR) test (likelihood of rank
x model, LRx):

LR = 2 · [ln(LR2) − ln(LR1)]

6 χ20.95,df=2 ⇒ rank 1

> χ20.95,df=2 ⇒ rank 2

The null hypothesis (rank 1 model) is rejected if the likelihood ratio exceeds the
95% confidence interval given by the χ2-distribution for 2 degrees of freedom
(df). (One missing link equals a difference of two transitions.)
For Hsp90, rank 1 was found under apo, adenosine diphosphate (ADP) and
AMP-PNP conditions (5.99 � LR = 0.07; 0.00; 0.54; respectively). Whereas in
the presence of adenosine triphosphate (ATP) the likelihood ratio indicates rank
2 (5.99 < LR = 7.2, 23 for ATP and ATP+Aha1, respectively).

Second, the number of links Nl within this rank R is determined by compar-
ing different schemes by BIC. The number of mathematically identifiable links is
limited:

Nl 6 R(No +Nc − R)

Models with the same rank and the same number of links are mathematically
equivalent and cannot be discerned without further experimental data. For Hsp90,
we find a cyclic -o-o-c-c- model in the presence of ATP and linear o-o-c-c models
for apo, ADP or AMP-PNP conditions. Further information on the interpretation
of degenerate state models is given in [19, 48, 4]
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Human α-synuclein (gene: SNCA) is a cytosolic, natively unstructured protein of
140 amino acids. In patients with Parkinson’s disease, it forms large aggregates
of amyloid fibrils. However, these fibrils seem not to be the cause but rather a
coincidence of the disease [163]. The current hypothesis is that smaller - less
easily visualized - oligomers were rather the toxic form of α-synuclein.
The goal here was to determine oligomer size distribution by counting the bleach
steps of fluorescently labeled α-synuclein monomers - one oligomer at a time. Such
experiments can further recover the oligomerization kinetics (from monomer to
oligomer to fibril).

C.1 PREPARAT ION

α-Synuclein was prepared similar to the protocol of Silvia Campioni of the Riek
Lab at ETH Zurich. The pRK172 plasmid was a kind gift of the same lab. It was
originally created by M. Goedert from Cambridge UK.

C.1.1 Material

• LBcarb, IPTG
• resuspension buffer: 50mM Tris, pH 8, 10mM EDTA, 150mM NaCl
• 10% streptomycin sulfate
• glacial acetic acid
• saturated ammonium sulfate: ca. 60g/100ml. (Warm up to dissolve. Cool

down again and a precipitate will form.)
• anion exchange (AX) buffer A: 20mM Tris, pH 8
• AX buffer B: 20mM Tris, 1M NaCl, pH 8
• ethanole, pure
• for labeling: PBS, pH 7.5; aSyn is acidic. . .
• standard measurement buffer: 20mM Hepes, 150mM NaCl, pH 7.5

C.1.2 Expression

Grow o/n culture of transformed BL21 cells in LBcarb. Inoculate 2l of LBcarb. At
OD600 = 0.9-1.0 induce with 1mM IPTG for 4h. Harvest by centrifugation at
4600rpm, 20min (Hettich Rotanta). Resuspend the pellet in resuspension buffer.
Disrupt cells with standard French Press protocol.

C.1.3 Purification

Place the cell extract on a heat plate at 70°C for 10min. Centrifuge for 30min
at 17krpm (Beckmann, JA-17) at 4°C. Collect the supernatant in a clean beaker
and add per ml of supernatant: 136 µl of the streptomycin sulfate solution and
228 µl of glacial acetic acid. Incubate for 10min in fridge. Mixture turns pink.
Centrifuge for 5min at 17krpm, 4°C. Collect the supernatant in a clean beaker
and add the same volume of a saturated ammonium sulfate solution kept at 4°C.
Incubate for 10min in the fridge. Centrifuge for 20min at 17krpm, 4°C. Discard
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the supernatant. Wash the pellet with 10ml/(liter of culture) of a 1:1 mixture
(v/v) of saturated ammonium sulfate and water at 4°C. Spin for 15min at 17krpm,
4°C. Resuspend the pellet in 10ml/(liter of culture) of AX buffer A. (Ev. warm up
slightly.) Precipitate the protein by adding an equal volume of ethanol at room
temperature. Centrifuge for 10min at 17krpm, 4°C. Repeat this step other two
times. Resuspend the pellet in 10ml/(liter of culture) of buffer A.
Anion exchange with HiTrapQ XL column (V=5ml): equilibrate with 10 column
volumes (CV) of buffer A, 5ml/min; load sample at 2ml/min; wash with 10 CV
of buffer A, 5ml/min; elute with gradient (0 – 50% buffer B, 10 CV, 2 ml/min)
and collect 2ml fractions. SDS-PAGE showed super clean protein. Reconcentrate,
freeze.
For labeling: taw, add reducing agent, purify by Superdex75 equilibrated with PBS,
pH 7.5 (1peak), label, remove label & change to std. measurement buffer.

C.2 PROOF OF PR INC I PLE : BLEACH STEP COUNT ING W ITH
DNA -OR IGAM I

Figure C.1: Proof of principle of bleach step counting using a DNA-origami plat-
form with (a) 1 dye, (b) 2 dyes, (c) 3 dyes. Example traces and bleach step
histograms are shown. The DNA-origami construct (termed Fluorogami by Björn
Hellenkamp [62]) was a kind gift of the Dietz lab at TUM.
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C.3 α - SYNUCLE IN OL IGOMER S I ZE

Atto647N labeled α-synuclein was incubated for more than a week in measure-
ment buffer at 30µM and 30°C while shaking. It was diluted to sub-nanomolar
concentrations and measured by TIRF on a glass surface (cleaned by successive
sonication (15min) in 2% Hellmanex as well as ultrapure water followed by flushing
with ultrapure water.). Measurements took place at different time points during
incubation.
Even after 9 days, monomers were by far the dominating species (Figure C.2a).
Neither tetrameric [11], nor other oligomers larger than dimers were significantly
observed. These results were reproduced several times and confirmed also by con-
focal detection (in solution), atomic force microscopy (AFM) and dynamic light
scattering (DLS)1.
Only the interaction with lipid vesicles (1,2-dipalmitoyl-sn-glycero-3-phosphocho-
line, DPPC) led to multiple bleach events (Figure C.2b). The latter does not
necessarily indicate colocalization of individual α-synuclein monomers at the same
spot of the vesicle. The protein/lipid concentration ratio was 1/1000 and vesicles
were immobilized on a PEG-passivated surface by biotin/neutravidin binding (cf.
Section B.3).

Figure C.2: α-synuclein oligomer size distributions and example traces: (a) after
9 days incubation at 30µM and 37°C with agitation, or (b) in the presence of
sonicated DPPC vesicles without extra incubation.

1 These measurements were performed by Björn Hellenkamp, Frank Stetter and Bettina
Kracke, respectively.
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C.4 α - SYNUCLE IN AS AN HSP9 0 CL I ENT

α-synuclein was further investigated as a putative Hsp90 client, as there were
reports of an ATP-independent interaction between the two [35, 46].
Specifically, Hsp90’s conformational changes were measured by smFRET (cf.
Chapter 10) in the presence and absence of 50µM α-synuclein. Despite this high
concentration, hardly any effect on Hsp90’s conformational kinetics was observed
(Figure C.3).

Figure C.3: The effect of 50µM α-synuclein on Hsp90’s conformational dynamics:
dwell time distributions in the absence (a) and presence (b) of 50µM α-synuclein,
with or without 2mM ADP, as indicated. Blue and red data was recorded at the
indicated sampling rate.
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SMACKS Manual

Sonja Schmid & Markus Götz

Version 1.3

SMACKS (Single Molecule Analysis of Complex Kinetic Sequences) is a maximum likelihood
approach to extract kinetic rate models from noisy single molecule data. While fine-tuned for
FRET data, SMACKS is applicable to single molecule time traces of any kind. It optimizes
hidden Markov models with a chosen number of states n based on input data of a given dimen-
sionality d. Up to 3 dimensions were tested.
This manual explains the functionalities of the SMACKS software tool. For a complete descrip-
tion of the SMACKS approach please refer to Schmid et al. (2016). This manual follows the
terminology of the original publication, which is itself close to Rabiner (1989) & Fink (2014).
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1 Installation

SMACKS is implemented in Igor Pro (Wavemetrics). If your institution does not have a license
for Igor Pro, you can still test SMACKS on your own data using the free 30 days trial of the full
software package available at wavemetrics.com. After downloading SMACKS’ source code and
example data from singlemolecule.uni-freiburg.de/SMACKS, double click startSMACKS.ipf
and SMACKS is ready to run. In case the SMACKS menu does not show up automatically, click
the tiny compile button indicated in Fig. 1.

Figure 1: The tiny compile button. It vanishes after compilation.

The dataID holds the names of individual dimensions of your input data (e.g. fluorescence
channels). They are used by the importer as base names for the supplied input data (see next
section). By default the dataID is set to "g_g;r_g;r_r;". But you can modify it to fit your own
data. For example set it to "force;" or "blue;green;" or any other semicolon separated input
list. Alphabetic characters and "_" are allowed.

2 Data Import

For maximum compatibility, SMACKS comes with an ascii importer. For a quick test, we further
include experimental example data at SMACKS_tool/exampleData/.
To load your data into SMACKS, go to the SMACKS menu ! Import ascii. Press shift and
select multiple ascii files (.dat or .txt) to import the desired dataset into SMACKS. The importer
accepts files with one, two or three data columns (tab- or space-separated) representing
multiple dimensions of one time trace. File names are arbitrary, as the imported trajectories
are renamed as specified by the dataID plus suffix. (The original names are stored in Igor’s
"wavenotes" and recovered during results export. See respective section.)

Input data must not include NaNs or INFs. It should only contain the range that is relevant for
analysis (e.g. no after-bleach tail).
All calculations are performed in user-supplied time units. E.g. if your sampling rate is 10
frames per second, all transition probabilities aij are specified per time interval of 0.1s. They
are converted to rate constants in Hertz by kij = 10 ·aij (neglecting multiple transitions per time
interval). Therefore, constant time intervals are required. But specific time information is not
needed.
If the optional "FRET constraint" is going to be used, fluorescence data must be corrected for
experimental offsets, crosstalk, gamma, as detailed in Lee et al. (2005).
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3 Step 1: Trace-by-Trace HMM (TbT)

As a first step, individual HMMs are optimized for each trajectory separately. The TbT workflow
can be called from the SMACKS menu ! Init TbT. The resulting user interface is shown in
Figure 2.

Figure 2: The Trace-by-Trace HMM interface, TbT Win.

The data plot (top left of Fig. 2) shows all dimensions of the current input trace (e.g. FRET
donor in green, acceptor in red, directly excited acceptor in dark red). Once determined, the
states assigned by the Viterbi algorithm (subsequently referred to as Viterbi path) are displayed
in black. Time is displayed in the user-supplied units (i.e. time bins of the measurement). The
name of the current input trace is shown below the plot on the right.

The parameter tabs (bottom left of Fig. 2) display the Initial Params or the Current Params.
HMM_pi, HMM_a and HMM_b_param denote the ⇡, A and B parameters, respectively.
The ⇡ vector comprises one start probability per state. The matrix A holds all transition
probabilities, i.e. n ⇥ n entries. The rows specify the initial state and the columns the final
state. To preclude a certain transition, set the respective matrix element to 0. The Gaussian
probability densities (one per state) are parametrized by B, which holds the Gauss positions
µ (in d dimensions) in the first column and the co-variance matrix V in the adjacent d ⇥ d
dimensions as indicated for two states in Fig. 2. The µ and V of individual states are stored
in n individual layers. These are accessible in Igor by the up/down arrows indicated in Fig. 2
(active after clicking the corresponding column).

SMACKS provides typical initial parameters for TIRF experiments. Customized initial B
parameters can be obtained from Gaussian fits to your data histogram. For multi-dimensional
data, a diagonal co-variance matrix V is usually a good starting point and possible correlations
are fit during optimization.

Click the Initial Params tab to adjust the default parameters for your needs. Don’t forget to
confirm modifications by clicking Initialize. Existing Current Params are overwritten. You can
store and recall current parameters with the respective buttons, Store or Recall.
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The control panel at the right lets you proceed through the TbT workflow: Start by telling
SMACKS the number of states (# States) that you discern in your data by eye, subsequently
referred to as apparent states. It is no problem if not every trace reaches all of these states
(see below). Next set the number of dimensions (# Dimensions). For 2D input, there is the
FRET Constraint option detailed in Schmid et al. (2016).

Now you are ready to run: click Converge to optimize an HMM based on the current input. The
convergence can be followed by the Normalized Changes plot below (see the Miscellaneous
section for details). You can always interrupt SMACKS by clicking the red Stop button that
appears when SMACKS is busy. Alternatively, use Go for one iteration at a time and Vit. to
calculate the most probable state sequence given the current input (data & parameters).

If you are happy with the optimized parameters (i.e. they have converged and yield reasonable
state allocation), save them by clicking Save or delete them again by Del. If the initial
parameters are not appropriate for the input data, the Forward Backward algorithm will diverge.
SMACKS will let you know by printing a "numerical error" message.

Once appropriate initial parameters were found, you can speed up the TbT procedure by calling
TbT Batch Converge from the SMACKS menu. This will optimize individual parameters for
each trace in the dataset. Only the parameters that converged properly will be saved. Next
browse through the traces (using <<, >>) and delete parameters that cause inappropriate
Viterbi paths. For traces that do not reach all states, no reasonable parameters can be found.
Therefore, those parameters should be deleted even if the optimization converged.

To get around this issue, call TbT Apply Means once the inappropriate parameters have been
deleted. Thereby, the mean of all saved B parameters is applied to the remaining trajectories
(i.e. those without saved parameters). For simplicity only these "remaining" trajectories will be
displayed in the TbT Win. If at this stage, there are many "good quality" traces that are not
well fit, you should reconsider your initial definition of the apparent states. Otherwise, sort out
unrepresentative traces by deleting their parameters again. These are not considered in the
next step: the ENS run.

The current Input Path and TbT Path are both displayed below the controls. The former
denotes Igor’s data folder holding the original input data, which is not modified by SMACKS.
The latter holds all TbT related data, i.e. parameters, Viterbi paths, auxiliaries.

4 Step 2: Semi-Ensemble HMM (ENS)

The ENS workflow is called from the SMACKS menu ! Init ENS, which displays the ENS Win
shown in Figure 3 and closes the TbT Win. (Both windows can be recreated by the respective
entry of the SMACKS menu.)
Based on the apparent states and the optimized B parameters of the TbT workflow, the ENS
interface lets you analyze different state models assembled in the setup tabs (Setup0 etc.).

So tell SMACKS the desired state model configuration, short State Config. E.g. "0011" is
interpreted as a 4-state model including twice the apparent state0 and twice the apparent
state1. Analogously, "0120" denotes twice the apparent state 0 and once the apparent states 1
and 2. If required, adjust the default Initial Params. Either way, confirm by clicking Initialize.

Further settings are the maximal number of iterations (Max. Iterations) per run and the
maximal "Normalized Changes" threshold serving as convergence criterion, Conv. Threshold.
Generally applicable default values are provided. An optional detailed balance constraint,
adapted from Greenfeld et al. (2012), conserves the model at thermodynamic equilibrium. This
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Figure 3: The ensemble HMM interface, ENS Win.

constraint is adequate for experiments without an external energy source (e.g. ATP).

After submitting the desired Initial Params by clicking Initialize (see Step 1 for parameter
details), Converge will optimize the model until either the Conv. Threshold or Max. Iterations
are reached. As in TbT mode, a red Stop button shows up, which lets you stop the calculations
at any time.

The Log. Likelihood plot provides visual feedback on the state of convergence. A cartoon
illustrates the current rate model (center bottom). Additionally, the number of considered traces
(# Traces), the current value of the Bayesian information criterion (BIC) and the relative State
Population deduced from the Viterbi paths are displayed on the right.

Among several model configurations, the most appropriate model can be identified using
parsimony criteria, such as BIC. Click New Setup to create an additional setup or Delete
Setup to delete a specific setup. The latter does not affect original input and TbT data. Batch
Converge (top right) runs over all predefined setups. This is useful to perform calculations over
night. You can stop and resume calculations at will.

The data of each setup is stored in a specific ENS Path. Ensemble HMM makes use of the
TbT information stored in the displayed TbT Path.
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5 Export Results

To export the results, call the SMACKS menu ! Export Results. The ensemble op-
timized start and transitions probabilities together with additional results will be stored in
SMACKS_summary.dat. The individual B parameters and Viterbi paths are reported as
separate files specified by the original filenames: "original name"_b_param.dat or "original
name"_viterbi.dat , respectively.

6 Miscellaneous

• Normalized Changes of the diagonal entries of the transition matrix have proven useful
for monitoring convergence of the HMM:

Normalized Changes =

n�1X

i=0

|aii � a0
ii|

aii

where a0
ii are the diagonal matrix elements of the previous iteration and the sum goes

over all states. While the likelihood increases monotonically, the Normalized Changes
may not.

• The Viterbi Browser called from the SMACKS menu lets you review all saved trajectories.
Both the TbT Win and the ENS Win are recreated by the respective entry of the SMACKS
menu.

• SMACKS’ data hierarchy inside Igor:
Input data is stored at root:input_traces_0: .
The TbT step is performed in root:input_traces_0:TbT_0: .
The ENS step is performed in root:input_traces_0:ENS_0: .
Higher suffix numbers (_1, _2, ...) are used for additional folders of the same kind, such
as additional ENS setups.
Call the SMACKS menu ! Set Input Path to change between different input paths. The
complete data folder hierarchy is displayed by Igor’s Data Browser (Data menu ! Data
Browser).
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