Interpolation-based \mathcal{H}_{2} Pseudo-Optimal Model Reduction of Bilinear Systems

M. Cruz Varona, E. Olcay, B. Lohmann

GMA-Fachausschuss 1.30
Anif, 19.09.2016

Motivation

- Bilinear systems are a special class of nonlinear systems (weakly nonlinear)
- Interface between fully nonlinear and linear systems

- The analogy between linear and bilinear systems allows us to transfer some of the existing linear reduction techniques to the bilinear case

| Nonlinear state equation |
| ---: | :--- |
| $\mathbf{E} \dot{\mathbf{x}}(t)$ $=\mathbf{f}(\mathbf{x}(t))+\mathbf{B u}(t)$
 $\mathbf{y}(t)$ $=\mathbf{C x}(t)$ |

$$
\operatorname{det}(\mathbf{E}) \neq 0
$$

Bilinear model
$\boldsymbol{\Sigma}: \quad \mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\sum_{j=1}^{m} \mathbf{N}_{j} \mathbf{x}(t) u_{j}(t)+\mathbf{B u}(t)$

$$
\mathbf{y}(t)=\mathbf{C x}(t), \mathbf{x}(0)=\mathbf{x}_{0}
$$

$\mathbf{E}, \mathbf{A}, \mathbf{N}_{j} \in \mathbb{R}^{n \times n}$
$\mathbf{B} \in \mathbb{R}^{n \times m} ; \mathbf{C} \in \mathbb{R}^{p \times n}$

Outline

I. Why bilinear systems?
> Motivation
II. Model Reduction for Bilinear Systems
> Projective MOR of bilinear systems
> Bilinear systems theory
> Interpolation-based model reduction via Krylov subspaces
> \mathcal{H}_{2} optimal model reduction of bilinear systems
$>\mathcal{H}_{2}$ pseudo-optimal reduction
III. Numerical Examples
IV. Summary and Outlook

Projective Reduction of Bilinear Systems

Bilinear model

Reduced bilinear model

$\quad \mathbf{E}_{r} \dot{\mathbf{x}}_{r}(t)=\mathbf{A}_{r} \mathbf{x}_{r}(t)+\sum_{j=1}^{m} \mathbf{N}_{r, j} \mathbf{x}_{r}(t) u_{j}(t)+\mathbf{B}_{r} \mathbf{u}(t)$
$\boldsymbol{\Sigma}_{r}:$
$\mathbf{y}_{r}(t)=\mathbf{C}_{r} \mathbf{x}_{r}(t)$
$\mathbf{E}_{r}, \mathbf{A}_{r}, \mathbf{N}_{r, j} \in \mathbb{R}^{r \times r}$
$\mathbf{B}_{r} \in \mathbb{R}^{r \times m} ; \mathbf{C}_{r} \in \mathbb{R}^{p \times r}$

Outline

I. Why bilinear systems?
> Motivation
II. Model Reduction for Bilinear Systems
> Projective MOR of bilinear systems
> Bilinear systems theory
> Interpolation-based model reduction via Krylov subspaces
> \mathcal{H}_{2} optimal model reduction of bilinear systems
$>\mathcal{H}_{2}$ pseudo-optimal reduction
III. Numerical Examples
IV. Summary and Outlook

Output Response and Transfer Functions of Bilinear Systems

$$
\left(y(t)=\sum_{k=0}^{\infty} y_{k}(t)=\sum_{k=0}^{\infty} \mathcal{H}_{k}[u(t)]\right)
$$

$y_{k}(t)$: output of k-th homogenous subsystem
$\mathcal{H}_{k}: k$-th order Volterra operator

$$
y_{0}=\mathcal{H}_{0}: \text { constant output }
$$

- Within this framework, the input-output representation is given by

$$
\begin{aligned}
y(t) & =\sum_{k=1}^{\infty} y_{k}\left(t_{1}, \ldots, t_{k}\right) \\
& =\sum_{k=1}^{\infty} \int_{0}^{t} \int_{0}^{t_{1}} \ldots \int_{0}^{t_{k-1}} g_{k}\left(t_{1}, \ldots, t_{k}\right) u\left(t-t_{1}\right) \ldots u\left(t-t_{k}\right) \mathrm{d} t_{k} \ldots \mathrm{~d} t_{1}
\end{aligned}
$$

- Definition by convolution integrals

Input-output representation

$$
\begin{array}{r}
y(t)=\sum_{k=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \underbrace{\mathbf{c}^{T} e^{\mathbf{E}^{-1} \mathbf{A} \tau_{k}} \mathbf{E}^{-1} \mathbf{N} \cdots \mathbf{E}^{-1} \mathbf{N} e^{\mathbf{E}^{-1} \mathbf{A} \tau_{2}} \mathbf{E}^{-1} \mathbf{N} e^{\mathbf{E}^{-1} \mathbf{A} \tau_{1}} \mathbf{E}^{-1} \mathbf{b}}_{g_{k}\left(\tau_{1}, \ldots, \tau_{k}\right)} \\
\times u\left(t-\tau_{k}\right) \cdots u\left(t-\tau_{k}-\ldots-\tau_{1}\right) \mathrm{d} \tau_{k} \cdots \mathrm{~d} \tau_{1}
\end{array}
$$

k-th order transfer function of a bilinear system

$$
G_{k}\left(s_{1}, \ldots, s_{k}\right)=\mathbf{c}^{T}\left(s_{k} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{N} \cdots \mathbf{N}\left(s_{2} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{N}\left(s_{1} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{b}
$$

- First three subsystems:

$$
\begin{array}{rlrl}
k=1: & G_{1}\left(s_{1}\right) & =\mathbf{c}^{T}\left(s_{1} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{b} \\
k & =2: & G_{2}\left(s_{1}, s_{2}\right) & =\mathbf{c}^{T}\left(s_{2} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{N}\left(s_{1} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{b} \\
k & =3: & G_{3}\left(s_{1}, s_{2}, s_{3}\right) & =\mathbf{c}^{T}\left(s_{3} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{N}\left(s_{2} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{N}\left(s_{1} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{b}
\end{array}
$$

\mathcal{H}_{2} norm for bilinear systems

$$
\|\boldsymbol{\Sigma}\|_{\mathcal{H}_{2}}^{2}:=\sum_{k=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{1}{(2 \pi)^{k}} G_{k}\left(j \omega_{1}, \ldots, j \omega_{k}\right) G_{k}^{*}\left(j \omega_{1}, \ldots, j \omega_{k}\right) \mathrm{d} \omega_{1} \cdots \mathrm{~d} \omega_{k}
$$

- \mathbf{P} and \mathbf{Q} satisfy the following bilinear Lyapunov equations:

Bilinear Lyapunov equations

$$
\begin{aligned}
& \mathbf{A P E}^{T}+\mathbf{E P A}^{T}+\mathbf{N P N}^{T}+\mathbf{b b}^{T}=\mathbf{0}, \\
& \mathbf{A}^{T} \mathbf{Q E}+\mathbf{E}^{T} \mathbf{Q A}+\mathbf{N}^{T} \mathbf{Q N}+\mathbf{c c}^{T}=\mathbf{0}
\end{aligned}
$$

I. Why bilinear systems?

> Motivation
II. Model Reduction for Bilinear Systems
> Projective MOR of bilinear systems
> Bilinear systems theory
> Interpolation-based model reduction via Krylov subspaces
> \mathcal{H}_{2} optimal model reduction of bilinear systems
$>\mathcal{H}_{2}$ pseudo-optimal reduction
III. Numerical Examples
IV. Summary and Outlook

Interpolation-based Model Reduction via Krylov Subspaces

Volterra series-based interpolation:

Enforcing multipoint interpolation of the underlying Volterra series

Volterra series interpolation

[Flagg/Gugercin '15]
Set of interpolation points: $S=\left\{s_{1}, \ldots, s_{r}\right\}$
$\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k-1}}^{r} \eta_{l_{1}, \ldots, l_{k-1}, j} G_{k}\left(s_{l_{1}}, \ldots, s_{l_{k-1}}, s_{j}\right)=\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k-1}}^{r} \eta_{l_{1}, \ldots, l_{k-1}, j} G_{k, r}\left(s_{l_{1}}, \ldots, s_{l_{k-1}}, s_{j}\right)$
This approach interpolates the weighted series at the interpolation points s_{1}, \ldots, s_{r}

$$
\begin{aligned}
& \text { Weighting matrices: } \mathbf{U}_{V}=\left\{u_{i, j}\right\}, \mathbf{U}_{W}=\left\{\hat{u}_{i, j}\right\} \in \mathbb{R}^{r \times r} \\
& \eta_{l_{1}, \ldots, l_{k-1}, j}=u_{j, l_{k-1}} u_{l_{k-1}, l_{k-2}} \ldots u_{l_{2}, l_{1}} \text { for } k \geq 2 \text { and } \eta_{l_{1}}=1 \text { for } l_{1}=1, \ldots, r
\end{aligned}
$$

Weights and
shifts are defined by the user

Example: $\eta_{1,2,3}=u_{3,2} \cdot u_{2,1}$

$$
\begin{aligned}
\mathbf{v}_{j} & =\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k-1}}^{r} \eta_{l_{1}, \ldots, l_{k-1}, j}\left(\mathbf{A}-s_{j} \mathbf{E}\right)^{-1} \mathbf{N}\left(\mathbf{A}-s_{l_{k-1}} \mathbf{E}\right)^{-1} \mathbf{N} \ldots \mathbf{N}\left(\mathbf{A}-s_{1} \mathbf{E}\right)^{-1} \mathbf{b} \\
\mathbf{w}_{j} & =\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k-1}}^{r} \hat{\eta}_{l_{1}, \ldots, l_{k-1}, j}\left(\mathbf{A}^{T}-\mu_{j} \mathbf{E}^{T}\right)^{-1} \mathbf{N}^{T}\left(\mathbf{A}^{T}-\mu_{l_{k-1}} \mathbf{E}^{T}\right)^{-1} \mathbf{N}^{T} \ldots \mathbf{N}^{T}\left(\mathbf{A}^{T}-\mu_{1} \mathbf{E}^{T}\right)^{-1} \mathbf{c}
\end{aligned}
$$

Link Krylov-Sylvester

$$
\begin{aligned}
\tilde{\mathbf{V}} & =\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right] \in \mathbb{R}^{n \times r} \\
\tilde{\mathbf{W}} & =\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}\right] \in \mathbb{R}^{n \times r}
\end{aligned}
$$

Volterra Sylvester equations

$$
\begin{aligned}
\mathbf{A} \tilde{\mathbf{V}}-\mathbf{E} \tilde{\mathbf{V}} \mathbf{S}_{V}-\mathbf{N} \tilde{\mathbf{V}} \mathbf{U}_{V}^{T} & =\mathbf{b} \mathbf{e}^{T} \\
\mathbf{A}^{T} \tilde{\mathbf{W}}-\mathbf{E}^{T} \tilde{\mathbf{W}} \mathbf{S}_{W}^{T}-\mathbf{N}^{T} \tilde{\mathbf{W}} \mathbf{U}_{W}^{T} & =\mathbf{c e}^{T}
\end{aligned}
$$

\mathcal{H}_{2} optimal model reduction of bilinear systems

Goal of \mathcal{H}_{2} optimality

$$
\left\|\boldsymbol{\Sigma}-\boldsymbol{\Sigma}_{r}\right\|_{\mathcal{H}_{2}}=\min _{\operatorname{dim}\left(\mathbf{H}_{r}\right)=r}\left\|\boldsymbol{\Sigma}-\mathbf{H}_{r}\right\|_{\mathcal{H}_{2}}
$$

- minimizing the approximation error $\left\|\boldsymbol{\Sigma}-\boldsymbol{\Sigma}_{r}\right\|_{\mathcal{H}_{2}}$
Error system

$\boldsymbol{\Sigma}_{\text {err }}:=\boldsymbol{\Sigma}-\boldsymbol{\Sigma}_{r}$$\square$| \mathcal{H}_{2} norm of the error system |
| :--- |
| $E^{2}:=\left\\|\boldsymbol{\Sigma}_{\text {err }}^{2}\right\\|_{\mathcal{H}_{2}}^{2}:=\left\\|\boldsymbol{\Sigma}-\boldsymbol{\Sigma}_{r}\right\\|_{\mathcal{H}_{2}}^{2}$ |

Necessary conditions for \mathcal{H}_{2} optimality

First order necessary conditions:
I) $\frac{\partial E^{2}}{\partial \tilde{\mathbf{C}}_{i j}}=0 \Leftrightarrow \mathbf{G}_{r}\left(-\bar{\lambda}_{i}\right) \tilde{\mathbf{B}}_{i}=\mathbf{G}\left(-\bar{\lambda}_{i}\right) \tilde{\mathbf{B}}_{i} \quad$ IV) $\frac{\partial E^{2}}{\partial \tilde{\mathbf{N}}_{i j}}=0$
II) $\frac{\partial E^{2}}{\partial \tilde{\mathbf{B}}_{i j}}=0 \Leftrightarrow \tilde{\mathbf{C}}_{i}^{T} \mathbf{G}\left(-\bar{\lambda}_{i}\right)=\tilde{\mathbf{C}}_{i}^{T} \mathbf{G}_{r}\left(-\bar{\lambda}_{i}\right)$
III) $\frac{\partial E^{2}}{\partial \lambda_{i}}=0 \Leftrightarrow \tilde{\mathbf{C}}_{i}^{T} \mathbf{G}^{\prime}\left(-\bar{\lambda}_{i}\right) \tilde{\mathbf{B}}_{i}=\tilde{\mathbf{C}}_{i}^{T} \mathbf{G}_{r}^{\prime}\left(-\bar{\lambda}_{i}\right) \tilde{\mathbf{B}}_{i}$

\mathcal{H}_{2} optimal model reduction of bilinear systems

\mathcal{H}_{2} optimality for bilinear systems

$\left\|\boldsymbol{\Sigma}-\boldsymbol{\Sigma}_{r}\right\|_{\mathcal{H}_{2}}=\min _{\operatorname{dim}\left(\mathbf{H}_{r}\right)=r}\left\|\boldsymbol{\Sigma}-\mathbf{H}_{r}\right\|_{\mathcal{H}_{2}}$
$\boldsymbol{\Sigma}_{r}$ satisfies

$$
\frac{\partial E^{2}}{\partial \tilde{\mathbf{C}}_{i j}}=0 \quad \frac{\partial E^{2}}{\partial \tilde{\mathbf{N}}_{i j}}=0
$$

$$
\frac{\partial E^{2}}{\partial \tilde{\mathbf{B}}_{i j}}=0
$$

$$
\frac{\partial E^{2}}{\partial \lambda_{i}}=0
$$

$$
\left.\begin{array}{rl}
& \sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k-1}}^{r} \eta_{l_{1}, \ldots, l_{k-1}, j} G_{k}\left(s_{l_{1}}, \ldots, s_{l_{k-1}}, s_{j}\right) \\
= & \sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k-1}}^{r} \eta_{l_{1}, \ldots, l_{k-1}, j} G_{k, r}\left(s_{l_{1}}, \ldots, s_{l_{k-1}}, s_{j}\right)
\end{array}\right\} \begin{array}{r}
\phi_{l_{1}, \ldots, l_{k}: \text { reduced order residues }} \\
\lambda_{l_{i}}: \text { reduced order poles }
\end{array}
$$

[Flagg/Gugercin '15]

$$
\begin{gathered}
\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k}=1}^{r} \phi_{l_{1}, \cdots, l_{k}} G_{k}\left(-\bar{\lambda}_{l_{1}}, \cdots,-\bar{\lambda}_{k}\right)=\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k}=1}^{r} \phi_{l_{1}, \cdots, l_{k}} G_{k, r}\left(-\bar{\lambda}_{l_{1}}, \cdots,-\bar{\lambda}_{k}\right), \\
\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k}=1}^{r} \phi_{l_{1}, \cdots, l_{k}}\left(\sum_{j=1}^{k} \frac{\partial}{\partial s_{j}} G_{k}\left(-\bar{\lambda}_{l_{1}}, \cdots,-\bar{\lambda}_{k}\right)\right)=\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k}=1}^{r} \phi_{l_{1}, \cdots, l_{k}}\left(\sum_{j=1}^{k} \frac{\partial}{\partial s_{j}} G_{k, r}\left(-\bar{\lambda}_{l_{1}}, \cdots,-\bar{\lambda}_{k}\right)\right)
\end{gathered}
$$

\mathcal{H}_{2} optimality

$\left\|\boldsymbol{\Sigma}-\boldsymbol{\Sigma}_{r}\right\|_{\mathcal{H}_{2}}=\min _{\operatorname{dim}\left(\mathbf{H}_{r}\right)=r}\left\|\boldsymbol{\Sigma}-\mathbf{H}_{r}\right\|_{\mathcal{H}_{2}}$
$\boldsymbol{\Sigma}_{r}$ satisfies
$\frac{\partial E^{2}}{\partial \tilde{\mathbf{C}}_{i j}}=0$
$\frac{\partial E^{2}}{\partial \tilde{\mathbf{B}}_{i j}}=0$
$\frac{\partial E^{2}}{\partial \tilde{\mathbf{N}}_{i j}}=0$

$\frac{\partial E^{2}}{\partial \lambda_{i}}=0$$\Leftrightarrow$| $\boldsymbol{\Sigma}\left(-\bar{\lambda}_{i}\right)=\boldsymbol{\Sigma}_{r}\left(-\bar{\lambda}_{i}\right)$ |
| :--- |
| $\boldsymbol{\Sigma}^{\prime}\left(-\bar{\lambda}_{i}\right)=\boldsymbol{\Sigma}_{r}^{\prime}\left(-\bar{\lambda}_{i}\right)$ |

\mathcal{H}_{2} pseudo-optimality
$\mathcal{L}=\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$: fixed reduced poles $\mathcal{G}(\mathcal{L})$: Subset of reduced models
Σ_{r} satisfies

$$
\left\|\boldsymbol{\Sigma}-\boldsymbol{\Sigma}_{r}\right\|_{\mathcal{H}_{2}}=\min _{\mathbf{H}_{r} \in \mathcal{G}(\mathcal{L})}\left\|\boldsymbol{\Sigma}-\mathbf{H}_{r}\right\|_{\mathcal{H}_{2}}
$$

if
$\boldsymbol{\Sigma}\left(-\bar{\lambda}_{i}\right)=\boldsymbol{\Sigma}_{r}\left(-\bar{\lambda}_{i}\right)$

$$
\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k}=1}^{r} \phi_{l_{1}, \cdots, l_{k}} G_{k}\left(-\bar{\lambda}_{l_{1}}, \cdots,-\bar{\lambda}_{k}\right)=\sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k}=1}^{r} \phi_{l_{1}, \cdots, l_{k}} G_{k, r}\left(-\bar{\lambda}_{l_{1}}, \cdots,-\bar{\lambda}_{k}\right)
$$

Notation

$$
\begin{aligned}
\mathbf{B}_{\perp} & =\mathbf{B}-\mathbf{E V E}_{r}^{-1} \mathbf{B}_{r} \\
\mathbf{A V}-\mathbf{E V S}_{V}-\mathbf{N V U}_{V}^{T} & =\mathbf{B R}_{V} \\
\mathbf{A}_{r} \mathbf{P}_{r} \mathbf{E}_{r}^{T}+\mathbf{E}_{r} \mathbf{P}_{r} \mathbf{A}_{r}^{T}+\mathbf{N}_{r, j} \mathbf{P}_{r} \mathbf{N}_{r, j}^{T}+\mathbf{B}_{r} \mathbf{B}_{r}^{T} & =\mathbf{0} \\
\mathbf{A X E}_{r}^{T}+\mathbf{E X A}_{r}^{T}+\mathbf{N X N}_{r}^{T}+\mathbf{B B}_{r} & =\mathbf{0}
\end{aligned}
$$

New conditions for pseudo-optimality for bilinear systems
i) $\mathbf{S}_{V}=-\mathbf{P}_{r} \mathbf{A}_{r}^{T} \mathbf{E}_{r}^{-T} \mathbf{P}_{r}^{-1}$
ii-1) $\mathbf{E}_{r}^{-1} \mathbf{B}_{r}+\mathbf{P}_{r} \mathbf{R}_{V}^{T}=\mathbf{0}$

$$
\text { ii-2) } \mathbf{P}_{r}^{-1} \mathbf{U}_{V}^{T}+\mathbf{N}_{r}^{T} \mathbf{E}_{r}^{-T} \mathbf{P}_{r}^{-1}=\mathbf{0}
$$

iii) $\mathbf{S}_{V} \mathbf{P}_{r}+\mathbf{P}_{r} \mathbf{S}_{V}^{T}-\mathbf{P}_{r} \mathbf{R}_{V}^{T} \mathbf{R}_{V} \mathbf{P}_{r}+\mathbf{P}_{r} \mathbf{U}_{V} \mathbf{N}_{r}^{T} \mathbf{E}_{r}^{-T}=\mathbf{0}$
$\Leftrightarrow \mathbf{P}_{r}^{-1} \mathbf{S}_{V}+\mathbf{S}_{V}^{T} \mathbf{P}_{r}^{-1}-\mathbf{U}_{V} \mathbf{P}_{r}^{-1} \mathbf{U}_{V}^{T}-\mathbf{R}_{V}^{T} \mathbf{R}_{V}=\mathbf{0}$
iv) $\mathbf{X}=\mathbf{V P}_{r}$
v) $\mathbf{A} \hat{\mathbf{P}} \mathbf{E}^{T}+\mathbf{E} \hat{\mathbf{P}} \mathbf{A}^{T}+\mathbf{N} \hat{\mathbf{P}} \mathbf{N}^{T}+\mathbf{B B}^{T}=\mathbf{B}_{\perp} \mathbf{B}_{\perp}^{T}$
vi) $\mathbf{P}_{r}^{-1}=\mathbf{E}_{r}^{T} \mathbf{Q}_{f} \mathbf{E}_{r}$

BIPORK: Bilinear pseudo-optimal rational Krylov

Algorithm 1 Bilinear pseudo-optimal rational Krylov (BIPORK)
Input: $\mathbf{V}, \mathbf{S}_{V}, \mathbf{U}_{V}, \mathbf{R}_{V}, \mathbf{C}$, such that $\mathbf{A V}-\mathbf{E V S}_{V}-\mathbf{N V U}_{V}^{T}=\mathbf{B R}_{V}$ is satisfied Output: \mathcal{H}_{2} pseudo-optimal reduced model $\boldsymbol{\Sigma}_{r}$
1: \mathbf{P}_{r}^{-1} : solution of condition iii): $\mathbf{P}_{r}^{-1} \mathbf{S}_{V}+\mathbf{S}_{V}^{T} \mathbf{P}_{r}^{-1}-\mathbf{U}_{V} \mathbf{P}_{r}^{-1} \mathbf{U}_{V}^{T}-\mathbf{R}_{V}^{T} \mathbf{R}_{V}=\mathbf{0}$
2: $\mathbf{N}_{r}=-\left(\mathbf{P}_{r}^{-1}\right)^{-1} \mathbf{U}_{V} \mathbf{P}_{r}^{-1} \quad$ condition ii-2)
3: $\mathbf{B}_{r}=-\left(\mathbf{P}_{r}^{-1}\right)^{-1} \mathbf{R}_{V}^{T} \quad$ condition ii-1)
4: $\mathbf{A}_{r}=\mathbf{S}_{V}+\mathbf{B}_{r} \mathbf{R}_{V}+\mathbf{N}_{r} \mathbf{U}_{V}^{T}, \mathbf{E}_{r}=\mathbf{I}_{r}, \mathbf{C}_{r}=\mathbf{C V}$

Advantages and properties of BIPORK

- ROM is globally optimal within a subset: $\left\|\boldsymbol{\Sigma}-\boldsymbol{\Sigma}_{r}\right\|_{\mathcal{H}_{2}}=\min _{\mathbf{H}_{r} \in \mathcal{G}(\mathcal{L})}\left\|\boldsymbol{\Sigma}-\mathbf{H}_{r}\right\|_{\mathcal{H}_{2}}$
- Eigenvalues of ROM: $\Lambda\left(\mathbf{S}_{V}\right)=\Lambda\left(-\mathbf{E}_{r}^{-1} \mathbf{A}_{r}\right)$
\rightarrow choice of the shifts is twice as important
- Stability preservation in the ROM can be ensured (choice of shifts \& weights)
- Low numerical effort required: solution of a bilinear Lyapunov equation and two linear systems of equations, both of reduced order

Outline

I. Why bilinear systems?

> Motivation
II. Model Reduction for Bilinear Systems
> Projective MOR of bilinear systems
> Bilinear systems theory
> Interpolation-based model reduction via Krylov subspaces
> \mathcal{H}_{2} optimal model reduction of bilinear systems
> \mathcal{H}_{2} pseudo-optimal reduction

III. Numerical Examples

IV. Summary and Outlook

Numerical Examples

Heat Transfer Model: Bilinear boundary controlled heat transfer system

Heat equation

$$
\begin{aligned}
x_{t} & =\Delta x \\
\frac{\partial x}{\partial t} & =\frac{\partial^{2} x}{\partial z_{1}^{2}}+\frac{\partial^{2} x}{\partial z_{2}^{2}} \quad \text { on unit square } \Omega=[0,1] \times[0,1]
\end{aligned}
$$

Boundary conditions

$\begin{aligned} n \cdot\left(\frac{\partial x}{\partial z_{1}}+\frac{\partial x}{\partial z_{2}}\right) & =(x-1) u \quad \text { on } \Gamma_{1} \\ x & =0 \quad \text { on } \Gamma_{2}, \Gamma_{3}, \Gamma_{4}\end{aligned}$

- Spatial discretization on an equidistant $k \times k$ grid
[Benner/Breiten '12] together with the boundary conditions yields:

$$
\Rightarrow \dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{N} \mathbf{x} u+\mathbf{b} u \text { of dimension } n=k^{2}
$$

- Output: $y=\mathbf{c}^{T} \mathbf{x}=\frac{1}{k^{2}}\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right] \mathbf{x}$

$\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$: boundary domains

Numerical Examples

BIRKA: \mathcal{H}_{2} optimality
No convergence after 50 iterations

BIPORK: \mathcal{H}_{2} pseudo-optimality

$$
\begin{aligned}
s_{0} & =\left[\begin{array}{lllll}
10 & 20 & 30 & 40 & 50 \\
60
\end{array}\right] \\
\mathbf{U}_{V} & =\operatorname{diag}\left(\left[\begin{array}{ll}
1 e^{-10} & 2 e^{-10} \\
7 e^{-10} & 5 e^{-10} \\
7 e^{-10} & 8 e^{-10}
\end{array}\right]\right)
\end{aligned}
$$

Output response for $u(t)=\cos (\pi t)$:

Outline

I. Why bilinear systems?

> Motivation
II. Model Reduction for Bilinear Systems
> Projective MOR of bilinear systems
> Bilinear systems theory
> Interpolation-based model reduction via Krylov subspaces
> \mathcal{H}_{2} optimal model reduction of bilinear systems
> \mathcal{H}_{2} pseudo-optimal reduction
III. Numerical Examples

IV. Summary and Outlook

Summary and Outlook

Summary:

- Goal: Reduction of high dimensional nonlinear systems
- Approximation of a nonlinear system by a bilinear system using Volterra theory
- Systems theory and model reduction for bilinear systems (based on Krylov)
- \mathcal{H}_{2} pseudo-optimal model reduction for bilinear systems
- Derivation of new conditions for \mathcal{H}_{2} pseudo-optimality for bilinear systems
- Bilinear pseudo-optimal rational Krylov (BIPORK) - conditions ii-1), ii-2), iii)

Outlook:

- Solution of bilinear Lyapunov equations with BIPORK and the link with the alternating direction implicit (ADI) method: conditions iv)-v)
- Cumulative reduction (CuRe) for bilinear systems: condition vi)
- Quadratic-bilinear MOR
- Stability-preserving two-sided rational Krylov for QBDAEs?
- MIMO reduction for QBDAEs? Choice of optimal expansion points?
[Benner/Breiten '12] Interpolation-based H2-model reduction of bilinear control systems. SIAM Journal on Matrix Analysis and Applications
[Flagg '12]
Interpolation Methods for the Model Reduction of Bilinear Systems, PhD thesis
[Flagg/Gugercin '15] Multipoint Volterra series interpolation and H2 optimal model reduction of bilinear systems, SIAM Journal on ...
[Rugh '81]
Nonlinear system theory. The Volterra/Wiener Approach
[Wolf '14]

Thank you for your attention!

Backup slides

- Duality: Krylov subspaces with Sylvester equations
$\operatorname{span}\{\mathbf{V}\}=\mathcal{K}_{r}\left(\left(\mathbf{A}-s_{0} \mathbf{E}\right)^{-1} \mathbf{E},\left(\mathbf{A}-s_{0} \mathbf{E}\right)^{-1} \mathbf{B}\right)$
$\operatorname{span}\{\mathbf{W}\}=\mathcal{K}_{r}\left(\left(\mathbf{A}-s_{0} \mathbf{E}\right)^{-T} \mathbf{E}^{T},\left(\mathbf{A}-s_{0} \mathbf{E}\right)^{-T} \mathbf{C}^{T}\right)$
- \mathcal{H}_{2} optimality vs. \mathcal{H}_{2} pseudo-optimality

\mathcal{H}_{2} optimality

- Problem:

$$
\left\|\mathbf{G}-\mathbf{G}_{r}\right\|_{\mathcal{H}_{2}}=\min _{\operatorname{dim}\left(\widetilde{\mathbf{G}}_{r}\right)=r}\left\|\mathbf{G}-\widetilde{\mathbf{G}}_{r}\right\|_{\mathcal{H}_{2}}
$$

- Necessary conditions for local \mathcal{H}_{2} optimality (SISO):
(Meier-Luenberger)

$$
\begin{aligned}
G\left(-\bar{\lambda}_{r, i}\right) & =G_{r}\left(-\bar{\lambda}_{r, i}\right) \\
G^{\prime}\left(-\bar{\lambda}_{r, i}\right) & =G_{r}^{\prime}\left(-\bar{\lambda}_{r, i}\right)
\end{aligned}
$$

- \mathbf{G}_{r} minimizes the \mathcal{H}_{2} error locally within the set of all ROMs of order r

$$
\begin{aligned}
\mathbf{A V}-\mathbf{E V S} & =\mathbf{B R}_{V} \\
\mathbf{A}^{T} \mathbf{W}-\mathbf{E}^{T} \mathbf{W} \mathbf{S}_{W}^{T} & =\mathbf{C}^{T} \mathbf{L}_{W}
\end{aligned}
$$

$$
\lambda_{i}\left(\mathbf{S}_{V}\right)=s_{0}: \text { shifts }
$$

$$
\mathbf{R}_{V}, \mathbf{L}_{W}: \text { tangential }
$$

directions

\mathcal{H}_{2} pseudo-optimality

- Problem: $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}, \lambda_{i} \in \mathbb{C}^{-}$

$$
\left\|\mathbf{G}-\mathbf{G}_{r}\right\|_{\mathcal{H}_{2}}=\min _{\widetilde{\mathbf{G}}_{r} \in \mathcal{G}(\Lambda)}\left\|\mathbf{G}-\widetilde{\mathbf{G}}_{r}\right\|_{\mathcal{H}_{2}}
$$

- Necessary and sufficient condition for global \mathcal{H}_{2} pseudo-optimality:

$$
G\left(-\bar{\lambda}_{r, i}\right)=G_{r}\left(-\bar{\lambda}_{r, i}\right)
$$

- Pseudo-optimal means optimal in a certain subset
- \mathbf{G}_{r} minimizes the \mathcal{H}_{2} error globally within the subset of all ROMs of order r with poles Λ

\mathcal{H}_{2} pseudo-optimal reduction of linear systems

Notation

Gramian $\quad \mathbf{A}_{r} \mathbf{P}_{r} \mathbf{E}_{r}^{T}+\mathbf{E}_{r} \mathbf{P}_{r} \mathbf{A}_{r}^{T}+\mathbf{B}_{r} \mathbf{B}_{r}^{T}=\mathbf{0}$

Scalar product Krylov
Projection

$$
\begin{align*}
& \mathbf{A X E}_{r}^{T}+\mathbf{E X A}_{r}^{T}+\mathbf{B B}_{r}^{T}=\mathbf{0} \tag{unknown}\\
& \mathbf{A V}-\mathbf{E V S}=\mathbf{B R} \tag{known}\\
& V \\
& \mathbf{B}_{\perp}=\mathbf{B}-\mathbf{E V E}_{r}^{-1} \mathbf{B}_{r}
\end{align*}
$$

New conditions for pseudo-optimality for linear systems
Let \mathbf{V} be a basis of a Krylov subspace. Let $\mathbf{G}_{r}(s)$ be the reduced model obtained by projection with \mathbf{W}. Then, the following conditions are equivalent:
i) $\mathbf{S}_{V}=-\mathbf{P}_{r} \mathbf{A}_{r}^{T} \mathbf{E}_{r}^{-T} \mathbf{P}_{r}^{-1}$
ii) $\mathbf{E}_{r}^{-1} \mathbf{B}_{r}+\mathbf{P}_{r} \mathbf{R}_{V}^{T}=\mathbf{0}$
iii) $\mathbf{S}_{V} \mathbf{P}_{r}+\mathbf{P}_{r} \mathbf{S}_{V}^{T}-\mathbf{P}_{r} \mathbf{R}_{V}^{T} \mathbf{R}_{V} \mathbf{P}_{r}=\mathbf{0} \Leftrightarrow \mathbf{P}_{r}^{-1} \mathbf{S}_{V}+\mathbf{S}_{V}^{T} \mathbf{P}_{r}^{-1}-\mathbf{R}_{V}^{T} \mathbf{R}_{V}=\mathbf{0}$
iv) $\mathbf{X}=\mathbf{V} \mathbf{P}_{r}$
v) $\mathbf{A} \widehat{\mathbf{P}} \mathbf{E}^{T}+\mathbf{E} \widehat{\mathbf{P}} \mathbf{A}^{T}+\mathbf{B B}^{T}=\mathbf{B}_{\perp} \mathbf{B}_{\perp}^{T}$
vi) $\mathbf{P}_{r}^{-1}=\mathbf{E}_{r}^{T} \widehat{\mathbf{Q}}_{r} \mathbf{E}_{r}$

Algorithm 1 Pseudo-optimal rational Krylov (PORK)
Input: $\mathbf{V}, \mathbf{S}_{V}, \mathbf{R}_{V}, \mathbf{C}$, such that $\mathbf{A V}-\mathbf{E V S}{ }_{V}=\mathbf{B} \mathbf{R}_{V}$ is satisfied
Output: \mathcal{H}_{2} pseudo-optimal reduced model $\mathbf{G}_{r}(s)=\mathbf{C}_{r}\left(s \mathbf{E}_{r}-\mathbf{A}_{r}\right)^{-1} \mathbf{B}_{r}$
1: $\mathbf{P}_{r}^{-1}=\operatorname{lyap}\left(-\mathbf{S}_{V}^{T}, \mathbf{R}_{V}^{T} \mathbf{R}_{V}\right) \quad$ condition iii $): \mathbf{P}_{r}^{-1} \mathbf{S}_{V}+\mathbf{S}_{V}^{T} \mathbf{P}_{r}^{-1}-\mathbf{R}_{V}^{T} \mathbf{R}_{V}=\mathbf{0}$
2: $\mathbf{B}_{r}=-\left(\mathbf{P}_{r}^{-1}\right)^{-1} \mathbf{R}_{V}^{T} \quad$ condition ii)
3: $\mathbf{A}_{r}=\mathbf{S}_{V}+\mathbf{B}_{r} \mathbf{R}_{V}, \mathbf{E}_{r}=\mathbf{I}, \mathbf{C}_{r}=\mathbf{C V}$

Advantages and properties of PORK

- ROM is globally optimal within a subset: $\left\|\mathbf{G}-\mathbf{G}_{r}\right\|_{\mathcal{H}_{2}}=\min _{\widetilde{\mathbf{G}}_{r} \in \mathcal{G}(\Lambda)}\left\|\mathbf{G}-\widetilde{\mathbf{G}}_{r}\right\|_{\mathcal{H}_{2}}$
- Eigenvalues of ROM: $\Lambda(\mathbf{S})=\Lambda\left(-\mathbf{E}_{r}^{-1} \mathbf{A}_{r}\right)$
\rightarrow choice of the shifts is twice as important
- Stability preservation in the ROM can be ensured (choice of shifts)
- Low numerical effort required: solution of a Lyapunov equation and a linear system of equations, both of reduced order.

Subsystem interpolation:

Interpolation is forced on some of the leading subsystem transfer functions.
The interpolation information is placed for a finite number of subsystems in the span of the projection basis.

Volterra series-based interpolation:
Enforcing multipoint interpolation of the underlying Volterra series

Summary and Outlook

Summary:

\checkmark Bilinear systems
\checkmark Mathematical background of several reduction methods
\checkmark Implementation
$\checkmark \mathcal{H}_{2}$ optimal model reduction for bilinear systems
\checkmark New conditions for \mathcal{H}_{2} pseudo-optimality for bilinear systems

Conclusions:

- BIRKA: Solving another form of Sylvester equations - convergence problems as IRKA as the reduced dimension increases
- T-BIRKA: better results for high reduced orders - "nearly" \mathcal{H}_{2} optimal
- BIRKA initialization strategies
- T-BIRKA implementation: reducing the amount of iterations

Discussion:

- The backslash operator "\" in MATLAB for the matrix inversion may cause memory space exceedance - computation of large scale Sylvester equations in vectorized form
- \mathcal{H}_{2} norm of the error system - Solution of bilinear Lyapunov equations
- Sensitivity analysis of weighting matrices

